WO2013118266A1 - Control device and control method for distributed power generation device - Google Patents

Control device and control method for distributed power generation device Download PDF

Info

Publication number
WO2013118266A1
WO2013118266A1 PCT/JP2012/052920 JP2012052920W WO2013118266A1 WO 2013118266 A1 WO2013118266 A1 WO 2013118266A1 JP 2012052920 W JP2012052920 W JP 2012052920W WO 2013118266 A1 WO2013118266 A1 WO 2013118266A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
power
amount
suppression
generation amount
Prior art date
Application number
PCT/JP2012/052920
Other languages
French (fr)
Japanese (ja)
Inventor
敏之 澤
森 重樹
鶴貝 満男
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to IN6618DEN2014 priority Critical patent/IN2014DN06618A/en
Priority to JP2013557287A priority patent/JP5788535B2/en
Priority to PCT/JP2012/052920 priority patent/WO2013118266A1/en
Priority to CN201280069027.5A priority patent/CN104094491B/en
Publication of WO2013118266A1 publication Critical patent/WO2013118266A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D4/00Tariff metering apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2204/00Indexing scheme relating to details of tariff-metering apparatus
    • G01D2204/10Analysing; Displaying
    • G01D2204/12Determination or prediction of behaviour, e.g. likely power consumption or unusual usage patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2204/00Indexing scheme relating to details of tariff-metering apparatus
    • G01D2204/20Monitoring; Controlling
    • G01D2204/28Processes or tasks scheduled according to the power required, the power available or the power price
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2204/00Indexing scheme relating to details of tariff-metering apparatus
    • G01D2204/30Remote utility meter reading systems specially adapted for metering the generated energy or power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/30Smart metering, e.g. specially adapted for remote reading

