WO2013115039A1 - Power supply device and transmission device using same - Google Patents

Power supply device and transmission device using same Download PDF

Info

Publication number
WO2013115039A1
WO2013115039A1 PCT/JP2013/051345 JP2013051345W WO2013115039A1 WO 2013115039 A1 WO2013115039 A1 WO 2013115039A1 JP 2013051345 W JP2013051345 W JP 2013051345W WO 2013115039 A1 WO2013115039 A1 WO 2013115039A1
Authority
WO
WIPO (PCT)
Prior art keywords
pass filter
power supply
supply device
voltage
low
Prior art date
Application number
PCT/JP2013/051345
Other languages
French (fr)
Japanese (ja)
Inventor
真明 谷尾
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2013556344A priority Critical patent/JP6115477B2/en
Publication of WO2013115039A1 publication Critical patent/WO2013115039A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • H03F1/0216Continuous control
    • H03F1/0222Continuous control by using a signal derived from the input signal
    • H03F1/0227Continuous control by using a signal derived from the input signal using supply converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/102A non-specified detector of a signal envelope being used in an amplifying circuit

Definitions

  • the present invention relates to a power supply apparatus having a function of changing an output voltage according to the magnitude of an input signal.
  • the digital modulation method used in recent wireless communication such as cellular phones and wireless LAN (Local Area Network) is QPSK (Quadrature Phase).
  • Modulation formats such as Shift Keying and multi-level QAM (Quadrature Amplitude Modulation) are employed.
  • the signal trajectory generally involves amplitude modulation at the time of transition between symbols, and the amplitude (envelope) of the signal changes with time in a high-frequency modulation signal superimposed on a carrier signal in the microwave band.
  • PAPR Peak-to-Average Power Ratio
  • the PAPR tends to be very large, and the average of amplifiers Efficiency is further reduced. Therefore, it is desirable that the amplifier has high efficiency even in a power region with a large back-off.
  • envelope removal / restoration EER: Envelope ⁇ ⁇ Elimination and Restoration
  • envelope tracking Envelope Tracking
  • an input modulation signal is decomposed into its phase component and amplitude component.
  • the phase component is input to the power amplifier with a constant amplitude while maintaining the phase modulation information.
  • the power amplifier is always operated in the vicinity of saturation where the efficiency is maximized.
  • the amplitude component changes the output voltage of the power supply device according to the amplitude modulation information, and uses this as the power supply of the amplifier.
  • the power amplifier operates as a multiplier, and the phase component and the amplitude component of the modulation signal are combined, and an output modulation signal amplified with high efficiency regardless of backoff is obtained.
  • the amplitude component of the input modulation signal changes the output voltage of the power supply device according to the amplitude modulation information and uses it as the power source of the power amplifier, the same as the EER system.
  • the difference is that, in the EER system, only a phase modulation signal with a constant amplitude is input to the amplifier for saturation operation, whereas in the ET system, an input modulation signal including both amplitude modulation and phase modulation is input to the amplifier as it is. It is a point to operate linearly. In this case, since the amplifier operates linearly, the efficiency is lower than that of the EER method.
  • the amplifier since the amplifier is supplied with a minimum amount of power according to the amplitude of the input modulation signal, the amplifier is driven by the amplitude. As compared with the case of using a constant voltage, it is possible to obtain high power efficiency.
  • the ET method has an advantage that the timing margin for combining the amplitude component and the phase component is relaxed, and is easier to implement than the EER method.
  • the modulation power supply apparatus used for the EER method and the ET method needs to be a voltage source that can change the output voltage with high accuracy, low noise, and high efficiency according to the amplitude component of the input modulation signal. This is because in recent wireless communication systems using digital modulation such as mobile phones, leakage power to adjacent channels (ACPR: Adjacent Channel Leakage Power Ratio) and error vector intensity (EVM: Error Vector Magnitude) representing a modulation error The standard stipulates that the value is kept below a certain value. If the output voltage of the power supply device is not linear with respect to the input amplitude signal, ACPR and EVM deteriorate due to intermodulation distortion. Further, when power supply noise is mixed into the output of the amplifier, the ACPR also deteriorates.
  • ACPR Adjacent Channel Leakage Power Ratio
  • EVM Error Vector Magnitude
  • the response band (speed) of the power supply device is required to be at least twice the band (speed) of the modulation signal.
  • the modulation band is about 5 MHz in the WCDMA (Wideband Code Division Multiple Access) standard for mobile phones, and the modulation band is about 20 MHz in the IEEE802.11a / g standard for wireless LAN.
  • WCDMA Wideband Code Division Multiple Access
  • the modulation band is about 20 MHz in the IEEE802.11a / g standard for wireless LAN.
  • the switching amplifier 6 detects the output current Ic of the linear amplifier 7 and controls the input signal of the switching amplifier 6 by the control signal generator 8 based on the result. That is, the switching amplifier 6 operates as a current source, and most of the power supplied to the load 1 is supplied from the highly efficient switching amplifier 6.
  • the linear amplification unit 7 with high accuracy but low efficiency consumes only enough power to remove the ripple included in the output voltage Vout. Therefore, a voltage source that achieves both high accuracy and high efficiency can be realized by such an operation.
  • the output voltage Vout obtained in this way may be used as the power supply voltage of the power amplifier as the load 1 to perform the above-described EER or ET operation.
  • the power supply 201 supplies a minimum amount of power according to the amplitude of the input modulation signal, the power amplifier can always operate near a highly efficient saturation, and the power supply and the power amplifier are connected to each other. The power efficiency of the entire transmitter system provided is also improved.
  • a high-pass filter 9 is provided on the output side of the switching amplifier 6, and an output current Iout is supplied to the load 1.
  • FIG. 8 illustrates the configuration of the related art 2.
  • two types of voltage sources are arranged in parallel, one is the high-frequency switching amplification unit 6 for low frequency, and the other is the linear amplification unit 7 for high frequency.
  • an input unit filter for controlling the voltage source and an output unit filter for separating the band of the voltage source signal are provided. That is, low-pass filters 2 and 4 are provided at the input and output parts of the switching amplifier 6, and high-pass filters 3 and 5 are provided at the input and output parts of the linear amplifier 7, respectively. The frequency characteristics of these filters are as shown in FIG.
  • the input signal Vref is band-separated at the input terminal, the low frequency is amplified by the switching amplifier 6 and the high frequency is amplified by the linear amplifier 7, and synthesized at the output terminal, whereby the input signal Vref is synthesized. Is obtained by linearly amplifying the output voltage Vout.
  • power is supplied by the high-efficiency switching amplifier 6 in the low-frequency region that is the main component of voltage modulation, and the high-frequency component is a low-efficiency but high-linearity linear amplifier 7. Since power is supplied by this, a highly efficient and high quality power supply modulator can be realized.
  • the advantage of arranging the power supplies separated in band as shown in FIG. 8 in parallel is that the power supply can easily have a high withstand voltage.
  • the linear amplification unit 7 needs to have a withstand voltage of 50 V, and it is very difficult to achieve high-speed operation and high withstand voltage with the current CMOS device technology. 7 is limited to about several kHz, and cannot follow the envelope band of a signal of several MHz band.
  • the linear amplification unit 7 amplifies only the high frequency component of the output voltage, so that the required withstand voltage is the maximum amplitude of the signal from which the offset component is removed from the 50V output. That is, by adjusting the offset amount of the output voltage Vout and performing power supply modulation in accordance with the maximum withstand voltage of the linear amplification unit 7, it is possible to cope with a higher withstand voltage of the power supply modulator.
  • a disadvantage of the band separation power source of FIG. 8 is that it is difficult to design a filter that separates the bands.
  • the load 1 is a resistance load
  • a filter that satisfies the characteristics shown in FIG. 9 can be easily designed.
  • ET and EER the load component seen from the power source side is changing and not constant, and therefore the output filter of FIG. 8 does not have the band characteristics as shown in FIG.
  • the output filter is composed of an inductor and a capacitor with no power loss from the viewpoint of efficiency
  • the high-pass filter is composed of a capacitor
  • the low-pass filter is composed of an inductor. Therefore, a resonance point exists between the low-pass filter and the high-pass filter, and the impedance between the two power supplies becomes close to 0 near the resonance frequency. For this reason, complete band separation between the power sources cannot be achieved, and particularly in the vicinity of the resonance point, the impedance of the line connecting the power sources is close to 0, which causes fluctuations in voltage and current.
  • the output voltage Vout does not become a desired value and the resonance voltage is added, and linear amplification cannot be performed as a whole.
  • current exchange in the parallel power supply causes a wasteful power loss, thereby reducing the efficiency. End up.
  • an object of the present invention is to provide a power supply apparatus having a function of changing an output voltage according to the magnitude of an input signal and having high efficiency and high linearity.
  • the power supply device is A low-pass filter, A high-pass filter, A switching amplifier for amplifying the low frequency component of the input signal and outputting the amplified low frequency component via the low pass filter; A linear amplification unit that is connected in parallel to the switching amplification unit, amplifies the high-frequency component of the input signal, and outputs the amplified high-frequency component via the high-pass filter, A current detector that detects a current flowing between the low-pass filter and the high-pass filter; A voltage detector for detecting a voltage across the high-pass filter; A control unit that outputs a control signal to the switching amplification unit based on a low frequency component of the input signal, a current value detected by the current detection unit, and a voltage value detected by the voltage detection unit; It is provided with.
  • the transmission device according to the present invention is:
  • the power supply device according to the present invention was used as a power supply for an amplifier. It is characterized by that.
  • Embodiment 1 of the power supply device which concerns on this invention It is a circuit diagram which shows Embodiment 2 of the power supply device which concerns on this invention. It is a circuit diagram which shows Embodiment 3 of the power supply device which concerns on this invention. It is a circuit diagram which shows Embodiment 4 of the power supply device which concerns on this invention. It is a graph which shows the frequency characteristic of the high pass filter and low pass filter in FIG. It is a block diagram which shows the transmission apparatus using the power supply device of FIG. It is a block diagram which shows the related technique 1 of the power supply device which has a voltage modulation function. It is a block diagram which shows the related technique 2 of the power supply device which has a voltage modulation function. It is a graph which shows the frequency characteristic of the high pass filter and low pass filter in FIG.
  • FIG. 1 is a block diagram showing Embodiment 1 of a power supply device according to the present invention.
  • FIG. 6 is a block diagram illustrating a transmission device using the power supply device of the embodiment.
  • the power supply device 101 includes a low-pass filter 4, a high-pass filter 5, and a switching amplifier that amplifies the low-frequency component Vref_low of the input signal Vref and outputs the amplified low-frequency component via the low-pass filter 4.
  • a linear amplifier 7 that is connected in parallel to the switching amplifier 6 and amplifies the high-frequency component Vref_high of the input signal Vref and outputs the amplified high-frequency component via the high-pass filter 5, and the low-pass filter 4 and the high-pass
  • the current detection unit 11 that detects a current flowing between the filter 5, the voltage detection unit 10 that detects the voltage between both ends of the high-pass filter 5, and the low-frequency component Vref_low of the input signal Vref and the current detection unit 11 detect the current.
  • Switching amplification based on the detected current value and the voltage value detected by the voltage detector 10
  • control unit 12 performs the low-pass filter 4 and the high-pass filter 5
  • a control signal may be output to the switching amplifier 6 so as to suppress the resonance.
  • the control unit 12 also detects the voltage detected by the voltage detection unit 10 based on the low frequency component Vref_low of the input signal Vref, the current value detected by the current detection unit 11 and the voltage value detected by the voltage detection unit 10.
  • a control signal may be output to the switching amplifier 6 so that the value is constant and the current value detected by the current detector 11 decreases.
