WO2013115178A1 - Polarizing plate and display device using same - Google Patents

Polarizing plate and display device using same Download PDF

Info

Publication number
WO2013115178A1
WO2013115178A1 PCT/JP2013/051890 JP2013051890W WO2013115178A1 WO 2013115178 A1 WO2013115178 A1 WO 2013115178A1 JP 2013051890 W JP2013051890 W JP 2013051890W WO 2013115178 A1 WO2013115178 A1 WO 2013115178A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
polarizing plate
base material
material layer
hydrophilic polymer
Prior art date
Application number
PCT/JP2013/051890
Other languages
French (fr)
Japanese (ja)
Inventor
隆 建部
矢野 健太郎
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to KR1020147023811A priority Critical patent/KR101634026B1/en
Publication of WO2013115178A1 publication Critical patent/WO2013115178A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/223Absorbing filters containing organic substances, e.g. dyes, inks or pigments
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers

Definitions

  • the present invention relates to a polarizing plate and a display device using the same.
  • the liquid crystal display device usually includes a liquid crystal cell having a liquid crystal layer and a pair of substrates sandwiching the liquid crystal layer, and polarizing plates respectively disposed on both sides (viewing side and backlight side) of the liquid crystal cell. is there.
  • IPS In-Plane Switching
  • IPS type liquid crystal display devices are widely used in portable devices such as tablet display devices and smartphones. It has been.
  • the liquid crystal molecules contained in the liquid crystal layer are aligned in parallel to the surfaces of the pair of substrates during black display, and thus the IPS liquid crystal display device has an advantage of excellent black display performance. Further, the IPS liquid crystal display device has an advantage that a certain high viewing angle can be secured without using a so-called optical compensation film (viewing angle widening film). On the other hand, due to the optical characteristics of the liquid crystal cell provided in the IPS liquid crystal display device, there is a problem that light leakage occurs when the screen is viewed from an oblique direction, and the contrast of the display image is lowered.
  • a retardation film is used in a liquid crystal display device for the purpose of preventing such a decrease in contrast.
  • a retardation film capable of supporting various optical designs is required. It is getting to be.
  • the retardation film mounted on the portable device as described above there is a strong demand for further reduction in thickness and weight.
  • the polarizing plate has a configuration in which a polarizer and a polarizing plate protective film for protecting the polarizer are laminated.
  • a so-called coating type polarizing plate is known as one type of polarizing plate, but this coating type polarizing plate has a problem that curling occurs in a humidified environment. When curling occurs in the polarizing plate, display unevenness (color unevenness) locally occurs when the display device is configured.
  • the hydrophilicity of the stretched laminate obtained by stretching the laminate of the base material layer and the hydrophilic polymer layer is a technique capable of preventing the occurrence of curling even in a humidified environment.
  • a technique has been proposed in which a dichroic substance adsorbed on a functional polymer layer is used as a polarizing plate (see Patent Document 1).
  • polyolefin resin, cyclic polyolefin resin, and (meth) acrylic resin are illustrated as a preferable material which comprises a base material layer.
  • the example which used the acrylic resin film (lactone-ized polymethylmethacrylate film) and the norbornene-type resin film as a base material layer is disclosed.
  • an object of the present invention is to provide a polarizing plate that can suppress the occurrence of color unevenness when a display device displays a panel.
  • a polarizing plate having a stretched laminate in which a laminate of a hydrophilic polymer layer and a base material layer containing a thermoplastic resin is stretched and a dichroic substance is adsorbed on the hydrophilic polymer layer.
  • the inventors have found that the above problem can be solved by controlling the fluctuation of the curl in two environments having different temperatures and humidity to be a predetermined value or less, and have completed the present invention.
  • a polarizing plate having a stretched laminate in which a laminate of a hydrophilic polymer layer and a base material layer containing a thermoplastic resin is stretched, and a dichroic substance is adsorbed on the hydrophilic polymer layer, ,
  • the difference ⁇ C
  • Polarizer 2.
  • the thermoplastic resin contained in the base material layer comprises an acrylic resin, a styrene resin, a cycloolefin resin, a cellulose resin, a polypropylene resin, a polyester resin, or a combination thereof.
  • the base material layer is at least A first base material layer containing a first thermoplastic resin; A second substrate layer comprising a second thermoplastic resin, disposed on the opposite side of the hydrophilic polymer layer with respect to the first substrate layer; 5.
  • the polarizing plate according to any one of the above 1 to 4 which has
  • a display device comprising the polarizing plate according to any one of 1 to 9 or the polarizing plate produced by the production method according to any one of 10 to 12; 14 14.
  • ⁇ Polarizing plate ⁇ One embodiment of the present invention is a polarizing plate having a stretched laminate in which a laminate of a hydrophilic polymer layer and a thermoplastic resin layer is stretched, and a dichroic substance is adsorbed on the hydrophilic polymer layer.
  • ADVANTAGE OF THE INVENTION According to this invention, the polarizing plate which can suppress generation
  • the polarizing plate according to the present embodiment is obtained by stretching a laminate of a hydrophilic polymer layer and a thermoplastic resin layer and adsorbing a dichroic substance on the hydrophilic polymer layer. It has a laminate.
  • the constituent elements of the stretched laminate will be described in more detail.
  • the stretched laminate is first provided with a hydrophilic polymer layer.
  • the hydrophilic polymer layer is a layer containing a hydrophilic polymer as a main component. And in the polarizing plate which concerns on this form, a hydrophilic polymer layer adsorb
  • a polyvinyl alcohol-type material is illustrated preferably.
  • the polyvinyl alcohol material include polyvinyl alcohol and derivatives thereof.
  • Derivatives of polyvinyl alcohol include polyvinyl formal, polyvinyl acetal and the like, olefins such as ethylene and propylene, unsaturated carboxylic acids such as acrylic acid, methacrylic acid and crotonic acid, alkyl esters thereof, acrylamide and the like.
  • the degree of polymerization of polyvinyl alcohol is preferably about 100 to 10,000, and more preferably 1,000 to 10,000. A saponification degree of about 80 to 100 mol% is generally used.
  • hydrophilic polymer examples include partially saponified ethylene / vinyl acetate copolymer, dehydrated polyvinyl alcohol and dehydrochlorinated polyvinyl chloride.
  • hydrophilic polymer it is preferable to use polyvinyl alcohol among polyvinyl alcohol materials.
  • the hydrophilic polymer layer may contain additives such as a plasticizer and a surfactant in addition to the hydrophilic polymer described above.
  • the plasticizer include polyols and condensates thereof, and examples thereof include glycerin, diglycerin, triglycerin, ethylene glycol, propylene glycol, and polyethylene glycol.
  • the amount of the plasticizer used is not particularly limited, but it is preferably 20% by mass or less with respect to 100% by mass of the total amount of the hydrophilic polymer layer.
  • the specific configuration of the dichroic substance adsorbed on the hydrophilic polymer layer is not particularly limited, and examples thereof include iodine and organic dyes.
  • Organic dyes include, for example, Red BR, Red LR, Red R, Pink LB, Rubin BL, Bordeaux GS, Sky Blue LG, Lemon Yellow, Blue BR, Blue 2R, Navy RY, Green LG, Violet LB, Violet B, Black H, Black B, Black GSP, Yellow 3G, Yellow R, Orange LR, Orange 3R, Scarlet GL, Scarlet KGL, Congo Red, Brilliant Violet BK, Spura Blue G, Spura Blue GL, Spura Orange GL, Direct Sky Blue, Direct First orange S, first black, etc. can be used.
  • iodine is preferably used as the dichroic material from the viewpoint of water solubility and process suitability. As for these dichroic substances, only 1 type may be used independently and 2 or more types may be used together.
  • the amount of dichroic substance adsorbed in the hydrophilic polymer layer is not particularly limited, and can be set as appropriate with reference to known knowledge.
  • the thickness of the hydrophilic polymer layer after stretching is not particularly limited, but is preferably 0.5 to 30 ⁇ m, more preferably 1 to 10 ⁇ m. If the thickness is a value equal to or greater than the lower limit, there is an advantage that the influence of thickness variation during manufacturing is reduced and appearance defects are less likely to occur. On the other hand, if the thickness is a value equal to or less than the upper limit, there is an advantage that the drying property of the aqueous solution is improved and the productivity is improved.
  • the value of the thickness of the hydrophilic polymer layer a value measured by a method of subtracting the thickness of the film obtained by stretching only the base film under the same conditions from the thickness of the stretched laminate is adopted. The thickness is measured using a film thickness meter or the like.
  • the stretched laminate also includes a substrate layer.
  • the base material layer can function as a base material for preparing the hydrophilic polymer layer when the stretched laminate (polarizing plate) is prepared.
  • a base material layer functions as a protective layer (protective film) for protecting a polarizer in the polarizing plate which concerns on this form.
  • the base material layer includes a thermoplastic resin.
  • a thermoplastic resin there is no restriction
  • the base material layer is composed of a stretchable thermoplastic resin.
  • stretchable thermoplastic resins include acrylic resins, styrene resins, cycloolefin resins, cellulose resins, polypropylene resins, polyester resins, or combinations thereof.
  • an acrylic resin containing a structural unit derived from methyl methacrylate as a main component and further comprising a structural unit derived from a monomer component copolymerizable therewith is preferably used.
  • the copolymerizable monomer component also includes an acrylic acid derivative having a ring structure.
  • the styrenic resin include a styrenic resin containing a structural unit derived from styrene as a main component and further containing a structural unit derived from a monomer component copolymerizable therewith.
  • examples of the cycloolefin resin include a norbornene resin called a cycloolefin polymer.
  • examples of the polypropylene-based resin include polypropylene partially containing polyethylene
  • examples of the polyester-based resin include polyethylene terephthalate (PET).
  • the base material layer contains a cellulosic resin.
  • a cellulosic resin Cellulose resin polymerized in presence of cellulose ester, cellulose ether, cationized cellulose, various vinyl monomers, various vinyl monomers, etc. A graft polymer or the like is used. Of these, cellulose ester resins are particularly preferably used.
  • the specific form of the cellulose ester resin is not particularly limited, but in particular from the viewpoint of improving brittleness and transparency, the following formulas (1) to (3):
  • A represents the degree of substitution of the acetyl group
  • B represents the sum of the degree of substitution of the acyl group having 3 to 7 carbon atoms. It is preferable to have an acyl group substitution degree that satisfies the above relationship.
  • the total substitution degree (A + B) of the acyl group having 2 to 7 carbon atoms of the cellulose ester resin is 2.0 or more (that is, the residual degree of hydroxyl groups at the 2, 3, 6 positions of the cellulose ester molecule is 1.0 or less If the substrate layer functions as a polarizing plate protective film, an increase in haze is prevented. If the total acyl group substitution degree (A + B) is 2.0 or more and the substitution degree of the acyl group having 3 to 7 carbon atoms is 1.0 or more, the brittleness is prevented from being lowered.
  • the cellulose ester resin has an acyl group substitution degree of 2.0 to 3.0 in total substitution degree (A), 0.15 to 2.0 substitution degree of acetyl group (A), and 3 carbon atoms.
  • substitution degree (B) of the acyl group of 7 to 1.2 is 1.2 to 3.0, but an acyl group other than 3 to 7 carbon atoms, that is, an acetyl group or an acyl group having 8 or more carbon atoms It is preferable that the total degree of substitution is 1.3 or less.
  • the total substitution degree (A + B) of the acyl group having 2 to 7 carbon atoms of the cellulose ester resin is more preferably in the range of 2.5 to 3.0.
  • the acyl group may be an aliphatic acyl group or an aromatic acyl group. In the case of an aliphatic acyl group, it may be linear or branched and may further have a substituent.
  • the number of carbon atoms of the acyl group in the present invention includes an acyl group substituent.
  • the number of substituents X substituted on the aromatic ring is preferably 0 to 5.
  • the substitution degree of the acyl group having 3 to 7 carbon atoms including the substituent is 1.0 to 2.75.
  • the benzoyl group has 7 carbon atoms, when it has a substituent containing carbon, the benzoyl group has 8 or more carbon atoms and is not included in the acyl group having 3 to 7 carbon atoms. Become.
  • substituents substituted on the aromatic ring when the number of substituents substituted on the aromatic ring is 2 or more, these may be the same or different from each other, and are connected to each other to form a condensed polycyclic compound (for example, naphthalene, indene, indane, phenanthrene, Quinoline, isoquinoline, chromene, chromane, phthalazine, acridine, indole, indoline, etc.).
  • a condensed polycyclic compound for example, naphthalene, indene, indane, phenanthrene, Quinoline, isoquinoline, chromene, chromane, phthalazine, acridine, indole, indoline, etc.
  • the cellulose ester resin is preferably at least one selected from cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate benzoate, cellulose propionate, and cellulose butyrate.
  • cellulose ester resins that are particularly preferred are cellulose acetate propionate and cellulose propionate.
  • two or more kinds of cellulose ester resins can be mixed and used.
  • the portion not substituted with an acyl group is usually present as a hydroxyl group. These can be synthesized by known methods. Further, the substitution degree of acetyl group and the substitution degree of other acyl groups are determined by the method prescribed in ASTM-D817-96.
  • the weight average molecular weight (Mw) of the cellulose ester resin is preferably 75,000 or more, more preferably in the range of 75,000 to 300,000, and still more preferably in the range of 100,000 to 24,000, particularly from the viewpoint of improving brittleness. 160000-240000 are particularly preferred. When the weight average molecular weight (Mw) of the cellulose ester resin is less than 75,000, the heat resistance and brittleness improvement effects may not be sufficiently obtained.
  • the thickness of the base material layer constituting the stretched laminate is not particularly limited, but is preferably 10 to 200 ⁇ m, and more preferably 20 to 80 ⁇ m. If the said thickness is more than a lower limit, the intensity
  • the value of the thickness of the base material layer a value obtained by preparing a film obtained by stretching only the base material film under the same conditions and measuring the thickness is adopted.
  • the water absorption when the base material layer is impregnated in 23 ° C. water for 24 hours is preferably 1.0 to 8.0 mass%.
  • the water absorption rate is preferably 2.0 to 5.0% by mass, more preferably 3.0 to 5.0% by mass.
  • the value measured with the following method shall be employ
  • a cellulose ether resin has an ether bond in the at least 1 substituent of the 2, 3, 6 position in a cellulose molecule.
  • the ether bond referred to here is a carbon-oxygen-carbon bond.
  • the cellulose ether include, but are not limited to, methyl cellulose, ethyl cellulose, carboxymethyl cellulose, carboxymethyl ethyl cellulose, hydroxyethyl cellulose, hydroxyethyl methyl cellulose, hydroxypropyl methyl cellulose, and the like. Further, ethyl cellulose is optimal for ensuring transparency and durability as an optical film.
  • the degree of ethoxyl substitution is preferably in the range of 1.9 to 2.9, and in the range of 2.2 to 2.9 from the balance between the viscosity at the time of melting and the stability of the moist heat resistant environment. Particularly preferred.
  • the degree of ether substitution can be quantified by the method described in ASTM D4794-94.
  • the molecular weight of the cellulose ether only needs to be able to be formed into a film alone. Specifically, the number average molecular weight Mn may be in the range of 30,000 ⁇ Mn ⁇ 300,000 (polystyrene conversion). Preferably, 50,000 to 200,000 are used. If the molecular weight is too small, the film becomes fragile, and if the molecular weight is too high, the viscosity is high and the molding stability at the time of molding processing is deteriorated, which is not preferable for production.
  • the base material layer includes at least two kinds of thermoplastic resins.
  • at least two types of thermoplastic resins included in the base material layer include a cellulose ester resin and an acrylic resin as essential components, and only these two types are included as the thermoplastic resin. It is particularly preferred.
  • a base material layer contains two or more kinds of thermoplastic resins
  • thermoplastic resins constitute a single base material layer having a uniform composition as a mixture in a compatible state
  • iii) a mode in which these (i) and (ii) are combined, and the like are exemplified.
  • Examples of the form (i) include a form in which a cellulose ester resin and an acrylic resin are included in a compatible state.
  • a form in which a cellulose ester resin and an acrylic resin are included in a compatible state the disclosure content etc. of the international publication 2011/121720 pamphlet and the international publication 2011/121817 pamphlet can be referred.
  • the base material layer containing one of the thermoplastic resins mentioned above and the base material layer containing the thermoplastic resin different from the said thermoplastic resin are laminated
  • the base material layer located on the hydrophilic polymer layer side in the present specification, A substrate layer (also referred to as “first substrate layer”) containing a cellulose-based resin (preferably a cellulose ester resin) and located on the side opposite to the hydrophilic polymer layer (in the present specification, “ It is preferable that the second base layer ” also includes an acrylic resin.
  • the difference ⁇ E
  • ⁇ E ⁇ 2500 is more preferably satisfied, and ⁇ E ⁇ 2000 is further preferably satisfied.
  • the elastic moduli Ea and Eb in the environment of 23 ° C. and 55% RH are Ea 1 and Eb 1 , respectively, and the elastic moduli Ea and Eb in the environment of 40 ° C. and 20% RH are Ea 2 and Eb 2 , respectively.
  • the draw ratio, the stretch speed, the temperature at the time of stretching, the humidity at the time of stretching, etc. May be adjusted as appropriate.
  • the base material layer may contain various additives in addition to the above-described thermoplastic resin.
  • Examples of the additive that can be added to the base material layer include a low molecular weight acrylic polymer.
  • the weight average molecular weight (Mw) of the low molecular weight acrylic polymer is preferably 500 to 30000.
  • examples of the ethylenically unsaturated monomer Xa having no aromatic ring and no hydrophilic group in the molecule include (meth) acrylic acid esters as described later, and methyl methacrylate (MMA) is particularly preferable.
  • examples of the ethylenically unsaturated monomer Xb having no hydrophilic ring in the molecule and having a hydrophilic group include acryloylmorpholine, vinyl pyrrolidone, and hydroxyethyl methacrylate.
  • the content ratio of the structural unit derived from Xa and the structural unit derived from Xb in X 2 is not particularly limited, but the mass ratio of the structural unit derived from Xa to the structural unit derived from Xb is preferably 50:50 to 95: 5. 60:40 to 90:10 is more preferable, and 70:30 to 80:20 is particularly preferable.
  • the weight average molecular weight of the above-mentioned acrylic polymer is preferably 1500 to 20000, more preferably 2000 to 10000, and particularly preferably 2500 to 5000. If the weight average molecular weight of the acrylic polymer is within such a range, there is an advantage that a balance between volatility and compatibility can be easily obtained.
  • the content of the acrylic polymer in the base material layer is preferably 10 to 40% by mass, more preferably 20 to 30% by mass with respect to 100% by mass of the thermoplastic resin.
  • the value of this content is a mass ratio with respect to the total amount of the thermoplastic resin which comprises the base material layer in which the said additive is contained (hereinafter the same). ).
  • additives other than the low molecular weight acrylic polymer include plasticizers, sugar ester compounds, retardation adjusting agents, and coloring agents.
  • ⁇ Plasticizer> Although there is no restriction
  • polyester compound represented by these is mentioned.
  • B represents a linear or branched alkylene group or cycloalkylene group having 2 to 6 carbon atoms
  • A represents an aromatic ring having 6 to 14 carbon atoms or a C 2 to 6 carbon atoms.
  • a linear or branched alkylene group or a cycloalkylene group is represented
  • X represents a monocarboxylic acid residue containing a hydrogen atom or an aromatic ring having 6 to 14 carbon atoms
  • n represents a natural number of 1 or more.
  • the polyester compound represented by the general formula (4) includes a dicarboxylic acid having an aromatic ring (having 6 to 14 carbon atoms) or a linear or branched alkylene group or cycloalkylene group (both having 2 to 6 carbon atoms) and a carbon number.
  • the aromatic dicarboxylic acid and the dicarboxylic acid having a linear or branched alkylene group or cycloalkylene group may be used alone or as a mixture, but the main component constituting the polarizing plate protective film may be used.
  • both ends may be sealed with a monocarboxylic acid having an aromatic ring (having 6 to 14 carbon atoms).
  • dicarboxylic acids having an aromatic ring (6 to 14 carbon atoms) that is, aromatic dicarboxylic acids having 6 to 16 carbon atoms
  • aromatic dicarboxylic acids having 6 to 16 carbon atoms include phthalic acid, isophthalic acid, terephthalic acid, 1,5-naphthalenedicarboxylic acid, 1, 4-naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,8-naphthalenedicarboxylic acid, 2,2′-biphenyldicarboxylic acid, 4,4 And '-biphenyldicarboxylic acid.
  • terephthalic acid, 2,6-naphthalenedicarboxylic acid, and 4,4'-biphenyldicarboxylic acid are preferable.
  • dicarboxylic acid having a linear or branched alkylene group or cycloalkylene group (2 to 6 carbon atoms) examples include malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, and 1,2-cyclohexane. Examples thereof include dicarboxylic acid and 1,4-cyclohexanedicarboxylic acid. Of these, succinic acid, adipic acid, and 1,4-cyclohexanedicarboxylic acid are preferable.
  • linear or branched alkylene diol or cycloalkylene diol having 2 to 6 carbon atoms examples include ethanediol (ethylene glycol), 1,2-propanediol, 1,3-propanediol, 1,2- Butanediol, 1,3-butanediol, 2-methyl-1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6- Examples include hexanediol, 1,4-cyclohexanediol, and 1,4-cyclohexanedimethanol. Among these, ethanediol (ethylene glycol), 1,2-propanediol, 1,3-propanediol, and 1,3-butanediol are preferable.
  • A is preferably a benzene ring, naphthalene ring or biphenyl ring which may have a substituent, from the viewpoint of excellent plasticity imparting performance.
  • the “substituent” that the benzene ring, naphthalene ring or biphenyl ring may have is an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or an alkoxy group having 1 to 6 carbon atoms. is there.
  • Examples of the monocarboxylic acid having an aromatic ring (having 6 to 14 carbon atoms) that seals both ends of the polyester compound include benzoic acid, orthotoluic acid, metatoluic acid, p-toluic acid, p-tert-butylbenzoic acid, and dimethylbenzoic acid. Examples include acids and paramethoxybenzoic acid. Of these, benzoic acid, p-toluic acid and p-tert-butylbenzoic acid are preferred.
  • Aromatic polyester compounds can be prepared by the conventional methods, such as the above-mentioned hot-melt condensation method by the polyesterification reaction or transesterification reaction between the dicarboxylic acid and alkylene diol or cycloalkylene diol, or the interfacial condensation method between acid chlorides of these acids and glycols. It can be easily synthesized by either method. Furthermore, by adding the above-described aromatic monocarboxylic acid, a polyester compound in which both ends are sealed can be synthesized.
  • the base material layer can further contain a plasticizer other than the polyester compound represented by the general formula (4).
  • plasticizers other than the polyester compound represented by General formula (4)
  • polyhydric carboxylic acid ester plasticizer glycolate type plasticizer, phthalate ester type plasticizer, fatty acid ester type It is selected from plasticizers and polyhydric alcohol ester plasticizers, ester plasticizers, acrylic plasticizers and the like.
  • At least one is preferably a polyhydric alcohol ester plasticizer.
  • the polyhydric alcohol ester plasticizer is a plasticizer composed of an ester of a divalent or higher aliphatic polyhydric alcohol and a monocarboxylic acid, and preferably has an aromatic ring or a cycloalkyl ring in the molecule.
  • a divalent to 20-valent aliphatic polyhydric alcohol ester is preferred.
  • the polyhydric alcohol preferably used in the present invention is represented by the following general formula (a).
  • R 11 represents an n-valent organic group
  • n represents a positive integer of 2 or more
  • the OH group represents an alcoholic and / or phenolic hydroxy group (hydroxyl group).
  • Examples of preferable polyhydric alcohols include the following, but are not limited thereto.
  • triethylene glycol triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, sorbitol, trimethylolpropane, and xylitol are preferable.
  • monocarboxylic acid used for polyhydric alcohol ester there is no restriction
  • Examples of preferable monocarboxylic acids include the following, but are not limited thereto.
  • aliphatic monocarboxylic acid a fatty acid having a straight chain or a side chain having 1 to 32 carbon atoms can be preferably used.
  • the number of carbon atoms is more preferably 1-20, and particularly preferably 1-10.
  • the inclusion of acetic acid is preferred because the compatibility with cellulose acetate increases, and it is also preferred to use a mixture of acetic acid and other monocarboxylic acids.
  • Preferred aliphatic monocarboxylic acids include acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, 2-ethyl-hexanoic acid, undecylic acid, lauric acid, tridecylic acid, Saturated fatty acids such as myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, heptacosanoic acid, montanic acid, melicic acid, laccelic acid, undecylenic acid, olein Examples thereof include unsaturated fatty acids such as acid, sorbic acid, linoleic acid, linolenic acid, and arachidonic acid.
  • Examples of preferable alicyclic monocarboxylic acids include cyclopentane carboxylic acid, cyclohexane carboxylic acid, cyclooctane carboxylic acid, and derivatives thereof.
  • aromatic monocarboxylic acids examples include those in which 1 to 3 alkoxy groups such as alkyl group, methoxy group or ethoxy group are introduced into the benzene ring of benzoic acid such as benzoic acid and toluic acid, biphenylcarboxylic acid, Examples thereof include aromatic monocarboxylic acids having two or more benzene rings such as naphthalenecarboxylic acid and tetralincarboxylic acid, or derivatives thereof. Benzoic acid is particularly preferable.
  • the molecular weight of the polyhydric alcohol ester is not particularly limited, but is preferably 300 to 1500, and more preferably 350 to 750. A higher molecular weight is preferred because it is less likely to volatilize, and a smaller one is preferred in terms of moisture permeability and compatibility with cellulose acetate.
  • the carboxylic acid used for the polyhydric alcohol ester may be one kind or a mixture of two or more kinds. Moreover, all the OH groups in the polyhydric alcohol may be esterified, or a part of the OH groups may be left as they are.
  • the glycolate plasticizer is not particularly limited, but alkylphthalylalkyl glycolates can be preferably used.
  • alkyl phthalyl alkyl glycolates include methyl phthalyl methyl glycolate, ethyl phthalyl ethyl glycolate, propyl phthalyl propyl glycolate, butyl phthalyl butyl glycolate, octyl phthalyl octyl glycolate, methyl phthalyl ethyl Glycolate, ethyl phthalyl methyl glycolate, ethyl phthalyl propyl glycolate, methyl phthalyl butyl glycolate, ethyl phthalyl butyl glycolate, butyl phthalyl methyl glycolate, butyl phthalyl ethyl glycolate, propyl phthalyl butyl glycol Butyl phthalyl propyl glycolate, methyl phthalyl octyl glycolate, ethyl phthalyl octyl glycolate, octyl phthalyl
  • phthalate ester plasticizer examples include diethyl phthalate, dimethoxyethyl phthalate, dimethyl phthalate, dioctyl phthalate, dibutyl phthalate, di-2-ethylhexyl phthalate, dioctyl phthalate, dicyclohexyl phthalate, and dicyclohexyl terephthalate.
  • citrate plasticizer examples include acetyltrimethyl citrate, acetyltriethyl citrate, and acetyltributyl citrate.
  • fatty acid ester plasticizers examples include butyl oleate, methylacetyl ricinoleate, and dibutyl sebacate.
  • phosphate ester plasticizer examples include triphenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, octyl diphenyl phosphate, diphenyl biphenyl phosphate, trioctyl phosphate, tributyl phosphate, and the like.
  • the polyvalent carboxylic acid ester compound is composed of an ester of a divalent or higher, preferably a divalent to 20valent polyvalent carboxylic acid and an alcohol.
  • the aliphatic polyvalent carboxylic acid is preferably divalent to 20-valent, and in the case of an aromatic polyvalent carboxylic acid or alicyclic polyvalent carboxylic acid, it is preferably trivalent to 20-valent.
  • the polyvalent carboxylic acid is represented by the following general formula (b).
  • R 12 represents an (m1 + n1) -valent organic group
  • m1 represents a positive integer of 2 or more
  • n1 represents an integer of 0 or more
  • a COOH group represents a carboxy group
  • an OH group represents an alcoholic or phenolic hydroxy group
  • Examples of preferable polyvalent carboxylic acids include, but are not limited to, the following.
  • Trivalent or higher aromatic polyvalent carboxylic acids such as trimellitic acid, trimesic acid, pyromellitic acid or derivatives thereof, succinic acid, adipic acid, azelaic acid, sebacic acid, oxalic acid, fumaric acid, maleic acid, tetrahydrophthal
  • An aliphatic polyvalent carboxylic acid such as an acid, an oxypolyvalent carboxylic acid such as tartaric acid, tartronic acid, malic acid and citric acid can be preferably used.
  • the alcohol used in the polyvalent carboxylic acid ester compound that can be used in the present invention is not particularly limited, and known alcohols and phenols can be used.
  • an aliphatic saturated alcohol or aliphatic unsaturated alcohol having a straight chain or a side chain having 1 to 32 carbon atoms can be preferably used. More preferably, it has 1 to 20 carbon atoms, and particularly preferably 1 to 10 carbon atoms.
  • alicyclic alcohols such as cyclopentanol and cyclohexanol or derivatives thereof
  • aromatic alcohols such as benzyl alcohol and cinnamyl alcohol, or derivatives thereof can be preferably used.
  • the alcoholic or phenolic hydroxy group (hydroxyl group) of the oxypolycarboxylic acid may be esterified with a monocarboxylic acid.
  • monocarboxylic acids include the following, but the present invention is not limited thereto.
  • aliphatic monocarboxylic acid a straight-chain or side-chain fatty acid having 1 to 32 carbon atoms can be preferably used. More preferably, it has 1 to 20 carbon atoms, and particularly preferably 1 to 10 carbon atoms.
  • Preferred aliphatic monocarboxylic acids include acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, 2-ethyl-hexanecarboxylic acid, undecylic acid, lauric acid, tridecylic acid, Saturated fatty acids such as myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, heptacosanoic acid, montanic acid, melicic acid, and laccelic acid, undecylenic acid, olein Examples thereof include unsaturated fatty acids such as acid, sorbic acid, linoleic acid, linolenic acid, and arachidonic acid.
  • Examples of preferable alicyclic monocarboxylic acids include cyclopentane carboxylic acid, cyclohexane carboxylic acid, cyclooctane carboxylic acid, and derivatives thereof.
  • aromatic monocarboxylic acids examples include those in which an alkyl group is introduced into the benzene ring of benzoic acid such as benzoic acid and toluic acid, and two or more benzene rings such as biphenyl carboxylic acid, naphthalene carboxylic acid, and tetralin carboxylic acid.
  • benzoic acid and toluic acid examples include those in which an alkyl group is introduced into the benzene ring of benzoic acid such as benzoic acid and toluic acid, and two or more benzene rings such as biphenyl carboxylic acid, naphthalene carboxylic acid, and tetralin carboxylic acid.
  • the aromatic monocarboxylic acid which has, or those derivatives can be mentioned.
  • Particularly preferred are acetic acid, propionic acid, and benzoic acid.
  • the molecular weight of the polyvalent carboxylic acid ester compound is not particularly limited, but is preferably in the range of 300 to 1000, and more preferably in the range of 350 to 750. The larger one is preferable in terms of improving the retention, and the smaller one is preferable in terms of moisture permeability and compatibility with the cellulose resin.
  • the alcohol used for the polyvalent carboxylic acid ester that can be used in the present invention may be one kind or a mixture of two or more kinds.
  • the acid value of the polyvalent carboxylic acid ester compound that can be used in the present invention is preferably 1 mgKOH / g or less, and more preferably 0.2 mgKOH / g or less. Setting the acid value in the above range is preferable because the environmental fluctuation of the retardation is also suppressed.
  • the acid value refers to the number of milligrams of potassium hydroxide necessary for neutralizing the acid (carboxy group present in the sample) contained in 1 g of the sample.
  • the acid value is measured according to JIS K0070.
  • tributyl trimellitic acid and tetrabutyl pyromellitic acid.
  • the plasticizer is preferably contained in an amount of 0.1 to 30% by mass, more preferably 2 to 20% by mass with respect to 100% by mass of the total amount of the base material layer.
  • Q represents a monosaccharide or disaccharide residue
  • R represents an aliphatic group or an aromatic group
  • m is bonded directly to the monosaccharide or disaccharide residue.
  • 1 is the total number of — (O—C ( ⁇ O) —R) groups directly bonded to monosaccharide or disaccharide residues, and 3 ⁇ m + 1 ⁇ 8 and l ⁇ 0.
  • Q represents a monosaccharide or disaccharide residue.
  • monosaccharides include allose, altrose, glucose, mannose, gulose, idose, galactose, talose, ribose, arabinose, xylose, lyxose, and the like.
  • disaccharide examples include trehalose, sucrose, maltose, cellobiose, gentiobiose, lactose, and isotrehalose.
  • R represents an aliphatic group or an aromatic group.
  • the aliphatic group and the aromatic group may each independently have a substituent.
  • m is the total number of hydroxyl groups directly bonded to the monosaccharide or disaccharide residue
  • l is directly bonded to the monosaccharide or disaccharide residue. This is the total number of — (O—C ( ⁇ O) —R) groups present. And it is necessary that 3 ⁇ m + 1 ⁇ 8, and it is preferable that 4 ⁇ m + 1 ⁇ 8. Also, l ⁇ 0. When l is 2 or more, the — (O—C ( ⁇ O) —R) groups may be the same or different.
  • the aliphatic group in the definition of R may be linear, branched or cyclic, preferably has 1 to 25 carbon atoms, more preferably has 1 to 20 carbon atoms, and more preferably has 2 to 2 carbon atoms. 15 is particularly preferred.
  • aliphatic group examples include, for example, methyl, ethyl, n-propyl, iso-propyl, cyclopropyl, n-butyl, iso-butyl, tert-butyl, amyl, iso-amyl, tert-amyl, n- Examples include hexyl, cyclohexyl, n-heptyl, n-octyl, bicyclooctyl, adamantyl, n-decyl, tert-octyl, dodecyl, hexadecyl, octadecyl, didecyl and the like.
  • the aromatic group in the definition of R may be an aromatic hydrocarbon group or an aromatic heterocyclic group, and more preferably an aromatic hydrocarbon group.
  • the aromatic hydrocarbon group preferably has 6 to 24 carbon atoms, more preferably 6 to 12 carbon atoms.
  • Specific examples of the aromatic hydrocarbon group include benzene, naphthalene, anthracene, biphenyl, terphenyl and the like.
  • aromatic hydrocarbon group benzene, naphthalene, and biphenyl are particularly preferable.
  • the aromatic heterocyclic group those containing at least one of an oxygen atom, a nitrogen atom or a sulfur atom are preferable.
  • heterocyclic ring examples include, for example, furan, pyrrole, thiophene, imidazole, pyrazole, pyridine, pyrazine, pyridazine, triazole, triazine, indole, indazole, purine, thiazoline, thiadiazole, oxazoline, oxazole, oxadiazole, quinoline, Examples thereof include isoquinoline, phthalazine, naphthyridine, quinoxaline, quinazoline, cinnoline, pteridine, acridine, phenanthroline, phenazine, tetrazole, benzimidazole, benzoxazole, benzthiazole, benzotriazole, tetrazaindene and the like.
  • aromatic heterocyclic group pyridine, triazine, and quinoline are particularly preferable.
  • Example Compound 1 When the obtained mixture was analyzed by HPLC and LC-MASS, exemplary compound 1 was 7% by mass, exemplary compound 2 was 58% by mass, exemplary compound 3 was 23% by mass, exemplary compound 4 was 9% by mass, exemplary compound 5 was 3% by mass.
  • Example Compound 1, Example Compound 2, Example Compound 3, Example Compound 4, and Example Compound 5 having a purity of 100% were obtained by purifying a part of the obtained mixture by silica gel column chromatography.
  • the sugar ester compound is preferably contained in an amount of 0.1 to 30% by mass, more preferably 2 to 20% by mass with respect to 100% by mass of the total amount of the base material layer.
  • the base material layer may contain a retardation adjusting agent.
  • the retardation adjusting agent is an additive capable of adjusting the retardation development property of the film by its addition.
  • the retardation adjusting agent is an additive capable of adjusting the retardation development property of the film by its addition.
  • Examples of the retardation adjusting agent that can be used in the present invention include aromatic compounds having two or more aromatic rings as described in EP 911,656A2. Two or more aromatic compounds may be used in combination.
  • the aromatic ring of the aromatic compound includes an aromatic heterocyclic ring in addition to the aromatic hydrocarbon ring.
  • An aromatic heterocyclic ring is particularly preferred, and the aromatic heterocyclic ring is generally an unsaturated heterocyclic ring. Of these, compounds having a 1,3,5-triazine ring are particularly preferred.
  • a compound disclosed as a general formula (I) in JP 2010-163482 A can be mentioned. Specific examples of the general formula (I) are disclosed in paragraphs “0052” to “0058” of the publication. In addition, the compound disclosed as the general formula (I) in JP2010-163483A can also be used as a retardation adjusting agent. Specific examples of the general formula (I) are disclosed in paragraphs “0054” to “0068” of the publication.
  • the retardation adjusting agent is preferably contained in an amount of 0.1 to 30% by mass, more preferably 2 to 20% by mass with respect to 100% by mass of the total amount of the base material layer.
  • the base material layer contains the following polyester.
  • the base material layer may contain polyester represented by the following general formula (d) or (e).
  • B1 represents a monocarboxylic acid
  • G represents a divalent alcohol
  • A represents a dibasic acid
  • B1, G, and A do not contain an aromatic ring.
  • M represents the number of repetitions.
  • B2 represents a monoalcohol
  • G represents a divalent alcohol
  • A represents a dibasic acid
  • B2, G, and A do not contain an aromatic ring.
  • N represents the number of repetitions.
  • B1 represents a monocarboxylic acid component
  • B2 represents a monoalcohol component
  • G represents a divalent alcohol component
  • A represents a dibasic acid component
  • B1, B2, G, and A are all characterized by containing no aromatic ring.
  • m and n represent the number of repetitions.
  • the monocarboxylic acid represented by B1 is not particularly limited, and known aliphatic monocarboxylic acid, alicyclic monocarboxylic acid, and the like can be used.
  • Preferred examples of the monocarboxylic acid include the following, but the present invention is not limited to this.
  • aliphatic monocarboxylic acid a straight-chain or side-chain fatty acid having 1 to 32 carbon atoms can be preferably used. More preferably, it has 1-20 carbon atoms, and particularly preferably has 1-12 carbon atoms.
  • acetic acid is contained, the compatibility with cellulose acylate is increased, and it is also preferable to use a mixture of acetic acid and another monocarboxylic acid.
  • Preferred aliphatic monocarboxylic acids include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, 2-ethyl-hexanecarboxylic acid, undecylic acid, lauric acid, Saturated fatty acids such as tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, heptacosanoic acid, montanic acid, melicic acid, and laccellic acid; Examples thereof include unsaturated fatty acids such as acid, oleic acid, sorbic acid, linoleic acid, linolenic acid, and arachidonic acid.
  • the monoalcohol component represented by B2 is not particularly limited, and known alcohols can be used.
  • an aliphatic saturated alcohol or aliphatic unsaturated alcohol having a straight chain or a side chain having 1 to 32 carbon atoms can be preferably used. More preferably, it has 1-20 carbon atoms, and particularly preferably has 1-12 carbon atoms.
  • Examples of the divalent alcohol component represented by G include the following, but the present invention is not limited thereto.
  • ethylene glycol, diethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butylene glycol, 1,3-butylene glycol, 1,4-butylene glycol, 1,5-pentanediol, , 6-hexanediol, 1,5-pentylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, etc. among which ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1 , 2-butylene glycol, 1,3-butylene glycol, 1,4-butylene glycol, 1,6-hexanediol, diethylene glycol and triethylene glycol are preferred, and 1,3-propylene glycol, 1,4 Butylene glycol 1,6-hexanediol, diethylene glycol is preferably used.
  • the dibasic acid (dicarboxylic acid) component represented by A is preferably an aliphatic dibasic acid or an alicyclic dibasic acid.
  • the aliphatic dibasic acid include malonic acid, succinic acid, glutaric acid, Adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedicarboxylic acid, dodecanedicarboxylic acid, etc., especially aliphatic dicarboxylic acids having 4 to 12 carbon atoms, and at least one selected from these are used. Can be done. That is, two or more dibasic acids may be used in combination.
  • M and n represent the number of repetitions and are preferably 1 or more and 170 or less.
  • the base material layer may contain polyester represented by the following general formula (f) or (g).
  • B1 represents a monocarboxylic acid having 1 to 12 carbon atoms
  • G represents a divalent alcohol having 2 to 12 carbon atoms
  • A represents a dibasic acid having 2 to 12 carbon atoms.
  • B1, G , A does not contain an aromatic ring, and m represents the number of repetitions.
  • B2 represents a monoalcohol having 1 to 12 carbon atoms
  • G represents a divalent alcohol having 2 to 12 carbon atoms
  • A represents a dibasic acid having 2 to 12 carbon atoms.
  • B2, G, (A does not contain an aromatic ring.
  • N represents the number of repetitions.
  • B1 represents a monocarboxylic acid component
  • B2 represents a monoalcohol component
  • G represents a divalent alcohol component having 2 to 12 carbon atoms
  • A represents 2 to 2 carbon atoms. Twelve dibasic acid components are represented and synthesized by them.
  • B1, G, and A do not contain an aromatic ring.
  • m and n represent the number of repetitions.
  • B1 and B2 have the same meanings as B1 and B2 in the general formula (d) or (e) described above.
  • G and A correspond to an alcohol component or a dibasic acid component having 2 to 12 carbon atoms in G and A in the general formula (d) or (e).
  • the number average molecular weight of the polyester is 1000 or more and 10,000 or less. If the number average molecular weight is less than 1000, breakage tends to occur at high temperature and high magnification stretching, and if it exceeds 10,000, whitening due to phase separation tends to increase.
  • Polyester polycondensation is performed by conventional methods. For example, a direct reaction of the dibasic acid with a glycol, a hot melt condensation method using the dibasic acid or an alkyl ester thereof, for example, a polyesterification reaction or a transesterification reaction between a methyl ester of a dibasic acid and a glycol. Alternatively, it can be easily synthesized by any method of dehydrohalogenation reaction between acid chloride of these acids and glycol, but it is preferable to synthesize a polyester having a weight average molecular weight not so large by direct reaction.
  • Polyester having a high distribution on the low molecular weight side has very good compatibility with cellulose acylate, and after forming the film, it is possible to obtain a cellulose acylate film having low moisture permeability and high transparency.
  • a conventional method can be used as a method for adjusting the molecular weight without particular limitation. For example, although depending on the polymerization conditions, when a method of blocking the molecular ends with a monovalent acid or monovalent alcohol is used, the molecular weight is adjusted by adjusting the addition amount of these monovalent raw material compounds. be able to. In this case, it is preferable from the viewpoint of the stability of the polymer to adjust the addition amount of the monovalent acid.
  • the weight average molecular weight can also be adjusted by measuring the timing for stopping the reaction based on the amount of water produced during the reaction.
  • the molecular weight can be adjusted by biasing the number of moles of glycol or dibasic acid to be charged, or the molecular weight can be adjusted by controlling the reaction temperature.
  • the polyester is preferably contained in an amount of 0.1 to 30% by mass and more preferably 2 to 20% by mass with respect to 100% by mass of the total amount of the base material layer.
  • the base material layer can also contain an ultraviolet absorber.
  • the ultraviolet absorber is intended to improve durability by absorbing ultraviolet light having a wavelength of 400 nm or less.
  • the transmittance at a wavelength of 370 nm is preferably 10% or less, more preferably 5% or less, Preferably it is 2% or less.
  • the said ultraviolet absorber is contained 2 or more types.
  • the ultraviolet absorber used in the present invention is not particularly limited, for example, oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, triazine compounds, nickel complex compounds, inorganic powders Examples include the body.
  • These are commercially available products made by BASF Japan Ltd. and can be preferably used.
  • the UV absorbers preferably used in the present invention are benzotriazole UV absorbers, benzophenone UV absorbers, and triazine UV absorbers, particularly preferably benzotriazole UV absorbers and benzophenone UV absorbers.
  • a discotic compound such as a compound having a 1,3,5 triazine ring is also preferably used as the ultraviolet absorber.
  • a polymer UV absorber can also be preferably used, and in particular, a polymer type UV absorber described in JP-A-6-148430 is preferably used.
  • the method of adding the UV absorber can be added to the dope after dissolving the UV absorber in an alcohol such as methanol, ethanol or butanol, an organic solvent such as methylene chloride, methyl acetate, acetone or dioxolane or a mixed solvent thereof. Or you may add directly in dope composition. Moreover, what does not melt
  • the ultraviolet absorber is preferably contained in an amount of 0.1 to 15% by mass, more preferably 1 to 10% by mass with respect to 100% by mass of the total amount of the base material layer.
  • the base material layer may include an infrared absorber. By setting it as such a structure, the reverse wavelength dispersion of a film can be adjusted.
  • the infrared absorber preferably has a maximum absorption in a wavelength region of 750 to 1100 nm, and more preferably has a maximum absorption in a wavelength region of 800 to 1000 nm. Moreover, it is preferable that the infrared absorber has substantially no absorption in the visible region.
  • an infrared absorbing dye or an infrared absorbing pigment is preferably used, and an infrared absorbing dye is particularly preferably used.
  • the infrared absorbing dye includes an organic compound and an inorganic compound. It is preferable to use an infrared absorbing dye that is an organic compound.
  • Organic infrared absorbing dyes include cyanine compounds, metal chelate compounds, aminium compounds, diimonium compounds, quinone compounds, squarylium compounds, and methine compounds. Infrared absorbing dyes are described in Coloring Materials, 61 [4] 215-226 (1988), and Chemical Industry, 43-53 (1986, May).
  • infrared absorbing dyes developed in the technical field of silver halide photographic light-sensitive materials are excellent.
  • Infrared absorbing dyes developed in the technical field of silver halide photographic light-sensitive materials include dihydroperimidine squarylium dyes (described in US Pat. No. 5,380,635 and Japanese Patent Application No. 8-189817), cyanine dyes (Japanese Patent Application Laid-Open No. Sho). Nos. 62-123454, 3-138640, 3-221542, 3-226636, 5-313305, 6-43583, Japanese Patent Application No. 7-269097 and European Patent No.
  • the infrared absorbing agent is preferably contained in an amount of 0.1 to 30% by mass, more preferably 2 to 20% by mass with respect to 100% by mass of the total amount of the base material layer.
  • ⁇ Matting agent fine particles
  • silicon dioxide titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, kaolin, talc, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, silicic acid.
  • inorganic fine particles such as magnesium and calcium phosphate and fine particles such as a crosslinked polymer as a matting agent.
  • silicon dioxide is preferable because it can reduce the haze of the film.
  • the average primary particle diameter of the fine particles is preferably 20 nm or less, more preferably 5 to 16 nm, and particularly preferably 5 to 12 nm.
  • These fine particles preferably form secondary particles having a particle size of 0.1 to 5 ⁇ m and are contained in the film, and the preferable average particle size is 0.1 to 2 ⁇ m, more preferably 0.2 to 0. .6 ⁇ m.
  • irregularities having a height of about 0.1 to 1.0 ⁇ m are formed on the film surface, thereby providing appropriate slipperiness to the film surface.
  • the average primary particle size of the fine particles used in the present invention is measured by observing the particles with a transmission electron microscope (magnification 500,000 to 2,000,000 times), observing 100 particles, measuring the particle size, and measuring the average value. Is the average primary particle size.
  • the apparent specific gravity of the fine particles is preferably 70 g / liter or more, more preferably 90 to 200 g / liter, and particularly preferably 100 to 200 g / liter.
  • a higher apparent specific gravity is preferable because a high-concentration dispersion can be produced and haze and aggregates are improved, and it is particularly preferably used when preparing a dope having a high solid content concentration.
  • Silicon dioxide fine particles having an average primary particle diameter of 20 nm or less and an apparent specific gravity of 70 g / liter or more are, for example, a mixture of vaporized silicon tetrachloride and hydrogen burned in air at 1000 to 1200 ° C. Can be obtained.
  • Aerosil R812, Aerosil 200V, Aerosil R972V are commercially available and can be used.
  • the apparent specific gravity described above is calculated by the following equation by measuring a weight of silicon dioxide fine particles in a graduated cylinder and measuring the weight.
  • the matting agent (fine particles) is preferably contained in an amount of 0.01 to 5% by mass and more preferably in an amount of 0.1 to 3% by mass with respect to 100% by mass of the total amount of the base material layer. preferable.
  • the base material layer may contain a colorant.
  • the “colorant” means a dye or a pigment. In the present invention, those having an effect of making the color tone of the liquid crystal screen blue, adjusting the yellow index, and reducing haze are particularly preferable.
  • Various dyes and pigments can be used as the colorant, and anthraquinone dyes, azo dyes, phthalocyanine pigments and the like are particularly effective.
  • the colorant is preferably contained in an amount of 0.01 to 5% by mass, more preferably 0.1 to 3% by mass with respect to 100% by mass of the total amount of the base material layer.
  • a base material layer is what is called a "zero phase difference film.” Because the base material layer that functions as a polarizing plate protective film is a zero retardation film, there is no retardation even when a high-magnification stretching process is performed, and rainbow unevenness does not appear when incorporated in an image display device. There are advantages. In addition, if this is expressed quantitatively, the base material layer has the following mathematical formula (1) and the following mathematical formula (2):
  • nx represents the refractive index in the slow axis direction in the film plane
  • ny represents the refractive index in the fast axis direction in the film plane
  • nz represents the refractive index in the film thickness direction
  • d represents the film.
  • the refractive index is measured at a wavelength of 590 nm under an environment of 23 ° C. and 55% RH)
  • Ro and Rth respectively represented by
  • Ro is more preferably -4 to 4, and particularly preferably -3 to 3.
  • Rth is more preferably ⁇ 4 to 4, and particularly preferably ⁇ 3 to 3.
  • the composition of the film, the stretching conditions, the type and amount of the retardation adjusting agent, and the like may be appropriately adjusted during the production of the base material layer. Good.
  • the hydrophilic polymer layer and the base material layer described above are preferably bonded through an adhesive.
  • an adhesive agent Any adhesive agent will be used if it does not impair the effect of this invention.
  • An example of the adhesive is an aqueous polyvinyl alcohol solution (so-called water paste).
  • a photo-curable adhesive may be used as the adhesive.
  • the photocurable adhesive preferably contains an epoxy compound and a cationic polymerization initiator.
  • the epoxy compound is a polyvalent epoxy.
  • a compound an epoxy compound having at least two epoxy groups in the molecule is preferable.
  • the polyvalent epoxy compound includes an aromatic polyvalent epoxy compound having at least two epoxy groups and an aromatic ring in the molecule, and at least two epoxy groups in the molecule, at least one of which is alicyclic One carbon atom of a ring (usually an oxirane ring) that has an alicyclic polyvalent epoxy compound bonded to the ring, does not have an aromatic ring in the molecule, and contains an epoxy group and two carbon atoms to which it is bonded Is an aliphatic polyvalent epoxy compound in which is bonded to another aliphatic carbon atom.
  • Examples of such polyvalent epoxy compounds include those represented by any one of the following general formulas (A) to (D).
  • R 1 to R 3 each independently represents an alkyl group or a halogen atom
  • L 1 and L 2 each independently represents a divalent aliphatic organic group
  • M represents oxygen Represents an atom or a nitrogen atom
  • A represents an m-valent linking group
  • a, b and c each independently represent an integer of 0 to 4
  • x and y each independently represents a real number of 0 to 20
  • l represents 1 or 2
  • m represents an integer of 2 to 4.
  • the alkyl group for R 1 , R 2 , and R 3 preferably has 1 to 3 carbon atoms, and examples of the halogen atom include Br, Cl, and F.
  • n is an integer of 0 to 20.
  • variables x and y in the structural formula are real numbers and may be anything in the range of 0 to 20, respectively.
  • the reason why x and y are not necessarily integers is that an epoxy compound having several kinds of integer values is mixed in a certain ratio and shows an average value thereof.
  • These polyvalent epoxy compounds may be used alone or in combination of two or more.
  • polyvalent epoxy compound examples include those represented by any of the following general formulas (E) to (O).
  • R 4 to R 25 each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and when R 4 to R 25 are alkyl groups, the position bonded to the alicyclic ring is an arbitrary number of positions 1 to 6 of.
  • an alkyl group having 1 to 6 carbon atoms may be linear, may be branched, it may have an alicyclic ring .
  • Y 8 Represents an oxygen atom or an alkanediyl group having 1 to 20 carbon atoms, and Y 1 to Y 7 may each independently be linear or branched and have an alicyclic ring.
  • the alicyclic diepoxy compound represented by the general formula (F) is preferable because it is easily available.
  • the alicyclic diepoxy compound of the general formula (F) includes 3,4-epoxycyclohexylmethanol (an alkyl group having 1 to 6 carbon atoms may be bonded to the cyclohexane ring) and 3,4-epoxycyclohexanecarboxylic acid.
  • An esterified product of an acid an alkyl group having 1 to 6 carbon atoms may be bonded to the cyclohexane ring. Specific examples thereof include the following compounds.
  • a photocationic polymerization initiator is blended in the photocurable adhesive.
  • This cationic photopolymerization initiator generates a cationic species or a Lewis acid by irradiation with active energy rays such as visible light, ultraviolet rays, X-rays, and electron beams, and starts an epoxy group polymerization reaction.
  • a cationic photopolymerization initiator By blending such a cationic photopolymerization initiator, curing at room temperature is possible, and the need to consider the heat resistance of the polarizer and distortion due to expansion or contraction is reduced, and the cellulose acylate film adheres well. be able to.
  • the cationic photopolymerization initiator acts catalytically upon irradiation with active energy rays, it is excellent in storage stability and workability even when mixed with an epoxy compound or an oxetane compound described later.
  • Examples of compounds that generate cation species and Lewis acids upon irradiation with active energy rays include onium salts such as aromatic diazonium salts, aromatic iodonium salts and aromatic sulfonium salts, and iron-allene complexes.
  • aromatic diazonium salt examples include the following compounds.
  • aromatic iodonium salts include the following compounds.
  • aromatic sulfonium salt examples include the following compounds.
  • iron-allene complex examples include the following compounds.
  • photocationic polymerization initiators may be used alone or in combination of two or more.
  • aromatic sulfonium salts are particularly preferably used because they have ultraviolet absorption characteristics even in a wavelength region of 300 nm or more, and therefore can provide a cured product having excellent curability and good mechanical strength and adhesive strength. It is done.
  • the proportion of the photocationic polymerization initiator is preferably in the range of 0.5 to 20% by mass based on the entire photocurable adhesive. If the ratio is 0.5% by mass or more, curing of the adhesive is sufficiently achieved, and mechanical strength and adhesive strength are ensured. On the other hand, if the ratio is 20% by mass or less, an increase in hygroscopicity of the cured product accompanying an increase in the ionic substance in the cured product and a decrease in durability due to the increase are suppressed.
  • the photocurable adhesive may further contain an oxetane compound or an unsaturated compound, if necessary, in addition to the components described above.
  • a photocurable adhesive agent contains an unsaturated compound, it is preferable to further contain radical photopolymerization initiator.
  • Still other components include photosensitizers, thermal cationic polymerization initiators, polyols, silane coupling agents, ion trapping agents, antioxidants, light stabilizers, chain transfer agents, sensitizers, tackifiers, Thermoplastic resins, fillers, flow regulators, plasticizers, antifoaming agents, leveling agents, dyes, organic solvents and the like can be mentioned.
  • the hydrophilic polymer layer functions as a polarizer
  • the base material layer serves as a polarizing plate protective film. Function.
  • the stretched laminate can be used as a polarizing plate.
  • the conventionally well-known polarizing plate protective film may further be bonded by the surface on the opposite side to a base material layer of the hydrophilic polymer layer which functions as a polarizer.
  • a commercially available cellulose ester film can be used as such a polarizing plate protective film.
  • cellulose ester films include, for example, Konica Minoltac® KC8UX, KC5UX, KC8UCR3, KC8UCR4, KC8UCR5, KC8UY, KC4UA, KC4UY, KC4UE, KC8UE, KC8UY-HA, KC8UX-H-K, -NC, KC4UXW-RHA-NC (manufactured by Konica Minolta Advanced Layer Co., Ltd.) and the like are preferably used.
  • a polarizing plate protective film that also serves as an optical compensation film having an optical anisotropic layer formed by aligning liquid crystal compounds such as discotic liquid crystal, rod-shaped liquid crystal, and cholesteric liquid crystal.
  • the optically anisotropic layer can be formed by the method described in JP2003-98348A.
  • anti-reflection anti-reflection
  • anti-glare anti-glare
  • HC hard coat
  • low reflection low reflection
  • dust adhesion prevention dust adhesion prevention
  • brightness improvement anti-static
  • a film containing a known functional layer as a display for antifouling and back coating can be used as a polarizing plate protective film.
  • the polarizing plate having the above-described configuration can be configured by further bonding a protective film on one side and a separate film on the other side.
  • the protective film and the separate film are used for the purpose of protecting the polarizing plate at the time of shipping the polarizing plate and at the time of product inspection.
  • the protect film is bonded for the purpose of protecting the surface of the polarizing plate, and is used on the side opposite to the surface where the polarizing plate is bonded to the display panel.
  • a separate film is used in order to cover the contact bonding layer bonded to a panel, and is used for the surface side which bonds a polarizing plate to a liquid crystal cell.
  • the film thickness of the stretched laminate is preferably 10 to 100 ⁇ m. More preferably, the thickness is 20 to 95 ⁇ m, and still more preferably 30 to 90 ⁇ m.
  • the film thickness of the stretched laminate is 10 ⁇ m or more, the reworkability at the time of panel bonding is sufficient.
  • the film thickness of the stretched laminate is 100 ⁇ m or less, advantages such as curling suppression of the polarizing plate, thinning of the member, and weight reduction are obtained.
  • the polarizing plate according to the present invention is characterized in that the variation in curl behavior under different environments is small.
  • ⁇ C preferably satisfies ⁇ C ⁇ 60, more preferably satisfies ⁇ C ⁇ 50, and more preferably satisfies ⁇ C ⁇ 40.
  • the coating type polarizing plate is configured such that the variation in curl behavior under different environments is reduced, so that the display device can display the panel. It has been found that a polarizing plate capable of suppressing the occurrence of color unevenness is provided.
  • C 1 and C 2 as well as the value of [Delta] C, which should be adopted a value determined by the method described in the column of Examples described later.
  • the elastic modulus of the first base material layer is matched with the elastic modulus of the second base material layer at the time of producing the polarizing plate. It is possible to perform operations such as appropriately adjusting the thickness, controlling the film thickness to a suitable thickness, and selecting a suitable thermoplastic resin species.
  • the base material layer and the hydrophilic polymer layer are laminated directly with the base material layer and the hydrophilic polymer layer, or preferably via a layer of a photocurable adhesive, so that the base material layer and the hydrophilic polymer layer are hydrophilic.
  • a laminated body in which the conductive polymer layer is integrated is obtained.
  • the base material layer is preferably formed by a solution casting method using a dope solution prepared in advance, but if possible, the base material layer may be formed by a melt casting method.
  • the base material layer may be subjected to a stretching treatment in advance before the application of the aqueous solution containing the hydrophilic polymer.
  • the stretching process can be uniaxial stretching, biaxial stretching, oblique stretching, or the like. Uniaxial stretching may be either longitudinal stretching performed in the longitudinal direction of the base material layer or transverse stretching performed in the width direction of the base material layer. In transverse stretching, the film can be contracted in the longitudinal direction while stretching in the width direction. Examples of the transverse stretching method include a fixed end uniaxial stretching method in which one end is fixed via a tenter, and a free end uniaxial stretching method in which one end is not fixed. Examples of the longitudinal stretching method include an inter-roll stretching method, a compression stretching method, and a stretching method using a tenter. The stretching process can be performed in multiple stages. In addition, when the extending
  • the temperature during the stretching treatment of the base material layer is not particularly limited, but is preferably 130 to 200 ° C, more preferably 150 to 180 ° C. Further, the stretching treatment of the base material layer is preferably performed such that the total stretching ratio in all directions is in the range of 1.1 to 10 times the original length of the base material layer. Preferably it is 2-6 times, more preferably 3-5 times.
  • the substrate layer is composed of a laminate of two or more layers
  • such a substrate layer can be produced by a conventionally known method for producing a resin laminate.
  • two types of dope solutions having different compositions are prepared, a film is prepared by a solution casting method using one, and the film is dried and the other A base material layer in which two base material layers are laminated can be produced by further casting and drying the dope solution.
  • An aqueous solution containing a hydrophilic polymer can be prepared by dissolving a powder of a hydrophilic polymer or a pulverized product or a cut product of a hydrophilic polymer film in appropriately heated water (hot water). .
  • Application of the aqueous solution onto the base material layer is performed by a wire bar coating method, a roll coating method such as reverse coating or gravure coating, a spin coating method, a screen coating method, a fountain coating method, a dipping method, or a spray method. Etc. can be selected and adopted as appropriate.
  • the base material layer has a layer of a photocurable adhesive
  • the aqueous solution is applied directly to the layer.
  • the base material layer does not have the layer, the aqueous solution is applied directly to the base material layer.
  • the drying temperature is usually 50 to 200 ° C., preferably 80 to 150 ° C., and the drying time is usually about 5 to 30 minutes.
  • the laminate used in the present invention can also be formed by co-extrusion of a base material layer forming material and a hydrophilic polymer layer forming material.
  • a laminate in which the base material layer and the hydrophilic polymer layer are integrated may be obtained by such coextrusion.
  • the material of the base material layer and the material of the hydrophilic polymer layer are respectively charged into the coextrusion machine as a forming material for each layer, and the thickness of the base material layer and the hydrophilic polymer layer to be coextruded is desired. It is preferable to control to be in the range.
  • the laminate before stretching obtained above is subjected to stretching treatment and dyeing treatment with a dichroic substance.
  • the stretched laminate subjected to the above treatments has a dichroic substance adsorbed on the resulting hydrophilic polymer layer by stretching the hydrophilic polymer layer and dyeing with a dichroic substance. Functions as a polarizer.
  • the stretching treatment is performed by subjecting the laminate obtained above to uniaxial stretching, biaxial stretching, or oblique stretching. This stretching process can also be performed in multiple stages.
  • the uniaxial stretching is preferably longitudinal stretching (stretching in the MD direction).
  • the base material layer has been previously stretched in the longitudinal direction (stretching in the MD direction) and the stretching treatment of the laminate is uniaxial stretching, the uniaxial stretching is transverse stretching (stretching in the TD direction). ) Is preferable.
  • the temperature at the time of the stretching treatment of the laminate is not particularly limited, but is preferably 130 to 200 ° C, more preferably 150 to 180 ° C.
  • the stretching process of the laminate may be performed so that the total stretch ratio in all directions is in the range of 2 to 10 times the original length of the laminate. Preferably it is 3 to 8 times, more preferably 3 to 7 times.
  • the dyeing process is performed by adsorbing a dichroic substance to the hydrophilic polymer layer of the laminate. Since the dichroic substance is as described above, the description is omitted here.
  • the dyeing process is performed, for example, by immersing the laminate in a solution (dyeing solution) containing a dichroic substance.
  • a solution in which a dichroic substance is dissolved in a solvent can be used.
  • water is generally used, but an organic solvent compatible with water may be further added.
  • the concentration of the dichroic substance in the dyeing solution is preferably in the range of 0.01 to 10% by mass, more preferably in the range of 0.02 to 7% by mass, and 0.025 to 5% by mass. % Is particularly preferred.
  • iodine when used as the dichroic substance, it is preferable to further add an iodide because the dyeing efficiency can be further improved.
  • the iodide include potassium iodide, lithium iodide, sodium iodide, zinc iodide, aluminum iodide, lead iodide, copper iodide, barium iodide, calcium iodide, tin iodide, and iodide.
  • examples include titanium.
  • the addition ratio of these iodides is preferably 0.01 to 10% by mass, and more preferably 0.1 to 5% by mass in the dyeing solution.
  • the ratio (mass ratio) of iodine and potassium iodide is preferably in the range of 1: 5 to 1: 100, and in the range of 1: 6 to 1:80. More preferably, it is in the range of 1: 7 to 1:70.
  • the immersion time of the laminate in the dyeing solution is not particularly limited, but usually it is preferably in the range of 15 seconds to 5 minutes, more preferably 1 minute to 3 minutes.
  • the temperature of the dyeing solution is preferably in the range of 10 to 60 ° C., more preferably in the range of 20 to 40 ° C.
  • the dichroic substance is oriented by adsorbing the dichroic substance to the hydrophilic polymer layer of the laminate.
  • the dyeing process can be performed before, simultaneously with, or after the stretching process of the laminate. From the viewpoint of satisfactorily orienting the dichroic material adsorbed on the hydrophilic polymer layer, the dyeing process is performed on the laminate. It is preferable to carry out after the treatment.
  • the polarizing plate according to the present invention can be used in various display devices such as a liquid crystal display device and an organic electroluminescence (EL) display device.
  • a liquid crystal display device and an organic electroluminescence (EL) display device.
  • EL organic electroluminescence
  • the polarizing plate according to the present invention can be used for liquid crystal display devices of various drive systems such as STN, TN, OCB, HAN, VA (MVA, PVA), and IPS.
  • VA MVA, PVA
  • IPS IPS type liquid crystal display devices.
  • it is preferably incorporated in an IPS mode liquid crystal display device.
  • the liquid crystal layer of the liquid crystal panel in the IPS mode type liquid crystal display device is homogeneously aligned parallel to the substrate surface in the initial state, and the director of the liquid crystal layer is parallel to the electrode wiring direction when no voltage is applied.
  • the direction of the director of the liquid crystal layer shifts to a direction perpendicular to the electrode wiring direction when a voltage is applied, and the director direction of the liquid crystal layer is the direction of the director when no voltage is applied.
  • the thickness of the liquid crystal layer is constant, but since it is driven by a transverse electric field, it may be possible to increase the response speed to switching by slightly increasing the thickness of the liquid crystal layer, but the thickness of the liquid crystal layer is constant. Even if it is not, it is possible to make the most of the effect, and there is little influence on the change in the thickness of the liquid crystal layer.
  • the thickness of the liquid crystal layer is 2 to 6 ⁇ m, preferably 3 to 5.5 ⁇ m.
  • the liquid crystal display device according to this embodiment can be preferably used for portable devices such as a tablet display device and a smartphone in addition to being used for a large liquid crystal television.
  • IPS mode type liquid crystal cell The details of the IPS mode type liquid crystal cell are not particularly limited, and it is of course possible to implement the present invention by referring to other conventionally known technical matters (for example, JP 2010-3060 A). .
  • a polyvinyl alcohol film (average polymerization degree 2400, saponification degree 99 mol%, trade name: VF-PS2400) manufactured by Kuraray Co., Ltd., which is a film made of a hydrophilic polymer, is cut into small pieces having a side of 5 mm or less. And dissolved in hot water at 95 ° C. to prepare a polyvinyl alcohol aqueous solution having a concentration of 10% by mass.
  • ⁇ Preparation of polarizing plate> (Preparation of optical film F1) (Preparation of dope solution a) Diacetylcellulose (L50, manufactured by Daicel) 30 parts by mass Methylene chloride 227 parts by mass Ethanol 43 parts by mass The above materials are put into a pressure-sealed container, heated to 80 ° C., and the pressure in the container is set to 2 atm. While the resin component was completely dissolved, a dope was obtained.
  • the solution was Azumi Filter Paper No. 1 manufactured by Azumi Filter Paper Co., Ltd. After filtering using 244, the dope was lowered to 35 ° C. and allowed to stand overnight to degas the dope.
  • the dope solution b prepared above was uniformly cast on a stainless steel band support at a temperature of 22 ° C. and a width of 2 m using a belt casting apparatus. With the stainless steel band support, the solvent was evaporated until the amount of residual solvent reached 100%, and peeling was performed from the stainless steel band support with a peeling tension of 162 N / m.
  • the solvent was evaporated from the peeled web at 35 ° C., slit to 1.6 m width, and then dried at a drying temperature of 135 ° C. while being stretched 1.1 times in the width direction by a tenter.
  • the residual solvent amount when starting stretching with a tenter was 10%.
  • drying is completed while transporting a drying zone at 120 ° C. and 130 ° C. with a number of rolls, slitting to a width of 1.5 m, and a width of 10 mm at both ends of the film.
  • a knurling process having a height of 5 ⁇ m was performed, and an optical film was obtained by winding it around a 6-inch inner diameter core with an initial tension of 220 N / m and a final tension of 110 N / m.
  • the draw ratio in the MD direction calculated from the rotational speed of the stainless steel band support and the operating speed of the tenter was 1.1 times.
  • the residual solvent amount was 0.1%
  • the film thickness was 60 ⁇ m
  • the number of turns was 4000 m.
  • the wound film is unwound, the dope liquid a prepared above is cast on the unwound film, and dried at 50 ° C. until the residual solvent amount of the resin layer made of the dope liquid a becomes 100%. Thereafter, drying was carried out stepwise at 120 ° C. and 130 ° C., and drying was carried out until the residual solvent amount in the total film became 0.3%, and then wound to obtain an optical film F1.
  • the thickness of the resin layer made of the dope liquid a was 15 ⁇ m.
  • stretching) in obtained PL1 was 30 micrometers.
  • the thickness of the hydrophilic polymer layer (after stretching) in the polarizing plate PL1 was 2 ⁇ m.
  • Fine particle addition liquid 1 The fine particle dispersion 1 was slowly added to the dissolution tank containing methylene chloride with sufficient stirring. Further, the particles were dispersed by an attritor so that the secondary particles had a predetermined particle size. This was filtered through Finemet NF manufactured by Nippon Seisen Co., Ltd. to prepare a fine particle additive solution 1.
  • a main dope solution having the following composition was prepared. First, methylene chloride and ethanol were added to the pressure dissolution tank. Cellulose acetate having an acetyl substitution degree of 2.30 was added to a pressure dissolution tank containing a solvent while stirring. This is completely dissolved with heating and stirring. This was designated as Azumi Filter Paper No. The main dope solution was prepared by filtration using 244.
  • composition of main dope solution The following two types of dopes were prepared, and an optical film F2 having a structure of skin layer / core layer / skin layer was prepared by co-casting.
  • the dope was co-cast with a band casting machine so as to have a three-layer structure of skin layer / core layer / skin layer.
  • the core layer is made the thickest.
  • the film thickness after stretching is 15 ⁇ m for the core layer, 10 ⁇ m for the skin layer, and 35 ⁇ m in total. Went.
  • a film peeled off from the band with a residual solvent amount of about 30% by mass was applied with hot air at 160 ° C. by a tenter and widened to a draw ratio of 1.32 times, and then 140 ° C. so that the draw ratio became 1.3 times. For 60 seconds. Thereafter, the tenter conveyance was shifted to the roll conveyance, and the film was further dried at 120 to 150 ° C. and wound up.
  • stretching) in obtained PL2 was 25 micrometers.
  • the thickness of the hydrophilic polymer layer (after stretching) in the polarizing plate PL2 was 3 ⁇ m.
  • optical film F3 (thickness 55 ⁇ m) was produced by the method described in Example 1 of JP 2010-30225 A.
  • Extension process The laminate obtained above is heated at 150 ° C. in a clip type tenter, stretched twice in the film width direction (TD direction), and then in the longitudinal direction at 150 ° C. with a roll-to-roll in a transport roll. The film was stretched in the MD direction at a stretch ratio of 5 to obtain a stretched laminate.
  • stretching) in obtained PL5 was 25 micrometers.
  • the thickness of the hydrophilic polymer layer (after stretching) in the polarizing plate PL5 was 0.5 ⁇ m.
  • the dope solution b prepared above was uniformly cast on a stainless steel band support at a temperature of 22 ° C. and a width of 2 m using a belt casting apparatus. With the stainless steel band support, the solvent was evaporated until the amount of residual solvent reached 100%, and peeling was performed from the stainless steel band support with a peeling tension of 162 N / m.
  • the solvent was evaporated from the peeled web at 35 ° C., slit to 1.6 m width, and then dried at a drying temperature of 135 ° C. while being stretched 1.1 times in the width direction by a tenter.
  • the residual solvent amount when starting stretching with a tenter was 10%.
  • drying is completed while transporting a drying zone at 120 ° C. and 130 ° C. with a number of rolls, slitting to a width of 1.5 m, and a width of 10 mm at both ends of the film.
  • a knurling process having a height of 5 ⁇ m was performed, and an optical film was obtained by winding it around a 6-inch inner diameter core with an initial tension of 220 N / m and a final tension of 110 N / m.
  • the draw ratio in the MD direction calculated from the rotational speed of the stainless steel band support and the operating speed of the tenter was 1.1 times.
  • the residual solvent amount was 0.1%
  • the film thickness was 60 ⁇ m
  • the number of turns was 4000 m.
  • the wound film is unwound, the dope liquid a prepared above is cast on the unwound film, and dried at 50 ° C. until the residual solvent amount of the resin layer made of the dope liquid a becomes 100%. Thereafter, drying was carried out stepwise at 120 ° C. and 130 ° C., and drying was carried out until the residual solvent amount in the total film became 0.3%, and then wound to obtain an optical film F6.
  • the thickness of the resin layer made of the dope liquid a was 15 ⁇ m.
  • Extension process The laminated body obtained above is heated at 150 ° C. in a clip type tenter, stretched twice in the film width direction, and then in the longitudinal direction (MD direction) at 150 ° C. by roll-to-roll with a transport roll. The film was stretched at a stretch ratio of 5 to obtain a stretched laminate.
  • the solvent was evaporated from the peeled web at 35 ° C., slit to 1.6 m width, and then dried at a drying temperature of 135 ° C. while being stretched 1.1 times in the width direction by a tenter.
  • the residual solvent amount when starting stretching with a tenter was 15%.
  • drying is completed while transporting a drying zone at 120 ° C. and 130 ° C. with a number of rolls, slitting to a width of 1.5 m, and a width of 10 mm at both ends of the film.
  • a knurling process having a height of 5 ⁇ m was performed, and an optical film was obtained by winding it around a 6-inch inner diameter core with an initial tension of 300 N / m and a final tension of 180 N / m.
  • the draw ratio in the MD direction calculated from the rotational speed of the stainless steel band support and the operating speed of the tenter was 1.1 times.
  • the residual solvent amount was 0.1%
  • the film thickness was 250 ⁇ m
  • the number of turns was 1000 m.
  • the wound film is unwound, the dope liquid a prepared above is cast on the unwound film, and dried at 50 ° C. until the residual solvent amount of the resin layer made of the dope liquid a becomes 100%. Thereafter, drying was carried out stepwise at 120 ° C. and 130 ° C., and drying was carried out until the residual solvent amount in the total film became 0.3%, and then wound to obtain an optical film F9.
  • the thickness of the resin layer made of the dope liquid a was 15 ⁇ m.
  • the solvent was evaporated from the peeled web at 35 ° C., slit to 1.6 m width, and then dried at a drying temperature of 135 ° C. while being stretched 1.1 times in the width direction by a tenter.
  • the residual solvent amount when starting stretching with a tenter was 15%.
  • drying is completed while transporting a drying zone at 120 ° C. and 130 ° C. with a number of rolls, slitting to a width of 1.5 m, and a width of 10 mm at both ends of the film.
  • a knurling process having a height of 5 ⁇ m was performed, and an optical film was obtained by winding it around a 6-inch inner diameter core with an initial tension of 300 N / m and a final tension of 180 N / m.
  • the draw ratio in the MD direction calculated from the rotational speed of the stainless steel band support and the operating speed of the tenter was 1.1 times.
  • the residual solvent amount was 0.1%
  • the film thickness was 280 ⁇ m
  • the number of turns was 1000 m.
  • the wound film is unwound, the dope liquid a prepared above is cast on the unwound film, and dried at 50 ° C. until the residual solvent amount of the resin layer made of the dope liquid a becomes 100%.
  • the film was dried stepwise at 120 ° C. and 130 ° C., and dried until the residual solvent amount in the total film became 0.3%, and then wound to obtain an optical film F10.
  • the thickness of the resin layer made of the dope liquid a was 15 ⁇ m.
  • Extension process The laminate obtained above is heated at 145 ° C. in a clip-type tenter, stretched twice in the width direction of the film, and then in the longitudinal direction (MD direction) at 145 ° C. by roll-to-roll with a transport roll. The film was stretched at a stretch ratio of 6 to obtain a stretched laminate.
  • stretching) in obtained PL10 was 103 micrometers.
  • the thickness of the hydrophilic polymer layer (after stretching) in the polarizing plate PL10 was 2 ⁇ m.
  • a polarizing plate PL11 (thickness: 41 ⁇ m) was produced by the method described in Example 1 of JP-A-2009-98653.
  • a 2.5 mass% polyvinyl alcohol aqueous solution was applied to both surfaces of the polarizer produced above with a wire bar, and an optical film F3 saponified under the following conditions was bonded and dried to obtain a polarizing plate PL12.
  • the obtained PL12 had a thickness of 92 ⁇ m.
  • the prepared optical film F3 was immersed in an aqueous KOH solution at 50 ° C. and 2.0 N for 60 seconds, and then washed with water.
  • An optical film F4 was produced based on Examples (a) and (b) of JP2010-250091A.
  • the optical film F3 produced above and the optical film F4 are bonded together, and the polyvinyl alcohol aqueous solution prepared above is applied onto the optical film F3, and then dried at 120 ° C. for 10 minutes to obtain a thickness of 10 ⁇ m.
  • a hydrophilic polymer layer comprising a polyvinyl alcohol coating film was formed to obtain a laminate.
  • the elastic moduli Ea and Eb in the environment of 23 ° C. and 55% RH are Ea 1 and Eb 1 , respectively, and the elastic moduli Ea and Eb in the environment of 40 ° C. and 20% RH are Ea 2 and Eb 2 , respectively.
  • Differences ⁇ Ea
  • and ⁇ Eb
  • the display device After that, the display device is left in an environment of 23 ° C. and 55% RH for 2 hours, the power source (backlight) is turned on, and the display unevenness and light leakage after 12 hours and 24 hours are displayed in black on the screen.
  • the following criteria were used for the evaluation. The results are shown in Table 1 below.
  • Image display is uniform: ⁇ Image display is almost uniform: ⁇ There is unevenness in the center and surroundings: There is clear unevenness in the center and surrounding area: ⁇ (Light leakage) No light leakage: ⁇ There is slight light leakage: ⁇ Some light leaks and feels bright: ⁇ There is light leakage and feels dazzling: ⁇
  • the liquid crystal display device used in the configuration of the present invention can obtain uniform image quality without unevenness and light leakage.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)

Abstract

[Problem] To provide a polarizing plate capable of minimizing the occurrence of color inconsistency in a display device when used as a panel display. [Solution] In a polarizing plate which is formed by stretch processing a laminated body of a hydrophilic polymer layer and a basic material including a thermoplastic resin and has a stretched laminated body wherein a dichroic material is adsorbed onto said hydrophilic polymer layer, the curl fluctuation under two environments where temperature and humidity are different is controlled to be a prescribed value or less.