Definitions

  • the present invention relates to a control device and control method of a distributed power generation system.
  • the power demand is small, it is required to suppress the amount of power generation (the amount of power) of the distributed power generation apparatus installed at the customer. It is necessary to know how much power generation has actually been suppressed, but in order to estimate the amount of power generation that has been suppressed, it is necessary to estimate the amount of power generation that has not been suppressed.
  • Non-Patent Document 1 a method is conceivable in which the amount of power generation of the distributed power generation device is predicted using the measurement value of a sensor such as a solar radiation meter and the conversion efficiency. Furthermore, a method (Non-Patent Document 1) has also been proposed that predicts the amount of solar power generation in the entire predetermined area based on the weather and the like.
  • the present invention has been made in view of the above problems, and an object thereof is to be able to estimate a potential amount of power generation when not suppressed, when the amount of power generation of the distributed power generation device is suppressed. It is providing a control device and control method of distributed power generation equipment.
  • a control device of a distributed power generation device is a control device of a distributed power generation device that suppresses the amount of power generation of the distributed power generation device and estimates the suppressed amount of power generation.
  • a power generation amount measurement unit that measures the power generation amount of the distributed power generation device, and control pattern information for controlling the power generation amount of the distributed power generation device, and does not suppress the first time zone for suppressing the power generation amount and the power generation amount
  • a control pattern setting unit that controls the power generation amount of the distributed power generation device by setting control pattern information including at least one second time zone in the generated power control unit that controls the power generation amount of the distributed power generation device.
  • the first power generation amount in the first time zone and the second power generation amount in the second time zone are acquired from the power generation amount measuring unit, and based on the first power generation amount and the second power generation amount, in the first time period Do not suppress the power generation of the distributed generator
  • the potential amount of power generation would be obtained if and a potential power generation amount estimation unit for estimating.
  • the control pattern information suppresses the first power generation amount for the first time zone to a predetermined first upper limit value and the second power generation amount for the second time zone to a predetermined second upper limit value.
  • the second upper limit value can be set to be equal to or more than the maximum power generation amount of the distributed power generation system.
  • At least a part of the configuration of the present invention may be realized as a computer program or a hardware circuit.
  • the computer program can be distributed via, for example, a communication medium such as the Internet, a recording medium such as a hard disk or a flash memory device.
  • An example of a screen displaying the items of similarity in graph format An example of suppression pattern graph.
  • the example of the display screen of an operation display apparatus The example of the display screen of an operation display apparatus.
  • the example of the display screen of an operation display apparatus The example of the display screen of an operation display apparatus.
  • Overall equipment configuration to estimate the amount of suppression power Overall equipment configuration to estimate the amount of suppression power.
  • the potential power generation amount in the first time zone in which the power generation amount is suppressed is estimated based on the first power generation amount in the first time zone and the second power generation amount in the second time zone in which the power generation amount is not suppressed. it can.
  • a time zone in which the output (amount of power generation) of the distributed power generation device is suppressed and a time zone in which the output is not suppressed are set in a designated predetermined time range.
  • the latent power generation amount in the suppressed first time zone that is, the power generation amount that would have appeared if not suppressed
  • the second power generation in the second time zone before and after that Calculated by weighted averaging of quantities.
  • the potential power generation amount is calculated with relatively high accuracy by a relatively simple method. it can. Accordingly, the suppressed amount of power generation (the amount of suppressed power) can also be calculated with a relatively simple method and with relatively high accuracy.
  • one decentralized generator in the area is used as a reference generator, without limiting the output, and based on the output of the reference generator, the potential of another decentralized generator in the same area
  • a configuration for estimating the amount of power generation is also conceivable.
  • complicated calculations need to be performed to individually calculate the potential power generation amount of the distributed power generation devices in the region.
  • the power generation amount of the distributed power generation apparatus is a kind of personal information for a consumer, the configuration using another distributed power generation apparatus as a reference power generation apparatus is not preferable from the viewpoint of security and the like.
  • FIG. 1 is an overall configuration diagram including a control device of a distributed power generation system according to the present embodiment.
  • FIG. 2 is a detailed block diagram of the power suppression controller 42 for estimating the amount of suppression power.
  • FIG. 3 shows a calculation processing flow of a method of estimating the suppression power amount.
  • the overall configuration 1 on the customer side is connected to the regional transmission / reception device 2 via the communication network 11.
  • the overall configuration 1 on the customer side includes the control information signal as “control pattern information” created by the area planning device 3, the communication path 23, the area transmitting / receiving device 2, the communication path 22, and the communication network 11. , And communication path 21.
  • the area planning device 3 is a computer system for managing the power demand of a predetermined area, and is also connected to a computer system (not shown) of a power company.
  • the overall configuration 1 on the customer side is connected to the power system 9 via the transmission line 32, the power network 12, and the feed line 31.
  • the whole configuration 1 on the customer side purchases the power from the power system 9 when the power generation amount of the solar power generation device 47 can not meet the power demand.
  • the entire device configuration 1 on the customer side supplies the surplus power to the power grid 9 and sells it to the power company can do.
  • the overall configuration 1 on the customer side is, for example, the configuration 41 in the building of the customer, the customer side transmission / reception device 51, the power generation meter 52, the surplus meter 53, the power meter 54, the transformer 55, power
  • the sensor 79, 80, 81, signal lines 67, 68, 69, 70, 74, 75, 76 for connecting them, and power lines 71, 72, 73, 78 are included.
  • the configuration 41 in the building of the customer includes, for example, the power suppression controller 42, the power conditioner (hereinafter, PCS) 43, the distribution board 44, the operation display device 45, the results database 46, “distributed generation
  • the apparatus includes a power generation device 47 as a device and an electrical device 49 as an electrical load.
  • the electric device 49 is different depending on the type of customer, and includes, for example, a lighting device, an air conditioner, a refrigerator, an electric motor, and the like.
  • Examples of the power generation device 47 include a solar power generation device, a wind power generation device, and the like.
  • the power generation device 47 may be connected to a power storage device (not shown).
  • broken lines connecting devices indicate communication lines, and solid lines indicate power lines.
  • the communication method may be either a wired method or a wireless method.
  • the power suppression controller 42 is connected to the operation display device 45 via the communication line 62, is connected to the performance database 46 via the communication line 63, and is connected to the PCS 43 via the communication line 61. And the communication line 67 are connected. Further, the power suppression controller 42 is connected to the power sensor 81 via the communication line 70, is connected to the power sensor 80 via the communication line 69, and is connected to the power sensor 79 via the communication line 68.
  • the PCS 43 is connected to the power generation device 47 via the power line 64, and is connected to the power generation meter 52 via the power line 71.
  • the distribution board 44 is connected to the electric device 49 via the power line 66, is connected to the power generation meter 52 via the power line 72, and is connected to the surplus meter 53 via the power line 73.
  • the customer side transmitting / receiving apparatus 51 transmits various information on the customer side to the area planning device 3 or receives a control signal (suppression information signal) from the area planning device 3.
  • the customer-side transmitting / receiving device 51 is connected to the power generation meter 52 via the communication line 74, connected to the surplus meter 53 via the communication line 75, and connected to the power meter 54 via the communication line 76.
  • the customer-side transmitting and receiving device 51 is connected to the area-side transmitting and receiving device 2 via the communication network 11.
  • the area planning device 3 is connected to the customer side transmission / reception device 51 via the communication line 23 with the region side transmission / reception device 2 for transmitting and receiving information.
  • the power suppression controller 42 is connected to each of the power sensors 81, 80, 79 via the sensor data receiving unit 423, and takes in the amount of power measured by the sensors 81, 80, 79.
  • the power sensor 81 measures the power generated by the power generation device 47 on the way from the PCS 43 to the power generation meter 52.
  • the power sensor 80 measures the amount of power between the distribution board 44 and the surplus meter 53.
  • the power sensor 79 measures the amount of power between the surplus meter 53 and the power meter 54.
  • the power suppression controller 42 stores the power data taken from each of the power sensors 81, 80, 79, the calculation result of the power suppression controller 42, etc. in the results database 46, and the power data from the results database 46 in the past Or read the calculation result.
  • the power suppression controller 42 transmits control data to the PCS 43 via the PCS communication unit 422.
  • the power suppression controller 42 transmits display data to the operation display device 45 via the operation display communication unit 421.
  • the operation display device 45 is a man-machine interface unit for exchanging information with a user (demander).
  • the operation display device 45 has a display function and an operation function.
  • the operation display device 45 displays the display data received from the power suppression controller 42.
  • the display data can include, for example, information such as measured power amount, potential power generation amount, and suppression power amount.
  • the operation display device 45 can also request the power suppression controller 42 to transmit necessary information by the operation function.
  • the operation display device 45 may be configured to request information from the power suppression controller 42 in response to a manual operation by the user, or the power suppression is automatically performed when a predetermined condition is satisfied, such as when a predetermined date and time arrives.
  • the controller 42 may be configured to request information.
  • the operation display device 45 can be configured as a dedicated device for display and operation.
  • a versatile personal computer, a mobile phone, a portable information terminal, a television device or the like may be used as the operation display device 45.
  • the power generation meter 52 measures the amount of power generation of the power generation device 47.
  • the power generation meter 52 is installed in order to be able to sell all the power generated by the power generation device 47.
  • the surplus meter 53 and the power meter 54 are meters that measure only one direction of the flow of power.
  • the surplus meter 53 counts up the amount of power when the power generation of the power generation device 47 is larger than the power consumption of the electric device 49, and does not count otherwise.
  • the power meter 54 counts up the amount of power when the power generation of the power generation device 47 is less than the power consumption of the electric device 49, and does not count otherwise. If the power sensors 79, 80 can switch the power direction in the positive or negative direction based on the current direction, the power values will be the same value. That is, the absolute value of the measurement value of the power sensor 79 and the absolute value of the measurement value of the power sensor 80 are equal.
  • the DC power generated by the power generation device 47 is converted to an alternating current by the PCS 43 and then sent to the distribution board 44 via the power generation meter 52.
  • the power consumed by the electric device 49 such as a refrigerator, an air conditioner, and a lighting device is supplied from the distribution board 44.
  • the distribution board 44 is connected to the transformer 55 via a surplus meter 53, a power meter 54, and the like. Surplus power generated by the customer is sent to the power system 9 via the distribution board 44 or the like, and power insufficient for the customer is supplied from the power system 9 to the electric device 49 via the distribution board 44 or the like. Be done. That is, the electric power used by the electric device 49 is divided into two types, that is, one supplied from the electric power system 9 via the transformer 55 and the electric power generated by the power generation device 47.
  • the power suppression controller 42 controls the amount of power between the PCS 43 and the power generation meter 52 by the power sensor 81 and the amount of power between the distribution board 44 and the surplus meter 53 by the power sensor 80.
  • the case has been described in which the amount of power between the power meter and the power meter 54 is measured by the power sensor 79, respectively.
  • the power suppression controller 42 receives the power amount data measured by the power generation meter 52 and the power amount data measured by the surplus meter 53 and the power meter 54 via the customer side transmission / reception device 51. May be In this case, the power sensors 81, 80, 79, and the communication lines 70, 69, 68 between the sensors 81, 80, 79 and the power suppression controller 42 are also unnecessary.
  • the power sensors 81, 80, 79 are installed by the consumer in order to measure their own amount of power.
  • the power generation meter 52, the surplus meter 53, and the power meter 54 are installed by the power supplier to calculate the power rate and the like. Therefore, the power supplier does not necessarily disclose the power amount data measured by each of the meters 52, 53, 54 to the consumer from the viewpoint of security and the like.
  • the power sensors 81, 80, 79 are used.
  • the area planning device 3 transmits information for suppressing the output of the power generation device 47 to the area transmitting / receiving device 2. This information is sent from the area side transmission / reception device 2 to the customer side transmission / reception device 51 via the communication network 11 or the like. This information is ultimately sent to the power suppression controller 42.
  • the information for suppressing the output of the power generation device 47 which is created by the area planning device 3, includes information for identifying a customer to be suppressed, a day to be suppressed, and a time zone to be suppressed as described later. And the upper limit value of the power amount.
  • the pattern number for specifying the defined pattern may be transmitted from the area planning device 3 to the power suppression controller 42.
  • the power suppression controller 42 stores in advance a table that associates the pattern number with the pattern content, and determines the received pattern number based on the table. Thereby, the power suppression controller 42 can determine whether the customer provided with the own device is the customer targeted for suppression, or can set the time zone targeted for suppression and the upper limit of power consumption etc. .
  • FIG. 5 is an IV curve showing the relationship between the voltage V and the current I of the power generation device 47 (for example, a solar power generation device) which is a control target of the PCS 43.
  • the number 1 which is the product of the two becomes the power W of the solar power generation.
  • the voltage Vm By changing the voltage Vm by the PCS 43, the relationship between the voltage V and the power W shown in FIG. 6 is obtained. As can be seen from this graph, by changing the voltage V in the direction in which the power W increases, it is possible to control the voltage to be the maximum power. Since the voltage to be the maximum power changes depending on the amount of solar radiation and the like, it is adjusted as needed. Similarly, by adjusting the voltage, when the target power is equal to or less than the maximum power, the target power can be obtained.
  • the power suppression controller 42 for estimating the potential power generation amount and the suppression power amount is configured as, for example, a computer system provided with a microprocessor, a memory, a communication interface, and the like.
  • the power suppression controller 42 has, for example, a control unit 411, a suppression related information receiving unit 412, a suppression pattern expanding unit 413, a meter value loading processing unit 414, and a determination processing unit 415.
  • a suppression condition setting unit 416, a data storage processing unit 417, a suppression amount estimation processing unit 418, a request data capture transmission unit 419, an operation display communication unit 421, a PCS communication unit 422, a sensor data reception unit 423, and A consumer communication unit 424 is provided.
  • the control unit 411 performs data exchange between the processing units 412 to 424 and processing and processing of data for smoothly performing the processing functions of the processing units 412 to 424, and operates the entire processing normally. Let In addition, the control unit 411 issues a processing request for storing data in the results database 46 or issues a processing request for extracting data from the results database 46.
  • the suppression related information receiving unit 412 receives information on the suppression of the power generation amount created by the area planning device 3 from the customer side communication unit 424 and takes in the information.
  • the suppression pattern expanding unit 413 determines whether the user is a consumer to be suppressed, based on the information related to the suppression received by the suppression related information receiving unit 412. If it is determined that the customer is a consumer targeted for suppression, the suppression pattern expanding unit 413 expands the suppression target day, the suppression time zone, and the upper limit value (also referred to as output upper limit value) of the power generation amount based on the received pattern number and the like. Do.
  • the information on the output upper limit value transmitted from the area planning device 3 can be set, for example, as a ratio to the rated power of the power generation device 47.
  • the product of the rated capacity of the PCS 42 or the rated power of the power generation device 47 and the instructed ratio is the output upper limit value.
  • the meter value taking-in processing unit 414 takes in the amount of power measured by the power sensors 79, 80, 81 via the sensor data receiving unit 423.
  • the determination processing unit 415 determines whether or not it is a time zone in which the power generation amount (power generation output) of the power generation device 47 is suppressed.
  • the suppression condition setting unit 416 transmits, to the PCS 43 via the PCS communication unit 422, the latest amount of power acquired by the meter value acquisition processing unit 414 and the value of the output upper limit value calculated by the suppression pattern expansion unit 413. .
  • the suppression amount estimation processing unit 418 determines the amount of power that should have been obtained if it was not suppressed in the time zone in which the amount of power generation was suppressed based on the amount of power measured by the power sensors 79, 80, 81 (latency Target power generation). The difference between the potential power generation amount and the output upper limit value in the suppression time zone is intentionally suppressed power, and is referred to as suppression power amount in the present specification. Further, the suppression amount estimation processing unit 418 calculates the charge based on the suppression power amount and the power purchase fee and the power sale charge stored in the results database 46. This calculated charge can be the basis of the compensation amount for the reduction of the power generation of the customer.
  • the data storage processing unit 417 transmits the amount of power measured by the power sensors 79, 80, 81 and the amount of suppression power and charge calculated by the suppression amount estimation processing unit 418 to the actual result database 46 via the operation display communication unit 421. Store in Further, the potential power generation amount may be stored in the results database 46.
  • the request data acquisition transmission unit 419 acquires data requested by the operation from the operation display device 45 from the result database 46 and transmits the data to the operation display device 45.
  • FIG. 3 is a flowchart showing processing for estimating the latent power generation amount and the suppression power amount, which is mainly executed by the power suppression controller 42. Some steps are processed in circuits other than the power suppression controller 42.
  • step S401 the power suppression controller 42 receives the suppression information shown in FIG. FIG. 7 shows an example of suppression information as “control pattern information”.
  • the suppression information includes, for example, an area number, a consumer group number, a suppression date, a pattern number, a suppression amount, a suppression control start time, a suppression control end time, a time interval for performing suppression, and a correction Includes start and end of correction.
  • the area number is information for identifying each area managed by the area planning device 3.
  • the customer group number is information for identifying a customer group consisting of one or more customers existing in the area designated by the area number.
  • a suppression day is a day on which the amount of power generation is suppressed.
  • the pattern number determines whether to suppress the amount of power generation based on the measurement value of the power sensor 81 that measures the output of the power generation device 47 or to suppress the amount of power generation based on the value measured by the power sensor 79 It is a thing. For example, when the pattern number is “1”, control is performed based on the measurement value of the power sensor 81. When suppressing the amount of power generation on the customer side based on the power generation output from the power generation device 47, “1” is set to the pattern number. When the pattern number is "2”, control is performed based on the measurement value of the power sensor 79. In the case where the amount of power generation on the customer side is suppressed based on the amount of reverse power flow to the power system 9, "2" is set as the pattern number. That is, when “2” is set as the pattern number, the occurrence of reverse power flow is set as the suppression start condition.
  • the suppression amount indicates the amount of suppression of the power generation amount, and is set, for example, as a ratio (%) to the rated power generation amount or the rated capacity.
  • the value obtained by subtracting the suppression amount from the rated power generation amount or rated capacity is the output upper limit value.
  • a value obtained by multiplying the rated power generation amount or rated capacity by the suppression rate is the output upper limit value.
  • the start time of the suppression control is the time to start the suppression control of the power generation amount.
  • the end time of the suppression control is the time when the suppression control of the power generation amount is ended.
  • the time interval is information for defining an interval of appearance of a time zone (suppression time zone) in which the amount of power generation is suppressed.
  • the correction start is information for adjusting the time when the suppression of the power generation amount is started.
  • the correction end is information for adjusting the time when the suppression of the power generation amount is ended.
  • step S402 the power suppression controller 42 is provided with the “area number” and the “customer group number” in the suppression information received in step S401 by the suppression related information receiving unit 412. Determine if it corresponds to a certain customer.
  • the power suppression controller 42 sets the output upper limit value to the rated capacity of the PCS 43 or the rated output of the power generation device 47. If there is a possibility that more power may be output under the conditions for the rated output of the power generation equipment, The output upper limit value may be set to, for example, about twice the rated output.
  • step S402 the power suppression controller 42 sets the reference time of the process to "24 o'clock". Furthermore, in step S402, the power suppression controller 42 suppresses based on the measurement value of the power sensor 81 based on the "pattern number" in the suppression information, or suppresses based on the measurement value of the power sensor 79. Determine if
  • step S402 the power suppression controller 42 determines the output upper limit value by multiplying the rated capacity of the PCS 43 or the power generation device 47 by the numerical value designated by the “suppression amount” in the suppression information. For example, assuming that the rated capacity is 3 kW and the amount of suppression is 60%, the output upper limit value is “1.8 kW”.
  • the time at which the suppression time zone for suppressing the power generation amount on the customer side is first started is "8 o'clock", and the time at which the last suppression time zone ends is “19:00 ".
  • the time when the last suppression time zone is started is "18 o'clock”
  • the time interval is specified as 60 minutes
  • the end time of the last suppression time zone is 19:00. Therefore, in step S402, the power suppression controller 42 develops the start time and the end time of the power generation amount suppression on a time chart as shown in FIG.
  • the first time period (suppression time period) to start suppression of the power generation is 60 minutes from 8:00 to 9:00, and the second suppression time period is from 10:00 to 11:00 For 60 minutes, and thereafter, a suppression time zone is provided every one hour.
  • the final suppression window is 60 minutes from 18:00 to 19:00.
  • a time zone (non-suppression time zone) in which the power generation amount on the customer side is not suppressed is set for 60 minutes.
  • power can be generated only up to the output upper limit value smaller than the rated output (or rated capacity).
  • the non-suppression time zone corresponding to the "second time zone” power can be generated up to the rated output.
  • step S403 the power suppression controller 42 causes the meter value take-in processing unit 414 to read the power values measured by the power sensors 79, 80, and 81, respectively. Note that, as described above, instead of the power suppression controller 42 directly reading the measurement values of the power sensors 79, 80, 81, the power suppression controller 42 transmits the meters 52, 53, 54 via the consumer side transceiver device 51. It may be configured to read the measured value of.
  • the power suppression controller 42 causes the determination processing unit 415 to process step S404, step S405, step S406 and step S407.
  • step S404 the power suppression controller 42 determines whether the current time exceeds “24 o'clock,” which is the reference time of this process, and if one day is over (S404: YES), End the process. If not (S404: NO), the power suppression controller 42 determines in step S405 whether it exceeds the suppression end time or is before the suppression start time. If not (S405: NO), the power suppression controller 42 determines in step S406 whether the current time is in the suppression time zone.
  • the power suppression controller 42 confirms whether the occurrence of the reverse power flow is the start condition of the generation amount suppression, and if the generation of the reverse power flow is the condition of the suppression start, It is determined whether the power direction of the power sensor 79 is flowing from the customer side to the power system side (S407).
  • step S408 If power is flowing from the customer side to the power grid side (S407: YES), the power suppression controller 42 proceeds to step S408. In addition, also when generation
  • step S405 If the determination result in step S405 is Yes, or if the determination result in S406 is No, or if the determination result in S407 is No, then the process proceeds to step S414.
  • step S414 the measured value (meter value) of the power sensor is transmitted to the PCS 42 without suppressing the amount of power generation.
  • the suppression condition setting unit 416 of the power suppression controller 42 processes steps S408 and S413. In steps S408 and S413, an output upper limit value and a meter value to be transmitted are set.
  • step S408 since the suppression time zone is targeted, the output upper limit value corresponding to the current time is selected among the output upper limit values developed in the pattern in step S402. This output upper limit value corresponds to the "first upper limit value”.
  • step S414 since step S414 is not a suppression time zone, the value which cancelled
  • the measured value of the electric power sensor 81 is used, when suppressed based on the electric energy of reverse power flow, the measured value of the electric power sensor 79 Use
  • the power suppression controller 42 transmits the set output upper limit value and the measurement value of the power sensor to the PCS 43.
  • Step S409 is processed by the PCS 43.
  • the PCS 43 adjusts the output of the power generation device 47 based on the output upper limit value sent from the suppression condition setting unit 416 and the measurement value of the power sensor.
  • step S501 the PCS 43 receives the output upper limit value sent from the suppression condition setting unit 416 and the measurement value of the power sensor (also referred to as a meter value).
  • step S502 the PCS 43 determines whether the meter value exceeds the output upper limit value. When it has exceeded (S502: YES), the PCS 43 suppresses the output of the power generating device 47 by adjusting the voltage (S503). If not (S502: NO), the PCS 43 adjusts the voltage to increase the output of the power generating device 47 (S504).
  • the power suppression controller 42 integrates the power until it becomes the unit of the suppression time zone (S409). For example, if the suppression time zone is set to one hour, the power suppression controller 42 integrates the power for one hour until every hour.
  • the power suppression controller 42 determines whether it is time to store the data in the performance database 46 (S410). If it is not the data storage time (S410: NO), the process moves to step S413. If the data storage time has come (S410: YES), the power suppression controller 42 stores the power integration value (hereinafter also referred to as an integration value) measured by the power sensors 79, 80, 81 in the results database 46 (S411) . The power suppression controller 42 stores the integrated power value in the performance database 46, and at the same time, initializes the integrated value so far to zero.
  • an integration value hereinafter also referred to as an integration value
  • Step S412 is processed by the suppression amount estimation processing unit 418 for estimating the suppression power amount and the potential power generation amount.
  • the power suppression controller 42 calculates the integrated values of the power sensors 79 and 81 in the suppression time zone to be estimated and the power sensors 79 and 81 in two non-inhibition time zones adjacent to the suppression time zone to be estimated.
  • the integrated value and the actual value database 46 are read.
  • the integrated value of the power sensor 79 in the suppression time zone t is PV (t)
  • the power sensor 79 at the non-suppression time (t-1) located immediately before the suppression time zone t is PV (t-1)
  • the integrated value of the power sensor 79 in the non-suppression time zone (t + 1) located immediately after the suppression time zone t is PV (t + 1).
  • the potential power generation amount PVest (t) that would have been obtained if it did not suppress is shown in the equation 2 in the immediately preceding non-suppression time zone (t-1). It can be calculated as an average value of the integrated value PV (t-1) and the integrated value PV (t + 1) in the immediately following non-suppression time zone (t + 1).
  • the electric energy dPV (t) estimated to be actually suppressed is the potential generation amount PVest (t) and the value for which the output is permitted (that is, the suppression time), as shown in Equation 3. It can be obtained as a difference from PV (t) which is the output upper limit value of the band.
  • the case where the rated capacity and suppression amount (suppression rate) of the power generation device 47 which each consumer has is the same is examined.
  • the suppression time zone of each customer by shifting the suppression time zone of each customer by one hour, it is possible to set the suppression rate when the two power generating devices 47 as a whole are viewed as a constant value.
  • one power generating device 47 is suppressed at a suppression rate of 60% from 12 o'clock to 13 o'clock, and the suppression is released from 13 o'clock to 14 o'clock, and the other power generating device 47 is released from 12 o'clock to 13 o'clock
  • the suppression rate is 60% from 13:00 to 14:00.
  • the output of the two power generating devices 47 as a whole becomes 80%.
  • the output of the two power generating devices 47 as a whole is 80% even in the time from 13 o'clock to 14 o'clock. That is, by shifting the period of the rectangular wave of the suppression pattern by a predetermined amount, it is possible to stably suppress the power generation output of the entire customer group.
  • the output of the power generation device 47 changes rapidly at the boundary between the suppression time zone and the non-suppression time zone. Such a sudden output change is not preferable for the power system 9 as well as for the electric equipment 49 of the customer.
  • the output suppression may be started earlier by a predetermined time (for example, 5 minutes) than the suppression start time, and the suppression end time may be delayed by a predetermined time (for example, 5 minutes).
  • FIG. 11 is a suppression pattern for adjusting the output according to the suppression information of FIG. Comparing FIG. 11 with FIG. 9, in FIG. 11, since the output adjustment (output suppression) is started 5 minutes before the suppression start time, the graph shape at the start is inclined. Similarly, in order to delay the suppression end time by 5 minutes, the graph shape at the end is also inclined.
  • the suppression amount (suppression rate) of the suppression time zone does not become 60%. Since the output upper limit value is increased by the inclination, the average output upper limit value is slightly increased as shown by the thin solid line. As shown in FIG. 11, the pattern for suppressing the power generation output is changed from a rectangular wave rising vertically and falling vertically to a trapezoidal pattern rising with inclination and falling with inclination, as compared to the case of FIG. Output fluctuation can be reduced.
  • Equation 4 The output increase ePV (t) due to the increase in the output upper limit of the suppression time zone can be calculated according to Equation 4.
  • the corrected output time nPV (t) of the suppression time zone and the output nPV (t + 1) of the non-suppression time zone (t + 1) immediately thereafter can be calculated according to Equation 5.
  • the potential power generation amount in the suppression time zone t can be calculated as an average value of the outputs of the non-suppression time zones before and after that .
  • the suppression electric energy can be calculated
  • FIG. 13 is a graph of the suppression pattern based on FIG. Although FIG. 13 and FIG. 7 are substantially the same, in the suppression pattern of FIG. 13, since the suppression end time is set 5 minutes late, it has a predetermined inclination at the start time and end time.
  • the suppression rate of the suppression time zone t in the case shown in FIG. 13 is not 60%, and the output upper limit is increased by the slope.
  • the average value of the output upper limit value in the suppression time zone t is indicated by a thin solid line.
  • the output fluctuation can be reduced as described in FIG. 11 by giving an inclination to the falling and rising of the output.
  • the output increase amount ePV (t) accompanying the increase of the output upper limit value of the suppression time zone can be calculated from the above-mentioned Expression 4.
  • nPV (t) When the increase ePV (t) is allocated to the non-suppression time zone (t-1) immediately before the suppression time zone t, nPV (t), nPV (t-1) and nPV (t + 1) It can be calculated.
  • the estimated output (potential power generation amount) in the suppression time zone t is the average value of the outputs after the above correction as in the case of the above equation (2), it can be calculated according to the above equation (6). Moreover, suppression electric energy can be calculated by said several 3.
  • FIG. 14 Yet another example of a suppression pattern is described with reference to FIGS. 14 and 15.
  • regulated to the suppression information shown in FIG. 14 is shown in FIG.
  • the suppression pattern of FIG. 15 is almost the same as the suppression pattern shown in FIG. 7, but the suppression start time is set five minutes earlier, and has a slope corresponding to the five minutes earlier suppression start. Therefore, also in this case, the suppression rate in the suppression time zone t is not 60%, and the output upper limit slightly increases by the slope. Therefore, the average of the output upper limit value is shown in FIG. 15 as a thin solid line.
  • the output increase amount ePV (t) due to the increase of the output upper limit value of the suppression time zone can be calculated by the above equation 4.
  • nPV (t) when this output increment ePV (t) is allocated to the immediately preceding non-suppression time zone (t-1), nPV (t), nPV (t-1), nPV (t + 1) is the number 8 described above. It can be calculated from
  • the estimated output (potential power generation amount) in the suppression time zone t is the average value of the outputs after the above correction as in the case of the above equation (2), it can be calculated according to the above equation (6). Moreover, suppression electric energy can be calculated by said several 3.
  • the suppression control is performed so that the measured value of the electric power sensor 81 becomes equal to or less than the output upper limit value
  • the reverse flow amount measured by the electric power sensor 79 is suppressed as equal to or less than the output upper limit value
  • the potential power generation amount and the suppression power amount can be calculated using several 2 to several 8.
  • step S413 in FIG. 3 the power suppression controller 42 measures the measured values of the power sensors 79, 80, 81, the potential power generation amount (estimated power amount when not suppressed), the suppression power amount and the correction power amount Are stored in the results database 46. Furthermore, the power suppression controller 42 calculates the power purchase fee or the power sale fee for each time slot using these power amounts and the power purchase unit price and the power sale unit price read from the results database 46.
  • step S413 After storing the data in the record database 46 in step S413, the power suppression controller 42 returns to step S403 again.
  • FIGS. 16, 17 and 18 show examples of screens displayed on the operation display device 45.
  • FIG. FIG. 16 and FIG. 17 are screen examples when the output of the power generation device 47 is suppressed based on the value of the power sensor 81.
  • FIG. 18 is a screen example in the case where the output of the power generation device 47 is suppressed based on the value of the power sensor 79.
  • the operation display device 45 requests the request data acquisition transmission unit 419 of the power suppression controller 42 to transmit the power amount data, the charge data, and the like stored in the performance database 46.
  • the operation display device 45 receives information from the power suppression controller 42, the operation display device 45 displays the received data on the screen as a graph, a numerical value, and the like.
  • the screen 101 of FIG. 16 will be described.
  • the screen 101 displays information on daytime (current) power generation.
  • An area 102 displays the current date and time.
  • An area 103 displays the current weather.
  • Area 104 displays a message. For example, it is possible to display a warning message on output suppression, such as "Today is the day when output suppression is performed. The suppression rate is set to 60% of the rating.” When the output of the power generation device 47 is not suppressed, the region 104 does not display a warning message.
  • the button 105 is a button for turning on / off the power of the operation display device 45. Currently, it is ON.
  • the graph 106 displays the time change of the current power generation state.
  • the horizontal axis is time, and the vertical axis is power generation.
  • the solid line 107 shows the suppression pattern.
  • a hatched bar graph 108 shows the power generation results of the power generation device 47.
  • the black bar graph 109 indicates the amount of suppression power.
  • Table 111 displays the sum of the power generation results of the day, the sum of the estimated suppression power amount, the sum of the sum of the power generation results and the sum of the suppression power amount, and the prediction of the power generation amount.
  • Table 112 displays the power generation result of this month, the total value of the suppression power amount, and the sum of the power generation result and the total value of the suppression power amount.
  • Table 113 displays information indicating whether or not to suppress the power generation output, the suppression pattern, the suppression rate for determining the output upper limit value, and the suppression reason.
  • the button 114 is a button for displaying information on the power demand at the customer.
  • the button 115 is a button for displaying information on the power generation of the power generation device 47.
  • the button 116 is a button for displaying information on the charge.
  • Buttons 117 to 119 are for setting a display target period, and one of them is selected.
  • a button 117 displays information on today's daytime.
  • a button 118 displays information for one day today.
  • a button 119 displays information for one month.
  • Two items selected in FIG. 16 are the “power generation” button 115 and the “daytime” button 117.
  • One of the buttons 114, 115 and 116 is selected.
  • the graph 106 is a display when the power generation button 115 is selected.
  • a display example when the demand button 114 is selected is shown in FIG.
  • the charge button 116 is selected, the charge information is displayed.
  • a setting screen (not shown) for setting a purchase unit price, a sale unit price and the like according to season or time zone is displayed.
  • the operation display device 45 requests the power suppression controller 42 to transmit necessary information in accordance with the button selected by the user (demander).
  • the request data acquisition transmission unit 419 of the power suppression controller 42 reads out and acquires the requested data from the record database 46, and transmits the data to the operation display unit 45.
  • the operation display device 45 When the day button 118 is selected, the operation display device 45 periodically acquires data from the results database 46 and updates the screen display.
  • the power generation button 115 and the day button 118 are selected.
  • the horizontal axis of the graph 121 is a date, and the vertical axis is a power sale income.
  • the graph 121 is a bar graph of the power sale income collected on a daily basis.
  • the hatched bar graph 123 is the income (sales charge) when the actual generated power is sold to the power company.
  • the black bar graph 122 indicates the power sale income (sales compensation amount) by the amount of suppressed power.
  • Table 124 is the sum of the actual sales income today, the sum of the compensation amount based on the suppression power amount, the sum of the actual sales revenue total and the sum of the compensation amount based on the suppression power amount, and the power sales income forecast And are displayed.
  • Table 125 adjacent to Table 124 is the sum of the actual sales revenue of the current month, the sum of the compensation amount based on the suppression power amount, and the sum of the actual result of the selling income and the sum of the compensation amount based on the suppression power amount Is displayed.
  • FIG. 18 is a screen example in the case where a restriction is given to the amount of reverse flow power.
  • the measurement value of the power sensor 79 that measures the amount of reversely flowing power is the sum of the power consumption (power demand) by the electric device 49 and the power generation by the power generation device 47. Therefore, when the “power generation and demand” button 216 is selected, the horizontal axis of the graph 210 indicates time, and the vertical axis indicates the total value of power consumption and power generation.
  • the white bar graph 212 indicates that the power demand is higher. For example, when the power generation device 47 is a solar power generation device, power generation is over at night because power is not generated.
  • a hatched bar graph 213 indicates that power generation is more than power demand, and surplus power causing reverse power flow is generated.
  • the black bar graph 214 shows the suppressed reverse power flow, that is, the estimated amount of suppressed power.
  • Table 215 shows the sum total of the surplus power of today, the sum total of the suppression power amount, the sum of the sum total of the surplus power and the suppression power amount, and the predicted value of the surplus power amount.
  • Table 216 shows the sum total of the surplus power of this month, the sum total of the suppression power amount, and the sum of the sum total of the surplus power and the suppression power amount.
  • the potential power generation amount and the suppression power amount can be calculated with relatively high accuracy by a relatively simple method. Therefore, the contribution of the customer can be fairly evaluated and compensated. Therefore, even when a large number of power generation devices 47 are connected to the power system 9, the stability of the power system can be maintained with the cooperation of each customer.
  • a second embodiment will be described with reference to FIG.
  • the following embodiments including the present embodiment correspond to modifications of the first embodiment, and therefore, differences from the first embodiment will be mainly described.
  • the power generation meter 52, the surplus meter 53, and the power meter 54 are installed so as to be compatible with the whole power purchase system of the power generated by the power generation device 47 and the purchase system of the surplus power.
  • the present embodiment an example of a configuration corresponding to only the purchase system of surplus power will be described with reference to FIG.
  • the entire configuration 1A includes the power sensor 81 for detecting the power from the distribution board 44 to the power generation meter 52 and the power from the power meter 54 to the distribution board 44. Only the power sensor 79 for detecting the In the present embodiment, the measurement value of the power sensor 81 is used in consideration of the direction of the power.
  • the present embodiment configured in this way also exhibits the same effects as the first embodiment.
  • a third embodiment will be described with reference to FIG. This embodiment corresponds to the whole amount purchasing system.
  • the overall configuration 1B on the customer side illustrated in FIG. 20 includes only the power generation meter 52 and the power meter 54, and does not include the surplus meter 53. Furthermore, the overall configuration 1B of the present embodiment includes only the power sensor 81 for measuring the power between the distribution board 44 and the power generation meter 52, and does not include the other power sensors 79 and 80.
  • the power generation meter 52 measures the power generated by the power generation device 47 and flowing into the distribution board 44 via the PCS 43. The generated power is also measured by the power sensor 81. The power consumed by the electric device 49 is supplied from the power system 9 to the customer via the transformer 55, and the value is measured by the power meter 54.
  • power generation and power consumption flow independently without joining at the distribution board 44.
  • the generated power is measured by the power sensor 81.
  • the power consumption is measured by the power sensor 79.
  • the present embodiment configured in this way also exhibits the same effects as the first embodiment.
  • the present invention is not limited to the embodiments described above. Those skilled in the art can make various additions and modifications within the scope of the present invention.
  • the suppression time zone and the non-suppression time zone need not have the same length of time.
  • the cycle of the suppression time zone and the non-suppression time zone is set shorter than the normal cycle (every 60 minutes) It may be a configuration.
  • the rectangular wave pattern and the trapezoidal pattern which is a kind of rectangular wave pattern have been described as an example, the present invention is not limited to this, for example, other shape patterns such as triangular wave pattern and sine wave pattern may be used. .
  • 1, 1A, 1B Overall configuration on the customer side
  • 3 Area planning device
  • 42 Power suppression controller
  • 43 PCS
  • 44 Distribution board
  • 45 Operation display device
  • 46 Achievement database
  • 47 Power generation equipment