  • the power supply apparatus 101 operates as a switching amplifier 6 that operates as a low-frequency component voltage source, a low-pass filter 4 provided at the output terminal of the switching amplifier 6, and a high-frequency component voltage source.
  • the linear amplifying unit 7 has a high-pass filter 5 provided at the output end of the linear amplifying unit 7.
  • the switching amplification unit 6 and the low-pass filter 4, and the linear amplification unit 7 and the high-pass filter 5 are connected in parallel.
  • the power supply device 101 includes a voltage detection unit 10 that detects a voltage across the high-pass filter 5, a current detection unit 11 that detects a current flowing between the power supplies connected in parallel, that is, between the switching amplification unit 6 and the linear amplification unit 7,
  • the control unit 12 generates a signal for controlling the switching amplification unit 6 based on the detection value in the voltage detection unit 10, the detection value in the current detection unit 11, and the low frequency component of the input signal.
  • the high frequency component Vref_high of the input signal Vref is extracted by the high pass filter 3.
  • the signal that has passed through the high-pass filter 3, that is, the high-frequency component Vref_high is input to the linear amplification unit 7 and then output through the high-pass filter 5 at the output end thereof, thereby generating a high-frequency component of the output voltage Vout. .
  • the low frequency component Vref_low of the input signal Vref is extracted by the low pass filter 2.
  • the signal that has passed through the low-pass filter 2, that is, the low-frequency component Vref_low is input to the control unit 12, is then converted into a pulse with a predetermined duty ratio by the switching amplifier 6, and is output via the low-pass filter 4 at the output end. As a result, it is generated as a low frequency component of the output voltage Vout.
  • the control unit 12 controls the switching amplification unit 6 based on the signal that has passed through the low-pass filter 2, the detection value in the voltage detection unit 10, and the detection value in the current detection unit 11.
  • the voltage detection unit 10 detects a voltage difference between both ends of the high pass filter 5, and the current detection unit 11 detects a current value flowing through the high pass filter 5.
  • the load 1 is a power amplifier.
  • the control unit 12 controls the operation of the switching amplification unit 6 so that the voltage difference between both ends of the high pass filter 5 is a constant multiple of the low frequency component Vref_low of the input signal that has passed through the low pass filter 2. Therefore, a desired voltage is output after the voltage fluctuation due to resonance of the output voltage Vout is suppressed.
  • the control unit 12 negatively feeds back the current detected by the current detection unit 11 and thus generates a pulse for driving the switching amplification unit 6 so that the value of the current detection unit 11 becomes 0.
  • Current fluctuation between the filter 5 and the low-pass filter 4 can be suppressed. As a result, useless current exchange between the linear amplification unit 7 and the switching amplification unit 6 can be suppressed, and a desired voltage that is not affected by resonance can be supplied as the output voltage Vout.
  • the effect of the first embodiment is that a power supply apparatus that can accurately follow the input signal waveform and has a small power loss to the system can be provided.
  • the reason is that the power supply device according to the first embodiment detects voltage fluctuations caused by resonance between the high-pass filter and the low-pass filter by the voltage detection unit and current fluctuations by the current detection unit.
  • the switching amplifier By controlling the switching amplifier so as to suppress the fluctuation of the power, the power loss caused by the resonance caused by the related technology can be minimized and the modulation that also suppresses the voltage fluctuation caused by the resonance can be performed. is there.
  • FIG. 2 is a block diagram showing Embodiment 2 of the power supply device according to the present invention. Hereinafter, description will be given based on this drawing.
  • the power supply apparatus 102 includes a load 1, a low-pass filter 4, a high-pass filter 5, a switching amplification unit 6, a linear amplification unit 7, a voltage detection unit 10, a current detection unit 11, and a control unit 12 as functional blocks. It is provided similarly to the functional block of FIG. Further, the high-frequency component Vref_high as an input signal of the linear amplification unit 7 and the low-frequency component Vref_low as a reference signal of the control unit 12 are similar to the configuration of FIG. It is obtained by passing the input signal Vref through the low-pass filter 2.
  • the high pass filter 5 includes a capacitor 26.
  • the capacitance value (C26) is set so that the frequency characteristics of the capacitor 26 and the resistance component of the load 1 at the terminal of the output voltage Vout satisfy the high-pass filter characteristics of FIG.
  • the low-pass filter 4 is configured by a series circuit including a parallel circuit of an inductor 24 and a sense resistor 25 and an inductor 23.
  • the inductance values (L23, L24) of the inductors 23, 24 and the resistance value (R25) of the sense resistor 25 are set in the same way as the high-pass filter 5, with the resistance components of the low-pass filter 4 and the load 1 at the terminal of the output voltage Vout. Are set so as to satisfy the low-pass filter characteristics of FIG.
  • the ratio of the inductance values of the inductor 23 and the inductor 24 is determined at a ratio of, for example, 10: 1 so that the inductor 23 is larger than the inductor 24.
  • the resistance value R25 of the sense resistor 25 needs to be set so that most of the current caused by resonance passes through the sense resistor 25 when it is in parallel with the inductor 24. That is, the resistance value R25 of the sense resistor 25 is set such that the cutoff frequency determined by R25 and L24 is higher than the resonance frequency determined by C26, L23, and L24. Thereby, the low-pass filter 4 and the high-pass filter 5 are set so as to follow the frequency characteristics of FIG.
  • the voltage detection unit 10 includes a differential amplifier 44 that detects and amplifies the voltage difference between both ends of the high-pass filter 5.
  • the output value of the voltage detection unit 10 is (voltage difference between both ends of the high-pass filter 5) ⁇ (gain of the differential amplifier 44).
  • the current detection unit 11 includes a differential amplifier 43 that detects and amplifies the voltage difference of the sense resistor 25 in the low-pass filter 4.
  • the output value of the current detection unit 11 is (current value flowing through the sense resistor 25) ⁇ (resistance value of the sense resistor 25) ⁇ (gain of the differential amplifier 43). Therefore, the current detection unit 11 outputs a constant multiple of the current value flowing through the sense resistor 25.
  • Most components of the current value flowing through the sense resistor 25 are currents near the resonance frequency of the low-pass filter 4 and the high-pass filter 5. Therefore, the resonance current can be detected by the differential amplifier 43.
  • the controller 12 includes a differential amplifier 42, a comparator 41, and a hysteresis amplifier 31.
  • the basic operation of the comparator 431 is to generate an ON pulse if the + input signal is smaller than the ⁇ input signal (Vref_low), and an OFF pulse if it is greater. By this control, the voltage difference between both ends of the high-pass filter 5 is maintained at Vref_low ⁇ constant multiple.
  • the switching amplifier 6 is configured by vertically stacking switching elements 21 and diodes 22.
  • the switching amplifier 6 is not limited to this configuration.
  • a switching element (not shown) is arranged instead of the diode 22 and two types of input pulses of the switching element 21 and the switching element (not shown) are received.
  • a configuration generated from the control unit 12 is also conceivable.
  • the linear amplification unit 7 includes an operational amplifier 51 and outputs a voltage of Vref_high ⁇ constant multiple.
  • the linear amplifying unit 7 is not limited to an operational amplifier but can be replaced with a highly linear amplifier such as a class B amplifier or a class AB amplifier.
  • a voltage difference between both ends of the high-pass filter 5 is detected by the differential amplifier 44 (voltage detection unit 10). Further, the fluctuation of current caused by resonance by the low-pass filter 4 and the high-pass filter 5 is detected by the differential amplifier 43 (current detection unit 11). Then, after the signals detected by the voltage detection unit 10 and the current detection unit 11 are added together by the differential amplifier 42, the difference between this and Vref_low is obtained by the comparator 41, and the difference is obtained via the hysteresis amplifier 31. 21 as an input signal (control unit 12). Thereby, the input pulse of the switching element 21 is produced
  • the differential amplifier 43 it is necessary to adjust the differential amplifier 43 so that the ratio of the + input signal to the ⁇ input signal of the differential amplifier 42 is sufficiently larger than the ⁇ input signal.
  • the output of the differential amplifier 43 is always set to 0, and the function of the current detection unit 11 is eliminated.
  • the voltage difference between both ends of the high pass filter 5 is controlled to be a constant multiple of the low frequency component Vref_low (gain multiple of the switching amplifier 6).
  • the current detection unit 11 detects a resonance current between the high-pass filter 5 and the low-pass filter 4, the current detection unit 11 is not limited to that incorporated in the low-pass filter 4 shown in FIG.
  • the current detection unit 11 may be incorporated in the high-pass filter 5 or may be detected by arranging a sense resistor independently of the filter. In the third embodiment to be described later, the current detection unit 11 is incorporated in the high-pass filter 5.
  • the control unit 12 is not limited to the comparator 41. In the third embodiment to be described later, the control unit 12 adopts PWM (Pulse Width Modulation) control.
  • PWM Pulse Width Modulation
  • FIG. 3 is a circuit diagram showing Embodiment 3 of the power supply device according to the present invention. Hereinafter, description will be given based on this drawing.
  • the control unit 12 is replaced with a PWM generation circuit 61 and a triangular wave generation circuit 62 from the comparator 41, and the current sense resistor 25 is embedded in the high pass filter 5 instead of the low pass filter 4.
  • the power supply device 103 has a load 1, a low-pass filter 4, a high-pass filter 5, a switching amplification unit 6, a linear amplification unit 7, a voltage detection unit 10, and a current detection unit as in the second embodiment. 11.
  • the control part 12 is provided similarly to the functional block of FIG.
  • the high-frequency component Vref_high as an input signal of the linear amplification unit 7 and the low-frequency component Vref_low as a reference signal of the control unit 12 are similar to the configuration of FIG. It is obtained by passing the input signal Vref through the low-pass filter 2.
  • the low pass filter 4 is composed of an inductor 23.
  • the inductance value is set so that the frequency characteristics of the inductor 23 and the resistance component of the load 1 at the terminal of the output voltage Vout satisfy the low-pass filter characteristics of FIG.
  • the high-pass filter 5 is constituted by a series circuit including a parallel circuit of a capacitor 27 and a sense resistor 25 and a capacitor 26.
  • the capacitance values (C26, C27) of the capacitors 26, 27 and the resistance value (R25) of the sense resistor 25 are similar to the low-pass filter 4 in that the frequency characteristics of the high-pass filter 5 and the resistance component of the load 1 at the output voltage Vout terminal. 9 is set so as to satisfy the high-pass filter characteristics of FIG.
  • the ratio of the capacitance values of the capacitor 27 and the capacitor 26 is determined, for example, at a ratio of 10: 1 so that the capacitor 27 is larger than the capacitor 26.
  • the resistance value of the sense resistor 25 needs to be set so that most of the current caused by resonance passes through the sense resistor 25 in parallel with the capacitor 27. That is, the resistance value R25 of the sense resistor 25 is set such that the cutoff frequency determined by R25 and C27 is higher than the resonance frequency determined by C26, C27, and L23. Thereby, the low-pass filter 4 and the high-pass filter 5 are set so as to follow the frequency characteristics of FIG.
  • the voltage detection unit 10 includes a differential amplifier 44 that detects and amplifies the voltage difference between both ends of the high-pass filter 5.
  • the output value of the voltage detection unit 10 is (voltage difference between both ends of the high-pass filter 5) ⁇ (gain of the differential amplifier 44).
  • the current detection unit 11 includes a differential amplifier 43 that detects and amplifies the voltage difference between both ends of the sense resistor 25 in the high-pass filter 5.
  • the output value of the current detector 11 is (current value flowing through the sense resistor 25) ⁇ (resistance value R25 of the sense resistor 25) ⁇ (gain of the differential amplifier 43).