Description

偏光板およびこれを用いた表示装置Polarizing plate and display device using the same
 本発明は、偏光板およびこれを用いた表示装置に関する。 The present invention relates to a polarizing plate and a display device using the same.
 近年、表示装置の分野における技術革新は目覚ましく、液晶表示装置、有機EL表示装置などの表示装置の開発が進められ、数多くの製品が上市されるに至っている。 In recent years, technological innovation in the field of display devices has been remarkable, and development of display devices such as liquid crystal display devices and organic EL display devices has been promoted, and many products have been put on the market.
 液晶表示装置の方式としては、通称TN型、STN型、OCB型、HAN型、VA型(PVA型、MVA型)、IPS型等がよく知られている。液晶表示装置は通常、液晶層および当該液晶層を挟持する一対の基板を有する液晶セルと、当該液晶セルの両側(視認側およびバックライト側)にそれぞれ配置された偏光板と、を備えるものである。なかでもIPS(インプレーンスイッチング;In-Plane Switching)モード型液晶表示装置(以下、単に「IPS型液晶表示装置」とも称する)は、現在、タブレット型表示装置やスマートフォンなどの携帯用機器に広く用いられている。IPS型液晶表示装置では、黒表示時に液晶層に含まれる液晶分子が前記一対の基板の表面に対して平行に配向するため、IPS型液晶表示装置は黒表示性能に優れるという利点がある。また、IPS型液晶表示装置では、いわゆる光学補償フィルム(視野角拡大フィルム)を用いなくともある程度の高視野角を確保できるという利点もある。一方、IPS型液晶表示装置が備える液晶セルの光学的な特性上、斜め方向から画面を見たときに光漏れが発生し、表示画像のコントラストが低下するという問題があった。 As a method of the liquid crystal display device, commonly known as TN type, STN type, OCB type, HAN type, VA type (PVA type, MVA type), IPS type and the like are well known. The liquid crystal display device usually includes a liquid crystal cell having a liquid crystal layer and a pair of substrates sandwiching the liquid crystal layer, and polarizing plates respectively disposed on both sides (viewing side and backlight side) of the liquid crystal cell. is there. In particular, IPS (In-Plane Switching) mode type liquid crystal display devices (hereinafter, also simply referred to as “IPS type liquid crystal display devices”) are widely used in portable devices such as tablet display devices and smartphones. It has been. In the IPS liquid crystal display device, the liquid crystal molecules contained in the liquid crystal layer are aligned in parallel to the surfaces of the pair of substrates during black display, and thus the IPS liquid crystal display device has an advantage of excellent black display performance. Further, the IPS liquid crystal display device has an advantage that a certain high viewing angle can be secured without using a so-called optical compensation film (viewing angle widening film). On the other hand, due to the optical characteristics of the liquid crystal cell provided in the IPS liquid crystal display device, there is a problem that light leakage occurs when the screen is viewed from an oblique direction, and the contrast of the display image is lowered.
 液晶表示装置では一般に、このようなコントラストの低下を防止することを目的として、位相差フィルムが使用されているが、さらなる性能向上のために、様々な光学設計に対応可能な位相差フィルムが求められるようになってきている。また、上述したような携帯用機器に搭載される位相差フィルムについては、よりいっそうの薄型化、軽量化の要求も強い。 In general, a retardation film is used in a liquid crystal display device for the purpose of preventing such a decrease in contrast. However, in order to further improve the performance, a retardation film capable of supporting various optical designs is required. It is getting to be. In addition, regarding the retardation film mounted on the portable device as described above, there is a strong demand for further reduction in thickness and weight.
 液晶表示装置の重要な構成部材の1つに、偏光板がある。偏光板は、偏光子と当該偏光子を保護するための偏光板保護フィルムとが積層されてなる構成を有する。偏光板の1つのタイプとして、いわゆる塗布型偏光板が知られているが、この塗布型偏光板は、加湿環境下においてカールが発生するという問題を抱えている。偏光板にカールが発生すると、表示装置を構成した際に局所的に表示ムラ(色ムラ)が生じてしまう。 One of the important components of liquid crystal display devices is a polarizing plate. The polarizing plate has a configuration in which a polarizer and a polarizing plate protective film for protecting the polarizer are laminated. A so-called coating type polarizing plate is known as one type of polarizing plate, but this coating type polarizing plate has a problem that curling occurs in a humidified environment. When curling occurs in the polarizing plate, display unevenness (color unevenness) locally occurs when the display device is configured.
 従来、塗布型偏光板を薄型化した場合に、特に加湿環境下においてもカールの発生を防止できる技術として、基材層と親水性高分子層との積層体を延伸処理した延伸積層体の親水性高分子層に二色性物質を吸着させたものを偏光板として用いる技術が提案されている(特許文献1を参照)。ここで、特許文献1では、基材層を構成する好ましい材料として、ポリオレフィン樹脂、環状ポリオレフィン樹脂および(メタ)アクリル樹脂が例示されている。そして、特許文献1の実施例では、アクリル系樹脂フィルム(ラクトン化ポリメチルメタクリレートフィルム)やノルボルネン系樹脂フィルムを基材層として用いた例が開示されている。 Conventionally, when the coating type polarizing plate is thinned, the hydrophilicity of the stretched laminate obtained by stretching the laminate of the base material layer and the hydrophilic polymer layer is a technique capable of preventing the occurrence of curling even in a humidified environment. A technique has been proposed in which a dichroic substance adsorbed on a functional polymer layer is used as a polarizing plate (see Patent Document 1). Here, in patent document 1, polyolefin resin, cyclic polyolefin resin, and (meth) acrylic resin are illustrated as a preferable material which comprises a base material layer. And in the Example of patent document 1, the example which used the acrylic resin film (lactone-ized polymethylmethacrylate film) and the norbornene-type resin film as a base material layer is disclosed.
米国特許出願公開第2010/0202051号明細書US Patent Application Publication No. 2010/0202051
 本発明者らは、上述した特許文献1に記載の技術について検討を行なった。その結果、特許文献1に記載の技術によって偏光板を構成した場合であっても、依然として表示装置を構成した場合に表示ムラ(色ムラ)が発生してしまう場合があることが判明した。 The present inventors examined the technique described in Patent Document 1 described above. As a result, it has been found that even when the polarizing plate is configured by the technique described in Patent Document 1, display unevenness (color unevenness) may occur when the display device is still configured.
 そこで本発明は、表示装置のパネル表示時の色ムラの発生を抑制することができる偏光板を提供することを目的とする。 Therefore, an object of the present invention is to provide a polarizing plate that can suppress the occurrence of color unevenness when a display device displays a panel.
 本発明者らは、上記課題に鑑み鋭意検討を行なった。その結果、親水性高分子層と熱可塑性樹脂を含む基材層との積層体が延伸処理されてなり、前記親水性高分子層に二色性物質が吸着された延伸積層体を有する偏光板において、温度・湿度が異なる2つの環境下におけるカールの変動が所定値以下の値となるように制御することで、上記課題が解決されうることを見出し、本発明を完成させるに至った。 The present inventors have conducted intensive studies in view of the above problems. As a result, a polarizing plate having a stretched laminate in which a laminate of a hydrophilic polymer layer and a base material layer containing a thermoplastic resin is stretched and a dichroic substance is adsorbed on the hydrophilic polymer layer. The inventors have found that the above problem can be solved by controlling the fluctuation of the curl in two environments having different temperatures and humidity to be a predetermined value or less, and have completed the present invention.
 すなわち、本発明の上記目的は、以下の構成により達成される。 That is, the above object of the present invention is achieved by the following configuration.
 1.親水性高分子層と熱可塑性樹脂を含む基材層との積層体が延伸処理されてなり、前記親水性高分子層に二色性物質が吸着された延伸積層体を有する偏光板であって、
 23℃55%RH環境下でのカールCと、40℃20%RH環境下でのカールCとの差ΔC=|C-C|が、ΔC≦80[1/m]を満たす、偏光板;
 2.前記基材層が、少なくとも2種の熱可塑性樹脂を含有する、上記1に記載の偏光板;
 3.前記親水性高分子層の膜厚が0.5~30μmである、上記1または2に記載の偏光板;
 4.前記基材層に含まれる熱可塑性樹脂が、アクリル系樹脂、スチレン系樹脂、シクロオレフィン系樹脂、セルロース系樹脂、ポリプロピレン系樹脂、ポリエステル系樹脂、またはこれらの組み合わせからなる、上記1~3のいずれか1項に記載の偏光板;
 5.前記基材層が、少なくとも、
 第1の熱可塑性樹脂を含む第1の基材層と、
 前記第1の基材層に対して前記親水性高分子層とは反対の側に配置された、第2の熱可塑性樹脂を含む第2の基材層と、
を有する、上記1~4のいずれか1項に記載の偏光板。
1. A polarizing plate having a stretched laminate in which a laminate of a hydrophilic polymer layer and a base material layer containing a thermoplastic resin is stretched, and a dichroic substance is adsorbed on the hydrophilic polymer layer, ,
The difference ΔC = | C 1 −C 2 | between the curl C 1 in the environment of 23 ° C. and 55% RH and the curl C 2 in the environment of 40 ° C. and 20% RH satisfies ΔC ≦ 80 [1 / m]. ,Polarizer;
2. 2. The polarizing plate according to 1 above, wherein the base material layer contains at least two thermoplastic resins;
3. 3. The polarizing plate according to 1 or 2 above, wherein the hydrophilic polymer layer has a thickness of 0.5 to 30 μm;
4). Any of the above 1 to 3, wherein the thermoplastic resin contained in the base material layer comprises an acrylic resin, a styrene resin, a cycloolefin resin, a cellulose resin, a polypropylene resin, a polyester resin, or a combination thereof. Or a polarizing plate according to claim 1;
5. The base material layer is at least
A first base material layer containing a first thermoplastic resin;
A second substrate layer comprising a second thermoplastic resin, disposed on the opposite side of the hydrophilic polymer layer with respect to the first substrate layer;
5. The polarizing plate according to any one of the above 1 to 4, which has
 6.前記第1の基材層の弾性率Eaと、前記第2の基材層の弾性率Ebとの差ΔE=|Ea-Eb|(MPa)が、ΔE≦3000[MPa]を満たし、かつ、
 23℃55%RH環境下での弾性率EaおよびEbと、40℃20%RH環境下での弾性率EaおよびEbとのそれぞれの差ΔEa=|Ea-Ea|およびΔEb=|Eb-Eb|が、ΔEa,ΔEb≦2000[MPa]を満たす、上記5に記載の偏光板;
 7.前記延伸積層体の膜厚が10~100μmである、上記1~6のいずれか1項に記載の偏光板;
 8.前記親水性高分子層が、親水性高分子としてポリビニルアルコールを含む、上記1~7のいずれか1項に記載の偏光板;
 9.前記二色性物質がヨウ素である、上記1~8のいずれか1項に記載の偏光板;
 10.上記1~9のいずれか1項に記載の偏光板の製造方法であって、
 前記基材層を溶液流延法により製膜する工程を含む、製造方法;
 11.製膜された前記基材層の一方の表面に、親水性高分子を含有する溶液を塗布し、乾燥させて積層体を得る工程をさらに含む、上記10に記載の製造方法;
 12.前記積層体を2~10倍の延伸倍率で延伸処理する工程をさらに含む、上記11に記載の製造方法;
 13.上記1~9のいずれか1項に記載の偏光板、または上記10~12のいずれか1項に記載の製造方法によって製造された偏光板を備えた表示装置;
 14.IPSモード型液晶表示装置である、上記13に記載の表示装置。
6). The difference ΔE = | Ea−Eb | (MPa) between the elastic modulus Ea of the first base material layer and the elastic modulus Eb of the second base material layer satisfies ΔE ≦ 3000 [MPa], and
Differences ΔEa = | Ea 1 −Ea 2 | and ΔEb between the elastic moduli Ea 1 and Eb 1 in a 23 ° C. and 55% RH environment and the elastic moduli Ea 2 and Eb 2 in a 40 ° C. and 20% RH environment, respectively. == Eb 1 −Eb 2 | satisfying ΔEa, ΔEb ≦ 2000 [MPa];
7). 7. The polarizing plate according to any one of 1 to 6, wherein the stretched laminate has a thickness of 10 to 100 μm;
8). The polarizing plate according to any one of 1 to 7 above, wherein the hydrophilic polymer layer contains polyvinyl alcohol as a hydrophilic polymer;
9. The polarizing plate according to any one of 1 to 8, wherein the dichroic substance is iodine;
10. 10. A method for producing a polarizing plate according to any one of 1 to 9 above,
A production method comprising a step of forming the substrate layer by a solution casting method;
11. 11. The production method according to 10 above, further comprising a step of applying a solution containing a hydrophilic polymer to one surface of the base material layer formed and drying to obtain a laminate.
12 The production method according to the above 11, further comprising a step of stretching the laminate at a stretching ratio of 2 to 10 times;
13. 10. A display device comprising the polarizing plate according to any one of 1 to 9 or the polarizing plate produced by the production method according to any one of 10 to 12;
14 14. The display device according to the above 13, which is an IPS mode type liquid crystal display device.
 以下、本発明の実施形態を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
 ≪偏光板≫
 本発明の一形態は、親水性高分子層と熱可塑性樹脂層との積層体が延伸処理されてなり、前記親水性高分子層に二色性物質が吸着された延伸積層体を有する偏光板に関する。そして、本形態に係る偏光板は、23℃55%RH環境下でのカールCと、40℃20%RH環境下でのカールCとの差ΔC=|C-C|が、ΔC≦80[1/m]を満たす点に特徴を有する。本発明によれば、表示装置のパネル表示時の色ムラの発生を抑制することができる偏光板が提供される。
≪Polarizing plate≫
One embodiment of the present invention is a polarizing plate having a stretched laminate in which a laminate of a hydrophilic polymer layer and a thermoplastic resin layer is stretched, and a dichroic substance is adsorbed on the hydrophilic polymer layer. About. The polarizing plate according to this embodiment has a difference ΔC = | C 1 −C 2 | between the curl C 1 in the environment of 23 ° C. and 55% RH and the curl C 2 in the environment of 20 ° C. and 20% RH. It is characterized in that ΔC ≦ 80 [1 / m] is satisfied. ADVANTAGE OF THE INVENTION According to this invention, the polarizing plate which can suppress generation | occurrence | production of the color nonuniformity at the time of panel display of a display apparatus is provided.
 本形態に係る偏光板は、上述したように、親水性高分子層と熱可塑性樹脂層との積層体が延伸処理されてなり、前記親水性高分子層に二色性物質が吸着された延伸積層体を有するものである。以下、当該延伸積層体の構成要素について、より詳細に説明する。 As described above, the polarizing plate according to the present embodiment is obtained by stretching a laminate of a hydrophilic polymer layer and a thermoplastic resin layer and adsorbing a dichroic substance on the hydrophilic polymer layer. It has a laminate. Hereinafter, the constituent elements of the stretched laminate will be described in more detail.
 [親水性高分子層]
 延伸積層体は、まず、親水性高分子層を備える。親水性高分子層は、親水性高分子を主成分として含有する層である。そして、本形態に係る偏光板において、親水性高分子層は二色性物質を吸着したものである。これにより、親水性高分子層は、本形態に係る偏光板において偏光子として機能することになる。
[Hydrophilic polymer layer]
The stretched laminate is first provided with a hydrophilic polymer layer. The hydrophilic polymer layer is a layer containing a hydrophilic polymer as a main component. And in the polarizing plate which concerns on this form, a hydrophilic polymer layer adsorb | sucks a dichroic substance. Thereby, the hydrophilic polymer layer functions as a polarizer in the polarizing plate according to the present embodiment.
 親水性高分子層を構成する親水性高分子について特に制限はないが、ポリビニルアルコール系材料が好ましく例示される。ポリビニルアルコール系材料としては、例えば、ポリビニルアルコールおよびその誘導体が挙げられる。ポリビニルアルコールの誘導体としては、ポリビニルホルマール、ポリビニルアセタール等があげられるほか、エチレン、プロピレン等のオレフィン、アクリル酸、メタクリル酸、クロトン酸等の不飽和カルボン酸そのアルキルエステル、アクリルアミド等で変性したものが挙げられる。ポリビニルアルコールの重合度は、100~10000程度が好ましく、1000~10000がより好ましい。ケン化度は80~100モル%程度のものが一般に用いられる。上記のほか、親水性高分子としては、エチレン・酢酸ビニル共重合体系部分ケン化物、ポリビニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物等が挙げられる。前記親水性高分子としては、ポリビニルアルコール系材料のなかでも、ポリビニルアルコールを用いるのが好ましい。 Although there is no restriction | limiting in particular about the hydrophilic polymer which comprises a hydrophilic polymer layer, A polyvinyl alcohol-type material is illustrated preferably. Examples of the polyvinyl alcohol material include polyvinyl alcohol and derivatives thereof. Derivatives of polyvinyl alcohol include polyvinyl formal, polyvinyl acetal and the like, olefins such as ethylene and propylene, unsaturated carboxylic acids such as acrylic acid, methacrylic acid and crotonic acid, alkyl esters thereof, acrylamide and the like. Can be mentioned. The degree of polymerization of polyvinyl alcohol is preferably about 100 to 10,000, and more preferably 1,000 to 10,000. A saponification degree of about 80 to 100 mol% is generally used. In addition to the above, examples of the hydrophilic polymer include partially saponified ethylene / vinyl acetate copolymer, dehydrated polyvinyl alcohol and dehydrochlorinated polyvinyl chloride. As the hydrophilic polymer, it is preferable to use polyvinyl alcohol among polyvinyl alcohol materials.
 親水性高分子層は、上述した親水性高分子に加えて、可塑剤、界面活性剤等の添加剤を含有してもよい。可塑剤としては、ポリオールおよびその縮合物等が挙げられ、例えばグリセリン、ジグリセリン、トリグリセリン、エチレングリコール、プロピレングリコール、ポリエチレングリコール等が挙げられる。可塑剤等の使用量は特に制限されないが、親水性高分子層の全量100質量%に対して20質量%以下とするのが好ましい。 The hydrophilic polymer layer may contain additives such as a plasticizer and a surfactant in addition to the hydrophilic polymer described above. Examples of the plasticizer include polyols and condensates thereof, and examples thereof include glycerin, diglycerin, triglycerin, ethylene glycol, propylene glycol, and polyethylene glycol. The amount of the plasticizer used is not particularly limited, but it is preferably 20% by mass or less with respect to 100% by mass of the total amount of the hydrophilic polymer layer.
 親水性高分子層に吸着される二色性物質の具体的な構成についても特に制限はないが、例えば、ヨウ素や有機染料等が挙げられる。有機染料としては、例えば、レッドBR、レッドLR、レッドR、ピンクLB、ルビンBL、ボルドーGS、スカイブルーLG、レモンエロー、ブルーBR、ブルー2R、ネイビーRY、グリーンLG、バイオレットLB、バイオレットB、ブラックH、ブラックB、ブラックGSP、エロー3G、エローR、オレンジLR、オレンジ3R、スカーレットGL、スカーレットKGL、コンゴーレッド、ブリリアントバイオレットBK、スプラブルーG、スプラブルーGL、スプラオレンジGL、ダイレクトスカイブルー、ダイレクトファーストオレンジS、ファーストブラック、等が用いられうる。なかでも、水溶性、工程適性という観点からは、二色性物質としてヨウ素が用いられることが好ましい。これらの二色性物質は、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。 The specific configuration of the dichroic substance adsorbed on the hydrophilic polymer layer is not particularly limited, and examples thereof include iodine and organic dyes. Organic dyes include, for example, Red BR, Red LR, Red R, Pink LB, Rubin BL, Bordeaux GS, Sky Blue LG, Lemon Yellow, Blue BR, Blue 2R, Navy RY, Green LG, Violet LB, Violet B, Black H, Black B, Black GSP, Yellow 3G, Yellow R, Orange LR, Orange 3R, Scarlet GL, Scarlet KGL, Congo Red, Brilliant Violet BK, Spura Blue G, Spura Blue GL, Spura Orange GL, Direct Sky Blue, Direct First orange S, first black, etc. can be used. Of these, iodine is preferably used as the dichroic material from the viewpoint of water solubility and process suitability. As for these dichroic substances, only 1 type may be used independently and 2 or more types may be used together.
 親水性高分子層における二色性物質の吸着量についても特に制限はなく、従来公知の知見を参照して適宜設定することが可能である。 The amount of dichroic substance adsorbed in the hydrophilic polymer layer is not particularly limited, and can be set as appropriate with reference to known knowledge.
 親水性高分子層の延伸後の厚みは特に制限されないが、好ましくは0.5~30μmであり、より好ましくは1~10μmである。当該厚みが下限値以上の値であれば、製造時の厚みばらつきの影響が小さくなり、外観不良が起こりにくくなるという利点がある。一方、当該厚みが上限値以下の値であれば、水溶液の乾燥性が良くなり、生産性が向上するという利点がある。なお、親水性高分子層の厚みの値としては、延伸した積層体の厚みから基材フィルムのみを同条件で延伸したフィルムの厚みを引くという手法により測定した値を採用するものとする。また、厚みの測定は膜厚計などを使用して行う。 The thickness of the hydrophilic polymer layer after stretching is not particularly limited, but is preferably 0.5 to 30 μm, more preferably 1 to 10 μm. If the thickness is a value equal to or greater than the lower limit, there is an advantage that the influence of thickness variation during manufacturing is reduced and appearance defects are less likely to occur. On the other hand, if the thickness is a value equal to or less than the upper limit, there is an advantage that the drying property of the aqueous solution is improved and the productivity is improved. In addition, as the value of the thickness of the hydrophilic polymer layer, a value measured by a method of subtracting the thickness of the film obtained by stretching only the base film under the same conditions from the thickness of the stretched laminate is adopted. The thickness is measured using a film thickness meter or the like.
 [基材層]
 延伸積層体はまた、基材層を備える。基材層は、延伸積層体(偏光板)の作製時において、親水性高分子層を作製するための基材として機能しうる。また、基材層は、本形態に係る偏光板において、偏光子を保護するための保護層(保護フィルム)として機能する。なお、基材層と親水性高分子層との間に、必要に応じて別の層を設けてもよい。
[Base material layer]
The stretched laminate also includes a substrate layer. The base material layer can function as a base material for preparing the hydrophilic polymer layer when the stretched laminate (polarizing plate) is prepared. Moreover, a base material layer functions as a protective layer (protective film) for protecting a polarizer in the polarizing plate which concerns on this form. In addition, you may provide another layer as needed between a base material layer and a hydrophilic polymer layer.
 基材層は熱可塑性樹脂を含む。基材層に含まれる熱可塑性樹脂について特に制限はなく、上述した偏光板のΔCを達成できる材料であればいずれのものも用いられうる。好ましくは、基材層は延伸可能な熱可塑性樹脂から構成される。延伸可能な熱可塑性樹脂としては、例えば、アクリル系樹脂、スチレン系樹脂、シクロオレフィン系樹脂、セルロース系樹脂、ポリプロピレン系樹脂、ポリエステル系樹脂、またはこれらの組み合わせが挙げられる。この際、アクリル系樹脂としては、メチルメタクリレート由来の構成単位を主成分として含有し、これと共重合可能なモノマー成分由来の構成単位をさらに含むアクリル系樹脂が好ましく用いられる。共重合可能なモノマー成分としては、環構造を有するアクリル酸誘導体も含まれる。また、スチレン系樹脂としては、スチレン由来の構成単位を主成分として含有し、これと共重合可能なモノマー成分由来の構成単位をさらに含むスチレン系樹脂が挙げられる。さらに、シクロオレフィン系樹脂としては、シクロオレフィン子ポリマーと称される、ノルボルネン系樹脂等が挙げられる。また、ポリプロピレン系樹脂としては、ポリプロピレンのほか、一部ポリエチレンを含むポリプロピレンなどが挙げられ、ポリエステル系樹脂としては、ポリエチレンテレフタレート(PET)などが挙げられる。 The base material layer includes a thermoplastic resin. There is no restriction | limiting in particular about the thermoplastic resin contained in a base material layer, Any thing can be used if it is the material which can achieve (DELTA) C of the polarizing plate mentioned above. Preferably, the base material layer is composed of a stretchable thermoplastic resin. Examples of stretchable thermoplastic resins include acrylic resins, styrene resins, cycloolefin resins, cellulose resins, polypropylene resins, polyester resins, or combinations thereof. In this case, as the acrylic resin, an acrylic resin containing a structural unit derived from methyl methacrylate as a main component and further comprising a structural unit derived from a monomer component copolymerizable therewith is preferably used. The copolymerizable monomer component also includes an acrylic acid derivative having a ring structure. Examples of the styrenic resin include a styrenic resin containing a structural unit derived from styrene as a main component and further containing a structural unit derived from a monomer component copolymerizable therewith. Furthermore, examples of the cycloolefin resin include a norbornene resin called a cycloolefin polymer. In addition to polypropylene, examples of the polypropylene-based resin include polypropylene partially containing polyethylene, and examples of the polyester-based resin include polyethylene terephthalate (PET).
 なかでも、好ましい実施形態において、基材層は、セルロース系樹脂を含有する。セルロース系樹脂の具体的な形態についても特に制限はないが、セルロースエステル、セルロースエーテル、カチオン化セルロース、各種ビニル単量体などの存在下で重合したセルロース系樹脂、各種ビニル単量体などとのグラフト重合体などが用いられる。なかでも、セルロースエステル樹脂が特に好ましく用いられる。 Among these, in a preferred embodiment, the base material layer contains a cellulosic resin. Although there is no restriction | limiting in particular also about the specific form of cellulose resin, Cellulose resin polymerized in presence of cellulose ester, cellulose ether, cationized cellulose, various vinyl monomers, various vinyl monomers, etc. A graft polymer or the like is used. Of these, cellulose ester resins are particularly preferably used.
 セルロースエステル樹脂の具体的な形態についても特に制限はないが、特に脆性の改善や透明性の観点から、下記数式(1)~(3): The specific form of the cellulose ester resin is not particularly limited, but in particular from the viewpoint of improving brittleness and transparency, the following formulas (1) to (3):
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
式中、Aはアセチル基の置換度を表し、Bは炭素数3~7のアシル基の置換度の総和を表す、
の関係を満たすアシル基置換度を有するものであることが好ましい。
In the formula, A represents the degree of substitution of the acetyl group, and B represents the sum of the degree of substitution of the acyl group having 3 to 7 carbon atoms.
It is preferable to have an acyl group substitution degree that satisfies the above relationship.
 セルロースエステル樹脂の炭素数2~7のアシル基の総置換度(A+B)が2.0以上であれば(すなわち、セルロースエステル分子の2,3,6位の水酸基の残度が1.0以下であれば)、基材層が偏光板保護フィルムとして機能する場合にもヘイズの上昇が防止される。また、アシル基総置換度(A+B)が2.0以上で、かつ、炭素数が3~7のアシル基の置換度が1.0以上であれば、脆性の低下が防止される。 If the total substitution degree (A + B) of the acyl group having 2 to 7 carbon atoms of the cellulose ester resin is 2.0 or more (that is, the residual degree of hydroxyl groups at the 2, 3, 6 positions of the cellulose ester molecule is 1.0 or less If the substrate layer functions as a polarizing plate protective film, an increase in haze is prevented. If the total acyl group substitution degree (A + B) is 2.0 or more and the substitution degree of the acyl group having 3 to 7 carbon atoms is 1.0 or more, the brittleness is prevented from being lowered.
 セルロースエステル樹脂のアシル基置換度は、総置換度(A)が2.0~3.0であり、アセチル基の置換度(A)が0.15~2.0であり、炭素数が3~7のアシル基の置換度(B)が1.2~3.0であれば問題ないが、炭素数が3~7以外のアシル基、すなわち、アセチル基や炭素数が8以上のアシル基の置換度の総計が1.3以下とされることが好ましい。また、セルロースエステル樹脂の炭素数2~7のアシル基の総置換度(A+B)は、2.5~3.0の範囲であることがさらに好ましい。 The cellulose ester resin has an acyl group substitution degree of 2.0 to 3.0 in total substitution degree (A), 0.15 to 2.0 substitution degree of acetyl group (A), and 3 carbon atoms. There is no problem if the substitution degree (B) of the acyl group of 7 to 1.2 is 1.2 to 3.0, but an acyl group other than 3 to 7 carbon atoms, that is, an acetyl group or an acyl group having 8 or more carbon atoms It is preferable that the total degree of substitution is 1.3 or less. Further, the total substitution degree (A + B) of the acyl group having 2 to 7 carbon atoms of the cellulose ester resin is more preferably in the range of 2.5 to 3.0.
 なお、前記アシル基は、脂肪族アシル基であっても、芳香族アシル基であってもよい。脂肪族アシル基の場合は、直鎖であっても分岐していてもよく、さらに置換基を有してもよい。本発明におけるアシル基の炭素数は、アシル基の置換基を包含するものである。 The acyl group may be an aliphatic acyl group or an aromatic acyl group. In the case of an aliphatic acyl group, it may be linear or branched and may further have a substituent. The number of carbon atoms of the acyl group in the present invention includes an acyl group substituent.
 セルロースエステル樹脂が、芳香族アシル基を置換基として有する場合、芳香族環に置換する置換基Xの数は0~5個であることが好ましい。この場合も、上述した好ましい実施形態では、置換基を含めた炭素数が3~7であるアシル基の置換度が1.0~2.75となるように留意が必要である。例えば、ベンゾイル基は炭素数が7になるため、炭素を含む置換基を有する場合は、ベンゾイル基としての炭素数は8以上となり、炭素数が3~7のアシル基には含まれないこととなる。 When the cellulose ester resin has an aromatic acyl group as a substituent, the number of substituents X substituted on the aromatic ring is preferably 0 to 5. In this case as well, in the above-described preferred embodiment, attention should be paid so that the substitution degree of the acyl group having 3 to 7 carbon atoms including the substituent is 1.0 to 2.75. For example, since the benzoyl group has 7 carbon atoms, when it has a substituent containing carbon, the benzoyl group has 8 or more carbon atoms and is not included in the acyl group having 3 to 7 carbon atoms. Become.
 さらに、芳香族環に置換する置換基の数が2個以上のとき、これらは互いに同じでも異なっていてもよく、また、互いに連結して縮合多環化合物(例えばナフタレン、インデン、インダン、フェナントレン、キノリン、イソキノリン、クロメン、クロマン、フタラジン、アクリジン、インドール、インドリンなど)を形成してもよい。 Further, when the number of substituents substituted on the aromatic ring is 2 or more, these may be the same or different from each other, and are connected to each other to form a condensed polycyclic compound (for example, naphthalene, indene, indane, phenanthrene, Quinoline, isoquinoline, chromene, chromane, phthalazine, acridine, indole, indoline, etc.).
 セルロースエステル樹脂としては、特にセルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートベンゾエート、セルロースプロピオネート、セルロースブチレートから選ばれる少なくとも一種であることが好ましい。これらの中で特に好ましいセルロースエステル樹脂は、セルロースアセテートプロピオネートやセルロースプロピオネートである。本発明では2種以上のセルロースエステル樹脂を混合して用いることもできる。 The cellulose ester resin is preferably at least one selected from cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate benzoate, cellulose propionate, and cellulose butyrate. Among these, cellulose ester resins that are particularly preferred are cellulose acetate propionate and cellulose propionate. In the present invention, two or more kinds of cellulose ester resins can be mixed and used.
 なお、アシル基で置換されていない部分は通常水酸基として存在しているものである。これらは公知の方法で合成することができる。また、アセチル基の置換度や他のアシル基の置換度は、ASTM-D817-96に規定の方法により求めたものである。 The portion not substituted with an acyl group is usually present as a hydroxyl group. These can be synthesized by known methods. Further, the substitution degree of acetyl group and the substitution degree of other acyl groups are determined by the method prescribed in ASTM-D817-96.
 セルロースエステル樹脂の重量平均分子量(Mw)は、特に脆性の改善の観点から好ましくは75000以上であり、75000~300000の範囲であることがより好ましく、100000~240000の範囲内であることがさらに好ましく、160000~240000のものが特に好ましい。セルロースエステル樹脂の重量平均分子量(Mw)が75000を下回る場合は、耐熱性や脆性の改善効果が十分に得られない虞がある。 The weight average molecular weight (Mw) of the cellulose ester resin is preferably 75,000 or more, more preferably in the range of 75,000 to 300,000, and still more preferably in the range of 100,000 to 24,000, particularly from the viewpoint of improving brittleness. 160000-240000 are particularly preferred. When the weight average molecular weight (Mw) of the cellulose ester resin is less than 75,000, the heat resistance and brittleness improvement effects may not be sufficiently obtained.
 延伸積層体を構成する基材層の厚みについて特に制限はないが、好ましくは10~200μmであり、さらに好ましくは20~80μmである。当該厚みが下限値以上であれば、偏光板としての強度が十分に確保される。一方、当該厚みが上限値以下であれば、偏光板のカールの発生がよりいっそう防止されうる。なお、基材層の厚みの値としては、基材フィルムのみを同条件で延伸したフィルムを作製し、その厚みを測定した値を採用するものとする。 The thickness of the base material layer constituting the stretched laminate is not particularly limited, but is preferably 10 to 200 μm, and more preferably 20 to 80 μm. If the said thickness is more than a lower limit, the intensity | strength as a polarizing plate is fully ensured. On the other hand, when the thickness is equal to or less than the upper limit value, the occurrence of curling of the polarizing plate can be further prevented. In addition, as the value of the thickness of the base material layer, a value obtained by preparing a film obtained by stretching only the base material film under the same conditions and measuring the thickness is adopted.
 基材層の、23℃の水中に24時間含浸したときの吸水率は1.0~8.0質量%であることが好ましい。当該吸水率は、好ましくは2.0~5.0質量%であり、より好ましくは3.0~5.0質量%である。なお、基材層の吸水率の値としては、以下の手法により測定した値を採用するものとする。 The water absorption when the base material layer is impregnated in 23 ° C. water for 24 hours is preferably 1.0 to 8.0 mass%. The water absorption rate is preferably 2.0 to 5.0% by mass, more preferably 3.0 to 5.0% by mass. In addition, the value measured with the following method shall be employ | adopted as a value of the water absorption rate of a base material layer.
 (基材層の吸水率の測定方法)
 延伸積層体から基材層のみを分離し、これを23℃の水中に24時間含浸した後、水中から引き上げて基材層の質量(M1)を測定する。続いて、基材層に対して23℃55%RHにて24時間静置した後、基材層の質量(M0)を測定する。これらの測定結果から、下記数式(4)に従って、吸水率を算出する。
(Measurement method of water absorption rate of base material layer)
Only the base material layer is separated from the stretched laminate, impregnated in water at 23 ° C. for 24 hours, and then pulled up from the water to measure the mass (M1) of the base material layer. Then, after leaving still with respect to a base material layer at 23 degreeC55% RH for 24 hours, the mass (M0) of a base material layer is measured. From these measurement results, the water absorption is calculated according to the following mathematical formula (4).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 吸水率が上述の規定を満たすような基材層を用いて親水性高分子層との延伸積層体を構成し、これを偏光板として用いることで、表示装置のパネル表示時の表示ムラの発生をより確実に抑制することができる。 Constructing a stretched laminate with a hydrophilic polymer layer using a base material layer having a water absorption rate satisfying the above-mentioned regulations, and using this as a polarizing plate will cause display unevenness during panel display of a display device Can be more reliably suppressed.
 セルロースエーテル樹脂の具体的な形態についても特に制限はないが、セルロース分子中の2,3,6位の少なくとも1つの置換基に、エーテル結合を有する。ここで言うエーテル結合とは、炭素-酸素-炭素結合のことである。セルロースエーテルとしては、メチルセルロース、エチルセルロース、カルボキシメチルセルロース、カルボキシメチルエチルセルロース、ヒドロキシエチルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロース等が挙げられるが、これらに限定されるものではない。また、光学フィルムとしての透明性、耐久性を確保するためには、エチルセルロースが最適である。エトキシル置換度は、1.9~2.9の範囲であることが好ましく、溶融時の粘度の関係と耐湿熱環境の安定性のバランスから、2.2~2.9の範囲であることが特に好ましい。また、エーテル置換度はASTM D4794-94に記載の方法にて定量することができる。セルロースエーテルの分子量としては、単独でフィルム化することができればよく、具体的には、数平均分子量Mnが、30,000≦Mn≦300,000(ポリスチレン換算)の範囲であればよく、さらに、好適には、50,000~200,000のものが使用される。分子量が小さすぎると、フィルムが脆くなり、また、分子量が高すぎると、粘度高く、成形加工時の成形安定性が悪くなるため、製造上好ましくない。 Although there is no restriction | limiting in particular about the specific form of a cellulose ether resin, It has an ether bond in the at least 1 substituent of the 2, 3, 6 position in a cellulose molecule. The ether bond referred to here is a carbon-oxygen-carbon bond. Examples of the cellulose ether include, but are not limited to, methyl cellulose, ethyl cellulose, carboxymethyl cellulose, carboxymethyl ethyl cellulose, hydroxyethyl cellulose, hydroxyethyl methyl cellulose, hydroxypropyl methyl cellulose, and the like. Further, ethyl cellulose is optimal for ensuring transparency and durability as an optical film. The degree of ethoxyl substitution is preferably in the range of 1.9 to 2.9, and in the range of 2.2 to 2.9 from the balance between the viscosity at the time of melting and the stability of the moist heat resistant environment. Particularly preferred. The degree of ether substitution can be quantified by the method described in ASTM D4794-94. The molecular weight of the cellulose ether only needs to be able to be formed into a film alone. Specifically, the number average molecular weight Mn may be in the range of 30,000 ≦ Mn ≦ 300,000 (polystyrene conversion). Preferably, 50,000 to 200,000 are used. If the molecular weight is too small, the film becomes fragile, and if the molecular weight is too high, the viscosity is high and the molding stability at the time of molding processing is deteriorated, which is not preferable for production.
 本発明の好ましい実施形態において、基材層は、少なくとも2種の熱可塑性樹脂を含む。かような実施形態において、基材層に含まれる少なくとも2種の熱可塑性樹脂は、セルロースエステル系樹脂およびアクリル系樹脂を必須に含むことが好ましく、熱可塑性樹脂としてはこれら2種のみが含まれることが特に好ましい。 In a preferred embodiment of the present invention, the base material layer includes at least two kinds of thermoplastic resins. In such an embodiment, it is preferable that at least two types of thermoplastic resins included in the base material layer include a cellulose ester resin and an acrylic resin as essential components, and only these two types are included as the thermoplastic resin. It is particularly preferred.
 基材層が2種以上の熱可塑性樹脂を含む形態としては、(i)2種以上の熱可塑性樹脂が相溶状態の混合物として均一組成の1層の基材層を構成する形態や、(ii)異なる熱可塑性樹脂を主剤として含む2層以上の基材層が積層されて基材層を構成する形態、(iii)これら(i)および(ii)を組み合わせた形態などが例示される。 As a form in which a base material layer contains two or more kinds of thermoplastic resins, (i) a form in which two or more kinds of thermoplastic resins constitute a single base material layer having a uniform composition as a mixture in a compatible state, ii) A mode in which two or more base material layers containing different thermoplastic resins as a main ingredient are laminated to form a base material layer, (iii) a mode in which these (i) and (ii) are combined, and the like are exemplified.
 (i)の形態としては、例えば、セルロースエステル系樹脂とアクリル系樹脂とが相溶状態で含まれる形態が例示される。かような形態については、国際公開第2011/121720号パンフレットや国際公開第2011/121817号パンフレットの開示内容などが参照されうる。 Examples of the form (i) include a form in which a cellulose ester resin and an acrylic resin are included in a compatible state. About such a form, the disclosure content etc. of the international publication 2011/121720 pamphlet and the international publication 2011/121817 pamphlet can be referred.
 また、(ii)の形態についても特に制限はなく、上述したいずれかの熱可塑性樹脂を含む基材層と、当該熱可塑性樹脂とは異なる熱可塑性樹脂を含む基材層とが積層されてなる形態であればいずれのものも採用されうる。ただし、親水性高分子層との密着性を確保するという観点からは、積層された異なる組成の基材層のうち、親水性高分子層の側に位置する基材層(本明細書中、「第1の基材層」とも称する)がセルロース系樹脂(好ましくは、セルロースエステル樹脂)を含有し、親水性高分子層とは反対の側に位置する基材層(本明細書中、「第2の基材層」とも称する)がアクリル系樹脂を含有することが好ましい。 Moreover, there is no restriction | limiting in particular also about the form of (ii), The base material layer containing one of the thermoplastic resins mentioned above and the base material layer containing the thermoplastic resin different from the said thermoplastic resin are laminated | stacked. Any form can be adopted. However, from the viewpoint of ensuring adhesion with the hydrophilic polymer layer, among the laminated base materials having different compositions, the base material layer located on the hydrophilic polymer layer side (in the present specification, A substrate layer (also referred to as “first substrate layer”) containing a cellulose-based resin (preferably a cellulose ester resin) and located on the side opposite to the hydrophilic polymer layer (in the present specification, “ It is preferable that the second base layer ”also includes an acrylic resin.
 さらに、好ましい実施形態として、第1の基材層の弾性率Eaと、第2の基材層の弾性率Ebとの差ΔE=|Ea-Eb|(MPa)が、ΔE≦3000[MPa]を満たすことが好ましく、ΔE≦2500を満たすことがより好ましく、ΔE≦2000を満たすことがさらに好ましい。また、23℃55%RH環境下での弾性率EaおよびEbをそれぞれEaおよびEbとし、40℃20%RH環境下での弾性率EaおよびEbをそれぞれEaおよびEbとしたときの、EaおよびEbのそれぞれの差ΔEa=|Ea-Ea|およびΔEb=|Eb-Eb|が、ΔEa,ΔEb≦2000[MPa]を満たすことが好ましく、ΔEa,ΔEb≦1500を満たすことがより好ましく、ΔEb≦1000を満たすことがさらに好ましい。なお、上述したΔEの好ましい規定と、ΔEaおよびΔEbの好ましい規定との双方を満たすこともまた、より好ましい実施形態である。なお、第1の基材層および第2の基材層の弾性率の値としては、後述する実施例の欄に記載の手法により測定された値を採用するものとする。また、第1の基材層および第2の基材層の弾性率の値を制御するには、基材層の作製時において、延伸倍率、延伸速度、延伸時の温度、延伸時の湿度などを適宜調節すればよい。 Furthermore, as a preferred embodiment, the difference ΔE = | Ea−Eb | (MPa) between the elastic modulus Ea of the first base material layer and the elastic modulus Eb of the second base material layer is ΔE ≦ 3000 [MPa]. Is preferably satisfied, ΔE ≦ 2500 is more preferably satisfied, and ΔE ≦ 2000 is further preferably satisfied. In addition, the elastic moduli Ea and Eb in the environment of 23 ° C. and 55% RH are Ea 1 and Eb 1 , respectively, and the elastic moduli Ea and Eb in the environment of 40 ° C. and 20% RH are Ea 2 and Eb 2 , respectively. , Ea and Eb, ΔEa = | Ea 1 −Ea 2 | and ΔEb = | Eb 1 −Eb 2 | preferably satisfy ΔEa, ΔEb ≦ 2000 [MPa], and satisfy ΔEa, ΔEb ≦ 1500. It is more preferable that ΔEb ≦ 1000 is satisfied. It is also a more preferable embodiment to satisfy both the preferable definition of ΔE and the preferable specifications of ΔEa and ΔEb. In addition, the value measured with the method as described in the column of the Example mentioned later as a value of the elasticity modulus of a 1st base material layer and a 2nd base material layer shall be employ | adopted. Moreover, in order to control the value of the elastic modulus of the first base material layer and the second base material layer, at the time of producing the base material layer, the draw ratio, the stretch speed, the temperature at the time of stretching, the humidity at the time of stretching, etc. May be adjusted as appropriate.