Abstract

The present invention addresses the problem of estimating a constrained amount of electric power when the amount of power generated on the consumer side is constrained. In the present invention, control pattern information for controlling power generation on the consumer side is configured such that a first time band in which power generation is constrained and a second time band in which power generation is not constrained appear continuously alternating with each other. A power generation amount estimator estimates a potential amount of power that would have been generated if power generation by a distributed power generation device were not constrained in the first time band, on the basis of a first amount of power generated in the first time band and a second amount of power generated in the second time band. The power generation amount estimator may also calculate, as the constrained amount of electric power, the difference between the potential amount of power generated and a first upper-limit value for constraining the first amount of power generated.

Description

分散型発電装置の制御装置および制御方法Control device and control method for distributed power generation device
 本発明は、分散型発電装置の制御装置および制御方法に関する。 The present invention relates to a control device and control method of a distributed power generation system.
 近年では、地球温暖化も問題などに対応すべく、太陽光発電装置などの自然エネルギを利用する分散型発電装置の導入が社会的に望まれている。分散型発電装置の普及促進のために、電力会社に、需要家が設置した分散型発電装置からの電力を一般の電力料金よりも高い価格で買い取らせる制度が提案されている。このような買い取り制度の下では、需要家は、分散型発電装置からできるだけ多くの電力を発電したいと希望する。また、買い取り制度が無い場合であっても、環境問題への意識の高い需要家は、自分の保有する分散型発電装置からできるだけ多く発電させることで、環境保護に役立つことを望む。 In recent years, in order to cope with global warming and the like, the introduction of a distributed power generation device using natural energy such as a solar power generation device is socially desired. In order to promote the spread of distributed power generation systems, a system has been proposed in which a power company is allowed to purchase power from distributed power generation systems installed by customers at a price higher than general power rates. Under such a buying system, the consumer wants to generate as much power as possible from the distributed power plant. In addition, even if there is no purchasing system, consumers who are highly aware of environmental issues want to help protect the environment by generating as much power as possible from their own distributed generation devices.
 しかし、分散型発電装置の大量導入にともなって、余剰電力問題および電圧変動問題などの、電力系統に影響を与える問題が生じうる。その問題を抑制するためには、電力需要の変化に応じて、分散型発電装置の出力を抑制することが必要になる。 However, with the introduction of a large number of distributed power generation devices, problems that affect the power system, such as surplus power problems and voltage fluctuation problems, may occur. In order to suppress the problem, it is necessary to suppress the output of the distributed power generation apparatus according to the change in the power demand.
 例えば、穏やかな季節では空調の必要性が低下するため、電力需要は低下する。しかし、需要家での電力需要の低下とは無関係に、各需要家に設置された太陽光発電装置は天候に応じてそれぞれ発電するため、各需要家において電力が余る。各需要家で余った電力がそのまま電力系統に送り込まれると、電力系統の電圧および周波数が変動し、電力品質が劣化するおそれがある。 For example, in mild seasons, the need for air conditioning decreases, so power demand decreases. However, regardless of the decrease in the power demand among the consumers, the photovoltaic power generation devices installed in each consumer generate power according to the weather, so there is surplus power in each consumer. If surplus power at each customer is sent to the power system as it is, the voltage and frequency of the power system may fluctuate, and power quality may be degraded.
 そこで、電力需要が少ない場合は、需要家に設置された分散型発電装置の発電量(電力量)を抑制することが求められる。実際にどれだけ発電量を抑制することができたのかを知る必要があるが、抑制できた発電量を推定するためには、抑制しなかった場合の発電量を推定しなければならない。 Therefore, when the power demand is small, it is required to suppress the amount of power generation (the amount of power) of the distributed power generation apparatus installed at the customer. It is necessary to know how much power generation has actually been suppressed, but in order to estimate the amount of power generation that has been suppressed, it is necessary to estimate the amount of power generation that has not been suppressed.
 ここで、分散型発電装置の発電量を、日射量計などのセンサの計測値と変換効率などを用いて予測する方法が考えられる。さらに、天気などに基づいて所定の地域全体の太陽光発電量を予測する方法(非特許文献1)も提案されている。 Here, a method is conceivable in which the amount of power generation of the distributed power generation device is predicted using the measurement value of a sensor such as a solar radiation meter and the conversion efficiency. Furthermore, a method (Non-Patent Document 1) has also been proposed that predicts the amount of solar power generation in the entire predetermined area based on the weather and the like.
 従来技術は、 The prior art is
 個々の分散型発電装置にセンサを設置するためには、膨大な費用と手間がかかる。また、気象情報に基づいて地域内の太陽光発電装置の総発電量を推測する技術では、個々の太陽光発電装置の発電量まで予測することはできない。 The installation of sensors in individual distributed generators requires a great deal of expense and effort. Moreover, in the technology of estimating the total power generation amount of the solar power generation devices in the area based on the weather information, it is not possible to predict the power generation amount of each solar power generation device.
 需要家は、投資回収のために、または、環境問題に貢献するために、分散型発電装置の最大限の発電を希望する。従って、分散型発電装置の発電量を抑制する場合は、どの需要家の分散型発電装置がどれだけ発電抑制に貢献したかを推定して、その貢献に応じて何らかの手当(金銭的補償など)を行う必要がある。もしもそうしなければ、需要家同士の間で不公平感が強まり、分散型発電装置の普及促進の妨げになるおそれもある。 Consumers want maximum power generation of decentralized power plants for return on investment or to contribute to environmental issues. Therefore, when suppressing the power generation amount of the distributed power generation device, it is estimated which distributed power generation device of the customer contributed to the power generation suppression, and some allowance (monetary compensation, etc.) according to the contribution. Need to do. If this is not the case, the sense of unfairness among the consumers may increase, which may hinder the promotion of the distributed power generation system.
 本発明は、上記問題に鑑みてなされたもので、その目的は、分散型発電装置の発電量を抑制した場合に、抑制しなかった場合の潜在的発電量を推定することができるようにした分散型発電装置の制御装置および制御方法を提供することにある。 The present invention has been made in view of the above problems, and an object thereof is to be able to estimate a potential amount of power generation when not suppressed, when the amount of power generation of the distributed power generation device is suppressed. It is providing a control device and control method of distributed power generation equipment.
 上記課題を解決すべく、本発明に係る分散型発電装置の制御装置は、分散型発電装置の発電量を抑制し、抑制された発電量を推定する分散型発電装置の制御装置であって、分散型発電装置の発電量を計測する発電量計測部と、分散型発電装置の発電量を制御するための制御パターン情報であって、発電量を抑制する第1時間帯と発電量を抑制しない第2時間帯とを少なくとも一つずつ含む制御パターン情報を、分散型発電装置の発電量を制御する発電量制御部に設定することにより、分散型発電装置の発電量を制御させる制御パターン設定部と、第1時間帯における第1発電量と第2時間帯における第2発電量とを発電量計測部から取得し、第1発電量と第2発電量とに基づいて、第1時間帯において分散型発電装置の発電を抑制しなかった場合に得られたであろう潜在的発電量を推定するための潜在的発電量推定部と、を備える。 In order to solve the above problems, a control device of a distributed power generation device according to the present invention is a control device of a distributed power generation device that suppresses the amount of power generation of the distributed power generation device and estimates the suppressed amount of power generation. A power generation amount measurement unit that measures the power generation amount of the distributed power generation device, and control pattern information for controlling the power generation amount of the distributed power generation device, and does not suppress the first time zone for suppressing the power generation amount and the power generation amount A control pattern setting unit that controls the power generation amount of the distributed power generation device by setting control pattern information including at least one second time zone in the generated power control unit that controls the power generation amount of the distributed power generation device The first power generation amount in the first time zone and the second power generation amount in the second time zone are acquired from the power generation amount measuring unit, and based on the first power generation amount and the second power generation amount, in the first time period Do not suppress the power generation of the distributed generator The potential amount of power generation would be obtained if and a potential power generation amount estimation unit for estimating.
 制御パターン情報は、第1時間帯の第1発電量を所定の第1上限値に抑制するための第1パターン部と、第2時間帯の第2発電量を所定の第2上限値に抑制するための第2パターン部とを含んで構成することができ、第2上限値は、分散型発電装置の最大発電量以上に設定することができる。 The control pattern information suppresses the first power generation amount for the first time zone to a predetermined first upper limit value and the second power generation amount for the second time zone to a predetermined second upper limit value. The second upper limit value can be set to be equal to or more than the maximum power generation amount of the distributed power generation system.
 本発明の構成の少なくとも一部は、コンピュータプログラムまたはハードウェア回路として実現できるであろう。コンピュータプログラムは、例えば、インターネットのような通信媒体、ハードディスクまたはフラッシュメモリデバイスのような記録媒体を介して、配布することができる。 At least a part of the configuration of the present invention may be realized as a computer program or a hardware circuit. The computer program can be distributed via, for example, a communication medium such as the Internet, a recording medium such as a hard disk or a flash memory device.
抑制電力量を推定する全体装置構成。Overall equipment configuration to estimate the amount of suppression power. 抑制電力量を推定する電力抑制コントローラの詳細構成。Detailed configuration of the power suppression controller that estimates the amount of suppression power. 抑制電力量を推定する方法の計算処理フロー。Calculation processing flow of the method of estimating the suppression power amount. PCSによる太陽光発電の出力調整フロー。Power adjustment flow of photovoltaic power generation by PCS. 太陽光発電装置の電圧Vと電流Iの関係を表すグラフ。The graph showing the voltage V of the solar power generation device, and the relationship of the electric current I. 太陽光発電装置の電圧Vと電力Wの関係を表すグラフ。The graph showing the voltage V of the solar power generation device, and the relationship of the electric power W. FIG. 抑制情報パターンを示す表の例。An example of a table showing suppression information patterns. 抑制パターンを展開したグラフの例。The example of the graph which developed the suppression pattern. 抑制パターングラフの例。Example of suppression pattern graph. 類似度の項目をグラフ形式で表示した画面の例。An example of a screen displaying the items of similarity in graph format. 抑制パターングラフの例。Example of suppression pattern graph. 類似度の項目をグラフ形式で表示した画面の例。An example of a screen displaying the items of similarity in graph format. 抑制パターングラフの例。Example of suppression pattern graph. 類似度の項目をグラフ形式で表示した画面の例。An example of a screen displaying the items of similarity in graph format. 抑制パターングラフの例。Example of suppression pattern graph. 操作表示装置の表示画面の例。The example of the display screen of an operation display apparatus. 操作表示装置の表示画面の例。The example of the display screen of an operation display apparatus. 操作表示装置の表示画面の例。The example of the display screen of an operation display apparatus. 抑制電力量を推定する全体装置構成。Overall equipment configuration to estimate the amount of suppression power. 抑制電力量を推定する全体装置構成。Overall equipment configuration to estimate the amount of suppression power.
 以下、図面に基づいて、本発明の実施の形態を説明する。本実施形態では、発電量を抑制した第1時間帯における潜在的発電量を、第1時間帯の第1発電量と発電量を抑制しない第2時間帯の第2発電量とに基づいて推定できる。本実施形態の一つの例では、指定した所定の時間範囲において、分散型発電装置の出力(発電量)を抑制する時間帯と抑制しない時間帯とを設定する。そして、本実施形態の一つの例では、抑制した第1時間帯における潜在的発電量、つまり、抑制しなければ現れたであろう発電量を、その前後の第2時間帯での第2発電量を加重平均することで算出する。 Hereinafter, embodiments of the present invention will be described based on the drawings. In this embodiment, the potential power generation amount in the first time zone in which the power generation amount is suppressed is estimated based on the first power generation amount in the first time zone and the second power generation amount in the second time zone in which the power generation amount is not suppressed. it can. In one example of the present embodiment, a time zone in which the output (amount of power generation) of the distributed power generation device is suppressed and a time zone in which the output is not suppressed are set in a designated predetermined time range. And in one example of the present embodiment, the latent power generation amount in the suppressed first time zone, that is, the power generation amount that would have appeared if not suppressed, the second power generation in the second time zone before and after that Calculated by weighted averaging of quantities.
 このように構成される本実施形態では、分散型発電装置(需要家側に設けられる発電装置)の出力を抑制した場合に、潜在的発電量を比較的簡易な方法で比較的高精度に算出できる。従って、抑制された発電量(抑制電力量)も比較的簡単な方法で、かつ比較的高精度に算出できる。 In this embodiment configured as described above, when the output of the distributed power generation device (power generation device provided on the customer side) is suppressed, the potential power generation amount is calculated with relatively high accuracy by a relatively simple method. it can. Accordingly, the suppressed amount of power generation (the amount of suppressed power) can also be calculated with a relatively simple method and with relatively high accuracy.
 例えば、地域内の或る一つの分散型発電装置を基準発電装置として、出力を抑制せずに使用し、基準発電装置の出力に基づいて、同一地域内の他の分散型発電装置の潜在的発電量を推定する構成も考えられる。しかし、分散型発電装置の種類は多数あり、機種ごとに性能が異なるため、地域内の分散型発電装置の潜在的発電量を個別に算出するためには複雑な演算を行う必要がある。また、分散型発電装置の発電量は、需要家にとって個人的な情報の一種であるから、他人の分散型発電装置を基準発電装置として使用する構成は、セキュリティなどの観点からも好ましくない。 For example, one decentralized generator in the area is used as a reference generator, without limiting the output, and based on the output of the reference generator, the potential of another decentralized generator in the same area A configuration for estimating the amount of power generation is also conceivable. However, since there are many types of distributed power generation devices and the performance differs depending on the model, complicated calculations need to be performed to individually calculate the potential power generation amount of the distributed power generation devices in the region. Further, since the power generation amount of the distributed power generation apparatus is a kind of personal information for a consumer, the configuration using another distributed power generation apparatus as a reference power generation apparatus is not preferable from the viewpoint of security and the like.
 本実施形態では、そのような問題が発生せず、分散型発電装置ごとに潜在的発電量を比較的精度よく、かつ簡単に推定することができる。 In the present embodiment, such a problem does not occur, and the potential power generation amount can be relatively accurately and easily estimated for each of the distributed power generation devices.
 図1は、本実施例に係る分散型発電装置の制御装置を含む全体構成図である。図2は、抑制電力量を推定する電力抑制コントローラ42の詳細構成図である。図3は、抑制電力量を推定する方法の計算処理フローを示す。 FIG. 1 is an overall configuration diagram including a control device of a distributed power generation system according to the present embodiment. FIG. 2 is a detailed block diagram of the power suppression controller 42 for estimating the amount of suppression power. FIG. 3 shows a calculation processing flow of a method of estimating the suppression power amount.
 需要家側の全体構成1は、通信ネットワーク11を介して地域側送受信装置2に接続されている。需要家側の全体構成1は、地域計画装置3で作成される「制御パターン情報」としての抑制情報信号を、通信経路23と、地域側送受信装置2と、通信経路22と、通信ネットワーク11と、通信経路21とを介して受信する。地域計画装置3は、所定の地域の電力需要を管理するためのコンピュータシステムであり、電力会社のコンピュータシステム(不図示)とも接続されている。 The overall configuration 1 on the customer side is connected to the regional transmission / reception device 2 via the communication network 11. The overall configuration 1 on the customer side includes the control information signal as “control pattern information” created by the area planning device 3, the communication path 23, the area transmitting / receiving device 2, the communication path 22, and the communication network 11. , And communication path 21. The area planning device 3 is a computer system for managing the power demand of a predetermined area, and is also connected to a computer system (not shown) of a power company.
 需要家側の全体構成1は、送電線32と電力ネットワーク12と給電線31を介して、電力系統9に接続されている。需要家側の全体構成1は、太陽光発電装置47の発電量だけでは電力需要を賄えない場合、電力系統9からの電力を購入する。これとは逆に、需要家側の装置全体構成1は、太陽光発電装置などの発電機器47の発電量が余った場合は、余った電力を電力系統9に供給して、電力会社に売却することができる。 The overall configuration 1 on the customer side is connected to the power system 9 via the transmission line 32, the power network 12, and the feed line 31. The whole configuration 1 on the customer side purchases the power from the power system 9 when the power generation amount of the solar power generation device 47 can not meet the power demand. On the contrary, when the power generation amount of the power generation device 47 such as a solar power generation device remains, the entire device configuration 1 on the customer side supplies the surplus power to the power grid 9 and sells it to the power company can do.
 需要家側の全体構成1は、例えば、需要家の建物内の構成41と、需要家側送受信装置51と、発電メータ52と、余剰メータ53と、電力メータ54と、変圧器55と、電力センサ79,80,81と、それらを接続するための信号線67,68,69,70,74,75,76と、電力線71,72,73,78とを含んで構成される。 The overall configuration 1 on the customer side is, for example, the configuration 41 in the building of the customer, the customer side transmission / reception device 51, the power generation meter 52, the surplus meter 53, the power meter 54, the transformer 55, power The sensor 79, 80, 81, signal lines 67, 68, 69, 70, 74, 75, 76 for connecting them, and power lines 71, 72, 73, 78 are included.
 需要家の建物内の構成41は、例えば、電力抑制コントローラ42と、パワーコンディショナ(以下、PCS)43と、分電盤44と、操作表示装置45と、実績データベース46と、「分散型発電装置」としての発電機器47と、電気的負荷としての電気機器49とを備える。電気機器49は、需要家の種類によっても異なるが、例えば、照明装置、空調設備、冷蔵庫、電動モータなどが挙げられる。発電機器47としては、例えば、太陽光発電装置、風力発電装置などが挙げられる。なお、発電機器47は、蓄電装置(不図示)に接続されてもよい。 The configuration 41 in the building of the customer includes, for example, the power suppression controller 42, the power conditioner (hereinafter, PCS) 43, the distribution board 44, the operation display device 45, the results database 46, “distributed generation The apparatus includes a power generation device 47 as a device and an electrical device 49 as an electrical load. The electric device 49 is different depending on the type of customer, and includes, for example, a lighting device, an air conditioner, a refrigerator, an electric motor, and the like. Examples of the power generation device 47 include a solar power generation device, a wind power generation device, and the like. The power generation device 47 may be connected to a power storage device (not shown).
 図1中、機器間を結ぶ破線は通信線を示し、実線は電力線を示す。通信方式は、有線方式または無線方式のいずれでもよい。電力抑制コントローラ42は、操作表示装置45に通信線62を介して接続され、実績データベース46と通信線63を介して接続され、PCS43と通信線61を介して接続され、需要家側送受信装置51と通信線67を介して接続されている。さらに、電力抑制コントローラ42は、電力センサ81と通信線70を介して接続され、電力センサ80と通信線69を介して接続され、電力センサ79と通信線68を介して接続されている。 In FIG. 1, broken lines connecting devices indicate communication lines, and solid lines indicate power lines. The communication method may be either a wired method or a wireless method. The power suppression controller 42 is connected to the operation display device 45 via the communication line 62, is connected to the performance database 46 via the communication line 63, and is connected to the PCS 43 via the communication line 61. And the communication line 67 are connected. Further, the power suppression controller 42 is connected to the power sensor 81 via the communication line 70, is connected to the power sensor 80 via the communication line 69, and is connected to the power sensor 79 via the communication line 68.
 PCS43は、発電機器47と電力線64を介して接続され、発電メータ52と電力線71を介して接続されている。分電盤44は、電気機器49と電力線66を介して接続され、発電メータ52と電力線72を介して接続され、余剰メータ53と電力線73を介して接続されている。 The PCS 43 is connected to the power generation device 47 via the power line 64, and is connected to the power generation meter 52 via the power line 71. The distribution board 44 is connected to the electric device 49 via the power line 66, is connected to the power generation meter 52 via the power line 72, and is connected to the surplus meter 53 via the power line 73.
 需要家側送受信装置51は、需要家側の各種情報を地域計画装置3に向けて送信したり、地域計画装置3から制御信号(抑制情報信号)を受信したりする。需要家側送受信装置51は、発電メータ52と通信線74を介して接続され、余剰メータ53と通信線75を介して接続され、電力メータ54と通信線76を介して接続されている。さらに、需要家側送受信装置51は、通信ネットワーク11を介して、地域側送受信装置2と接続されている。地域計画装置3は、需要家側送受信装置51と情報を送受信するための地域側送受信装置2と、通信線23を介して接続されている。 The customer side transmitting / receiving apparatus 51 transmits various information on the customer side to the area planning device 3 or receives a control signal (suppression information signal) from the area planning device 3. The customer-side transmitting / receiving device 51 is connected to the power generation meter 52 via the communication line 74, connected to the surplus meter 53 via the communication line 75, and connected to the power meter 54 via the communication line 76. Furthermore, the customer-side transmitting and receiving device 51 is connected to the area-side transmitting and receiving device 2 via the communication network 11. The area planning device 3 is connected to the customer side transmission / reception device 51 via the communication line 23 with the region side transmission / reception device 2 for transmitting and receiving information.