  • a constant multiple of the current value flowing through the sense resistor 25 is output from the current detection unit 11.
  • most components of the current flowing through the sense resistor 25 are currents near the resonance frequency of the low-pass filter 4 and the high-pass filter 5. Therefore, the resonance current can be detected by the differential amplifier 43.
  • the controller 12 includes a differential amplifier 42, a PWM generation circuit 61, and a triangular wave generation circuit 62.
  • the basic operation of the control unit 12 is that the duty ratio of the pulse input to the switching element 21 in accordance with the two signals (low frequency component Vref_low and the output signal of the differential amplifier 42) input to the PWM generation circuit 61. Is to decide.
  • the switching frequency of the pulse input to the switching element 21 is determined by the frequency of the triangular wave generated by the triangular wave generation circuit 62.
  • the switching amplifier 6 is configured by vertically stacking switching elements 21 and diodes 22.
  • the switching amplifier 6 is not limited to this configuration.
  • a configuration in which a switching element (not shown) is arranged instead of the diode 22 and two types of input pulses of the switching element 21 and the switching element (not shown) are generated from the control unit 12 is also conceivable.
  • the linear amplifying unit 7 includes an operational amplifier 51 and outputs a voltage of (Vref_high ⁇ multiple of a constant).
  • the linear amplifying unit 7 is not limited to an operational amplifier, and an amplifier with high linearity such as a class B amplifier or a class AB amplifier can be substituted.
  • a voltage difference between both ends of the high-pass filter 5 is detected by the differential amplifier 44 (voltage detection unit 10). Further, the fluctuation of current caused by resonance by the low-pass filter 4 and the high-pass filter 5 is detected by the differential amplifier 43 (current detection unit 11). Then, the signals detected by the voltage detection unit 10 and the current detection unit 11 are added together by the differential amplifier 42 and used as the input signal of the PWM generation circuit 61 together with the low frequency component Vref_low. While referring to the binary value input to the PWM generation circuit 61, a pulse with a changed duty ratio is generated in accordance with the frequency of the triangular wave output from the triangular wave generation circuit 62 (PWM generation circuit 61). By outputting this pulse to the switching element 21, the stable switching amplifier 6 is controlled (control unit 12).
  • the differential amplifier 43 it is necessary to adjust the differential amplifier 43 so that the ratio of the + input signal to the ⁇ input signal of the differential amplifier 42 is sufficiently larger than the ⁇ input signal.
  • the output of the differential amplifier 43 is always set to 0, and the function of the current detection unit 11 is eliminated.
  • the voltage difference between both ends of the high pass filter 5 is controlled to be a constant multiple of the low frequency component Vref_low (gain multiple of the switching amplifier 6).
  • the current detection unit 11 detects the resonance current between the high-pass filter 5 and the low-pass filter 4, the current detection unit 11 is not limited to the one incorporated in the high-pass filter 5 shown in FIG.
  • the current detection unit 11 may be configured to detect by arranging a sense resistor independently of other filters.
  • control unit 12 is not limited to the combination of the PWM generation circuit 61 and the triangular wave generation circuit 62.
  • the control unit 12 can be configured by PFM (Pulse Frequency Modulation) control.
  • FIG. 4 is a circuit diagram showing Embodiment 4 of the power supply device according to the present invention. Hereinafter, description will be given based on this drawing.
  • the basic configuration of the power supply device 104 of the fourth embodiment is the same as that of the second embodiment.
  • the fourth embodiment is different from the second embodiment in that it has an offset adjustment function unit 13 that performs offset adjustment of the output voltage Vout by adjusting the offset voltage Vcc2 of the low-frequency component Vref_low of the input signal, and the input signal Vref.
  • This is a detailed description of a specific example of the filter (configured by the low-pass filter 2, the high-pass filter 3, and the delay adjuster 14).
  • the same reference numerals as those in the second embodiment are the same as those in the second embodiment, so that the description thereof will be omitted and only the differences will be described in detail.
  • the low-pass filter 2 and high-pass filter 3 of the input signal are composed of secondary Butterworth filters.
  • the frequency characteristic in that case is as shown in FIG.
  • the low-pass filter 2 and the high-pass filter 3 for the input signal are configured by high-order filters. And is not limited to Butterworth filters.
  • a delay adjuster 14 is installed at the subsequent stage of the high-pass filter 3.
  • the delay value of the delay adjuster 14 is set so that the signals input to the operational amplifier 51 and the comparator 41 are synchronized after calculating the group delay of the low-pass filter 2 and the high-pass filter 3.
  • the offset adjustment function unit 13 has a function of fixing the offset voltage of the low-frequency component Vref_low of the input signal that has passed through the low-pass filter 2 to the voltage Vcc2. Since the voltage input to the negative side of the comparator 41 changes in accordance with the change of the voltage Vcc2, the voltage difference between both ends of the high-pass filter 5 is reflected in the offset value set by the voltage Vcc2, resulting in output It has a function of adjusting the offset value of the voltage Vout. This offset function adjustment is included in the offset adjustment of Vref itself in the first and third embodiments.
  • the low-pass filter 2 includes inductors 211 and 212 and a capacitor 213.
  • the high pass filter 3 includes an inductor 311 and capacitors 312 and 313.
  • the offset adjustment function unit 13 includes a low-pass filter 131.
  • the present invention has been described with reference to each of the above embodiments, but the present invention is not limited to each of the above embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention. Further, the present invention includes a combination of some or all of the configurations of the above-described embodiments as appropriate.
  • Appendix 2 The power supply device according to Appendix 1, The control unit performs resonance between the low-pass filter and the high-pass filter based on a low-frequency component of the input signal, a current value detected by the current detection unit, and a voltage value detected by the voltage detection unit. Outputting a control signal to the switching amplifier so as to suppress, A power supply device characterized by that.
  • the control unit is configured to obtain a voltage value detected by the voltage detection unit based on a low frequency component of the input signal, a current value detected by the current detection unit, and a voltage value detected by the voltage detection unit. Outputting a control signal to the switching amplification unit so that the current value detected by the current detection unit is constant and reduced; A power supply device characterized by that.
  • the power supply device according to any one of Appendixes 1 to 3,
  • the linear amplifying unit has a function of linearly amplifying a high frequency component of the input signal, and includes a voltage follower or a negative feedback amplifier that obtains a feedback signal from its output terminal.
  • the power supply device according to any one of Appendixes 1 to 4,
  • the voltage detection unit has a function of detecting a voltage between both ends of the high-pass filter, and includes a differential amplifier that inputs a voltage between the both ends.
  • Appendix 7 The power supply device according to any one of appendices 1 to 6,
  • the control unit sets the switching amplification unit so that a voltage detected by the voltage detection unit is a constant multiple of a low frequency component of the input signal, and a current detected by the current detection unit is zero.
  • Control A power supply device characterized by that.
  • the control unit includes a PWM (Pulse Width Modulation) control circuit, a PFM (Pulse Frequency Modulation) control circuit, or a comparator.
  • PWM Pulse Width Modulation
  • PFM Pulse Frequency Modulation
  • the power supply device according to any one of Supplementary notes 1 to 9 is used as a power source of an amplifier.
  • Appendix 11 The power supply device according to any one of Appendixes 1 to 9, The low-pass filter and the high-pass filter are composed only of passive elements, A power supply device characterized by that.
  • the power supply device has a function of detecting a current flowing between the high pass filter and the low pass filter, and includes a sense resistor, a band pass filter, and a differential amplifier.
  • the power supply device uses a resonance point of a circuit formed by the high pass filter and the low pass filter as a pass band, A power supply device characterized by that.
  • Examples of the use of the present invention include mobile phones, wireless LANs, terminals for WiMAX (Worldwide Interoperability for Microwave Access), base stations, and transmitters used in terrestrial digital broadcasting stations.
  • WiMAX Worldwide Interoperability for Microwave Access

Abstract

[Problem] The objective of the present invention is to provide a power supply device which has a function in which output voltage changes in accordance with the magnitude of an input signal, and which is of high efficiency and high linearity. [Solution] This power supply device (101) is provided with: a low-pass filter (4); a high-pass filter (5); a switching amplification unit (6) which amplifies a low-frequency component in order to output the low-frequency component after amplification through the low-pass filter (4); a linear amplification unit (7) which is connected in parallel with the switching amplification unit (6) and which amplifies the high-frequency component in order to output the high-frequency component after amplification through the high-pass filter (5); a current detection unit (11) which detects a current flowing between the low-pass filter (4) and the high-pass filter (5); a voltage detection unit (10) which detects voltage between both ends of the high-pass filter (5); and a control unit (12) which, on the basis of the low-frequency component, the current value detected at the current detection unit (11), and the voltage value detected at the voltage detection unit (10), outputs a control signal with respect to the switching amplification unit (6).

Description

電源装置及びこれを用いた送信装置Power supply device and transmission device using the same
 本発明は、入力信号の大きさに応じて出力電圧を変化させる機能を有する電源装置に関する。 The present invention relates to a power supply apparatus having a function of changing an output voltage according to the magnitude of an input signal.
 携帯電話や無線LAN(Local Area Network)など、近年の無線通信に用いられているデジタル変調方式は、QPSK(Quadrature Phase
Shift Keying)や多値QAM(Quadrature Amplitude Modulation)などの変調フォーマットが採用されている。このような変調フォーマットでは、一般にシンボル間の遷移時に信号の軌跡が振幅変調を伴い、マイクロ波帯のキャリア信号に重畳された高周波変調信号では、時間とともに信号の振幅(包絡線)が変化する。
The digital modulation method used in recent wireless communication such as cellular phones and wireless LAN (Local Area Network) is QPSK (Quadrature Phase).
Modulation formats such as Shift Keying and multi-level QAM (Quadrature Amplitude Modulation) are employed. In such a modulation format, the signal trajectory generally involves amplitude modulation at the time of transition between symbols, and the amplitude (envelope) of the signal changes with time in a high-frequency modulation signal superimposed on a carrier signal in the microwave band.
 このとき、高周波変調信号のピーク電力と平均電力の比は、PAPR(Peak-to-Average Power Ratio)と呼ばれている。PAPRが大きい信号を増幅する場合は、高い線形性を確保するために、ピーク電力に対しても波形が歪まないように電源から十分に大きな電力を増幅器に供給する必要がある。言い換えると、増幅器を、電源電圧で制限される飽和電力よりも十分低い電力領域で、余裕(バックオフ)を持たせて動作させる必要がある。一般に、A級やB級動作させた線形増幅器では、その飽和出力電力付近で電力効率が最大になるので、バックオフが大きい領域で動作させると平均的な効率は低くなる。 At this time, the ratio between the peak power and the average power of the high-frequency modulation signal is called PAPR (Peak-to-Average Power Ratio). When a signal with a large PAPR is amplified, in order to ensure high linearity, it is necessary to supply a sufficiently large power from the power source to the amplifier so that the waveform is not distorted even with respect to the peak power. In other words, it is necessary to operate the amplifier with a margin (backoff) in a power region sufficiently lower than the saturation power limited by the power supply voltage. In general, in a linear amplifier operated in class A or class B, the power efficiency is maximized in the vicinity of the saturated output power, so that the average efficiency is lowered when operated in a region where the back-off is large.
 次世代携帯電話や無線LAN、デジタルテレビ放送に採用されているマルチキャリアを用いた直交波周波数分割多重(OFDM:Orthogonal Frequency Division Multiplexing)方式では、PAPRは非常に大きくなる傾向にあり、増幅器の平均効率は更に低下する。したがって、増幅器の特性としては、バックオフの大きい電力領域でも高い効率を有していることが望ましい。 In the orthogonal frequency division multiplexing (OFDM) system using multicarriers used in next-generation mobile phones, wireless LANs, and digital television broadcasting, the PAPR tends to be very large, and the average of amplifiers Efficiency is further reduced. Therefore, it is desirable that the amplifier has high efficiency even in a power region with a large back-off.