 基材層は、上述した熱可塑性樹脂に加えて、種々の添加剤を含みうる。 The base material layer may contain various additives in addition to the above-described thermoplastic resin.
 〈低分子量アクリルポリマー〉
 基材層に添加されうる添加剤としては、まず、低分子量アクリルポリマーが挙げられる。当該低分子量アクリルポリマーの重量平均分子量(Mw)は、好ましくは500~30000である。低分子量アクリルポリマーのなかでも分子内に芳香環および親水性基を有しないエチレン性不飽和モノマーXaを重合して得られた重量平均分子量500~30000のポリマーX、または、分子内に芳香環および親水性基を有しないエチレン性不飽和モノマーXaと分子内に芳香環を有さず親水性基を有するエチレン性不飽和モノマーXbとを共重合して得られた重量平均分子量500~30000のポリマーXを含有することが好ましい。ここで、分子内に芳香環および親水性基を有しないエチレン性不飽和モノマーXaとしては、後述するような(メタ)アクリル酸エステルが挙げられ、なかでもメタクリル酸メチル(MMA)が特に好ましい。また、分子内に芳香環を有さず親水性基を有するエチレン性不飽和モノマーXbとしては、アクリロイルモルホリン、ビニルピロリドン、ヒドロキシエチルメタクリレートなどが挙げられる。XにおけるXa由来の構成単位とXb由来の構成単位との含有比率について特に制限はないが、Xa由来の構成単位:Xb由来の構成単位の質量比として、50:50~95:5が好ましく、60:40~90:10がより好ましく、70:30~80:20が特に好ましい。
<Low molecular weight acrylic polymer>
Examples of the additive that can be added to the base material layer include a low molecular weight acrylic polymer. The weight average molecular weight (Mw) of the low molecular weight acrylic polymer is preferably 500 to 30000. Among the low molecular weight acrylic polymers, a polymer X 1 having a weight average molecular weight of 500 to 30,000 obtained by polymerizing an ethylenically unsaturated monomer Xa having no aromatic ring and no hydrophilic group in the molecule, or an aromatic ring in the molecule And an ethylenically unsaturated monomer Xa having no hydrophilic group and an ethylenically unsaturated monomer Xb having no hydrophilic ring in the molecule and having a hydrophilic group, having a weight average molecular weight of 500 to 30,000 preferably contains a polymer X 2. Here, examples of the ethylenically unsaturated monomer Xa having no aromatic ring and no hydrophilic group in the molecule include (meth) acrylic acid esters as described later, and methyl methacrylate (MMA) is particularly preferable. Examples of the ethylenically unsaturated monomer Xb having no hydrophilic ring in the molecule and having a hydrophilic group include acryloylmorpholine, vinyl pyrrolidone, and hydroxyethyl methacrylate. The content ratio of the structural unit derived from Xa and the structural unit derived from Xb in X 2 is not particularly limited, but the mass ratio of the structural unit derived from Xa to the structural unit derived from Xb is preferably 50:50 to 95: 5. 60:40 to 90:10 is more preferable, and 70:30 to 80:20 is particularly preferable.
 なお、上述したアクリルポリマーの重量平均分子量は、好ましくは1500~20000であり、より好ましくは2000~10000であり、特に好ましくは2500~5000である。アクリルポリマーの重量平均分子量がかような範囲内の値であれば、揮発性と相溶性のバランスがとりやすいという利点がある。 In addition, the weight average molecular weight of the above-mentioned acrylic polymer is preferably 1500 to 20000, more preferably 2000 to 10000, and particularly preferably 2500 to 5000. If the weight average molecular weight of the acrylic polymer is within such a range, there is an advantage that a balance between volatility and compatibility can be easily obtained.
 また、上述したアクリルポリマーの基材層における含有量は、熱可塑性樹脂100質量%に対して、好ましくは10~40質量%であり、より好ましくは20~30質量%である。なお、基材層が複数の基材層の積層体からなる場合、この含有量の値は、当該添加剤が含まれる基材層を構成する熱可塑性樹脂の総量に対する質量割合である(以下同様)。 Further, the content of the acrylic polymer in the base material layer is preferably 10 to 40% by mass, more preferably 20 to 30% by mass with respect to 100% by mass of the thermoplastic resin. In addition, when a base material layer consists of a laminated body of a several base material layer, the value of this content is a mass ratio with respect to the total amount of the thermoplastic resin which comprises the base material layer in which the said additive is contained (hereinafter the same). ).
 低分子量アクリルポリマー以外の添加剤としては、例えば、可塑剤、糖エステル化合物、リターデーション調整剤、着色剤などが挙げられる。 Examples of additives other than the low molecular weight acrylic polymer include plasticizers, sugar ester compounds, retardation adjusting agents, and coloring agents.
 〈可塑剤〉
 可塑剤の具体的な形態について特に制限はないが、例えば、ポリエステル系可塑剤が挙げられる。ポリエステル系可塑剤の具体的な構造について特に制限はなく、分子内に芳香環またはシクロアルキル環を有するポリエステル系可塑剤が用いることができる。ポリエステル系可塑剤としては、例えば、下記一般式(4)で表されるポリエステル化合物が挙げられる。
<Plasticizer>
Although there is no restriction | limiting in particular about the specific form of a plasticizer, For example, a polyester plasticizer is mentioned. There is no restriction | limiting in particular about the specific structure of a polyester plasticizer, The polyester plasticizer which has an aromatic ring or a cycloalkyl ring in a molecule | numerator can be used. As a polyester plasticizer, the polyester compound represented by following General formula (4) is mentioned, for example.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
で表されるポリエステル化合物が挙げられる。 The polyester compound represented by these is mentioned.
 一般式(4)において、Bは、炭素数2~6の直鎖または分岐のアルキレン基またはシクロアルキレン基を表し、Aは、炭素数6~14の芳香環、または、炭素数2~6の直鎖もしくは分岐のアルキレン基もしくはシクロアルキレン基を表し、Xは、水素原子または炭素数6~14の芳香環を含むモノカルボン酸残基を表し、nは、1以上の自然数を表す。 In the general formula (4), B represents a linear or branched alkylene group or cycloalkylene group having 2 to 6 carbon atoms, and A represents an aromatic ring having 6 to 14 carbon atoms or a C 2 to 6 carbon atoms. A linear or branched alkylene group or a cycloalkylene group is represented, X represents a monocarboxylic acid residue containing a hydrogen atom or an aromatic ring having 6 to 14 carbon atoms, and n represents a natural number of 1 or more.
 一般式(4)で表されるポリエステル化合物は、芳香環(炭素数6~14)または直鎖もしくは分岐のアルキレン基もしくはシクロアルキレン基(ともに炭素数2~6)を有するジカルボン酸と、炭素数2~6の直鎖または分岐のアルキレンジオールまたはシクロアルキレンジオールとの交互共重合により得られる交互共重合体である。芳香族ジカルボン酸と、直鎖または分岐のアルキレン基またはシクロアルキレン基を有するジカルボン酸とは、それぞれ単独で用いても、混合物として用いても構わないが、偏光板保護フィルムを構成する主成分の樹脂(例えば、セルロースエステル樹脂)との相溶性の点から、少なくとも芳香族ジカルボン酸が10%以上含まれることが好ましい。また、芳香環(炭素数6~14)を有するモノカルボン酸で両末端を封止してもよい。 The polyester compound represented by the general formula (4) includes a dicarboxylic acid having an aromatic ring (having 6 to 14 carbon atoms) or a linear or branched alkylene group or cycloalkylene group (both having 2 to 6 carbon atoms) and a carbon number. An alternating copolymer obtained by alternating copolymerization with 2 to 6 linear or branched alkylene diols or cycloalkylene diols. The aromatic dicarboxylic acid and the dicarboxylic acid having a linear or branched alkylene group or cycloalkylene group may be used alone or as a mixture, but the main component constituting the polarizing plate protective film may be used. In view of compatibility with a resin (for example, a cellulose ester resin), it is preferable that at least 10% of an aromatic dicarboxylic acid is contained. Alternatively, both ends may be sealed with a monocarboxylic acid having an aromatic ring (having 6 to 14 carbon atoms).
 芳香環(炭素数6~14)を有するジカルボン酸、つまり、炭素数6~16の芳香族ジカルボン酸としては、例えば、フタル酸、イソフタル酸、テレフタル酸、1,5-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,8-ナフタレンジカルボン酸、2,2’-ビフェニルジカルボン酸、4,4’-ビフェニルジカルボン酸、等が挙げられる。そのなかでも好ましくは、テレフタル酸、2,6-ナフタレンジカルボン酸、4,4’-ビフェニルジカルボン酸である。 Examples of dicarboxylic acids having an aromatic ring (6 to 14 carbon atoms), that is, aromatic dicarboxylic acids having 6 to 16 carbon atoms include phthalic acid, isophthalic acid, terephthalic acid, 1,5-naphthalenedicarboxylic acid, 1, 4-naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,8-naphthalenedicarboxylic acid, 2,2′-biphenyldicarboxylic acid, 4,4 And '-biphenyldicarboxylic acid. Among these, terephthalic acid, 2,6-naphthalenedicarboxylic acid, and 4,4'-biphenyldicarboxylic acid are preferable.
 直鎖または分岐のアルキレン基またはシクロアルキレン基(炭素数2~6)を有するジカルボン酸としては、例えば、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、1,2-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、等が挙げられる。そのなかでも好ましくは、コハク酸、アジピン酸、1,4-シクロヘキサンジカルボン酸である。 Examples of the dicarboxylic acid having a linear or branched alkylene group or cycloalkylene group (2 to 6 carbon atoms) include malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, and 1,2-cyclohexane. Examples thereof include dicarboxylic acid and 1,4-cyclohexanedicarboxylic acid. Of these, succinic acid, adipic acid, and 1,4-cyclohexanedicarboxylic acid are preferable.
 また、炭素数が2~6の直鎖または分岐のアルキレンジオールまたはシクロアルキレンジオールとしては、例えば、エタンジオール(エチレングリコール)、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、2-メチル-1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール等が挙げられる。そのなかでも、好ましくはエタンジオール(エチレングリコール)、1,2-プロパンジオール、1,3-プロパンジオール、1,3-ブタンジオールである。 Examples of the linear or branched alkylene diol or cycloalkylene diol having 2 to 6 carbon atoms include ethanediol (ethylene glycol), 1,2-propanediol, 1,3-propanediol, 1,2- Butanediol, 1,3-butanediol, 2-methyl-1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6- Examples include hexanediol, 1,4-cyclohexanediol, and 1,4-cyclohexanedimethanol. Among these, ethanediol (ethylene glycol), 1,2-propanediol, 1,3-propanediol, and 1,3-butanediol are preferable.
 なかでも、Aが置換基を有していてもよいベンゼン環、ナフタレン環またはビフェニル環であることが、可塑性付与性能に優れるという観点から好ましい。ここで、ベンゼン環、ナフタレン環またはビフェニル環が有しうる「置換基」とは、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、または炭素数1~6のアルコキシ基である。 Among these, A is preferably a benzene ring, naphthalene ring or biphenyl ring which may have a substituent, from the viewpoint of excellent plasticity imparting performance. Here, the “substituent” that the benzene ring, naphthalene ring or biphenyl ring may have is an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or an alkoxy group having 1 to 6 carbon atoms. is there.
 ポリエステル化合物の両末端を封止する、芳香環(炭素数6~14)を有するモノカルボン酸としては、例えば、安息香酸、オルトトルイル酸、メタトルイル酸、パラトルイル酸、パラターシャリブチル安息香酸、ジメチル安息香酸、パラメトキシ安息香酸が挙げられる。そのなかでも好ましくは安息香酸、パラトルイル酸、パラターシャリブチル安息香酸である。 Examples of the monocarboxylic acid having an aromatic ring (having 6 to 14 carbon atoms) that seals both ends of the polyester compound include benzoic acid, orthotoluic acid, metatoluic acid, p-toluic acid, p-tert-butylbenzoic acid, and dimethylbenzoic acid. Examples include acids and paramethoxybenzoic acid. Of these, benzoic acid, p-toluic acid and p-tert-butylbenzoic acid are preferred.
 芳香族ポリエステル化合物は、常法により上述したジカルボン酸とアルキレンジオールまたはシクロアルキレンジオールとのポリエステル化反応またはエステル交換反応による熱溶融縮合法か、あるいはこれら酸の酸クロライドとグリコール類との界面縮合法のいずれかの方法によって容易に合成することができる。さらに、上述した芳香族モノカルボン酸を加えることで、両末端が封止されたポリエステル化合物を合成することができる。 Aromatic polyester compounds can be prepared by the conventional methods, such as the above-mentioned hot-melt condensation method by the polyesterification reaction or transesterification reaction between the dicarboxylic acid and alkylene diol or cycloalkylene diol, or the interfacial condensation method between acid chlorides of these acids and glycols. It can be easily synthesized by either method. Furthermore, by adding the above-described aromatic monocarboxylic acid, a polyester compound in which both ends are sealed can be synthesized.
 以下に、本発明において用いられうる芳香族ポリエステル化合物を例示する。 Examples of aromatic polyester compounds that can be used in the present invention are shown below.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 基材層は、一般式(4)で表されるポリエステル化合物以外の可塑剤をさらに含有することができる。 The base material layer can further contain a plasticizer other than the polyester compound represented by the general formula (4).
 一般式(4)で表されるポリエステル化合物以外の可塑剤としては特に限定されないが、好ましくは、多価カルボン酸エステル系可塑剤、グリコレート系可塑剤、フタル酸エステル系可塑剤、脂肪酸エステル系可塑剤および多価アルコールエステル系可塑剤、エステル系可塑剤、アクリル系可塑剤等から選択される。 Although it does not specifically limit as plasticizers other than the polyester compound represented by General formula (4), Preferably, polyhydric carboxylic acid ester plasticizer, glycolate type plasticizer, phthalate ester type plasticizer, fatty acid ester type It is selected from plasticizers and polyhydric alcohol ester plasticizers, ester plasticizers, acrylic plasticizers and the like.
 そのうち、可塑剤を二種以上用いる場合は、少なくとも一種は多価アルコールエステル系可塑剤であることが好ましい。 Of these, when two or more plasticizers are used, at least one is preferably a polyhydric alcohol ester plasticizer.
 多価アルコールエステル系可塑剤は2価以上の脂肪族多価アルコールとモノカルボン酸のエステルよりなる可塑剤であり、分子内に芳香環またはシクロアルキル環を有することが好ましい。好ましくは2~20価の脂肪族多価アルコールエステルである。 The polyhydric alcohol ester plasticizer is a plasticizer composed of an ester of a divalent or higher aliphatic polyhydric alcohol and a monocarboxylic acid, and preferably has an aromatic ring or a cycloalkyl ring in the molecule. A divalent to 20-valent aliphatic polyhydric alcohol ester is preferred.
 本発明に好ましく用いられる多価アルコールは次の一般式(a)で表される。 The polyhydric alcohol preferably used in the present invention is represented by the following general formula (a).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(式中、R11はn価の有機基、nは2以上の正の整数、OH基はアルコール性、および/またはフェノール性ヒドロキシ基(水酸基)を表す。 (In the formula, R 11 represents an n-valent organic group, n represents a positive integer of 2 or more, and the OH group represents an alcoholic and / or phenolic hydroxy group (hydroxyl group).
 好ましい多価アルコールの例としては、例えば以下のようなものを挙げることができるが、これらに限定されるものではない。 Examples of preferable polyhydric alcohols include the following, but are not limited thereto.
 アドニトール、アラビトール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、ジプロピレングリコール、トリプロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ジブチレングリコール、1,2,4-ブタントリオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ヘキサントリオール、ガラクチトール、マンニトール、3-メチルペンタン-1,3,5-トリオール、ピナコール、ソルビトール、トリメチロールプロパン、トリメチロールエタン、キシリトール等を挙げることができる。 Adonitol, arabitol, ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, 1,2-propanediol, 1,3-propanediol, dipropylene glycol, tripropylene glycol, 1,2-butanediol, 1,3- Butanediol, 1,4-butanediol, dibutylene glycol, 1,2,4-butanetriol, 1,5-pentanediol, 1,6-hexanediol, hexanetriol, galactitol, mannitol, 3-methylpentane Examples include 1,3,5-triol, pinacol, sorbitol, trimethylolpropane, trimethylolethane, and xylitol.
 特に、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、ソルビトール、トリメチロールプロパン、キシリトールが好ましい。 In particular, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, sorbitol, trimethylolpropane, and xylitol are preferable.
 多価アルコールエステルに用いられるモノカルボン酸としては、特に制限はなく、公知の脂肪族モノカルボン酸、脂環族モノカルボン酸、芳香族モノカルボン酸等を用いることができる。脂環族モノカルボン酸、芳香族モノカルボン酸を用いると透湿性、保留性を向上させる点で好ましい。 There is no restriction | limiting in particular as monocarboxylic acid used for polyhydric alcohol ester, Well-known aliphatic monocarboxylic acid, alicyclic monocarboxylic acid, aromatic monocarboxylic acid, etc. can be used. Use of an alicyclic monocarboxylic acid or aromatic monocarboxylic acid is preferred in terms of improving moisture permeability and retention.
 好ましいモノカルボン酸の例としては以下のようなものを挙げることができるが、これに限定されるものではない。 Examples of preferable monocarboxylic acids include the following, but are not limited thereto.
 脂肪族モノカルボン酸としては、炭素数1~32の直鎖または側鎖を有する脂肪酸を好ましく用いることができる。炭素数は1~20であることが更に好ましく、1~10であることが特に好ましい。酢酸を含有させるとセルロースアセテートとの相溶性が増すため好ましく、酢酸と他のモノカルボン酸を混合して用いることも好ましい。 As the aliphatic monocarboxylic acid, a fatty acid having a straight chain or a side chain having 1 to 32 carbon atoms can be preferably used. The number of carbon atoms is more preferably 1-20, and particularly preferably 1-10. The inclusion of acetic acid is preferred because the compatibility with cellulose acetate increases, and it is also preferred to use a mixture of acetic acid and other monocarboxylic acids.
 好ましい脂肪族モノカルボン酸としては、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、2-エチル-ヘキサン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸等の飽和脂肪酸、ウンデシレン酸、オレイン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸等の不飽和脂肪酸等を挙げることができる。 Preferred aliphatic monocarboxylic acids include acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, 2-ethyl-hexanoic acid, undecylic acid, lauric acid, tridecylic acid, Saturated fatty acids such as myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, heptacosanoic acid, montanic acid, melicic acid, laccelic acid, undecylenic acid, olein Examples thereof include unsaturated fatty acids such as acid, sorbic acid, linoleic acid, linolenic acid, and arachidonic acid.
 好ましい脂環族モノカルボン酸の例としては、シクロペンタンカルボン酸、シクロヘキサンカルボン酸、シクロオクタンカルボン酸、またはそれらの誘導体を挙げることができる。 Examples of preferable alicyclic monocarboxylic acids include cyclopentane carboxylic acid, cyclohexane carboxylic acid, cyclooctane carboxylic acid, and derivatives thereof.
 好ましい芳香族モノカルボン酸の例としては、安息香酸、トルイル酸等の安息香酸のベンゼン環にアルキル基、メトキシ基あるいはエトキシ基などのアルコキシ基を1~3個を導入したもの、ビフェニルカルボン酸、ナフタリンカルボン酸、テトラリンカルボン酸等のベンゼン環を2個以上有する芳香族モノカルボン酸、またはそれらの誘導体を挙げることができる。特に安息香酸が好ましい。 Examples of preferred aromatic monocarboxylic acids include those in which 1 to 3 alkoxy groups such as alkyl group, methoxy group or ethoxy group are introduced into the benzene ring of benzoic acid such as benzoic acid and toluic acid, biphenylcarboxylic acid, Examples thereof include aromatic monocarboxylic acids having two or more benzene rings such as naphthalenecarboxylic acid and tetralincarboxylic acid, or derivatives thereof. Benzoic acid is particularly preferable.
 多価アルコールエステルの分子量は特に制限はないが、300~1500であることが好ましく、350~750であることが更に好ましい。分子量が大きい方が揮発し難くなるため好ましく、透湿性、セルロースアセテートとの相溶性の点では小さい方が好ましい。 The molecular weight of the polyhydric alcohol ester is not particularly limited, but is preferably 300 to 1500, and more preferably 350 to 750. A higher molecular weight is preferred because it is less likely to volatilize, and a smaller one is preferred in terms of moisture permeability and compatibility with cellulose acetate.
 多価アルコールエステルに用いられるカルボン酸は一種類でもよいし、二種以上の混合であってもよい。また、多価アルコール中のOH基は、全てエステル化してもよいし、一部をOH基のままで残してもよい。 The carboxylic acid used for the polyhydric alcohol ester may be one kind or a mixture of two or more kinds. Moreover, all the OH groups in the polyhydric alcohol may be esterified, or a part of the OH groups may be left as they are.
 以下に、多価アルコールエステルの具体的化合物を例示する。 The following are specific compounds of polyhydric alcohol esters.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 グリコレート系可塑剤は特に限定されないが、アルキルフタリルアルキルグリコレート類が好ましく用いることができる。 The glycolate plasticizer is not particularly limited, but alkylphthalylalkyl glycolates can be preferably used.
 アルキルフタリルアルキルグリコレート類としては、例えばメチルフタリルメチルグリコレート、エチルフタリルエチルグリコレート、プロピルフタリルプロピルグリコレート、ブチルフタリルブチルグリコレート、オクチルフタリルオクチルグリコレート、メチルフタリルエチルグリコレート、エチルフタリルメチルグリコレート、エチルフタリルプロピルグリコレート、メチルフタリルブチルグリコレート、エチルフタリルブチルグリコレート、ブチルフタリルメチルグリコレート、ブチルフタリルエチルグリコレート、プロピルフタリルブチルグリコレート、ブチルフタリルプロピルグリコレート、メチルフタリルオクチルグリコレート、エチルフタリルオクチルグリコレート、オクチルフタリルメチルグリコレート、オクチルフタリルエチルグリコレート等が挙げられる。 Examples of alkyl phthalyl alkyl glycolates include methyl phthalyl methyl glycolate, ethyl phthalyl ethyl glycolate, propyl phthalyl propyl glycolate, butyl phthalyl butyl glycolate, octyl phthalyl octyl glycolate, methyl phthalyl ethyl Glycolate, ethyl phthalyl methyl glycolate, ethyl phthalyl propyl glycolate, methyl phthalyl butyl glycolate, ethyl phthalyl butyl glycolate, butyl phthalyl methyl glycolate, butyl phthalyl ethyl glycolate, propyl phthalyl butyl glycol Butyl phthalyl propyl glycolate, methyl phthalyl octyl glycolate, ethyl phthalyl octyl glycolate, octyl phthalyl methyl glycolate, octyl phthalate Ethyl glycolate, and the like.
 フタル酸エステル系可塑剤としては、ジエチルフタレート、ジメトキシエチルフタレート、ジメチルフタレート、ジオクチルフタレート、ジブチルフタレート、ジ-2-エチルヘキシルフタレート、ジオクチルフタレート、ジシクロヘキシルフタレート、ジシクロヘキシルテレフタレート等が挙げられる。 Examples of the phthalate ester plasticizer include diethyl phthalate, dimethoxyethyl phthalate, dimethyl phthalate, dioctyl phthalate, dibutyl phthalate, di-2-ethylhexyl phthalate, dioctyl phthalate, dicyclohexyl phthalate, and dicyclohexyl terephthalate.
 クエン酸エステル系可塑剤としては、クエン酸アセチルトリメチル、クエン酸アセチルトリエチル、クエン酸アセチルトリブチル等が挙げられる。 Examples of the citrate plasticizer include acetyltrimethyl citrate, acetyltriethyl citrate, and acetyltributyl citrate.
 脂肪酸エステル系可塑剤として、オレイン酸ブチル、リシノール酸メチルアセチル、セバシン酸ジブチル等が挙げられる。 Examples of fatty acid ester plasticizers include butyl oleate, methylacetyl ricinoleate, and dibutyl sebacate.
 リン酸エステル系可塑剤としては、トリフェニルホスフェート、トリクレジルホスフェート、クレジルジフェニルホスフェート、オクチルジフェニルホスフェート、ジフェニルビフェニルホスフェート、トリオクチルホスフェート、トリブチルホスフェート等が挙げられる。 Examples of the phosphate ester plasticizer include triphenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, octyl diphenyl phosphate, diphenyl biphenyl phosphate, trioctyl phosphate, tributyl phosphate, and the like.
 多価カルボン酸エステル化合物としては、2価以上、好ましくは2価~20価の多価カルボン酸とアルコールのエステルよりなる。また、脂肪族多価カルボン酸は2~20価であることが好ましく、芳香族多価カルボン酸、脂環式多価カルボン酸の場合は3価~20価であることが好ましい。 The polyvalent carboxylic acid ester compound is composed of an ester of a divalent or higher, preferably a divalent to 20valent polyvalent carboxylic acid and an alcohol. The aliphatic polyvalent carboxylic acid is preferably divalent to 20-valent, and in the case of an aromatic polyvalent carboxylic acid or alicyclic polyvalent carboxylic acid, it is preferably trivalent to 20-valent.
 多価カルボン酸は次の一般式(b)で表される。 The polyvalent carboxylic acid is represented by the following general formula (b).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 式中、R12は(m1+n1)価の有機基、m1は2以上の正の整数、n1は0以上の整数、COOH基はカルボキシ基、OH基はアルコール性またはフェノール性ヒドロキシ基を表す。 In the formula, R 12 represents an (m1 + n1) -valent organic group, m1 represents a positive integer of 2 or more, n1 represents an integer of 0 or more, a COOH group represents a carboxy group, and an OH group represents an alcoholic or phenolic hydroxy group.
 好ましい多価カルボン酸の例としては、例えば以下のようなものを挙げることができるが、これらに限定されるものではない。 Examples of preferable polyvalent carboxylic acids include, but are not limited to, the following.
 トリメリット酸、トリメシン酸、ピロメリット酸のような3価以上の芳香族多価カルボン酸またはその誘導体、コハク酸、アジピン酸、アゼライン酸、セバシン酸、シュウ酸、フマル酸、マレイン酸、テトラヒドロフタル酸のような脂肪族多価カルボン酸、酒石酸、タルトロン酸、リンゴ酸、クエン酸のようなオキシ多価カルボン酸などを好ましく用いることができる。特にオキシ多価カルボン酸を用いることが、保留性向上などの点で好ましい。 Trivalent or higher aromatic polyvalent carboxylic acids such as trimellitic acid, trimesic acid, pyromellitic acid or derivatives thereof, succinic acid, adipic acid, azelaic acid, sebacic acid, oxalic acid, fumaric acid, maleic acid, tetrahydrophthal An aliphatic polyvalent carboxylic acid such as an acid, an oxypolyvalent carboxylic acid such as tartaric acid, tartronic acid, malic acid and citric acid can be preferably used. In particular, it is preferable to use an oxypolycarboxylic acid from the viewpoint of improving retention.
 本発明に用いることのできる多価カルボン酸エステル化合物に用いられるアルコールとしては特に制限はなく公知のアルコール、フェノール類を用いることができる。 The alcohol used in the polyvalent carboxylic acid ester compound that can be used in the present invention is not particularly limited, and known alcohols and phenols can be used.
 例えば炭素数1~32の直鎖または側鎖を持った脂肪族飽和アルコールまたは脂肪族不飽和アルコールを好ましく用いることができる。炭素数1~20であることが更に好ましく、炭素数1~10であることが特に好ましい。 For example, an aliphatic saturated alcohol or aliphatic unsaturated alcohol having a straight chain or a side chain having 1 to 32 carbon atoms can be preferably used. More preferably, it has 1 to 20 carbon atoms, and particularly preferably 1 to 10 carbon atoms.
 また、シクロペンタノール、シクロヘキサノールなどの脂環式アルコールまたはその誘導体、ベンジルアルコール、シンナミルアルコールなどの芳香族アルコールまたはその誘導体なども好ましく用いることができる。 Also, alicyclic alcohols such as cyclopentanol and cyclohexanol or derivatives thereof, aromatic alcohols such as benzyl alcohol and cinnamyl alcohol, or derivatives thereof can be preferably used.
 多価カルボン酸としてオキシ多価カルボン酸を用いる場合は、オキシ多価カルボン酸のアルコール性またはフェノール性のヒドロキシ基(水酸基)を、モノカルボン酸を用いてエステル化しても良い。好ましいモノカルボン酸の例としては以下のようなものを挙げることができるが、本発明はこれに限定されるものではない。 When an oxypolycarboxylic acid is used as the polycarboxylic acid, the alcoholic or phenolic hydroxy group (hydroxyl group) of the oxypolycarboxylic acid may be esterified with a monocarboxylic acid. Examples of preferred monocarboxylic acids include the following, but the present invention is not limited thereto.
 脂肪族モノカルボン酸としては炭素数1~32の直鎖または側鎖を持った脂肪酸を好ましく用いることができる。炭素数1~20であることが更に好ましく、炭素数1~10であることが特に好ましい。 As the aliphatic monocarboxylic acid, a straight-chain or side-chain fatty acid having 1 to 32 carbon atoms can be preferably used. More preferably, it has 1 to 20 carbon atoms, and particularly preferably 1 to 10 carbon atoms.
 好ましい脂肪族モノカルボン酸としては酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、2-エチル-ヘキサンカルボン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸などの飽和脂肪酸、ウンデシレン酸、オレイン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸などの不飽和脂肪酸などを挙げることができる。 Preferred aliphatic monocarboxylic acids include acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, 2-ethyl-hexanecarboxylic acid, undecylic acid, lauric acid, tridecylic acid, Saturated fatty acids such as myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, heptacosanoic acid, montanic acid, melicic acid, and laccelic acid, undecylenic acid, olein Examples thereof include unsaturated fatty acids such as acid, sorbic acid, linoleic acid, linolenic acid, and arachidonic acid.
 好ましい脂環族モノカルボン酸の例としては、シクロペンタンカルボン酸、シクロヘキサンカルボン酸、シクロオクタンカルボン酸、またはそれらの誘導体を挙げることができる。 Examples of preferable alicyclic monocarboxylic acids include cyclopentane carboxylic acid, cyclohexane carboxylic acid, cyclooctane carboxylic acid, and derivatives thereof.
 好ましい芳香族モノカルボン酸の例としては、安息香酸、トルイル酸などの安息香酸のベンゼン環にアルキル基を導入したもの、ビフェニルカルボン酸、ナフタリンカルボン酸、テトラリンカルボン酸などのベンゼン環を2個以上持つ芳香族モノカルボン酸、またはそれらの誘導体を挙げることができる。特に酢酸、プロピオン酸、安息香酸であることが好ましい。 Examples of preferred aromatic monocarboxylic acids include those in which an alkyl group is introduced into the benzene ring of benzoic acid such as benzoic acid and toluic acid, and two or more benzene rings such as biphenyl carboxylic acid, naphthalene carboxylic acid, and tetralin carboxylic acid. The aromatic monocarboxylic acid which has, or those derivatives can be mentioned. Particularly preferred are acetic acid, propionic acid, and benzoic acid.
 多価カルボン酸エステル化合物の分子量は特に制限はないが、分子量300~1000の範囲であることが好ましく、350~750の範囲であることが更に好ましい。保留性向上の点では大きい方が好ましく、透湿性、セルロース系樹脂との相溶性の点では小さい方が好ましい。 The molecular weight of the polyvalent carboxylic acid ester compound is not particularly limited, but is preferably in the range of 300 to 1000, and more preferably in the range of 350 to 750. The larger one is preferable in terms of improving the retention, and the smaller one is preferable in terms of moisture permeability and compatibility with the cellulose resin.
 本発明に用いることのできる多価カルボン酸エステルに用いられるアルコール類は一種類でもよいし、二種以上の混合であってもよい。 The alcohol used for the polyvalent carboxylic acid ester that can be used in the present invention may be one kind or a mixture of two or more kinds.
 本発明に用いることのできる多価カルボン酸エステル化合物の酸価は1mgKOH/g以下であることが好ましく、0.2mgKOH/g以下であることが更に好ましい。酸価を上記範囲にすることによって、リターデーションの環境変動も抑制されるため好ましい。 The acid value of the polyvalent carboxylic acid ester compound that can be used in the present invention is preferably 1 mgKOH / g or less, and more preferably 0.2 mgKOH / g or less. Setting the acid value in the above range is preferable because the environmental fluctuation of the retardation is also suppressed.
 なお、酸価とは、試料1g中に含まれる酸(試料中に存在するカルボキシ基)を中和するために必要な水酸化カリウムのミリグラム数をいう。酸価はJIS K0070に準拠して測定したものである。 The acid value refers to the number of milligrams of potassium hydroxide necessary for neutralizing the acid (carboxy group present in the sample) contained in 1 g of the sample. The acid value is measured according to JIS K0070.
 特に好ましい多価カルボン酸エステル化合物の例を以下に示すが、本発明はこれに限定されるものではない。 Examples of particularly preferred polyvalent carboxylic acid ester compounds are shown below, but the present invention is not limited thereto.
 例えば、トリエチルシトレート、トリブチルシトレート、アセチルトリエチルシトレート(ATEC)、アセチルトリブチルシトレート(ATBC)、ベンゾイルトリブチルシトレート、アセチルトリフェニルシトレート、アセチルトリベンジルシトレート、酒石酸ジブチル、酒石酸ジアセチルジブチル、トリメリット酸トリブチル、ピロメリット酸テトラブチル等が挙げられる。 For example, triethyl citrate, tributyl citrate, acetyl triethyl citrate (ATEC), acetyl tributyl citrate (ATBC), benzoyl tributyl citrate, acetyl triphenyl citrate, acetyl tribenzyl citrate, dibutyl tartrate, diacetyl dibutyl tartrate, Examples include tributyl trimellitic acid and tetrabutyl pyromellitic acid.
 可塑剤は、基材層の全量100質量%に対して、0.1~30質量%の量で含まれることが好ましく、より好ましくは2~20質量%である。 The plasticizer is preferably contained in an amount of 0.1 to 30% by mass, more preferably 2 to 20% by mass with respect to 100% by mass of the total amount of the base material layer.
 〈糖エステル化合物〉
 基材層が糖エステル化合物をさらに含むことで、セルロースエステル樹脂の加水分解が防止されることから、フィルムの耐水性が向上しうる。
<Sugar ester compound>
Since the base material layer further contains a sugar ester compound, hydrolysis of the cellulose ester resin is prevented, so that the water resistance of the film can be improved.
 糖エステル化合物の一例としては、下記一般式(5): As an example of a sugar ester compound, the following general formula (5):
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
で表される化合物が挙げられる。 The compound represented by these is mentioned.
 一般式(5)において、Qは、単糖類または二糖類の残基を表し、Rは、脂肪族基または芳香族基を表し、mは、単糖類または二糖類の残基に直接結合している水酸基の数の合計であり、lは、単糖類または二糖類の残基に直接結合している-(O-C(=O)-R)基の数の合計であり、3≦m+l≦8であり、l≠0である。 In the general formula (5), Q represents a monosaccharide or disaccharide residue, R represents an aliphatic group or an aromatic group, and m is bonded directly to the monosaccharide or disaccharide residue. 1 is the total number of — (O—C (═O) —R) groups directly bonded to monosaccharide or disaccharide residues, and 3 ≦ m + 1 ≦ 8 and l ≠ 0.
 一般式(5)で表される構造を有する化合物は、水酸基の数(m)、-(O-C(=O)-R)基の数(l)が固定された単一種の化合物として単離することは困難であり、式中のm、lの異なる成分が数種類混合された化合物となることが知られている。したがって、水酸基の数(m)、-(O-C(=O)-R)基の数(l)が各々変化した混合物としての性能が重要であり、本形態のようなセルロースアシレートフィルムの場合、ヘイズ特性に対し一般式(5)で表される構造を有し、かつm=0の成分とm>0の成分との混合比率が45:55~0:100である化合物が好ましい。さらに性能的、コスト的により好ましくはm=0の成分とm>0の成分との混合比率が10:90~0.1:99.9の範囲である。なお、上記のm=0の成分とm>0の成分は、常法により高速液体クロマトグラフィによって測定することが可能である。 The compound having the structure represented by the general formula (5) is a single type of compound in which the number of hydroxyl groups (m) and the number of-(O—C (═O) —R) groups (1) are fixed. It is difficult to separate, and it is known that a compound in which several components different in m and l in the formula are mixed is obtained. Therefore, the performance as a mixture in which the number of hydroxyl groups (m) and the number of-(OC (= O) -R) groups (l) are changed is important. The cellulose acylate film of this embodiment In this case, a compound having a structure represented by the general formula (5) with respect to haze characteristics and a mixing ratio of the component m = 0 and the component m> 0 is 45:55 to 0: 100 is preferable. More preferably, in terms of performance and cost, the mixing ratio of the component m = 0 and the component m> 0 is in the range of 10:90 to 0.1: 99.9. In addition, the component of said m = 0 and the component of m> 0 can be measured by a high performance liquid chromatography by a conventional method.
 上記一般式(5)において、Qは単糖類または二糖類の残基を表す。単糖類の具体例としては、例えばアロース、アルトロース、グルコース、マンノース、グロース、イドース、ガラクトース、タロース、リボース、アラビノース、キシロース、リキソースなどが挙げられる。 In the above general formula (5), Q represents a monosaccharide or disaccharide residue. Specific examples of monosaccharides include allose, altrose, glucose, mannose, gulose, idose, galactose, talose, ribose, arabinose, xylose, lyxose, and the like.
 以下に、一般式(5)で表される、単糖類残基を有する化合物の構造例を示すが、本発明はこれらの具体例に限定されるものではない。 Hereinafter, structural examples of the compound having a monosaccharide residue represented by the general formula (5) are shown, but the present invention is not limited to these specific examples.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 二糖類の具体例としては、例えば、トレハロース、スクロース、マルトース、セロビオース、ゲンチオビオース、ラクトース、イソトレハロースなどが挙げられる。 Specific examples of the disaccharide include trehalose, sucrose, maltose, cellobiose, gentiobiose, lactose, and isotrehalose.
 以下に、一般式(5)で表される、二糖類残基を有する化合物の構造例を示すが、本発明はこれらの具体例に限定されるものではない。 Hereinafter, structural examples of the compound having a disaccharide residue represented by the general formula (5) are shown, but the present invention is not limited to these specific examples.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 一般式(5)において、Rは、脂肪族基または芳香族基を表す。ここで、脂肪族基および芳香族基はそれぞれ独立に置換基を有していてもよい。 In the general formula (5), R represents an aliphatic group or an aromatic group. Here, the aliphatic group and the aromatic group may each independently have a substituent.
 また、一般式(5)において、mは、単糖類または二糖類の残基に直接結合している水酸基の数の合計であり、lは、単糖類または二糖類の残基に直接結合している-(O-C(=O)-R)基の数の合計である。そして、3≦m+l≦8であることが必要であり、4≦m+l≦8であることが好ましい。また、l≠0である。なお、lが2以上である場合、-(O-C(=O)-R)基は互いに同じでもよいし異なっていてもよい。 In the general formula (5), m is the total number of hydroxyl groups directly bonded to the monosaccharide or disaccharide residue, and l is directly bonded to the monosaccharide or disaccharide residue. This is the total number of — (O—C (═O) —R) groups present. And it is necessary that 3 ≦ m + 1 ≦ 8, and it is preferable that 4 ≦ m + 1 ≦ 8. Also, l ≠ 0. When l is 2 or more, the — (O—C (═O) —R) groups may be the same or different.
 Rの定義における脂肪族基は、直鎖であっても、分岐であっても、環状であってもよく、炭素数1~25のものが好ましく、1~20のものがより好ましく、2~15のものが特に好ましい。脂肪族基の具体例としては、例えば、メチル、エチル、n-プロピル、iso-プロピル、シクロプロピル、n-ブチル、iso-ブチル、tert-ブチル、アミル、iso-アミル、tert-アミル、n-ヘキシル、シクロヘキシル、n-ヘプチル、n-オクチル、ビシクロオクチル、アダマンチル、n-デシル、tert-オクチル、ドデシル、ヘキサデシル、オクタデシル、ジデシルなどが挙げられる。 The aliphatic group in the definition of R may be linear, branched or cyclic, preferably has 1 to 25 carbon atoms, more preferably has 1 to 20 carbon atoms, and more preferably has 2 to 2 carbon atoms. 15 is particularly preferred. Specific examples of the aliphatic group include, for example, methyl, ethyl, n-propyl, iso-propyl, cyclopropyl, n-butyl, iso-butyl, tert-butyl, amyl, iso-amyl, tert-amyl, n- Examples include hexyl, cyclohexyl, n-heptyl, n-octyl, bicyclooctyl, adamantyl, n-decyl, tert-octyl, dodecyl, hexadecyl, octadecyl, didecyl and the like.
 また、Rの定義における芳香族基は、芳香族炭化水素基でもよいし、芳香族複素環基でもよく、より好ましくは芳香族炭化水素基である。芳香族炭化水素基としては、炭素数が6~24のものが好ましく、6~12のものがさらに好ましい。芳香族炭化水素基の具体例としては、例えば、ベンゼン、ナフタレン、アントラセン、ビフェニル、ターフェニルなどが挙げられる。芳香族炭化水素基としては、ベンゼン、ナフタレン、ビフェニルが特に好ましい。芳香族複素環基としては、酸素原子、窒素原子または硫黄原子のうち少なくとも1つを含むものが好ましい。複素環の具体例としては、例えば、フラン、ピロール、チオフェン、イミダゾール、ピラゾール、ピリジン、ピラジン、ピリダジン、トリアゾール、トリアジン、インドール、インダゾール、プリン、チアゾリン、チアジアゾール、オキサゾリン、オキサゾール、オキサジアゾール、キノリン、イソキノリン、フタラジン、ナフチリジン、キノキサリン、キナゾリン、シンノリン、プテリジン、アクリジン、フェナントロリン、フェナジン、テトラゾール、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、ベンゾトリアゾール、テトラザインデンなどが挙げられる。芳香族複素環基としては、ピリジン、トリアジン、キノリンが特に好ましい。 In addition, the aromatic group in the definition of R may be an aromatic hydrocarbon group or an aromatic heterocyclic group, and more preferably an aromatic hydrocarbon group. The aromatic hydrocarbon group preferably has 6 to 24 carbon atoms, more preferably 6 to 12 carbon atoms. Specific examples of the aromatic hydrocarbon group include benzene, naphthalene, anthracene, biphenyl, terphenyl and the like. As the aromatic hydrocarbon group, benzene, naphthalene, and biphenyl are particularly preferable. As the aromatic heterocyclic group, those containing at least one of an oxygen atom, a nitrogen atom or a sulfur atom are preferable. Specific examples of the heterocyclic ring include, for example, furan, pyrrole, thiophene, imidazole, pyrazole, pyridine, pyrazine, pyridazine, triazole, triazine, indole, indazole, purine, thiazoline, thiadiazole, oxazoline, oxazole, oxadiazole, quinoline, Examples thereof include isoquinoline, phthalazine, naphthyridine, quinoxaline, quinazoline, cinnoline, pteridine, acridine, phenanthroline, phenazine, tetrazole, benzimidazole, benzoxazole, benzthiazole, benzotriazole, tetrazaindene and the like. As the aromatic heterocyclic group, pyridine, triazine, and quinoline are particularly preferable.
 次に、一般式(5)で表される化合物の好ましい例を下記に示すが、本発明はこれらの具体例に限定されるものではない。 Next, preferred examples of the compound represented by the general formula (5) are shown below, but the present invention is not limited to these specific examples.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 (合成例:一般式(5)で表される化合物の合成例) (Synthesis example: Synthesis example of the compound represented by the general formula (5))