 電力抑制コントローラ42は、センサデータ受信部423を介して、各電力センサ81,80,79と接続されており、それらセンサ81,80,79で計測した電力量を取り込む。電力センサ81は、発電機器47で発電した電力を、PCS43から発電メータ52に送られる途中で計測する。電力センサ80は、分電盤44と余剰メータ53との間の電力量を計測する。電力センサ79は、余剰メータ53と電力メータ54の間の電力量を計測する。 The power suppression controller 42 is connected to each of the power sensors 81, 80, 79 via the sensor data receiving unit 423, and takes in the amount of power measured by the sensors 81, 80, 79. The power sensor 81 measures the power generated by the power generation device 47 on the way from the PCS 43 to the power generation meter 52. The power sensor 80 measures the amount of power between the distribution board 44 and the surplus meter 53. The power sensor 79 measures the amount of power between the surplus meter 53 and the power meter 54.
 電力抑制コントローラ42は、各電力センサ81,80,79から取り込んだ電力データと、電力抑制コントローラ42で計算処理した結果等とを、実績データベース46に格納したり、実績データベース46から過去の電力データまたは計算処理結果を読み込んだりする。また、電力抑制コントローラ42は、PCS通信部422を介して、PCS43に制御データを送信する。さらに、電力抑制コントローラ42は、操作表示通信部421を介して、操作表示装置45に表示用データを送信する。 The power suppression controller 42 stores the power data taken from each of the power sensors 81, 80, 79, the calculation result of the power suppression controller 42, etc. in the results database 46, and the power data from the results database 46 in the past Or read the calculation result. In addition, the power suppression controller 42 transmits control data to the PCS 43 via the PCS communication unit 422. Furthermore, the power suppression controller 42 transmits display data to the operation display device 45 via the operation display communication unit 421.
 操作表示装置45は、ユーザ(需要家)との間で情報をやり取りするためのマンマシンインターフェース部である。操作表示装置45は、表示機能と操作機能を備える。操作表示装置45は、電力抑制コントローラ42から受け取る表示用データを表示する。表示用データには、例えば、計測された電力量、潜在的発電量、抑制電力量などの情報を含めることができる。操作表示装置45は、操作機能により、電力抑制コントローラ42に対して必要な情報を送信するよう要求することもできる。操作表示装置45は、ユーザによる手動操作に応じて電力抑制コントローラ42に情報を要求する構成でもよいし、所定の日時が到来した場合などのように所定条件が成立した場合に自動的に電力抑制コントローラ42に情報を要求する構成でもよい。 The operation display device 45 is a man-machine interface unit for exchanging information with a user (demander). The operation display device 45 has a display function and an operation function. The operation display device 45 displays the display data received from the power suppression controller 42. The display data can include, for example, information such as measured power amount, potential power generation amount, and suppression power amount. The operation display device 45 can also request the power suppression controller 42 to transmit necessary information by the operation function. The operation display device 45 may be configured to request information from the power suppression controller 42 in response to a manual operation by the user, or the power suppression is automatically performed when a predetermined condition is satisfied, such as when a predetermined date and time arrives. The controller 42 may be configured to request information.
 操作表示装置45は、表示および操作のための専用の機器として構成できる。汎用性のあるパーソナルコンピュータ、携帯電話、携帯情報端末、テレビジョン装置などを、操作表示装置45として利用してもよい。 The operation display device 45 can be configured as a dedicated device for display and operation. A versatile personal computer, a mobile phone, a portable information terminal, a television device or the like may be used as the operation display device 45.
 発電メータ52は、発電機器47の発電量を計測する。発電メータ52を設置しているのは、発電機器47で発電した全ての電力を売電できるようにするためである。余剰メータ53および電力メータ54は、電力の流れの一方向のみを計測するメータである。余剰メータは53は、発電機器47の発電の方が電気機器49の消費電力よりも大きい場合に、電力量をカウントアップし、そうではない場合はカウントしない。 The power generation meter 52 measures the amount of power generation of the power generation device 47. The power generation meter 52 is installed in order to be able to sell all the power generated by the power generation device 47. The surplus meter 53 and the power meter 54 are meters that measure only one direction of the flow of power. The surplus meter 53 counts up the amount of power when the power generation of the power generation device 47 is larger than the power consumption of the electric device 49, and does not count otherwise.
 電力メータ54は、発電機器47の発電の方が電気機器49の消費電力より少ないときに電力量をカウントアップし、そうではない場合はカウントしない。電力センサ79、80は、もしも、電流方向を基にして電力方向を正負で切り替えることができる場合は、電力値は同じ値になる。つまり、電力センサ79の計測値の絶対値と電力センサ80の計測値の絶対値は等しい。 The power meter 54 counts up the amount of power when the power generation of the power generation device 47 is less than the power consumption of the electric device 49, and does not count otherwise. If the power sensors 79, 80 can switch the power direction in the positive or negative direction based on the current direction, the power values will be the same value. That is, the absolute value of the measurement value of the power sensor 79 and the absolute value of the measurement value of the power sensor 80 are equal.
 発電機器47で発電した直流電力は、PCS43で交流に変換された後、発電メータ52を介して分電盤44に送られる。冷蔵庫、空調装置、照明機器などの電気機器49で消費される電力は、分電盤44から供給される。 The DC power generated by the power generation device 47 is converted to an alternating current by the PCS 43 and then sent to the distribution board 44 via the power generation meter 52. The power consumed by the electric device 49 such as a refrigerator, an air conditioner, and a lighting device is supplied from the distribution board 44.
 分電盤44は、余剰メータ53および電力メータ54などを介して、変圧器55に接続されている。需要家で生じた余剰電力は、分電盤44などを経由して電力系統9に送られ、需要家で足りない電力は電力系統9から分電盤44などを介して、電気機器49に供給される。つまり、電気機器49が使用する電力には、電力系統9から変圧器55を介して供給されるものと、発電機器47で発電した電力との2種類に分けられる。 The distribution board 44 is connected to the transformer 55 via a surplus meter 53, a power meter 54, and the like. Surplus power generated by the customer is sent to the power system 9 via the distribution board 44 or the like, and power insufficient for the customer is supplied from the power system 9 to the electric device 49 via the distribution board 44 or the like. Be done. That is, the electric power used by the electric device 49 is divided into two types, that is, one supplied from the electric power system 9 via the transformer 55 and the electric power generated by the power generation device 47.
 図1の例では、電力抑制コントローラ42は、PCS43と発電メータ52の間の電力量を電力センサ81によって、分電盤44と余剰メータ53の間の電力量を電力センサ80によって、余剰メータ53と電力メータ54の間の電力量を電力センサ79によって、それぞれ計測する場合を述べた。 In the example of FIG. 1, the power suppression controller 42 controls the amount of power between the PCS 43 and the power generation meter 52 by the power sensor 81 and the amount of power between the distribution board 44 and the surplus meter 53 by the power sensor 80. The case has been described in which the amount of power between the power meter and the power meter 54 is measured by the power sensor 79, respectively.
 これに代えて、電力抑制コントローラ42は、需要家側送受信装置51を介して、発電メータ52で計測した電力量データと、余剰メータ53および電力メータ54でそれぞれ計測した電力量データとを受信してもよい。この場合は、各電力センサ81,80,79と、これらセンサ81,80,79と電力抑制コントローラ42の間の通信線70,69,68も不要となる。 Instead of this, the power suppression controller 42 receives the power amount data measured by the power generation meter 52 and the power amount data measured by the surplus meter 53 and the power meter 54 via the customer side transmission / reception device 51. May be In this case, the power sensors 81, 80, 79, and the communication lines 70, 69, 68 between the sensors 81, 80, 79 and the power suppression controller 42 are also unnecessary.
 ただし、一般的に、電力センサ81,80,79は、需要家が自身の電力量を測定するために設置するものである。これに対し、発電メータ52、余剰メータ53および電力メータ54は、電力供給事業者が電力料金などを計算するために設置するものである。従って、電力供給事業者は、セキュリティ等の観点から、各メータ52,53,54で計測した電力量データを需要家に公開するとは限らない。各メータ52,53,54の電力量データを利用できない場合、電力センサ81,80,79を使用する。 However, in general, the power sensors 81, 80, 79 are installed by the consumer in order to measure their own amount of power. On the other hand, the power generation meter 52, the surplus meter 53, and the power meter 54 are installed by the power supplier to calculate the power rate and the like. Therefore, the power supplier does not necessarily disclose the power amount data measured by each of the meters 52, 53, 54 to the consumer from the viewpoint of security and the like. When the power amount data of each meter 52, 53, 54 can not be used, the power sensors 81, 80, 79 are used.
 地域計画装置3は、発電機器47の出力を抑制するための情報を、地域側送受信装置2に送信する。この情報は、地域側送受信装置2から通信ネットワーク11などを介して、需要家側送受信装置51に送られる。この情報は、最終的には電力抑制コントローラ42に送られる。 The area planning device 3 transmits information for suppressing the output of the power generation device 47 to the area transmitting / receiving device 2. This information is sent from the area side transmission / reception device 2 to the customer side transmission / reception device 51 via the communication network 11 or the like. This information is ultimately sent to the power suppression controller 42.
 地域計画装置3で作成される、発電機器47の出力を抑制するための情報には、後述のように、抑制対象の需要家を特定するための情報と、抑制対象日および抑制対象の時間帯と、電力量の上限値などが含まれている。 The information for suppressing the output of the power generation device 47, which is created by the area planning device 3, includes information for identifying a customer to be suppressed, a day to be suppressed, and a time zone to be suppressed as described later. And the upper limit value of the power amount.
 これらの情報の少なくとも一部がパターンとして予め規定されている場合は、その規定されたパターンを特定するためのパターン番号を、地域計画装置3から電力抑制コントローラ42に送信すればよい。電力抑制コントローラ42は、パターン番号とパターン内容とを対応づけるテーブルを予め記憶しており、受信したパターン番号をそのテーブルに基づいて判別する。これにより、電力抑制コントローラ42は、自装置が設けられている需要家が抑制対象の需要家であるかを判定したり、抑制対象の時間帯および電力量の抑制上限などを設定することができる。 When at least a part of the information is previously defined as a pattern, the pattern number for specifying the defined pattern may be transmitted from the area planning device 3 to the power suppression controller 42. The power suppression controller 42 stores in advance a table that associates the pattern number with the pattern content, and determines the received pattern number based on the table. Thereby, the power suppression controller 42 can determine whether the customer provided with the own device is the customer targeted for suppression, or can set the time zone targeted for suppression and the upper limit of power consumption etc. .
 PCS43は、通常の場合、発電機器47の出力を最大化するように制御する。ここで、図5を参照する。図5は、PCS43の制御対象である発電機器47(例えば太陽光発電装置)の電圧Vと電流Iの関係を示すI-V曲線である。例えば電圧Vm、電流Imのとき、この両者の積である数1は太陽光発電の電力Wとなる。 The PCS 43 normally controls to maximize the output of the power generating device 47. Here, FIG. 5 is referred to. FIG. 5 is an IV curve showing the relationship between the voltage V and the current I of the power generation device 47 (for example, a solar power generation device) which is a control target of the PCS 43. For example, in the case of the voltage Vm and the current Im, the number 1 which is the product of the two becomes the power W of the solar power generation.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 PCS43で電圧Vmを変化させることにより、図6に示す電圧Vと電力Wの関係が得られる。このグラフからわかるように、電力Wが増加する方向に電圧Vを変化させることにより、最大電力となる電圧に制御することができる。この最大電力となる電圧は日射量などによって変化するため、随時調整することになる。同様に電圧を調整することにより、目標電力が最大電力以下の場合は、その目標電力にすることができる。 By changing the voltage Vm by the PCS 43, the relationship between the voltage V and the power W shown in FIG. 6 is obtained. As can be seen from this graph, by changing the voltage V in the direction in which the power W increases, it is possible to control the voltage to be the maximum power. Since the voltage to be the maximum power changes depending on the amount of solar radiation and the like, it is adjusted as needed. Similarly, by adjusting the voltage, when the target power is equal to or less than the maximum power, the target power can be obtained.
 潜在的発電量および抑制電力量を推定する電力抑制コントローラ42は、例えば、マイクロプロセッサ、メモリ、通信インターフェース等を備えたコンピュータシステムとして構成される。 The power suppression controller 42 for estimating the potential power generation amount and the suppression power amount is configured as, for example, a computer system provided with a microprocessor, a memory, a communication interface, and the like.
 電力抑制コントローラ42は、図2に示すように、例えば、コントロール部411と、抑制関連情報受信部412と、抑制パターン展開部413と、メータ値取込処理部414と、判定処理部415と、抑制条件設定部416と、データ格納処理部417と、抑制量推定処理部418と、要求データ取込送信部419と、操作表示通信部421と、PCS通信部422と、センサデータ受信部423および需要家側通信部424を備える。 As shown in FIG. 2, the power suppression controller 42 has, for example, a control unit 411, a suppression related information receiving unit 412, a suppression pattern expanding unit 413, a meter value loading processing unit 414, and a determination processing unit 415. A suppression condition setting unit 416, a data storage processing unit 417, a suppression amount estimation processing unit 418, a request data capture transmission unit 419, an operation display communication unit 421, a PCS communication unit 422, a sensor data reception unit 423, and A consumer communication unit 424 is provided.
 コントロール部411は、各処理部412~424の間のデータ授受と、各処理部412~424での処理機能を円滑に行うためのデータの加工および処理とを行い、全体の処理を正常に動作させる。また、コントロール部411ば、実績データベース46にデータを格納するための処理要求を出したり、実績データベース46からデータを取り出すための処理要求を出したりする。 The control unit 411 performs data exchange between the processing units 412 to 424 and processing and processing of data for smoothly performing the processing functions of the processing units 412 to 424, and operates the entire processing normally. Let In addition, the control unit 411 issues a processing request for storing data in the results database 46 or issues a processing request for extracting data from the results database 46.
 抑制関連情報受信部412は、地域計画装置3で作成された発電量の抑制に関する情報を需要家側通信部424から受信して取り込む。抑制パターン展開部413は、抑制関連情報受信部412が受信した抑制に関する情報に基づいて、抑制対象の需要家であるか判定する。抑制対象の需要家であると判定した場合、抑制パターン展開部413は、受信したパターン番号などに基づいて、抑制対象日、抑制時間帯および発電量の上限値(出力上限値とも呼ぶ)を展開する。 The suppression related information receiving unit 412 receives information on the suppression of the power generation amount created by the area planning device 3 from the customer side communication unit 424 and takes in the information. The suppression pattern expanding unit 413 determines whether the user is a consumer to be suppressed, based on the information related to the suppression received by the suppression related information receiving unit 412. If it is determined that the customer is a consumer targeted for suppression, the suppression pattern expanding unit 413 expands the suppression target day, the suppression time zone, and the upper limit value (also referred to as output upper limit value) of the power generation amount based on the received pattern number and the like. Do.
 地域計画装置3から送信される出力上限値に関する情報は、例えば、発電機器47の定格電力に対する割合として設定することができる。その場合、PCS42の定格容量または発電機器47の定格電力と指示された割合との積が、出力上限値となる。メータ値取込処理部414は、電力センサ79,80,81で計測される電力量を、センサデータ受信部423を介して取り込む。判定処理部415は、発電機器47の発電量(発電出力)を抑制する時間帯であるかどうかを判定する。 The information on the output upper limit value transmitted from the area planning device 3 can be set, for example, as a ratio to the rated power of the power generation device 47. In that case, the product of the rated capacity of the PCS 42 or the rated power of the power generation device 47 and the instructed ratio is the output upper limit value. The meter value taking-in processing unit 414 takes in the amount of power measured by the power sensors 79, 80, 81 via the sensor data receiving unit 423. The determination processing unit 415 determines whether or not it is a time zone in which the power generation amount (power generation output) of the power generation device 47 is suppressed.
 抑制条件設定部416は、PCS通信部422を介して、メータ値取込処理部414が取り込んだ最新の電力量と抑制パターン展開部413で計算した出力上限値の値とを、PCS43に送信する。 The suppression condition setting unit 416 transmits, to the PCS 43 via the PCS communication unit 422, the latest amount of power acquired by the meter value acquisition processing unit 414 and the value of the output upper limit value calculated by the suppression pattern expansion unit 413. .
 抑制量推定処理部418は、電力センサ79,80,81で計測した電力量を基にして、発電量を抑制した時間帯における、もしも抑制しなかった場合に得られたはずの電力量(潜在的発電量)を推定する。抑制時間帯での潜在的発電量と出力上限値との差は、意図的に抑制された電力であり、本明細書では抑制電力量と呼ぶ。また、抑制量推定処理部418は、抑制電力量と、実績データベース46に格納されている買電料金および売電料金とに基づいて、料金を計算する。この算出された料金は、需要家の発電量の抑制に対する補償金額の基礎とすることができる。 The suppression amount estimation processing unit 418 determines the amount of power that should have been obtained if it was not suppressed in the time zone in which the amount of power generation was suppressed based on the amount of power measured by the power sensors 79, 80, 81 (latency Target power generation). The difference between the potential power generation amount and the output upper limit value in the suppression time zone is intentionally suppressed power, and is referred to as suppression power amount in the present specification. Further, the suppression amount estimation processing unit 418 calculates the charge based on the suppression power amount and the power purchase fee and the power sale charge stored in the results database 46. This calculated charge can be the basis of the compensation amount for the reduction of the power generation of the customer.
 データ格納処理部417は、電力センサ79,80,81で計測した電力量と、抑制量推定処理部418で計算した抑制電力量および料金とを、操作表示通信部421を介して、実績データベース46に格納する。さらに、潜在的発電量を、実績データベース46に格納してもよい。 The data storage processing unit 417 transmits the amount of power measured by the power sensors 79, 80, 81 and the amount of suppression power and charge calculated by the suppression amount estimation processing unit 418 to the actual result database 46 via the operation display communication unit 421. Store in Further, the potential power generation amount may be stored in the results database 46.
 要求データ取込送信部419は、操作表示装置45からの操作により要求されたデータを実績データベース46から取り込んで、操作表示装置45に送信する。 The request data acquisition transmission unit 419 acquires data requested by the operation from the operation display device 45 from the result database 46 and transmits the data to the operation display device 45.
 図3および図4に示す処理フローを参照して、潜在的発電量および抑制電力量を推定するための処理を説明する。 A process for estimating the potential power generation amount and the suppression power amount will be described with reference to the process flows shown in FIGS. 3 and 4.
 図3は、主に電力抑制コントローラ42により実行される、潜在発電量および抑制電力量を推定するための処理を示すフローチャートである。一部のステップは電力抑制コントローラ42以外の回路で処理される。 FIG. 3 is a flowchart showing processing for estimating the latent power generation amount and the suppression power amount, which is mainly executed by the power suppression controller 42. Some steps are processed in circuits other than the power suppression controller 42.
 ステップS401において、電力抑制コントローラ42は、図7に示す抑制情報を、電力抑制コントローラ42は受信する。図7は、「制御パターン情報」としての抑制情報の一例を示す。 In step S401, the power suppression controller 42 receives the suppression information shown in FIG. FIG. 7 shows an example of suppression information as “control pattern information”.
 抑制情報は、例えば、エリア番号と、需要家グループ番号と、抑制日と、パターン番号と、抑制量と、抑制制御の開始時刻と、抑制制御の終了時刻と、抑制を行う時間間隔と、補正開始と、補正終了とを含む。 The suppression information includes, for example, an area number, a consumer group number, a suppression date, a pattern number, a suppression amount, a suppression control start time, a suppression control end time, a time interval for performing suppression, and a correction Includes start and end of correction.
 エリア番号とは、地域計画装置3が管理する各エリアを識別するための情報である。需要家グループ番号とは、エリア番号で指定されるエリア内に存在する、一つまたは複数の需要家から構成される需要家グループを識別するための情報である。抑制日とは、発電量の抑制を行う日である。 The area number is information for identifying each area managed by the area planning device 3. The customer group number is information for identifying a customer group consisting of one or more customers existing in the area designated by the area number. A suppression day is a day on which the amount of power generation is suppressed.
 パターン番号とは、発電機器47の出力を計測する電力センサ81の計測値に基づいて発電量を抑制するか、それとも、電力センサ79で計測した値に基づいて発電量を抑制するかを判定するものである。例えば、パターン番号が「1」の場合は、電力センサ81の計測値に基づいて制御する。発電機器47からの発電出力に基づいて需要家側での発電量を抑制する場合に、パターン番号に「1」が設定される。パターン番号が「2」の場合は、電力センサ79の計測値に基づいて制御する。電力系統9への逆潮流の量に基づいて需要家側での発電量を抑制する場合は、パターン番号に「2」が設定される。つまり、パターン番号に「2」が設定される場合は、逆潮流の発生が抑制開始条件として設定されていることになる。 The pattern number determines whether to suppress the amount of power generation based on the measurement value of the power sensor 81 that measures the output of the power generation device 47 or to suppress the amount of power generation based on the value measured by the power sensor 79 It is a thing. For example, when the pattern number is “1”, control is performed based on the measurement value of the power sensor 81. When suppressing the amount of power generation on the customer side based on the power generation output from the power generation device 47, “1” is set to the pattern number. When the pattern number is "2", control is performed based on the measurement value of the power sensor 79. In the case where the amount of power generation on the customer side is suppressed based on the amount of reverse power flow to the power system 9, "2" is set as the pattern number. That is, when “2” is set as the pattern number, the occurrence of reverse power flow is set as the suppression start condition.
 抑制量とは、発電量を抑制する量を示し、例えば、定格発電量または定格容量に対する割合(%)として設定される。定格発電量または定格容量から抑制量を差し引いた値が、出力上限値となる。抑制量が割合で規定される場合、定格発電量または定格容量に対して、抑制率を乗じた値が、出力上限値となる。 The suppression amount indicates the amount of suppression of the power generation amount, and is set, for example, as a ratio (%) to the rated power generation amount or the rated capacity. The value obtained by subtracting the suppression amount from the rated power generation amount or rated capacity is the output upper limit value. When the amount of suppression is specified as a ratio, a value obtained by multiplying the rated power generation amount or rated capacity by the suppression rate is the output upper limit value.