 バックオフの大きい電力領域で広いダイナミックレンジに渡って高効率に信号を増幅する方式として、包絡線除去・復元(EER:Envelope Elimination and Restoration)や包絡線追跡(ET:Envelope Tracking)という送信方式が知られている。 As a method of amplifying signals with high efficiency over a wide dynamic range in a power region with a large back-off, there are transmission methods such as envelope removal / restoration (EER: Envelope 追 跡 Elimination and Restoration) and envelope tracking (ET: Envelope Tracking). Are known.
 EER方式では、まず、入力変調信号を、その位相成分と振幅成分とに分解する。位相成分は、位相変調情報を維持したまま振幅一定で電力増幅器に入力される。このとき、電力増幅器は、常に効率が最大となる飽和付近で動作させる。一方、振幅成分は、振幅変調情報に応じて電源装置の出力電圧を変化させ、これを増幅器の電源として用いる。このように動作させることにより、電力増幅器は乗算器として動作し、変調信号の位相成分と振幅成分とは合成され、バックオフによらず高い効率で増幅された出力変調信号が得られる。 In the EER system, first, an input modulation signal is decomposed into its phase component and amplitude component. The phase component is input to the power amplifier with a constant amplitude while maintaining the phase modulation information. At this time, the power amplifier is always operated in the vicinity of saturation where the efficiency is maximized. On the other hand, the amplitude component changes the output voltage of the power supply device according to the amplitude modulation information, and uses this as the power supply of the amplifier. By operating in this manner, the power amplifier operates as a multiplier, and the phase component and the amplitude component of the modulation signal are combined, and an output modulation signal amplified with high efficiency regardless of backoff is obtained.
 一方、ET方式でも、入力変調信号の振幅成分は、振幅変調情報に応じて電源装置の出力電圧を変化させ、それを電力増幅器の電源として用いる構成は、EER方式と同じである。異なるのは、EER方式では、増幅器に振幅一定の位相変調信号のみを入力し飽和動作させるのに対して、ET方式では、振幅変調と位相変調の両方を含む入力変調信号をそのまま増幅器に入力し、線形動作させる点である。この場合は、増幅器は線形動作するのでEER方式よりは効率は低下するが、入力変調信号の振幅の大きさに応じて、増幅器には必要最小限の電力しか供給されないため、増幅器を振幅によらず一定電圧で使用した場合に比べると、やはり高い電力効率を得ることができる。また、ET方式では、振幅成分と位相成分とを合成するタイミングマージンが緩和され、EER方式に比べ実現しやすいという利点もある。 On the other hand, even in the ET system, the amplitude component of the input modulation signal changes the output voltage of the power supply device according to the amplitude modulation information and uses it as the power source of the power amplifier, the same as the EER system. The difference is that, in the EER system, only a phase modulation signal with a constant amplitude is input to the amplifier for saturation operation, whereas in the ET system, an input modulation signal including both amplitude modulation and phase modulation is input to the amplifier as it is. It is a point to operate linearly. In this case, since the amplifier operates linearly, the efficiency is lower than that of the EER method. However, since the amplifier is supplied with a minimum amount of power according to the amplitude of the input modulation signal, the amplifier is driven by the amplitude. As compared with the case of using a constant voltage, it is possible to obtain high power efficiency. In addition, the ET method has an advantage that the timing margin for combining the amplitude component and the phase component is relaxed, and is easier to implement than the EER method.
 EER方式やET方式に用いる変調電源装置は、入力変調信号の振幅成分に応じて、精度よく、低ノイズで、かつ高効率に出力電圧を変化できる電圧源である必要がある。なぜならば、携帯電話など近年のデジタル変調を用いた無線通信方式では、隣接したチャネルへの漏洩電力(ACPR:Adjacent Channel Leakage Power Ratio)や、変調誤差を表すエラーベクトル強度(EVM:Error Vector Magnitude)を一定値以下に抑えることが規格で定められている。電源装置の出力電圧が、入力振幅信号に対して線形でないと、相互変調歪によりACPRやEVMが劣化する。また、電源のノイズが増幅器の出力に混入すると、やはりACPRが劣化する。 The modulation power supply apparatus used for the EER method and the ET method needs to be a voltage source that can change the output voltage with high accuracy, low noise, and high efficiency according to the amplitude component of the input modulation signal. This is because in recent wireless communication systems using digital modulation such as mobile phones, leakage power to adjacent channels (ACPR: Adjacent Channel Leakage Power Ratio) and error vector intensity (EVM: Error Vector Magnitude) representing a modulation error The standard stipulates that the value is kept below a certain value. If the output voltage of the power supply device is not linear with respect to the input amplitude signal, ACPR and EVM deteriorate due to intermodulation distortion. Further, when power supply noise is mixed into the output of the amplifier, the ACPR also deteriorates.
 また、EER方式やET方式において、電源装置の応答帯域(速度)は、変調信号の帯域(速度)の最低でも2倍以上は必要と言われている。例えば、携帯電話のWCDMA(Wideband Code Division Multiple Access)規格では、変調帯域は約5MHz、無線LANのIEEE802.11a/g規格では、変調帯域は約20MHzある。一般的なスイッチングコンバータ構成の電源装置では、このような広い帯域の変調信号を出力するのは困難である。 Also, in the EER system and the ET system, it is said that the response band (speed) of the power supply device is required to be at least twice the band (speed) of the modulation signal. For example, the modulation band is about 5 MHz in the WCDMA (Wideband Code Division Multiple Access) standard for mobile phones, and the modulation band is about 20 MHz in the IEEE802.11a / g standard for wireless LAN. In a power supply device having a general switching converter configuration, it is difficult to output such a wide band modulation signal.
 高効率で、かつ高品質な電圧源を実現する方式として、高効率なスイッチング増幅器と高精度な線形増幅器とを組み合わせたハイブリッド電圧源の2つの基本構成が、非特許文献1の第2図上段にまとめられている(関連技術1)。 As a method for realizing a high-efficiency and high-quality voltage source, two basic configurations of a hybrid voltage source combining a high-efficiency switching amplifier and a high-accuracy linear amplifier are shown in the upper part of FIG. (Related technology 1).
 図7に示す関連技術1の電源装置201は、電流源として動作するスイッチング増幅部6と、電圧源として動作する線形増幅部7とを、並列にした基本構成となっている。この構成では、高精度な線形増幅部7は、出力電圧Voutが入力信号(参照信号ともいう。)Vrefに等しくなるように補正する役割を果たす。一方、スイッチング増幅部6は、線形増幅部7の出力電流Icを検知して、その結果に基づいて、制御信号生成部8で、スイッチング増幅部6の入力信号を制御する。つまり、スイッチング増幅部6は電流源として動作し、負荷1に供給される電力の大部分は高効率なスイッチング増幅部6から供給される。そして、高精度であるが効率の低い線形増幅部7は、出力電圧Voutに含まれるリプルを除去する程度の電力しか消費しない。したがって、このような動作によって、高い精度と高い効率を両立した電圧源を実現することができる。 7 has a basic configuration in which a switching amplification unit 6 that operates as a current source and a linear amplification unit 7 that operates as a voltage source are arranged in parallel. In this configuration, the highly accurate linear amplifying unit 7 plays a role of correcting the output voltage Vout so as to be equal to the input signal (also referred to as a reference signal) Vref. On the other hand, the switching amplifier 6 detects the output current Ic of the linear amplifier 7 and controls the input signal of the switching amplifier 6 by the control signal generator 8 based on the result. That is, the switching amplifier 6 operates as a current source, and most of the power supplied to the load 1 is supplied from the highly efficient switching amplifier 6. The linear amplification unit 7 with high accuracy but low efficiency consumes only enough power to remove the ripple included in the output voltage Vout. Therefore, a voltage source that achieves both high accuracy and high efficiency can be realized by such an operation.
 また、このようにして得られた出力電圧Voutを、負荷1としての電力増幅器の電源電圧として用い、前述のEER又はET動作を行うようにしてもよい。この場合、電源装置201からは、入力変調信号の振幅に応じて最小限の電力しか供給されないため、電力増幅器は常に効率の高い飽和付近で動作することができ、この電源装置と電力増幅器とを備えた送信機システム全体の電力効率も向上する。なお、スイッチング増幅部6の出力側にはハイパスフィルタ9が設けられ、負荷1には出力電流Ioutが供給される。 Further, the output voltage Vout obtained in this way may be used as the power supply voltage of the power amplifier as the load 1 to perform the above-described EER or ET operation. In this case, since the power supply 201 supplies a minimum amount of power according to the amplitude of the input modulation signal, the power amplifier can always operate near a highly efficient saturation, and the power supply and the power amplifier are connected to each other. The power efficiency of the entire transmitter system provided is also improved. Note that a high-pass filter 9 is provided on the output side of the switching amplifier 6, and an output current Iout is supplied to the load 1.
 一方、高効率でかつ高品質なEER、ET用電圧源を実現する別の方式が、非特許文献2や特許文献1、2で提案されている(関連技術2)。関連技術2の構成を図示したものが図8である。図8の電源装置202では、2種類の電圧源を並列で並べており、片方が低周波用の高効率スイッチング増幅部6であり、もう片方が高周波用の線形増幅部7である。また、電圧源を制御する入力部のフィルタ及び電圧源の信号の帯域を分離する出力部のフィルタが具備されている。つまり、スイッチング増幅部6の入力部及び出力部にそれぞれローパスフィルタ2,4、線形増幅部7の入力部及び出力部にそれぞれハイパスフィルタ3,5が具備されている。それらフィルタの周波数特性は図9のようになっている。 On the other hand, other methods for realizing a high-efficiency and high-quality voltage source for EER and ET have been proposed in Non-Patent Document 2 and Patent Documents 1 and 2 (Related Technology 2). FIG. 8 illustrates the configuration of the related art 2. In the power supply device 202 of FIG. 8, two types of voltage sources are arranged in parallel, one is the high-frequency switching amplification unit 6 for low frequency, and the other is the linear amplification unit 7 for high frequency. In addition, an input unit filter for controlling the voltage source and an output unit filter for separating the band of the voltage source signal are provided. That is, low- pass filters 2 and 4 are provided at the input and output parts of the switching amplifier 6, and high- pass filters 3 and 5 are provided at the input and output parts of the linear amplifier 7, respectively. The frequency characteristics of these filters are as shown in FIG.
 その動作を説明すると、入力端において入力信号Vrefが帯域分離されて、低周波はスイッチング増幅部6、高周波は線形増幅部7でそれぞれ増幅されて、出力端で合成されることによって、入力信号Vrefを線形増幅した出力電圧Voutが得られる。この構成により、電圧変調の主成分である低周波領域で、高効率なスイッチング増幅部6による電力供給が行われて、また高周波成分に関しては、低効率ではあるが線形性の高い線形増幅部7により電力供給が行われることから、高効率かつ高品質な電源変調器が実現できる。 The operation will be described. The input signal Vref is band-separated at the input terminal, the low frequency is amplified by the switching amplifier 6 and the high frequency is amplified by the linear amplifier 7, and synthesized at the output terminal, whereby the input signal Vref is synthesized. Is obtained by linearly amplifying the output voltage Vout. With this configuration, power is supplied by the high-efficiency switching amplifier 6 in the low-frequency region that is the main component of voltage modulation, and the high-frequency component is a low-efficiency but high-linearity linear amplifier 7. Since power is supplied by this, a highly efficient and high quality power supply modulator can be realized.
