WO2013115300A1 - Method for inducing conductivity in films including metal microparticles - Google Patents

Method for inducing conductivity in films including metal microparticles Download PDF

Info

Publication number
WO2013115300A1
WO2013115300A1 PCT/JP2013/052151 JP2013052151W WO2013115300A1 WO 2013115300 A1 WO2013115300 A1 WO 2013115300A1 JP 2013052151 W JP2013052151 W JP 2013052151W WO 2013115300 A1 WO2013115300 A1 WO 2013115300A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine particles
coated
metal fine
alkylamine
film containing
Prior art date
Application number
PCT/JP2013/052151
Other languages
French (fr)
Japanese (ja)
Inventor
正人 栗原
時任 静士
大介 熊木
Original Assignee
国立大学法人山形大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人山形大学 filed Critical 国立大学法人山形大学
Publication of WO2013115300A1 publication Critical patent/WO2013115300A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/30Making metallic powder or suspensions thereof using chemical processes with decomposition of metal compounds, e.g. by pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys

Definitions

  • the present invention relates to a method for forming a conductive film containing metal fine particles and a method for forming a conductive film on a substrate using the method.
  • the conventional method for forming a metal layer on the surface of a resin or the like is limited to sputtering that requires a vacuum environment or plating using a toxic chemical, and the metal layer is easily formed on the surface of the substrate. Was difficult.
  • an ink containing such metal fine particles for example, as an ink containing nanometer-sized coated metal fine particles that are excellent in dispersibility in a dispersion medium and exhibit good conductivity by low-temperature sintering on a flexible printed circuit board,
  • a metal ink in which colloidal silver is dispersed in a dispersion medium composed of alcohol and various alcohols see, for example, Patent Document 1 or a combination of a plurality of alkylamines and deposited on silver oxalate or the like to form a complex compound.
  • coated silver ultrafine particles having a uniform particle diameter obtained by heating and pyrolyzing the complex compound are dispersed in an appropriate dispersion medium (see, for example, Patent Document 2).
  • the silver fine particles described in Patent Document 2 have an alkylamine on the surface of the silver fine particles.
  • the alkylamine By providing a film containing molecules and optimizing the type of the alkylamine, it can be sintered at room temperature, which is extremely low as the sintering temperature of silver, and is stable at a high concentration in an organic solvent.
  • a metal nanoparticle paste containing the coated metal nanoparticles and a dispersion solvent is applied on a substrate, and a polar solvent or a dissolution aid is applied.
  • a method for sintering coated metal fine particles having excellent storage stability which can be carried out regardless of temperature by allowing a polar solvent solution to be contained (see Patent Document 3).
  • Self-assembled silver nanoparticles have also been reported that can be sintered at room temperature by exposing silver nanoparticles stabilized with sodium salt of polyacrylic acid to hydrogen chloride (HCl) gas for a short time ( For example, refer nonpatent literature 1).
  • Non-Patent Document 1 The silver nanoparticles described in Non-Patent Document 1 are designed so that they can be sintered at room temperature, but there remains a problem in terms of using a corrosive / acid gas called hydrogen chloride (HCl) gas. .
  • HCl hydrogen chloride
  • Patent Document 3 can surely be sintered at room temperature, it requires a step of immersing the substrate in a polar solvent solution, and the disposal of the polar solvent used in these treatments is also necessary. There is a problem that it is necessary.
  • Patent Document 2 proposes a new possibility for low-temperature sintering of metal fine particles, but the low-temperature sinterability depends on the characteristics of the metal fine particles themselves, A method for reducing the temperature of the conductor treatment by improving the process is not disclosed. Accordingly, an object of the present invention is to provide means for reducing the sintering temperature for various metal fine particles and reducing the time.
  • the present inventors have intensively studied a method for making metal fine particles into a conductor.
  • a method for making metal fine particles into a conductor As a result, when the coated metal fine particles coated with a protective film containing an alkylamine are made conductive on the substrate, It was found that the subsequent conductorization is promoted by bringing the film containing the coated metal fine particles provided in the plate into contact with a gas containing a certain amount of water vapor.
  • a method for converting a film containing coated metal fine particles, which is provided on a substrate and covered with a protective film containing alkylamine, into a conductor is at least part of the film. It includes a step of contacting a gas containing water vapor of 14 g / m 3 or more.
  • contacting a gas containing 20 g / m 3 or more steam to the film It is characterized by making it.
  • the step of bringing at least a part of the film into contact with a gas containing water vapor of 14 g / m 3 or more is performed by a protective film including an alkylamine provided on the substrate. It is characterized in that it is carried out in almost the whole method for converting a film containing coated fine metal particles into a conductor.
  • the coated metal fine particles coated with the protective film containing an alkylamine are produced by thermally decomposing a complex compound containing a metal compound in the presence of an alkylamine. It is characterized by.
  • substrate which has a conductor film obtained by implementing said conductorization method. Therefore, in a specific embodiment of the present invention, (a) forming a film containing coated metal fine particles coated with a protective film containing alkylamine on a substrate, and (b) including the coated metal fine particles.
  • a method for making a film including a coated metal fine particle comprising a step of bringing at least a part of the film into contact with a gas containing 14 g / m 3 or more of water vapor. It is preferable that at least a part of the step (b) or in addition to the step (b) includes a step of maintaining the film containing the coated metal fine particles at a predetermined temperature.
  • the predetermined temperature is more preferably 40 ° C. to 100 ° C.
  • a method for forming a film containing coated metal fine particles in a method for forming a film containing coated metal fine particles, exposure to a gas phase having a predetermined moisture content makes it possible to exhibit high conductivity at a lower temperature and in a shorter time.
  • This is useful in forming a metal film using fine particles. That is, it is possible to form a substantially conductive metal film even at a temperature close to room temperature of about 40 ° C., for example, various printed wirings using a substrate having low heat resistance without being limited to a material such as a wiring substrate. It contributes to offer.
  • FIG. 2 is an example of a metal fine particle (transmission image (STEM image) observed using a thermal field emission scanning electron microscope (JEOL JSM-7600F)) whose conduction is promoted by the present invention.
  • the coated metal fine particles to be converted into a conductor by the method of the present invention are typically those in which the surface of metal fine particles having a particle diameter of about several nm to 40 nm is coated with a protective film containing alkylamine.
  • the metal constituting the metal fine particles is selected depending on the use of the present invention, and for example, a metal such as silver, copper, gold, platinum, rhodium, nickel, palladium, or an alloy thereof is used. These two or more metals may be metal fine particles having a core-shell structure or the like.
  • FIG. 6 shows an example of coated metal fine particles that can be easily converted into a conductor by the method of the present invention.
  • FIG. 6 shows silver fine particles coated with a protective film containing an alkylamine produced by the method described in Patent Document 2.
  • the particle diameter of the silver fine particles is about 5 to 20 nm, and the surface thereof is covered with a protective film containing an alkylamine having a thickness of about several nm.
  • the fine particles can exist independently and stably.
  • a predetermined amount of the metal fine particle is applied.
  • a step of contacting with a gas containing water vapor further desorption of alkylamine and contact / sintering of metal fine particles can be further promoted to lower the temperature required for conductorization and for a short time. This relates to a technique for producing a conductor.
  • the coated metal fine particles made conductive by the method of the present invention typically have a surface of metal fine particles having a particle size of about several nm to 40 nm. May be coated with a protective film containing an alkylamine, and the present invention can be applied to coated metal fine particles produced by various methods.
  • alkylamine-coated silver fine particles obtained by thermally decomposing a complex of a silver compound and an alkylamine may be used, and metal atoms may be aggregated in a gas phase.
  • a protective film containing an alkylamine may be provided on the metal fine particles formed in this manner.
  • the metal fine particles formed in the liquid phase, the surface of which is protected with an appropriate protective film, the protective film is replaced with a protective film containing alkylamine by appropriate means. Also good.
  • Alkylamine molecules contained in the protective film covering the coated metal fine particles generally have a coordination bond with the surface of the metal fine particles, and the amino group is stabilized as a protective film by the cohesive force between the alkylamine molecules. It is thought to do.
  • the coated metal fine particles coated with a protective film containing an alkylamine to which the present invention is applied are generally designed so that the protective film exists stably when coexisting with a desired organic solvent used as a dispersion medium. It is desirable.
  • the organic solvent or the like is applied to the substrate and evaporated to be removed, the alkylamine contained in the protective film is easily released, and the alkylamine starts to be released at an appropriate temperature. It is desirable to be designed as follows.
  • the stability of the alkylamine contained in the protective film and the ease of desorption can be mainly determined by the molecular weight and molecular structure of the alkylamine contained in the protective film, as described in Patent Document 2, for example. .
  • a gas containing a predetermined amount of water vapor is applied in the process of applying a coated metal fine particle whose surface is coated with a protective film containing an alkylamine on a substrate in the form of an ink or a paste.
  • the temperature for producing conductorization can be made low temperature, and progress of conductorization can be accelerated
  • a film containing coated metal fine particles is made conductive at a lower temperature by contacting a gas phase containing a predetermined amount of water vapor, the gas containing the predetermined amount of water vapor contains coated metal fine particles.
  • the coated metal fine particles to be conductorized according to the present invention it is desirable that alkylamine is a main component in the protective film. It is presumed that conductorization can be effectively performed by such a conductorization method.
  • the term “conducting” in the present invention means that the electrical resistance of the film containing the coated metal fine particles which are substantially non-conductive is lowered to about 1 ⁇ cm or less to produce electrical conductivity, and once occurs. Including improving electrical conductivity.
  • contact with a gas containing water vapor means that a gas (gas) containing water vapor is present in the vicinity of the surface of the substrate on which the coated metal fine particles are applied. Including forced contact with water molecules contained therein.
  • the substrate may be held in a predetermined humidity environment (either atmospheric pressure or pressurized), and the coated metal fine particles may be brought into contact with water vapor.
  • the temperature at which the gas containing the predetermined amount of water vapor is brought into contact with the film containing the coated metal fine particles is, for example, sufficiently low and substantially during the contact with the gas containing the predetermined amount of water.
  • It may be a temperature that does not cause conductive formation on the other hand, while it may be a temperature that causes substantial conduction while being in contact with a gas containing a predetermined amount of moisture at a relatively high temperature. . Further, it may be a process in which the film containing the coated metal fine particles is heated to change its temperature.
  • a gas containing a predetermined amount of water vapor is brought into contact with the surface of the film containing coated metal fine particles to be made conductive. Also, it is possible to promote the formation of a conductor.
  • a pre-process of the step of conducting a process of making a conductor by heating after contacting a gas containing a predetermined amount of water vapor at a relatively low temperature on the surface of the film containing the coated metal fine particles to be made conductive May be performed.
  • a gas containing a predetermined amount of water vapor may be contacted as part of the step of conducting the conductor by applying a predetermined temperature history to the surface of the substrate provided with the coated metal fine particles to be made conductive.
  • the coated metal fine particles are continuously made conductive in the process until desired conductivity is produced. It is preferable that a gas containing a predetermined amount of moisture is brought into contact with the surface of the film containing.
  • a predetermined amount is applied to the surface of the film containing coated metal fine particles to be made conductive. It is preferable that the metal fine particles are not brought into contact with excessive moisture by contacting a gas containing water vapor.
  • the volume absolute humidity (water vapor amount) is 14 to 17 g / m.
  • water vapor amount is 14 to 17 g / m.
  • the amount of water vapor is less than 14 g / m 3 , particularly when the water vapor amount is 10 g / m 3 or less, the promotion of conductorization by water vapor is substantially not observed.
  • a volume resistivity of 100 ⁇ cm or less is obtained in a time of about 60 minutes without causing condensation even at an extremely low temperature of about 40 ° C.
  • a good electric circuit can be formed even on a substrate that is difficult to heat.
  • the volume resistivity can be stably reduced even in a conductor at an extremely low temperature of about 40 ° C.
  • Volume resistivity can be obtained. Furthermore, at 50 ° C., no condensation occurs even when a gas containing 50 to 55 g / m 3 or more of water vapor or a gas containing 60 to 65 g / m 3 or more of water vapor is used. A volume resistivity of 20 ⁇ cm or less can be obtained, and sufficient conductivity can be imparted in a short time in electrical circuit applications. Further, the amount of water vapor contained in the gas may be appropriately changed in the process of performing treatment with the gas containing water vapor.
  • the reason why the volume resistivity can be reduced by making a gas containing a predetermined amount of water vapor in contact with a film containing coated metal fine particles in the process of forming a conductor is that water molecules in the gas are adsorbed and taken into the film. As a result, the elimination of the electrically insulating alkylamine contained in the protective film of the coated metal fine particles is promoted. As a result, the metal fine particles are brought into direct contact with each other to cause conduction, and diffusion of metal atoms in the contacted portion. This is considered to be because the contact area is increased due to, and fusion (sintering) occurs. And it is guessed that the role of the gas containing water vapor in the present invention is to supply water molecules to the film containing the coated metal fine particles.
  • the relationship between the amount of water vapor contained in the gas used and the volume resistivity after the formation of the conductor has been described by taking as an example the formation of a film containing coated silver fine particles.
  • fine particles by applying the present invention, elimination of alkylamine is promoted, and it is possible to promote the formation of a conductor.
  • the volume resistivity of the film obtained by making the conductor varies depending on the composition of the metal constituting the metal fine particles used.
  • gas components other than water vapor are not particularly specified, and can be determined according to the ease of treatment and the type of metal constituting the coated metal fine particles to be treated.
  • the treatment can be performed using air appropriately humidified or the like.
  • a metal such as coated copper fine particles that easily oxidizes
  • an inert gas such as argon or nitrogen.
  • a gas that does not substantially contain a gas other than water vapor it is also possible to use a gas to which an appropriate gas component is added as long as it does not contradict the spirit of the present invention.
  • the present invention is not limited to this, and a film or gas containing coated fine metal particles to be treated is necessary.
  • the treatment can be performed under reduced pressure or increased pressure as appropriate.
  • the temperature and time for conducting the film containing the coated fine metal particles are not particularly limited, and are mainly determined according to various characteristics such as conductivity required for the film made into a conductor.
  • a volume resistance value of 100 ⁇ cm is obtained at a temperature of 50 ° C. in about 5 minutes from the start of the treatment. After 60 minutes, a volume resistance value of 20 ⁇ cm is obtained. At 80 ° C., a volume resistance value of 30 ⁇ cm can be obtained in about 2 minutes from the start of the treatment, and a volume resistance value of 15 ⁇ cm can be obtained after 10 minutes.
  • conductorization is performed at an excessively high temperature, there is a risk of excessive crystal grain growth due to diffusion of metal atoms.
  • the term “relative humidity” is a value expressed as a percentage by dividing the pressure of water vapor (water vapor partial pressure) contained in the atmosphere at a certain temperature by the saturated water vapor pressure at that temperature, It can be expressed by the following formula.
  • RH Ep / E ⁇ 100 (%)
  • RH Relative humidity in mixed air of water vapor and air
  • Ep Water vapor pressure in mixed air
  • E Saturated water vapor pressure of mixed air at the temperature
  • Such a humidity environment may be a local atmospheric environment that comes into contact with at least the coated metal fine particles on the surface of the substrate, but in general, a certain sealed space is set to reduce the humidity in the space.
  • the adjustment method is simple.
  • the conductor of the film by conducting the process of converting the film containing the coated metal fine particles mainly on the substrate into a conductor by treating the film at a predetermined temperature for a predetermined time in a gas containing a predetermined amount of water vapor, the conductor of the film We explained about promoting On the other hand, the temperature at which the film containing the coated metal fine particles is treated with the gas containing water vapor may be sufficiently low. That is, for example, after performing a step of exposing a film containing coated metal fine particles to a predetermined humidity environment in a temperature range where substantial conductorization does not progress, the film containing coated metal fine particles is heated to a predetermined temperature. Thus, the process of making a conductor can be performed.
  • the temperature of the film containing the coated metal fine particles can be continuously changed. Further, by supplying a gas having a predetermined temperature and humidity to the film containing the coated metal fine particles, it is possible to simultaneously supply and heat water vapor to the film containing the coated metal fine particles. Furthermore, it is also possible to expose to a predetermined humidity environment in part of the process of making the film containing the coated metal fine particles substantially conductive.
  • the term “sintering” refers to a phenomenon in which metal fine particles are fused to form a bond.
  • “conducting” is manifested when metal fine particles come into contact with each other inside a film containing coated metal fine particles to form a conductive path, and further, the metal fine particles are sintered together to expand the conductive path. It means that the volume resistivity decreases.
  • a film that has conductivity due to the formation of a conductive path by contacting the metal fine particles inside the film containing the coated metal fine particles may be particularly referred to as a “conductor film”.
  • a film containing coated metal fine particles may correspond to a “conductor film”.
  • the method for making a film containing coated metal fine particles according to the present invention can be widely used as a means for forming a metal layer on a substrate surface, as well as a means for forming an electric circuit on the substrate surface. Needless to say, it can be widely used as a forming means, a plating means, a decoration means, and the like.
  • coated metal fine particles As an example of a method for producing coated metal fine particles to be converted into a conductor by applying the present invention, means for producing coated metal fine particles by a metal amine complex decomposition method will be described. Without being limited to the above, the present invention can be applied to various coated metal fine particles whose surface is coated with a protective film containing an alkylamine.
  • the coated metal fine particles produced by the metal amine complex decomposition method generally, there is no oxide layer on the surface of the metal fine particles, and the amino group of the alkylamine molecule is bonded to the surface of the metal fine particles in the metal state by a coordinate bond.
  • Method for producing coated metal fine particles by metal amine complex decomposition method As a metal raw material used for producing coated metal fine particles, a metal that is easily decomposed by heating in a compound containing the metal to generate an atomic metal Compounds are preferably used. Examples of such metal compounds include metal carboxylates such as formic acid, acetic acid, oxalic acid, malonic acid, benzoic acid, phthalic acid and metal carboxylates, metal chlorides, nitrates, carbonates, and the like. Can be mentioned.
  • examples of the silver compound used as a raw material for the coated silver fine particles shown in the following examples include silver chloride, silver nitrate, silver carbonate, and the like, in addition to silver carboxylate in which carboxylic acid and silver are combined.
  • silver oxalate is preferably used from the viewpoints of easily producing metallic silver by decomposition and hardly generating impurities other than silver.
  • a metal compound and an appropriate alkyl amine are mixed and heated to produce a complex compound composed of the metal compound and the alkyl amine, and then an alkyl amine or the like is present.
  • Producing metal fine particles coated with a protective film containing alkylamine by heating the complex compound in the environment, thermally decomposing the metal compound contained in the complex compound, and aggregating the generated atomic metal Can do.
  • the coated metal fine particles may be produced by forming a complex compound of a compound containing an amino group other than alkylamine and a metal compound, and heating the complex compound in an environment where alkylamine or the like is present.
  • Alkylamine molecules and the like are coordinated to the metal atoms generated in the process of decomposing such metalamine complexes, and the movement of the metal atoms during aggregation is controlled by the action of the alkylamine molecules. Presumed to be. As a result, it is possible to produce metal fine particles that are very fine and have a narrow particle size distribution. In addition, many alkylamine molecules also form a relatively weak coordination bond on the surface of the generated metal fine particles, and these form a dense protective film on the surface of the metal fine particles, so they have excellent storage stability. It is possible to produce coated fine metal particles.
  • the alkylamine molecules forming the film can be easily detached by heating or the like, it is possible to produce metal fine particles that can be sintered at a very low temperature.
  • the reaction medium for thermal decomposition of the complex compound By the presence of the component, the component can be added to the protective film of the generated coated metal fine particles.
  • Alkylamine that can be used in the metal amine complex decomposition method is capable of forming a coordinate bond via an amino group to the metal atom in the metal compound and the surface of the metal fine particles generated by the metal amine complex decomposition method.
  • an alkyl group RNH 2 (R is a hydrocarbon chain) in which the amino group contained in the amine moiety is a primary amino group or an alkylamine R 1 R 2 NH (R 1 and R 2 are hydrocarbons) that is a secondary amino group
  • the chains may be the same or different).
  • a complex bond between the amine moiety and the metal compound can be formed by generating a coordinate bond to the metal atom by the unshared electron pair of the nitrogen atom in the amino group, Thereby, an alkylamine film can be formed on the metal fine particles.
  • a tertiary amino group when included, the free space around the nitrogen atom in the amino group is generally narrow, which is undesirable in that a coordination bond to a metal atom is difficult to occur.
  • alkylamines and the like generally, as the molecular weight of the alkyl group increases and the chain becomes longer, the vapor pressure decreases and the boiling point tends to increase. On the other hand, when the alkyl group has a small molecular weight and a short chain, the vapor pressure is high and the polarity tends to be strong. In addition, alkyldiamines having two amino groups in one molecule tend to be more polar than alkylmonoamines having one amino group in one molecule.
  • the alkylamines used in the metal amine complex decomposition method focus on such a tendency, and in particular, classify them based on the molecular weight and the number of amino groups such as alkylamines, and mix multiple types of alkylamines according to the purpose. And preferably used as an alkylamine mixture.
  • those having 2 to 5 carbon atoms contained in an alkyl group such as alkylamine are short chain, those having 6 to 12 carbon atoms are medium chains, and those having 13 or more carbon atoms are long chains. They are defined and distinguished from each other.
  • the amine mixture used is one amino group for the long chain and / or medium chain alkyl group. Those containing a long-chain / medium-chain alkyl monoamine formed by bonding groups are preferably used. Long chain and medium chain alkyl monoamines generally have a low vapor pressure and are unlikely to evaporate, and have high affinity with organic solvents. Therefore, coated metal fine particles are produced by using an amine mixture containing these components. This coating also contains long-chain / medium-chain alkyl monoamines at a predetermined ratio, so that the storage stability can be improved and the dispersibility in a nonpolar organic solvent can be improved.
  • Examples of such long and medium chain alkyl monoamines include dipropylamine (107 ° C), dibutylamine (159 ° C), hexylamine (131 ° C), cyclohexylamine (134 ° C), heptylamine (155 ° C).
  • a short-chain alkyl monoamine can be contained in the amine mixture in a predetermined ratio with respect to the long-chain / medium-chain alkyl monoamine.
  • the rate of forming a complex compound with the metal compound tends to decrease.
  • a long-chain alkyl monoamine having about 18 carbon atoms is used, It is also observed that the formation of complex compounds is not completed by prolonged mixing.
  • the complex compound formed in the presence of the short-chain alkyl monoamine tends to cause decomposition of the metal compound contained in the complex compound at a lower temperature in the subsequent thermal decomposition step.
  • the temperature required for sintering generally tends to decrease.
  • the effect obtained by mixing the short-chain alkyl monoamine as described above into the amine mixture can be sufficiently obtained if the number of carbon atoms is 5 or less.
  • monoamine By using monoamine, the production rate of the complex compound can be improved.
  • alkyl monoamines having a small number of carbon atoms and a high vapor pressure tend to increase the amount of evaporation at the time of decomposition of the metal compound or to decrease the storage stability of the produced coated metal fine particles.
  • alkyl monoamines having about 3 to 4 carbon atoms are preferably used, and these can be mainly used as short-chain alkyl monoamines.
  • Short chain alkyl monoamines can be used by mixing a plurality of types as required.
  • Examples of the short-chain alkyl monoamine include amylamine (boiling point 104 ° C.), 2-ethoxyethylamine (105 ° C.), 4-methoxybutylamine, diisopropylamine (84 ° C.) butylamine (78 ° C.), diethylamine (55 ° C.), propylamine (48 ° C.), isopropylamine (34 ° C.), ethylamine (17 ° C.), dimethylamine (7 ° C.) and the like are industrially available and are desirably used.
  • the content of the short-chain alkyl monoamine in the amine mixture varies depending on the type of alkyl amine used, but is generally 10 to 80 mol% with respect to the total alkyl amine, so that the complex of the alkyl amine and the metal compound is achieved. Formation of the compound can be facilitated. In particular, when the amount is 25 mol% or more, the complex compound can be produced sufficiently smoothly, and complex compounds using various long- and medium-chain alkylamines can be produced. On the other hand, if the content of the short-chain alkyl monoamine in the amine mixture is 65 mol% or more, the coated metal fine particles produced are unstable, and this is not desirable because long-term storage becomes difficult.
  • the content of the short-chain alkyl monoamine is 80 mol% or more
  • metal fine particles are generated by thermal decomposition of the complex compound, the aggregation of metal atoms is not well controlled and coarse particles are generated.
  • the produced coated metal fine particles can be stably held for several months in an appropriate organic solvent. .
  • a fatty acid such as oleic acid may be mixed with the amine mixture as a dispersant for improving the dispersibility of the generated coated metal fine particles in the dispersion medium.
  • a metal compound that decomposes by heating to produce an atomic metal an alkyl monoamine having a boiling point of 100 ° C. to 250 ° C., and an alkyl diamine having a boiling point of 100 ° C. to 250 ° C.
  • a complex compound containing the metal compound and the alkyl monoamine and alkyl diamine and then using the coated metal fine particles obtained by heating the complex compound to thermally decompose the metal compound. it can.
  • the alkyl monoamine is not particularly limited in its structure, but it reacts with a metal compound to form the complex compound, so that it is a primary amino group RNH 2 (R is a hydrocarbon chain) or a secondary amino group.
  • R 1 R 2 NH is desirable (R 1 and R 2 may be the same or different in the hydrocarbon chain).
  • the alkyl monoamine has a boiling point of 100 ° C. or higher in consideration of the thermal decomposition temperature of the complex compound, and a boiling point of 250 ° C. or lower in consideration of the low-temperature sinterability of the obtained coated metal fine particles. It is considered that.
  • 2-ethoxyethylamine (105 ° C), dipropylamine (107 ° C), dibutylamine (159 ° C), hexylamine (131 ° C), cyclohexylamine (134 ° C), heptylamine (155 ° C), 3-butoxy Propylamine (170 ° C), octylamine (176 ° C), nonylamine (201 ° C), decylamine (217 ° C), 3-aminopropyltriethoxysilane (217 ° C), dodecylamine (248 ° C) and the like. It is not limited to these.
  • the alkyl diamine has a boiling point of 100 ° C. or higher in consideration of the thermal decomposition temperature of the complex compound, and has a boiling point of 250 ° C. or lower in consideration of the low-temperature sinterability of the obtained coated metal fine particles. It is considered.
  • ethylenediamine (118 ° C), N, N-dimethylethylenediamine (105 ° C), N, N'-dimethylethylenediamine (119 ° C), N, N-diethylethylenediamine (146 ° C), N, N'-diethylethylenediamine ( 153 ° C.), 1,3-propanediamine (140 ° C.), 2,2-dimethyl-1,3-propanediamine (153 ° C.), N, N-dimethyl-1,3-diaminopropane (136 ° C.), N , N′-dimethyl-1,3-diaminopropane (145 ° C.), N, N-diethyl-1,3-diaminopropane (171 ° C.), 1,4-diaminobutane (159 ° C.), 1,5-diamino -2-methylpentane (193 ° C), 1,6-diaminohexane (
  • the total amount of alkyl monoamine having 5 or less carbon atoms and alkyldiamine having a boiling point of 100 ° C. to 250 ° C. contained in the protective molecule of the coated metal fine particle is alkyl
  • examples thereof include coated metal fine particles that are at least 20 mol%, preferably at least 30 mol% of the total amount of amine.
  • the coated metal fine particles produced as described above can be stably dispersed at a high concentration in an appropriate organic solvent such as an alcohol solvent such as butanol, a nonpolar solvent such as octane, or a mixed solvent thereof. It can be used as an ink by being dispersed in an organic solvent according to the purpose.
  • an organic solvent that does not cause detachment of alkylamine or the like contained in the protective film of the coated metal fine particles and evaporates relatively quickly when the dispersion is applied is preferably used.
  • Substrate for forming a film containing coated fine metal particles, and method for forming the film are not particularly limited, but for example, from thermoplastic resin, thermosetting resin, glass, paper, metal, silicon, ceramics, etc. Can be used.
  • thermoplastic resin examples include polyethylene, polyethylene terephthalate, polypropylene, polyvinyl chloride, polystyrene, acrylonitrile-butadiene-styrene copolymer resin, acrylonitrile-styrene copolymer resin, polycarbonate, polyacetal, polybutylene terephthalate, polyphenylene oxide, polyamide, Polyphenylene sulfide, polysulfone, polyethersulfone, polyether-etherketone, polyarylate, aromatic polyester, aromatic polyamide, fluororesin, polyvinylidene chloride, polyvinyl alcohol, polyvinyl acetate, polyvinyl formal, polyvinyl butyral, polymethyl methacrylate And cellulose acetate.
  • thermosetting resin examples include phenol resin, urea resin, xylene resin, urea resin, melamine resin, epoxy resin, silicon resin, diallyl phthalate resin, furan resin, aniline resin, acetone-formaldehyde resin, alkyd resin, and the like.
  • the ceramic means inorganic compounds such as oxides, carbides, nitrides, borides and the like. For example, alumina (Al 2 O 3 ), silicon nitride (SiN), silicon carbide (SiC), aluminum nitride (AlN) ), Zirconium boride (ZrB 2 ), and the like.
  • the process of forming a predetermined film or the like on the substrate using ink containing coated metal fine particles is not particularly limited as long as it can form a film with a desired thickness, and general spin coating, spray coating, etc. Can be used.
  • the process of forming a pattern serving as a wiring precursor on the substrate by using a film containing coated fine metal particles can use various conventional printing methods such as a screen printing method, an ink jet printing method, and an intaglio plate. Printing, letterpress printing, lithographic printing, and the like can be used.
  • the use of the metal film obtained by making the film containing the coated metal fine particles into a conductor is not limited to electrical wiring, and can be used for mirror surfaces for optical devices, various decorations, and the like.
  • the thickness of the film formed on the substrate with the ink containing the coated metal fine particles can be appropriately set according to the purpose of the metal film obtained by making the conductor. If it is a normal electric wiring etc., a favorable characteristic can be acquired by forming a film
  • the present invention provides a wiring board including a step of applying metal fine particles coated with a protective film containing an alkylamine on a substrate, and a step of converting the coated metal fine particles into a conductor by the above method.
  • the feature of the production method of the present invention is that when the metal fine particles covered with the protective film containing the alkylamine are used, the conductorization method described above is used. Accordingly, the substrate on which the coated metal fine particles are applied and the method for applying the same are not particularly limited. However, based on the characteristics of the present invention that enables a conductor to be formed at a low temperature, such as PET and polypropylene, which are easy to process and inexpensive.
  • Wiring to the organic polymer substrate can be performed using the inkjet printing method.
  • the method for making a conductor according to the present invention can be used for forming a wiring for supplying power to various semiconductor materials provided on a substrate.
  • the method for forming a conductor according to the present invention is particularly useful in the formation of wiring that feeds power to materials that are difficult to be heated to high temperatures, such as organic EL materials and organic semiconductor materials.
  • a mixed solvent of n-octane and n-butanol (volume ratio 4: 1 v / v) was added and stirred to obtain a dispersion 1 in which 50% by weight of coated silver fine particles were well dispersed.
  • the obtained mixed liquid was transferred to an aluminum block type heating stirrer and heated and stirred at a temperature setting of 100 to 110 ° C. Suspension in which coated silver fine particles exhibiting a blue luster are suspended in the amine mixture by stirring until carbon dioxide generation is completed immediately after the start of stirring and then stirring until carbon dioxide generation is completed. A liquid was obtained.
  • Test Example 1 Using the coated silver fine particle dispersion 1 prepared in Preparation Example 1, a film containing the coated silver fine particles was formed on a PET substrate by spin coating so that the film thickness after the formation of the conductor was about 500 nm.
  • the substrate on which the film was formed was quickly placed in a constant temperature oven set at 40 ° C. in a forced air dryer (Yamato DK240S or DKM300), and the electrical resistance after one hour (four probe method, Kyowa Riken K- 705RS) was measured (Comparative Example 1).
  • the relative humidity in the thermostatic chamber at this time was 11% (temperature / humidity / anemometer sensor (A1-SDI Status V2, manufactured by ASONE CORPORATION)).
  • a film containing coated silver fine particles was formed on a PET substrate by spin coating in the same manner as described above except that the dispersion 2 of coated silver fine particles prepared in Preparation Example 2 was used.
  • the substrate on which the film was formed was quickly placed in a thermostatic oven set at 80 ° C. in a forced air dryer, and the electrical resistance after 1 hour was measured in the same manner (Comparative Example 2). At this time, the relative humidity in the thermostatic chamber was 2.7%.
  • Table 1 shows the electrical resistance values of the films that were made conductive under the respective conditions. In Table 1, values obtained by converting each relative humidity into a volumetric absolute humidity are also shown.
  • This test example is an example in which the atmosphere in the laboratory heated to a substantially predetermined temperature is brought into contact with a film containing coated silver fine particles, and is made into a conductor. Compared with the examples described below, Even when conducting at 1 ° C. for 1 hour, the volume resistivity could not be lowered sufficiently, and it was inferred that the alkylamine contained in the protective film of the coated silver fine particles remained inside the film.
  • Test Example 2 In the same manner as in Test Example 1, a film was formed using Dispersion 1, and the substrate was quickly placed in a constant temperature and humidity chamber (ESPEC environmental tester, SH-221) that was kept under predetermined conditions for 1 hour. Changes in resistance (four probe method) were measured. The temperature and humidity conditions were constant at 40 ° C., and the relative humidity was 38% (Example 1), 50% (Example 2), 60% (Example 3) and 80% (Example 4), respectively. It was. Table 1 also shows the electrical resistance values of the films that have been made conductive under the respective conditions. Moreover, the time-dependent change of the electrical resistance value during conductorization in Examples 1, 3, and 4 is shown in FIG. As can be seen from Table 1 and FIG.
  • thermo-hygrostat The temperature in the thermo-hygrostat is constant at 50 ° C., relative humidity 35% (Example 5), relative humidity 50% (Example 6), relative humidity 60% (Example 7), and relative humidity 70% (Example) 8) and a relative humidity of 80% (Example 9) except that the electrical resistance was measured in the same manner as in Test Example 1 except that the film of the dispersion liquid 1 provided on the PET substrate was made conductive. .
  • Table 1 also shows the electrical resistance values of the films made into conductors for 1 hour under the respective conditions.
  • FIG. 2 shows the change over time of the electrical resistance value during the conductorization in Examples 5 to 9. In any relative humidity, the volume resistivity becomes 10 ⁇ 4 ⁇ cm or less within 1 hour, and the volume resistivity decreases particularly when contacted with a high proportion of water vapor, and the elimination of alkylamine is promoted. Conceivable.
  • Test Example 4 Test example, except that the temperature in the constant temperature and humidity chamber was fixed at 70 ° C. and the relative humidity was set to 30% (Example 10), relative humidity 40% (Example 11), and relative humidity 50% (Example 12).
  • the film of the dispersion 1 provided on the PET substrate was subjected to a conductor treatment, and the electrical resistance was measured.
  • Table 1 also shows the electrical resistance values of the films made into conductors for 30 minutes under the respective conditions.
  • FIG. 3 shows the change over time of the electrical resistance value during the conductorization in Examples 10 to 12.
  • the volume resistivity becomes 10 ⁇ 4 ⁇ cm or less in a short time of about 1 minute from the start of the conductorization treatment, and the decrease in volume resistivity tends to be large due to the conductorization at high humidity, It was speculated that the elimination of the alkylamine contained in the protective film of the coated silver fine particles occurs in a very short time.
  • Test Example 5 On the PET substrate in the same manner as in Test Example 1, except that the relative humidity in the constant temperature and humidity chamber was fixed at 50% and the temperature was set to 60 ° C. (Example 13) and 80 ° C. (Example 14). Conductive treatment was performed on the membrane of Dispersion 1 provided on the substrate, and the electrical resistance was measured. Table 1 also shows the electrical resistance values of the films made into conductors for 30 minutes under the respective conditions. In addition, FIG. 4 shows the change over time in the electrical resistance value during conductorization in Examples 13 and 14.
  • Example 6 Using the coated silver fine particle dispersion 2 prepared in Preparation Example 2, a film containing the coated silver fine particles was formed on the PET substrate by spin coating in the same manner as described above. The substrate on which the film was formed was quickly placed in a thermostatic oven set at 120 ° C. in a forced air dryer, and the electrical resistivity after 30 minutes was measured in the same manner (Example 15). At this time, the vicinity of the air inlet of the forced air dryer was humidified, and the relative humidity in the thermostatic bath was 3.3%. Table 1 also shows the electrical resistance value of the film made conductive in Example 15. The volumetric absolute humidity in the thermostatic chamber in Example 15 was converted to 36.7 g / m 3, and a silver thin film having an extremely low volume resistivity of 11 ⁇ cm, which is close to the resistance value of ideal metallic silver, was obtained.
  • Table 1 also shows the electrical resistance values of the films made conductive in Example 16.
  • Example 16 an extremely low volume resistivity of about 10 ⁇ cm was measured even though the substantial conductorization treatment at 80 ° C. was performed under the same conditions as in Comparative Example 2. This is because water molecules are adsorbed on the film containing the coated silver fine particles by contact with air of relatively high humidity in advance at 20 ° C., and the alkyl contained in the protective film of the coated silver fine particles by the water molecules. It was assumed that the elimination of amines was promoted.
  • FIG. 5 shows the result of observing the cross section of the film after making it a conductor under the same conditions as in Example 12 using a thermal field emission scanning electron microscope (JEOL JSM-7600F). It can be seen that a dense film is formed with a film thickness of about 500 nm. In addition, the surface of the film forms a very smooth mirror surface, which is expected to be used as a mirror surface for various optical applications.
  • JEOL JSM-7600F thermal field emission scanning electron microscope

Abstract

The purpose of the present invention is to provide a means with which the sintering temperature and time required to induce conductivity in a variety of metal microparticles can be reduced. This method for inducing conductivity includes a step in which a gas having a water-vapour content of at least 14g/m3 is brought into contact with at least one section of a film including coated metal microparticles which have been provided on a substrate and coated with a protective film including alkylamine.