 抑制制御の開始時刻とは、発電量の抑制制御を開始する時刻である。抑制制御の終了時刻とは、発電量の抑制制御を終了する時刻である。時間間隔とは、発電量を抑制する時間帯(抑制時間帯)の出現する間隔を規定するための情報である。補正開始とは、発電量の抑制を開始する時刻を調節するための情報である。補正終了とは、発電量の抑制を終了する時刻を調整するための情報である。 The start time of the suppression control is the time to start the suppression control of the power generation amount. The end time of the suppression control is the time when the suppression control of the power generation amount is ended. The time interval is information for defining an interval of appearance of a time zone (suppression time zone) in which the amount of power generation is suppressed. The correction start is information for adjusting the time when the suppression of the power generation amount is started. The correction end is information for adjusting the time when the suppression of the power generation amount is ended.
 まず最初に、ステップS402において、電力抑制コントローラ42は、抑制関連情報受信部412によりステップS401で受信された抑制情報内の「エリア番号」および「需要家グループ番号」が、自装置の設けられている需要家に該当するかを判断する。 First, in step S402, the power suppression controller 42 is provided with the “area number” and the “customer group number” in the suppression information received in step S401 by the suppression related information receiving unit 412. Determine if it corresponds to a certain customer.
 自装置の設けられている需要家ではない場合、電力抑制コントローラ42は、出力上限値を、PCS43の定格容量または発電機器47の定格出力に設定する。発電機器の定格出力に対して、条件によってはそれ以上の出力を出す可能性がある場合は、
出力上限値を定格出力の例えば2倍程度に設定してもよい。
If the user is not a consumer of the apparatus, the power suppression controller 42 sets the output upper limit value to the rated capacity of the PCS 43 or the rated output of the power generation device 47. If there is a possibility that more power may be output under the conditions for the rated output of the power generation equipment,
The output upper limit value may be set to, for example, about twice the rated output.
 ステップS402において、電力抑制コントローラ42は、処理の基準時刻を「24時」とする。さらに、ステップS402において、電力抑制コントローラ42は、抑制情報内の「パターン番号」に基づいて、電力センサ81の計測値に基づいて抑制するか、それとも、電力センサ79の計測値に基づいて抑制するかを判定する。 In step S402, the power suppression controller 42 sets the reference time of the process to "24 o'clock". Furthermore, in step S402, the power suppression controller 42 suppresses based on the measurement value of the power sensor 81 based on the "pattern number" in the suppression information, or suppresses based on the measurement value of the power sensor 79. Determine if
 ステップS402において、電力抑制コントローラ42は、PCS43または発電機器47の定格容量に対して、抑制情報内の「抑制量」で指定された数値をかけることで、出力上限値を決定する。例えば、定格容量が3kWであり、抑制量が60%であるとすると、出力上限値は「1.8kW」となる。 In step S402, the power suppression controller 42 determines the output upper limit value by multiplying the rated capacity of the PCS 43 or the power generation device 47 by the numerical value designated by the “suppression amount” in the suppression information. For example, assuming that the rated capacity is 3 kW and the amount of suppression is 60%, the output upper limit value is “1.8 kW”.
 図7に示す抑制情報によれば、需要家側の発電量を抑制する抑制時間帯が最初に開始される時刻は「8時」であり、最後の抑制時間帯が終了する時刻は「19時」である。最後の抑制時間帯が開始される時刻は「18時」であるが、時間間隔は60分に指定されているので、最後の抑制時間帯の終了時刻は19時となる。そこで、ステップS402において、電力抑制コントローラ42は、それら発電量抑制の開始時刻および終了時刻を、図8に示すようなタイムチャートに展開する。 According to the suppression information shown in FIG. 7, the time at which the suppression time zone for suppressing the power generation amount on the customer side is first started is "8 o'clock", and the time at which the last suppression time zone ends is "19:00 ". Although the time when the last suppression time zone is started is "18 o'clock", since the time interval is specified as 60 minutes, the end time of the last suppression time zone is 19:00. Therefore, in step S402, the power suppression controller 42 develops the start time and the end time of the power generation amount suppression on a time chart as shown in FIG.
 図8に示すように、発電量の抑制を開始する最初の時間帯(抑制時間帯)は、8時から9時までの60分間であり、2番目の抑制時間帯は10時から11時までの60分間であり、以下、1時間おきに抑制時間帯が設けられる。最後の抑制時間帯は、18時から19時までの60分間である。抑制時間帯と抑制時間帯との間には、需要家側の発電量を抑制しない時間帯(非抑制時間帯)が60分間ずつ設定されている。「第1時間帯」に該当する抑制時間帯では、定格出力(または定格容量)よりも小さい出力上限値までしか発電することができない。これに対し、「第2時間帯」に該当する非抑制時間帯では、定格出力まで発電することができる。 As shown in FIG. 8, the first time period (suppression time period) to start suppression of the power generation is 60 minutes from 8:00 to 9:00, and the second suppression time period is from 10:00 to 11:00 For 60 minutes, and thereafter, a suppression time zone is provided every one hour. The final suppression window is 60 minutes from 18:00 to 19:00. Between the suppression time zone and the suppression time zone, a time zone (non-suppression time zone) in which the power generation amount on the customer side is not suppressed is set for 60 minutes. In the suppression time zone corresponding to the “first time zone”, power can be generated only up to the output upper limit value smaller than the rated output (or rated capacity). On the other hand, in the non-suppression time zone corresponding to the "second time zone", power can be generated up to the rated output.
 ステップS403において、電力抑制コントローラ42は、メータ値取込処理部414により、電力センサ79,80,81で計測された電力値をそれぞれ読み込む。なお、上述の通り、電力抑制コントローラ42が電力センサ79、80、81の計測値を直接読み込む構成に代えて、電力抑制コントローラ42が需要家側送受信装置51を介して各メータ52、53、54の計測値を読み込む構成でもよい。 In step S403, the power suppression controller 42 causes the meter value take-in processing unit 414 to read the power values measured by the power sensors 79, 80, and 81, respectively. Note that, as described above, instead of the power suppression controller 42 directly reading the measurement values of the power sensors 79, 80, 81, the power suppression controller 42 transmits the meters 52, 53, 54 via the consumer side transceiver device 51. It may be configured to read the measured value of.
 電力抑制コントローラ42は、ステップS404、ステップS405、ステップS406およびステップS407を、判定処理部415で処理する。ステップS404において、電力抑制コントローラ42は、現在時刻が本処理の基準時刻である「24時」を超過しているかどうかを判定し、1日が終了している場合(S404:YES)は、本処理を終了する。そうでない場合(S404:NO)、電力抑制コントローラ42は、ステップS405において、抑制終了時刻を超過しているか、または抑制開始時刻の前であるかを判定する。そうではない場合(S405:NO)、電力抑制コントローラ42は、ステップS406において、現在時刻が抑制時間帯であるかを判定する。 The power suppression controller 42 causes the determination processing unit 415 to process step S404, step S405, step S406 and step S407. In step S404, the power suppression controller 42 determines whether the current time exceeds “24 o'clock,” which is the reference time of this process, and if one day is over (S404: YES), End the process. If not (S404: NO), the power suppression controller 42 determines in step S405 whether it exceeds the suppression end time or is before the suppression start time. If not (S405: NO), the power suppression controller 42 determines in step S406 whether the current time is in the suppression time zone.
 抑制時間帯である場合(S406:YES)、電力抑制コントローラ42は、逆潮流の発生が発電量抑制の開始条件であるかを確認し、逆潮流の発生が抑制開始の条件である場合は、電力センサ79の電力方向が需要家側から電力系統側に流れているか判定する(S407)。 If it is the suppression time zone (S406: YES), the power suppression controller 42 confirms whether the occurrence of the reverse power flow is the start condition of the generation amount suppression, and if the generation of the reverse power flow is the condition of the suppression start, It is determined whether the power direction of the power sensor 79 is flowing from the customer side to the power system side (S407).
 需要家側から電力系統側に電力が流れている場合(S407:YES)、電力抑制コントローラ42は、ステップS408に移る。なお、逆潮流の発生が抑制開始の条件ではない場合も、ステップS408に移る。 If power is flowing from the customer side to the power grid side (S407: YES), the power suppression controller 42 proceeds to step S408. In addition, also when generation | occurrence | production of reverse power flow is not the conditions of suppression start, it moves to step S408.
 ステップS405での判定結果がYesの場合、または、S406での判定結果がNoの場合、または、S407の判定結果がNoの場合のいずれかである場合は、ステップS414に移る。ステップS414では、発電量の抑制を行わずに、電力センサの計測値(メータ値)をPCS42に送信する。 If the determination result in step S405 is Yes, or if the determination result in S406 is No, or if the determination result in S407 is No, then the process proceeds to step S414. In step S414, the measured value (meter value) of the power sensor is transmitted to the PCS 42 without suppressing the amount of power generation.
 ステップS408およびステップS413は、電力抑制コントローラ42の抑制条件設定部416で処理する。ステップS408およびステップS413では、出力上限値と、送信するメータ値とを設定する。 The suppression condition setting unit 416 of the power suppression controller 42 processes steps S408 and S413. In steps S408 and S413, an output upper limit value and a meter value to be transmitted are set.
 ここで、ステップS408では、抑止時間帯を対象としているので、ステップS402でパターン展開した出力上限値のうち、現在時刻に対応する出力上限値を選択する。この出力上限値は「第1上限値」に該当する。なお、ステップS414は抑制時間帯ではないので、抑制を解除した値、すなわち出力上限値を定格出力に設定する。この出力上限値は「第2上限値」に該当する。 Here, in step S408, since the suppression time zone is targeted, the output upper limit value corresponding to the current time is selected among the output upper limit values developed in the pattern in step S402. This output upper limit value corresponds to the "first upper limit value". In addition, since step S414 is not a suppression time zone, the value which cancelled | released suppression, ie, an output upper limit, is set to a rated output. This output upper limit value corresponds to the "second upper limit value".
 また、送信対象のメータ値としては、発電機器47からの出力に基づいて抑制する場合は電力センサ81の計測値を用い、逆潮流の電力量に基づいて抑制する場合は電力センサ79の計測値を用いる。電力抑制コントローラ42は、設定した出力上限値と電力センサの計測値とを、PCS43に送信する。 Moreover, as a meter value of transmission object, when suppressing based on the output from the electric power generating apparatus 47, the measured value of the electric power sensor 81 is used, when suppressed based on the electric energy of reverse power flow, the measured value of the electric power sensor 79 Use The power suppression controller 42 transmits the set output upper limit value and the measurement value of the power sensor to the PCS 43.
 ステップS409は、PCS43で処理する。PCS43は、抑制条件設定部416から送られてきた出力上限値および電力センサの計測値に基づいて、発電機器47の出力を調整する。 Step S409 is processed by the PCS 43. The PCS 43 adjusts the output of the power generation device 47 based on the output upper limit value sent from the suppression condition setting unit 416 and the measurement value of the power sensor.
 PCS43の動作を図4のフローチャートに示す。PCS43は、ステップS501において、抑制条件設定部416から送られてきた出力上限値と電力センサの計測値(メータ値とも呼ぶ)とを受信する。 The operation of the PCS 43 is shown in the flowchart of FIG. In step S501, the PCS 43 receives the output upper limit value sent from the suppression condition setting unit 416 and the measurement value of the power sensor (also referred to as a meter value).
 ステップS502において、PCS43は、メータ値が出力上限値を超過しているかどうかを判定する。超過している場合(S502:YES)、PCS43は、電圧を調整することにより、発電機器47の出力を抑制する(S503)。超過していない場合(S502:NO)、PCS43は、電圧を調整することにより、発電機器47の出力を増加させる(S504)。 In step S502, the PCS 43 determines whether the meter value exceeds the output upper limit value. When it has exceeded (S502: YES), the PCS 43 suppresses the output of the power generating device 47 by adjusting the voltage (S503). If not (S502: NO), the PCS 43 adjusts the voltage to increase the output of the power generating device 47 (S504).
 図3に戻る。ステップS409およびステップS410は、データ格納処理部417で処理する。電力抑制コントローラ42は、抑制時間帯の単位となるまで、電力を積算する(S409)。例えば、抑制時間帯が1時間単位に設定されている場合、電力抑制コントローラ42は、毎正時になるまでの1時間分の電力を積算する。 Return to FIG. The data storage processing unit 417 processes steps S409 and S410. The power suppression controller 42 integrates the power until it becomes the unit of the suppression time zone (S409). For example, if the suppression time zone is set to one hour, the power suppression controller 42 integrates the power for one hour until every hour.
 電力抑制コントローラ42は、データを実績データベース46に格納する時刻であるかを判定する(S410)。データ格納時刻でなければ(S410:NO)、ステップS413へ移動する。データ格納時刻となった場合(S410:YES)、電力抑制コントローラ42は、電力センサ79,80,81で計測した電力積算値(以下、積算値とも呼ぶ)を実績データベース46に格納する(S411)。なお、電力抑制コントローラ42は、電力積算値を実績データベース46に格納すると同時に、いままでの積算値をゼロに初期化する。 The power suppression controller 42 determines whether it is time to store the data in the performance database 46 (S410). If it is not the data storage time (S410: NO), the process moves to step S413. If the data storage time has come (S410: YES), the power suppression controller 42 stores the power integration value (hereinafter also referred to as an integration value) measured by the power sensors 79, 80, 81 in the results database 46 (S411) . The power suppression controller 42 stores the integrated power value in the performance database 46, and at the same time, initializes the integrated value so far to zero.
 ステップS412は、抑制電力量および潜在的発電量を推定するための抑制量推定処理部418で処理する。電力抑制コントローラ42は、推定対象の抑制時間帯での、電力センサ79、81の積算値と、推定対象の抑制時間帯に前後に隣接する2つの非抑止時間帯での電力センサ79、81の積算値とを、実績データベース46から読み込む。 Step S412 is processed by the suppression amount estimation processing unit 418 for estimating the suppression power amount and the potential power generation amount. The power suppression controller 42 calculates the integrated values of the power sensors 79 and 81 in the suppression time zone to be estimated and the power sensors 79 and 81 in two non-inhibition time zones adjacent to the suppression time zone to be estimated. The integrated value and the actual value database 46 are read.
 電力センサ79の積算値を用いて抑制する場合を、図7に示す抑制情報に示す条件を例に挙げて説明する。この場合、図9に示すように、抑制時間帯tでの電力センサ79の積算値をPV(t)、抑制時間帯tの直前に位置する非抑制時刻(t-1)での電力センサ79の積算値をPV(t-1)、抑制時間帯tの直後に位置する非抑制時間帯(t+1)での電力センサ79の積算値をPV(t+1)とする。 The case where suppression is performed using the integrated value of the power sensor 79 will be described by taking the conditions shown in the suppression information shown in FIG. 7 as an example. In this case, as shown in FIG. 9, the integrated value of the power sensor 79 in the suppression time zone t is PV (t), and the power sensor 79 at the non-suppression time (t-1) located immediately before the suppression time zone t. The integrated value of the electric power sensor 79 is PV (t-1), and the integrated value of the power sensor 79 in the non-suppression time zone (t + 1) located immediately after the suppression time zone t is PV (t + 1).
 抑制時間帯において、もしも抑制しなかったならば得られたであろうはずの潜在的発電量PVest(t)は、数2に示すように、直前の非抑制時間帯(t-1)での積算値PV(t-1)と直後の非抑制時間帯(t+1)での積算値PV(t+1)との平均値として算出できる。 In the suppression time zone, the potential power generation amount PVest (t) that would have been obtained if it did not suppress, is shown in the equation 2 in the immediately preceding non-suppression time zone (t-1). It can be calculated as an average value of the integrated value PV (t-1) and the integrated value PV (t + 1) in the immediately following non-suppression time zone (t + 1).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 抑制時間帯tにおいて、実際に抑制されたと推定される電力量dPV(t)は、数3に示すように、潜在的発電量PVest(t)と、出力が許可されている値(つまり抑制時間帯の出力上限値)であるPV(t)との差として求めることができる。 In the suppression time zone t, the electric energy dPV (t) estimated to be actually suppressed is the potential generation amount PVest (t) and the value for which the output is permitted (that is, the suppression time), as shown in Equation 3. It can be obtained as a difference from PV (t) which is the output upper limit value of the band.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ここで、同一需要家グループに属する2つの需要家において、それぞれの需要家が有する発電機器47の定格容量および抑制量(抑制率)が同じである場合を検討する。この場合、各需要家での抑制時間帯を1時間ずらすことにより、それら2つの発電機器47を全体として見た場合の抑制率を、一定値にすることができる。 Here, in two consumers who belong to the same consumer group, the case where the rated capacity and suppression amount (suppression rate) of the power generation device 47 which each consumer has is the same is examined. In this case, by shifting the suppression time zone of each customer by one hour, it is possible to set the suppression rate when the two power generating devices 47 as a whole are viewed as a constant value.
 例えば、一方の発電機器47は、12時から13時まで抑制率60%で抑制され、13時から14時まで抑制が解除され、他方の発電機器47は、12時から13時まで抑制が解除され、13時から14時まで抑制率60%で抑制される場合を例に挙げる。 For example, one power generating device 47 is suppressed at a suppression rate of 60% from 12 o'clock to 13 o'clock, and the suppression is released from 13 o'clock to 14 o'clock, and the other power generating device 47 is released from 12 o'clock to 13 o'clock In the example, the suppression rate is 60% from 13:00 to 14:00.
 この場合、12時から13時までの間では、一方の発電機器47は60%出力であり、他方の発電機器47は100%出力である。したがって、12時から13時までの時間帯では、2つの発電機器47全体として見た場合、その出力は80%となる。同様に、13時から14時までの時間でも、2つの発電機器47全体として見た場合、その出力は80%となる。つまり、抑制パターンの矩形波の周期を所定量ずらすことで、需要家グループ全体での発電出力を安定的に抑制することができる。 In this case, between 12 o'clock and 13 o'clock, one of the power generation devices 47 has a 60% output, and the other power generation device 47 has a 100% output. Therefore, in the time zone from 12 o'clock to 13 o'clock, the output of the two power generating devices 47 as a whole becomes 80%. Similarly, the output of the two power generating devices 47 as a whole is 80% even in the time from 13 o'clock to 14 o'clock. That is, by shifting the period of the rectangular wave of the suppression pattern by a predetermined amount, it is possible to stably suppress the power generation output of the entire customer group.
 ところで、図9に示すように、出力を抑制するためのパターンを矩形波パターンとして形成した場合、抑制時間帯と非抑制時間帯との境界で、発電機器47の出力が急激に変化する。このような急激な出力変化は、需要家の電気機器49にとっても、電力系統9にととっても好ましくない。 By the way, as shown in FIG. 9, when the pattern for suppressing the output is formed as a rectangular wave pattern, the output of the power generation device 47 changes rapidly at the boundary between the suppression time zone and the non-suppression time zone. Such a sudden output change is not preferable for the power system 9 as well as for the electric equipment 49 of the customer.
 そこで、図10に示すように、抑制開始時刻よりも所定時間(例えば5分間)だけ早く出力抑制を開始し、抑制終了時刻を所定時間(例えば5分間)だけ遅くさせる構成としてもよい。 Therefore, as shown in FIG. 10, the output suppression may be started earlier by a predetermined time (for example, 5 minutes) than the suppression start time, and the suppression end time may be delayed by a predetermined time (for example, 5 minutes).
 図11は、図10の抑制情報に従って出力を調整する抑制パターンである。図11と図9とを比べると、図11では、抑制開始時刻の5分前から出力調整(出力抑制)が開始されるため、開始時のグラフ形状が傾斜している。同様に、抑制終了時刻を5分遅らせるため、終了時のグラフ形状も傾斜している。 FIG. 11 is a suppression pattern for adjusting the output according to the suppression information of FIG. Comparing FIG. 11 with FIG. 9, in FIG. 11, since the output adjustment (output suppression) is started 5 minutes before the suppression start time, the graph shape at the start is inclined. Similarly, in order to delay the suppression end time by 5 minutes, the graph shape at the end is also inclined.
 図11に示す例では、抑制時間帯の抑制量(抑制率)は、60%とならない。傾きの分だけ出力上限値は増加するため、平均の出力上限値は細い実線で示すように、若干大きくなる。図11に示すように、発電出力を抑制するためのパターンを、垂直に立ち上がり垂直に立ち下がる矩形波から、傾きをもって立ち上がり傾きをもってたち下がる台形状のパターンに代えることで、図9の場合よりも出力変動を少なくすることができる。 In the example shown in FIG. 11, the suppression amount (suppression rate) of the suppression time zone does not become 60%. Since the output upper limit value is increased by the inclination, the average output upper limit value is slightly increased as shown by the thin solid line. As shown in FIG. 11, the pattern for suppressing the power generation output is changed from a rectangular wave rising vertically and falling vertically to a trapezoidal pattern rising with inclination and falling with inclination, as compared to the case of FIG. Output fluctuation can be reduced.
 抑制時間帯の出力上限が増加したことによる出力増加分ePV(t)は、数4に従って計算することができる。 The output increase ePV (t) due to the increase in the output upper limit of the suppression time zone can be calculated according to Equation 4.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 抑制時間帯での出力増加分ePV(t)を、抑制時間帯の直前および直後に位置する非抑制時間帯に半分ずつ配分すると、補正後の抑制時間帯の出力nPV(t)と、直前の非抑制時間帯(t-1)の出力nPV(t-1)と、直後の非抑制時間帯(t+1)の出力nPV(t+1)とは、数5に従って計算できる。 If the power increase ePV (t) in the suppression time zone is distributed in half to the non-suppression time zone located immediately before and after the suppression time zone, the corrected output time nPV (t) of the suppression time zone, and The output nPV (t-1) of the non-suppression time zone (t-1) and the output nPV (t + 1) of the non-suppression time zone (t + 1) immediately thereafter can be calculated according to Equation 5.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 また、この補正後の出力を使って、数2と同様に、抑制時間帯tにおける潜在的発電量を、数6に示すように、その前後の非抑制時間帯の出力の平均値として算出できる。また、抑制電力量は、数3で述べたように、潜在的発電量と出力上限値の差として求めることができる。 Further, using the output after this correction, the potential power generation amount in the suppression time zone t can be calculated as an average value of the outputs of the non-suppression time zones before and after that . Moreover, the suppression electric energy can be calculated | required as a difference of a latent electric power generation amount and an output upper limit, as the several 3 said.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 抑制パターンの他の例を説明する。図12に示す抑制情報に規定する抑制条件に従う場合を説明する。図13は、図12に基づく抑制パターンのグラフである。図13と図7とはほぼ同じであるが、図13の抑制パターンでは、抑制終了時刻を5分遅く設定しているため、開始時および終了時に所定の傾きを有する。 Another example of the suppression pattern will be described. The case of following the suppression condition defined in the suppression information shown in FIG. 12 will be described. FIG. 13 is a graph of the suppression pattern based on FIG. Although FIG. 13 and FIG. 7 are substantially the same, in the suppression pattern of FIG. 13, since the suppression end time is set 5 minutes late, it has a predetermined inclination at the start time and end time.
 図13に示す場合の抑制時間帯tの抑制率は60%ではなく、傾きの分だけ出力上限は増加する。抑制時間帯tでの出力上限値の平均値は、細い実線で示される。図13に示すように、出力の立ち下がりおよび立ち上がりに傾きを持たせることで、図11で述べたと同様に、出力変動を少なくすることができる。抑制時間帯の出力上限値の増加に伴う出力増加分ePV(t)は、上述の数4から算出できる。 The suppression rate of the suppression time zone t in the case shown in FIG. 13 is not 60%, and the output upper limit is increased by the slope. The average value of the output upper limit value in the suppression time zone t is indicated by a thin solid line. As shown in FIG. 13, the output fluctuation can be reduced as described in FIG. 11 by giving an inclination to the falling and rising of the output. The output increase amount ePV (t) accompanying the increase of the output upper limit value of the suppression time zone can be calculated from the above-mentioned Expression 4.