 図7の構成と比べて、図8のように帯域分離した電源を並列に並べるメリットとしては、電源の高耐圧化が容易であることが挙げられる。具体例として、出力電圧Voutが最大50Vに達する場合を考える。このときに図7の構成では、線形増幅部7が50V耐圧である必要があり、現在のCMOSデバイス技術では、高速動作かつ高耐圧を実現するのは非常に困難であることから、線形増幅部7の帯域が数kHz程度に制限されてしまい、数MHz帯域の信号のエンベロープ帯域に追従することはできない。一方、図7の構成であると、線形増幅部7は出力電圧の高周波成分のみ増幅することから、必要な耐圧は50V出力のうちのオフセット成分を抜いた信号の最大振幅となる。すなわち、出力電圧Voutのオフセット量を調整して、線形増幅部7の最大耐圧に合わせた電源変調を行うことにより、電源変調器の高耐圧化に対応することが可能となる。 Compared to the configuration of FIG. 7, the advantage of arranging the power supplies separated in band as shown in FIG. 8 in parallel is that the power supply can easily have a high withstand voltage. As a specific example, consider a case where the output voltage Vout reaches a maximum of 50V. At this time, in the configuration of FIG. 7, the linear amplification unit 7 needs to have a withstand voltage of 50 V, and it is very difficult to achieve high-speed operation and high withstand voltage with the current CMOS device technology. 7 is limited to about several kHz, and cannot follow the envelope band of a signal of several MHz band. On the other hand, in the configuration of FIG. 7, the linear amplification unit 7 amplifies only the high frequency component of the output voltage, so that the required withstand voltage is the maximum amplitude of the signal from which the offset component is removed from the 50V output. That is, by adjusting the offset amount of the output voltage Vout and performing power supply modulation in accordance with the maximum withstand voltage of the linear amplification unit 7, it is possible to cope with a higher withstand voltage of the power supply modulator.
特許第4589665号公報Japanese Patent No. 4589665 米国特許第6,084,468号明細書US Pat. No. 6,084,468
 しかしながら、図8の帯域分離電源の欠点は、帯域を分離するフィルタの設計が難しい点にある。負荷1が抵抗負荷の場合は、図9のとおりの特性を満たすフィルタは容易に設計できる。しかし、ETやEERにおいて、電源側から見た負荷成分は変化しており一定ではないので、図8の出力フィルタは図9のとおりの帯域特性にならない。 However, a disadvantage of the band separation power source of FIG. 8 is that it is difficult to design a filter that separates the bands. When the load 1 is a resistance load, a filter that satisfies the characteristics shown in FIG. 9 can be easily designed. However, in ET and EER, the load component seen from the power source side is changing and not constant, and therefore the output filter of FIG. 8 does not have the band characteristics as shown in FIG.
 また、一般的には出力フィルタは、効率の観点から、電力ロスのないインダクタ及び容量によって構成されており、ハイパスフィルタは容量、ローパスフィルタはインダクタによってそれぞれ構成される。そのため、ローパスフィルタとハイパスフィルタとで共振点が存在してしまい、共振周波数近傍において、二つの電源間のインピーダンスが0に近くなってしまう。このことから電源同士の完全な帯域分離ができず、特に共振点近傍においては電源同士を繋ぐラインのインピーダンスが0に近いことから、電圧や電流の揺れが生じる。この動作によって出力電圧Voutが所望の値にならず共振電圧が加算されてしまい、全体として線形増幅ができなくなることに加えて、並列電源における電流のやりとりによって無駄な電力ロスが生じて効率が下がってしまう。 In general, the output filter is composed of an inductor and a capacitor with no power loss from the viewpoint of efficiency, the high-pass filter is composed of a capacitor, and the low-pass filter is composed of an inductor. Therefore, a resonance point exists between the low-pass filter and the high-pass filter, and the impedance between the two power supplies becomes close to 0 near the resonance frequency. For this reason, complete band separation between the power sources cannot be achieved, and particularly in the vicinity of the resonance point, the impedance of the line connecting the power sources is close to 0, which causes fluctuations in voltage and current. By this operation, the output voltage Vout does not become a desired value and the resonance voltage is added, and linear amplification cannot be performed as a whole. In addition, current exchange in the parallel power supply causes a wasteful power loss, thereby reducing the efficiency. End up.
 そこで、本発明の目的は、入力信号の大きさに応じて出力電圧が変化する機能を有するとともに、高効率かつ高線形性の電源装置を提供することにある。 Therefore, an object of the present invention is to provide a power supply apparatus having a function of changing an output voltage according to the magnitude of an input signal and having high efficiency and high linearity.
 本発明に係る電源装置は、
 ローパスフィルタと、
 ハイパスフィルタと、
 入力信号の低周波成分を増幅して増幅後の低周波成分を前記ローパスフィルタを介して出力するスイッチング増幅部と、
 このスイッチング増幅部に並列接続されるとともに、前記入力信号の高周波成分を増幅して増幅後の高周波成分を前記ハイパスフィルタを介して出力する線形増幅部と、
 前記ローパスフィルタと前記ハイパスフィルタとの間に流れる電流を検知する電流検知部と、
 前記ハイパスフィルタの両端間の電圧を検知する電圧検知部と、
 前記入力信号の低周波成分と前記電流検知部で検知された電流値と前記電圧検知部で検知された電圧値とに基づき、前記スイッチング増幅部に対して制御信号を出力する制御部と、
 を備えたことを特徴とする。
The power supply device according to the present invention is
A low-pass filter,
A high-pass filter,
A switching amplifier for amplifying the low frequency component of the input signal and outputting the amplified low frequency component via the low pass filter;
A linear amplification unit that is connected in parallel to the switching amplification unit, amplifies the high-frequency component of the input signal, and outputs the amplified high-frequency component via the high-pass filter,
A current detector that detects a current flowing between the low-pass filter and the high-pass filter;
A voltage detector for detecting a voltage across the high-pass filter;
A control unit that outputs a control signal to the switching amplification unit based on a low frequency component of the input signal, a current value detected by the current detection unit, and a voltage value detected by the voltage detection unit;
It is provided with.
 本発明に係る送信装置は、
 本発明に係る電源装置が増幅器の電源として用いられた、
 ことを特徴とする。
The transmission device according to the present invention is:
The power supply device according to the present invention was used as a power supply for an amplifier.
It is characterized by that.
 本発明によれば、入力信号波形に正確に追随でき、かつシステムに対して電力損失の小さい電源装置を提供できる。 According to the present invention, it is possible to provide a power supply apparatus that can accurately follow the input signal waveform and has low power loss with respect to the system.
本発明に係る電源装置の実施形態1を示すブロック図である。It is a block diagram which shows Embodiment 1 of the power supply device which concerns on this invention. 本発明に係る電源装置の実施形態2を示す回路図である。It is a circuit diagram which shows Embodiment 2 of the power supply device which concerns on this invention. 本発明に係る電源装置の実施形態3を示す回路図である。It is a circuit diagram which shows Embodiment 3 of the power supply device which concerns on this invention. 本発明に係る電源装置の実施形態4を示す回路図である。It is a circuit diagram which shows Embodiment 4 of the power supply device which concerns on this invention. 図4におけるハイパスフィルタ及びローパスフィルタの周波数特性を示すグラフである。It is a graph which shows the frequency characteristic of the high pass filter and low pass filter in FIG. 図1の電源装置を用いた送信装置を示すブロック図である。It is a block diagram which shows the transmission apparatus using the power supply device of FIG. 電圧変調機能を有する電源装置の関連技術1を示すブロック図である。It is a block diagram which shows the related technique 1 of the power supply device which has a voltage modulation function. 電圧変調機能を有する電源装置の関連技術2を示すブロック図である。It is a block diagram which shows the related technique 2 of the power supply device which has a voltage modulation function. 図8におけるハイパスフィルタ及びローパスフィルタの周波数特性を示すグラフである。It is a graph which shows the frequency characteristic of the high pass filter and low pass filter in FIG.
 以下、添付図面を参照しながら、本発明を実施するための形態(以下「実施形態」という。)について説明する。 Hereinafter, embodiments for carrying out the present invention (hereinafter referred to as “embodiments”) will be described with reference to the accompanying drawings.
 図1は、本発明に係る電源装置の実施形態1を示すブロック図である。図6は、実施形態の電源装置を用いた送信装置を示すブロック図である。以下、これらの図面に基づき説明する。 FIG. 1 is a block diagram showing Embodiment 1 of a power supply device according to the present invention. FIG. 6 is a block diagram illustrating a transmission device using the power supply device of the embodiment. Hereinafter, description will be given based on these drawings.
 本実施形態1の電源装置101は、ローパスフィルタ4と、ハイパスフィルタ5と、入力信号Vrefの低周波成分Vref_lowを増幅して増幅後の低周波成分をローパスフィルタ4を介して出力するスイッチング増幅部6と、スイッチング増幅部6に並列接続されるとともに、入力信号Vrefの高周波成分Vref_highを増幅して増幅後の高周波成分をハイパスフィルタ5を介して出力する線形増幅部7と、ローパスフィルタ4とハイパスフィルタ5との間に流れる電流を検知する電流検知部11と、ハイパスフィルタ5の両端間の電圧を検知する電圧検知部10と、入力信号Vrefの低周波成分Vref_lowと電流検知部11で検知された電流値と電圧検知部10で検知された電圧値とに基づき、スイッチング増幅部6に対して制御信号を出力する制御部12と、を備えたことを特徴とする。 The power supply device 101 according to the first embodiment includes a low-pass filter 4, a high-pass filter 5, and a switching amplifier that amplifies the low-frequency component Vref_low of the input signal Vref and outputs the amplified low-frequency component via the low-pass filter 4. 6, a linear amplifier 7 that is connected in parallel to the switching amplifier 6 and amplifies the high-frequency component Vref_high of the input signal Vref and outputs the amplified high-frequency component via the high-pass filter 5, and the low-pass filter 4 and the high-pass The current detection unit 11 that detects a current flowing between the filter 5, the voltage detection unit 10 that detects the voltage between both ends of the high-pass filter 5, and the low-frequency component Vref_low of the input signal Vref and the current detection unit 11 detect the current. Switching amplification based on the detected current value and the voltage value detected by the voltage detector 10 A control unit 12 for outputting a control signal to 6, characterized by comprising a.
 このとき、制御部12は、入力信号Vrefの低周波成分Vref_lowと電流検知部11で検知された電流値と電圧検知部10で検知された電圧値とに基づき、ローパスフィルタ4とハイパスフィルタ5との共振を抑制するように、スイッチング増幅部6に対して制御信号を出力する、としてもよい。 At this time, based on the low frequency component Vref_low of the input signal Vref, the current value detected by the current detection unit 11, and the voltage value detected by the voltage detection unit 10, the control unit 12 performs the low-pass filter 4 and the high-pass filter 5 A control signal may be output to the switching amplifier 6 so as to suppress the resonance.
 また、制御部12は、入力信号Vrefの低周波成分Vref_lowと電流検知部11で検知された電流値と電圧検知部10で検知された電圧値とに基づき、電圧検知部10で検知された電圧値が一定かつ電流検知部11での検知された電流値が減少するように、スイッチング増幅部6に対して制御信号を出力する、としてもよい。 The control unit 12 also detects the voltage detected by the voltage detection unit 10 based on the low frequency component Vref_low of the input signal Vref, the current value detected by the current detection unit 11 and the voltage value detected by the voltage detection unit 10. A control signal may be output to the switching amplifier 6 so that the value is constant and the current value detected by the current detector 11 decreases.