Description

金属微粒子を含む膜の導体化方法Method for converting a film containing fine metal particles into a conductor
 本発明は、金属微粒子を含む膜の導体化方法、及びその方法を用いて基体上に導電性の膜を形成する方法に関する。 The present invention relates to a method for forming a conductive film containing metal fine particles and a method for forming a conductive film on a substrate using the method.
 近年、電子機器の多くが小型化及び軽量化されることに伴い、プリント配線板についてもこれに対応する様々な工夫、改善がなされている。例えば、フレキシブルプリント配線基板としてすでに使用されるポリイミドのみならず、ポリイミドより耐熱性が低いPET(ポリエチレンテレフタレート)やポリプロピレンなどの、加工性が容易な各種の有機高分子基板に対しても微細な電子回路形成を可能とする技術が必要とされている。つまり、従来用いられているスパッタリングやメッキにより金属層を設けて、各種のエッチングにより回路を形成する方法を有機高分子基板に対して適用することは困難であり、有機高分子基板に対して低温環境で容易に微細な電子回路をなす金属被膜の形成を可能とする技術が必要とされている。その他、従来、樹脂等の表面に金属層を形成する方法は、真空環境を必要とするスパッタリングや、有毒な薬品を使用するメッキなどに限定され、手軽に基体の表面に金属層を形成させることは困難であった。 In recent years, with the reduction in size and weight of many electronic devices, various ingenuity and improvements have been made for printed wiring boards. For example, not only polyimide that is already used as a flexible printed circuit board, but also fine electronic materials for various organic polymer substrates that are easier to process, such as PET (polyethylene terephthalate) and polypropylene, which have lower heat resistance than polyimide. There is a need for a technique that enables circuit formation. In other words, it is difficult to apply a method of forming a circuit by various etchings by providing a metal layer by sputtering or plating, which has been conventionally used, and it is difficult to apply a low temperature to the organic polymer substrate. There is a need for a technique that enables the formation of a metal film that easily forms a fine electronic circuit in the environment. In addition, the conventional method for forming a metal layer on the surface of a resin or the like is limited to sputtering that requires a vacuum environment or plating using a toxic chemical, and the metal layer is easily formed on the surface of the substrate. Was difficult.
 これに対して、ナノメートルサイズの金属微粒子を含むインクを基体表面に塗布して、金属微粒子を比較的低温で焼結等させることにより、基体表面に容易に金属層を設けることが可能になりつつある。この技術を応用して、有機高分子基板等に対して微細な電子回路を形成する手段として、ナノメートルサイズの金属微粒子を含むインクを用いて各種の印刷法により基板上に回路を描画し、その後に金属微粒子を低温で焼結等することにより導電性を発揮させて電子回路を形成することが期待されている。 In contrast, by applying ink containing nanometer-sized metal fine particles to the substrate surface and sintering the metal fine particles at a relatively low temperature, a metal layer can be easily provided on the substrate surface. It's getting on. By applying this technology, as a means of forming a fine electronic circuit on an organic polymer substrate or the like, a circuit is drawn on the substrate by various printing methods using ink containing nanometer-sized metal fine particles, Thereafter, it is expected to form an electronic circuit by exhibiting electrical conductivity by sintering metal fine particles at a low temperature.
 このような金属微粒子を含むインクとして、例えば、分散媒への分散性に優れ、フレキシブルプリント基板上で低温焼結により良好な導電性を発現するナノメートルサイズの被覆金属微粒子を含むインクとして、水と各種アルコールからなる分散媒に銀コロイドが分散した金属インク(例えば、特許文献1参照)や、複数のアルキルアミンを組み合わせてシュウ酸銀等に被着させて錯化合物を形成させた後、生成した錯化合物を加熱、熱分解して得られる粒径のそろった被覆銀超微粒子を適宜の分散媒に分散させたインクが報告されている(例えば、特許文献2参照)。 As an ink containing such metal fine particles, for example, as an ink containing nanometer-sized coated metal fine particles that are excellent in dispersibility in a dispersion medium and exhibit good conductivity by low-temperature sintering on a flexible printed circuit board, A metal ink in which colloidal silver is dispersed in a dispersion medium composed of alcohol and various alcohols (see, for example, Patent Document 1) or a combination of a plurality of alkylamines and deposited on silver oxalate or the like to form a complex compound. There has been reported an ink in which coated silver ultrafine particles having a uniform particle diameter obtained by heating and pyrolyzing the complex compound are dispersed in an appropriate dispersion medium (see, for example, Patent Document 2).
 特許文献1、2に記載される銀微粒子が、銀の融点よりもはるかに低い温度で焼結して金属被膜を形成する理由は、そのような銀微粒子が非常に大きな比表面積を有しているために、その表面張力により表面積を小さくしようとする力が働くためと考えられる。このため、低温焼結を行おうする場合には、銀微粒子の平均粒径をなるべく小さくすることで、大きな比表面積を与えることが必要となる。しかしながら、単に平均粒径の小さな銀微粒子を製造しようとすると、その製造過程において銀微粒子の有する表面張力により粒子が凝集(焼結)し、結果的にそれ以上の低温焼結を生じない粗大な粒子しか得ることができないという問題を生じる。 The reason why the silver fine particles described in Patent Documents 1 and 2 are sintered at a temperature much lower than the melting point of silver to form a metal film is because such silver fine particles have a very large specific surface area. Therefore, it is considered that a force to reduce the surface area works due to the surface tension. For this reason, when performing low temperature sintering, it is necessary to give a large specific surface area by reducing the average particle diameter of the silver fine particles as much as possible. However, when trying to produce silver fine particles having a small average particle diameter, the particles are agglomerated (sintered) by the surface tension of the silver fine particles in the production process, resulting in coarse particles that do not cause further low-temperature sintering. The problem arises that only particles can be obtained.
 このような問題を解消して微細な銀微粒子を安定して製造し、また製造した銀微粒子の保存性を高めるために、特許文献2に記載の銀微粒子においては、銀微粒子の表面にアルキルアミン分子を含む被膜を設けると共に、当該アルキルアミンの種類を最適化することにより、銀の焼結温度としては極めて低温である室温付近で焼結可能であるとともに、有機溶媒中に高濃度で安定的に分散可能であり、各種用途において非常に有用な被覆銀微粒子の製造方法が提案されている。 In order to eliminate such problems and stably produce fine silver fine particles, and to improve the storage stability of the produced silver fine particles, the silver fine particles described in Patent Document 2 have an alkylamine on the surface of the silver fine particles. By providing a film containing molecules and optimizing the type of the alkylamine, it can be sintered at room temperature, which is extremely low as the sintering temperature of silver, and is stable at a high concentration in an organic solvent. There has been proposed a method for producing coated silver fine particles that can be dispersed in a wide range and is very useful in various applications.
 一方、製造された金属ナノ粒子をより低温で焼結させるための手段として、被覆された金属ナノ粒子と分散溶媒とを含む金属ナノ粒子ペーストを基板上に塗布し、極性溶媒又は溶解補助剤を含む極性溶媒溶液を作用させることにより、温度に関わらず実施可能な、保存安定性に優れた被覆金属微粒子の焼結方法も提案されている(特許文献3参照)。また、ポリアクリル酸のナトリウム塩で安定化された銀ナノ粒子を、短時間、塩化水素(HCl)ガスに暴露することによって室温焼結可能な、自己組織化銀ナノ粒子も報告されている(例えば、非特許文献1参照)。 On the other hand, as a means for sintering the produced metal nanoparticles at a lower temperature, a metal nanoparticle paste containing the coated metal nanoparticles and a dispersion solvent is applied on a substrate, and a polar solvent or a dissolution aid is applied. There has also been proposed a method for sintering coated metal fine particles having excellent storage stability, which can be carried out regardless of temperature by allowing a polar solvent solution to be contained (see Patent Document 3). Self-assembled silver nanoparticles have also been reported that can be sintered at room temperature by exposing silver nanoparticles stabilized with sodium salt of polyacrylic acid to hydrogen chloride (HCl) gas for a short time ( For example, refer nonpatent literature 1).
特開2008-214591号公報Japanese Patent Laid-Open No. 2008-214591 特開2010-265543号公報JP 2010-265543 A 特許2008-72052号公報Japanese Patent No. 2008-72052
 非特許文献1に記載の銀ナノ粒子は、室温焼結が可能となるように設計されているが、塩化水素(HCl)ガスという腐食性・酸性ガスを用いる点で、プロセス上の問題が残る。特許文献3に記載の方法は、確かに室温での焼結が可能であるが、基板を極性溶媒溶液に浸漬処理する工程が必要となり、また、これらの処理に用いた極性溶媒の廃棄処理も必要となるという問題点がある。一方、特許文献2に記載の方法は、金属微粒子の低温焼結に新たな可能性を提案するものであるが、その低温焼結性は金属微粒子自体の特性に依存するものであり、焼結工程の改善による導体化処理の低温化の方法については明らかにされていない。そこで、本発明の課題は、種々の金属微粒子について、導体化のための焼結温度を低温化し、短時間化するための手段を提供することにある。 The silver nanoparticles described in Non-Patent Document 1 are designed so that they can be sintered at room temperature, but there remains a problem in terms of using a corrosive / acid gas called hydrogen chloride (HCl) gas. . Although the method described in Patent Document 3 can surely be sintered at room temperature, it requires a step of immersing the substrate in a polar solvent solution, and the disposal of the polar solvent used in these treatments is also necessary. There is a problem that it is necessary. On the other hand, the method described in Patent Document 2 proposes a new possibility for low-temperature sintering of metal fine particles, but the low-temperature sinterability depends on the characteristics of the metal fine particles themselves, A method for reducing the temperature of the conductor treatment by improving the process is not disclosed. Accordingly, an object of the present invention is to provide means for reducing the sintering temperature for various metal fine particles and reducing the time.
 本発明者らは、上記課題を解決するために金属微粒子の導体化方法について鋭意検討した結果、アルキルアミンを含む保護膜により被覆された被覆金属微粒子を基体上で導体化させる際に、基体上に設けられた被覆金属微粒子を含む膜を、ある程度の水蒸気を含む気体と接触させることで、その後の導体化が促進されることを見出した。 In order to solve the above-mentioned problems, the present inventors have intensively studied a method for making metal fine particles into a conductor. As a result, when the coated metal fine particles coated with a protective film containing an alkylamine are made conductive on the substrate, It was found that the subsequent conductorization is promoted by bringing the film containing the coated metal fine particles provided in the plate into contact with a gas containing a certain amount of water vapor.
 すなわち、本発明の第一の視点において、基体上に設けられた、アルキルアミンを含む保護膜により被覆された被覆金属微粒子を含む膜を導体化する方法は、当該膜の少なくても一部に14g/m以上の水蒸気を含有する気体を接触させる工程を含むことを特徴とする。 That is, in the first aspect of the present invention, a method for converting a film containing coated metal fine particles, which is provided on a substrate and covered with a protective film containing alkylamine, into a conductor is at least part of the film. It includes a step of contacting a gas containing water vapor of 14 g / m 3 or more.
 本発明の1つの実施形態において、前記の14g/m以上の水蒸気を含有する気体を接触させる工程の少なくても一部において、20g/m以上の水蒸気を含有する気体を当該膜に接触させることを特徴とする。 In one embodiment of the present invention, in at least a part of the step of contacting a gas containing said 14 g / m 3 or more steam, contacting a gas containing 20 g / m 3 or more steam to the film It is characterized by making it.
 本発明の1つの好ましい実施形態において、前記膜の少なくても一部に14g/m以上の水蒸気を含有する気体を接触させる工程は、前記基体上に設けられたアルキルアミンを含む保護膜により被覆された被覆金属微粒子を含む膜を導体化する方法の略全般において行われることを特徴とする。 In one preferred embodiment of the present invention, the step of bringing at least a part of the film into contact with a gas containing water vapor of 14 g / m 3 or more is performed by a protective film including an alkylamine provided on the substrate. It is characterized in that it is carried out in almost the whole method for converting a film containing coated fine metal particles into a conductor.
 本発明のさらに好ましい実施形態において、前記アルキルアミンを含む保護膜により被覆された被覆金属微粒子は、金属化合物を含む錯化合物をアルキルアミンの存在下で熱分解することで製造されたものであることを特徴とする。 In a further preferred embodiment of the present invention, the coated metal fine particles coated with the protective film containing an alkylamine are produced by thermally decomposing a complex compound containing a metal compound in the presence of an alkylamine. It is characterized by.
 本発明の異なる視点において、上記の導体化方法を実施することによって得られる導体膜を有する基体が提供される。
 したがって、本発明の具体的な実施形態において、(a)基体上に、アルキルアミンを含む保護膜により被覆された被覆金属微粒子を含む膜を形成する工程、および(b)前記被覆金属微粒子を含む膜の少なくとも一部と、14g/m以上の水蒸気を含有する気体と、を接触させる工程、を含む被覆金属微粒子を含む膜の導体化方法が提供される。前記工程(b)の少なくとも一部において、又は前記工程(b)に加えて、前記被覆金属微粒子を含む膜を所定の温度に維持する工程を含むことが好ましい。前記所定の温度は、40℃~100℃とすることがさらに好ましい。
In the different viewpoint of this invention, the base | substrate which has a conductor film obtained by implementing said conductorization method is provided.
Therefore, in a specific embodiment of the present invention, (a) forming a film containing coated metal fine particles coated with a protective film containing alkylamine on a substrate, and (b) including the coated metal fine particles. There is provided a method for making a film including a coated metal fine particle comprising a step of bringing at least a part of the film into contact with a gas containing 14 g / m 3 or more of water vapor. It is preferable that at least a part of the step (b) or in addition to the step (b) includes a step of maintaining the film containing the coated metal fine particles at a predetermined temperature. The predetermined temperature is more preferably 40 ° C. to 100 ° C.
 本発明によれば、被覆金属微粒子を含む膜の導体化方法において、所定の水分量を有する気相に暴露することにより、より低温かつ短時間で高い導電性を発揮させることが可能となり、金属微粒子を用いた金属被膜の形成において有用である。すなわち、40℃程度の室温に近い温度でも実質的に導電性を有する金属被膜の形成が可能となり、例えば、配線基板等の材質に限定されず、耐熱性の低い基板を用いた種々のプリント配線等の提供に貢献するものである。 According to the present invention, in a method for forming a film containing coated metal fine particles, exposure to a gas phase having a predetermined moisture content makes it possible to exhibit high conductivity at a lower temperature and in a shorter time. This is useful in forming a metal film using fine particles. That is, it is possible to form a substantially conductive metal film even at a temperature close to room temperature of about 40 ° C., for example, various printed wirings using a substrate having low heat resistance without being limited to a material such as a wiring substrate. It contributes to offer.
調製例1で製造した分散液1を塗布した基板を、相対湿度38%、60%又は80%の異なる湿度条件下、40℃の恒温恒湿器内で導体化する過程での体積抵抗率をプロットした結果である。Volume resistivity in the process of conducting the substrate coated with the dispersion 1 produced in Preparation Example 1 in a constant temperature and humidity chamber at 40 ° C. under different humidity conditions of 38%, 60% or 80% relative humidity. It is the result of plotting. 調製例1で製造した分散液1を塗布した基板を、相対湿度35%、50%、60%、70%又は80%の異なる湿度条件下、50℃の恒温恒湿器内で導体化する過程での体積抵抗率をプロットした結果である。Process for converting the substrate coated with the dispersion 1 produced in Preparation Example 1 into a conductor in a constant temperature and humidity chamber at 50 ° C. under different humidity conditions of 35%, 50%, 60%, 70% or 80% relative humidity. It is the result of having plotted the volume resistivity in. 調製例1で製造した分散液1を塗布した基板を、相対湿度30%、40%又は50%の異なる湿度条件下、70℃の恒温恒湿器内で導体化する過程での体積抵抗率をプロットした結果である。The volume resistivity in the process of conducting the substrate coated with the dispersion 1 produced in Preparation Example 1 in a constant temperature and humidity chamber at 70 ° C. under different humidity conditions of 30%, 40% or 50% relative humidity. It is the result of plotting. 調製例1で製造した分散液1を塗布した基板を、60℃、80℃の異なる温度条件下、相対湿度50%の恒温恒湿器内で導体化する過程での体積抵抗率をプロットした結果である。Results of plotting the volume resistivity in the process of conducting the substrate coated with the dispersion 1 produced in Preparation Example 1 in a constant temperature and humidity chamber with a relative humidity of 50% under different temperature conditions of 60 ° C. and 80 ° C. It is. 調製例1で製造した分散液1をシリコン基板上に塗布し、実施例12の条件で導体化した後の膜の断面像(FE-SEM)である。4 is a cross-sectional image (FE-SEM) of a film after the dispersion 1 produced in Preparation Example 1 is applied on a silicon substrate and made conductive under the conditions of Example 12. FIG. 本発明により導体化が促進される金属微粒子の例(サーマル電界放出走査電子顕微鏡(日本電子JSM-7600F)を用いて観察した透過像(STEM像))である。2 is an example of a metal fine particle (transmission image (STEM image) observed using a thermal field emission scanning electron microscope (JEOL JSM-7600F)) whose conduction is promoted by the present invention.
 以下、本発明について、詳細に説明する。 Hereinafter, the present invention will be described in detail.
(本発明に用いる金属微粒子)
 本発明の方法により導体化される被覆金属微粒子は、典型的には数nm~40nm程度の粒径を有する金属微粒子の表面がアルキルアミンを含む保護膜により被覆されたものである。当該金属微粒子を構成する金属は、本発明を使用する用途等により選択されるものであるが、例えば、銀、銅、金、白金、ロジウム、ニッケル、パラジウム等の金属、又はそれらの合金を用いることが可能であり、又はこれらの2以上の金属がコアシェル構造等をした金属微粒子であってもよい。
(Metal fine particles used in the present invention)
The coated metal fine particles to be converted into a conductor by the method of the present invention are typically those in which the surface of metal fine particles having a particle diameter of about several nm to 40 nm is coated with a protective film containing alkylamine. The metal constituting the metal fine particles is selected depending on the use of the present invention, and for example, a metal such as silver, copper, gold, platinum, rhodium, nickel, palladium, or an alloy thereof is used. These two or more metals may be metal fine particles having a core-shell structure or the like.
 本発明の方法により導体化が容易になる被覆金属微粒子の一例を図6に示す。図6は、特許文献2に記載された方法で製造されたアルキルアミンを含む保護膜により被覆された銀微粒子である。当該被覆銀微粒子においては、銀微粒子の粒径が5から20nm程度であり、その表面が厚さ数nm程度のアルキルアミンを含む保護膜で覆われることで、図6に示すように、各銀微粒子が独立して安定に存在することができる。 FIG. 6 shows an example of coated metal fine particles that can be easily converted into a conductor by the method of the present invention. FIG. 6 shows silver fine particles coated with a protective film containing an alkylamine produced by the method described in Patent Document 2. In the coated silver fine particles, the particle diameter of the silver fine particles is about 5 to 20 nm, and the surface thereof is covered with a protective film containing an alkylamine having a thickness of about several nm. The fine particles can exist independently and stably.
 一方、当該被覆銀微粒子を適宜の温度に加熱することで、保護膜を形成するアルキルアミンが脱離して銀微粒子同士が直接接触することにより導体化を生じ、100℃程度以下の温度においても銀微粒子を構成する銀原子が相互に拡散して融着し、導体化が進展することが確認されている(特許文献2)。この現象は、保護膜を形成するアルキルアミンが、そのアミノ基を介した配位結合により銀微粒子の表面に対して弱く結合しており、アルキルアミンが比較的容易に脱離可能であるためと考えられている。 On the other hand, when the coated silver fine particles are heated to an appropriate temperature, the alkylamine forming the protective film is detached and the silver fine particles are brought into direct contact with each other, thereby forming a conductor. It has been confirmed that silver atoms constituting the fine particles are diffused and fused with each other, and the formation of a conductor progresses (Patent Document 2). This phenomenon is because the alkylamine forming the protective film is weakly bonded to the surface of the silver fine particles by the coordination bond via the amino group, and the alkylamine can be removed relatively easily. It is considered.