 この増加分ePV(t)を、抑制時間帯tの直後の非抑制時間帯(t+1)に配分する場合、補正後の抑制時間帯tでの出力nPV(t)と、直前の非抑制時刻(t-1)での出力nPV(t-1)と、直後の非抑制時間帯(t+1)の出力であるnPV(t+1)とは、数7から算出できる。 When this increase ePV (t) is distributed to the non-suppression time zone (t + 1) immediately after the suppression time zone t, the output nPV (t) in the post-correction suppression time zone t and the immediately preceding non-suppression time ( The output nPV (t-1) at t-1) and nPV (t + 1) which is the output of the non-suppression time zone (t + 1) immediately after that can be calculated from Expression 7.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 増加分ePV(t)を、抑制時間帯tの直前の非抑制時間帯(t-1)に配分する場合は、nPV(t)、nPV(t-1)、nPV(t+1)は数8から算出できる。 When the increase ePV (t) is allocated to the non-suppression time zone (t-1) immediately before the suppression time zone t, nPV (t), nPV (t-1) and nPV (t + 1) It can be calculated.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 前記の数2と同様に、抑制時間帯tでの推定出力(潜在的発電量)を、上記の補正後の出力の平均値とすると、前記の数6に従って算出することができる。また、抑制電力量は、前記の数3で算出できる。 Assuming that the estimated output (potential power generation amount) in the suppression time zone t is the average value of the outputs after the above correction as in the case of the above equation (2), it can be calculated according to the above equation (6). Moreover, suppression electric energy can be calculated by said several 3.
 抑制パターンのさらに別の例を、図14および図15を参照して説明する。図14に示す抑制情報に規定する抑制条件に基づく場合の抑制パターンを図15に示す。 Yet another example of a suppression pattern is described with reference to FIGS. 14 and 15. The suppression pattern in the case based on the suppression conditions prescribed | regulated to the suppression information shown in FIG. 14 is shown in FIG.
 図15の抑制パターンでは、図7に示す抑制パターンとほぼ同じであるが、抑制開始時刻が5分早く設定されており、その5分早い抑制開始に応じた傾きを有する。従って、この場合も、抑制時間帯tでの抑制率は60%ではなく、その傾きの分だけ出力上限値は若干増加する。従って、出力上限値の平均は、細い実線として図15に示される。 The suppression pattern of FIG. 15 is almost the same as the suppression pattern shown in FIG. 7, but the suppression start time is set five minutes earlier, and has a slope corresponding to the five minutes earlier suppression start. Therefore, also in this case, the suppression rate in the suppression time zone t is not 60%, and the output upper limit slightly increases by the slope. Therefore, the average of the output upper limit value is shown in FIG. 15 as a thin solid line.
 図15に示すように、抑制パターンの立ち上がりおよび立ち下がりに傾きをつけることで、垂直な立ち上がりおよび立ち下がりを有する抑制パターンを用いる場合に比べて、出力の変動を少なくすることができる。なお、抑制時間帯の出力上限値が増加したことによる出力増加分ePV(t)は、前記の数4で計算できる。 As shown in FIG. 15, by providing the rising and falling of the suppression pattern with a slope, it is possible to reduce the fluctuation of the output as compared to the case of using the suppression pattern having vertical rising and falling. The output increase amount ePV (t) due to the increase of the output upper limit value of the suppression time zone can be calculated by the above equation 4.
 この出力増加分ePV(t)を、抑制時間帯tの直後の非抑制時間帯(t+1)に配分した場合、補正後の時刻tの出力nPV(t)と、非抑制時刻(t-1)の出力nPV(t-1)と、非抑制時間帯(t+1)の出力nPV(t+1)とは、前記の数7で計算できる。 When this output increment ePV (t) is distributed to the non-suppression time zone (t + 1) immediately after the suppression time zone t, the output nPV (t) at time t after correction and the non-suppression time (t-1) And the output nPV (t + 1) of the non-suppression time zone (t + 1) can be calculated by the above equation 7.
 あるいは、この出力増加分ePV(t)を、直前の非抑制時間帯(t-1)に配分した場合、nPV(t)、nPV(t-1)、nPV(t+1)は、前記の数8から算出することができる。 Alternatively, when this output increment ePV (t) is allocated to the immediately preceding non-suppression time zone (t-1), nPV (t), nPV (t-1), nPV (t + 1) is the number 8 described above. It can be calculated from
 前記の数2と同様に、抑制時間帯tでの推定出力(潜在的発電量)を、上記の補正後の出力の平均値とすると、前記の数6に従って算出することができる。また、抑制電力量は、前記の数3で算出できる。 Assuming that the estimated output (potential power generation amount) in the suppression time zone t is the average value of the outputs after the above correction as in the case of the above equation (2), it can be calculated according to the above equation (6). Moreover, suppression electric energy can be calculated by said several 3.
 電力センサ81の計測値が出力上限値以下となるように抑制制御する場合と、電力センサ79で計測される逆潮流量を出力上限値以下となるように抑制制御する場合とは、同様に、潜在的発電量および抑制電力量を、数2~数8を用いて算出できる。 Similarly, in the case where the suppression control is performed so that the measured value of the electric power sensor 81 becomes equal to or less than the output upper limit value, and in the case where the reverse flow amount measured by the electric power sensor 79 is suppressed as equal to or less than the output upper limit value The potential power generation amount and the suppression power amount can be calculated using several 2 to several 8.
 図3のステップS413では、電力抑制コントローラ42は、電力センサ79,80,81の計測値と、潜在的発電量(抑制しなかったとしたときの推定電力量)と、抑制電力量および補正電力量を、実績データベース46に格納する。さらに、電力抑制コントローラ42は、これらの電力量と、実績データベース46から読み込んだ買電単価および売電単価とを用いて、時間帯ごとの買電料金または売電料金を計算する。 In step S413 in FIG. 3, the power suppression controller 42 measures the measured values of the power sensors 79, 80, 81, the potential power generation amount (estimated power amount when not suppressed), the suppression power amount and the correction power amount Are stored in the results database 46. Furthermore, the power suppression controller 42 calculates the power purchase fee or the power sale fee for each time slot using these power amounts and the power purchase unit price and the power sale unit price read from the results database 46.
 電力抑制コントローラ42は、ステップS413でデータを実績データベース46に格納した後、再びステップS403に戻る。 After storing the data in the record database 46 in step S413, the power suppression controller 42 returns to step S403 again.
 次に、操作表示装置45について説明する。図16、図17および図18は、操作表示装置45に表示される画面の一例である。図16および図17は、発電機器47の出力を電力センサ81の値に基づいて抑制する場合の画面例である。図18は、発電機器47の出力を電力センサ79の値に基づいて抑制する場合の画面例である。 Next, the operation display device 45 will be described. FIGS. 16, 17 and 18 show examples of screens displayed on the operation display device 45. FIG. FIG. 16 and FIG. 17 are screen examples when the output of the power generation device 47 is suppressed based on the value of the power sensor 81. FIG. 18 is a screen example in the case where the output of the power generation device 47 is suppressed based on the value of the power sensor 79.
 操作表示装置45は、電力抑制コントローラ42の要求データ取込送信部419に対して、実績データベース46に格納されている電力量データおよび料金データなどを送信するように要求する。操作表示装置45は、電力抑制コントローラ42から情報を受信すると、その受信したデータをグラフおよび数値などで画面に表示する。 The operation display device 45 requests the request data acquisition transmission unit 419 of the power suppression controller 42 to transmit the power amount data, the charge data, and the like stored in the performance database 46. When the operation display device 45 receives information from the power suppression controller 42, the operation display device 45 displays the received data on the screen as a graph, a numerical value, and the like.
 図16の画面101について説明する。画面101は、昼間(現在)の発電に関する情報を表示している。領域102は、現在の年月日および時刻を表示している。領域103は、現在の天気を表示している。領域104は、メッセージを表示する。例えば、「本日は出力抑制を行う日です。抑制率は定格の60%に設定されます。」などの出力抑制に関する注意メッセージを表示することができる。発電機器47の出力を抑制しない場合、領域104に注意メッセージを表示させない。 The screen 101 of FIG. 16 will be described. The screen 101 displays information on daytime (current) power generation. An area 102 displays the current date and time. An area 103 displays the current weather. Area 104 displays a message. For example, it is possible to display a warning message on output suppression, such as "Today is the day when output suppression is performed. The suppression rate is set to 60% of the rating." When the output of the power generation device 47 is not suppressed, the region 104 does not display a warning message.
 ボタン105は、操作表示装置45の電源をオンオフするためのボタンである。現在は、ONとなっている。 The button 105 is a button for turning on / off the power of the operation display device 45. Currently, it is ON.
 グラフ106は、現在の発電状況の時間変化を表示している。横軸は時刻、縦軸は発電量である。実線107は、抑制パターンを示している。斜線の棒グラフ108は、発電機器47の発電実績を示している。黒く塗りつぶされた棒グラフ109は、抑制電力量を示している。 The graph 106 displays the time change of the current power generation state. The horizontal axis is time, and the vertical axis is power generation. The solid line 107 shows the suppression pattern. A hatched bar graph 108 shows the power generation results of the power generation device 47. The black bar graph 109 indicates the amount of suppression power.
 表111は、本日の発電実績の合計と、推定された抑制電力量の合計と、発電実績の合計と抑制電力量の合計との和と、発電量の予想とを表示している。表112は、今月の発電実績と、抑制電力量の合計値と、発電実績と抑制電力量の合計値との和とを、表示している。表113は、発電出力を抑制するか否かを示す情報と、抑制パターンと、出力上限値を決定するための抑制率と、抑制理由とを表示している。 Table 111 displays the sum of the power generation results of the day, the sum of the estimated suppression power amount, the sum of the sum of the power generation results and the sum of the suppression power amount, and the prediction of the power generation amount. Table 112 displays the power generation result of this month, the total value of the suppression power amount, and the sum of the power generation result and the total value of the suppression power amount. Table 113 displays information indicating whether or not to suppress the power generation output, the suppression pattern, the suppression rate for determining the output upper limit value, and the suppression reason.
 ボタン114は、需要家での電力需要に関する情報を表示させるボタンである。ボタン115は、発電機器47の発電に関する情報を表示させるボタンである。ボタン116は、料金に関する情報を表示させるボタンである。ボタン117~119は、表示対象の期間を設定するためのもので、いずれか1つが選択される。ボタン117は、本日の日中に関する情報を表示させる。ボタン118は、本日一日分の情報を表示させる。ボタン119は、一月分の情報を表示させる。 The button 114 is a button for displaying information on the power demand at the customer. The button 115 is a button for displaying information on the power generation of the power generation device 47. The button 116 is a button for displaying information on the charge. Buttons 117 to 119 are for setting a display target period, and one of them is selected. A button 117 displays information on today's daytime. A button 118 displays information for one day today. A button 119 displays information for one month.
 「日中」ボタン117が選択されると、その日の状況が1時間単位でグラフ表示され、「日間」ボタン118が選択されると、日ごとの集計値がグラフ表示される。月間ボタン119が選択されると、月ごとの集計値がグラフ表示される。 When the "daytime" button 117 is selected, the situation on that day is displayed graphically on an hourly basis, and when the "day" button 118 is selected, the daily aggregated value is displayed graphically. When the monthly button 119 is selected, monthly aggregated values are displayed graphically.
 図16で選択されているのは、「発電」ボタン115と、「日中」ボタン117の2つである。ボタン114、115および116は、いずれか1つが選択される。グラフ106は、発電ボタン115が選択されているときの表示である。 Two items selected in FIG. 16 are the “power generation” button 115 and the “daytime” button 117. One of the buttons 114, 115 and 116 is selected. The graph 106 is a display when the power generation button 115 is selected.
 需要ボタン114が選択されたときの表示例を図17に示す。料金ボタン116を選択すると、料金情報を表示する。 A display example when the demand button 114 is selected is shown in FIG. When the charge button 116 is selected, the charge information is displayed.
 設定ボタン120を選択すると、季節別または時間帯別の、買電単価および売電単価等を設定するための設定画面(不図示)が表示される。 When the setting button 120 is selected, a setting screen (not shown) for setting a purchase unit price, a sale unit price and the like according to season or time zone is displayed.
 操作表示装置45は、ユーザ(需要家)により選択されたボタンに応じて、必要な情報の送信を電力抑制コントローラ42に要求する。電力抑制コントローラ42の要求データ取込送信部419は、要求されたデータを実績データベース46から読出して取り込み、そのデータを操作表示装置45に送信する。 The operation display device 45 requests the power suppression controller 42 to transmit necessary information in accordance with the button selected by the user (demander). The request data acquisition transmission unit 419 of the power suppression controller 42 reads out and acquires the requested data from the record database 46, and transmits the data to the operation display unit 45.
 日間ボタン118が選択されている場合、操作表示装置45は、定期的に実績データベース46からデータを取得して、画面表示を更新する。 When the day button 118 is selected, the operation display device 45 periodically acquires data from the results database 46 and updates the screen display.
 図17では、発電ボタン115と日間ボタン118が選択されている。グラフ121の横軸は日付であり、縦軸は売電収入である。グラフ121は、日ごとに集計した売電収入の棒グラフである。斜線で示す棒グラフ123は、実際の発電電力を電力事業者に売電したときの収入(売電料金)である。黒く塗りつぶされた棒グラフ122は、抑制電力量による売電収入(売り上げ補償金額)を示している。 In FIG. 17, the power generation button 115 and the day button 118 are selected. The horizontal axis of the graph 121 is a date, and the vertical axis is a power sale income. The graph 121 is a bar graph of the power sale income collected on a daily basis. The hatched bar graph 123 is the income (sales charge) when the actual generated power is sold to the power company. The black bar graph 122 indicates the power sale income (sales compensation amount) by the amount of suppressed power.
 表124は、本日の売電収入の実績合計と、抑制電力量に基づく補償金額の合計と、売電収入の実績合計と抑制電力量に基づく補償金額の合計との和と、売電収入予想とを表示している。表124に隣接する表125は、今月の売電収入の実績合計と、抑制電力量に基づく補償金額の合計と、売電収入の実績合計と抑制電力量に基づく補償金額の合計との和とを表示している。 Table 124 is the sum of the actual sales income today, the sum of the compensation amount based on the suppression power amount, the sum of the actual sales revenue total and the sum of the compensation amount based on the suppression power amount, and the power sales income forecast And are displayed. Table 125 adjacent to Table 124 is the sum of the actual sales revenue of the current month, the sum of the compensation amount based on the suppression power amount, and the sum of the actual result of the selling income and the sum of the compensation amount based on the suppression power amount Is displayed.
 図18は、逆潮流電力量に制限を設けた場合の画面例である。逆潮流する電力量を計測する電力センサ79の計測値は、電気機器49による消費電力(電力需要)と発電機器47による発電の合計である。従って、「発電および需要」ボタン216を選択した場合、グラフ210の横軸は時刻を示し、縦軸は消費電力と発電の合計値を示す。 FIG. 18 is a screen example in the case where a restriction is given to the amount of reverse flow power. The measurement value of the power sensor 79 that measures the amount of reversely flowing power is the sum of the power consumption (power demand) by the electric device 49 and the power generation by the power generation device 47. Therefore, when the “power generation and demand” button 216 is selected, the horizontal axis of the graph 210 indicates time, and the vertical axis indicates the total value of power consumption and power generation.
 白い棒グラフ212は、電力需要の方が多いことを示す。例えば、発電機器47が太陽光発電装置である場合、夜間は発電されないため、電力需要が上回っている。斜線で示す棒グラフ213は、電力需要よりも発電の方が多く、逆潮流となる余剰電力が発生していることを示している。黒の棒グラフ214は、抑制された逆潮流、つまり、推定された抑制電力量を示す。 The white bar graph 212 indicates that the power demand is higher. For example, when the power generation device 47 is a solar power generation device, power generation is over at night because power is not generated. A hatched bar graph 213 indicates that power generation is more than power demand, and surplus power causing reverse power flow is generated. The black bar graph 214 shows the suppressed reverse power flow, that is, the estimated amount of suppressed power.
 表215は、本日の余剰電力の実績合計と、抑制電力量の合計と、余剰電力の実績合計と抑制電力量の和と、余剰電力量の予想値とを示す。表216は、今月の余剰電力の実績合計と、抑制電力量の合計と、余剰電力の実績合計と抑制電力量の和とを示す。 Table 215 shows the sum total of the surplus power of today, the sum total of the suppression power amount, the sum of the sum total of the surplus power and the suppression power amount, and the predicted value of the surplus power amount. Table 216 shows the sum total of the surplus power of this month, the sum total of the suppression power amount, and the sum of the sum total of the surplus power and the suppression power amount.
 このように構成される本実施例では、発電機器47の出力を抑制した場合に、潜在的発電量および抑制電力量を、比較的簡易な方法で比較的高精度に算出できる。従って、需要家の貢献度を公正に評価して補償することができる。このため、電力系統9に多数の発電機器47が接続された場合でも、各需要家の協力を得て電力系統の安定を維持することができる。 In this embodiment configured as described above, when the output of the power generation device 47 is suppressed, the potential power generation amount and the suppression power amount can be calculated with relatively high accuracy by a relatively simple method. Therefore, the contribution of the customer can be fairly evaluated and compensated. Therefore, even when a large number of power generation devices 47 are connected to the power system 9, the stability of the power system can be maintained with the cooperation of each customer.
 図19を参照して第2実施例を説明する。本実施例を含む以下の各実施例は第1実施例の変形例に該当するため、第1実施例との差異を中心に説明する。 A second embodiment will be described with reference to FIG. The following embodiments including the present embodiment correspond to modifications of the first embodiment, and therefore, differences from the first embodiment will be mainly described.
 第1実施例では、発電機器47で発電された電力の全量買取制度および余剰電力の買取制度にも対応できるように、発電メータ52と、余剰メータ53および電力メータ54を設置している。これに対し、本実施例では、余剰電力の買取制度のみに対応する構成の例を、図19を参照して説明する。 In the first embodiment, the power generation meter 52, the surplus meter 53, and the power meter 54 are installed so as to be compatible with the whole power purchase system of the power generated by the power generation device 47 and the purchase system of the surplus power. On the other hand, in the present embodiment, an example of a configuration corresponding to only the purchase system of surplus power will be described with reference to FIG.
 図19に示す需要家側の全体構成1Aでは、発電メータ52および電力メータ54のみが設置されており、余剰メータ53は設けられていない。また、本実施例では余剰メータ53を備えていないため、全体構成1Aは、分電盤44から発電メータ52への電力を検出する電力センサ81と、電力メータ54から分電盤44への電力を検出する電力センサ79のみを備えている。本実施例では、電力センサ81の計測値を、電力の向きを考慮して利用する。このように構成される本実施例も第1実施例と同様の効果を奏する。 In the overall configuration 1A on the customer side shown in FIG. 19, only the power generation meter 52 and the power meter 54 are installed, and the surplus meter 53 is not provided. Further, since the surplus meter 53 is not provided in the present embodiment, the entire configuration 1A includes the power sensor 81 for detecting the power from the distribution board 44 to the power generation meter 52 and the power from the power meter 54 to the distribution board 44. Only the power sensor 79 for detecting the In the present embodiment, the measurement value of the power sensor 81 is used in consideration of the direction of the power. The present embodiment configured in this way also exhibits the same effects as the first embodiment.
 図20を参照して第3実施例を説明する。本実施例は、全量買取制度に対応する。図20に示す需要家側の全体構成1Bは、発電メータ52および電力メータ54のみを備えており、余剰メータ53を備えない。さらに、本実施例の全体構成1Bは、分電盤44と発電メータ52の間の電力を測定するための電力センサ81のみを備えており、他の電力センサ79、80を備えない。 A third embodiment will be described with reference to FIG. This embodiment corresponds to the whole amount purchasing system. The overall configuration 1B on the customer side illustrated in FIG. 20 includes only the power generation meter 52 and the power meter 54, and does not include the surplus meter 53. Furthermore, the overall configuration 1B of the present embodiment includes only the power sensor 81 for measuring the power between the distribution board 44 and the power generation meter 52, and does not include the other power sensors 79 and 80.
 発電メータ52は、発電機器47で発電され、PCS43を介して分電盤44に流入する電力を計測する。この発電電力は、電力センサ81でも計測される。電気機器49で消費される電力は、電力系統9から変圧器55を介して需要家側に供給され、その値は電力メータ54で計測される。 The power generation meter 52 measures the power generated by the power generation device 47 and flowing into the distribution board 44 via the PCS 43. The generated power is also measured by the power sensor 81. The power consumed by the electric device 49 is supplied from the power system 9 to the customer via the transformer 55, and the value is measured by the power meter 54.
 このように、本実施例では、発電と消費電力とは分電盤44で合流することなく、独立に流れるものとする。発電電力は電力センサ81で計測する。消費電力は電力センサ79で計測する。このように構成される本実施例も、第1実施例と同様の効果を奏する。 Thus, in the present embodiment, power generation and power consumption flow independently without joining at the distribution board 44. The generated power is measured by the power sensor 81. The power consumption is measured by the power sensor 79. The present embodiment configured in this way also exhibits the same effects as the first embodiment.
 なお、本発明は、上述した実施例に限定されない。当業者であれば、本発明の範囲内で、種々の追加や変更等を行うことができる。例えば、抑制時間帯と非抑制時間帯とは同一の時間長である必要はない。また、例えば、電力需要の旺盛な、あるいは、太陽光発電量の大きな日中の所定の時間帯では、抑制時間帯と非抑制時間帯の周期を通常周期(60分ごと)よりも短く設定する構成でもよい。さらに、矩形波パターンと、矩形波パターンの一種である台形形状のパターンを例に挙げたが、これに限らず、例えば、三角波パターン、正弦波パターンなどの他の形状のパターンを用いてもよい。 The present invention is not limited to the embodiments described above. Those skilled in the art can make various additions and modifications within the scope of the present invention. For example, the suppression time zone and the non-suppression time zone need not have the same length of time. In addition, for example, in a predetermined time zone during the daytime when the power demand is strong or solar power generation is large, the cycle of the suppression time zone and the non-suppression time zone is set shorter than the normal cycle (every 60 minutes) It may be a configuration. Furthermore, although the rectangular wave pattern and the trapezoidal pattern which is a kind of rectangular wave pattern have been described as an example, the present invention is not limited to this, for example, other shape patterns such as triangular wave pattern and sine wave pattern may be used. .
 1,1A、1B:需要家側の全体構成、3:地域計画装置、42:電力抑制コントローラ、43:PCS、44:分電盤、45:操作表示装置、46:実績データベース、47:発電機器 1, 1A, 1B: Overall configuration on the customer side, 3: Area planning device, 42: Power suppression controller, 43: PCS, 44: Distribution board, 45: Operation display device, 46: Achievement database, 47: Power generation equipment