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 撹拌装置、還流冷却器、温度計および窒素ガス導入管を備えた四頭コルベンに、ショ糖34.2g(0.1モル)、無水安息香酸180.8g(0.8モル)、ピリジン379.7g(4.8モル)を仕込み、撹拌下に窒素ガス導入管から窒素ガスをバブリングさせながら昇温し、70℃で5時間エステル化反応を行った。次に、コルベン内を4×10Pa以下に減圧し、60℃で過剰のピリジンを留去した後に、コルベン内を1.3×10Pa以下に減圧し、120℃まで昇温させ、無水安息香酸、生成した安息香酸の大部分を留去した。そして、次にトルエン1L、0.5質量%の炭酸ナトリウム水溶液300gを添加し、50℃で30分間撹拌後、静置して、トルエン層を分取した。最後に、分取したトルエン層に水100gを添加し、常温で30分間水洗後、トルエン層を分取し、減圧下(4×10Pa以下)、60℃でトルエンを留去させ、例示化合物1、例示化合物2、例示化合物3、例示化合物4、および例示化合物5の混合物を得た。得られた混合物をHPLCおよびLC-MASSで解析したところ、例示化合物1が7質量%、例示化合物2が58質量%、例示化合物3が23質量%、例示化合物4が9質量%、例示化合物5が3質量%であった。なお、得られた混合物の一部をシリカゲルカラムクロマトグラフィーにより精製することで、それぞれ純度100%の例示化合物1、例示化合物2、例示化合物3、例示化合物4、および例示化合物5を得た。 Four-headed Kolben equipped with a stirrer, a reflux condenser, a thermometer and a nitrogen gas inlet tube was charged with 34.2 g (0.1 mol) of sucrose, 180.8 g (0.8 mol) of benzoic anhydride, 379. 7 g (4.8 mol) was charged, the temperature was raised while bubbling nitrogen gas from a nitrogen gas introduction tube with stirring, and an esterification reaction was carried out at 70 ° C. for 5 hours. Next, the inside of the Kolben was depressurized to 4 × 10 2 Pa or less, and after excess pyridine was distilled off at 60 ° C., the inside of the Kolben was depressurized to 1.3 × 10 Pa or less and the temperature was raised to 120 ° C. Most of the acid and benzoic acid formed were distilled off. Then, 1 L of toluene and 300 g of a 0.5% by mass aqueous sodium carbonate solution were added, and the mixture was stirred at 50 ° C. for 30 minutes and then allowed to stand to separate a toluene layer. Finally, 100 g of water is added to the collected toluene layer, and after washing with water at room temperature for 30 minutes, the toluene layer is separated, and toluene is distilled off at 60 ° C. under reduced pressure (4 × 10 2 Pa or less). A mixture of Compound 1, Example Compound 2, Example Compound 3, Example Compound 4, and Example Compound 5 was obtained. When the obtained mixture was analyzed by HPLC and LC-MASS, exemplary compound 1 was 7% by mass, exemplary compound 2 was 58% by mass, exemplary compound 3 was 23% by mass, exemplary compound 4 was 9% by mass, exemplary compound 5 Was 3% by mass. In addition, Example Compound 1, Example Compound 2, Example Compound 3, Example Compound 4, and Example Compound 5 having a purity of 100% were obtained by purifying a part of the obtained mixture by silica gel column chromatography.
 糖エステル化合物は、基材層の全量100質量%に対して、0.1~30質量%の量で含まれることが好ましく、より好ましくは2~20質量%である。 The sugar ester compound is preferably contained in an amount of 0.1 to 30% by mass, more preferably 2 to 20% by mass with respect to 100% by mass of the total amount of the base material layer.
 〈リターデーション調整剤〉
 基材層は、リターデーション調整剤を含んでもよい。リターデーション調整剤とは、その添加によってフィルムのリターデーション発現性を調整できる添加剤である。その具体的な構成について特に制限はなく、従来公知の知見が適宜参照されうる。また、波長分散を調整する効果を同時に有するリターデーション調整剤も存在するが、これを用いてもよい。
<Retardation adjuster>
The base material layer may contain a retardation adjusting agent. The retardation adjusting agent is an additive capable of adjusting the retardation development property of the film by its addition. There is no restriction | limiting in particular about the specific structure, A conventionally well-known knowledge can be referred suitably. Moreover, although there exists the retardation adjusting agent which has the effect of adjusting wavelength dispersion simultaneously, you may use this.
 本発明において用いられうるリターデーション調整剤としては、例えば、欧州特許第911,656A2号明細書に記載されているような、2つ以上の芳香族環を有する芳香族化合物が挙げられる。また、2種以上の芳香族化合物を併用してもよい。該芳香族化合物の芳香族環には、芳香族炭化水素環に加えて、芳香族性ヘテロ環をも含む。芳香族性ヘテロ環であることが特に好ましく、芳香族性ヘテロ環は一般に不飽和ヘテロ環である。中でも1,3,5-トリアジン環を有する化合物が特に好ましい。 Examples of the retardation adjusting agent that can be used in the present invention include aromatic compounds having two or more aromatic rings as described in EP 911,656A2. Two or more aromatic compounds may be used in combination. The aromatic ring of the aromatic compound includes an aromatic heterocyclic ring in addition to the aromatic hydrocarbon ring. An aromatic heterocyclic ring is particularly preferred, and the aromatic heterocyclic ring is generally an unsaturated heterocyclic ring. Of these, compounds having a 1,3,5-triazine ring are particularly preferred.
 また、リターデーション調整剤の他の例として、特開2010-163482号公報に一般式(I)として開示されている化合物が挙げられる。当該一般式(I)の具体例は、同公報の段落「0052」~「0058」に開示されている。また、特開2010-163483号公報に一般式(I)として開示されている化合物もまた、同様にリターデーション調整剤として用いられうる。当該一般式(I)の具体例は、同公報の段落「0054」~「0068」に開示されている。 In addition, as another example of the retardation adjusting agent, a compound disclosed as a general formula (I) in JP 2010-163482 A can be mentioned. Specific examples of the general formula (I) are disclosed in paragraphs “0052” to “0058” of the publication. In addition, the compound disclosed as the general formula (I) in JP2010-163483A can also be used as a retardation adjusting agent. Specific examples of the general formula (I) are disclosed in paragraphs “0054” to “0068” of the publication.
 リターデーション調整剤は、基材層の全量100質量%に対して、0.1~30質量%の量で含まれることが好ましく、より好ましくは2~20質量%である。 The retardation adjusting agent is preferably contained in an amount of 0.1 to 30% by mass, more preferably 2 to 20% by mass with respect to 100% by mass of the total amount of the base material layer.
 〈ポリエステル〉
 基材層は、下記のポリエステルを含有することも好ましい。
<polyester>
It is also preferable that the base material layer contains the following polyester.
 (一般式(d)または(e)で表されるポリエステル)
 基材層は、下記一般式(d)または(e)で表されるポリエステルを含みうる。
(Polyester represented by general formula (d) or (e))
The base material layer may contain polyester represented by the following general formula (d) or (e).
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
(式中、B1はモノカルボン酸を表し、Gは2価のアルコールを表し、Aは2塩基酸を表す。B1、G、Aはいずれも芳香環を含まない。mは繰り返し数を表す。) (In the formula, B1 represents a monocarboxylic acid, G represents a divalent alcohol, A represents a dibasic acid, and B1, G, and A do not contain an aromatic ring. M represents the number of repetitions. )
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
(式中、B2はモノアルコールを表し、Gは2価のアルコールを表し、Aは2塩基酸を表す。B2、G、Aはいずれも芳香環を含まない。nは繰り返し数を表す。)
 一般式(d)、(e)において、B1はモノカルボン酸成分を表し、B2はモノアルコール成分を表し、Gは2価のアルコール成分を表し、Aは2塩基酸成分を表し、これらによって合成されたことを表す。B1、B2、G、Aはいずれも芳香環を含まないことが特徴である。m、nは繰り返し数を表す。
(In the formula, B2 represents a monoalcohol, G represents a divalent alcohol, A represents a dibasic acid, and B2, G, and A do not contain an aromatic ring. N represents the number of repetitions.)
In the general formulas (d) and (e), B1 represents a monocarboxylic acid component, B2 represents a monoalcohol component, G represents a divalent alcohol component, A represents a dibasic acid component, and these are synthesized. It represents what has been done. B1, B2, G, and A are all characterized by containing no aromatic ring. m and n represent the number of repetitions.
 B1で表されるモノカルボン酸としては、特に制限はなく公知の脂肪族モノカルボン酸、脂環族モノカルボン酸等を用いることができる。 The monocarboxylic acid represented by B1 is not particularly limited, and known aliphatic monocarboxylic acid, alicyclic monocarboxylic acid, and the like can be used.
 好ましいモノカルボン酸の例としては以下のものが挙げられるが、本発明はこれに限定されない。 Preferred examples of the monocarboxylic acid include the following, but the present invention is not limited to this.
 脂肪族モノカルボン酸としては、炭素数1~32の直鎖のまたは側鎖を有する脂肪酸が好ましく用いられうる。炭素数1~20であることがさらに好ましく、炭素数1~12であることが特に好ましい。酢酸を含有させるとセルロースアシレートとの相溶性が増すため好ましく、酢酸と他のモノカルボン酸とを混合して用いることも好ましい。 As the aliphatic monocarboxylic acid, a straight-chain or side-chain fatty acid having 1 to 32 carbon atoms can be preferably used. More preferably, it has 1-20 carbon atoms, and particularly preferably has 1-12 carbon atoms. When acetic acid is contained, the compatibility with cellulose acylate is increased, and it is also preferable to use a mixture of acetic acid and another monocarboxylic acid.
 好ましい脂肪族モノカルボン酸としては、蟻酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、2-エチル-ヘキサンカルボン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸等の飽和脂肪酸;ウンデシレン酸、オレイン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸等の不飽和脂肪酸等が挙げられる。 Preferred aliphatic monocarboxylic acids include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, 2-ethyl-hexanecarboxylic acid, undecylic acid, lauric acid, Saturated fatty acids such as tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, heptacosanoic acid, montanic acid, melicic acid, and laccellic acid; Examples thereof include unsaturated fatty acids such as acid, oleic acid, sorbic acid, linoleic acid, linolenic acid, and arachidonic acid.
 B2で表されるモノアルコール成分としては、特に制限はなく公知のアルコール類が用いられうる。例えば、炭素数1~32の直鎖のまたは側鎖を有する脂肪族飽和アルコールまたは脂肪族不飽和アルコールが好ましく用いられうる。炭素数1~20であることがさらに好ましく、炭素数1~12であることが特に好ましい。 The monoalcohol component represented by B2 is not particularly limited, and known alcohols can be used. For example, an aliphatic saturated alcohol or aliphatic unsaturated alcohol having a straight chain or a side chain having 1 to 32 carbon atoms can be preferably used. More preferably, it has 1-20 carbon atoms, and particularly preferably has 1-12 carbon atoms.
 Gで表される2価のアルコール成分としては、以下のものが挙げられるが、本発明はこれらに限定されない。例えば、エチレングリコール、ジエチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,2-ブチレングリコール、1,3-ブチレングリコール、1,4-ブチレングリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,5-ペンチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール等が挙げられるが、これらのうちエチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,2-ブチレングリコール、1,3-ブチレングリコール、1,4-ブチレングリコール、1,6-ヘキサンジオール、ジエチレングリコール、トリエチレングリコールが好ましく、さらに、1,3-プロピレングリコール、1,4-ブチレングリコール1,6-ヘキサンジオール、ジエチレングリコールが好ましく用いられる。 Examples of the divalent alcohol component represented by G include the following, but the present invention is not limited thereto. For example, ethylene glycol, diethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butylene glycol, 1,3-butylene glycol, 1,4-butylene glycol, 1,5-pentanediol, , 6-hexanediol, 1,5-pentylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, etc., among which ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1 , 2-butylene glycol, 1,3-butylene glycol, 1,4-butylene glycol, 1,6-hexanediol, diethylene glycol and triethylene glycol are preferred, and 1,3-propylene glycol, 1,4 Butylene glycol 1,6-hexanediol, diethylene glycol is preferably used.
 Aで表される2塩基酸(ジカルボン酸)成分としては、脂肪族2塩基酸、脂環式2塩基酸が好ましく、脂肪族2塩基酸としては、例えば、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカンジカルボン酸、ドデカンジカルボン酸等、特に、脂肪族ジカルボン酸としては炭素数4~12のもの、これらから選ばれる少なくとも1つのものが使用されうる。つまり、2種以上の2塩基酸を組み合わせて使用してもよい。 The dibasic acid (dicarboxylic acid) component represented by A is preferably an aliphatic dibasic acid or an alicyclic dibasic acid. Examples of the aliphatic dibasic acid include malonic acid, succinic acid, glutaric acid, Adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedicarboxylic acid, dodecanedicarboxylic acid, etc., especially aliphatic dicarboxylic acids having 4 to 12 carbon atoms, and at least one selected from these are used. Can be done. That is, two or more dibasic acids may be used in combination.
 m、nは繰り返し数を表し、1以上で170以下が好ましい。 M and n represent the number of repetitions and are preferably 1 or more and 170 or less.
 (一般式(f)または(g)で表されるポリエステル)
 基材層は、下記一般式(f)または(g)で表されるポリエステルを含みうる。
(Polyester represented by general formula (f) or (g))
The base material layer may contain polyester represented by the following general formula (f) or (g).
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
(式中、B1は炭素数1~12のモノカルボン酸を表し、Gは炭素数2~12の2価のアルコールを表し、Aは炭素数2~12の2塩基酸を表す。B1、G、Aはいずれも芳香環を含まない。mは繰り返し数を表す。) (In the formula, B1 represents a monocarboxylic acid having 1 to 12 carbon atoms, G represents a divalent alcohol having 2 to 12 carbon atoms, and A represents a dibasic acid having 2 to 12 carbon atoms. B1, G , A does not contain an aromatic ring, and m represents the number of repetitions.)
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
(式中、B2は炭素数1~12のモノアルコールを表し、Gは炭素数2~12の2価のアルコールを表し、Aは炭素数2~12の2塩基酸を表す。B2、G、Aはいずれも芳香環を含まない。nは繰り返し数を表す。)
 一般式(f)、(g)において、B1はモノカルボン酸成分を表し、B2はモノアルコール成分を表し、Gは炭素数2~12の2価のアルコール成分を表し、Aは炭素数2~12の2塩基酸成分を表し、これらによって合成されたことを表す。B1、G、Aはいずれも芳香環を含まない。m、nは繰り返し数を表す。なお、B1、B2は、前述の一般式(d)または(e)におけるB1、B2と同義である。また、G、Aは、前述の一般式(d)または(e)におけるG、Aの中で炭素数2~12のアルコール成分または2塩基酸成分に相当する。
(In the formula, B2 represents a monoalcohol having 1 to 12 carbon atoms, G represents a divalent alcohol having 2 to 12 carbon atoms, and A represents a dibasic acid having 2 to 12 carbon atoms. B2, G, (A does not contain an aromatic ring. N represents the number of repetitions.)
In the general formulas (f) and (g), B1 represents a monocarboxylic acid component, B2 represents a monoalcohol component, G represents a divalent alcohol component having 2 to 12 carbon atoms, and A represents 2 to 2 carbon atoms. Twelve dibasic acid components are represented and synthesized by them. B1, G, and A do not contain an aromatic ring. m and n represent the number of repetitions. B1 and B2 have the same meanings as B1 and B2 in the general formula (d) or (e) described above. G and A correspond to an alcohol component or a dibasic acid component having 2 to 12 carbon atoms in G and A in the general formula (d) or (e).
 ポリエステルの数平均分子量は1000以上10000以下である。数平均分子量が1000未満では、高温高倍率延伸で破断が生じやすく、10000より大きいと相分離起因の白化が増加しやすい。 The number average molecular weight of the polyester is 1000 or more and 10,000 or less. If the number average molecular weight is less than 1000, breakage tends to occur at high temperature and high magnification stretching, and if it exceeds 10,000, whitening due to phase separation tends to increase.
 ポリエステルの重縮合は常法によって行われる。例えば、上記2塩基酸とグリコールとの直接反応、上記の2塩基酸またはこれらのアルキルエステル類、例えば2塩基酸のメチルエステルとグリコール類とのポリエステル化反応またはエステル交換反応により熱溶融縮合法か、あるいはこれら酸の酸クロライドとグリコールとの脱ハロゲン化水素反応のいずれかの方法により容易に合成することができるが、重量平均分子量がさほど大きくないポリエステルは直接反応により合成することが好ましい。 Polyester polycondensation is performed by conventional methods. For example, a direct reaction of the dibasic acid with a glycol, a hot melt condensation method using the dibasic acid or an alkyl ester thereof, for example, a polyesterification reaction or a transesterification reaction between a methyl ester of a dibasic acid and a glycol. Alternatively, it can be easily synthesized by any method of dehydrohalogenation reaction between acid chloride of these acids and glycol, but it is preferable to synthesize a polyester having a weight average molecular weight not so large by direct reaction.
 低分子量側に分布が高くあるポリエステルはセルロースアシレートとの相溶性が非常によく、フィルム形成後、透湿度も小さく、しかも透明性に富んだセルロースアシレートフィルムを得ることができる。分子量の調節方法は、特に制限なく従来の方法を使用できる。例えば、重合条件にもよるが、1価の酸または1価のアルコールで分子末端を封鎖する方法を用いる場合には、これらの1価の原料化合物の添加量を調整することで分子量を調節することができる。この場合、1価の酸の添加量を調整することが、ポリマーの安定性の観点から好ましい。例えば、酢酸、プロピオン酸、酪酸等が挙げられるが、重縮合反応中には系外に留去されず、停止して反応系外に除去するときには留去し易いものを選ぶことが好ましい。なお、この目的で複数の化合物を混合使用してもよい。また、直接反応の場合には、反応中に生成する水の量により反応を停止するタイミングを計ることによっても重量平均分子量を調節できる。その他、仕込むグリコールまたは2塩基酸のモル数を偏らせることによっても分子量の調節が可能であるし、反応温度をコントロールして分子量を調節することもできる。 Polyester having a high distribution on the low molecular weight side has very good compatibility with cellulose acylate, and after forming the film, it is possible to obtain a cellulose acylate film having low moisture permeability and high transparency. A conventional method can be used as a method for adjusting the molecular weight without particular limitation. For example, although depending on the polymerization conditions, when a method of blocking the molecular ends with a monovalent acid or monovalent alcohol is used, the molecular weight is adjusted by adjusting the addition amount of these monovalent raw material compounds. be able to. In this case, it is preferable from the viewpoint of the stability of the polymer to adjust the addition amount of the monovalent acid. For example, acetic acid, propionic acid, butyric acid and the like can be mentioned, but it is preferable to select those which are not distilled out of the system during the polycondensation reaction but are easily distilled off when stopped and removed from the reaction system. For this purpose, a plurality of compounds may be used in combination. In the case of a direct reaction, the weight average molecular weight can also be adjusted by measuring the timing for stopping the reaction based on the amount of water produced during the reaction. In addition, the molecular weight can be adjusted by biasing the number of moles of glycol or dibasic acid to be charged, or the molecular weight can be adjusted by controlling the reaction temperature.
 ポリエステルは、基材層の全量100質量%に対して、0.1~30質量%の量で含まれることが好ましく、2~20質量%の量で含まれることがより好ましい。 The polyester is preferably contained in an amount of 0.1 to 30% by mass and more preferably 2 to 20% by mass with respect to 100% by mass of the total amount of the base material layer.
 〈紫外線吸収剤〉
 基材層は、紫外線吸収剤を含有することもできる。紫外線吸収剤は400nm以下の紫外線を吸収することで、耐久性を向上させることを目的としており、特に波長370nmでの透過率が10%以下であることが好ましく、より好ましくは5%以下、さらに好ましくは2%以下である。なお、基材層が紫外線吸収剤を含む場合、当該紫外線吸収剤は2種以上含まれることが好ましい。
<Ultraviolet absorber>
The base material layer can also contain an ultraviolet absorber. The ultraviolet absorber is intended to improve durability by absorbing ultraviolet light having a wavelength of 400 nm or less. In particular, the transmittance at a wavelength of 370 nm is preferably 10% or less, more preferably 5% or less, Preferably it is 2% or less. In addition, when a base material layer contains a ultraviolet absorber, it is preferable that the said ultraviolet absorber is contained 2 or more types.
 本発明に用いられる紫外線吸収剤は特に限定されないが、例えばオキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、トリアジン系化合物、ニッケル錯塩系化合物、無機粉体等が挙げられる。 Although the ultraviolet absorber used in the present invention is not particularly limited, for example, oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, triazine compounds, nickel complex compounds, inorganic powders Examples include the body.
 例えば、5-クロロ-2-(3,5-ジ-sec-ブチル-2-ヒドロキシルフェニル)-2H-ベンゾトリアゾール、(2-2H-ベンゾトリアゾール-2-イル)-6-(直鎖および側鎖ドデシル)-4-メチルフェノール、2-ヒドロキシ-4-ベンジルオキシベンゾフェノン、2,4-ベンジルオキシベンゾフェノン等があり、また、チヌビン109、チヌビン171、チヌビン234、チヌビン326、チヌビン327、チヌビン328等のチヌビン類があり、これらはいずれもBASFジャパン株式会社製の市販品であり好ましく使用できる。 For example, 5-chloro-2- (3,5-di-sec-butyl-2-hydroxylphenyl) -2H-benzotriazole, (2-2H-benzotriazol-2-yl) -6- (linear and side Chain dodecyl) -4-methylphenol, 2-hydroxy-4-benzyloxybenzophenone, 2,4-benzyloxybenzophenone, and the like, and tinuvin 109, tinuvin 171, tinuvin 234, tinuvin 326, tinuvin 327, tinuvin 328, etc. These are commercially available products made by BASF Japan Ltd. and can be preferably used.
 本発明で好ましく用いられる紫外線吸収剤は、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、トリアジン系紫外線吸収剤であり、特に好ましくはベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、である。このほか、1,3,5トリアジン環を有する化合物等の円盤状化合物も紫外線吸収剤として好ましく用いられる。また、紫外線吸収剤としては高分子紫外線吸収剤も好ましく用いることができ、特に特開平6-148430号記載のポリマータイプの紫外線吸収剤が好ましく用いられる。 The UV absorbers preferably used in the present invention are benzotriazole UV absorbers, benzophenone UV absorbers, and triazine UV absorbers, particularly preferably benzotriazole UV absorbers and benzophenone UV absorbers. . In addition, a discotic compound such as a compound having a 1,3,5 triazine ring is also preferably used as the ultraviolet absorber. As the UV absorber, a polymer UV absorber can also be preferably used, and in particular, a polymer type UV absorber described in JP-A-6-148430 is preferably used.
 紫外線吸収剤の添加方法は、メタノール、エタノール、ブタノール等のアルコールやメチレンクロライド、酢酸メチル、アセトン、ジオキソラン等の有機溶媒あるいはこれらの混合溶媒に紫外線吸収剤を溶解してからドープに添加するか、または直接ドープ組成中に添加してもよい。また、無機粉体のように有機溶剤に溶解しないものは、有機溶剤とセルロースエステル樹脂中にディゾルバーやサンドミルを使用して分散してからドープに添加すればよい。 The method of adding the UV absorber can be added to the dope after dissolving the UV absorber in an alcohol such as methanol, ethanol or butanol, an organic solvent such as methylene chloride, methyl acetate, acetone or dioxolane or a mixed solvent thereof. Or you may add directly in dope composition. Moreover, what does not melt | dissolve in an organic solvent like inorganic powder should just add to dope after disperse | distributing in an organic solvent and a cellulose-ester resin using a dissolver or a sand mill.
 紫外線吸収剤は、基材層の全量100質量%に対して、0.1~15質量%の量で含まれることが好ましく、1~10質量%の量で含まれることがより好ましい。 The ultraviolet absorber is preferably contained in an amount of 0.1 to 15% by mass, more preferably 1 to 10% by mass with respect to 100% by mass of the total amount of the base material layer.
 〈赤外線吸収剤〉
 基材層は、赤外線吸収剤を含んでもよい。かような構成とすることにより、フィルムの逆波長分散性が調整されうる。
<Infrared absorber>
The base material layer may include an infrared absorber. By setting it as such a structure, the reverse wavelength dispersion of a film can be adjusted.
 赤外線吸収剤は、750~1100nmの波長領域に最大吸収を有することが好ましく、800~1000nmの波長領域に最大吸収を有することがさらに好ましい。また、赤外線吸収剤は、可視領域に実質的に吸収を有していないことが好ましい。 The infrared absorber preferably has a maximum absorption in a wavelength region of 750 to 1100 nm, and more preferably has a maximum absorption in a wavelength region of 800 to 1000 nm. Moreover, it is preferable that the infrared absorber has substantially no absorption in the visible region.
 赤外線吸収剤としては、赤外線吸収染料または赤外線吸収顔料を用いることが好ましく、赤外線吸収染料を用いることが特に好ましい。 As the infrared absorber, an infrared absorbing dye or an infrared absorbing pigment is preferably used, and an infrared absorbing dye is particularly preferably used.
 赤外線吸収染料には、有機化合物と無機化合物が含まれる。有機化合物である赤外線吸収染料を用いることが好ましい。有機赤外線吸収染料には、シアニン化合物、金属キレート化合物、アミニウム化合物、ジイモニウム化合物、キノン化合物、スクアリリウム化合物およびメチン化合物が含まれる。赤外線吸収染料については、色材、61〔4〕215-226(1988)、および化学工業、43-53(1986、5月)に記載がある。 The infrared absorbing dye includes an organic compound and an inorganic compound. It is preferable to use an infrared absorbing dye that is an organic compound. Organic infrared absorbing dyes include cyanine compounds, metal chelate compounds, aminium compounds, diimonium compounds, quinone compounds, squarylium compounds, and methine compounds. Infrared absorbing dyes are described in Coloring Materials, 61 [4] 215-226 (1988), and Chemical Industry, 43-53 (1986, May).
 赤外線吸収機能あるいは吸収スペクトルの観点で染料の種類を検討すると、ハロゲン化銀写真感光材料の技術分野で開発された赤外線吸収染料が優れている。ハロゲン化銀写真感光材料の技術分野で開発された赤外線吸収染料には、ジヒドロペリミジンスクアリリウム染料(米国特許5380635号明細書および特願平8-189817号明細書記載)、シアニン染料(特開昭62-123454号、同3-138640号、同3-211542号、同3-226736号、同5-313305号、同6-43583号の各公報、特願平7-269097号明細書および欧州特許0430244号明細書記載)、ピリリウム染料(特開平3-138640号、同3-211542号の各公報記載)、ジイモニウム染料(特開平3-138640号、同3-211542号の各公報記載)、ピラゾロピリドン染料(特開平2-282244号記載)、インドアニリン染料(特開平5-323500号、同5-323501号の各公報記載)、ポリメチン染料(特開平3-26765号、同4-190343号の各公報および欧州特許377961号明細書記載)、オキソノール染料(特開平3-9346号明細書記載)、アントラキノン染料(特開平4-13654号明細書記載)、ナフタロシアニン色素(米国特許5009989号明細書記載)およびナフトラクタム染料(欧州特許568267号明細書記載)が含まれる。これらの赤外線吸収剤は、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。 Investigating the types of dyes from the viewpoint of infrared absorption function or absorption spectrum, infrared absorbing dyes developed in the technical field of silver halide photographic light-sensitive materials are excellent. Infrared absorbing dyes developed in the technical field of silver halide photographic light-sensitive materials include dihydroperimidine squarylium dyes (described in US Pat. No. 5,380,635 and Japanese Patent Application No. 8-189817), cyanine dyes (Japanese Patent Application Laid-Open No. Sho). Nos. 62-123454, 3-138640, 3-221542, 3-226636, 5-313305, 6-43583, Japanese Patent Application No. 7-269097 and European Patent No. 0430244), pyrylium dyes (described in JP-A-3-138640, JP-A-3-21542), diimonium dye (described in JP-A-3-138640, JP-A-3-21542), pyrazolopyridone Dyes (described in JP-A-2-282244), indoaniline dyes (JP-A-5-323500) No. 5-323501), polymethine dyes (Japanese Unexamined Patent Publication Nos. 3-26765 and 4-190343 and European Patent No. 377961), oxonol dyes (Japanese Unexamined Patent Publication No. 3-9346) Description), anthraquinone dyes (described in JP-A-4-13654), naphthalocyanine dyes (described in US Pat. No. 5,099,899) and naphtholactam dyes (described in European Patent 568267). As for these infrared absorbers, only 1 type may be used independently and 2 or more types may be used together.
 赤外線吸収剤は、基材層の全量100質量%に対して、0.1~30質量%の量で含まれることが好ましく、2~20質量%の量で含まれることがより好ましい。 The infrared absorbing agent is preferably contained in an amount of 0.1 to 30% by mass, more preferably 2 to 20% by mass with respect to 100% by mass of the total amount of the base material layer.
 〈マット剤(微粒子)〉
 基材層には、取扱性を向上させるため、例えば二酸化珪素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、カオリン、タルク、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム、リン酸カルシウム等の無機微粒子や架橋高分子などの微粒子をマット剤として含有させることが好ましい。なかでも二酸化珪素がフィルムのヘイズを小さくできるので好ましい。
<Matting agent (fine particles)>
In order to improve handling properties, for example, silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, kaolin, talc, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, silicic acid. It is preferable to contain inorganic fine particles such as magnesium and calcium phosphate and fine particles such as a crosslinked polymer as a matting agent. Of these, silicon dioxide is preferable because it can reduce the haze of the film.
 微粒子の平均一次粒子径としては、20nm以下が好ましく、さらに好ましくは5~16nmであり、特に好ましくは5~12nmである。 The average primary particle diameter of the fine particles is preferably 20 nm or less, more preferably 5 to 16 nm, and particularly preferably 5 to 12 nm.
 これらの微粒子は0.1~5μmの粒径の2次粒子を形成してフィルム中に含まれることが好ましく、好ましい平均粒径は0.1~2μmであり、さらに好ましくは0.2~0.6μmである。これにより、フィルム表面に高さ0.1~1.0μm程度の凹凸を形成し、これによってフィルム表面に適切な滑り性を与えることができる。 These fine particles preferably form secondary particles having a particle size of 0.1 to 5 μm and are contained in the film, and the preferable average particle size is 0.1 to 2 μm, more preferably 0.2 to 0. .6 μm. As a result, irregularities having a height of about 0.1 to 1.0 μm are formed on the film surface, thereby providing appropriate slipperiness to the film surface.
 本発明に用いられる微粒子の平均一次粒子径の測定は、透過型電子顕微鏡(倍率50万~200万倍)で粒子の観察を行い、粒子100個を観察し、粒子径を測定しその平均値をもって、平均一次粒子径とする。 The average primary particle size of the fine particles used in the present invention is measured by observing the particles with a transmission electron microscope (magnification 500,000 to 2,000,000 times), observing 100 particles, measuring the particle size, and measuring the average value. Is the average primary particle size.
 微粒子の見かけ比重としては、70g/リットル以上が好ましく、さらに好ましくは90~200g/リットルであり、特に好ましくは100~200g/リットルである。見かけ比重が大きいほど、高濃度の分散液を作ることが可能になり、ヘイズ、凝集物が良化するため好ましく、また、固形分濃度の高いドープを調製する際には、特に好ましく用いられる。 The apparent specific gravity of the fine particles is preferably 70 g / liter or more, more preferably 90 to 200 g / liter, and particularly preferably 100 to 200 g / liter. A higher apparent specific gravity is preferable because a high-concentration dispersion can be produced and haze and aggregates are improved, and it is particularly preferably used when preparing a dope having a high solid content concentration.
 1次粒子の平均径が20nm以下、見かけ比重が70g/リットル以上の二酸化珪素微粒子は、例えば、気化させた四塩化珪素と水素を混合させたものを1000~1200℃にて空気中で燃焼させることで得ることができる。また例えばアエロジルR812、アエロジル200V、アエロジルR972V(以上、日本アエロジル株式会社製)の商品名で市販されており、それらを使用することができる。 Silicon dioxide fine particles having an average primary particle diameter of 20 nm or less and an apparent specific gravity of 70 g / liter or more are, for example, a mixture of vaporized silicon tetrachloride and hydrogen burned in air at 1000 to 1200 ° C. Can be obtained. For example, Aerosil R812, Aerosil 200V, Aerosil R972V (above, manufactured by Nippon Aerosil Co., Ltd.) are commercially available and can be used.
 上記記載の見かけ比重は、二酸化珪素微粒子を一定量メスシリンダーに採り、このときの重さを測定し、下記式で算出したものである。 The apparent specific gravity described above is calculated by the following equation by measuring a weight of silicon dioxide fine particles in a graduated cylinder and measuring the weight.
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000026
 マット剤(微粒子)は、基材層の全量100質量%に対して、0.01~5質量%の量で含まれることが好ましく、0.1~3質量%の量で含まれることがより好ましい。 The matting agent (fine particles) is preferably contained in an amount of 0.01 to 5% by mass and more preferably in an amount of 0.1 to 3% by mass with respect to 100% by mass of the total amount of the base material layer. preferable.
 〈着色剤〉
 基材層は、着色剤を含んでもよい。「着色剤」とは、染料や顔料を意味するが、本発明では、液晶画面の色調を青色調にする効果またはイエローインデックスの調整、ヘイズの低減を有するものが特に好ましい。着色剤としては各種の染料や顔料が使用可能であるが、特に、アントラキノン染料、アゾ染料、フタロシアニン顔料などが有効である。
<Colorant>
The base material layer may contain a colorant. The “colorant” means a dye or a pigment. In the present invention, those having an effect of making the color tone of the liquid crystal screen blue, adjusting the yellow index, and reducing haze are particularly preferable. Various dyes and pigments can be used as the colorant, and anthraquinone dyes, azo dyes, phthalocyanine pigments and the like are particularly effective.
 着色剤は、基材層の全量100質量%に対して、0.01~5質量%の量で含まれることが好ましく、0.1~3質量%の量で含まれることがより好ましい。 The colorant is preferably contained in an amount of 0.01 to 5% by mass, more preferably 0.1 to 3% by mass with respect to 100% by mass of the total amount of the base material layer.
 以上、好ましい実施形態として基材層がセルロースエステル樹脂を含む形態について説明したが、本形態に係る偏光板において、基材層は、いわゆる「ゼロ位相差フィルム」であることが好ましい。偏光板保護フィルムとして機能する基材層がゼロ位相差フィルムであることにより、高倍率の延伸処理を行っても位相差が出ず、画像表示装置に組み込んだ際に虹ムラ等が発現しないという利点がある。なお、これを定量的に表現すれば、基材層は、下記数式(1)および下記数式(2): As mentioned above, although the base material layer demonstrated the form containing a cellulose-ester resin as preferable embodiment, in the polarizing plate which concerns on this form, it is preferable that a base material layer is what is called a "zero phase difference film." Because the base material layer that functions as a polarizing plate protective film is a zero retardation film, there is no retardation even when a high-magnification stretching process is performed, and rainbow unevenness does not appear when incorporated in an image display device. There are advantages. In addition, if this is expressed quantitatively, the base material layer has the following mathematical formula (1) and the following mathematical formula (2):
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000027
(式中、nxはフィルム面内の遅相軸方向の屈折率を表し、nyはフィルム面内の進相軸方向の屈折率を表し、nzはフィルム厚み方向の屈折率を表し、dはフィルムの厚み(nm)を表す;屈折率は23℃、55%RHの環境下、波長590nmで測定)
でそれぞれ表されるRoおよびRthについて、
(In the formula, nx represents the refractive index in the slow axis direction in the film plane, ny represents the refractive index in the fast axis direction in the film plane, nz represents the refractive index in the film thickness direction, and d represents the film. The refractive index is measured at a wavelength of 590 nm under an environment of 23 ° C. and 55% RH)
For Ro and Rth respectively represented by
Figure JPOXMLDOC01-appb-M000028
Figure JPOXMLDOC01-appb-M000028
を満足することが好ましい。Roは、より好ましくは-4~4であり、特に好ましくは-3~3である。また、Rthは、より好ましくは-4~4であり、特に好ましくは-3~3である。なお、これらのRoおよびRthを上述した範囲内の値に制御するには、基材層の製造時において、フィルムの組成や延伸条件、リターデーション調整剤の種類や添加量などを適宜調節すればよい。 Is preferably satisfied. Ro is more preferably -4 to 4, and particularly preferably -3 to 3. Rth is more preferably −4 to 4, and particularly preferably −3 to 3. In addition, in order to control these Ro and Rth to the values within the above-described range, the composition of the film, the stretching conditions, the type and amount of the retardation adjusting agent, and the like may be appropriately adjusted during the production of the base material layer. Good.
 上述した親水性高分子層と基材層とは、接着剤を介して接着されてなることが好ましい。接着剤の具体的な構成について特に制限はなく、本発明の作用効果を損なわないものであればいずれの接着剤も用いられうる。接着剤の一例として、ポリビニルアルコール水溶液(いわゆる水糊)が挙げられる。 The hydrophilic polymer layer and the base material layer described above are preferably bonded through an adhesive. There is no restriction | limiting in particular about the specific structure of an adhesive agent, Any adhesive agent will be used if it does not impair the effect of this invention. An example of the adhesive is an aqueous polyvinyl alcohol solution (so-called water paste).
 また、接着剤として光硬化性接着剤が用いられてもよい。光硬化性接着剤は、エポキシ化合物およびカチオン重合開始剤を含有するものであることが好ましい。 Also, a photo-curable adhesive may be used as the adhesive. The photocurable adhesive preferably contains an epoxy compound and a cationic polymerization initiator.
 このような光硬化性接着剤に含まれるエポキシ化合物およびカチオン重合開始剤の具体的な構成や各成分の配合量についても特に制限はないが、接着性の観点からは、エポキシ化合物は多価エポキシ化合物(分子内に少なくとも2個のエポキシ基を有するエポキシ化合物)であることが好ましい。多価エポキシ化合物には、分子内に少なくとも2個のエポキシ基および芳香環を有する芳香族多価エポキシ化合物、分子内に少なくとも2個のエポキシ基を有し、そのうちの少なくとも1個が脂環式環に結合している脂環式多価エポキシ化合物、分子内に芳香環を有さず、エポキシ基とそれが結合する2個の炭素原子を含む環(通常はオキシラン環)の一方の炭素原子が別の脂肪族炭素原子に結合している脂肪族多価エポキシ化合物などがある。かような多価エポキシ化合物としては、例えば、下記一般式(A)~(D)のいずれかで表されるものが挙げられる。 There are no particular restrictions on the specific composition of the epoxy compound and cationic polymerization initiator contained in such a photocurable adhesive and the amount of each component, but from the viewpoint of adhesiveness, the epoxy compound is a polyvalent epoxy. A compound (an epoxy compound having at least two epoxy groups in the molecule) is preferable. The polyvalent epoxy compound includes an aromatic polyvalent epoxy compound having at least two epoxy groups and an aromatic ring in the molecule, and at least two epoxy groups in the molecule, at least one of which is alicyclic One carbon atom of a ring (usually an oxirane ring) that has an alicyclic polyvalent epoxy compound bonded to the ring, does not have an aromatic ring in the molecule, and contains an epoxy group and two carbon atoms to which it is bonded Is an aliphatic polyvalent epoxy compound in which is bonded to another aliphatic carbon atom. Examples of such polyvalent epoxy compounds include those represented by any one of the following general formulas (A) to (D).
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
(式中、R~Rは、それぞれ独立して、アルキル基またはハロゲン原子を表し、L、およびLは、それぞれ独立して2価の脂肪族の有機基を表し、Mは酸素原子または窒素原子を表し、Aはm価の連結基を表し、a、bおよびcは、それぞれ独立して0~4の整数を表し、xおよびyは、それぞれ独立して0~20の実数を表し、lは1または2を表し、mは2~4の整数を表す。)
 一般式(A)、(B)、(D)において、L、Lとしては例えば、
(Wherein R 1 to R 3 each independently represents an alkyl group or a halogen atom, L 1 and L 2 each independently represents a divalent aliphatic organic group, and M represents oxygen Represents an atom or a nitrogen atom, A represents an m-valent linking group, a, b and c each independently represent an integer of 0 to 4, and x and y each independently represents a real number of 0 to 20 Wherein l represents 1 or 2, and m represents an integer of 2 to 4.)
In the general formulas (A), (B), and (D), L 1 and L 2 are, for example,
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
などが挙げられ、一般式(C)においてAとしては、 In general formula (C), as A,
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
などが挙げられる。 Etc.
 R、R、Rのアルキル基としては、炭素数1~3が好ましく、ハロゲン原子としてはBr、Cl、Fなどが挙げられる。 The alkyl group for R 1 , R 2 , and R 3 preferably has 1 to 3 carbon atoms, and examples of the halogen atom include Br, Cl, and F.
 以下、一般式(A)、(B)、(C)または(D)で表される多価エポキシ化合物の具体例を示すが、本発明はこれらに限定されるものではない。 Hereinafter, although the specific example of the polyhydric epoxy compound represented by general formula (A), (B), (C) or (D) is shown, this invention is not limited to these.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
 化合物(IV-1)において、nは、0~20の整数である。 In the compound (IV-1), n is an integer of 0 to 20.
 なお、構造式中にある変数xおよびyは実数であり、各々0~20の範囲であれば何でもよい。x、yが必ずしも整数とならないのは、数種類の整数値を有するエポキシ化合物がある比率で混合された状態であり、その平均値を示しているからである。これらの多価エポキシ化合物は単独で用いても、2種類以上組み合わせてもよい。 Note that the variables x and y in the structural formula are real numbers and may be anything in the range of 0 to 20, respectively. The reason why x and y are not necessarily integers is that an epoxy compound having several kinds of integer values is mixed in a certain ratio and shows an average value thereof. These polyvalent epoxy compounds may be used alone or in combination of two or more.
 また、多価エポキシ化合物の他の例として、例えば、下記一般式(E)~(O)のいずれかで表されるものが挙げられる。 Further, other examples of the polyvalent epoxy compound include those represented by any of the following general formulas (E) to (O).
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
(式中、R~R25は、それぞれ独立して、水素原子または炭素数1~6のアルキル基を表し、R~R25がアルキル基の場合、脂環式環に結合する位置は1位~6位の任意の数である。炭素数1~6のアルキル基は、直鎖でもよく、分岐を有していてもよく、脂環式環を有していてもよい。Yは、酸素原子または炭素原子数1~20のアルカンジイル基を表し、Y~Yは、それぞれ独立して、直鎖でもよく、分岐を有していてもよく、脂環式環を有していてもよい炭素原子数1~20のアルカンジイル基を表し、n、p、qおよびrは、それぞれ独立して、0~20の実数を表す。)
 これらのうち、一般式(F)で示される脂環式ジエポキシ化合物が、入手が容易なので好ましい。一般式(F)の脂環式ジエポキシ化合物は、3,4-エポキシシクロヘキシルメタノール(そのシクロヘキサン環に炭素数1~6のアルキル基が結合していてもよい)と、3,4-エポキシシクロヘキサンカルボン酸(そのシクロヘキサン環に炭素数1~6のアルキル基が結合していてもよい)とのエステル化物である。その具体例として、次のような化合物が挙げられる。
(Wherein R 4 to R 25 each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and when R 4 to R 25 are alkyl groups, the position bonded to the alicyclic ring is an arbitrary number of positions 1 to 6 of. an alkyl group having 1 to 6 carbon atoms may be linear, may be branched, it may have an alicyclic ring .Y 8 Represents an oxygen atom or an alkanediyl group having 1 to 20 carbon atoms, and Y 1 to Y 7 may each independently be linear or branched and have an alicyclic ring. An optionally substituted alkanediyl group having 1 to 20 carbon atoms, and n, p, q and r each independently represents a real number of 0 to 20.)
Among these, the alicyclic diepoxy compound represented by the general formula (F) is preferable because it is easily available. The alicyclic diepoxy compound of the general formula (F) includes 3,4-epoxycyclohexylmethanol (an alkyl group having 1 to 6 carbon atoms may be bonded to the cyclohexane ring) and 3,4-epoxycyclohexanecarboxylic acid. An esterified product of an acid (an alkyl group having 1 to 6 carbon atoms may be bonded to the cyclohexane ring). Specific examples thereof include the following compounds.
 3,4-エポキシシクロヘキシルメチル 3,4-エポキシシクロヘキサンカルボキシレート〔一般式(F)において、R=R=H、n=0である化合物〕、
 3,4-エポキシ-6-メチルシクロヘキシルメチル 3,4-エポキシ-6-メチルシクロヘキサンカルボキシレート〔一般式(F)において、R=6-メチル、R=6-メチル、n=0である化合物〕など。
3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate [a compound in which R 6 = R 7 = H and n = 0 in the general formula (F)],
3,4-epoxy-6-methylcyclohexylmethyl 3,4-epoxy-6-methylcyclohexanecarboxylate [in the general formula (F), R 6 = 6-methyl, R 7 = 6-methyl, n = 0 Compound] and the like.