 本発明は、図6に示すような表面がアルキルアミンを含む保護膜で被覆された被覆金属微粒子を、インクやペースト等の形態で基体上に塗布して導体化する過程において、所定の量の水蒸気を含む気体に接触させる工程を含むことにより、アルキルアミンの脱離と金属微粒子の接触・焼結を更に促進することで、導体化のために必要となる温度を低温化し、且つ、短時間で導体化を生じさせる技術に係るものである。 In the process of applying a coated metal fine particle whose surface is coated with a protective film containing an alkylamine as shown in FIG. 6 on a substrate in the form of ink or paste, a predetermined amount of the metal fine particle is applied. By including a step of contacting with a gas containing water vapor, further desorption of alkylamine and contact / sintering of metal fine particles can be further promoted to lower the temperature required for conductorization and for a short time. This relates to a technique for producing a conductor.
1 被覆金属微粒子を含む膜を、水蒸気の存在下で導体化する工程
 本発明の方法により導体化される被覆金属微粒子は、典型的には数nm~40nm程度の粒径を有する金属微粒子の表面がアルキルアミンを含む保護膜により被覆されたものであればよく、様々な方法で製造された被覆金属微粒子に対して本発明を適用することができる。例えば、特許文献2に記載されるように、銀化合物とアルキルアミンの錯体を熱分解することで得られるアルキルアミン被覆の銀微粒子であってもよく、また、気相中で金属原子を凝集させて形成した金属微粒子に対してアルキルアミンを含む保護膜を設けたものでもよい。また、液相中で形成された金属微粒子であって、表面が適宜の保護膜で保護された金属微粒子について、その保護膜を適宜の手段でアルキルアミンを含む保護膜に置換したものであってもよい。
1 Step of Conducting a Film Containing Coated Metal Fine Particles in the Presence of Water Vapor The coated metal fine particles made conductive by the method of the present invention typically have a surface of metal fine particles having a particle size of about several nm to 40 nm. May be coated with a protective film containing an alkylamine, and the present invention can be applied to coated metal fine particles produced by various methods. For example, as described in Patent Document 2, alkylamine-coated silver fine particles obtained by thermally decomposing a complex of a silver compound and an alkylamine may be used, and metal atoms may be aggregated in a gas phase. A protective film containing an alkylamine may be provided on the metal fine particles formed in this manner. Further, the metal fine particles formed in the liquid phase, the surface of which is protected with an appropriate protective film, the protective film is replaced with a protective film containing alkylamine by appropriate means. Also good.
 被覆金属微粒子を被覆する保護膜に含まれるアルキルアミン分子は、一般にそのアミノ基が金属微粒子の表面に対して配位結合を形成し、且つ、アルキルアミン分子同士の凝集力により保護膜として安定化するものと考えられる。本発明が適用されるアルキルアミンを含む保護膜により被覆される被覆金属微粒子においては、一般に分散媒として用いる所望の有機溶媒と共存しているときは、保護膜が安定に存在するように設計されることが望ましい。一方、例えば基体上に塗布されてこれらの有機溶媒等が蒸発して除去された後においては、保護膜に含まれるアルキルアミンが脱離し易くなり、適宜の温度でアルキルアミンが脱離を開始するように設計されることが望ましい。保護膜に含まれるアルキルアミンの安定度や脱離の容易さは、例えば特許文献2にも記載されるように、保護膜に含まれるアルキルアミンの分子量や分子構造により主に決定することができる。 Alkylamine molecules contained in the protective film covering the coated metal fine particles generally have a coordination bond with the surface of the metal fine particles, and the amino group is stabilized as a protective film by the cohesive force between the alkylamine molecules. It is thought to do. The coated metal fine particles coated with a protective film containing an alkylamine to which the present invention is applied are generally designed so that the protective film exists stably when coexisting with a desired organic solvent used as a dispersion medium. It is desirable. On the other hand, for example, after the organic solvent or the like is applied to the substrate and evaporated to be removed, the alkylamine contained in the protective film is easily released, and the alkylamine starts to be released at an appropriate temperature. It is desirable to be designed as follows. The stability of the alkylamine contained in the protective film and the ease of desorption can be mainly determined by the molecular weight and molecular structure of the alkylamine contained in the protective film, as described in Patent Document 2, for example. .
 本発明によれば、表面がアルキルアミンを含む保護膜で被覆された被覆金属微粒子を、インクやペースト等の形態で基体上に塗布して導体化する過程において、所定の量の水蒸気を含む気体に接触させることで、当該水蒸気を含む気体への接触を行わない場合に比較して、導体化を生じさせるための温度を低温化させ、また導体化の進行を促進することができる。所定の量の水蒸気を含む気相に接触することで、被覆金属微粒子を含む膜の導体化がより低温で生じる理由は必ずしも明らかでないが、所定の量の水蒸気を含む気体に被覆金属微粒子を含む膜を接触させることで、水分子が被覆金属微粒子の保護膜に吸着、ないしは取り込まれる等することにより、アルキルアミン分子の脱離を促進するためと考えられる。このため、本発明により導体化させる被覆金属微粒子においては、その保護膜においてアルキルアミンが主成分とされることが望ましく、概ね70重量%以上がアルキルアミンからなる保護膜であれば、本発明に係る導体化方法により効果的に導体化が行えるものと推察される。
 なお、本発明における「導体化」とは、実質的に不導体である被覆金属微粒子を含む膜の電気抵抗を概ね1Ωcm程度以下に低下して電気伝導性を生じることを意味し、また一旦生じた電気伝導性を向上させることを含むものとする。
According to the present invention, a gas containing a predetermined amount of water vapor is applied in the process of applying a coated metal fine particle whose surface is coated with a protective film containing an alkylamine on a substrate in the form of an ink or a paste. By making it contact, compared with the case where it does not contact the gas containing the said water vapor | steam, the temperature for producing conductorization can be made low temperature, and progress of conductorization can be accelerated | stimulated. Although it is not always clear why a film containing coated metal fine particles is made conductive at a lower temperature by contacting a gas phase containing a predetermined amount of water vapor, the gas containing the predetermined amount of water vapor contains coated metal fine particles. It is thought that by bringing the membrane into contact, water molecules are adsorbed or taken into the protective film of the coated metal fine particles, thereby promoting desorption of alkylamine molecules. For this reason, in the coated metal fine particles to be conductorized according to the present invention, it is desirable that alkylamine is a main component in the protective film. It is presumed that conductorization can be effectively performed by such a conductorization method.
The term “conducting” in the present invention means that the electrical resistance of the film containing the coated metal fine particles which are substantially non-conductive is lowered to about 1 Ωcm or less to produce electrical conductivity, and once occurs. Including improving electrical conductivity.
 ここで、「水蒸気を含む気体と接触させる」とは、被覆金属微粒子が塗布された基体表面近傍に、水蒸気を含む気体(ガス)を存在させることを意味し、水蒸気を含む気体を流して気体中に含まれる水分子と強制的に接触させることを含む。あるいは当該基体を所定の湿度環境(大気圧下、又は加圧下のいずれでもよい)に保持して、被覆金属微粒子を水蒸気に接触させてもよい。所定の量の水蒸気を含む気体と被覆金属微粒子を含む膜等を接触させる際の温度は、例えば、十分に低温であって、所定の量の水分を含む気体と接触を行っている間に実質的な導体化を生じない温度であってもよく、一方、比較的高温で、所定の量の水分を含む気体と接触を行っている間に実質的に導体化を生じる温度であってもよい。更に、被覆金属微粒子を含む膜を加熱して、その温度を変化させる過程であってもよい。 Here, “contact with a gas containing water vapor” means that a gas (gas) containing water vapor is present in the vicinity of the surface of the substrate on which the coated metal fine particles are applied. Including forced contact with water molecules contained therein. Alternatively, the substrate may be held in a predetermined humidity environment (either atmospheric pressure or pressurized), and the coated metal fine particles may be brought into contact with water vapor. The temperature at which the gas containing the predetermined amount of water vapor is brought into contact with the film containing the coated metal fine particles is, for example, sufficiently low and substantially during the contact with the gas containing the predetermined amount of water. It may be a temperature that does not cause conductive formation on the other hand, while it may be a temperature that causes substantial conduction while being in contact with a gas containing a predetermined amount of moisture at a relatively high temperature. . Further, it may be a process in which the film containing the coated metal fine particles is heated to change its temperature.
 つまり、比較的高温に被覆金属微粒子を含む膜を晒すことで自発的な導体化を行う工程において、導体化させる被覆金属微粒子を含む膜の表面に所定の量の水蒸気を含む気体を接触させることによっても導体化を促進することができる。また、導体化を行う工程の前工程として、導体化させる被覆金属微粒子を含む膜の表面に比較的低温で所定の量の水蒸気を含む気体を接触させた後に、加熱を行って導体化の工程を行ってもよい。さらに、導体化させる被覆金属微粒子が設けられた基体表面に所定の温度履歴を加えることで導体化を行う工程の一部として、所定の量の水蒸気を含む気体を接触させてもよい。 In other words, in the process of making a conductor spontaneously by exposing a film containing coated metal fine particles to a relatively high temperature, a gas containing a predetermined amount of water vapor is brought into contact with the surface of the film containing coated metal fine particles to be made conductive. Also, it is possible to promote the formation of a conductor. In addition, as a pre-process of the step of conducting, a process of making a conductor by heating after contacting a gas containing a predetermined amount of water vapor at a relatively low temperature on the surface of the film containing the coated metal fine particles to be made conductive May be performed. Furthermore, a gas containing a predetermined amount of water vapor may be contacted as part of the step of conducting the conductor by applying a predetermined temperature history to the surface of the substrate provided with the coated metal fine particles to be made conductive.
 特に、銀等の酸化が問題にならない金属を主成分とする被覆金属微粒子を含む膜を導体化させる際には、所望の導電性を生じるまでの過程において、継続して導体化させる被覆金属微粒子を含む膜の表面に所定の量の水分を含む気体を接触させることが好ましい。一方、酸化が問題となる金属を含む被覆金属微粒子を含む膜を導体化させる際には、導体化を行う工程の一部において、導体化させる被覆金属微粒子を含む膜の表面に所定の量の水蒸気を含む気体を接触させることで、金属微粒子を過剰な水分に接触させないことが好ましい。 In particular, when a film containing coated metal fine particles mainly composed of a metal such as silver that does not oxidize is made into a conductor, the coated metal fine particles are continuously made conductive in the process until desired conductivity is produced. It is preferable that a gas containing a predetermined amount of moisture is brought into contact with the surface of the film containing. On the other hand, when making a film containing coated metal fine particles containing a metal that oxidizes a problem into a conductor, in a part of the process of making a conductor, a predetermined amount is applied to the surface of the film containing coated metal fine particles to be made conductive. It is preferable that the metal fine particles are not brought into contact with excessive moisture by contacting a gas containing water vapor.
 被覆金属微粒子を含む膜に接触させる気体に含まれる水分量が多い程、導体化が進展し易いと共に、一定時間の導体化処理を行った場合に高い導電率を示す傾向が見られ、実質的に被覆金属微粒子を含む膜の表面に供給される水分子の量を増やすことで、より導体化を促進することができる。
 導体化の具体的な程度は、気体に含まれる水分量の他、当該気体を被覆金属微粒子に接触させる時間や導体化を行う温度によって変化するが、特に100℃以下の温度域において、気体に含まれる水分量の増加により所定時間の導体化を行った後の体積抵抗率が顕著に低下する傾向が観察される。例えば、ほぼ完全に導体化が完了した状態で数μΩcm程度の体積抵抗率を得ることができる被覆銀微粒子を用いた場合を例にすれば、容積絶対湿度(水蒸気量)として14~17g/m程度の水蒸気を含む気体中に設置することで、通常の室温付近でも結露を生じることがない一方で、時間をかけることにより実質的な導体化が可能となる。また、40℃程度の極低温においても60分程度の時間で1mΩcm以下の体積抵抗となり、実質的な導通を得ることができる。これに対して、水蒸気量が14g/mを下回ると、特に10g/m以下になると水蒸気による導体化の促進が実質的に観察されなくなる。
As the amount of moisture contained in the gas in contact with the film containing the coated fine metal particles increases, conductorization is more likely to progress, and there is a tendency to show high conductivity when conducting the conductorization treatment for a certain period of time. By increasing the amount of water molecules supplied to the surface of the film containing the coated fine metal particles, it is possible to further promote the formation of a conductor.
The specific degree of conductorization varies depending on the amount of moisture contained in the gas, the time for which the gas is brought into contact with the coated metal fine particles, and the temperature at which the conductor is made, but particularly in the temperature range of 100 ° C. or less. It is observed that the volume resistivity after conducting the conductor for a predetermined time due to the increase in the amount of water contained is significantly reduced. For example, in the case of using coated silver fine particles capable of obtaining a volume resistivity of about several μΩcm in a state where the conductorization is almost completely completed, the volume absolute humidity (water vapor amount) is 14 to 17 g / m. By installing in a gas containing about 3 water vapor, dew condensation does not occur even around normal room temperature, but substantial conductorization is possible by taking time. Further, even at an extremely low temperature of about 40 ° C., a volume resistance of 1 mΩcm or less is obtained in about 60 minutes, and substantial conduction can be obtained. On the other hand, when the amount of water vapor is less than 14 g / m 3 , particularly when the water vapor amount is 10 g / m 3 or less, the promotion of conductorization by water vapor is substantially not observed.
 また、20~25g/m以上の水蒸気を含む気体中に設置することで、40℃程度の極低温においても結露を生じることなく60分程度の時間で100μΩcm以下の体積抵抗率となり、実質的な加熱が困難な基体に対しても、良好な電気回路を形成することが可能となる。更に、水蒸気量を30~35g/m以上とすることで40℃程度の極低温における導体化においても、安定的に体積抵抗率を低下させることができる。更に、50℃程度の温度で導体化を行う場合には、結露を生じることなく40~45g/m以上の水蒸気を含む気体を用いることが可能となり、60分の導体化処理によって30μΩcm以下の体積抵抗率を得ることが可能となる。更に、50℃においては50~55g/m以上の水蒸気を含む気体や、60~65g/m以上の水蒸気を含む気体を用いても結露を生じることがなく、60分の導体化処理によって20μΩcm以下の体積抵抗率を得ることが可能となって、電気回路用途において充分な導電性を短時間で付与することが可能となる。また、水蒸気を含む気体により処理を行う過程において気体に含まれる水蒸気量を適宜変更してもよい。 In addition, when installed in a gas containing water vapor of 20 to 25 g / m 3 or more, a volume resistivity of 100 μΩcm or less is obtained in a time of about 60 minutes without causing condensation even at an extremely low temperature of about 40 ° C. A good electric circuit can be formed even on a substrate that is difficult to heat. Furthermore, by setting the amount of water vapor to 30 to 35 g / m 3 or more, the volume resistivity can be stably reduced even in a conductor at an extremely low temperature of about 40 ° C. Furthermore, when conducting the conductor at a temperature of about 50 ° C., it becomes possible to use a gas containing water vapor of 40 to 45 g / m 3 or more without causing dew condensation. Volume resistivity can be obtained. Furthermore, at 50 ° C., no condensation occurs even when a gas containing 50 to 55 g / m 3 or more of water vapor or a gas containing 60 to 65 g / m 3 or more of water vapor is used. A volume resistivity of 20 μΩcm or less can be obtained, and sufficient conductivity can be imparted in a short time in electrical circuit applications. Further, the amount of water vapor contained in the gas may be appropriately changed in the process of performing treatment with the gas containing water vapor.
 このように所定量の水蒸気を含む気体を、被覆金属微粒子を含む膜に接触させることで導体化の際の体積抵抗率の低下を促進できる理由は、気体中の水分子が膜に吸着・取り込まれることにより、被覆金属微粒子の保護膜に含まれる電気絶縁性のアルキルアミンの脱離が促進される結果、金属微粒子同士が直接接触して導通を生じると共に、当該接触した部分における金属原子の拡散により接触面積が増加し、且つ、融着(焼結)が生じるためと考えられる。そして、本発明における水蒸気を含む気体の役割は、被覆金属微粒子を含む膜に水分子を供給することであると推察される。 The reason why the volume resistivity can be reduced by making a gas containing a predetermined amount of water vapor in contact with a film containing coated metal fine particles in the process of forming a conductor is that water molecules in the gas are adsorbed and taken into the film. As a result, the elimination of the electrically insulating alkylamine contained in the protective film of the coated metal fine particles is promoted. As a result, the metal fine particles are brought into direct contact with each other to cause conduction, and diffusion of metal atoms in the contacted portion. This is considered to be because the contact area is increased due to, and fusion (sintering) occurs. And it is guessed that the role of the gas containing water vapor in the present invention is to supply water molecules to the film containing the coated metal fine particles.
 なお、上記では、被覆銀微粒子を含む膜の導体化を例にして使用する気体に含まれる水蒸気量と導体化後の体積抵抗率の関係を説明したが、保護膜にアルキルアミンを含む被覆金属微粒子であれば、本発明が適用されることによりアルキルアミンの脱離が促進され、導体化の促進を図ることが可能である。また、導体化により得られる膜の体積抵抗率は、使用する金属微粒子を構成する金属の組成などによって変化することは言うまでもない。
 水蒸気を含む気体において、水蒸気以外の気体成分は特に特定されず、処理の簡便性や、処理される被覆金属微粒子を構成する金属の種類に応じて決定することができる。つまり、酸化が問題にならない被覆銀微粒子等の場合には、適宜加湿等を行った大気を用いて処理を行うことができる。一方、被覆銅微粒子等の酸化を生じやすい金属を含む場合には、アルゴン等の不活性ガスや窒素等に所定量の水蒸気を混合して用いることが好ましい。また、水蒸気以外の気体を実質的に含まない気体を使用することも可能である。その他、本発明の趣旨に反しない範囲で、適宜の気体成分を添加した気体を用いることも可能である。
In the above description, the relationship between the amount of water vapor contained in the gas used and the volume resistivity after the formation of the conductor has been described by taking as an example the formation of a film containing coated silver fine particles. In the case of fine particles, by applying the present invention, elimination of alkylamine is promoted, and it is possible to promote the formation of a conductor. Needless to say, the volume resistivity of the film obtained by making the conductor varies depending on the composition of the metal constituting the metal fine particles used.
In the gas containing water vapor, gas components other than water vapor are not particularly specified, and can be determined according to the ease of treatment and the type of metal constituting the coated metal fine particles to be treated. That is, in the case of coated silver fine particles or the like where oxidation does not become a problem, the treatment can be performed using air appropriately humidified or the like. On the other hand, when a metal such as coated copper fine particles that easily oxidizes is included, it is preferable to use a predetermined amount of water vapor mixed with an inert gas such as argon or nitrogen. It is also possible to use a gas that does not substantially contain a gas other than water vapor. In addition, it is also possible to use a gas to which an appropriate gas component is added as long as it does not contradict the spirit of the present invention.