 換言すると、本実施形態1の電源装置101は、低周波成分の電圧源として動作するスイッチング増幅部6、スイッチング増幅部6の出力端に設けられたローパスフィルタ4、高周波成分の電圧源として動作する線形増幅部7、線形増幅部7の出力端に設けられたハイパスフィルタ5を有する。スイッチング増幅部6及びローパスフィルタ4と、線形増幅部7及びハイパスフィルタ5とは、並列接続されている。また、電源装置101は、ハイパスフィルタ5の両端電圧を検知する電圧検知部10、並列接続した電源間すなわちスイッチング増幅部6と線形増幅部7との間に流れる電流を検知する電流検知部11、電圧検知部10での検知値と電流検知部11での検知値と入力信号の低周波成分とに基づき、スイッチング増幅部6を制御する信号を発生する制御部12を有する。 In other words, the power supply apparatus 101 according to the first embodiment operates as a switching amplifier 6 that operates as a low-frequency component voltage source, a low-pass filter 4 provided at the output terminal of the switching amplifier 6, and a high-frequency component voltage source. The linear amplifying unit 7 has a high-pass filter 5 provided at the output end of the linear amplifying unit 7. The switching amplification unit 6 and the low-pass filter 4, and the linear amplification unit 7 and the high-pass filter 5 are connected in parallel. Further, the power supply device 101 includes a voltage detection unit 10 that detects a voltage across the high-pass filter 5, a current detection unit 11 that detects a current flowing between the power supplies connected in parallel, that is, between the switching amplification unit 6 and the linear amplification unit 7, The control unit 12 generates a signal for controlling the switching amplification unit 6 based on the detection value in the voltage detection unit 10, the detection value in the current detection unit 11, and the low frequency component of the input signal.
 入力信号Vrefの高周波成分Vref_highは、ハイパスフィルタ3で抽出される。ハイパスフィルタ3を通過した信号すなわち高周波成分Vref_highは、線形増幅部7に入力された後、その出力端にあるハイパスフィルタ5を介して出力されることにより、出力電圧Voutの高周波成分として生成される。 The high frequency component Vref_high of the input signal Vref is extracted by the high pass filter 3. The signal that has passed through the high-pass filter 3, that is, the high-frequency component Vref_high is input to the linear amplification unit 7 and then output through the high-pass filter 5 at the output end thereof, thereby generating a high-frequency component of the output voltage Vout. .
 一方、入力信号Vrefの低周波成分Vref_lowは、ローパスフィルタ2で抽出される。ローパスフィルタ2を通過した信号すなわち低周波成分Vref_lowは、制御部12に入力された後、スイッチング増幅部6で所定のデューティ比のパルスに変換され、その出力端にあるローパスフィルタ4を介して出力されることにより、出力電圧Voutの低周波成分として生成される。このとき、制御部12は、ローパスフィルタ2を通過した信号、電圧検知部10での検知値及び電流検知部11での検知値を元に、スイッチング増幅部6を制御する。また、電圧検知部10はハイパスフィルタ5の両端の電圧差を検知し、電流検知部11はハイパスフィルタ5を流れる電流値を検知する。 On the other hand, the low frequency component Vref_low of the input signal Vref is extracted by the low pass filter 2. The signal that has passed through the low-pass filter 2, that is, the low-frequency component Vref_low is input to the control unit 12, is then converted into a pulse with a predetermined duty ratio by the switching amplifier 6, and is output via the low-pass filter 4 at the output end. As a result, it is generated as a low frequency component of the output voltage Vout. At this time, the control unit 12 controls the switching amplification unit 6 based on the signal that has passed through the low-pass filter 2, the detection value in the voltage detection unit 10, and the detection value in the current detection unit 11. The voltage detection unit 10 detects a voltage difference between both ends of the high pass filter 5, and the current detection unit 11 detects a current value flowing through the high pass filter 5.
 図6に示すように、本実施形態1の電源装置101を用いた送信装置111では、負荷1は電力増幅器である。 As shown in FIG. 6, in the transmission apparatus 111 using the power supply apparatus 101 of the first embodiment, the load 1 is a power amplifier.
 制御部12は、ハイパスフィルタ5の両端の電圧差がローパスフィルタ2を通過した入力信号の低周波成分Vref_lowの定数倍になるように、スイッチング増幅部6の動作を制御する。そのため、出力電圧Voutの共振起因の電圧揺れが抑制された上で、所望の電圧が出力される。それと同時に、制御部12は、電流検知部11により検知した電流を負にフィードバックすることから、電流検知部11の値を0にするようにスイッチング増幅部6を駆動するパルスを生成するので、ハイパスフィルタ5とローパスフィルタ4との間の電流揺れを抑制できる。これにより、線形増幅部7とスイッチング増幅部6との間で生じる、無駄な電流のやりとりを抑制でき、かつ出力電圧Voutとして、共振の影響を受けない所望の電圧を供給できる。 The control unit 12 controls the operation of the switching amplification unit 6 so that the voltage difference between both ends of the high pass filter 5 is a constant multiple of the low frequency component Vref_low of the input signal that has passed through the low pass filter 2. Therefore, a desired voltage is output after the voltage fluctuation due to resonance of the output voltage Vout is suppressed. At the same time, the control unit 12 negatively feeds back the current detected by the current detection unit 11 and thus generates a pulse for driving the switching amplification unit 6 so that the value of the current detection unit 11 becomes 0. Current fluctuation between the filter 5 and the low-pass filter 4 can be suppressed. As a result, useless current exchange between the linear amplification unit 7 and the switching amplification unit 6 can be suppressed, and a desired voltage that is not affected by resonance can be supplied as the output voltage Vout.
 本実施形態1の効果は、入力信号波形に正確に追随でき、かつシステムに対して電力損失の小さい電源装置を提供できることである。その理由は、本実施形態1の電源装置は、ハイパスフィルタとローパスフィルタとの間で生じる共振に起因する電圧の揺れを電圧検知部、電流の揺れを電流検知部でそれぞれ検知した上で、それらの揺れを抑制するようにスイッチング増幅部を制御することにより、関連技術で生じていた共振起因の電力ロスを最小限にした上で、共振起因の電圧揺れも抑制した変調が可能となるためである。 The effect of the first embodiment is that a power supply apparatus that can accurately follow the input signal waveform and has a small power loss to the system can be provided. The reason is that the power supply device according to the first embodiment detects voltage fluctuations caused by resonance between the high-pass filter and the low-pass filter by the voltage detection unit and current fluctuations by the current detection unit. By controlling the switching amplifier so as to suppress the fluctuation of the power, the power loss caused by the resonance caused by the related technology can be minimized and the modulation that also suppresses the voltage fluctuation caused by the resonance can be performed. is there.
 次に、実施形態1を更に具体化した実施形態2~4について説明する。図2は、本発明に係る電源装置の実施形態2を示すブロック図である。以下、この図面に基づき説明する。 Next, Embodiments 2 to 4 that further embody Embodiment 1 will be described. FIG. 2 is a block diagram showing Embodiment 2 of the power supply device according to the present invention. Hereinafter, description will be given based on this drawing.
 本実施形態2の電源装置102は、機能ブロックとして、負荷1、ローパスフィルタ4、ハイパスフィルタ5、スイッチング増幅部6、線形増幅部7、電圧検知部10、電流検知部11、制御部12を、図1の機能ブロックと同様に備えている。また、線形増幅部7の入力信号としての高周波成分Vref_high、及び、制御部12の参照信号としての低周波成分Vref_lowは、図1の構成と同様に、周波数特性が図9を満たすハイパスフィルタ3及びローパスフィルタ2に、入力信号Vrefを通過させることで得られる。 The power supply apparatus 102 according to the second embodiment includes a load 1, a low-pass filter 4, a high-pass filter 5, a switching amplification unit 6, a linear amplification unit 7, a voltage detection unit 10, a current detection unit 11, and a control unit 12 as functional blocks. It is provided similarly to the functional block of FIG. Further, the high-frequency component Vref_high as an input signal of the linear amplification unit 7 and the low-frequency component Vref_low as a reference signal of the control unit 12 are similar to the configuration of FIG. It is obtained by passing the input signal Vref through the low-pass filter 2.
 以下、各機能ブロックについて、より詳細に説明する。ハイパスフィルタ5は、コンデンサ26により構成される。そのキャパシタンス値(C26)は、出力電圧Voutの端子におけるコンデンサ26と負荷1の抵抗成分との周波数特性が、図9のハイパスフィルタ特性を満たすように設定する。 Hereinafter, each functional block will be described in more detail. The high pass filter 5 includes a capacitor 26. The capacitance value (C26) is set so that the frequency characteristics of the capacitor 26 and the resistance component of the load 1 at the terminal of the output voltage Vout satisfy the high-pass filter characteristics of FIG.
 ローパスフィルタ4は、インダクタ24及びセンス抵抗25の並列回路と、インダクタ23との、直列回路によって構成される。インダクタ23,24のインダクタンス値(L23,L24)及びセンス抵抗25の抵抗値(R25)の設定方法は、ハイパスフィルタ5と同様に、出力電圧Voutの端子におけるローパスフィルタ4と負荷1の抵抗成分との周波数特性が、図9のローパスフィルタ特性を満たすように設定する。 The low-pass filter 4 is configured by a series circuit including a parallel circuit of an inductor 24 and a sense resistor 25 and an inductor 23. The inductance values (L23, L24) of the inductors 23, 24 and the resistance value (R25) of the sense resistor 25 are set in the same way as the high-pass filter 5, with the resistance components of the low-pass filter 4 and the load 1 at the terminal of the output voltage Vout. Are set so as to satisfy the low-pass filter characteristics of FIG.
 インダクタ23とインダクタ24とのインダクタンス値の割合は、インダクタ23がインダクタ24よりも大きな値になるように、例えば10:1の割合で定める。センス抵抗25の抵抗値R25は、インダクタ24と並列になる際に、共振起因の電流のほとんどがセンス抵抗25の方を通るように設定する必要がある。すなわち、センス抵抗25の抵抗値R25は、C26とL23,L24とで決まる共振周波数よりも、R25とL24とで決まるカットオフ周波数が高くなるように設定する。これにより、ローパスフィルタ4及びハイパスフィルタ5が図9の周波数特性に従うように設定される。 The ratio of the inductance values of the inductor 23 and the inductor 24 is determined at a ratio of, for example, 10: 1 so that the inductor 23 is larger than the inductor 24. The resistance value R25 of the sense resistor 25 needs to be set so that most of the current caused by resonance passes through the sense resistor 25 when it is in parallel with the inductor 24. That is, the resistance value R25 of the sense resistor 25 is set such that the cutoff frequency determined by R25 and L24 is higher than the resonance frequency determined by C26, L23, and L24. Thereby, the low-pass filter 4 and the high-pass filter 5 are set so as to follow the frequency characteristics of FIG.
 電圧検知部10は、ハイパスフィルタ5の両端の電圧差を検知して増幅する差動アンプ44により構成されている。電圧検知部10の出力値は、(ハイパスフィルタ5の両端の電圧差)×(差動アンプ44のゲイン)となる。 The voltage detection unit 10 includes a differential amplifier 44 that detects and amplifies the voltage difference between both ends of the high-pass filter 5. The output value of the voltage detection unit 10 is (voltage difference between both ends of the high-pass filter 5) × (gain of the differential amplifier 44).