 上述した多価エポキシ化合物や、必要に応じて添加されるオキセタン化合物(後述する)は、カチオン重合により硬化するものである。したがって、光硬化性接着剤には、光カチオン重合開始剤が配合されることが好ましいのである。この光カチオン重合開始剤は、可視光線、紫外線、X線、電子線等の活性エネルギー線の照射によって、カチオン種またはルイス酸を発生し、エポキシ基の重合反応を開始する。 The above-described polyvalent epoxy compounds and oxetane compounds (described later) added as necessary are cured by cationic polymerization. Therefore, it is preferable that a photocationic polymerization initiator is blended in the photocurable adhesive. This cationic photopolymerization initiator generates a cationic species or a Lewis acid by irradiation with active energy rays such as visible light, ultraviolet rays, X-rays, and electron beams, and starts an epoxy group polymerization reaction.
 かような光カチオン重合開始剤を配合することにより、常温での硬化が可能となり、偏光子の耐熱性や膨張または収縮による歪を考慮する必要が減少し、セルロースアシレートフィルムを良好に接着することができる。また、光カチオン重合開始剤は活性エネルギー線の照射で触媒的に作用するため、エポキシ化合物や後述するオキセタン化合物等に混合しても、保存安定性や作業性に優れる。活性エネルギー線の照射によりカチオン種やルイス酸を生じる化合物として、例えば、芳香族ジアゾニウム塩、芳香族ヨードニウム塩や芳香族スルホニウム塩のようなオニウム塩、鉄-アレン錯体等を挙げることができる。 By blending such a cationic photopolymerization initiator, curing at room temperature is possible, and the need to consider the heat resistance of the polarizer and distortion due to expansion or contraction is reduced, and the cellulose acylate film adheres well. be able to. In addition, since the cationic photopolymerization initiator acts catalytically upon irradiation with active energy rays, it is excellent in storage stability and workability even when mixed with an epoxy compound or an oxetane compound described later. Examples of compounds that generate cation species and Lewis acids upon irradiation with active energy rays include onium salts such as aromatic diazonium salts, aromatic iodonium salts and aromatic sulfonium salts, and iron-allene complexes.
 芳香族ジアゾニウム塩としては、例えば、次のような化合物が挙げられる。 Examples of the aromatic diazonium salt include the following compounds.
 ベンゼンジアゾニウム ヘキサフルオロアンチモネート、
 ベンゼンジアゾニウム ヘキサフルオロホスフェート、
 ベンゼンジアゾニウム ヘキサフルオロボレート等。
Benzenediazonium hexafluoroantimonate,
Benzenediazonium hexafluorophosphate,
Benzenediazonium hexafluoroborate, etc.
 芳香族ヨードニウム塩としては、例えば、次のような化合物が挙げられる。 Examples of aromatic iodonium salts include the following compounds.
 ジフェニルヨードニウム テトラキス(ペンタフルオロフェニル)ボレート、
 ジフェニルヨードニウム ヘキサフルオロホスフェート、
 ジフェニルヨードニウム ヘキサフルオロアンチモネート、
 ジ(4-ノニルフェニル)ヨードニウム ヘキサフルオロホスフェート等。
Diphenyliodonium tetrakis (pentafluorophenyl) borate,
Diphenyliodonium hexafluorophosphate,
Diphenyliodonium hexafluoroantimonate,
Di (4-nonylphenyl) iodonium hexafluorophosphate, etc.
 芳香族スルホニウム塩としては、例えば、次のような化合物が挙げられる。 Examples of the aromatic sulfonium salt include the following compounds.
 トリフェニルスルホニウム ヘキサフルオロホスフェート、
 トリフェニルスルホニウム ヘキサフルオロアンチモネート、
 トリフェニルスルホニウム テトラキス(ペンタフルオロフェニル)ボレート、
 ジフェニル〔4-(フェニルチオ)フェニル〕スルホニウム ヘキサフルオロホスフェート、
 ジフェニル〔4-(フェニルチオ)フェニル〕スルホニウム ヘキサフルオロアンチモネート、
 4,4’-ビス(ジフェニルスルホニオ)ジフェニルスルフィド ビスヘキサフルオロホスフェート、
 4,4’-ビス〔ジ(β-ヒドロキシエトキシ)フェニルスルホニオ〕ジフェニルスルフィド ビスヘキサフルオロアンチモネート、
 4,4’-ビス〔ジ(β-ヒドロキシエトキシ)フェニルスルホニオ〕ジフェニルスルフィド ビスヘキサフルオロホスフェート、
 7-〔ジ(p-トルイル)スルホニオ〕-2-イソプロピルチオキサントン ヘキサフルオロアンチモネート、
 7-〔ジ(p-トルイル)スルホニオ〕-2-イソプロピルチオキサントン テトラキス(ペンタフルオロフェニル)ボレート、
 4-フェニルカルボニル-4’-ジフェニルスルホニオ-ジフェニルスルフィド ヘキサフルオロホスフェート、
 4-(p-tert-ブチルフェニルカルボニル)-4’-ジフェニルスルホニオ-ジフェニルスルフィド ヘキサフルオロアンチモネート、
 4-(p-tert-ブチルフェニルカルボニル)-4’-ジ(p-トルイル)スルホニオ-ジフェニルスルフィド テトラキス(ペンタフルオロフェニル)ボレート等。
Triphenylsulfonium hexafluorophosphate,
Triphenylsulfonium hexafluoroantimonate,
Triphenylsulfonium tetrakis (pentafluorophenyl) borate,
Diphenyl [4- (phenylthio) phenyl] sulfonium hexafluorophosphate,
Diphenyl [4- (phenylthio) phenyl] sulfonium hexafluoroantimonate,
4,4′-bis (diphenylsulfonio) diphenyl sulfide bishexafluorophosphate,
4,4′-bis [di (β-hydroxyethoxy) phenylsulfonio] diphenyl sulfide bishexafluoroantimonate,
4,4′-bis [di (β-hydroxyethoxy) phenylsulfonio] diphenyl sulfide bishexafluorophosphate,
7- [di (p-toluyl) sulfonio] -2-isopropylthioxanthone hexafluoroantimonate,
7- [di (p-toluyl) sulfonio] -2-isopropylthioxanthone tetrakis (pentafluorophenyl) borate,
4-phenylcarbonyl-4′-diphenylsulfonio-diphenyl sulfide hexafluorophosphate,
4- (p-tert-butylphenylcarbonyl) -4′-diphenylsulfonio-diphenyl sulfide hexafluoroantimonate,
4- (p-tert-butylphenylcarbonyl) -4′-di (p-toluyl) sulfonio-diphenyl sulfide tetrakis (pentafluorophenyl) borate and the like.
 鉄-アレン錯体としては、例えば、次のような化合物が挙げられる。 Examples of the iron-allene complex include the following compounds.
 キシレン-シクロペンタジエニル鉄(II)ヘキサフルオロアンチモネート、
 クメン-シクロペンタジエニル鉄(II)ヘキサフルオロホスフェート、
 キシレン-シクロペンタジエニル鉄(II)-トリス(トリフルオロメチルスルホニル)メタナイド等。
Xylene-cyclopentadienyl iron (II) hexafluoroantimonate,
Cumene-cyclopentadienyl iron (II) hexafluorophosphate,
Xylene-cyclopentadienyl iron (II) -tris (trifluoromethylsulfonyl) methanide and the like.
 これらの光カチオン重合開始剤は、それぞれ1種類を単独で用いてもよいし、2種類以上を混合して用いてもよい。これらのなかでも特に芳香族スルホニウム塩は、300nm以上の波長領域でも紫外線吸収特性を有することから、硬化性に優れ、良好な機械強度や接着強度を有する硬化物を与えることができるため、好ましく用いられる。 These photocationic polymerization initiators may be used alone or in combination of two or more. Among these, aromatic sulfonium salts are particularly preferably used because they have ultraviolet absorption characteristics even in a wavelength region of 300 nm or more, and therefore can provide a cured product having excellent curability and good mechanical strength and adhesive strength. It is done.
 光カチオン重合開始剤は、市販品を容易に入手することが可能であり、例えば、それぞれ商品名で、“カヤラッドPCI-220”、“カヤラッドPCI-620”(以上、日本化薬(株)製)、“UVI-6992”(ダウ・ケミカル社製)、“アデカオプトマーSP-150”、“アデカオプトマーSP-170”(以上、(株)ADEKA製)、“CI-5102”、“CIT-1370”、“CIT-1682”、“CIP-1866S”、“CIP-2048S”、“CIP-2064S”(以上、日本曹達(株)製)、“DPI-101”、“DPI-102”、“DPI-103”、“DPI-105”、“MPI-103”、“MPI-105”、“BBI-101”、“BBI-102”、“BBI-103”、“BBI-105”、“TPS-101”、“TPS-102”、“TPS-103”、“TPS-105”、“MDS-103”、“MDS-105”、“DTS-102”、“DTS-103”(以上、みどり化学(株)製)、“PI-2074”(ローディア社製)、“イルガキュア250”、“イルガキュアPAG103”、イルガキュアPAG108”、イルガキュアPAG121”、イルガキュアPAG203”(以上、チバ社製)、“CPI-100P”、“CPI-101A”、“CPI-200K”、“CPI-210S”(以上、サンアプロ(株)製)等を挙げられ、特に、ジフェニル〔4-(フェニルチオ)フェニル〕スルホニウムをカチオン成分として含む、ダウ・ケミカル社製の“UVI-6992”、サンアプロ(株)製の“CPI-100P”、“CPI-101A”、“CPI-200K”、“CPI-210S”が好ましい。 Commercially available cationic photopolymerization initiators can be easily obtained. For example, “Kayarad PCI-220” and “Kayarad PCI-620” (above, Nippon Kayaku Co., Ltd.) ), “UVI-6992” (manufactured by Dow Chemical Co.), “Adekaoptomer SP-150”, “Adekaoptomer SP-170” (manufactured by ADEKA Corporation), “CI-5102”, “CIT” -1370 "," CIT-1682 "," CIP-1866S "," CIP-2048S "," CIP-2064S "(manufactured by Nippon Soda Co., Ltd.)," DPI-101 "," DPI-102 " “DPI-103”, “DPI-105”, “MPI-103”, “MPI-105”, “BBI-101”, “BBI-102”, “BBI-103”, “BB -105 "," TPS-101 "," TPS-102 "," TPS-103 "," TPS-105 "," MDS-103 "," MDS-105 "," DTS-102 "," DTS-103 "(Midori Chemical Co., Ltd.)," PI-2074 "(Rhodia Co., Ltd.)," Irgacure 250 "," Irgacure PAG103 ", Irgacure PAG108", Irgacure PAG121 ", Irgacure PAG203 (above, manufactured by Ciba) ), “CPI-100P”, “CPI-101A”, “CPI-200K”, “CPI-210S” (manufactured by San Apro Co., Ltd.) and the like, and in particular, diphenyl [4- (phenylthio) phenyl] “UVI-6992” manufactured by Dow Chemical Co., which contains sulfonium as a cation component, Made in "CPI-100P", "CPI-101A", "CPI-200K", "CPI-210S" is preferable.
 光カチオン重合開始剤の配合割合は、光硬化性接着剤全体を基準として、0.5~20質量%の範囲とすることが好ましい。その割合が0.5質量%以上であれば、接着剤の硬化が十分に達成され、機械強度や接着強度が確保される。一方でその割合が20質量%以下であれば、硬化物中のイオン性物質の増加に伴う硬化物の吸湿性の上昇やそれによる耐久性能の低下が抑制される。 The proportion of the photocationic polymerization initiator is preferably in the range of 0.5 to 20% by mass based on the entire photocurable adhesive. If the ratio is 0.5% by mass or more, curing of the adhesive is sufficiently achieved, and mechanical strength and adhesive strength are ensured. On the other hand, if the ratio is 20% by mass or less, an increase in hygroscopicity of the cured product accompanying an increase in the ionic substance in the cured product and a decrease in durability due to the increase are suppressed.
 光硬化性接着剤は、上述した成分に加えて、必要に応じて、オキセタン化合物や不飽和化合物をさらに含んでもよい。また、光硬化性接着剤が不飽和化合物を含む場合には、光ラジカル重合開始剤をさらに含むことが好ましい。さらに他の成分としては、光増感剤、熱カチオン重合開始剤、ポリオール類、シランカップリング剤、イオントラップ剤、酸化防止剤、光安定剤、連鎖移動剤、増感剤、粘着付与剤、熱可塑性樹脂、充填剤、流動調整剤、可塑剤、消泡剤、レベリング剤、色素、有機溶剤等が挙げられる。 The photocurable adhesive may further contain an oxetane compound or an unsaturated compound, if necessary, in addition to the components described above. Moreover, when a photocurable adhesive agent contains an unsaturated compound, it is preferable to further contain radical photopolymerization initiator. Still other components include photosensitizers, thermal cationic polymerization initiators, polyols, silane coupling agents, ion trapping agents, antioxidants, light stabilizers, chain transfer agents, sensitizers, tackifiers, Thermoplastic resins, fillers, flow regulators, plasticizers, antifoaming agents, leveling agents, dyes, organic solvents and the like can be mentioned.
 上述したように、親水性高分子層と基材層とが積層されて延伸処理されてなる延伸積層体において、親水性高分子層は偏光子として機能し、基材層は偏光板保護フィルムとして機能する。これにより、上記延伸積層体は偏光板として用いられうるのである。ここで、偏光子として機能する親水性高分子層の、基材層とは反対側の面には、従来公知の偏光板保護フィルムがさらに貼合されていてもよい。このような偏光板保護フィルムとしては、市販のセルロースエステルフィルムが用いられうる。市販のセルロースエステルフィルムとしては、例えば、コニカミノルタタック KC8UX、KC5UX、KC8UCR3、KC8UCR4、KC8UCR5、KC8UY、KC4UA、KC4UY、KC4UE、KC8UE、KC8UY-HA、KC8UX-RHA、KC8UXW-RHA-C、KC8UXW-RHA-NC、KC4UXW-RHA-NC(以上、コニカミノルタアドバンストレイヤー株式会社製)等が好ましく用いられる。あるいは、さらにディスコティック液晶、棒状液晶、コレステリック液晶などの液晶化合物を配向させて形成した光学異方層を有している光学補償フィルムを兼ねる偏光板保護フィルムを用いることも好ましい。例えば、特開2003-98348号公報に記載の方法で光学異方性層を形成することができる。本発明に係る偏光板に組み合わせて使用することによって、平面性に優れ、安定した視野角拡大効果を有する偏光板を得ることができる。なお、液晶セルから遠い側に位置する偏光板保護フィルムとして、または、当該フィルム上には、表示装置の品質を向上する上で、他の機能性を有するフィルムを配置することも可能である。例えば、反射防止(アンチリフレクション(AR))、防眩(アンチグレア(AG))、耐キズ(ハードコート(HC))、低反射(ローリフレクション(LR))、ゴミ付着防止、輝度向上、帯電防止、防汚、バックコートのためにディスプレイとしての公知の機能層を構成物として含むフィルムが偏光板保護フィルムとして用いられうる。あるいは、汎用のTACフィルム等の偏光板保護フィルムの表面に、これらの機能層を含むフィルムを別途貼付してもよい。 As described above, in the stretched laminate in which the hydrophilic polymer layer and the base material layer are laminated and stretched, the hydrophilic polymer layer functions as a polarizer, and the base material layer serves as a polarizing plate protective film. Function. Thereby, the stretched laminate can be used as a polarizing plate. Here, the conventionally well-known polarizing plate protective film may further be bonded by the surface on the opposite side to a base material layer of the hydrophilic polymer layer which functions as a polarizer. A commercially available cellulose ester film can be used as such a polarizing plate protective film. Commercially available cellulose ester films include, for example, Konica Minoltac® KC8UX, KC5UX, KC8UCR3, KC8UCR4, KC8UCR5, KC8UY, KC4UA, KC4UY, KC4UE, KC8UE, KC8UY-HA, KC8UX-H-K, -NC, KC4UXW-RHA-NC (manufactured by Konica Minolta Advanced Layer Co., Ltd.) and the like are preferably used. Alternatively, it is also preferable to use a polarizing plate protective film that also serves as an optical compensation film having an optical anisotropic layer formed by aligning liquid crystal compounds such as discotic liquid crystal, rod-shaped liquid crystal, and cholesteric liquid crystal. For example, the optically anisotropic layer can be formed by the method described in JP2003-98348A. By using in combination with the polarizing plate according to the present invention, a polarizing plate having excellent flatness and a stable viewing angle expansion effect can be obtained. In addition, as a polarizing plate protective film located in the side far from a liquid crystal cell, or on the said film, it is also possible to arrange | position the film which has other functionality, when improving the quality of a display apparatus. For example, anti-reflection (anti-reflection (AR)), anti-glare (anti-glare (AG)), scratch resistance (hard coat (HC)), low reflection (low reflection (LR)), dust adhesion prevention, brightness improvement, anti-static A film containing a known functional layer as a display for antifouling and back coating can be used as a polarizing plate protective film. Or you may affix separately the film containing these functional layers on the surface of polarizing plate protective films, such as a general purpose TAC film.
 上記のような構成を有する偏光板には、さらに一方の面にプロテクトフィルムを、反対面にセパレートフィルムを貼合して構成することができる。プロテクトフィルムおよびセパレートフィルムは偏光板出荷時、製品検査時等において偏光板を保護する目的で用いられる。この場合、プロテクトフィルムは、偏光板の表面を保護する目的で貼合され、偏光板を表示パネルへ貼合する面の反対面側に用いられる。また、セパレートフィルムはパネルへ貼合する接着層をカバーする目的で用いられ、偏光板を液晶セルへ貼合する面側に用いられる。 The polarizing plate having the above-described configuration can be configured by further bonding a protective film on one side and a separate film on the other side. The protective film and the separate film are used for the purpose of protecting the polarizing plate at the time of shipping the polarizing plate and at the time of product inspection. In this case, the protect film is bonded for the purpose of protecting the surface of the polarizing plate, and is used on the side opposite to the surface where the polarizing plate is bonded to the display panel. Moreover, a separate film is used in order to cover the contact bonding layer bonded to a panel, and is used for the surface side which bonds a polarizing plate to a liquid crystal cell.
 本発明に係る偏光板において、延伸積層体(上述した親水性高分子層と基材層との積層体であって、延伸された状態のもの)の膜厚は、好ましくは10~100μmであり、より好ましくは20~95μmであり、さらに好ましくは30~90μmである。延伸積層体の膜厚が10μm以上であれば、パネル貼合時のリワーク性が充分である。一方、延伸積層体の膜厚が100μm以下であれば、偏光板のカール抑制、部材の薄膜化、軽量化という利点が得られる。 In the polarizing plate according to the present invention, the film thickness of the stretched laminate (the laminate of the above-described hydrophilic polymer layer and the base material layer and stretched) is preferably 10 to 100 μm. More preferably, the thickness is 20 to 95 μm, and still more preferably 30 to 90 μm. When the film thickness of the stretched laminate is 10 μm or more, the reworkability at the time of panel bonding is sufficient. On the other hand, when the film thickness of the stretched laminate is 100 μm or less, advantages such as curling suppression of the polarizing plate, thinning of the member, and weight reduction are obtained.
 また、本発明に係る偏光板は、異なる環境下におけるカールの挙動における変動が小さい点に特徴がある。具体的には、本発明に係る偏光板は、23℃55%RH環境下でのカールCと、40℃20%RH環境下でのカールCとの差ΔC=|C-C|が、ΔC≦80[1/m]を満たす点に特徴を有しているのである。ここで、ΔCは、好ましくはΔC≦60を満たし、より好ましくはΔC≦50を満たし、さらに好ましくはΔC≦40を満たす。このように、本発明では、塗布型偏光板の物性に着目し、異なる環境下におけるカールの挙動における変動が小さくなるような塗布型偏光板の構成とすることで、表示装置のパネル表示時の色ムラの発生を抑制することが可能な偏光板が提供されることを見出したものである。なお、CおよびC、並びにΔCの値としては、後述する実施例の欄に記載の手法により測定された値を採用するものとする。また、これらの値を制御するには、偏光板の作製時において、第1の基材層の弾性率と前記第2の基材層の弾性率を合わせること、そのために熱可塑性樹脂の延伸条件を適宜調整すること、膜厚を適した厚みに制御すること、適した熱可塑性樹脂種を選択することなどの操作を行うことができる。 Further, the polarizing plate according to the present invention is characterized in that the variation in curl behavior under different environments is small. Specifically, the polarizing plate according to the present invention, the curl C 1 under 23 ° C. 55% RH environment, the difference [Delta] C = the curl C 2 under 40 ° C. 20% RH environment | C 1 -C 2 | Is characterized in that ΔC ≦ 80 [1 / m] is satisfied. Here, ΔC preferably satisfies ΔC ≦ 60, more preferably satisfies ΔC ≦ 50, and more preferably satisfies ΔC ≦ 40. As described above, in the present invention, focusing on the physical properties of the coating type polarizing plate, the coating type polarizing plate is configured such that the variation in curl behavior under different environments is reduced, so that the display device can display the panel. It has been found that a polarizing plate capable of suppressing the occurrence of color unevenness is provided. Incidentally, C 1 and C 2, as well as the value of [Delta] C, which should be adopted a value determined by the method described in the column of Examples described later. In order to control these values, the elastic modulus of the first base material layer is matched with the elastic modulus of the second base material layer at the time of producing the polarizing plate. It is possible to perform operations such as appropriately adjusting the thickness, controlling the film thickness to a suitable thickness, and selecting a suitable thermoplastic resin species.
 ≪偏光板の製造方法≫
 本発明に係る偏光板(延伸積層体)の製造方法について特に制限はなく、従来公知の知見、および後述する実施例の欄の記載を参照しつつ、適宜製造が可能である。偏光板(延伸積層体)の製造方法の一例を挙げると、例えば、基材層に、親水性高分子を含有する水溶液を塗布し、乾燥させて積層体の形態として得ることができる。かかる塗布により、基材層と親水性高分子層とが基材層と親水性高分子層とが直接、または好ましくは光硬化性接着剤の層を介して積層することで基材層と親水性高分子層が一体化した状態の積層体が得られる。
≪Production method of polarizing plate≫
There is no restriction | limiting in particular about the manufacturing method of the polarizing plate (stretching laminated body) which concerns on this invention, It can manufacture suitably, referring the description of the column of the conventionally well-known knowledge and the Example mentioned later. An example of a method for producing a polarizing plate (stretched laminate) can be obtained, for example, by applying an aqueous solution containing a hydrophilic polymer to a base material layer and drying it to obtain a laminate. By such coating, the base material layer and the hydrophilic polymer layer are laminated directly with the base material layer and the hydrophilic polymer layer, or preferably via a layer of a photocurable adhesive, so that the base material layer and the hydrophilic polymer layer are hydrophilic. A laminated body in which the conductive polymer layer is integrated is obtained.
 基材層の作製方法について特に制限はなく、セルロースエステル樹脂を含むフィルムの作製方法に関する従来公知の知見を適宜参照すればよい。予め調製したドープ液を用いた溶液流延法により基材層を製膜することが好ましいが、可能であれば溶融流延法により基材層を製膜してもよい。 There is no particular limitation on the method for producing the base material layer, and conventionally known knowledge relating to the method for producing a film containing a cellulose ester resin may be appropriately referred to. The base material layer is preferably formed by a solution casting method using a dope solution prepared in advance, but if possible, the base material layer may be formed by a melt casting method.
 基材層は、親水性高分子を含有する水溶液の塗工前に、予め延伸処理を施されたものであってもよい。延伸処理は、一軸延伸、二軸延伸、斜め延伸などでありうる。一軸延伸は、基材層の長手方向に対して行う縦延伸、基材層の幅方向に対して行う横延伸のいずれであってもよい。横延伸では、幅方向に延伸を行いながら、長手方向に収縮させることもできる。横延伸方式としては、例えば、テンターを介して一端を固定した固定端一軸延伸法や、一端を固定しない自由端一軸延伸法等があげられる。縦延伸方式としては、ロール間延伸方法、圧縮延伸方法、テンターを用いた延伸法等が挙げられる。延伸処理は多段で行うこともできる。なお、基材層に対する延伸処理が一軸延伸である場合には、縦延伸(MD方向への延伸)であることが好ましい。 The base material layer may be subjected to a stretching treatment in advance before the application of the aqueous solution containing the hydrophilic polymer. The stretching process can be uniaxial stretching, biaxial stretching, oblique stretching, or the like. Uniaxial stretching may be either longitudinal stretching performed in the longitudinal direction of the base material layer or transverse stretching performed in the width direction of the base material layer. In transverse stretching, the film can be contracted in the longitudinal direction while stretching in the width direction. Examples of the transverse stretching method include a fixed end uniaxial stretching method in which one end is fixed via a tenter, and a free end uniaxial stretching method in which one end is not fixed. Examples of the longitudinal stretching method include an inter-roll stretching method, a compression stretching method, and a stretching method using a tenter. The stretching process can be performed in multiple stages. In addition, when the extending | stretching process with respect to a base material layer is uniaxial stretching, it is preferable that it is longitudinal stretching (stretching to MD direction).
 また、基材層の延伸処理時の温度について特に制限はないが、好ましくは130~200℃であり、より好ましくは150~180℃である。また、基材層の延伸処理では、基材層の元長に対して、すべての方向の合計延伸倍率で1.1~10倍の範囲になるように行うとよい。好ましくは2~6倍、さらに好ましくは3~5倍である。 The temperature during the stretching treatment of the base material layer is not particularly limited, but is preferably 130 to 200 ° C, more preferably 150 to 180 ° C. Further, the stretching treatment of the base material layer is preferably performed such that the total stretching ratio in all directions is in the range of 1.1 to 10 times the original length of the base material layer. Preferably it is 2-6 times, more preferably 3-5 times.
 基材層が2層以上の積層体からなる場合、かような基材層は、従来公知の樹脂積層体の製造方法により作製することが可能である。例えば、後述する実施例の欄に記載のように、異なる組成を有する2種のドープ液を調製し、一方を用いて溶液流延法によりフィルムを作製し、このフィルムを乾燥させた上に他方のドープ液をさらに流延させ、乾燥させることにより基材層が2層積層されてなる基材層を作製することができる。なお、必要に応じて、1層目のフィルムを単独で、または積層構造を有する基材層に対して、延伸処理を施してもよい。 When the substrate layer is composed of a laminate of two or more layers, such a substrate layer can be produced by a conventionally known method for producing a resin laminate. For example, as described in the Examples section which will be described later, two types of dope solutions having different compositions are prepared, a film is prepared by a solution casting method using one, and the film is dried and the other A base material layer in which two base material layers are laminated can be produced by further casting and drying the dope solution. In addition, you may perform an extending | stretching process with respect to the base material layer which has the laminated | multilayer structure independently of the 1st layer film as needed.
 親水性高分子を含有する水溶液は、親水性高分子の粉末または親水性高分子フィルムの粉砕物、切断物等を、適宜に加熱した水(熱水)に溶解することにより調製することができる。前記水溶液の基材層上への塗工は、塗工法は、ワイヤーバーコーティング法、リバースコーティング、グラビアコーティング等のロールコーティング法、スピンコーティング法、スクリーンコーティング法、ファウンテンコーティング法、ディッピング法、スプレー法などを適宜に選択して採用できる。基材層が光硬化性接着剤の層を有する場合には当該層に、当該層を有しない場合には基材層に直接、前記水溶液を塗工する。なお、乾燥温度は、通常、50~200℃、好ましくは80~150℃であり、乾燥時間は、通常、5~30分間程度である。 An aqueous solution containing a hydrophilic polymer can be prepared by dissolving a powder of a hydrophilic polymer or a pulverized product or a cut product of a hydrophilic polymer film in appropriately heated water (hot water). . Application of the aqueous solution onto the base material layer is performed by a wire bar coating method, a roll coating method such as reverse coating or gravure coating, a spin coating method, a screen coating method, a fountain coating method, a dipping method, or a spray method. Etc. can be selected and adopted as appropriate. When the base material layer has a layer of a photocurable adhesive, the aqueous solution is applied directly to the layer. When the base material layer does not have the layer, the aqueous solution is applied directly to the base material layer. The drying temperature is usually 50 to 200 ° C., preferably 80 to 150 ° C., and the drying time is usually about 5 to 30 minutes.
 なお、本発明で用いる積層体は、基材層の形成材と親水性高分子層の形成材との共押出によっても形成することができる。かかる共押出により基材層と親水性高分子層とが一体化した状態の積層体を得てもよい。共押出にあたっては、基材層の材料および親水性高分子層の材料を、それぞれ各層の形成材として共押出機に仕込み、共押出される基材層および親水性高分子層の厚さが所望の範囲になるように制御することが好ましい。 The laminate used in the present invention can also be formed by co-extrusion of a base material layer forming material and a hydrophilic polymer layer forming material. A laminate in which the base material layer and the hydrophilic polymer layer are integrated may be obtained by such coextrusion. For coextrusion, the material of the base material layer and the material of the hydrophilic polymer layer are respectively charged into the coextrusion machine as a forming material for each layer, and the thickness of the base material layer and the hydrophilic polymer layer to be coextruded is desired. It is preferable to control to be in the range.
 続いて、上記で得られた延伸前の積層体に、延伸処理および二色性物質による染色処理を施す。前記各処理が施された延伸積層体は、前記親水性高分子層への延伸処理と、二色性物質による染色処理により、得られる親水性高分子層には二色性物質が吸着されて偏光子として機能するようになる。 Subsequently, the laminate before stretching obtained above is subjected to stretching treatment and dyeing treatment with a dichroic substance. The stretched laminate subjected to the above treatments has a dichroic substance adsorbed on the resulting hydrophilic polymer layer by stretching the hydrophilic polymer layer and dyeing with a dichroic substance. Functions as a polarizer.
 延伸処理は、上記で得られた積層体に一軸延伸、二軸延伸、または斜め延伸を施すことにより行う。この延伸処理は多段で行うこともできる。なお、基材層が予め延伸処理されたものでなく、かつ、積層体の延伸処理が一軸延伸である場合には、当該一軸延伸は縦延伸(MD方向への延伸)であることが好ましい。一方、基材層が予め縦延伸(MD方向への延伸)されたものであり、かつ、積層体の延伸処理が一軸延伸である場合には、当該一軸延伸は横延伸(TD方向への延伸)であることが好ましい。 The stretching treatment is performed by subjecting the laminate obtained above to uniaxial stretching, biaxial stretching, or oblique stretching. This stretching process can also be performed in multiple stages. In addition, when the base material layer is not previously stretched, and the stretching treatment of the laminate is uniaxial stretching, the uniaxial stretching is preferably longitudinal stretching (stretching in the MD direction). On the other hand, when the base material layer has been previously stretched in the longitudinal direction (stretching in the MD direction) and the stretching treatment of the laminate is uniaxial stretching, the uniaxial stretching is transverse stretching (stretching in the TD direction). ) Is preferable.
 また、積層体の延伸処理時の温度について特に制限はないが、好ましくは130~200℃であり、より好ましくは150~180℃である。また、積層体の延伸処理では、積層体の元長に対して、すべての方向の合計延伸倍率で2~10倍の範囲になるように行うとよい。好ましくは3~8倍、さらに好ましくは3~7倍である。 Further, the temperature at the time of the stretching treatment of the laminate is not particularly limited, but is preferably 130 to 200 ° C, more preferably 150 to 180 ° C. In addition, the stretching process of the laminate may be performed so that the total stretch ratio in all directions is in the range of 2 to 10 times the original length of the laminate. Preferably it is 3 to 8 times, more preferably 3 to 7 times.
 染色処理は、積層体の親水性高分子層に、二色性物質を吸着させることにより行う。二色性物質としては、上述した通りであるためここでは説明を省略する。染色処理は、例えば、二色性物質を含有する溶液(染色溶液)に積層体を浸漬することにより行う。染色溶液としては、二色性物質を溶媒に溶解した溶液が使用できる。溶媒としては、水が一般的に使用されるが、水と相溶性のある有機溶媒がさらに添加されてもよい。染色溶液中の二色性物質の濃度としては、0.01~10質量%の範囲にあることが好ましく、0.02~7質量%の範囲にあることがより好ましく、0.025~5質量%であることが特に好ましい。 The dyeing process is performed by adsorbing a dichroic substance to the hydrophilic polymer layer of the laminate. Since the dichroic substance is as described above, the description is omitted here. The dyeing process is performed, for example, by immersing the laminate in a solution (dyeing solution) containing a dichroic substance. As the staining solution, a solution in which a dichroic substance is dissolved in a solvent can be used. As the solvent, water is generally used, but an organic solvent compatible with water may be further added. The concentration of the dichroic substance in the dyeing solution is preferably in the range of 0.01 to 10% by mass, more preferably in the range of 0.02 to 7% by mass, and 0.025 to 5% by mass. % Is particularly preferred.
 また、二色性物質としてヨウ素を使用する場合、染色効率をより一層向上できることから、さらにヨウ化物を添加することが好ましい。このヨウ化物としては、例えば、ヨウ化カリウム、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化亜鉛、ヨウ化アルミニウム、ヨウ化鉛、ヨウ化銅、ヨウ化バリウム、ヨウ化カルシウム、ヨウ化錫、ヨウ化チタン等が挙げられる。これらヨウ化物の添加割合は、前記染色溶液において、0.01~10質量%であることが好ましく、0.1~5質量%であることがより好ましい。なかでも、ヨウ化カリウムを添加することが好ましく、ヨウ素とヨウ化カリウムの割合(質量比)は、1:5~1:100の範囲にあることが好ましく、1:6~1:80の範囲にあることがより好ましく、1:7~1:70の範囲にあることが特に好ましい。 Further, when iodine is used as the dichroic substance, it is preferable to further add an iodide because the dyeing efficiency can be further improved. Examples of the iodide include potassium iodide, lithium iodide, sodium iodide, zinc iodide, aluminum iodide, lead iodide, copper iodide, barium iodide, calcium iodide, tin iodide, and iodide. Examples include titanium. The addition ratio of these iodides is preferably 0.01 to 10% by mass, and more preferably 0.1 to 5% by mass in the dyeing solution. Among them, it is preferable to add potassium iodide, and the ratio (mass ratio) of iodine and potassium iodide is preferably in the range of 1: 5 to 1: 100, and in the range of 1: 6 to 1:80. More preferably, it is in the range of 1: 7 to 1:70.
 染色溶液への積層体の浸漬時間は、特に限定されないが、通常は、15秒~5分間の範囲であることが好ましく、1分~3分間であることがより好ましい。また、染色溶液の温度は、10~60℃の範囲にあることが好ましく、20~40℃の範囲にあることがより好ましい。染色処理は、積層体の親水性高分子層に、二色性物質を吸着させて、二色性物質を配向させる。染色処理は、積層体の延伸処理の前、同時または後に施すことができるが、親水性高分子層に吸着させた二色性物質を良好に配向させる点から、染色処理は、積層体に延伸処理を施した後に行うのが好ましい。 The immersion time of the laminate in the dyeing solution is not particularly limited, but usually it is preferably in the range of 15 seconds to 5 minutes, more preferably 1 minute to 3 minutes. The temperature of the dyeing solution is preferably in the range of 10 to 60 ° C., more preferably in the range of 20 to 40 ° C. In the dyeing treatment, the dichroic substance is oriented by adsorbing the dichroic substance to the hydrophilic polymer layer of the laminate. The dyeing process can be performed before, simultaneously with, or after the stretching process of the laminate. From the viewpoint of satisfactorily orienting the dichroic material adsorbed on the hydrophilic polymer layer, the dyeing process is performed on the laminate. It is preferable to carry out after the treatment.
 ≪表示装置≫
 本発明に係る偏光板は、液晶表示装置、有機エレクトロルミネッセンス(EL)表示装置などの各種の表示装置に用いられうる。
≪Display device≫
The polarizing plate according to the present invention can be used in various display devices such as a liquid crystal display device and an organic electroluminescence (EL) display device.
 例えば、本発明に係る偏光板を液晶表示装置に組み込むことによって、種々の視認性に優れた液晶表示装置を作製することができる。また、本発明に係る偏光板はリワーク性にも優れたものであることから、表示装置の生産性も大幅に向上しうる。なお、本発明の偏光板は、STN、TN、OCB、HAN、VA(MVA、PVA)、IPSなどの各種駆動方式の液晶表示装置に用いることができる。好ましくはVA(MVA、PVA)型、およびIPS型液晶表示装置である。特に、IPSモード型液晶表示装置に組み込まれることが好ましい。 For example, by incorporating the polarizing plate according to the present invention into a liquid crystal display device, various liquid crystal display devices with excellent visibility can be produced. Moreover, since the polarizing plate according to the present invention is excellent in reworkability, the productivity of the display device can be greatly improved. Note that the polarizing plate of the present invention can be used for liquid crystal display devices of various drive systems such as STN, TN, OCB, HAN, VA (MVA, PVA), and IPS. Preferred are VA (MVA, PVA) type and IPS type liquid crystal display devices. In particular, it is preferably incorporated in an IPS mode liquid crystal display device.
 IPSモード型液晶表示装置における液晶パネルの液晶層は、初期状態で基板面と平行なホモジニアス配向で、かつ基板と平行な平面で液晶層のダイレクターは電圧無印加時で電極配線方向と平行または幾分角度を有し、電圧印加時で液晶層のダイレクターの向きが電圧の印加に伴い電極配線方向と垂直な方向に移行し、液晶層のダイレクター方向が電圧無印加時のダイレクター方向に比べて45°電極配線方向に傾斜したとき、当該電圧印加時の液晶層は、まるで1/2波長板のように偏光の方位角を90°回転させ、出射側偏光板の透過軸と偏光の方位角が一致して白表示となる。 The liquid crystal layer of the liquid crystal panel in the IPS mode type liquid crystal display device is homogeneously aligned parallel to the substrate surface in the initial state, and the director of the liquid crystal layer is parallel to the electrode wiring direction when no voltage is applied. The direction of the director of the liquid crystal layer shifts to a direction perpendicular to the electrode wiring direction when a voltage is applied, and the director direction of the liquid crystal layer is the direction of the director when no voltage is applied. When tilted in the direction of the electrode wiring by 45 ° compared to the liquid crystal layer when the voltage is applied, the azimuth angle of the polarization is rotated by 90 ° like a half-wave plate, and the transmission axis and polarization of the output side polarizing plate are rotated. The azimuth angles of the two coincide with each other to display white.
 一般に、液晶層の厚みは一定であるが、横電界駆動であるため、液晶層の厚みに若干凹凸を設ける方がスイッチングに対する応答速度を上げることができるとも考えられるが、液晶層の厚みが一定でない場合であっても、その効果を最大限生かすことができるものであり、液晶層の厚みの変化に対して影響が少ない。液晶層の厚みは、2~6μmであって、好ましくは3~5.5μmである。本形態に係る液晶表示装置は、大型の液晶テレビに用いられるほか、タブレット型表示装置やスマートフォンなどの携帯用機器にも好ましく用いられうる。 In general, the thickness of the liquid crystal layer is constant, but since it is driven by a transverse electric field, it may be possible to increase the response speed to switching by slightly increasing the thickness of the liquid crystal layer, but the thickness of the liquid crystal layer is constant. Even if it is not, it is possible to make the most of the effect, and there is little influence on the change in the thickness of the liquid crystal layer. The thickness of the liquid crystal layer is 2 to 6 μm, preferably 3 to 5.5 μm. The liquid crystal display device according to this embodiment can be preferably used for portable devices such as a tablet display device and a smartphone in addition to being used for a large liquid crystal television.
 なお、IPSモード型液晶セルの詳細について特に制限はなく、従来公知の他の技術的事項(例えば、特開2010-3060号公報など)を参照することで、本発明を実施してももちろんよい。 The details of the IPS mode type liquid crystal cell are not particularly limited, and it is of course possible to implement the present invention by referring to other conventionally known technical matters (for example, JP 2010-3060 A). .
 以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
 <ポリビニルアルコール水溶液の調製>
 親水性高分子からなるフィルムである(株)クラレ製のポリビニルアルコールフィルム(平均重合度2400、ケン化度99モル%、商品名:VF-PS2400)を、1辺が5mm以下の小片に裁断し、95℃の熱水中に溶解して、濃度10質量%のポリビニルアルコール水溶液を調製した。
<Preparation of aqueous polyvinyl alcohol solution>
A polyvinyl alcohol film (average polymerization degree 2400, saponification degree 99 mol%, trade name: VF-PS2400) manufactured by Kuraray Co., Ltd., which is a film made of a hydrophilic polymer, is cut into small pieces having a side of 5 mm or less. And dissolved in hot water at 95 ° C. to prepare a polyvinyl alcohol aqueous solution having a concentration of 10% by mass.
 <偏光板の作製>
 (光学フィルムF1の作製)
 (ドープ液aの調製)
 ジアセチルセルロース(L50、ダイセル社製) 30質量部
 メチレンクロライド 227質量部
 エタノール 43質量部
 上記の材料を加圧密閉容器に投入し、80℃に加温して容器内圧力を2気圧とし、撹拌しながら樹脂成分を完全に溶解させドープを得た。溶液を安積濾紙(株)製の安積濾紙No.244を使用して濾過した後、ドープを35℃まで下げて一晩静置して、ドープ中の脱泡を行った。
<Preparation of polarizing plate>
(Preparation of optical film F1)
(Preparation of dope solution a)
Diacetylcellulose (L50, manufactured by Daicel) 30 parts by mass Methylene chloride 227 parts by mass Ethanol 43 parts by mass The above materials are put into a pressure-sealed container, heated to 80 ° C., and the pressure in the container is set to 2 atm. While the resin component was completely dissolved, a dope was obtained. The solution was Azumi Filter Paper No. 1 manufactured by Azumi Filter Paper Co., Ltd. After filtering using 244, the dope was lowered to 35 ° C. and allowed to stand overnight to degas the dope.
 (ドープ液bの調製)
 ダイヤナールBR-85(アクリル系樹脂、三菱レイヨン社製) 70質量部
 CAP482-20(セルロースアセテートプロピオネート、イーストマンケミカル製、アセチル置換度0.18、プロピオニル置換度2.60) 30質量部
 メチレンクロライド 252質量部
 エタノール 48質量部
 上記の材料を加圧密閉容器に投入し、80℃に加温して容器内圧力を2気圧とし、撹拌しながら樹脂成分を完全に溶解させドープを得た。溶液を安積濾紙(株)製の安積濾紙No.244を使用して濾過した後、ドープを35℃まで下げて一晩静置して、ドープ中の脱泡を行った。
(Preparation of dope solution b)
Dianal BR-85 (acrylic resin, manufactured by Mitsubishi Rayon Co., Ltd.) 70 parts by mass CAP482-20 (cellulose acetate propionate, manufactured by Eastman Chemical, acetyl substitution degree 0.18, propionyl substitution degree 2.60) 30 parts by mass Methylene chloride 252 parts by mass Ethanol 48 parts by mass The above materials were put into a pressurized sealed container, heated to 80 ° C., the pressure in the container was set to 2 atm, and the resin component was completely dissolved while stirring to obtain a dope. . The solution was Azumi Filter Paper No. After filtering using 244, the dope was lowered to 35 ° C. and allowed to stand overnight to degas the dope.
 (溶液流延法による基材層の作製)
 上記で調製したドープ液bを、ベルト流延装置を用い、温度22℃、2m幅でステンレスバンド支持体に均一に流延した。ステンレスバンド支持体で、残留溶剤量が100%になるまで溶媒を蒸発させ、剥離張力162N/mでステンレスバンド支持体上から剥離した。
(Preparation of base material layer by solution casting method)
The dope solution b prepared above was uniformly cast on a stainless steel band support at a temperature of 22 ° C. and a width of 2 m using a belt casting apparatus. With the stainless steel band support, the solvent was evaporated until the amount of residual solvent reached 100%, and peeling was performed from the stainless steel band support with a peeling tension of 162 N / m.
 剥離したウェブを35℃で溶媒を蒸発させ、1.6m幅にスリットし、その後、テンターで幅方向に1.1倍に延伸しながら、135℃の乾燥温度で乾燥させた。 The solvent was evaporated from the peeled web at 35 ° C., slit to 1.6 m width, and then dried at a drying temperature of 135 ° C. while being stretched 1.1 times in the width direction by a tenter.
 このときテンターで延伸を始めたときの残留溶剤量は10%であった。テンターで延伸後130℃にて5分間緩和を行った後、120℃、130℃の乾燥ゾーンを多数のロールで搬送させながら乾燥を終了させ、1.5m幅にスリットし、フィルム両端に幅10mm高さ5μmのナーリング加工を施し、初期張力220N/m、終張力110N/mで内径6インチコアに巻き取り光学フィルムを得た。 At this time, the residual solvent amount when starting stretching with a tenter was 10%. After stretching with a tenter and relaxing at 130 ° C. for 5 minutes, drying is completed while transporting a drying zone at 120 ° C. and 130 ° C. with a number of rolls, slitting to a width of 1.5 m, and a width of 10 mm at both ends of the film. A knurling process having a height of 5 μm was performed, and an optical film was obtained by winding it around a 6-inch inner diameter core with an initial tension of 220 N / m and a final tension of 110 N / m.