 水蒸気を含む気体により処理を行う過程において、当該気体の全圧を大気圧とすることが通常は便宜であるが、これに限定されず、処理が行われる被覆金属微粒子を含む膜や気体の必要等に応じて、適宜、減圧下や加圧下において処理を行うことができる。また、処理を行う過程において処理に用いる気体の圧力を適宜変更してもよい。被覆金属微粒子を含む膜の導体化を行う温度や時間は特に制限されず、主に、導体化された膜に必要とされる導電性等の各種特性に応じて決定される。温度が高く、長時間の導体化により被覆金属微粒子の保護膜の残留割合が低下し、且つ、金属微粒子間の融着が進行するために導電性が向上する傾向が見られる。特に、以下の実施例で使用した金属アミン錯体分解法により製造された被覆金属銀微粒子を用いた場合には、50℃の温度において、処理開始から5分程度で100μΩcmの体積抵抗値が得られ、60分後には20μΩcmの体積抵抗値が得られる。また、80℃においては、処理開始から2分程度で30μΩcmの体積抵抗値が得られ、10分後には15μΩcmの体積抵抗値を得ることができる。一方、過度に高い温度で導体化を行った場合には、金属原子の拡散により過剰な結晶粒の成長等のおそれを生じる。 In the process of treatment with a gas containing water vapor, it is usually convenient to set the total pressure of the gas to atmospheric pressure. However, the present invention is not limited to this, and a film or gas containing coated fine metal particles to be treated is necessary. The treatment can be performed under reduced pressure or increased pressure as appropriate. Moreover, you may change suitably the pressure of the gas used for a process in the process in which a process is performed. The temperature and time for conducting the film containing the coated fine metal particles are not particularly limited, and are mainly determined according to various characteristics such as conductivity required for the film made into a conductor. There is a tendency for the conductivity to improve because the temperature is high and the residual ratio of the protective film of the coated metal fine particles decreases due to the formation of a conductor for a long time, and the fusion between the metal fine particles proceeds. In particular, when the coated metal silver fine particles produced by the metal amine complex decomposition method used in the following examples are used, a volume resistance value of 100 μΩcm is obtained at a temperature of 50 ° C. in about 5 minutes from the start of the treatment. After 60 minutes, a volume resistance value of 20 μΩcm is obtained. At 80 ° C., a volume resistance value of 30 μΩcm can be obtained in about 2 minutes from the start of the treatment, and a volume resistance value of 15 μΩcm can be obtained after 10 minutes. On the other hand, when conductorization is performed at an excessively high temperature, there is a risk of excessive crystal grain growth due to diffusion of metal atoms.
 本発明の方法において、用語「相対湿度」とは、ある温度で大気中に含まれる水蒸気の圧力(水蒸気分圧)を、その温度の飽和水蒸気圧で割り、百分率で表わした値であり、以下の式で表すことができる。
 RH=Ep/E×100 (%)
  RH:は水蒸気と空気との混合空気における相対湿度
  Ep:混合空気における水蒸気圧
  E:その気温における、混合空気の飽和水蒸気圧
In the method of the present invention, the term “relative humidity” is a value expressed as a percentage by dividing the pressure of water vapor (water vapor partial pressure) contained in the atmosphere at a certain temperature by the saturated water vapor pressure at that temperature, It can be expressed by the following formula.
RH = Ep / E × 100 (%)
RH: Relative humidity in mixed air of water vapor and air Ep: Water vapor pressure in mixed air E: Saturated water vapor pressure of mixed air at the temperature
 また、用語「容積絶対湿度」とは、大気の単位容積に含まれる水蒸気の量を重量で示したもの(単位:g/m)をいう。次の式で表すことができる。
 容積絶対湿度=216.7×Ep/T
  Tは気温(K)(T=t[℃]+273.15)。
The term “volumetric absolute humidity” refers to the amount of water vapor contained in the unit volume of the atmosphere expressed by weight (unit: g / m 3 ). It can be expressed by the following formula.
Volumetric absolute humidity = 216.7 x Ep / T
T is the temperature (K) (T = t [° C.] + 273.15).
 なお、このような湿度環境は、少なくとも基体表面の被覆金属微粒子と接触する局所的な大気環境であってもよいが、一般的には、一定の密封空間を設定して当該空間内の湿度を調節する方法が簡便である。 Such a humidity environment may be a local atmospheric environment that comes into contact with at least the coated metal fine particles on the surface of the substrate, but in general, a certain sealed space is set to reduce the humidity in the space. The adjustment method is simple.
 以上においては、主に基体上の被覆金属微粒子を含む膜を所定の温度で所定の時間処理して導体化をする過程を、所定量の水蒸気を含む気体中で行うことによって、当該膜の導体化を促進することについて説明を行った。
 これに対し、被覆金属微粒子を含む膜に水蒸気を含む気体により処理する温度は、十分に低い温度であってもよい。すなわち、被覆金属微粒子を含む膜を、例えば、実質的な導体化が進展しない温度域で所定の湿度環境に暴露する工程を行った後、被覆金属微粒子を含む膜を所定の温度に昇温して導体化の工程を行うことができる。この時、被覆金属微粒子を含む膜の温度を連続的に変化させることができる。また、被覆金属微粒子を含む膜に対して、所定の温度と湿度を有する気体を吹き付けることで、被覆金属微粒子を含む膜に対する水蒸気の供給と加熱を同時に行うことも可能である。更に、被覆金属微粒子を含む膜を実質的に導体化する過程の一部において、所定の湿度環境に暴露することも可能である。
In the above, by conducting the process of converting the film containing the coated metal fine particles mainly on the substrate into a conductor by treating the film at a predetermined temperature for a predetermined time in a gas containing a predetermined amount of water vapor, the conductor of the film We explained about promoting
On the other hand, the temperature at which the film containing the coated metal fine particles is treated with the gas containing water vapor may be sufficiently low. That is, for example, after performing a step of exposing a film containing coated metal fine particles to a predetermined humidity environment in a temperature range where substantial conductorization does not progress, the film containing coated metal fine particles is heated to a predetermined temperature. Thus, the process of making a conductor can be performed. At this time, the temperature of the film containing the coated metal fine particles can be continuously changed. Further, by supplying a gas having a predetermined temperature and humidity to the film containing the coated metal fine particles, it is possible to simultaneously supply and heat water vapor to the film containing the coated metal fine particles. Furthermore, it is also possible to expose to a predetermined humidity environment in part of the process of making the film containing the coated metal fine particles substantially conductive.
 なお、本発明において、用語「焼結」とは、金属微粒子間で融着が生じて結合を生じる現象をいう。また、「導体化」は、被覆金属微粒子を含む膜の内部において金属微粒子同士が接触して導電パスが形成されることによって発現し、更に金属微粒子同士が焼結して導電パスが拡大することによって体積抵抗率が低下することを意味するものとする。また、被覆金属微粒子を含む膜の内部において金属微粒子同士が接触して導電パスが形成される等により導電性を有するようになった膜を、特に「導体膜」と呼ぶことがある。但し、導体化の過程において、被覆金属微粒子を含む膜が「導体膜」にも該当する場合があるものとする。 In the present invention, the term “sintering” refers to a phenomenon in which metal fine particles are fused to form a bond. In addition, “conducting” is manifested when metal fine particles come into contact with each other inside a film containing coated metal fine particles to form a conductive path, and further, the metal fine particles are sintered together to expand the conductive path. It means that the volume resistivity decreases. In addition, a film that has conductivity due to the formation of a conductive path by contacting the metal fine particles inside the film containing the coated metal fine particles may be particularly referred to as a “conductor film”. However, in the process of making a conductor, a film containing coated metal fine particles may correspond to a “conductor film”.
 また、本発明に係る被覆金属微粒子を含む膜の導体化方法は、基体表面に電気回路を形成する手段としての他、基体表面に金属層を設ける手段として広く使用可能であって、例えば、鏡面の形成手段、メッキ手段、装飾手段等として広く使用することが可能であることは言うまでもない。 In addition, the method for making a film containing coated metal fine particles according to the present invention can be widely used as a means for forming a metal layer on a substrate surface, as well as a means for forming an electric circuit on the substrate surface. Needless to say, it can be widely used as a forming means, a plating means, a decoration means, and the like.
 なお、以下の説明では、本発明が適用されて導体化される被覆金属微粒子を製造する方法の例として、金属アミン錯体分解法により被覆金属微粒子を製造する手段について説明するが、本発明はこれに限定されることなく、表面がアルキルアミンを含む保護膜で被覆された各種の被覆金属微粒子について適用が可能である。金属アミン錯体分解法により製造された被覆金属微粒子においては、一般に金属微粒子の表面に酸化層等が存在せず、アルキルアミン分子のアミノ基が金属状態の金属微粒子の表面に配位結合により結合して保護膜を形成するため、アルキルアミン分子の脱離がし易いと共に、アルキルアミン分子の脱離後の金属微粒子の表面において金属原子の拡散による融着が生じ易い点で、本願発明により導体化される被覆金属微粒子として好ましい。 In the following description, as an example of a method for producing coated metal fine particles to be converted into a conductor by applying the present invention, means for producing coated metal fine particles by a metal amine complex decomposition method will be described. Without being limited to the above, the present invention can be applied to various coated metal fine particles whose surface is coated with a protective film containing an alkylamine. In the coated metal fine particles produced by the metal amine complex decomposition method, generally, there is no oxide layer on the surface of the metal fine particles, and the amino group of the alkylamine molecule is bonded to the surface of the metal fine particles in the metal state by a coordinate bond. In order to form a protective film, it is easy to desorb alkylamine molecules, and the surface of the metal fine particles after desorption of alkylamine molecules is likely to cause fusion due to diffusion of metal atoms. Preferred as coated metal fine particles.
2 金属アミン錯体分解法による被覆金属微粒子の製造方法
 被覆金属微粒子を製造するために用いる金属の原料としては、当該金属を含む化合物の中で加熱により容易に分解して原子状金属を生成する金属化合物が好ましく使用される。このような金属化合物として、ギ酸、酢酸、シュウ酸、マロン酸、安息香酸、フタル酸などのカルボン酸と金属原子が化合した金属のカルボン酸塩の他、金属塩化物、硝酸塩、炭酸塩等が挙げられる。特に、以下の例に示す被覆銀微粒子の原料とする銀化合物としては、カルボン酸と銀が化合したカルボン酸銀の他、塩化銀、硝酸銀、炭酸銀等がある。これらの中で、分解により容易に金属銀を生成し、かつ銀以外の不純物を生じにくい等の観点からシュウ酸銀が好ましく用いられる。
2. Method for producing coated metal fine particles by metal amine complex decomposition method As a metal raw material used for producing coated metal fine particles, a metal that is easily decomposed by heating in a compound containing the metal to generate an atomic metal Compounds are preferably used. Examples of such metal compounds include metal carboxylates such as formic acid, acetic acid, oxalic acid, malonic acid, benzoic acid, phthalic acid and metal carboxylates, metal chlorides, nitrates, carbonates, and the like. Can be mentioned. In particular, examples of the silver compound used as a raw material for the coated silver fine particles shown in the following examples include silver chloride, silver nitrate, silver carbonate, and the like, in addition to silver carboxylate in which carboxylic acid and silver are combined. Among these, silver oxalate is preferably used from the viewpoints of easily producing metallic silver by decomposition and hardly generating impurities other than silver.
 金属アミン錯体分解法においては、金属化合物と適宜のアルキルアミンを混合して加熱等をすることにより、当該金属化合物とアルキルアミンから構成される錯化合物を生成し、次にアルキルアミン等の存在する環境下で当該錯化合物を加熱し、当該錯化合物に含まれる金属化合物を熱分解させ、生成する原子状金属を凝集させることにより、アルキルアミンを含む保護膜に被覆された金属微粒子を製造することができる。又は、アルキルアミン以外のアミノ基を含む化合物と金属化合物との錯化合物を生成させ、アルキルアミン等の存在する環境下で当該錯化合物を加熱することで被覆金属微粒子を製造してもよい。 In the metal amine complex decomposition method, a metal compound and an appropriate alkyl amine are mixed and heated to produce a complex compound composed of the metal compound and the alkyl amine, and then an alkyl amine or the like is present. Producing metal fine particles coated with a protective film containing alkylamine by heating the complex compound in the environment, thermally decomposing the metal compound contained in the complex compound, and aggregating the generated atomic metal Can do. Alternatively, the coated metal fine particles may be produced by forming a complex compound of a compound containing an amino group other than alkylamine and a metal compound, and heating the complex compound in an environment where alkylamine or the like is present.
 このような金属アミン錯体分解法の過程で生成する金属原子にはアルキルアミン分子等が配位結合しており、当該アルキルアミン分子の働きにより、凝集を生じる際の金属原子の運動がコントロールされるものと推測される。その結果、非常に微細で、粒度分布が狭い金属微粒子を製造することが可能となる。さらに、生成した金属微粒子の表面にも多数のアルキルアミン分子が比較的弱い力の配位結合を生じており、これらが金属微粒子の表面に緻密な保護膜を形成するため、保存安定性に優れた被覆金属微粒子を製造することが可能となる。また、当該被膜を形成するアルキルアミン分子は加熱等により容易に脱離可能であるため、非常に低温で焼結可能な金属微粒子を製造することが可能となる。
 また、各種機能の付加等の目的で、金属アミン錯体分解法で生成される被覆金属微粒子の表面の保護膜に各種成分を付加するためには、錯化合物を加熱分解する際の反応媒に当該成分を存在させることにより、生成した被覆金属微粒子の保護膜に当該成分を付加することが可能である。
Alkylamine molecules and the like are coordinated to the metal atoms generated in the process of decomposing such metalamine complexes, and the movement of the metal atoms during aggregation is controlled by the action of the alkylamine molecules. Presumed to be. As a result, it is possible to produce metal fine particles that are very fine and have a narrow particle size distribution. In addition, many alkylamine molecules also form a relatively weak coordination bond on the surface of the generated metal fine particles, and these form a dense protective film on the surface of the metal fine particles, so they have excellent storage stability. It is possible to produce coated fine metal particles. In addition, since the alkylamine molecules forming the film can be easily detached by heating or the like, it is possible to produce metal fine particles that can be sintered at a very low temperature.
In addition, in order to add various components to the protective film on the surface of the coated metal fine particles produced by the metal amine complex decomposition method for the purpose of adding various functions, etc., the reaction medium for thermal decomposition of the complex compound By the presence of the component, the component can be added to the protective film of the generated coated metal fine particles.
 金属アミン錯体分解法で使用しうるアルキルアミンは、金属化合物中の金属原子、及び金属アミン錯体分解法で生成する金属微粒子の表面に対してアミノ基を介した配位結合を形成可能とするために、アミン部分に含まれるアミノ基が、一級アミノ基であるアルキルアミンRNH(Rは炭化水素鎖)又は二級アミノ基であるアルキルアミンRNH(R、Rは炭化水素鎖で同じであっても異なっていてもよい)であることが望ましい。一級又は二級のアミノ基を含むことにより、アミノ基中の窒素原子が有する非共有電子対により金属原子に配位結合を生じることで、アミン部分と金属化合物の錯化合物が形成可能であり、これにより金属微粒子に対してアルキルアミンの被膜を形成することができる。これに対して、三級アミノ基を含む場合には、一般にアミノ基中の窒素原子の周囲の自由空間が狭いために、金属原子に対する配位結合を生じにくい点で望ましくない。 Alkylamine that can be used in the metal amine complex decomposition method is capable of forming a coordinate bond via an amino group to the metal atom in the metal compound and the surface of the metal fine particles generated by the metal amine complex decomposition method. In addition, an alkyl group RNH 2 (R is a hydrocarbon chain) in which the amino group contained in the amine moiety is a primary amino group or an alkylamine R 1 R 2 NH (R 1 and R 2 are hydrocarbons) that is a secondary amino group The chains may be the same or different). By including a primary or secondary amino group, a complex bond between the amine moiety and the metal compound can be formed by generating a coordinate bond to the metal atom by the unshared electron pair of the nitrogen atom in the amino group, Thereby, an alkylamine film can be formed on the metal fine particles. On the other hand, when a tertiary amino group is included, the free space around the nitrogen atom in the amino group is generally narrow, which is undesirable in that a coordination bond to a metal atom is difficult to occur.
 アルキルアミン等においては、一般にアルキル基の分子量が大きくなり長鎖になるに従い蒸気圧が低下して沸点が上昇する傾向が見られる。一方、アルキル基の分子量が小さく短鎖であるものは蒸気圧が高いとともに、極性が強くなる傾向が見られる。また、一分子内に二つのアミノ基を有するアルキルジアミンでは、一分子内に一つのアミノ基を有するアルキルモノアミンより極性が強くなる傾向が見られる。金属アミン錯体分解法で用いるアルキルアミンは、このような傾向に着目し、特にアルキルアミン等の分子量やアミノ基の数に着目してこれらを分類し、目的に応じて複数種のアルキルアミンを混合してアルキルアミン混合物として使用することが好ましい。なお、本明細書において、アルキルアミン等のアルキル基に含まれる炭素数が2~5のものを短鎖、炭素数が6~12のものを中鎖、炭素数が13以上のものを長鎖と定義してそれぞれ区別する。 In alkylamines and the like, generally, as the molecular weight of the alkyl group increases and the chain becomes longer, the vapor pressure decreases and the boiling point tends to increase. On the other hand, when the alkyl group has a small molecular weight and a short chain, the vapor pressure is high and the polarity tends to be strong. In addition, alkyldiamines having two amino groups in one molecule tend to be more polar than alkylmonoamines having one amino group in one molecule. The alkylamines used in the metal amine complex decomposition method focus on such a tendency, and in particular, classify them based on the molecular weight and the number of amino groups such as alkylamines, and mix multiple types of alkylamines according to the purpose. And preferably used as an alkylamine mixture. In the present specification, those having 2 to 5 carbon atoms contained in an alkyl group such as alkylamine are short chain, those having 6 to 12 carbon atoms are medium chains, and those having 13 or more carbon atoms are long chains. They are defined and distinguished from each other.
 金属アミン錯体分解法においては、主に製造される金属微粒子に良好な被覆膜を形成する観点から、使用されるアミン混合物として、長鎖及び/又は中鎖のアルキル基に対して一つのアミノ基が結合してなる長鎖・中鎖のアルキルモノアミンを含有成分とするものが好ましく用いられる。長鎖・中鎖のアルキルモノアミンは一般に蒸気圧が低く蒸発を生じ難いと共に、有機溶媒と親和性が高いために、これらを含有成分とするアミン混合物を使用することで、製造される被覆金属微粒子の被膜にも所定の割合で長鎖・中鎖のアルキルモノアミンが含まれることとなり、保存性が向上すると共に、無極性の有機溶媒中への分散性を向上することができる。 In the metal amine complex decomposition method, mainly from the viewpoint of forming a good coating film on the metal fine particles produced, the amine mixture used is one amino group for the long chain and / or medium chain alkyl group. Those containing a long-chain / medium-chain alkyl monoamine formed by bonding groups are preferably used. Long chain and medium chain alkyl monoamines generally have a low vapor pressure and are unlikely to evaporate, and have high affinity with organic solvents. Therefore, coated metal fine particles are produced by using an amine mixture containing these components. This coating also contains long-chain / medium-chain alkyl monoamines at a predetermined ratio, so that the storage stability can be improved and the dispersibility in a nonpolar organic solvent can be improved.
 このような長鎖・中鎖のアルキルモノアミンとしては、例えば、ジプロピルアミン(107℃)、ジブチルアミン(159℃)、ヘキシルアミン(131℃)、シクロヘキシルアミン(134℃)、ヘプチルアミン(155℃)、3-ブトキシプロピルアミン(170℃)、オクチルアミン(176℃)、ノニルアミン(201℃)、デシルアミン(217℃)、3-アミノプロピルトリエトキシシラン(217℃)、ドデシルアミン(248℃)、ヘキサデシルアミン(330℃)、オレイルアミン(349℃)、オクタデシルアミン(232℃(32mmHgで))等のアルキルモノアミンは入手が容易な点で実用的であるが、これに限定されることはなく、炭素数が6以上の長鎖・中鎖のアルキルモノアミンであれば、適宜、目的に応じて使用することができる。 Examples of such long and medium chain alkyl monoamines include dipropylamine (107 ° C), dibutylamine (159 ° C), hexylamine (131 ° C), cyclohexylamine (134 ° C), heptylamine (155 ° C). ), 3-butoxypropylamine (170 ° C), octylamine (176 ° C), nonylamine (201 ° C), decylamine (217 ° C), 3-aminopropyltriethoxysilane (217 ° C), dodecylamine (248 ° C), Alkylmonoamines such as hexadecylamine (330 ° C), oleylamine (349 ° C), octadecylamine (232 ° C (at 32 mmHg)) are practical in terms of easy availability, but are not limited thereto. If it is a long chain or medium chain alkyl monoamine having 6 or more carbon atoms, Flip and can be used.
 一般に中鎖アルキルモノアミンの範囲で比較的分子量の小さなアルキルアミンを用いた場合には、保護被膜の蒸気圧が高く被膜が除去され易いため、より低温で焼結が可能となる傾向が見られる一方、保存性が低下する傾向が見られる。また、有機溶媒との親和性が低下して、所定の有機溶媒中へ分散可能な割合が低下する傾向が見られる。一方、比較的分子量が大きなアルキルモノアミンを用いることで、強固な保護被膜を有する被覆金属微粒子が得られる傾向が見られる。また、無極性溶媒への分散性が高くなるため、高い比率で有機溶媒に分散させてインクとして用いる際に有利となる。 In general, when an alkylamine having a relatively low molecular weight is used in the range of the medium-chain alkyl monoamine, the vapor pressure of the protective film is high and the film is easily removed, so that it tends to be sintered at a lower temperature. There is a tendency for storage stability to decrease. Moreover, the tendency for the affinity with an organic solvent to fall and the ratio dispersible in a predetermined organic solvent falls. On the other hand, the use of an alkyl monoamine having a relatively large molecular weight tends to provide coated metal fine particles having a strong protective film. Moreover, since the dispersibility in a nonpolar solvent becomes high, it is advantageous when used as an ink by being dispersed in an organic solvent at a high ratio.