 電流検知部11は、ローパスフィルタ4内のセンス抵抗25の電圧差を検知して増幅する差動アンプ43により構成されている。電流検知部11の出力値は、(センス抵抗25を流れる電流値)×(センス抵抗25の抵抗値)×(差動アンプ43のゲイン)となる。したがって、電流検知部11からは、センス抵抗25を流れる電流値の定数倍が出力される。また、センス抵抗25を流れる電流値のほとんどの成分は、ローパスフィルタ4とハイパスフィルタ5との共振周波数近傍の電流である。そのため、差動アンプ43によって共振電流を検知可能である。 The current detection unit 11 includes a differential amplifier 43 that detects and amplifies the voltage difference of the sense resistor 25 in the low-pass filter 4. The output value of the current detection unit 11 is (current value flowing through the sense resistor 25) × (resistance value of the sense resistor 25) × (gain of the differential amplifier 43). Therefore, the current detection unit 11 outputs a constant multiple of the current value flowing through the sense resistor 25. Most components of the current value flowing through the sense resistor 25 are currents near the resonance frequency of the low-pass filter 4 and the high-pass filter 5. Therefore, the resonance current can be detected by the differential amplifier 43.
 制御部12は、差動アンプ42、コンパレータ41、ヒステリシスアンプ31により構成されている。コンパレータ431の基本的な動作は、+入力信号が-入力信号(Vref_low)よりも、小さければオンのパルスを、大きければオフのパルスをそれぞれ生成する。この制御により、ハイパスフィルタ5の両端間の電圧差は、Vref_low×定数倍に保たれる。 The controller 12 includes a differential amplifier 42, a comparator 41, and a hysteresis amplifier 31. The basic operation of the comparator 431 is to generate an ON pulse if the + input signal is smaller than the − input signal (Vref_low), and an OFF pulse if it is greater. By this control, the voltage difference between both ends of the high-pass filter 5 is maintained at Vref_low × constant multiple.
 スイッチング増幅部6は、スイッチング素子21とダイオード22との縦積みにより構成される。ただし、スイッチング増幅部6はこの構成に限らない、例えばダイオード22の代わりにスイッチング素子(図示せず)を配置して、スイッチング素子21とスイッチング素子(図示せず)との2種類の入力パルスを、制御部12から生成する構成も考えられる。 The switching amplifier 6 is configured by vertically stacking switching elements 21 and diodes 22. However, the switching amplifier 6 is not limited to this configuration. For example, a switching element (not shown) is arranged instead of the diode 22 and two types of input pulses of the switching element 21 and the switching element (not shown) are received. A configuration generated from the control unit 12 is also conceivable.
 線形増幅部7は、オペアンプ51によって構成されており、Vref_high×定数倍の電圧を出力する。線形増幅部7は、オペアンプに限らずB級アンプやAB級アンプといった線形性の高いアンプでも代用可能である。 The linear amplification unit 7 includes an operational amplifier 51 and outputs a voltage of Vref_high × constant multiple. The linear amplifying unit 7 is not limited to an operational amplifier but can be replaced with a highly linear amplifier such as a class B amplifier or a class AB amplifier.
 続いて、各機能ブロックの詳細な動作を説明する。まず、ハイパスフィルタ5の両端の電圧差を差動アンプ44により検知する(電圧検知部10)。また、ローパスフィルタ4とハイパスフィルタ5とによる共振起因の電流の揺れを、差動アンプ43で検知する(電流検知部11)。そして、電圧検知部10及び電流検知部11で検知した信号を差動アンプ42で足し合わせた上で、これとVref_lowとの差分をコンパレータ41で取り、その差分をヒステリシスアンプ31を介してスイッチング素子21の入力信号とする(制御部12)。これにより、スイッチング素子21の入力パルスがコンパレータ41より生成されて、スイッチング増幅部6の制御が行われる(制御部12)。 Next, the detailed operation of each functional block will be described. First, a voltage difference between both ends of the high-pass filter 5 is detected by the differential amplifier 44 (voltage detection unit 10). Further, the fluctuation of current caused by resonance by the low-pass filter 4 and the high-pass filter 5 is detected by the differential amplifier 43 (current detection unit 11). Then, after the signals detected by the voltage detection unit 10 and the current detection unit 11 are added together by the differential amplifier 42, the difference between this and Vref_low is obtained by the comparator 41, and the difference is obtained via the hysteresis amplifier 31. 21 as an input signal (control unit 12). Thereby, the input pulse of the switching element 21 is produced | generated by the comparator 41, and control of the switching amplifier 6 is performed (control part 12).
 この場合、差動アンプ42の+入力信号と-入力信号との割合は、+入力信号が-入力信号と比べて十分大きくなるように、差動アンプ43を調整する必要がある。最も極端な例としては、差動アンプ43の出力を常に0にして、電流検知部11の機能をなくす状態である。このとき、ハイパスフィルタ5の両端間の電圧差は、低周波成分Vref_lowの定数倍(スイッチング増幅部6のゲイン倍)となるように制御される。 In this case, it is necessary to adjust the differential amplifier 43 so that the ratio of the + input signal to the −input signal of the differential amplifier 42 is sufficiently larger than the −input signal. In the most extreme example, the output of the differential amplifier 43 is always set to 0, and the function of the current detection unit 11 is eliminated. At this time, the voltage difference between both ends of the high pass filter 5 is controlled to be a constant multiple of the low frequency component Vref_low (gain multiple of the switching amplifier 6).
 ただし、この状態では、前述したとおり、ハイパスフィルタ5とローパスフィルタ4との共振が原因で、線形増幅部7とスイッチング増幅部6との間において、共振周波数付近の電流揺れが生じて、電力ロスが増えるなどといった様々な不具合が生じる。そこで、共振起因の電流揺れを抑制する機能として、共振電流を検知する電流検知部11の検知値を、電圧検知部10の検知値に足し合わせることで、共振による電流揺れに対して負のフィードバックを行っている。このとき、差動アンプ42の-入力信号の割合を大きくしすぎると、ハイパスフィルタ5の両端の電圧差を低周波成分Vref_lowの定数倍に保つ機能を失ってしまい、不安定な動作になってしまうことに注意する。 However, in this state, as described above, due to resonance between the high-pass filter 5 and the low-pass filter 4, current fluctuation near the resonance frequency occurs between the linear amplification unit 7 and the switching amplification unit 6, resulting in power loss. Various troubles such as increase in the number occur. Therefore, as a function of suppressing current fluctuation caused by resonance, the detection value of the current detection unit 11 that detects the resonance current is added to the detection value of the voltage detection unit 10, thereby negative feedback with respect to the current fluctuation due to resonance. It is carried out. At this time, if the ratio of the negative input signal of the differential amplifier 42 is increased too much, the function of maintaining the voltage difference between both ends of the high pass filter 5 at a constant multiple of the low frequency component Vref_low is lost, resulting in unstable operation. Note that it will end up.
 また、電流検知部11は、ハイパスフィルタ5とローパスフィルタ4との共振電流を検知するものであることから、図2に示すローパスフィルタ4に組み込んだものに限らない。例えば、電流検知部11は、ハイパスフィルタ5に組み込むこともできるし、フィルタとは独立にセンス抵抗を配置して検知するものとしてもよい。後述する実施形態3では、電流検知部11をハイパスフィルタ5に組み込んでいる。 Further, since the current detection unit 11 detects a resonance current between the high-pass filter 5 and the low-pass filter 4, the current detection unit 11 is not limited to that incorporated in the low-pass filter 4 shown in FIG. For example, the current detection unit 11 may be incorporated in the high-pass filter 5 or may be detected by arranging a sense resistor independently of the filter. In the third embodiment to be described later, the current detection unit 11 is incorporated in the high-pass filter 5.
 制御部12はコンパレータ41に限らない。後述する実施形態3では、制御部12としてPWM(Pulse Width Modulation)制御を取り入れている。 The control unit 12 is not limited to the comparator 41. In the third embodiment to be described later, the control unit 12 adopts PWM (Pulse Width Modulation) control.
 これら一連の動作の結果、図2に示す電源装置102によれば、(出力電圧Vout = Vref_highの定数倍 + Vref_lowの定数倍 = Vrefの定数倍)という線形増幅の関係を保った状態で、かつローパスフィルタ4とハイパスフィルタ5との共振起因の電流揺れを抑制できるので、高効率で高精度の電源変調器を実現できる。 As a result of these series of operations, according to the power supply device 102 shown in FIG. 2, the linear amplification relationship of (output voltage Vout = constant multiple of Vref_high + constant multiple of Vref_low = constant multiple of Vref) is maintained, and Since current fluctuation caused by resonance between the low-pass filter 4 and the high-pass filter 5 can be suppressed, a highly efficient and highly accurate power supply modulator can be realized.
 図3は、本発明に係る電源装置の実施形態3を示す回路図である。以下、この図面に基づき説明する。 FIG. 3 is a circuit diagram showing Embodiment 3 of the power supply device according to the present invention. Hereinafter, description will be given based on this drawing.
 本実施形態3における実施形態2との相違点は、制御部12がコンパレータ41からPWM発生回路61及び三角波発生回路62に置き換わっており、電流センス抵抗25がローパスフィルタ4ではなくハイパスフィルタ5に埋め込まれた点である。本実施形態3の電源装置103は、機能ブロックとして、実施形態2と同様に、負荷1、ローパスフィルタ4、ハイパスフィルタ5、スイッチング増幅部6、線形増幅部7、電圧検知部10、電流検知部11、制御部12を、図1の機能ブロックと同様に備えている。また、線形増幅部7の入力信号としての高周波成分Vref_high、及び、制御部12の参照信号としての低周波成分Vref_lowは、図1の構成と同様に、周波数特性が図9を満たすハイパスフィルタ3及びローパスフィルタ2に、入力信号Vrefを通過させることで得られる。 The difference between the third embodiment and the second embodiment is that the control unit 12 is replaced with a PWM generation circuit 61 and a triangular wave generation circuit 62 from the comparator 41, and the current sense resistor 25 is embedded in the high pass filter 5 instead of the low pass filter 4. This is the point. As in the second embodiment, the power supply device 103 according to the third embodiment has a load 1, a low-pass filter 4, a high-pass filter 5, a switching amplification unit 6, a linear amplification unit 7, a voltage detection unit 10, and a current detection unit as in the second embodiment. 11. The control part 12 is provided similarly to the functional block of FIG. Further, the high-frequency component Vref_high as an input signal of the linear amplification unit 7 and the low-frequency component Vref_low as a reference signal of the control unit 12 are similar to the configuration of FIG. It is obtained by passing the input signal Vref through the low-pass filter 2.
 ローパスフィルタ4は、インダクタ23により構成される。そのインダクタンス値は、出力電圧Voutの端子におけるインダクタ23と負荷1の抵抗成分との周波数特性が、図9のローパスフィルタ特性を満たすように設定する。 The low pass filter 4 is composed of an inductor 23. The inductance value is set so that the frequency characteristics of the inductor 23 and the resistance component of the load 1 at the terminal of the output voltage Vout satisfy the low-pass filter characteristics of FIG.
 ハイパスフィルタ5は、コンデンサ27及びセンス抵抗25の並列回路と、コンデンサ26との、直列回路によって構成される。コンデンサ26,27のキャパシタンス値(C26,C27)及びセンス抵抗25の抵抗値(R25)は、ローパスフィルタ4と同様に出力電圧Voutの端子におけるハイパスフィルタ5と負荷1の抵抗成分との周波数特性が、図9のハイパスフィルタ特性を満たすように設定する。 The high-pass filter 5 is constituted by a series circuit including a parallel circuit of a capacitor 27 and a sense resistor 25 and a capacitor 26. The capacitance values (C26, C27) of the capacitors 26, 27 and the resistance value (R25) of the sense resistor 25 are similar to the low-pass filter 4 in that the frequency characteristics of the high-pass filter 5 and the resistance component of the load 1 at the output voltage Vout terminal. 9 is set so as to satisfy the high-pass filter characteristics of FIG.