 ステンレスバンド支持体の回転速度とテンターの運転速度から算出されるMD方向の延伸倍率は1.1倍であった。また、残留溶剤量は0.1%であり、膜厚は60μm、巻数は4000mであった。 The draw ratio in the MD direction calculated from the rotational speed of the stainless steel band support and the operating speed of the tenter was 1.1 times. The residual solvent amount was 0.1%, the film thickness was 60 μm, and the number of turns was 4000 m.
 次いで、この巻き取ったフィルムを繰り出し、上記で調製したドープ液aを繰り出しフィルム上に流延して、ドープ液aからなる樹脂層の残留溶剤量が100%になるまで50℃にて乾燥させ、その後120℃、130℃と段階的に乾燥を行い、フィルム合計での残留溶剤量が0.3%となるまで乾燥を行い、その後、巻きとって光学フィルムF1を得た。なお、ドープ液aからなる樹脂層の厚みは、15μmであった。 Next, the wound film is unwound, the dope liquid a prepared above is cast on the unwound film, and dried at 50 ° C. until the residual solvent amount of the resin layer made of the dope liquid a becomes 100%. Thereafter, drying was carried out stepwise at 120 ° C. and 130 ° C., and drying was carried out until the residual solvent amount in the total film became 0.3%, and then wound to obtain an optical film F1. The thickness of the resin layer made of the dope liquid a was 15 μm.
 (偏光板PL1の作製)
 (積層工程)
 上記で得られた光学フィルムF1上に、上記で調製したポリビニルアルコール水溶液を塗工した後、120℃にて10分間乾燥させて、厚み10μmのポリビニルアルコール塗膜からなる親水性高分子層を形成して、積層体を得た。
(Preparation of polarizing plate PL1)
(Lamination process)
After coating the polyvinyl alcohol aqueous solution prepared above on the optical film F1 obtained above, it is dried at 120 ° C. for 10 minutes to form a hydrophilic polymer layer comprising a polyvinyl alcohol coating film having a thickness of 10 μm. Thus, a laminate was obtained.
 (延伸処理)
 上記で得られた積層体をロールtoロールにて、145℃にて長手方向(MD方向)に延伸倍率6倍で延伸して、延伸積層体を得た。
(Extension process)
The laminate obtained above was stretched in a roll to roll at 145 ° C. in the longitudinal direction (MD direction) at a stretch ratio of 6 to obtain a stretched laminate.
 (染色処理)
 上記で得られた延伸積層体を、張力を保持した状態で、30℃のヨウ素溶液(質量比:ヨウ素/ヨウ化カリウム/水=1/10/100)に60秒間浸漬した。その後、60℃にて4分間乾燥を行って、偏光板PL1を得た。なお、得られたPL1における基材層(F1;延伸後)の厚みは30μmであった。また、偏光板PL1における親水性高分子層(延伸後)の厚みは2μmであった。
(Dyeing process)
The stretched laminate obtained above was immersed in an iodine solution (mass ratio: iodine / potassium iodide / water = 1/10/100) at 30 ° C. for 60 seconds while maintaining the tension. Then, drying was performed for 4 minutes at 60 degreeC, and polarizing plate PL1 was obtained. In addition, the thickness of the base material layer (F1; after extending | stretching) in obtained PL1 was 30 micrometers. The thickness of the hydrophilic polymer layer (after stretching) in the polarizing plate PL1 was 2 μm.
 (光学フィルムF2の作製)
 〈微粒子分散液1〉
 微粒子(アエロジル R812 日本アエロジル(株)製) 11質量部
 エタノール 89質量部
 以上をディゾルバーで50分間攪拌混合した後、マントンゴーリンで分散を行った。
(Preparation of optical film F2)
<Fine particle dispersion 1>
Fine particles (Aerosil R812 manufactured by Nippon Aerosil Co., Ltd.) 11 parts by weight Ethanol 89 parts by weight The above was stirred and mixed with a dissolver for 50 minutes, and then dispersed with Manton Gorin.
 〈微粒子添加液1〉
 メチレンクロライドを入れた溶解タンクに十分攪拌しながら、微粒子分散液1をゆっくりと添加した。さらに、二次粒子の粒径が所定の大きさとなるようにアトライターにて分散を行った。これを日本精線(株)製のファインメットNFで濾過し、微粒子添加液1を調製した。
<Fine particle addition liquid 1>
The fine particle dispersion 1 was slowly added to the dissolution tank containing methylene chloride with sufficient stirring. Further, the particles were dispersed by an attritor so that the secondary particles had a predetermined particle size. This was filtered through Finemet NF manufactured by Nippon Seisen Co., Ltd. to prepare a fine particle additive solution 1.
 メチレンクロライド 99質量部
 微粒子分散液1 5質量部
 下記組成の主ドープ液を調製した。まず加圧溶解タンクにメチレンクロライドとエタノールを添加した。溶剤の入った加圧溶解タンクにアセチル置換度2.30のセルロースアセテートを攪拌しながら投入した。これを加熱し、攪拌しながら、完全に溶解し。これを安積濾紙(株)製の安積濾紙No.244を使用して濾過し、主ドープ液を調製した。
Methylene chloride 99 parts by mass Fine particle dispersion 1 5 parts by mass A main dope solution having the following composition was prepared. First, methylene chloride and ethanol were added to the pressure dissolution tank. Cellulose acetate having an acetyl substitution degree of 2.30 was added to a pressure dissolution tank containing a solvent while stirring. This is completely dissolved with heating and stirring. This was designated as Azumi Filter Paper No. The main dope solution was prepared by filtration using 244.
 〈主ドープ液の組成〉
 下記2種のドープを作製し、共流延によってスキン層/コア層/スキン層の構成である光学フィルムF2を作製した。
<Composition of main dope solution>
The following two types of dopes were prepared, and an optical film F2 having a structure of skin layer / core layer / skin layer was prepared by co-casting.
 (コア層用セルロースアシレートドープの調製)
 セルロースアセテート(アセチル置換度2.30) 100質量部
 トリフェニルホスフェート/ビフェニルジフェニルホスフェート共重合体(共重合体比1:1) 10質量部
 ジクロロメタン 406質量部
 メタノール 61質量部
 (スキン層用セルロースアシレートドープの調製)
 セルロースアセテート(アセチル置換度2.80) 100質量部
 トリフェニルホスフェート/ビフェニルジフェニルホスフェート共重合体(共重合体比1:1) 13質量部
 微粒子添加液1 2質量部
 ジクロロメタン 406質量部
 メタノール 61質量部
 上記の組成物を各々ミキシングタンクに投入し、攪拌して各成分を溶解した後、平均孔径34μmの濾紙及び平均孔径10μmの焼結金属フィルターでろ過し、各セルロースアシレートドープを調製した。ドープをバンド流延機にてスキン層/コア層/スキン層の3層構成になるように共流延した。ここで、各ドープの流延量を調整することによりコア層を最も厚くし、結果的に延伸後のフィルムの膜厚がコア層15μm、スキン層10μm、計35μmとなるように同時多層流延を行った。残留溶剤量が約30質量%でバンドから剥ぎ取ったフィルムをテンターにより160℃の熱風を当てて、延伸倍率1.32倍まで拡幅した後、延伸倍率が1.3倍となるように140℃で60秒間緩和させた。その後テンター搬送からロール搬送に移行し、さらに120℃から150℃で乾燥し巻き取った。
(Preparation of cellulose acylate dope for core layer)
Cellulose acetate (acetyl substitution degree 2.30) 100 parts by weight Triphenyl phosphate / biphenyl diphenyl phosphate copolymer (copolymer ratio 1: 1) 10 parts by weight Dichloromethane 406 parts by weight Methanol 61 parts by weight (cellulose acylate for skin layer) Preparation of dope)
Cellulose acetate (acetyl substitution degree 2.80) 100 parts by weight Triphenyl phosphate / biphenyl diphenyl phosphate copolymer (copolymer ratio 1: 1) 13 parts by weight Fine particle additive liquid 1 2 parts by weight Dichloromethane 406 parts by weight Methanol 61 parts by weight Each of the above compositions was put into a mixing tank and stirred to dissolve each component, and then filtered through a filter paper having an average pore size of 34 μm and a sintered metal filter having an average pore size of 10 μm to prepare each cellulose acylate dope. The dope was co-cast with a band casting machine so as to have a three-layer structure of skin layer / core layer / skin layer. Here, by adjusting the casting amount of each dope, the core layer is made the thickest. As a result, the film thickness after stretching is 15 μm for the core layer, 10 μm for the skin layer, and 35 μm in total. Went. A film peeled off from the band with a residual solvent amount of about 30% by mass was applied with hot air at 160 ° C. by a tenter and widened to a draw ratio of 1.32 times, and then 140 ° C. so that the draw ratio became 1.3 times. For 60 seconds. Thereafter, the tenter conveyance was shifted to the roll conveyance, and the film was further dried at 120 to 150 ° C. and wound up.
 (偏光板PL2の作製)
 (積層工程)
 得られた光学フィルムF2上に、上記で調製したポリビニルアルコール水溶液を塗工した後、120℃にて10分間乾燥させて、厚み10μmのポリビニルアルコール塗膜からなる親水性高分子層を形成して、積層体を得た。
(Preparation of polarizing plate PL2)
(Lamination process)
After coating the polyvinyl alcohol aqueous solution prepared above on the obtained optical film F2, it was dried at 120 ° C. for 10 minutes to form a hydrophilic polymer layer composed of a polyvinyl alcohol coating film having a thickness of 10 μm. A laminate was obtained.
 (延伸処理)
 上記で得られた積層体をロールtoロールにて、150℃にて長手方向(MD方向)に延伸倍率2倍で延伸して、延伸積層体を得た。
(Extension process)
The laminate obtained above was stretched at a stretch ratio of 2 in the longitudinal direction (MD direction) at 150 ° C. with a roll-to-roll to obtain a stretched laminate.
 (染色処理)
 上記で得られた延伸積層体を、張力を保持した状態で、30℃のヨウ素溶液(質量比:ヨウ素/ヨウ化カリウム/水=1/10/100)に60秒間浸漬した。その後、60℃にて4分間乾燥を行って、偏光板PL2を得た。なお、得られたPL2における基材層(F2;延伸後)の厚みは25μmであった。また、偏光板PL2における親水性高分子層(延伸後)の厚みは3μmであった。
(Dyeing process)
The stretched laminate obtained above was immersed in an iodine solution (mass ratio: iodine / potassium iodide / water = 1/10/100) at 30 ° C. for 60 seconds while maintaining the tension. Then, drying was performed for 4 minutes at 60 degreeC, and polarizing plate PL2 was obtained. In addition, the thickness of the base material layer (F2; after extending | stretching) in obtained PL2 was 25 micrometers. The thickness of the hydrophilic polymer layer (after stretching) in the polarizing plate PL2 was 3 μm.
 (光学フィルムF3の作製)
 特開2010-30225号公報の実施例1に記載の手法により、光学フィルムF3(厚み55μm)を作製した。
(Preparation of optical film F3)
An optical film F3 (thickness 55 μm) was produced by the method described in Example 1 of JP 2010-30225 A.
 (偏光板PL3の作製)
 (積層工程)
 得られた光学フィルムF3上に、上記で調製したポリビニルアルコール水溶液を塗工した後、120℃にて10分間乾燥させて、厚み10μmのポリビニルアルコール塗膜からなる親水性高分子層を形成して、積層体を得た。
(Preparation of polarizing plate PL3)
(Lamination process)
On the obtained optical film F3, after coating the polyvinyl alcohol aqueous solution prepared above, it was dried at 120 ° C. for 10 minutes to form a hydrophilic polymer layer comprising a polyvinyl alcohol coating film having a thickness of 10 μm. A laminate was obtained.
 (延伸処理)
 上記で得られた積層体をロールtoロールにて、150℃にて長手方向(MD方向)に延伸倍率2倍で延伸して、延伸積層体を得た。
(Extension process)
The laminate obtained above was stretched at a stretch ratio of 2 in the longitudinal direction (MD direction) at 150 ° C. with a roll-to-roll to obtain a stretched laminate.
 (染色処理)
 上記で得られた延伸積層体を、張力を保持した状態で、30℃のヨウ素溶液(質量比:ヨウ素/ヨウ化カリウム/水=1/10/100)に60秒間浸漬した。その後、60℃にて4分間乾燥を行って、偏光板PL3を得た。なお、得られたPL3における基材層(F3;延伸後)の厚みは40μmであった。また、偏光板PL3における親水性高分子層(延伸後)の厚みは3μmであった。
(Dyeing process)
The stretched laminate obtained above was immersed in an iodine solution (mass ratio: iodine / potassium iodide / water = 1/10/100) at 30 ° C. for 60 seconds while maintaining the tension. Then, drying was performed for 4 minutes at 60 degreeC, and polarizing plate PL3 was obtained. In addition, the thickness of the base material layer (F3; after extending | stretching) in obtained PL3 was 40 micrometers. The thickness of the hydrophilic polymer layer (after stretching) in the polarizing plate PL3 was 3 μm.
 (光学フィルムF4の作製)
 特開2011-76026号公報の実施例1に記載の手法により、積層体光学フィルムF4(厚み135μm)を得た。
(Preparation of optical film F4)
A laminate optical film F4 (thickness: 135 μm) was obtained by the method described in Example 1 of JP2011-76026A.
 (偏光板PL4の作製)
 (積層工程)
 得られた光学フィルムF4上に、上記で調製したポリビニルアルコール水溶液を塗工した後、120℃にて10分間乾燥させて、厚み10μmのポリビニルアルコール塗膜からなる親水性高分子層を形成して、積層体を得た。
(Preparation of polarizing plate PL4)
(Lamination process)
On the obtained optical film F4, after applying the polyvinyl alcohol aqueous solution prepared above, it was dried at 120 ° C. for 10 minutes to form a hydrophilic polymer layer comprising a polyvinyl alcohol coating film having a thickness of 10 μm. A laminate was obtained.
 (延伸処理)
 上記で得られた積層体をロールtoロールにて、150℃にて長手方向(MD方向)に延伸倍率6倍で延伸して、延伸積層体を得た。
(Extension process)
The laminate obtained above was stretched at a stretch ratio of 6 times in the longitudinal direction (MD direction) at 150 ° C. with a roll-to-roll to obtain a stretched laminate.
 (染色処理)
 上記で得られた延伸積層体を、張力を保持した状態で、30℃のヨウ素溶液(質量比:ヨウ素/ヨウ化カリウム/水=1/10/100)に60秒間浸漬した。その後、60℃にて4分間乾燥を行って、偏光板PL4を得た。なお、得られたPL4における基材層(F4;延伸後)の厚みは45μmであった。また、偏光板PL4における親水性高分子層(延伸後)の厚みは2μmであった。
(Dyeing process)
The stretched laminate obtained above was immersed in an iodine solution (mass ratio: iodine / potassium iodide / water = 1/10/100) at 30 ° C. for 60 seconds while maintaining the tension. Then, drying was performed for 4 minutes at 60 degreeC, and polarizing plate PL4 was obtained. In addition, the thickness of the base material layer (F4; after extending | stretching) in obtained PL4 was 45 micrometers. The thickness of the hydrophilic polymer layer (after stretching) in the polarizing plate PL4 was 2 μm.
 (光学フィルムF5の作製)
 特開2009-192844号公報の実施例1の記載に基づき、積層体フィルムF5(厚み185μm)を得た。
(Preparation of optical film F5)
Based on the description in Example 1 of JP-A-2009-192844, a laminate film F5 (thickness: 185 μm) was obtained.
 (偏光板PL5の作製)
 (積層工程)
 得られた光学フィルムF5上に、上記で調製したポリビニルアルコール水溶液を塗工した後、120℃にて10分間乾燥させて、厚み10μmのポリビニルアルコール塗膜からなる親水性高分子層を形成して、積層体を得た。
(Preparation of polarizing plate PL5)
(Lamination process)
On the obtained optical film F5, after coating the polyvinyl alcohol aqueous solution prepared above, it was dried at 120 ° C. for 10 minutes to form a hydrophilic polymer layer comprising a polyvinyl alcohol coating film having a thickness of 10 μm. A laminate was obtained.
 (延伸処理)
 上記で得られた積層体をクリップ式テンター内にて150℃で加熱し、フィルム幅手方向(TD方向)に2倍延伸後、搬送ロールでのロールtoロールにて、150℃にて長手方向(MD方向)に延伸倍率5倍で延伸して、延伸積層体を得た。
(Extension process)
The laminate obtained above is heated at 150 ° C. in a clip type tenter, stretched twice in the film width direction (TD direction), and then in the longitudinal direction at 150 ° C. with a roll-to-roll in a transport roll. The film was stretched in the MD direction at a stretch ratio of 5 to obtain a stretched laminate.
 (染色処理)
 上記で作製した延伸積層体を、張力を保持した状態で、30℃のヨウ素溶液(質量比:ヨウ素/ヨウ化カリウム/水=1/10/100)に60秒間浸漬した。その後、60℃にて4分間乾燥を行って、偏光板PL5を得た。なお、得られたPL5における基材層(F5;延伸後)の厚みは25μmであった。また、偏光板PL5における親水性高分子層(延伸後)の厚みは0.5μmであった。
(Dyeing process)
The stretched laminate produced above was immersed in an iodine solution (mass ratio: iodine / potassium iodide / water = 1/10/100) at 30 ° C. for 60 seconds while maintaining the tension. Then, drying was performed for 4 minutes at 60 degreeC, and polarizing plate PL5 was obtained. In addition, the thickness of the base material layer (F5; after extending | stretching) in obtained PL5 was 25 micrometers. The thickness of the hydrophilic polymer layer (after stretching) in the polarizing plate PL5 was 0.5 μm.
 (光学フィルムF6の作製)
 (ドープ液aの調製)
 ジアセチルセルロース(L50、ダイセル社製) 50質量部
 メチレンクロライド 227質量部
 エタノール 43質量部
 上記の材料を加圧密閉容器に投入し、80℃に加温して容器内圧力を2気圧とし、撹拌しながら樹脂成分を完全に溶解させドープを得た。溶液を安積濾紙(株)製の安積濾紙No.244を使用して濾過した後、ドープを35℃まで下げて一晩静置して、ドープ中の脱泡を行った。
(Preparation of optical film F6)
(Preparation of dope solution a)
Diacetylcellulose (L50, manufactured by Daicel) 50 parts by mass Methylene chloride 227 parts by mass Ethanol 43 parts by mass The above materials are put into a pressure-sealed container, heated to 80 ° C., and the pressure inside the container is set to 2 atm. While the resin component was completely dissolved, a dope was obtained. The solution was Azumi Filter Paper No. 1 manufactured by Azumi Filter Paper Co., Ltd. After filtering using 244, the dope was lowered to 35 ° C. and allowed to stand overnight to degas the dope.
 (ドープ液bの調製)
 ダイヤナールBR-52(アクリル系樹脂、三菱レイヨン社製) 100質量部
 メチレンクロライド 252質量部
 エタノール 48質量部
 上記の材料を加圧密閉容器に投入し、80℃に加温して容器内圧力を2気圧とし、撹拌しながら樹脂成分を完全に溶解させドープを得た。溶液を安積濾紙(株)製の安積濾紙No.244を使用して濾過した後、ドープを35℃まで下げて一晩静置して、ドープ中の脱泡を行った。
(Preparation of dope solution b)
Dianal BR-52 (acrylic resin, manufactured by Mitsubishi Rayon Co., Ltd.) 100 parts by mass Methylene chloride 252 parts by mass Ethanol 48 parts by mass The above materials are put into a pressure sealed container and heated to 80 ° C. to increase the pressure inside the container. The resin component was completely dissolved while stirring at 2 atmospheres to obtain a dope. The solution was Azumi Filter Paper No. 1 manufactured by Azumi Filter Paper Co., Ltd. After filtering using 244, the dope was lowered to 35 ° C. and allowed to stand overnight to degas the dope.
 (溶液流延法による基材層の作製)
 上記で調製したドープ液bを、ベルト流延装置を用い、温度22℃、2m幅でステンレスバンド支持体に均一に流延した。ステンレスバンド支持体で、残留溶剤量が100%になるまで溶媒を蒸発させ、剥離張力162N/mでステンレスバンド支持体上から剥離した。
(Preparation of base material layer by solution casting method)
The dope solution b prepared above was uniformly cast on a stainless steel band support at a temperature of 22 ° C. and a width of 2 m using a belt casting apparatus. With the stainless steel band support, the solvent was evaporated until the amount of residual solvent reached 100%, and peeling was performed from the stainless steel band support with a peeling tension of 162 N / m.
 剥離したウェブを35℃で溶媒を蒸発させ、1.6m幅にスリットし、その後、テンターで幅方向に1.1倍に延伸しながら、135℃の乾燥温度で乾燥させた。 The solvent was evaporated from the peeled web at 35 ° C., slit to 1.6 m width, and then dried at a drying temperature of 135 ° C. while being stretched 1.1 times in the width direction by a tenter.
 このときテンターで延伸を始めたときの残留溶剤量は10%であった。テンターで延伸後130℃にて5分間緩和を行った後、120℃、130℃の乾燥ゾーンを多数のロールで搬送させながら乾燥を終了させ、1.5m幅にスリットし、フィルム両端に幅10mm高さ5μmのナーリング加工を施し、初期張力220N/m、終張力110N/mで内径6インチコアに巻き取り光学フィルムを得た。 At this time, the residual solvent amount when starting stretching with a tenter was 10%. After stretching with a tenter and relaxing at 130 ° C. for 5 minutes, drying is completed while transporting a drying zone at 120 ° C. and 130 ° C. with a number of rolls, slitting to a width of 1.5 m, and a width of 10 mm at both ends of the film. A knurling process having a height of 5 μm was performed, and an optical film was obtained by winding it around a 6-inch inner diameter core with an initial tension of 220 N / m and a final tension of 110 N / m.
 ステンレスバンド支持体の回転速度とテンターの運転速度から算出されるMD方向の延伸倍率は1.1倍であった。また、残留溶剤量は0.1%であり、膜厚は60μm、巻数は4000mであった。 The draw ratio in the MD direction calculated from the rotational speed of the stainless steel band support and the operating speed of the tenter was 1.1 times. The residual solvent amount was 0.1%, the film thickness was 60 μm, and the number of turns was 4000 m.
 次いで、この巻き取ったフィルムを繰り出し、上記で調製したドープ液aを繰り出しフィルム上に流延して、ドープ液aからなる樹脂層の残留溶剤量が100%になるまで50℃にて乾燥させ、その後120℃、130℃と段階的に乾燥を行い、フィルム合計での残留溶剤量が0.3%となるまで乾燥を行い、その後、巻きとって光学フィルムF6を得た。なお、ドープ液aからなる樹脂層の厚みは、15μmであった。 Next, the wound film is unwound, the dope liquid a prepared above is cast on the unwound film, and dried at 50 ° C. until the residual solvent amount of the resin layer made of the dope liquid a becomes 100%. Thereafter, drying was carried out stepwise at 120 ° C. and 130 ° C., and drying was carried out until the residual solvent amount in the total film became 0.3%, and then wound to obtain an optical film F6. The thickness of the resin layer made of the dope liquid a was 15 μm.
 (偏光板PL6の作製)
 (積層工程)
 得られた光学フィルムF6上に、上記で調製したポリビニルアルコール水溶液を塗工した後、120℃にて10分間乾燥させて、厚み10μmのポリビニルアルコール塗膜からなる親水性高分子層を形成して、積層体を得た。
(Preparation of polarizing plate PL6)
(Lamination process)
On the obtained optical film F6, the aqueous polyvinyl alcohol solution prepared above was applied and then dried at 120 ° C. for 10 minutes to form a hydrophilic polymer layer composed of a 10 μm thick polyvinyl alcohol coating film. A laminate was obtained.
 (延伸処理)
 上記で得られた積層体をクリップ式テンター内にて150℃で加熱し、フィルム幅手方向に2倍延伸後、搬送ロールでのロールtoロールにて、150℃にて長手方向(MD方向)に延伸倍率5倍で延伸して、延伸積層体を得た。
(Extension process)
The laminated body obtained above is heated at 150 ° C. in a clip type tenter, stretched twice in the film width direction, and then in the longitudinal direction (MD direction) at 150 ° C. by roll-to-roll with a transport roll. The film was stretched at a stretch ratio of 5 to obtain a stretched laminate.
 (染色処理)
 上記で得られた延伸積層体を、張力を保持した状態で、30℃のヨウ素溶液(質量比:ヨウ素/ヨウ化カリウム/水=1/10/100)に60秒間浸漬した。その後、60℃にて4分間乾燥を行って、偏光板PL6を得た。なお、得られたPL6における基材層(F6;延伸後)の厚みは15μmであった。また、偏光板PL6における親水性高分子層(延伸後)の厚みは0.5μmであった。
(Dyeing process)
The stretched laminate obtained above was immersed in an iodine solution (mass ratio: iodine / potassium iodide / water = 1/10/100) at 30 ° C. for 60 seconds while maintaining the tension. Then, drying was performed for 4 minutes at 60 degreeC, and polarizing plate PL6 was obtained. In addition, the thickness of the base material layer (F6; after extending | stretching) in obtained PL6 was 15 micrometers. The thickness of the hydrophilic polymer layer (after stretching) in the polarizing plate PL6 was 0.5 μm.
 (偏光板PL7およびPL8の作製)
 PL1の作製方法において、得られた光学フィルムF1上にポリビニルアルコール水溶液を塗工する際、仕上がりの塗布層の厚みが、25μmまたは32μmとなるようポリビニルアルコールを塗膜し、それぞれ積層体を得た。
(Production of polarizing plates PL7 and PL8)
In the production method of PL1, when an aqueous polyvinyl alcohol solution was applied on the obtained optical film F1, polyvinyl alcohol was applied so that the thickness of the finished coating layer was 25 μm or 32 μm, and a laminate was obtained. .
 その後、PL1の作製方法と同様にして、対応する偏光板PL7およびPL8を作製した。 Thereafter, the corresponding polarizing plates PL7 and PL8 were produced in the same manner as the production method of PL1.
 (偏光板PL9の作製)
 光学フィルムF1の作製方法において、調製したドープ液bを、ベルト流延装置を用い、温度22℃、2m幅でステンレスバンド支持体に流延する際に、光学フィルムF1の仕上がり膜厚が250μmとなるようにダイスのギャップを調整した。その後、ステンレスバンド支持体で、残留溶剤量が100%になるまで充分に時間をかけて溶媒を蒸発させ、剥離張力100N/mでステンレスバンド支持体上から剥離した。
(Preparation of polarizing plate PL9)
In the production method of the optical film F1, when the prepared dope b is cast on a stainless steel band support at a temperature of 22 ° C. and a width of 2 m using a belt casting apparatus, the finished film thickness of the optical film F1 is 250 μm. The die gap was adjusted so that Thereafter, the solvent was evaporated with a stainless steel band support until the residual solvent amount reached 100%, and the solvent was evaporated, and the stainless steel band support was peeled off at a peeling tension of 100 N / m.
 剥離したウェブを35℃で溶媒を蒸発させ、1.6m幅にスリットし、その後、テンターで幅方向に1.1倍に延伸しながら、135℃の乾燥温度で乾燥させた。 The solvent was evaporated from the peeled web at 35 ° C., slit to 1.6 m width, and then dried at a drying temperature of 135 ° C. while being stretched 1.1 times in the width direction by a tenter.
 このときテンターで延伸を始めたときの残留溶剤量は15%であった。テンターで延伸後130℃にて5分間緩和を行った後、120℃、130℃の乾燥ゾーンを多数のロールで搬送させながら乾燥を終了させ、1.5m幅にスリットし、フィルム両端に幅10mm高さ5μmのナーリング加工を施し、初期張力300N/m、終張力180N/mで内径6インチコアに巻き取り光学フィルムを得た。 At this time, the residual solvent amount when starting stretching with a tenter was 15%. After stretching with a tenter and relaxing at 130 ° C. for 5 minutes, drying is completed while transporting a drying zone at 120 ° C. and 130 ° C. with a number of rolls, slitting to a width of 1.5 m, and a width of 10 mm at both ends of the film. A knurling process having a height of 5 μm was performed, and an optical film was obtained by winding it around a 6-inch inner diameter core with an initial tension of 300 N / m and a final tension of 180 N / m.
 ステンレスバンド支持体の回転速度とテンターの運転速度から算出されるMD方向の延伸倍率は1.1倍であった。また、残留溶剤量は0.1%であり、膜厚は250μm、巻数は1000mであった。 The draw ratio in the MD direction calculated from the rotational speed of the stainless steel band support and the operating speed of the tenter was 1.1 times. The residual solvent amount was 0.1%, the film thickness was 250 μm, and the number of turns was 1000 m.
 次いで、この巻き取ったフィルムを繰り出し、上記で調製したドープ液aを繰り出しフィルム上に流延して、ドープ液aからなる樹脂層の残留溶剤量が100%になるまで50℃にて乾燥させ、その後120℃、130℃と段階的に乾燥を行い、フィルム合計での残留溶剤量が0.3%となるまで乾燥を行い、その後、巻きとって光学フィルムF9を得た。なお、ドープ液aからなる樹脂層の厚みは、15μmであった。 Next, the wound film is unwound, the dope liquid a prepared above is cast on the unwound film, and dried at 50 ° C. until the residual solvent amount of the resin layer made of the dope liquid a becomes 100%. Thereafter, drying was carried out stepwise at 120 ° C. and 130 ° C., and drying was carried out until the residual solvent amount in the total film became 0.3%, and then wound to obtain an optical film F9. The thickness of the resin layer made of the dope liquid a was 15 μm.
 (積層工程)
 得られた光学フィルムF9上に、上記で調製したポリビニルアルコール水溶液を塗工した後、120℃にて10分間乾燥させて、厚み10μmのポリビニルアルコール塗膜からなる親水性高分子層を形成して、積層体を得た。
(延伸処理)
 上記で得られた積層体をクリップ式テンター内にて145℃で加熱し、フィルム幅手方向に2倍延伸後、搬送ロールでのロールtoロールにて、145℃にて長手方向(MD方向)に延伸倍率6倍で延伸して、延伸積層体を得た。
(Lamination process)
On the obtained optical film F9, after coating the polyvinyl alcohol aqueous solution prepared above, it was dried at 120 ° C. for 10 minutes to form a hydrophilic polymer layer comprising a polyvinyl alcohol coating film having a thickness of 10 μm. A laminate was obtained.
(Extension process)
The laminate obtained above is heated at 145 ° C. in a clip-type tenter, stretched twice in the width direction of the film, and then in the longitudinal direction (MD direction) at 145 ° C. by roll-to-roll with a transport roll. The film was stretched at a stretch ratio of 6 to obtain a stretched laminate.
 (染色処理)
 上記で得られた延伸積層体を、張力を保持した状態で、30℃のヨウ素溶液(質量比:ヨウ素/ヨウ化カリウム/水=1/10/100)に60秒間浸漬した。その後、60℃にて4分間乾燥を行って、偏光板PL9を得た。なお、得られたPL9における基材層(F9;延伸後)の厚みは93μmであった。また、偏光板PL9における親水性高分子層(延伸後)の厚みは2μmであった。
(Dyeing process)
The stretched laminate obtained above was immersed in an iodine solution (mass ratio: iodine / potassium iodide / water = 1/10/100) at 30 ° C. for 60 seconds while maintaining the tension. Then, drying was performed for 4 minutes at 60 degreeC, and polarizing plate PL9 was obtained. In addition, the thickness of the base material layer (F9; after extending | stretching) in obtained PL9 was 93 micrometers. The thickness of the hydrophilic polymer layer (after stretching) in the polarizing plate PL9 was 2 μm.
 (偏光板PL10の作製)
 光学フィルムF1の作製方法において、調製したドープ液bを、ベルト流延装置を用い、温度22℃、2m幅でステンレスバンド支持体に流延する際に、光学フィルムF1の仕上がり膜厚が280μmとなるようにダイスのギャップを調整した。その後、ステンレスバンド支持体で、残留溶剤量が100%になるまで充分に時間をかけて溶媒を蒸発させ、剥離張力100N/mでステンレスバンド支持体上から剥離した。
(Preparation of polarizing plate PL10)
In the production method of the optical film F1, when the prepared dope b is cast on a stainless steel band support at a temperature of 22 ° C. and a width of 2 m using a belt casting apparatus, the finished film thickness of the optical film F1 is 280 μm. The die gap was adjusted so that Thereafter, the solvent was evaporated with a stainless steel band support until the residual solvent amount reached 100%, and the solvent was evaporated, and the stainless steel band support was peeled off at a peeling tension of 100 N / m.
 剥離したウェブを35℃で溶媒を蒸発させ、1.6m幅にスリットし、その後、テンターで幅方向に1.1倍に延伸しながら、135℃の乾燥温度で乾燥させた。 The solvent was evaporated from the peeled web at 35 ° C., slit to 1.6 m width, and then dried at a drying temperature of 135 ° C. while being stretched 1.1 times in the width direction by a tenter.
 このときテンターで延伸を始めたときの残留溶剤量は15%であった。テンターで延伸後130℃にて5分間緩和を行った後、120℃、130℃の乾燥ゾーンを多数のロールで搬送させながら乾燥を終了させ、1.5m幅にスリットし、フィルム両端に幅10mm高さ5μmのナーリング加工を施し、初期張力300N/m、終張力180N/mで内径6インチコアに巻き取り光学フィルムを得た。 At this time, the residual solvent amount when starting stretching with a tenter was 15%. After stretching with a tenter and relaxing at 130 ° C. for 5 minutes, drying is completed while transporting a drying zone at 120 ° C. and 130 ° C. with a number of rolls, slitting to a width of 1.5 m, and a width of 10 mm at both ends of the film. A knurling process having a height of 5 μm was performed, and an optical film was obtained by winding it around a 6-inch inner diameter core with an initial tension of 300 N / m and a final tension of 180 N / m.
 ステンレスバンド支持体の回転速度とテンターの運転速度から算出されるMD方向の延伸倍率は1.1倍であった。また、残留溶剤量は0.1%であり、膜厚は280μm、巻数は1000mであった。 The draw ratio in the MD direction calculated from the rotational speed of the stainless steel band support and the operating speed of the tenter was 1.1 times. The residual solvent amount was 0.1%, the film thickness was 280 μm, and the number of turns was 1000 m.
 次いで、この巻き取ったフィルムを繰り出し、上記で調製したドープ液aを繰り出しフィルム上に流延して、ドープ液aからなる樹脂層の残留溶剤量が100%になるまで50℃乾燥させ、その後120℃、130℃と段階的に乾燥を行い、フィルム合計での残留溶剤量が0.3%となるまで乾燥を行い、その後、巻きとって光学フィルムF10を得た。なお、ドープ液aからなる樹脂層の厚みは、15μmであった。 Next, the wound film is unwound, the dope liquid a prepared above is cast on the unwound film, and dried at 50 ° C. until the residual solvent amount of the resin layer made of the dope liquid a becomes 100%. The film was dried stepwise at 120 ° C. and 130 ° C., and dried until the residual solvent amount in the total film became 0.3%, and then wound to obtain an optical film F10. The thickness of the resin layer made of the dope liquid a was 15 μm.
 (積層工程)
 得られた光学フィルムF10上に、上記で調製したポリビニルアルコール水溶液を塗工した後、120℃にて10分間乾燥させて、厚み10μmのポリビニルアルコール塗膜からなる親水性高分子層を形成して、積層体を得た。
(Lamination process)
On the obtained optical film F10, the polyvinyl alcohol aqueous solution prepared above was applied and then dried at 120 ° C. for 10 minutes to form a hydrophilic polymer layer comprising a polyvinyl alcohol coating film having a thickness of 10 μm. A laminate was obtained.
 (延伸処理)
 上記で得られた積層体をクリップ式テンター内にて145℃で加熱し、フィルム幅手方向に2倍延伸後、搬送ロールでのロールtoロールにて、145℃にて長手方向(MD方向)に延伸倍率6倍で延伸して、延伸積層体を得た。
(Extension process)
The laminate obtained above is heated at 145 ° C. in a clip-type tenter, stretched twice in the width direction of the film, and then in the longitudinal direction (MD direction) at 145 ° C. by roll-to-roll with a transport roll. The film was stretched at a stretch ratio of 6 to obtain a stretched laminate.
 (染色処理)
 上記で作製した延伸積層体を、張力を保持した状態で、30℃のヨウ素溶液(質量比:ヨウ素/ヨウ化カリウム/水=1/10/100)に60秒間浸漬した。その後、60℃にて4分間乾燥を行って、偏光板PL10を得た。なお、得られたPL10における基材層(F10;延伸後)の厚みは103μmであった。また、偏光板PL10における親水性高分子層(延伸後)の厚みは2μmであった。
(Dyeing process)
The stretched laminate produced above was immersed in an iodine solution (mass ratio: iodine / potassium iodide / water = 1/10/100) at 30 ° C. for 60 seconds while maintaining the tension. Then, drying was performed for 4 minutes at 60 degreeC, and polarizing plate PL10 was obtained. In addition, the thickness of the base material layer (F10; after extending | stretching) in obtained PL10 was 103 micrometers. The thickness of the hydrophilic polymer layer (after stretching) in the polarizing plate PL10 was 2 μm.
 (偏光板PL11の作製)
 特開2009-98653号公報の実施例1に記載の手法により、偏光板PL11(厚み41μm)を作製した。
(Preparation of polarizing plate PL11)
A polarizing plate PL11 (thickness: 41 μm) was produced by the method described in Example 1 of JP-A-2009-98653.
 (偏光板PL12の作製)
 厚さ120μmの長尺ロールポリビニルアルコールフイルムをヨウ素1質量部、ホウ酸4質量部を含む水溶液100質量部に浸漬し、50℃で5倍に搬送方向に延伸して偏光子を作製した。
(Preparation of polarizing plate PL12)
A 120 μm-thick long roll polyvinyl alcohol film was immersed in 100 parts by mass of an aqueous solution containing 1 part by mass of iodine and 4 parts by mass of boric acid, and stretched in the transport direction 5 times at 50 ° C. to produce a polarizer.
 上記で作製した偏光子の両面に、2.5質量%ポリビニルアルコール水溶液をワイヤーバーで塗布し、下記条件にて鹸化処理した光学フィルムF3を貼り合わせて乾燥させて、偏光板PL12を得た。なお、得られたPL12の厚みは、92μmであった。 A 2.5 mass% polyvinyl alcohol aqueous solution was applied to both surfaces of the polarizer produced above with a wire bar, and an optical film F3 saponified under the following conditions was bonded and dried to obtain a polarizing plate PL12. The obtained PL12 had a thickness of 92 μm.
 (鹸化処理)
 準備した光学フィルムF3を、50℃2.0NのKOH水溶液に60秒間浸漬し、その後水洗処理を行った。
(Saponification treatment)
The prepared optical film F3 was immersed in an aqueous KOH solution at 50 ° C. and 2.0 N for 60 seconds, and then washed with water.
 (偏光板PL13の作製)
 特開2010-250091号公報の実施例(a)、(b)に基づいて、光学フィルムF4を作製した。上記で作製した光学フィルムF3と、当該光学フィルムF4とを貼り合わせ、光学フィルムF3上に、上記で調製したポリビニルアルコール水溶液を塗工した後、120℃にて10分間乾燥させて、厚み10μmのポリビニルアルコール塗膜からなる親水性高分子層を形成して、積層体を得た。
(Preparation of polarizing plate PL13)
An optical film F4 was produced based on Examples (a) and (b) of JP2010-250091A. The optical film F3 produced above and the optical film F4 are bonded together, and the polyvinyl alcohol aqueous solution prepared above is applied onto the optical film F3, and then dried at 120 ° C. for 10 minutes to obtain a thickness of 10 μm. A hydrophilic polymer layer comprising a polyvinyl alcohol coating film was formed to obtain a laminate.
 (延伸処理)
 上記で得られた積層体をロールtoロールにて、160℃にて長手方向(MD方向)に延伸倍率2倍で延伸して、延伸積層体を得た。
(Extension process)
The laminate obtained above was stretched by a roll-to-roll at 160 ° C. in the longitudinal direction (MD direction) at a stretch ratio of 2 to obtain a stretched laminate.
 (染色処理)
 上記で得られた延伸積層体を、張力を保持した状態で、30℃のヨウ素溶液(質量比:ヨウ素/ヨウ化カリウム/水=1/10/100)に60秒間浸漬した。その後、60℃にて4分間乾燥を行って、偏光板PL13を得た。なお、得られたPL13における基材層の厚みは40μmであった。また、偏光板PL13における親水性高分子層(延伸後)の厚みは3μmであった。
(Dyeing process)
The stretched laminate obtained above was immersed in an iodine solution (mass ratio: iodine / potassium iodide / water = 1/10/100) at 30 ° C. for 60 seconds while maintaining the tension. Then, drying was performed for 4 minutes at 60 degreeC, and polarizing plate PL13 was obtained. In addition, the thickness of the base material layer in obtained PL13 was 40 micrometers. The thickness of the hydrophilic polymer layer (after stretching) in the polarizing plate PL13 was 3 μm.
 <偏光板の物性の評価>
 (カール評価)
カールの測定は、JIS K-7619-1988の「写真フィルムのカールの測定法」中の、方法Aのカール測定用型板を用いて、サンプルを25℃湿度60%RHの環境下、10時間調湿後に測定を行った。23℃55%RH環境下でのカールの値をCとし、40℃20%RH環境下でのカールの値をCとして、これらの差ΔC=|C-C|を算出した。その結果を下記の表1に示す。
<Evaluation of properties of polarizing plate>
(Curl evaluation)
The curl was measured by using the curl measurement template of Method A in “Measurement Method of Curling of Photographic Film” of JIS K-7619-1988, and the sample was placed in an environment of 25 ° C. and 60% RH for 10 hours. Measurements were made after conditioning. The difference ΔC = | C 1 −C 2 | was calculated by setting the curl value at 23 ° C. and 55% RH as C 1 and the curl value at 40 ° C. and 20% RH as C 2 . The results are shown in Table 1 below.
 (弾性率評価)
 テンシロン試験機(ORIENTEC社製、RTC-1225A)を用いて、以下のような評価を行った。
(Elastic modulus evaluation)
The following evaluation was performed using a Tensilon tester (ORIENTEC, RTC-1225A).
 各偏光板を120mm(縦)×10mm(幅)で切り出し、次いで基材層を各層に剥離し、チャック間100mm(つかみ代上下10mmずつ)で上下を挟み、JIS K7127に準拠して、100mm/minの引張り速度にてMD方向およびTD方向にそれぞれ3回ずつ測定を行い、その平均値を算出した。そして、親水性高分子層の側の基材層の弾性率をEaとし、親水性高分子層とは反対の側の基材層の弾性率をEbとして、これらの差ΔE=|Ea-Eb|(MPa)を算出した。また、23℃55%RH環境下での弾性率EaおよびEbをそれぞれEaおよびEbとし、40℃20%RH環境下での弾性率EaおよびEbをそれぞれEaおよびEbとして、これらのそれぞれの差ΔEa=|Ea-Ea|およびΔEb=|Eb-Eb|を算出した。これらの結果を下記の表1に示す
 <液晶表示装置の評価>
 IPS型液晶表示装置であるLG電子社製42型テレビ LEDREGZA42RE1の予め貼合されていた偏光板を剥がして、上記で作製した偏光板PL1~PL12のいずれかを、予め貼合されていた偏光板と同一の方向に吸収軸が向くように貼合し、液晶表示装置を各々作製した。なお、コニカミノルタオプト社製コニカミノルタタックKC4UYの一方の面を鹸化処理し、各偏光板の親水性高分子層の基材層が形成された面とは反対側の面に当該鹸化処理面を貼り合わせた。そして、偏光板を液晶表示装置に貼り合わせる際には、コニカミノルタタックKC4UYが液晶パネル側に位置するように、粘着剤を用いて貼り合わせた。
Each polarizing plate was cut out at 120 mm (length) × 10 mm (width), then the base material layer was peeled off to each layer, and the upper and lower sides were sandwiched between chucks of 100 mm (10 mm above and below the grip allowance), and 100 mm / Measurement was performed three times in each of the MD direction and the TD direction at a pulling rate of min, and the average value was calculated. Then, the elastic modulus of the base material layer on the side of the hydrophilic polymer layer is denoted by Ea, and the elastic modulus of the base material layer on the side opposite to the hydrophilic polymer layer is denoted by Eb, and the difference ΔE = | Ea−Eb | (MPa) was calculated. Further, the elastic moduli Ea and Eb in the environment of 23 ° C. and 55% RH are Ea 1 and Eb 1 , respectively, and the elastic moduli Ea and Eb in the environment of 40 ° C. and 20% RH are Ea 2 and Eb 2 , respectively. Differences ΔEa = | Ea 1 −Ea 2 | and ΔEb = | Eb 1 −Eb 2 | were calculated. These results are shown in Table 1 below <Evaluation of liquid crystal display device>
42-inch television LEDREGZA42RE1 made by LG Electronics, which is an IPS-type liquid crystal display device, is peeled off from the previously bonded polarizing plate, and any of the polarizing plates PL1 to PL12 produced above is bonded in advance. Were bonded so that the absorption axis was directed in the same direction, and liquid crystal display devices were respectively produced. One surface of Konica Minolta Op KC4UY manufactured by Konica Minolta Opto was saponified, and the surface of the polarizing plate opposite to the surface on which the base material layer of the hydrophilic polymer layer was formed was subjected to the saponification surface. Pasted together. And when bonding a polarizing plate to a liquid crystal display device, it bonded together using the adhesive so that Konica Minolta tack KC4UY might be located in the liquid crystal panel side.
 その後、上記表示装置を23℃55%RHの環境下に2時間放置した後、電源(バックライト)を点灯させ、12時間後および24時間後のそれぞれにおける表示ムラおよび光漏れを画面を黒表示にした状態で観察し、それぞれ下記のような基準で評価を行った。結果を下記の表1に示す。 After that, the display device is left in an environment of 23 ° C. and 55% RH for 2 hours, the power source (backlight) is turned on, and the display unevenness and light leakage after 12 hours and 24 hours are displayed in black on the screen. The following criteria were used for the evaluation. The results are shown in Table 1 below.
 (表示ムラ)
 画像表示が均一である:◎
 画像表示がほぼ均一である:○
 中央部と周囲にムラがある:△
 中央部と周囲にはっきりとしたムラがある:×
 (光漏れ)
 光漏れが全くない:◎
 光漏れが僅かにある:○
 光漏れが一部あり、明るいと感じる:△
 光漏れがあり、眩しいと感じる:×
(Display unevenness)
Image display is uniform: ◎
Image display is almost uniform: ○
There is unevenness in the center and surroundings:
There is clear unevenness in the center and surrounding area: ×
(Light leakage)
No light leakage: ◎
There is slight light leakage: ○
Some light leaks and feels bright: △
There is light leakage and feels dazzling: ×
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
 表1に示す結果から明らかなように、本発明の構成で使用した液晶表示装置は、ムラ、光漏れがない均一な画質を得ることができることがわかる。 As is apparent from the results shown in Table 1, it can be seen that the liquid crystal display device used in the configuration of the present invention can obtain uniform image quality without unevenness and light leakage.