 また、前述のとおり、本発明においては長鎖・中鎖のアルキルモノアミンに対して、所定割合で短鎖のアルキルモノアミンをアミン混合物中に含むことができる。一般に、アルキルモノアミンのアルキル鎖が長くなるに従い、金属化合物との間での錯化合物を形成する速度が低下する傾向が見られ、炭素数が18程度の長鎖のアルキルモノアミンを用いた場合には長期間の混合によっても錯化合物の形成が完了しないことも観察される。これに対し、炭素数が5以下の短鎖のアルキルモノアミンが長鎖・中鎖のアルキルモノアミンに対して所定の割合で混合されることにより、錯化合物の形成のための時間が短縮され、長鎖のアルキルモノアミンを用いた場合にも良好に錯化合物の形成を行うことが可能となる。 In addition, as described above, in the present invention, a short-chain alkyl monoamine can be contained in the amine mixture in a predetermined ratio with respect to the long-chain / medium-chain alkyl monoamine. In general, as the alkyl chain of the alkyl monoamine becomes longer, the rate of forming a complex compound with the metal compound tends to decrease. When a long-chain alkyl monoamine having about 18 carbon atoms is used, It is also observed that the formation of complex compounds is not completed by prolonged mixing. In contrast, when a short-chain alkyl monoamine having 5 or less carbon atoms is mixed with a long-chain / medium-chain alkyl monoamine at a predetermined ratio, the time required for forming a complex compound is shortened, Even when a chain alkyl monoamine is used, a complex compound can be satisfactorily formed.
 また、短鎖のアルキルモノアミンの存在下で形成された錯化合物は、その後の加熱分解工程において、錯化合物に含まれる金属化合物の分解がより低温で生じる傾向が見られる。更に、所定割合で短鎖のアルキルモノアミンを含むアミン混合物を用いて製造された被覆金属微粒子では、一般に焼結のために必要となる温度が低下する傾向が見られる。 In addition, the complex compound formed in the presence of the short-chain alkyl monoamine tends to cause decomposition of the metal compound contained in the complex compound at a lower temperature in the subsequent thermal decomposition step. Furthermore, in the coated metal fine particles produced using an amine mixture containing a short-chain alkyl monoamine at a predetermined ratio, the temperature required for sintering generally tends to decrease.
 上記のような短鎖のアルキルモノアミンをアミン混合物に混合することで得られる効果は、炭素数が5以下であれば十分に得ることができるが、その範囲においても炭素数が少なく分子量の小さなアルキルモノアミンを使用することで錯化合物の生成速度を向上することができる。一方、炭素数が少なく蒸気圧が高いアルキルモノアミンでは、金属化合物の分解の際の蒸発量が増加したり、製造された被覆金属微粒子の保存性が低下する傾向が見られる。このため、特に炭素数が3~4程度のアルキルモノアミンが望ましく使用され、短鎖のアルキルモノアミンとしてこれらを主成分とすることができる。短鎖のアルキルモノアミンは、必要に応じて複数の種類のものを混合して使用することも可能である。 The effect obtained by mixing the short-chain alkyl monoamine as described above into the amine mixture can be sufficiently obtained if the number of carbon atoms is 5 or less. By using monoamine, the production rate of the complex compound can be improved. On the other hand, alkyl monoamines having a small number of carbon atoms and a high vapor pressure tend to increase the amount of evaporation at the time of decomposition of the metal compound or to decrease the storage stability of the produced coated metal fine particles. For this reason, alkyl monoamines having about 3 to 4 carbon atoms are preferably used, and these can be mainly used as short-chain alkyl monoamines. Short chain alkyl monoamines can be used by mixing a plurality of types as required.
 上記短鎖のアルキルモノアミンとしては、アミルアミン(沸点104℃)、2-エトキシエチルアミン(105℃)、4-メトキシブチルアミン、ジイソプロピルアミン(84℃)ブチルアミン(78℃)、ジエチルアミン(55℃)、プロピルアミン(48℃)、イソプロピルアミン(34℃)、エチルアミン(17℃)、ジメチルアミン(7℃)等が工業的に入手可能であり、望ましく使用される。 Examples of the short-chain alkyl monoamine include amylamine (boiling point 104 ° C.), 2-ethoxyethylamine (105 ° C.), 4-methoxybutylamine, diisopropylamine (84 ° C.) butylamine (78 ° C.), diethylamine (55 ° C.), propylamine (48 ° C.), isopropylamine (34 ° C.), ethylamine (17 ° C.), dimethylamine (7 ° C.) and the like are industrially available and are desirably used.
 アミン混合物中の短鎖アルキルモノアミンの含有量は、使用するアルキルアミンの種類によっても変化するが、概ね全アルキルアミンに対して10~80モル%とすることで、アルキルアミンと金属化合物との錯化合物の生成を容易にすることができる。特に25モル%以上とすることで、錯化合物の生成が十分に円滑になると共に、種々の長鎖・中鎖アルキルアミンを使用した錯化合物の生成が可能となる。一方、アミン混合物中の短鎖アルキルモノアミンの含有量が65モル%以上になると、製造された被覆金属微粒子が不安定となり、長期保存が難しくなる点で望ましくない。更に、短鎖アルキルモノアミンの含有量が80モル%以上になると、錯化合物の熱分解により金属微粒子が生成する際に、金属原子の凝集の制御が良好に行われず、粗大な粒子が生成する問題を生じる。概ね、アミン混合物中の短鎖アルキルモノアミンの含有量を30~60モル%とすることで、製造された被覆金属微粒子を適宜の有機溶媒中で数ヶ月間、安定に保持することが可能となる。 The content of the short-chain alkyl monoamine in the amine mixture varies depending on the type of alkyl amine used, but is generally 10 to 80 mol% with respect to the total alkyl amine, so that the complex of the alkyl amine and the metal compound is achieved. Formation of the compound can be facilitated. In particular, when the amount is 25 mol% or more, the complex compound can be produced sufficiently smoothly, and complex compounds using various long- and medium-chain alkylamines can be produced. On the other hand, if the content of the short-chain alkyl monoamine in the amine mixture is 65 mol% or more, the coated metal fine particles produced are unstable, and this is not desirable because long-term storage becomes difficult. Furthermore, when the content of the short-chain alkyl monoamine is 80 mol% or more, when metal fine particles are generated by thermal decomposition of the complex compound, the aggregation of metal atoms is not well controlled and coarse particles are generated. Produce. In general, when the content of the short-chain alkyl monoamine in the amine mixture is 30 to 60 mol%, the produced coated metal fine particles can be stably held for several months in an appropriate organic solvent. .
 その他、水や低分子のアルコール類も強い極性を有し、複合化合物の生成を促す効果が観察されるが、アミン混合物の蒸気圧を上昇させる他、製造される被覆金属微粒子の特性や収量に影響を与えるため、過剰な量をアミン混合物に混合することは好ましくない。また、金属アミン錯体分解法においては、生成する被覆金属微粒子の分散媒への分散性を向上させるための分散剤として、例えばオレイン酸などの脂肪酸をアミン混合物に混合して用いてもよい。特に、短鎖のアルキルアミンを大きな割合で含有するなどにより、アルキルアミンの平均の分子量が小さいアミン混合物を用いる場合に適宜の脂肪酸を加えることは効果的である。ただし、過剰な量の脂肪酸を使用した場合には、被覆金属微粒子からの保護被膜の脱離温度が上昇する傾向が見られるため、その添加量は反応系に含まれる金属原子に対して5モル%以下とすることが望ましい。 In addition, water and low-molecular-weight alcohols also have strong polarity, and the effect of promoting the formation of complex compounds is observed, but in addition to increasing the vapor pressure of the amine mixture, it also affects the characteristics and yield of the coated metal fine particles produced It is not preferred to mix an excess amount into the amine mixture because it will have an effect. In the metal amine complex decomposition method, for example, a fatty acid such as oleic acid may be mixed with the amine mixture as a dispersant for improving the dispersibility of the generated coated metal fine particles in the dispersion medium. In particular, it is effective to add an appropriate fatty acid when an amine mixture having a small average molecular weight of alkylamine is used, for example, by containing a large proportion of short-chain alkylamine. However, when an excessive amount of fatty acid is used, the desorption temperature of the protective film from the coated metal fine particles tends to increase, so that the amount added is 5 mol relative to the metal atoms contained in the reaction system. % Or less is desirable.
 金属アミン錯体分解法の他の実施形態において、加熱により分解して原子状金属を生成する金属化合物と、沸点が100℃~250℃であるアルキルモノアミンおよび沸点が100℃~250℃であるアルキルジアミンとを混合して、当該金属化合物と当該アルキルモノアミンおよびアルキルジアミンを含む錯化合物を調製し、続いて当該錯化合物を加熱して当該金属化合物を熱分解させて得られる被覆金属微粒子を用いることができる。 In another embodiment of the metal amine complex decomposition method, a metal compound that decomposes by heating to produce an atomic metal, an alkyl monoamine having a boiling point of 100 ° C. to 250 ° C., and an alkyl diamine having a boiling point of 100 ° C. to 250 ° C. To prepare a complex compound containing the metal compound and the alkyl monoamine and alkyl diamine, and then using the coated metal fine particles obtained by heating the complex compound to thermally decompose the metal compound. it can.
 アルキルモノアミンは、特に、その構造に制限がないが、金属化合物と反応して、前記錯化合物を形成するため、一級アミノ基であるRNH(Rは炭化水素鎖)または二級アミノ基であるRNH(R、Rは炭化水素鎖で同じであっても異なっていてもよい)であることが望ましい。また、アルキルモノアミンとしては、前記錯化合物の熱分解温度を考慮すれば100℃以上の沸点であること、また、得られた被覆金属微粒子の低温焼結性を考慮すれば、250℃以下の沸点であることが考慮される。例えば、2-エトキシエチルアミン(105℃)、ジプロピルアミン(107℃)、ジブチルアミン(159℃)、ヘキシルアミン(131℃)、シクロヘキシルアミン(134℃)、ヘプチルアミン(155℃)、3-ブトキシプロピルアミン(170℃)、オクチルアミン(176℃)、ノニルアミン(201℃)、デシルアミン(217℃)、3-アミノプロピルトリエトキシシラン(217℃)、ドデシルアミン(248℃)等が挙げられるが、これらに限定されるものではない。 The alkyl monoamine is not particularly limited in its structure, but it reacts with a metal compound to form the complex compound, so that it is a primary amino group RNH 2 (R is a hydrocarbon chain) or a secondary amino group. R 1 R 2 NH is desirable (R 1 and R 2 may be the same or different in the hydrocarbon chain). In addition, the alkyl monoamine has a boiling point of 100 ° C. or higher in consideration of the thermal decomposition temperature of the complex compound, and a boiling point of 250 ° C. or lower in consideration of the low-temperature sinterability of the obtained coated metal fine particles. It is considered that. For example, 2-ethoxyethylamine (105 ° C), dipropylamine (107 ° C), dibutylamine (159 ° C), hexylamine (131 ° C), cyclohexylamine (134 ° C), heptylamine (155 ° C), 3-butoxy Propylamine (170 ° C), octylamine (176 ° C), nonylamine (201 ° C), decylamine (217 ° C), 3-aminopropyltriethoxysilane (217 ° C), dodecylamine (248 ° C) and the like. It is not limited to these.
 アルキルジアミンとしては、前記錯化合物の熱分解温度を考慮すれば100℃以上の沸点であること、また、得られた被覆金属微粒子の低温焼結性を考慮すれば、250℃以下の沸点であることが考慮される。例えば、エチレンジアミン(118℃)、N,N-ジメチルエチレンジアミン(105℃)、N,N’-ジメチルエチレンジアミン(119℃)、N,N-ジエチルエチレンジアミン(146℃)、N,N’-ジエチルエチレンジアミン(153℃)、1,3-プロパンジアミン(140℃)、2,2-ジメチル-1,3-プロパンジアミン(153℃)、N,N-ジメチル-1,3-ジアミノプロパン(136℃)、N,N’-ジメチル-1,3-ジアミノプロパン(145℃)、N,N-ジエチル-1,3-ジアミノプロパン(171℃)、1,4-ジアミノブタン(159℃)、1,5-ジアミノ-2-メチルペンタン(193℃)、1,6-ジアミノヘキサン(204℃)、N,N’-ジメチル-1,6-ジアミノヘキサン(228℃)、1,7-ジアミノヘプタン(224℃)、1,8-ジアミノオクタン(225℃)等が挙げられるが、これらに限定されるものではない。 The alkyl diamine has a boiling point of 100 ° C. or higher in consideration of the thermal decomposition temperature of the complex compound, and has a boiling point of 250 ° C. or lower in consideration of the low-temperature sinterability of the obtained coated metal fine particles. It is considered. For example, ethylenediamine (118 ° C), N, N-dimethylethylenediamine (105 ° C), N, N'-dimethylethylenediamine (119 ° C), N, N-diethylethylenediamine (146 ° C), N, N'-diethylethylenediamine ( 153 ° C.), 1,3-propanediamine (140 ° C.), 2,2-dimethyl-1,3-propanediamine (153 ° C.), N, N-dimethyl-1,3-diaminopropane (136 ° C.), N , N′-dimethyl-1,3-diaminopropane (145 ° C.), N, N-diethyl-1,3-diaminopropane (171 ° C.), 1,4-diaminobutane (159 ° C.), 1,5-diamino -2-methylpentane (193 ° C), 1,6-diaminohexane (204 ° C), N, N'-dimethyl-1,6-diaminohexane (228 ° C) , 1,7-diaminoheptane (224 ° C.), 1,8-but-diamino octane (225 ° C.), and the like, but is not limited thereto.
 その他、金属アミン錯体分解法の1つの実施形態において、被覆金属微粒子の保護分子中に含まれる炭素数5以下のアルキルモノアミンと、100℃~250℃の沸点を有するアルキルジアミンの合計量が、アルキルアミン総量の少なくとも20モル%、好ましくは少なくとも30モル%である被覆金属微粒子が挙げられる。
 以上のように製造される被覆金属微粒子は、ブタノール等のアルコール溶剤や、オクタン等の非極性溶剤、又はそれらの混合溶剤等の適宜の有機溶媒に高濃度で安定して分散可能であり、使用目的に応じた有機溶媒に分散させることでインクとして用いることができる。使用する有機溶媒は、被覆金属微粒子の保護膜に含まれるアルキルアミン等の脱離を生じさせず、且つ、分散液が塗布された際に比較的速やかに蒸発するものが好ましく用いられる。
In another embodiment of the metal amine complex decomposition method, the total amount of alkyl monoamine having 5 or less carbon atoms and alkyldiamine having a boiling point of 100 ° C. to 250 ° C. contained in the protective molecule of the coated metal fine particle is alkyl Examples thereof include coated metal fine particles that are at least 20 mol%, preferably at least 30 mol% of the total amount of amine.
The coated metal fine particles produced as described above can be stably dispersed at a high concentration in an appropriate organic solvent such as an alcohol solvent such as butanol, a nonpolar solvent such as octane, or a mixed solvent thereof. It can be used as an ink by being dispersed in an organic solvent according to the purpose. As the organic solvent to be used, an organic solvent that does not cause detachment of alkylamine or the like contained in the protective film of the coated metal fine particles and evaporates relatively quickly when the dispersion is applied is preferably used.
3.被覆金属微粒子を含む膜を形成する基体と、膜の形成方法 
 本発明の方法において、被覆金属微粒子を含むインクやペーストを塗布する基体の材質や形状は特に限定されないが、例えば、熱可塑性樹脂、熱硬化性樹脂、ガラス、紙、金属、シリコン及びセラミックス等からなる材料を用いることができる。熱可塑性樹脂としては、例えば、ポリエチレン、ポリエチレンテレフタレート、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、アクリロニトリル-ブタジエン-スチレン共重合樹脂、アクリロニトリル-スチレン共重合樹脂、ポリカーボネート、ポリアセタール、ポリブチレンテレフタレート、ポリフェニレンオキシド、ポリアミド、ポリフェニレンサルファイド、ポリスルホン、ポリエーテルスルホン、ポリエーテル-エーテルケトン、ポリアリレート、アロマティックポリエステル、アロマティックポリアミド、フッ素樹脂、ポリビニリデンクロライド、ポリビニルアルコール、ポリ酢酸ビニル、ポリビニルホルマール、ポリビニルブチラール、ポリメタクリル酸メチル、酢酸セルロース等が挙げられる。
3. Substrate for forming a film containing coated fine metal particles, and method for forming the film
In the method of the present invention, the material and shape of the substrate to which the ink or paste containing the coated metal fine particles is applied are not particularly limited, but for example, from thermoplastic resin, thermosetting resin, glass, paper, metal, silicon, ceramics, etc. Can be used. Examples of the thermoplastic resin include polyethylene, polyethylene terephthalate, polypropylene, polyvinyl chloride, polystyrene, acrylonitrile-butadiene-styrene copolymer resin, acrylonitrile-styrene copolymer resin, polycarbonate, polyacetal, polybutylene terephthalate, polyphenylene oxide, polyamide, Polyphenylene sulfide, polysulfone, polyethersulfone, polyether-etherketone, polyarylate, aromatic polyester, aromatic polyamide, fluororesin, polyvinylidene chloride, polyvinyl alcohol, polyvinyl acetate, polyvinyl formal, polyvinyl butyral, polymethyl methacrylate And cellulose acetate.
 前記熱硬化性樹脂としては、例えば、フェノール樹脂、尿素樹脂、キシレン樹脂、ユリア樹脂、メラミン樹脂、エポキシ樹脂、ケイ素樹脂、ジアリルフタレート樹脂、フラン樹脂、アニリン樹脂、アセトン-ホルムアルデヒド樹脂、アルキド樹脂等が挙げられる。前記セラミックスとしては、酸化物、炭化物、窒化物、ホウ化物などの無機化合物を意味し、例えばアルミナ(Al23)、シリコンナイトライド(SiN)、シリコンカーバイド(SiC)、アルミナイトライド(AlN)、ホウ化ジルコニウム(ZrB2)等が挙げられる。 Examples of the thermosetting resin include phenol resin, urea resin, xylene resin, urea resin, melamine resin, epoxy resin, silicon resin, diallyl phthalate resin, furan resin, aniline resin, acetone-formaldehyde resin, alkyd resin, and the like. Can be mentioned. The ceramic means inorganic compounds such as oxides, carbides, nitrides, borides and the like. For example, alumina (Al 2 O 3 ), silicon nitride (SiN), silicon carbide (SiC), aluminum nitride (AlN) ), Zirconium boride (ZrB 2 ), and the like.
 被覆金属微粒子を含むインク等を用いて所定の膜等を基体上に形成する工程は、所望の厚みで膜を形成できる方法であれば特に限定されず、一般的なスピンコートやスプレー塗布等を用いることができる。また、特に被覆金属微粒子を含む膜により配線前駆体となるパターンを基体上に形成する工程は、従来の様々な印刷方法を用いることが可能であり、例えば、スクリーン印刷方法、インクジェット印刷方法、凹版印刷、凸版印刷、平板印刷等を用いることができる。また、被覆金属微粒子を含む膜を導体化して得られる金属膜の用途は電気配線に限定されず、光学装置用の鏡面や、各種装飾用等に用いることができる。
 被覆金属微粒子を含むインク等により基体上に形成される膜の厚みは、導体化により得られる金属膜の目的に応じて適宜設定することができる。通常の電気配線等であれば、1μm以下程度の金属膜となるように当該インクにより膜を形成し、導体化を行うことで良好な特性を得ることができる。
The process of forming a predetermined film or the like on the substrate using ink containing coated metal fine particles is not particularly limited as long as it can form a film with a desired thickness, and general spin coating, spray coating, etc. Can be used. In particular, the process of forming a pattern serving as a wiring precursor on the substrate by using a film containing coated fine metal particles can use various conventional printing methods such as a screen printing method, an ink jet printing method, and an intaglio plate. Printing, letterpress printing, lithographic printing, and the like can be used. Moreover, the use of the metal film obtained by making the film containing the coated metal fine particles into a conductor is not limited to electrical wiring, and can be used for mirror surfaces for optical devices, various decorations, and the like.
The thickness of the film formed on the substrate with the ink containing the coated metal fine particles can be appropriately set according to the purpose of the metal film obtained by making the conductor. If it is a normal electric wiring etc., a favorable characteristic can be acquired by forming a film | membrane with the said ink so that it may become a metal film of about 1 micrometer or less, and making it into a conductor.
 異なる視点において、本発明は、アルキルアミンを含む保護膜により被覆された金属微粒子を基体上に塗布する工程と、当該被覆金属微粒子を上記方法にて導体化する工程と、を含む配線基板の製造方法を提供する。本発明の製造方法の特徴は、上記アルキルアミンを含む保護膜により被覆された金属微粒子を用いる際に、上記で説明した導体化方法を用いることにある。従って、被覆金属微粒子を塗布する基板やその塗布する方法は特に限定されないが、低温での導体化を可能とする本発明の特徴に基づけば、PETやポリプロピレンなどの、加工性が容易な安価な有機高分子基体にインクジェットプリンティング法を用いて配線することが可能となる。
 また、本発明に係る導体化方法は、基体上に設けられた各種半導体素材等に対する給電を行うための配線の形成に使用することができる。特に、有機EL素材や有機半導体素材のように、高温への加熱が困難素材に対して給電を行う配線の形成において、本発明に係る導体化方法は特に有用である。
From a different point of view, the present invention provides a wiring board including a step of applying metal fine particles coated with a protective film containing an alkylamine on a substrate, and a step of converting the coated metal fine particles into a conductor by the above method. Provide a method. The feature of the production method of the present invention is that when the metal fine particles covered with the protective film containing the alkylamine are used, the conductorization method described above is used. Accordingly, the substrate on which the coated metal fine particles are applied and the method for applying the same are not particularly limited. However, based on the characteristics of the present invention that enables a conductor to be formed at a low temperature, such as PET and polypropylene, which are easy to process and inexpensive. Wiring to the organic polymer substrate can be performed using the inkjet printing method.
In addition, the method for making a conductor according to the present invention can be used for forming a wiring for supplying power to various semiconductor materials provided on a substrate. In particular, the method for forming a conductor according to the present invention is particularly useful in the formation of wiring that feeds power to materials that are difficult to be heated to high temperatures, such as organic EL materials and organic semiconductor materials.
 以下、本発明に係る導体化方法について、特に金属アミン錯体分解法で製造した被覆銀微粒子を含む膜の導体化に関して実施例および比較例を挙げて本発明をさらに具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples regarding the method for forming a conductor according to the present invention, in particular, regarding the conversion of a film containing coated silver fine particles produced by a metal amine complex decomposition method. The invention is not limited to the following examples.