Claims (13)

  1.  分散型発電装置の発電量を抑制し、抑制された発電量を推定する分散型発電装置の制御装置であって、
     前記分散型発電装置の発電量を計測する発電量計測部と、
     前記分散型発電装置の発電量を制御するための制御パターン情報であって、発電量を抑制する第1時間帯と発電量を抑制しない第2時間帯とを少なくとも一つずつ含む制御パターン情報を、前記分散型発電装置の発電量を制御する発電量制御部に設定することにより、前記分散型発電装置の発電量を制御させる制御パターン設定部と、
     前記第1時間帯における第1発電量と前記第2時間帯における第2発電量とを前記発電量計測部から取得し、前記第1発電量と前記第2発電量とに基づいて、前記第1時間帯において前記分散型発電装置の発電を抑制しなかった場合に得られたであろう潜在的発電量を推定するための発電量推定部と、
    を備える、分散型発電装置の制御装置。
     
    A control device for a distributed power generation system that suppresses the amount of power generation of the distributed power generation device and estimates the suppressed amount of power generation,
    A power generation amount measurement unit that measures the power generation amount of the distributed power generation device;
    The control pattern information for controlling the power generation amount of the dispersed power generation apparatus, the control pattern information including at least one of a first time zone for suppressing the power generation amount and a second time zone for not suppressing the power generation amount. A control pattern setting unit configured to control the amount of power generation of the distributed power generation device by setting a generated power control unit that controls the amount of power generation of the distributed power generation device;
    The first power generation amount in the first time zone and the second power generation amount in the second time zone are acquired from the power generation amount measuring unit, and the first power generation amount and the second power generation amount are used to A power generation amount estimation unit for estimating a potential power generation amount that would be obtained if the distributed power generation device did not suppress power generation in one hour zone;
    A controller of a distributed power generation device, comprising:
  2.  前記制御パターン情報は、前記第1時間帯の前記第1発電量を所定の第1上限値に抑制するための第1パターン部と、前記第2時間帯の前記第2発電量を所定の第2上限値に抑制するための第2パターン部とを含んで構成されており、
     前記第2上限値は、前記分散型発電装置の最大発電量以上に設定されている、
    請求項1に記載の分散型発電装置の制御装置。
     