Claims (14)

  1.  親水性高分子層と熱可塑性樹脂を含む基材層との積層体が延伸処理されてなり、前記親水性高分子層に二色性物質が吸着された延伸積層体を有する偏光板であって、
     23℃55%RH環境下でのカールCと、40℃20%RH環境下でのカールCとの差ΔC=|C-C|が、ΔC≦80[1/m]を満たす、偏光板。
    A polarizing plate having a stretched laminate in which a laminate of a hydrophilic polymer layer and a base material layer containing a thermoplastic resin is stretched, and a dichroic substance is adsorbed on the hydrophilic polymer layer, ,
    The difference ΔC = | C 1 −C 2 | between the curl C 1 in the environment of 23 ° C. and 55% RH and the curl C 2 in the environment of 40 ° C. and 20% RH satisfies ΔC ≦ 80 [1 / m]. ,Polarizer.
  2.  前記基材層が、少なくとも2種の熱可塑性樹脂を含有する、請求項1に記載の偏光板。 The polarizing plate according to claim 1, wherein the base material layer contains at least two kinds of thermoplastic resins.
  3.  前記親水性高分子層の膜厚が0.5~30μmである、請求項1または2に記載の偏光板。 The polarizing plate according to claim 1 or 2, wherein the hydrophilic polymer layer has a thickness of 0.5 to 30 µm.
  4.  前記基材層に含まれる熱可塑性樹脂が、アクリル系樹脂、スチレン系樹脂、シクロオレフィン系樹脂、セルロース系樹脂、ポリプロピレン系樹脂、ポリエステル系樹脂、またはこれらの組み合わせからなる、請求項1~3のいずれか1項に記載の偏光板。 The thermoplastic resin contained in the base material layer is made of an acrylic resin, a styrene resin, a cycloolefin resin, a cellulose resin, a polypropylene resin, a polyester resin, or a combination thereof. The polarizing plate of any one.
  5.  前記基材層が、少なくとも、
     第1の熱可塑性樹脂を含む第1の基材層と、
     前記第1の基材層に対して前記親水性高分子層とは反対の側に配置された、第2の熱可塑性樹脂を含む第2の基材層と、
    を有する、請求項1~4のいずれか1項に記載の偏光板。
    The base material layer is at least
    A first base material layer containing a first thermoplastic resin;
    A second substrate layer comprising a second thermoplastic resin, disposed on the opposite side of the hydrophilic polymer layer with respect to the first substrate layer;
    The polarizing plate according to any one of claims 1 to 4, which comprises:
  6.  前記第1の基材層の弾性率Eaと、前記第2の基材層の弾性率Ebとの差ΔE=|Ea-Eb|(MPa)が、ΔE≦3000[MPa]を満たし、かつ、
     23℃55%RH環境下での弾性率EaおよびEbと、40℃20%RH環境下での弾性率EaおよびEbとのそれぞれの差ΔEa=|Ea-Ea|およびΔEb=|Eb-Eb|が、ΔEa,ΔEb≦2000[MPa]を満たす、請求項5に記載の偏光板。
    The difference ΔE = | Ea−Eb | (MPa) between the elastic modulus Ea of the first base material layer and the elastic modulus Eb of the second base material layer satisfies ΔE ≦ 3000 [MPa], and
    Differences ΔEa = | Ea 1 −Ea 2 | and ΔEb between the elastic moduli Ea 1 and Eb 1 in a 23 ° C. and 55% RH environment and the elastic moduli Ea 2 and Eb 2 in a 40 ° C. and 20% RH environment, respectively. 6. The polarizing plate according to claim 5, wherein = | Eb 1 -Eb 2 | satisfies ΔEa, ΔEb ≦ 2000 [MPa].
  7.  前記延伸積層体の膜厚が10~100μmである、請求項1~6のいずれか1項に記載の偏光板。 The polarizing plate according to any one of claims 1 to 6, wherein the stretched laminate has a thickness of 10 to 100 µm.
  8.  前記親水性高分子層が、親水性高分子としてポリビニルアルコールを含む、請求項1~7のいずれか1項に記載の偏光板。 The polarizing plate according to any one of claims 1 to 7, wherein the hydrophilic polymer layer contains polyvinyl alcohol as a hydrophilic polymer.
  9.  前記二色性物質がヨウ素である、請求項1~8のいずれか1項に記載の偏光板。 The polarizing plate according to any one of claims 1 to 8, wherein the dichroic substance is iodine.
  10.  請求項1~9のいずれか1項に記載の偏光板の製造方法であって、
     前記基材層を溶液流延法により製膜する工程を含む、製造方法。
    A method for producing a polarizing plate according to any one of claims 1 to 9,
    The manufacturing method including the process of forming the said base material layer into a film by a solution casting method.
  11.  製膜された前記基材層の一方の表面に、親水性高分子を含有する溶液を塗布し、乾燥させて積層体を得る工程をさらに含む、請求項10に記載の製造方法。 The manufacturing method of Claim 10 which further includes the process of apply | coating the solution containing hydrophilic polymer to one surface of the said base material layer formed into a film, and making it dry and obtaining a laminated body.
  12.  前記積層体を2~10倍の延伸倍率で延伸処理する工程をさらに含む、請求項11に記載の製造方法。 The production method according to claim 11, further comprising a step of stretching the laminate at a stretching ratio of 2 to 10 times.
  13.  請求項1~9のいずれか1項に記載の偏光板、または請求項10~12のいずれか1項に記載の製造方法によって製造された偏光板を備えた表示装置。 A display device comprising the polarizing plate according to any one of claims 1 to 9, or the polarizing plate produced by the production method according to any one of claims 10 to 12.
  14.  IPSモード型液晶表示装置である、請求項13に記載の表示装置。 The display device according to claim 13, which is an IPS mode type liquid crystal display device.
PCT/JP2013/051890 2012-01-30 2013-01-29 Polarizing plate and display device using same WO2013115178A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020147023811A KR101634026B1 (en) 2012-01-30 2013-01-29 Polarizing plate and display device using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-017226 2012-01-30
JP2012017226 2012-01-30