[調製例1]アルキルアミン被覆銀微粒子の調製1
 n-ヘキシルアミン5.78g(57.1mmol)とn-ドデシルアミン0.885g(4.77mmol)、N,N-ジメチル-1,3-ジアミノプロパン3.89g(38.1mmol)、オレイン酸(東京化成、>85.0%)0.251g(0.889mmol)を混合し、この混合液にシュウ酸銀7.60g(25.0mmol)を加え、約1時間撹拌すると、シュウ酸イオン・アルキルアミン・アルキルジアミン・銀錯化合物が生成し、粘性のある固体物へと変化した。これを100℃で10分加熱撹拌し、二酸化炭素の発泡を伴う反応を完結することで、青色光沢を呈する被覆銀微粒子を含む懸濁液を得た。懸濁液に含まれる過剰のアルキルアミン等を除去するために、懸濁液にメタノール10mLを加え、遠心分離により得られた沈殿物を分離し、もう一度、メタノール10mLを加え、沈殿物を撹拌し、遠心分離により沈殿物を得た。沈殿物は、アルキルアミンを含む保護膜により被覆された被覆銀微粒子であった。この沈殿物にn-オクタンとn-ブタノールの混合溶媒(体積比4:1v/v)を加えて撹拌することで、50重量%の被覆銀微粒子が良好に分散する分散液1を得た。
[Preparation Example 1] Preparation 1 of alkylamine-coated silver fine particles
n-hexylamine 5.78 g (57.1 mmol), n-dodecylamine 0.885 g (4.77 mmol), N, N-dimethyl-1,3-diaminopropane 3.89 g (38.1 mmol), oleic acid ( Tokyo Chemical,> 85.0%) 0.251 g (0.889 mmol) was mixed, and 7.60 g (25.0 mmol) of silver oxalate was added to this mixture, followed by stirring for about 1 hour. An amine / alkyl diamine / silver complex compound was formed and changed to a viscous solid. This was heated and stirred at 100 ° C. for 10 minutes to complete the reaction accompanied by the foaming of carbon dioxide, thereby obtaining a suspension containing coated silver fine particles exhibiting blue gloss. In order to remove excess alkylamine and the like contained in the suspension, 10 mL of methanol is added to the suspension, the precipitate obtained by centrifugation is separated, 10 mL of methanol is added again, and the precipitate is stirred. The precipitate was obtained by centrifugation. The precipitate was coated silver fine particles coated with a protective film containing alkylamine. To this precipitate, a mixed solvent of n-octane and n-butanol (volume ratio 4: 1 v / v) was added and stirred to obtain a dispersion 1 in which 50% by weight of coated silver fine particles were well dispersed.
[調製例2]アルキルアミン被覆銀微粒子の調製2
 オクチルアミン0.73g(シュウ酸銀に対するモル比0.56)、ヘキシルアミン3.46g(同モル比3.4)、ブチルアミン1.45g(同モル比2.0)、オレイン酸(東京化成、>85.0%)0.12gを混合し、この混合液に硝酸銀(関東化学、一級)とシュウ酸二水和物(関東化学、特級)から合成して得たシュウ酸銀3.047g(モル比1)を加え、室温で攪拌することで、シュウ酸銀を粘性のある白色の物質へと変化させ、当該変化が外見的に終了したと認められる時点で攪拌を終了した。得られた混合液をアルミブロック式加熱攪拌機に移して、100~110℃の温度設定で加熱攪拌を行った。攪拌の開始後すぐに二酸化炭素の発生を伴う反応が開始し、その後、二酸化炭素の発生が完了するまで攪拌を行うことで、青色光沢を呈する被覆銀微粒子がアミン混合物中に懸濁した懸濁液を得た。
[Preparation Example 2] Preparation 2 of alkylamine-coated silver fine particles
Octylamine 0.73 g (molar ratio to silver oxalate 0.56), hexylamine 3.46 g (same molar ratio 3.4), butylamine 1.45 g (same molar ratio 2.0), oleic acid (Tokyo Kasei, > 85.0%) 0.12 g was mixed, and 3.047 g of silver oxalate synthesized from silver nitrate (Kanto Chemical, first grade) and oxalic acid dihydrate (Kanto Chemical, special grade) By adding a molar ratio 1) and stirring at room temperature, the silver oxalate was changed to a viscous white substance, and stirring was terminated when the change was found to be apparently finished. The obtained mixed liquid was transferred to an aluminum block type heating stirrer and heated and stirred at a temperature setting of 100 to 110 ° C. Suspension in which coated silver fine particles exhibiting a blue luster are suspended in the amine mixture by stirring until carbon dioxide generation is completed immediately after the start of stirring and then stirring until carbon dioxide generation is completed. A liquid was obtained.
 次に、この懸濁液の分散媒を置換するため、メタノール10mLを加えて攪拌後、遠心分離により被覆銀微粒子を沈殿させて分離し、分離した被覆銀微粒子に対し、再度メタノール10mLを加え、攪拌、遠心分離を行うことで被覆銀微粒子を沈殿させて分離した。この被覆銀微粒子に、混合後の銀含有率が50重量%程度になるようにn-ブタノールとn-オクタンの混合溶媒(体積比1:4)を加えて攪拌し、被覆銀微粒子が独立分散した分散液2を得た。 Next, in order to replace the dispersion medium of this suspension, 10 mL of methanol was added and stirred, and then the coated silver fine particles were precipitated and separated by centrifugation, and 10 mL of methanol was added again to the separated coated silver fine particles, The coated silver fine particles were precipitated and separated by stirring and centrifuging. To this coated silver fine particle, a mixed solvent of n-butanol and n-octane (volume ratio 1: 4) is added and stirred so that the silver content after mixing is about 50% by weight, and the coated silver fine particles are dispersed independently. Dispersion 2 was obtained.
[試験例1]
 調製例1で調製した被覆銀微粒子の分散液1を用いて、PET基板に対しスピンコートを用いて被覆銀微粒子を含む膜を、導体化後の膜厚が500nm程度となるように形成した。当該膜を形成した基板を速やかに強制送風乾燥機(Yamato DK240S、又はDKM300)の40℃に設定した恒温槽内に設置し、1時間経過後の電気抵抗(四探針法、共和理研 K-705RS)を測定した(比較例1)。この際の恒温槽内の相対湿度は11%であった(温度・湿度・風速計センサー(A1-SDI StatusV2,アズワン株式会社製))。
 調製例2で調製した被覆銀微粒子の分散液2を用いた以外は、上記と同様にPET基板に対しスピンコートを用いて被覆銀微粒子を含む膜を形成した。当該膜を形成した基板を速やかに強制送風乾燥機の80℃に設定した恒温槽内に設置し、1時間経過後の電気抵抗を同様に測定した(比較例2)。この際の恒温槽内の相対湿度は2.7%であった。
 それぞれの条件で導体化を行った膜の電気抵抗値を表1に示す。なお、表1においては、各相対湿度を容積絶対湿度に換算した値を併せて示した。
 本試験例は、実質的に所定温度に加熱した実験室内の大気を被覆銀微粒子を含む膜に接触させて導体化を行った例であるが、以下に説明する実施例と比較して、80℃で1時間の導体化を行った場合にも必ずしも十分に体積抵抗率を低下できず、膜の内部に被覆銀微粒子の保護膜に含まれるアルキルアミンが残留していることが推察された。
[Test Example 1]
Using the coated silver fine particle dispersion 1 prepared in Preparation Example 1, a film containing the coated silver fine particles was formed on a PET substrate by spin coating so that the film thickness after the formation of the conductor was about 500 nm. The substrate on which the film was formed was quickly placed in a constant temperature oven set at 40 ° C. in a forced air dryer (Yamato DK240S or DKM300), and the electrical resistance after one hour (four probe method, Kyowa Riken K- 705RS) was measured (Comparative Example 1). The relative humidity in the thermostatic chamber at this time was 11% (temperature / humidity / anemometer sensor (A1-SDI Status V2, manufactured by ASONE CORPORATION)).
A film containing coated silver fine particles was formed on a PET substrate by spin coating in the same manner as described above except that the dispersion 2 of coated silver fine particles prepared in Preparation Example 2 was used. The substrate on which the film was formed was quickly placed in a thermostatic oven set at 80 ° C. in a forced air dryer, and the electrical resistance after 1 hour was measured in the same manner (Comparative Example 2). At this time, the relative humidity in the thermostatic chamber was 2.7%.
Table 1 shows the electrical resistance values of the films that were made conductive under the respective conditions. In Table 1, values obtained by converting each relative humidity into a volumetric absolute humidity are also shown.
This test example is an example in which the atmosphere in the laboratory heated to a substantially predetermined temperature is brought into contact with a film containing coated silver fine particles, and is made into a conductor. Compared with the examples described below, Even when conducting at 1 ° C. for 1 hour, the volume resistivity could not be lowered sufficiently, and it was inferred that the alkylamine contained in the protective film of the coated silver fine particles remained inside the film.
[試験例2]
 試験例1と同様に分散液1を用いて膜を形成し、その基板を速やかに所定の条件に保持した恒温恒湿器(エスペック環境試験器、SH-221)内に1時間設置し、電気抵抗(四探針法)の変化を測定した。恒温恒湿器の条件は、40℃で温度一定とし、相対湿度をそれぞれ38%(実施例1)、50%(実施例2)、60%(実施例3)及び80%(実施例4)とした。
 それぞれの条件で導体化を行った膜の電気抵抗値を表1に併せて示す。また、実施例1,3,4における導体化中の電気抵抗値の経時変化を図1に示す。表1、図1から明らかなように、湿度が高い程、被覆銀微粒子を含む膜の導体化が進行し、40℃の極低温においても、1時間の導体化で73μΩcm(相対湿度80%)程度の高い導電性を有する銀被膜が得られることから、被覆銀微粒子の保護膜を形成していたアルキルアミンの脱離が促進されることが示された。
[Test Example 2]
In the same manner as in Test Example 1, a film was formed using Dispersion 1, and the substrate was quickly placed in a constant temperature and humidity chamber (ESPEC environmental tester, SH-221) that was kept under predetermined conditions for 1 hour. Changes in resistance (four probe method) were measured. The temperature and humidity conditions were constant at 40 ° C., and the relative humidity was 38% (Example 1), 50% (Example 2), 60% (Example 3) and 80% (Example 4), respectively. It was.
Table 1 also shows the electrical resistance values of the films that have been made conductive under the respective conditions. Moreover, the time-dependent change of the electrical resistance value during conductorization in Examples 1, 3, and 4 is shown in FIG. As can be seen from Table 1 and FIG. 1, the higher the humidity, the more the film containing the coated silver fine particles becomes conductive, and even at an extremely low temperature of 40 ° C., the conductor becomes 73 μΩcm (relative humidity 80%) after 1 hour. Since a silver film having a high degree of conductivity was obtained, it was shown that the elimination of the alkylamine that had formed the protective film of the coated silver fine particles was promoted.
[試験例3]
 恒温恒湿器内の温度を50℃一定とし、相対湿度35%(実施例5)、相対湿度50%(実施例6)、相対湿度60%(実施例7)、相対湿度70%(実施例8)及び相対湿度80%(実施例9)に設定した以外は、試験例1と同様の方法により、PET基体上に設けた分散液1の膜の導体化処理を行い、電気抵抗を測定した。
 それぞれの条件で1時間の導体化をした膜の電気抵抗値を表1に併せて示す。また、実施例5~9における導体化中の電気抵抗値の経時変化を図2に示す。いずれの相対湿度でも1時間以内に体積抵抗率が10-4Ωcm以下となると共に、特に高い割合の水蒸気に接触した際に体積抵抗率が低下し、アルキルアミンの脱離が促進されたものと考えられる。
[Test Example 3]
The temperature in the thermo-hygrostat is constant at 50 ° C., relative humidity 35% (Example 5), relative humidity 50% (Example 6), relative humidity 60% (Example 7), and relative humidity 70% (Example) 8) and a relative humidity of 80% (Example 9) except that the electrical resistance was measured in the same manner as in Test Example 1 except that the film of the dispersion liquid 1 provided on the PET substrate was made conductive. .
Table 1 also shows the electrical resistance values of the films made into conductors for 1 hour under the respective conditions. In addition, FIG. 2 shows the change over time of the electrical resistance value during the conductorization in Examples 5 to 9. In any relative humidity, the volume resistivity becomes 10 −4 Ωcm or less within 1 hour, and the volume resistivity decreases particularly when contacted with a high proportion of water vapor, and the elimination of alkylamine is promoted. Conceivable.
[試験例4]
 恒温恒湿器内の温度を70℃一定とし、相対湿度30%(実施例10)、相対湿度40%(実施例11)及び相対湿度50%(実施例12)に設定した以外は、試験例1と同様の方法により、PET基体上に設けた分散液1の膜の導体化処理を行い、電気抵抗を測定した。
 それぞれの条件で30分間の導体化をした膜の電気抵抗値を表1に併せて示す。また、実施例10~12における導体化中の電気抵抗値の経時変化を図3に示す。いずれの相対湿度でも導体化処理の開始から1分程度の短時間で体積抵抗率が10-4Ωcm以下となると共に、高湿度における導体化で体積抵抗率の低下速度が大きい傾向が見られ、被覆銀微粒子の保護膜に含まれるアルキルアミンの脱離が非常に短時間で生じることが推察された。
[Test Example 4]
Test example, except that the temperature in the constant temperature and humidity chamber was fixed at 70 ° C. and the relative humidity was set to 30% (Example 10), relative humidity 40% (Example 11), and relative humidity 50% (Example 12). In the same manner as in No. 1, the film of the dispersion 1 provided on the PET substrate was subjected to a conductor treatment, and the electrical resistance was measured.
Table 1 also shows the electrical resistance values of the films made into conductors for 30 minutes under the respective conditions. In addition, FIG. 3 shows the change over time of the electrical resistance value during the conductorization in Examples 10 to 12. At any relative humidity, the volume resistivity becomes 10 −4 Ωcm or less in a short time of about 1 minute from the start of the conductorization treatment, and the decrease in volume resistivity tends to be large due to the conductorization at high humidity, It was speculated that the elimination of the alkylamine contained in the protective film of the coated silver fine particles occurs in a very short time.
[試験例5]
 恒温恒湿器内の相対湿度を50%一定とし、温度60℃(実施例13)、及び温度80℃(実施例14)に設定した以外は、試験例1と同様の方法により、PET基体上に設けた分散液1の膜の導体化処理を行い、電気抵抗を測定した。
 それぞれの条件で30分間の導体化をした膜の電気抵抗値を表1に併せて示す。また、実施例13,14における導体化中の電気抵抗値の経時変化を図4に示す。同一の相対湿度においても、60℃と比較して80℃での導体化において導体化が促進される理由は、温度上昇に伴って保護膜に含まれるアルキルアミン等の蒸気圧が上昇すると共に、実体的な気相中の水蒸気量を表す容積絶対湿度が上昇して、被覆銀微粒子を含む膜に対する水分子の供給が円滑になるためと考えられる。
[Test Example 5]
On the PET substrate in the same manner as in Test Example 1, except that the relative humidity in the constant temperature and humidity chamber was fixed at 50% and the temperature was set to 60 ° C. (Example 13) and 80 ° C. (Example 14). Conductive treatment was performed on the membrane of Dispersion 1 provided on the substrate, and the electrical resistance was measured.
Table 1 also shows the electrical resistance values of the films made into conductors for 30 minutes under the respective conditions. In addition, FIG. 4 shows the change over time in the electrical resistance value during conductorization in Examples 13 and 14. Even at the same relative humidity, the reason why conductorization is promoted in conductorization at 80 ° C as compared to 60 ° C is that the vapor pressure of alkylamine and the like contained in the protective film increases as the temperature rises, This is probably because the volumetric absolute humidity representing the substantial amount of water vapor in the gas phase increases, and the supply of water molecules to the film containing the coated silver fine particles becomes smooth.
[試験例6]
 調製例2で調製した被覆銀微粒子の分散液2を用いて、上記と同様にPET基板に対しスピンコートを用いて被覆銀微粒子を含む膜を形成した。当該膜を形成した基板を速やかに強制送風乾燥機の120℃に設定した恒温槽内に設置し、30分経過後の電気抵抗率を同様に測定した(実施例15)。この際、強制送風乾燥機の吸気口付近を加湿し、恒温槽内の相対湿度は3.3%であった。
 実施例15で導体化をした膜の電気抵抗値を表1に併せて示す。実施例15における恒温槽内の容積絶対湿度は36.7g/mと換算され、理想的金属銀の抵抗値に近い11μΩcmの極めて低い体積抵抗率を有する銀薄膜が得られた。
[Test Example 6]
Using the coated silver fine particle dispersion 2 prepared in Preparation Example 2, a film containing the coated silver fine particles was formed on the PET substrate by spin coating in the same manner as described above. The substrate on which the film was formed was quickly placed in a thermostatic oven set at 120 ° C. in a forced air dryer, and the electrical resistivity after 30 minutes was measured in the same manner (Example 15). At this time, the vicinity of the air inlet of the forced air dryer was humidified, and the relative humidity in the thermostatic bath was 3.3%.
Table 1 also shows the electrical resistance value of the film made conductive in Example 15. The volumetric absolute humidity in the thermostatic chamber in Example 15 was converted to 36.7 g / m 3, and a silver thin film having an extremely low volume resistivity of 11 μΩcm, which is close to the resistance value of ideal metallic silver, was obtained.
[試験例7]
 調製例2で調製した被覆銀微粒子の分散液2を用いて、上記と同様にPET基板に対しスピンコートを用いて被覆銀微粒子を含む膜を形成した。当該膜を形成した基板を速やかに室温(20℃)においてセパラブルフラスコ中に設置すると共に、セパラブルフラスコ中に水をバブリングした空気を流通させ、1時間経過後の電気抵抗率を上記試験例と同様に測定した。この際、セパラブルフラスコ内部の相対湿度は86%であった。次に、当該基板を速やかに強制送風乾燥機の80℃に設定した恒温槽内に設置し、1時間経過後の電気抵抗率を同様に測定した(実施例16)。この際、恒温槽内の相対湿度は3.8%であった。
[Test Example 7]
Using the coated silver fine particle dispersion 2 prepared in Preparation Example 2, a film containing the coated silver fine particles was formed on the PET substrate by spin coating in the same manner as described above. The substrate on which the film was formed was quickly placed in a separable flask at room temperature (20 ° C.), and air bubbled with water was circulated through the separable flask, and the electrical resistivity after 1 hour was measured in the above test example. Was measured in the same manner. At this time, the relative humidity inside the separable flask was 86%. Next, the substrate was quickly placed in a thermostatic oven set at 80 ° C. in a forced air dryer, and the electrical resistivity after 1 hour was measured in the same manner (Example 16). At this time, the relative humidity in the thermostatic chamber was 3.8%.
 実施例16で導体化をした膜の電気抵抗値を表1に併せて示す。実施例16においては、80℃における実質的な導体化の処理を比較例2と同様の条件で行ったにも関わらず、10μΩcm程度の極めて低い体積抵抗率が測定された。これは、予め20℃において比較的高い湿度の空気に接触させることで、被覆銀微粒子を含む膜に水分子が吸着等を生じており、この水分子により被覆銀微粒子の保護膜に含まれるアルキルアミン等の脱離が促進されたためと推察された。 Table 1 also shows the electrical resistance values of the films made conductive in Example 16. In Example 16, an extremely low volume resistivity of about 10 μΩcm was measured even though the substantial conductorization treatment at 80 ° C. was performed under the same conditions as in Comparative Example 2. This is because water molecules are adsorbed on the film containing the coated silver fine particles by contact with air of relatively high humidity in advance at 20 ° C., and the alkyl contained in the protective film of the coated silver fine particles by the water molecules. It was assumed that the elimination of amines was promoted.
 以上の結果をまとめると、以下の表1のようになる。 The above results are summarized as shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[試験例8]
 シリコン基板上に、調製例1で得られた分散液1を試験例1と同様の方法で塗布した。これを実施例12と同様の条件で導体化した後の膜の断面を、サーマル電界放出走査電子顕微鏡(日本電子JSM-7600F)を用いて観察した結果を図5に示す。膜厚約500nmで緻密な膜が形成されていることが分かる。また、当該膜の表面は、非常に平滑な鏡面を形成しており、各種光学用途向けの鏡面として使用することが期待された。
[Test Example 8]
Dispersion liquid 1 obtained in Preparation Example 1 was applied on a silicon substrate in the same manner as in Test Example 1. FIG. 5 shows the result of observing the cross section of the film after making it a conductor under the same conditions as in Example 12 using a thermal field emission scanning electron microscope (JEOL JSM-7600F). It can be seen that a dense film is formed with a film thickness of about 500 nm. In addition, the surface of the film forms a very smooth mirror surface, which is expected to be used as a mirror surface for various optical applications.
 以上、各実施例により裏付けられるように、アルキルアミンを含む保護膜によって被覆された被覆金属微粒子を含む膜を導体化する際に、当該膜を所定量以上の水蒸気を含む気体に接触させることにより、導体化が促進されることが明らかになった。これは、気体に含まれる水蒸気が当該膜に吸着・取り込まれることによって、保護膜に含まれるアルキルアミンの脱離が促進されるためと推察される。典型的には、容積絶対湿度として14g/m以上の水蒸気を含むことで導体化処理の点において優位な効果を生じることが明らかとなった。 As described above, when a film containing coated metal fine particles coated with a protective film containing alkylamine is made into a conductor, as supported by each example, the film is brought into contact with a gas containing a predetermined amount or more of water vapor. It became clear that the conductorization was promoted. This is presumed to be because desorption of the alkylamine contained in the protective film is promoted by the adsorption and incorporation of water vapor contained in the gas into the film. Typically, it has been clarified that the inclusion of water vapor of 14 g / m 3 or more as the absolute volume humidity produces an advantageous effect in terms of conductorization treatment.