    The control pattern information includes a first pattern portion for suppressing the first power generation amount in the first time zone to a predetermined first upper limit value, and a second power generation amount in the second time zone as a predetermined second time. And a second pattern portion for suppressing the upper limit value.
    The second upper limit value is set to be equal to or more than the maximum power generation amount of the distributed power generation device.
    The control device of the distributed power generation device according to claim 1.
  3.  前記発電量推定部は、前記潜在的発電量が前記第1上限値以上である場合に、前記潜在的発電量と前記第1上限値との差を、抑制電力量として算出する、
    請求項2に記載の分散型発電装置の制御装置。
     
    The power generation amount estimation unit calculates a difference between the potential power generation amount and the first upper limit value as a suppression power amount, when the potential power generation amount is equal to or more than the first upper limit value.
    The control device of the distributed power generation device according to claim 2.
  4.  前記制御パターン情報には、前記第1パターン部と前記第2パターン部とがそれぞれ複数ずつ設定されており、
     前記潜在的発電量推定部は、前記第1時間帯における前記潜在的発電量を、前記第1時間帯に隣接する少なくとも一つの前記第2時間帯における前記第2発電量と前記第1時間帯における前記第1発電量とに基づいて算出する、
    請求項3に記載の分散型発電装置の制御装置。
     
    A plurality of each of the first pattern portion and the second pattern portion are set in the control pattern information,
    The potential power generation amount estimation unit determines the potential power generation amount in the first time zone, the second power generation amount in the at least one second time zone adjacent to the first time zone, and the first time zone Calculated based on the first amount of power generation in
    The control apparatus of the distributed power generation apparatus of Claim 3.
  5.  前記制御パターン情報は、前記第1パターン部と前記第2パターン部とが交互に出現するように形成される、
    請求項4に記載の分散型発電装置の制御装置。
     
    The control pattern information is formed such that the first pattern portion and the second pattern portion appear alternately.
    The control apparatus of the distributed power generation apparatus of Claim 4.
  6.  前記制御パターン情報は、前記第1時間帯と前記第2時間帯とが同一の時間に設定されている、
    請求項5に記載の分散型発電装置の制御装置。
     
    The control pattern information is set such that the first time zone and the second time zone are the same time.
    The control device of the distributed power generation device according to claim 5.
  7.  前記第1時間帯と前記第2時間帯とは同一時間に設定されており、
     前記制御パターン情報は、前記第1パターン部と前記第2パターン部とが交互に出現する矩形波パターンとして形成されている、
    請求項6に記載の分散型発電装置の制御装置。
     
    The first time zone and the second time zone are set to the same time,
    The control pattern information is formed as a rectangular wave pattern in which the first pattern portion and the second pattern portion appear alternately.
    The control apparatus of the distributed power generation apparatus of Claim 6.
  8.  前記制御パターン情報は、前記第1パターン部の立ち上がり部分および立ち下がり部分と、前記第2パターン部の立ち上がり部分および立ち下がり部分とは、それぞれ所定の角度で傾斜するように形成されている、
    請求項7に記載の分散型発電装置の制御装置。
     
    The control pattern information is formed such that the rising portion and the falling portion of the first pattern portion and the rising portion and the falling portion of the second pattern portion are inclined at a predetermined angle, respectively.
    The control apparatus of the distributed power generation device according to claim 7.
  9.  前記制御パターン情報は、前記分散型発電装置の設置されている地域または建物の電力需要を制御するための計画装置により作成される、
    請求項1~8のいずれかに記載の分散型発電装置の制御装置。
     
    The control pattern information is created by a planning device for controlling the power demand of the area or building where the distributed power generation device is installed.
    A control device of a distributed power generation device according to any one of claims 1 to 8.
  10.  前記発電量推定部により算出された前記潜在的発電量を表示するための表示装置を備える、
    請求項9に記載の分散型発電装置の制御装置。
     
    A display device for displaying the potential power generation amount calculated by the power generation amount estimation unit;
    The control device of the distributed power generation device according to claim 9.
  11.  前記表示部に、前記潜在的発電量を電気料金に換算して表示させる、
    請求項10に記載の分散型発電装置の制御装置。
     
    Causing the display unit to convert the potential power generation amount into an electricity bill and display it
    The control device of the distributed power generation device according to claim 10.
  12.  分散型発電装置の発電量を抑制し、抑制された発電量を推定する分散型発電装置の制御方法であって、
     前記分散型発電装置の発電量を制御するための制御パターン情報であって、発電量を抑制する第1時間帯と発電量を抑制しない第2時間帯とを少なくとも一つずつ含む制御パターン情報を取得するステップと、
     受信した前記制御パターン情報を、前記分散型発電装置の発電量を制御する発電量制御部に設定することにより、前記分散型発電装置の発電量を制御させるステップと、
     前記第1時間帯における第1発電量と前記第2時間帯における第2発電量とを、前記分散型発電装置の発電量を計測するための計測部からそれぞれ取得するステップと、
     前記第1発電量と前記第2発電量とに基づいて、前記第1時間帯において前記分散型発電装置の発電を抑制しなかった場合に得られたであろう潜在的発電量を推定するためのステップと、
    を実行する分散型発電装置の制御方法。
     
    A control method of a distributed power generation system, which suppresses the power generation amount of the distributed power generation device and estimates the suppressed power generation amount,
    The control pattern information for controlling the power generation amount of the dispersed power generation apparatus, the control pattern information including at least one of a first time zone for suppressing the power generation amount and a second time zone for not suppressing the power generation amount. Step to get,
    Controlling the power generation amount of the distributed power generation device by setting the received control pattern information in a power generation amount control unit that controls the power generation amount of the distributed power generation device;
    Acquiring each of the first power generation amount in the first time zone and the second power generation amount in the second time zone from a measurement unit for measuring the power generation amount of the distributed power generation apparatus;
    Based on the first power generation amount and the second power generation amount, in order to estimate a potential power generation amount that would be obtained if the distributed power generation device did not suppress power generation in the first time zone. Step and
    Method of controlling a distributed power plant to perform
  13.  前記制御パターン情報は、前記第1時間帯の前記第1発電量を所定の第1上限値に抑制するための第1パターン部と、前記第2時間帯の前記第2発電量を所定の第2上限値に抑制するための第2パターン部とを含んで構成されており、
     前記第2上限値は、前記分散型発電装置の最大発電量以上に設定されている、
    請求項11に記載の分散型発電装置の制御方法。
    The control pattern information includes a first pattern portion for suppressing the first power generation amount in the first time zone to a predetermined first upper limit value, and a second power generation amount in the second time zone as a predetermined second time. And a second pattern portion for suppressing the upper limit value.
    The second upper limit value is set to be equal to or more than the maximum power generation amount of the distributed power generation device.
    The control method of the distributed power generation device according to claim 11.
PCT/JP2012/052920 2012-02-09 2012-02-09 Control device and control method for distributed power generation device WO2013118266A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
IN6618DEN2014 IN2014DN06618A (en) 2012-02-09 2012-02-09
JP2013557287A JP5788535B2 (en) 2012-02-09 2012-02-09 Control device and control method for distributed generator
PCT/JP2012/052920 WO2013118266A1 (en) 2012-02-09 2012-02-09 Control device and control method for distributed power generation device
CN201280069027.5A CN104094491B (en) 2012-02-09 2012-02-09 The control device of decentralized TRT and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/052920 WO2013118266A1 (en) 2012-02-09 2012-02-09 Control device and control method for distributed power generation device

Publications (1)

Publication Number Publication Date
WO2013118266A1 true WO2013118266A1 (en) 2013-08-15

Family

ID=48947070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052920 WO2013118266A1 (en) 2012-02-09 2012-02-09 Control device and control method for distributed power generation device

Country Status (4)

Country Link
JP (1) JP5788535B2 (en)
CN (1) CN104094491B (en)
IN (1) IN2014DN06618A (en)
WO (1) WO2013118266A1 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016059668A1 (en) * 2014-10-14 2016-04-21 株式会社日立製作所 Power generation facility operation device and operation method
JP2016116390A (en) * 2014-12-17 2016-06-23 日本電気株式会社 Power generation control system, power generation control apparatus, power generation control method, and program
JP2016144314A (en) * 2015-02-02 2016-08-08 オムロン株式会社 Controller, power conversion device, power supply system, and control method
JP2016158434A (en) * 2015-02-25 2016-09-01 京セラ株式会社 Electric power conversion system and power management system
JP2016158436A (en) * 2015-02-25 2016-09-01 京セラ株式会社 Power management system, electric power conversion system and power management method
JP2016158347A (en) * 2015-02-24 2016-09-01 株式会社日立製作所 Power transmission plant plan support system and method
WO2016136911A1 (en) * 2015-02-25 2016-09-01 京セラ株式会社 Power conditioning system and power conditioning method
WO2016147454A1 (en) * 2015-03-13 2016-09-22 日本電気株式会社 Display device, power generation device, management device, control device, power generation device status display method, and program
JP2017005912A (en) * 2015-06-12 2017-01-05 パナソニックIpマネジメント株式会社 Power management system, power management method, and program
WO2017060957A1 (en) * 2015-10-05 2017-04-13 日本電気株式会社 Power control device, power generation device, power control method, power generation method, and recording medium
JP2017112731A (en) * 2015-12-16 2017-06-22 パナソニックIpマネジメント株式会社 Control system
JP2017127047A (en) * 2016-01-12 2017-07-20 三菱電機株式会社 Power Conditioner
JP2017163769A (en) * 2016-03-11 2017-09-14 パナソニックIpマネジメント株式会社 Energy prediction system
JP2017169320A (en) * 2016-03-15 2017-09-21 シャープ株式会社 Controller of solar power generator, server, solar power generation system, information distribution method, control method and program of solar power generator
WO2017170018A1 (en) * 2016-03-31 2017-10-05 日本電気株式会社 Power control device, power control method, and program
JP2018137993A (en) * 2015-06-08 2018-08-30 京セラ株式会社 Power conversion device, power management device, and power management method
WO2018212135A1 (en) * 2017-05-19 2018-11-22 パナソニックIpマネジメント株式会社 Controller, electricity storage system, and program
JP2019017190A (en) * 2017-07-07 2019-01-31 パナソニックIpマネジメント株式会社 Power conversion apparatus and power conversion system
JP2022537856A (en) * 2020-05-04 2022-08-31 8エムイー ノバ,エルエルシー Methods of implementing power supply transactions for potential electrical output of integrated renewable energy sources and energy storage system facilities
US11588329B2 (en) 2020-05-04 2023-02-21 8Me Nova, Llc Method for implementing power delivery transaction for potential electrical output of integrated renewable energy source and energy storage system facility
US11916383B2 (en) 2020-05-04 2024-02-27 8Me Nova, Llc Implementing power delivery transaction for potential electrical output of integrated renewable energy source and energy storage system facility

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016027560A1 (en) * 2014-08-20 2016-02-25 日本電気株式会社 Control device, power generation control method, and control program
JP6842814B1 (en) * 2019-07-08 2021-03-17 東芝三菱電機産業システム株式会社 Energy balance adjustment control method and adjustment control device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009077457A (en) * 2007-09-18 2009-04-09 Tokyo Gas Co Ltd Operation system of distributed type power supply and its operation method
JP2011176948A (en) * 2010-02-24 2011-09-08 Panasonic Corp Billing apparatus, billing method, and billing system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040087337A (en) * 2002-03-06 2004-10-13 마츠시타 덴끼 산교 가부시키가이샤 Setting device of distributed energy supply system
US7443052B2 (en) * 2004-01-09 2008-10-28 Koninklijke Philips Electronics N.V. DC/DC converter and decentralized power generation system comprising a DC/DC converter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009077457A (en) * 2007-09-18 2009-04-09 Tokyo Gas Co Ltd Operation system of distributed type power supply and its operation method
JP2011176948A (en) * 2010-02-24 2011-09-08 Panasonic Corp Billing apparatus, billing method, and billing system

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016059668A1 (en) * 2014-10-14 2016-04-21 株式会社日立製作所 Power generation facility operation device and operation method
US10404073B2 (en) 2014-10-14 2019-09-03 Hitachi, Ltd. Power generation system and method that controls production of power by a power generation facility
JPWO2016059668A1 (en) * 2014-10-14 2017-06-22 株式会社日立製作所 Power generation facility operation apparatus and operation method
JP2016116390A (en) * 2014-12-17 2016-06-23 日本電気株式会社 Power generation control system, power generation control apparatus, power generation control method, and program
JP2016144314A (en) * 2015-02-02 2016-08-08 オムロン株式会社 Controller, power conversion device, power supply system, and control method
JP2016158347A (en) * 2015-02-24 2016-09-01 株式会社日立製作所 Power transmission plant plan support system and method
JP2016158434A (en) * 2015-02-25 2016-09-01 京セラ株式会社 Electric power conversion system and power management system
EP3264557B1 (en) * 2015-02-25 2020-11-04 KYOCERA Corporation Power conditioning system and power conditioning method
WO2016136911A1 (en) * 2015-02-25 2016-09-01 京セラ株式会社 Power conditioning system and power conditioning method
US10418821B2 (en) 2015-02-25 2019-09-17 Kyocera Corporation Power converting apparatus and power converting method
JP2016158436A (en) * 2015-02-25 2016-09-01 京セラ株式会社 Power management system, electric power conversion system and power management method
WO2016147454A1 (en) * 2015-03-13 2016-09-22 日本電気株式会社 Display device, power generation device, management device, control device, power generation device status display method, and program
JPWO2016147454A1 (en) * 2015-03-13 2017-12-28 日本電気株式会社 Display device, power generation device, management device, control device, status display method of power generation device, and program
US10530183B2 (en) 2015-06-08 2020-01-07 Kyocera Corporation Communication apparatus, power management apparatus, and power management method
JP2018137993A (en) * 2015-06-08 2018-08-30 京セラ株式会社 Power conversion device, power management device, and power management method
JP2017005912A (en) * 2015-06-12 2017-01-05 パナソニックIpマネジメント株式会社 Power management system, power management method, and program
WO2017060957A1 (en) * 2015-10-05 2017-04-13 日本電気株式会社 Power control device, power generation device, power control method, power generation method, and recording medium
JPWO2017060957A1 (en) * 2015-10-05 2018-07-26 日本電気株式会社 Power control apparatus, power control method, and program
JP2017112731A (en) * 2015-12-16 2017-06-22 パナソニックIpマネジメント株式会社 Control system
JP2017127047A (en) * 2016-01-12 2017-07-20 三菱電機株式会社 Power Conditioner
JP2017163769A (en) * 2016-03-11 2017-09-14 パナソニックIpマネジメント株式会社 Energy prediction system
JP2017169320A (en) * 2016-03-15 2017-09-21 シャープ株式会社 Controller of solar power generator, server, solar power generation system, information distribution method, control method and program of solar power generator
WO2017170018A1 (en) * 2016-03-31 2017-10-05 日本電気株式会社 Power control device, power control method, and program
JP7042435B2 (en) 2017-05-19 2022-03-28 パナソニックIpマネジメント株式会社 Controllers, power storage systems and programs
WO2018212135A1 (en) * 2017-05-19 2018-11-22 パナソニックIpマネジメント株式会社 Controller, electricity storage system, and program
JP2018196286A (en) * 2017-05-19 2018-12-06 パナソニックIpマネジメント株式会社 Controller, power storage system and program
JP2019017190A (en) * 2017-07-07 2019-01-31 パナソニックIpマネジメント株式会社 Power conversion apparatus and power conversion system
JP2022537856A (en) * 2020-05-04 2022-08-31 8エムイー ノバ,エルエルシー Methods of implementing power supply transactions for potential electrical output of integrated renewable energy sources and energy storage system facilities
JP7219341B2 (en) 2020-05-04 2023-02-07 8エムイー ノバ,エルエルシー Methods of implementing power supply transactions for potential electrical outputs of integrated renewable energy sources and energy storage system facilities
US11588329B2 (en) 2020-05-04 2023-02-21 8Me Nova, Llc Method for implementing power delivery transaction for potential electrical output of integrated renewable energy source and energy storage system facility
US11710965B2 (en) 2020-05-04 2023-07-25 8Me Nova, Llc Method for implementing power delivery transaction for potential electrical output of integrated renewable energy source and energy storage system facility
US11831161B2 (en) 2020-05-04 2023-11-28 8Me Nova, Llc Systems and methods utilizing AC overbuilt renewable electric generation resource and charge storage device providing desired capacity factor
US11916383B2 (en) 2020-05-04 2024-02-27 8Me Nova, Llc Implementing power delivery transaction for potential electrical output of integrated renewable energy source and energy storage system facility

Also Published As

Publication number Publication date
CN104094491A (en) 2014-10-08
JP5788535B2 (en) 2015-09-30
JPWO2013118266A1 (en) 2015-05-11
CN104094491B (en) 2017-03-08
IN2014DN06618A (en) 2015-05-22

Similar Documents

Publication Publication Date Title
WO2013118266A1 (en) Control device and control method for distributed power generation device
JP5487125B2 (en) Power supply / demand adjustment reserve capacity trading system and power supply / demand adjustment reserve capacity transaction method
Weniger et al. Economics of residential PV battery systems in the self-consumption age
JP6402731B2 (en) Electricity supply and demand prediction system, electric power supply and demand prediction method, and electric power supply and demand prediction program
JP6996494B2 (en) Power controllers, power control methods, and programs
JP6045769B1 (en) Power generation amount estimation device, distribution system, and power generation amount estimation method
JP6543145B2 (en) Peak power prediction device, power management system and peak power prediction method
JP6208614B2 (en) Energy management apparatus, energy management method, and energy management system
JP6403905B2 (en) Power management apparatus, power management system, evaluation method, and program
JPWO2017090152A1 (en) Distribution system management device, measuring device, distribution system management system, and power generation amount estimation method
US20150262316A1 (en) Power rate calculation method and power rate calculation device
JP2016018483A (en) Energy management system, method, and program
JP6132994B1 (en) Distribution system state estimation device and distribution system state estimation method
JPWO2015019584A1 (en) Power adjustment apparatus, power adjustment method, and program
WO2017183337A1 (en) Demand monitoring device, demand monitoring method, and demand monitoring program
JP5596614B2 (en) Power saving management system and method
JP6135454B2 (en) Estimation program, estimation apparatus, and estimation method
JP6437139B2 (en) Power management apparatus, server, power management system, power management method, and program
JP2011165088A (en) Power transaction system and method for controlling the power transaction system
JP6103323B1 (en) Electricity price information prediction system
JP2016039652A (en) Power distribution grid management apparatus, power distribution grid system, and power distribution grid management method
JP6394211B2 (en) Power control apparatus, power control method, program, and power control system
JP2015047044A (en) Energy management apparatus, energy management method, and energy management system
JP6106052B2 (en) Energy management system and method, and program
Zimmermann et al. An analysis of long-term impacts of demand response on investments in thermal power plants and generation adequacy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12868307

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013557287

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12868307

Country of ref document: EP

Kind code of ref document: A1