Publications (1)

Publication Number Publication Date
WO2013115178A1 true WO2013115178A1 (en) 2013-08-08

Family

ID=48905213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051890 WO2013115178A1 (en) 2012-01-30 2013-01-29 Polarizing plate and display device using same

Country Status (3)

Country Link
JP (1) JPWO2013115178A1 (en)
KR (1) KR101634026B1 (en)
WO (1) WO2013115178A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014238612A (en) * 2012-03-29 2014-12-18 住友化学株式会社 Method for producing polarizing laminate film and method for producing polarizing plate
CN104635288A (en) * 2013-11-06 2015-05-20 富士胶片株式会社 Polarizer manufacturing method
JP2016114634A (en) * 2014-12-11 2016-06-23 日東電工株式会社 Laminate for producing polarization film
WO2020153233A1 (en) * 2019-01-23 2020-07-30 日本ゼオン株式会社 Layered body, polarizing plate, method for producing layered body, method for producing polarizing plate, and method for producing display device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160087236A (en) 2015-01-13 2016-07-21 동우 화인켐 주식회사 Polarizing plate and image display device comprising the same
KR20160093885A (en) 2015-01-30 2016-08-09 동우 화인켐 주식회사 Polarizing plate and image display device comprising the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000338329A (en) * 1999-06-01 2000-12-08 Sanritsutsu:Kk Polarizing plate and its production
JP2007272172A (en) * 2005-07-06 2007-10-18 Konica Minolta Opto Inc Cellulose ester film, polarizing plate, and liquid crystal display device
JP2008529038A (en) * 2005-02-03 2008-07-31 富士フイルム株式会社 Polarizing plate and liquid crystal display device
JP2009098653A (en) * 2007-09-27 2009-05-07 Nitto Denko Corp Polarizing plate, optical film and image display device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5120379B2 (en) * 2007-09-05 2013-01-16 コニカミノルタアドバンストレイヤー株式会社 Production method of retardation film, retardation film, polarizing plate and liquid crystal display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000338329A (en) * 1999-06-01 2000-12-08 Sanritsutsu:Kk Polarizing plate and its production
JP2008529038A (en) * 2005-02-03 2008-07-31 富士フイルム株式会社 Polarizing plate and liquid crystal display device
JP2007272172A (en) * 2005-07-06 2007-10-18 Konica Minolta Opto Inc Cellulose ester film, polarizing plate, and liquid crystal display device
JP2009098653A (en) * 2007-09-27 2009-05-07 Nitto Denko Corp Polarizing plate, optical film and image display device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014238612A (en) * 2012-03-29 2014-12-18 住友化学株式会社 Method for producing polarizing laminate film and method for producing polarizing plate
JP2017134415A (en) * 2012-03-29 2017-08-03 住友化学株式会社 Method for producing polarizing laminate film and method for producing polarizing plate
CN104635288A (en) * 2013-11-06 2015-05-20 富士胶片株式会社 Polarizer manufacturing method
JP2015111245A (en) * 2013-11-06 2015-06-18 富士フイルム株式会社 Method for manufacturing polarizing plate
JP2016114634A (en) * 2014-12-11 2016-06-23 日東電工株式会社 Laminate for producing polarization film
TWI666117B (en) * 2014-12-11 2019-07-21 日商日東電工股份有限公司 Laminated body for manufacturing polarizing film, and manufacturing method of polarizing film
WO2020153233A1 (en) * 2019-01-23 2020-07-30 日本ゼオン株式会社 Layered body, polarizing plate, method for producing layered body, method for producing polarizing plate, and method for producing display device

Also Published As

Publication number Publication date
KR20140125406A (en) 2014-10-28
JPWO2013115178A1 (en) 2015-05-11
KR101634026B1 (en) 2016-06-27

Similar Documents

Publication Publication Date Title
WO2013115178A1 (en) Polarizing plate and display device using same
JP5725011B2 (en) Manufacturing method of polarizing plate, polarizing plate using the same, and liquid crystal display device
JP2013061561A (en) Polarizing plate and display device using the same
JP2013156391A (en) Manufacturing method of roll-shaped circularly polarizing plate, organic electroluminescence display device and lateral electric field type switching mode type liquid crystal display device
JP5821849B2 (en) Method for producing cellulose acetate film
JP2016501386A (en) Polarizing plate and liquid crystal display device including the same
JP6212836B2 (en) Optical film, method for producing the same, and polarizing plate using the same
WO2014057784A1 (en) Optical compensation film, polarizing plate and liquid crystal display device
JPWO2015098491A1 (en) Cellulose ester film, method for producing the same, and polarizing plate
JP4900540B1 (en) Cellulose acetate film, polarizing plate using the same, and liquid crystal display device
JP5655634B2 (en) λ / 4 plate, λ / 4 plate manufacturing method, circularly polarizing plate, liquid crystal display device, and stereoscopic image display device
JPWO2011096036A1 (en) Optical film
JP6136226B2 (en) Optical film roll body and manufacturing method thereof, packaging body, polarizing plate, and liquid crystal display device
JP2013152457A (en) Polarizing plate and display device using the same
JP5699519B2 (en) Retardation film, method for producing retardation film, polarizing plate and liquid crystal display device
WO2013133276A1 (en) Polarizing plate and display device using same
JP5935810B2 (en) IPS mode type liquid crystal display device
JP5888333B2 (en) Polarizing plate and liquid crystal display device
WO2011114764A1 (en) Retardation film and polarizing plate equipped with same
JP5942710B2 (en) Optical film, polarizing plate and liquid crystal display device
JP5754278B2 (en) Laminated cellulose acylate film and method for producing the same
WO2022215407A1 (en) Production method for polarizing plate protection film
JP6083113B2 (en) Polarizing plate and display device using the same
WO2012176546A1 (en) Cellulose acylate film and method for producing same, as well as polarizing plate and liquid crystal display device using same
JP2013025013A (en) Cellulose acylate film, polarizing plate, and liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13743459

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013556412

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147023811

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13743459

Country of ref document: EP

Kind code of ref document: A1