Claims (6)

  1.  基体上に設けられた、アルキルアミンを含む保護膜により被覆された被覆金属微粒子を含む膜を導体化する方法であって、当該被覆金属微粒子を含む膜の少なくても一部と、14g/m以上の水蒸気を含有する気体と、を接触させる工程を含むことを特徴とする導体化方法。 A method for converting a film containing coated metal fine particles provided on a substrate and coated with a protective film containing an alkylamine into a conductor, at least a part of the film containing the coated metal fine particles, and 14 g / m A method for making a conductor, comprising a step of contacting a gas containing three or more water vapors.
  2.  前記被覆金属微粒子を含む膜の少なくても一部と、14g/m以上の水蒸気を含有する気体とを接触させる工程の少なくても一部において、20g/m以上の水蒸気を含有する気体を当該膜に接触させることを特徴とする請求項1に記載の導体化方法。 And some even less of a film containing the fine metal particles, in some even less of contacting a gas containing 14 g / m 3 or more of water vapor, the gas containing 20 g / m 3 or more steam The method according to claim 1, wherein the film is brought into contact with the film.
  3.  前記被覆金属微粒子を含む膜の少なくても一部と、14g/m以上の水蒸気を含有する気体とを接触させる工程は、前記基体上に設けられたアルキルアミンを含む保護膜により被覆された被覆金属微粒子を含む膜を導体化する方法の略全般において行われることを特徴とする請求項1又は2に記載の導体化方法。 The step of contacting at least a part of the film containing the coated fine metal particles with a gas containing water vapor of 14 g / m 3 or more was covered with a protective film containing an alkylamine provided on the substrate. 3. The method for forming a conductor according to claim 1, wherein the method is carried out in almost all methods for converting a film containing coated metal fine particles into a conductor.
  4.  前記アルキルアミンを含む保護膜により被覆された被覆金属微粒子は、金属化合物を含む錯化合物をアルキルアミンの存在下で熱分解することで製造されたものであることを特徴とする請求項1~3のいずれか一項に記載の導体化方法。 The coated metal fine particles coated with a protective film containing an alkylamine are produced by thermally decomposing a complex compound containing a metal compound in the presence of an alkylamine. The conductorization method according to any one of the above.
  5.  前記アルキルアミンを含む保護膜により被覆された被覆金属微粒子は、アルキルアミンを含む保護膜により被覆された被覆銀微粒子であることを特徴とする請求項4に記載の導体化方法。 5. The method of forming a conductor according to claim 4, wherein the coated metal fine particles coated with a protective film containing an alkylamine are coated silver fine particles coated with a protective film containing an alkylamine.
  6.  請求項1~5のいずれか一項に記載の導体化方法により被覆金属微粒子を含む膜が導体化された導体膜を有する基体。 A substrate having a conductor film in which a film containing coated metal fine particles is made into a conductor by the method for forming a conductor according to any one of claims 1 to 5.
PCT/JP2013/052151 2012-02-03 2013-01-31 Method for inducing conductivity in films including metal microparticles WO2013115300A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012021428A JP2013161593A (en) 2012-02-03 2012-02-03 Method of making a film including metal fine particle into conductor
JP2012-021428 2012-02-03

Publications (1)

Publication Number Publication Date
WO2013115300A1 true WO2013115300A1 (en) 2013-08-08

Family

ID=48905332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052151 WO2013115300A1 (en) 2012-02-03 2013-01-31 Method for inducing conductivity in films including metal microparticles

Country Status (2)

Country Link
JP (1) JP2013161593A (en)
WO (1) WO2013115300A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014024630A1 (en) * 2012-08-07 2014-02-13 田中貴金属工業株式会社 Silver particle ink, silver particle sintered body and method for manufacturing silver particle ink
WO2017139641A1 (en) * 2016-02-12 2017-08-17 Te Connectivity Corporation Method of fabricating highly conductive features with silver nanoparticle ink at low temperature
WO2020045111A1 (en) * 2018-08-30 2020-03-05 田中貴金属工業株式会社 Silver ink for low-temperature burning
EP3733792A1 (en) * 2019-04-30 2020-11-04 Agfa-Gevaert Nv A method of manufacturing a conductive pattern

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI635918B (en) * 2012-08-07 2018-09-21 大賽璐股份有限公司 Method for manufacturing silver nanoparticles and silver nanoparticles
US10427251B2 (en) * 2014-06-11 2019-10-01 Bando Chemical Industries, Ltd. Fine silver particle dispersion, fine silver particles, and method for producing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169613A (en) * 2004-12-20 2006-06-29 Ulvac Japan Ltd Method for depositing metallic thin film, and metallic thin film
JP2009270146A (en) * 2008-05-02 2009-11-19 Shoei Chem Ind Co Method for producing silver hyperfine particle
JP2010265543A (en) * 2009-04-17 2010-11-25 Yamagata Univ Coated ultrafine particle of silver and production method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169613A (en) * 2004-12-20 2006-06-29 Ulvac Japan Ltd Method for depositing metallic thin film, and metallic thin film
JP2009270146A (en) * 2008-05-02 2009-11-19 Shoei Chem Ind Co Method for producing silver hyperfine particle
JP2010265543A (en) * 2009-04-17 2010-11-25 Yamagata Univ Coated ultrafine particle of silver and production method therefor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014024630A1 (en) * 2012-08-07 2014-02-13 田中貴金属工業株式会社 Silver particle ink, silver particle sintered body and method for manufacturing silver particle ink
JP2014034602A (en) * 2012-08-07 2014-02-24 Tanaka Kikinzoku Kogyo Kk Silver fine particle ink, silver fine particle sintered body and method for manufacturing silver fine particle ink
US9674953B2 (en) 2012-08-07 2017-06-06 Tanaka Kikinzoku Kogyo K.K. Fine silver particle ink, fine silver particle sintered body, and method for producing fine silver particle ink
WO2017139641A1 (en) * 2016-02-12 2017-08-17 Te Connectivity Corporation Method of fabricating highly conductive features with silver nanoparticle ink at low temperature
WO2020045111A1 (en) * 2018-08-30 2020-03-05 田中貴金属工業株式会社 Silver ink for low-temperature burning
TWI723509B (en) * 2018-08-30 2021-04-01 日商田中貴金屬工業股份有限公司 Silver ink for low-temperature calcination
JPWO2020045111A1 (en) * 2018-08-30 2021-08-10 田中貴金属工業株式会社 Silver ink for low temperature firing
JP7320515B2 (en) 2018-08-30 2023-08-03 田中貴金属工業株式会社 Silver ink for low temperature firing
EP3733792A1 (en) * 2019-04-30 2020-11-04 Agfa-Gevaert Nv A method of manufacturing a conductive pattern
WO2020221650A1 (en) * 2019-04-30 2020-11-05 Agfa-Gevaert Nv A method of manufacturing a conductive pattern
CN113710757A (en) * 2019-04-30 2021-11-26 爱克发-格法特公司 Method of manufacturing conductive pattern

Also Published As

Publication number Publication date
JP2013161593A (en) 2013-08-19

Similar Documents

Publication Publication Date Title
WO2013115300A1 (en) Method for inducing conductivity in films including metal microparticles
JP6241908B2 (en) Coated fine metal particles and production method thereof
TWI665165B (en) Silver fine particle disperant, silver fine particle and production method thereof and bonding composition
JP5007020B2 (en) Method for forming metal thin film and metal thin film
WO2014119791A1 (en) Novel coated copper fine particles and production method therefor
KR101020844B1 (en) Reducing agent for low temperature reducing and sintering of copper nanoparticels, and method for low temperature sintering using the same
JP2008176951A (en) Silver-based particulate ink paste
US9145503B2 (en) Low temperature sintering conductive metal film and preparation method thereof
KR20120038878A (en) Metal nanoparticles dispersion
WO2014021461A1 (en) Process for producing covered silver fine particles and covered silver fine particles produced by said process
JP2008198595A (en) Metal particulate ink paste and organic acid treated metal particulate
WO2014024630A1 (en) Silver particle ink, silver particle sintered body and method for manufacturing silver particle ink
JP5975440B2 (en) Method for producing coated silver fine particles and coated silver fine particles produced by the production method
JP2009295965A (en) Bimetallic nanoparticles for conductive ink application
JP2010504409A (en) Solvent system for metals and inks
JPWO2009060803A1 (en) Copper fine particles, production method thereof and copper fine particle dispersion
TWI683870B (en) Conductive film composite and production method thereof
CN111482596B (en) Copper-containing particle, conductor-forming composition, method for producing conductor, and device
WO2005101427A1 (en) Conducting metal nano particle and nano-metal ink containing it
JPWO2012053456A1 (en) Method for producing copper hydride fine particle dispersion, conductive ink and method for producing substrate with conductor
TW201809158A (en) Conductive paste and forming method of conductive pattern
KR20160120716A (en) Method for producing metal nanoparticles
JP2010536162A (en) Conductor patterns and methods of using them
JP2006322051A (en) Metal powder, and method for producing the same
TWI757412B (en) Manufacturing method of silver nanoparticles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13743767

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13743767

Country of ref document: EP

Kind code of ref document: A1