 コンデンサ27及びコンデンサ26のキャパシタンス値の割合は、コンデンサ27がコンデンサ26よりも大きくなるように、例えば10:1の割合で定める。センス抵抗25の抵抗値は、コンデンサ27と並列になる際に、共振起因の電流のほとんどがセンス抵抗25の方を通るように設定する必要がある。すなわち、センス抵抗25の抵抗値R25は、C26,C27とL23とで決まる共振周波数よりも、R25とC27とで決まるカットオフ周波数が高くなるように設定する。これにより、ローパスフィルタ4及びハイパスフィルタ5が図9の周波数特性に従うように設定される。 The ratio of the capacitance values of the capacitor 27 and the capacitor 26 is determined, for example, at a ratio of 10: 1 so that the capacitor 27 is larger than the capacitor 26. The resistance value of the sense resistor 25 needs to be set so that most of the current caused by resonance passes through the sense resistor 25 in parallel with the capacitor 27. That is, the resistance value R25 of the sense resistor 25 is set such that the cutoff frequency determined by R25 and C27 is higher than the resonance frequency determined by C26, C27, and L23. Thereby, the low-pass filter 4 and the high-pass filter 5 are set so as to follow the frequency characteristics of FIG.
 電圧検知部10は、ハイパスフィルタ5の両端の電圧差を検知して増幅する差動アンプ44により構成されている。電圧検知部10の出力値は、(ハイパスフィルタ5の両端の電圧差)×(差動アンプ44のゲイン)となる。 The voltage detection unit 10 includes a differential amplifier 44 that detects and amplifies the voltage difference between both ends of the high-pass filter 5. The output value of the voltage detection unit 10 is (voltage difference between both ends of the high-pass filter 5) × (gain of the differential amplifier 44).
 電流検知部11は、ハイパスフィルタ5内のセンス抵抗25の両端の電圧差を検知して増幅する差動アンプ43により構成されている。電流検知部11の出力値は、(センス抵抗25を流れる電流値)×(センス抵抗25の抵抗値R25)×(差動アンプ43のゲイン)となる。これにより、センス抵抗25を流れる電流値の定数倍が、電流検知部11から出力される。また、センス抵抗25を流れる電流のほとんどの成分は、ローパスフィルタ4とハイパスフィルタ5との共振周波数近傍の電流である。したがって、差動アンプ43によって、共振電流を検知可能である。 The current detection unit 11 includes a differential amplifier 43 that detects and amplifies the voltage difference between both ends of the sense resistor 25 in the high-pass filter 5. The output value of the current detector 11 is (current value flowing through the sense resistor 25) × (resistance value R25 of the sense resistor 25) × (gain of the differential amplifier 43). As a result, a constant multiple of the current value flowing through the sense resistor 25 is output from the current detection unit 11. Further, most components of the current flowing through the sense resistor 25 are currents near the resonance frequency of the low-pass filter 4 and the high-pass filter 5. Therefore, the resonance current can be detected by the differential amplifier 43.
 制御部12は、差動アンプ42、PWM発生回路61及び三角波発生回路62により構成されている。制御部12の基本的な動作は、PWM発生回路61に入力される2つの信号(低周波成分Vref_low及び差動アンプ42の出力信号)に応じて、スイッチング素子21に入力されるパルスのデューティ比を決定することである。スイッチング素子21に入力されるパルスのスイッチング周波数は、三角波発生回路62で発生する三角波の周波数によって決まる。 The controller 12 includes a differential amplifier 42, a PWM generation circuit 61, and a triangular wave generation circuit 62. The basic operation of the control unit 12 is that the duty ratio of the pulse input to the switching element 21 in accordance with the two signals (low frequency component Vref_low and the output signal of the differential amplifier 42) input to the PWM generation circuit 61. Is to decide. The switching frequency of the pulse input to the switching element 21 is determined by the frequency of the triangular wave generated by the triangular wave generation circuit 62.
 スイッチング増幅部6は、スイッチング素子21とダイオード22との縦積みにより構成される。ただし、スイッチング増幅部6はこの構成に限らない。例えばダイオード22の代わりにスイッチング素子(図示せず)を配置して、スイッチング素子21とスイッチング素子(図示せず)との2種類の入力パルスを制御部12から生成する構成も考えられる。 The switching amplifier 6 is configured by vertically stacking switching elements 21 and diodes 22. However, the switching amplifier 6 is not limited to this configuration. For example, a configuration in which a switching element (not shown) is arranged instead of the diode 22 and two types of input pulses of the switching element 21 and the switching element (not shown) are generated from the control unit 12 is also conceivable.
 線形増幅部7は、オペアンプ51によって構成されており、(Vref_high×定数倍)の電圧を出力する。線形増幅部7は、オペアンプに限らず、B級アンプやAB級アンプといった線形性の高いアンプでも代用可能である。 The linear amplifying unit 7 includes an operational amplifier 51 and outputs a voltage of (Vref_high × multiple of a constant). The linear amplifying unit 7 is not limited to an operational amplifier, and an amplifier with high linearity such as a class B amplifier or a class AB amplifier can be substituted.
 続いて、各ブロックの詳細な動作を説明する。まず、ハイパスフィルタ5の両端の電圧差を差動アンプ44により検知する(電圧検知部10)。また、ローパスフィルタ4とハイパスフィルタ5とによる共振起因の電流の揺れを、差動アンプ43で検知する(電流検知部11)。そして、電圧検知部10及び電流検知部11で検知した信号を差動アンプ42で足し合わせて、低周波成分Vref_lowとともにPWM発生回路61の入力信号とする。PWM発生回路61に入力された2値を参照しつつ、三角波発生回路62から出力された三角波の周波数に応じて、デューティ比を変えたパルスを生成する(PWM発生回路61)。このパルスをスイッチング素子21へ出力することで、安定したスイッチング増幅部6の制御が行われる(制御部12)。 Next, the detailed operation of each block will be described. First, a voltage difference between both ends of the high-pass filter 5 is detected by the differential amplifier 44 (voltage detection unit 10). Further, the fluctuation of current caused by resonance by the low-pass filter 4 and the high-pass filter 5 is detected by the differential amplifier 43 (current detection unit 11). Then, the signals detected by the voltage detection unit 10 and the current detection unit 11 are added together by the differential amplifier 42 and used as the input signal of the PWM generation circuit 61 together with the low frequency component Vref_low. While referring to the binary value input to the PWM generation circuit 61, a pulse with a changed duty ratio is generated in accordance with the frequency of the triangular wave output from the triangular wave generation circuit 62 (PWM generation circuit 61). By outputting this pulse to the switching element 21, the stable switching amplifier 6 is controlled (control unit 12).
 この場合、差動アンプ42の+入力信号と-入力信号との割合は、+入力信号が-入力信号と比べて十分大きくなるように、差動アンプ43を調整する必要がある。最も極端な例としては、差動アンプ43の出力が常に0にして、電流検知部11の機能をなくす状態である。このとき、ハイパスフィルタ5の両端間の電圧差は、低周波成分Vref_lowの定数倍(スイッチング増幅部6のゲイン倍)となるように制御される。 In this case, it is necessary to adjust the differential amplifier 43 so that the ratio of the + input signal to the −input signal of the differential amplifier 42 is sufficiently larger than the −input signal. In the most extreme example, the output of the differential amplifier 43 is always set to 0, and the function of the current detection unit 11 is eliminated. At this time, the voltage difference between both ends of the high pass filter 5 is controlled to be a constant multiple of the low frequency component Vref_low (gain multiple of the switching amplifier 6).
 ただし、この状態では、前述したとおり、ハイパスフィルタ5とローパスフィルタ4との共振が原因で、線形増幅部7とスイッチング増幅部6との間において、共振周波数付近の電流揺れが生じて、電力ロスが増える、などといった様々な不具合が生じる。そこで、共振起因の電流揺れを抑制する機能として、電流検知部11で検知された共振電流の値を、電圧検知部10で検知された値に足し合わせることで、共振による電流揺れに対して負のフィードバックを行っている。このとき、差動アンプ42の-入力信号の割合を大きくしすぎると、ハイパスフィルタ5の両端の電圧差を低周波成分Vref_lowの定数倍に保つ機能を失うことにより、不安定な動作になってしまうことに注意する。 However, in this state, as described above, due to resonance between the high-pass filter 5 and the low-pass filter 4, current fluctuation near the resonance frequency occurs between the linear amplification unit 7 and the switching amplification unit 6, resulting in power loss. Various troubles such as increase in the number occur. Therefore, as a function of suppressing the current fluctuation caused by resonance, the value of the resonance current detected by the current detection unit 11 is added to the value detected by the voltage detection unit 10 so as to be negative with respect to the current fluctuation due to resonance. Feedback is done. At this time, if the proportion of the −input signal of the differential amplifier 42 is increased too much, the function of maintaining the voltage difference between both ends of the high pass filter 5 at a constant multiple of the low frequency component Vref_low is lost, resulting in unstable operation. Note that it will end up.
 電流検知部11は、ハイパスフィルタ5とローパスフィルタ4との共振電流を検知するものであることから、図3に示すハイパスフィルタ5に組み込んだものに限らない。例えば、電流検知部11は、他フィルタとは独立にセンス抵抗を配置して検知する構成とすることも可能である。 Since the current detection unit 11 detects the resonance current between the high-pass filter 5 and the low-pass filter 4, the current detection unit 11 is not limited to the one incorporated in the high-pass filter 5 shown in FIG. For example, the current detection unit 11 may be configured to detect by arranging a sense resistor independently of other filters.
 また、制御部12は、PWM発生回路61と三角波発生回路62との組み合わせに限定されない。例えば、制御部12は、PFM(Pulse Frequency Modulation)制御によっても構成可能である。 Further, the control unit 12 is not limited to the combination of the PWM generation circuit 61 and the triangular wave generation circuit 62. For example, the control unit 12 can be configured by PFM (Pulse Frequency Modulation) control.
 これら一連の動作の結果、図3に示す電源装置103によれば、出力電圧Vout = Vref_highの定数倍 + Vref_lowの定数倍 = Vrefの定数倍という線形増幅の関係を保った状態で、かつローパスフィルタ4とハイパスフィルタ5との共振起因の電流揺れを抑制できるので、高効率で高精度の電源変調器を実現できる。 As a result of these series of operations, according to the power supply device 103 shown in FIG. 3, the output voltage Vout = Vref_high is a constant multiple of + Vref_low is a constant multiple of = Vref. 4 can suppress current fluctuation caused by resonance between the high-pass filter 5 and the high-pass filter 5, thereby realizing a highly efficient and highly accurate power supply modulator.
 図4は、本発明に係る電源装置の実施形態4を示す回路図である。以下、この図面に基づき説明する。 FIG. 4 is a circuit diagram showing Embodiment 4 of the power supply device according to the present invention. Hereinafter, description will be given based on this drawing.
 本実施形態4の電源装置104は、基本的な構成が実施形態2と同じである。本実施形態4が実施形態2と異なる点は、入力信号の低周波成分Vref_lowのオフセット電圧Vcc2を調整することにより出力電圧Voutのオフセット調整を行うオフセット調整機能部13を有する点、及び入力信号Vrefのフィルタの具体例(ローパスフィルタ2、ハイパスフィルタ3及び遅延調整器14によって構成)を詳しく記述した点である。本実施形態4において実施形態2と同じ符号の箇所に関しては、実施形態2と同じであることから説明を省略し、相違点のみを詳しく説明する。 The basic configuration of the power supply device 104 of the fourth embodiment is the same as that of the second embodiment. The fourth embodiment is different from the second embodiment in that it has an offset adjustment function unit 13 that performs offset adjustment of the output voltage Vout by adjusting the offset voltage Vcc2 of the low-frequency component Vref_low of the input signal, and the input signal Vref. This is a detailed description of a specific example of the filter (configured by the low-pass filter 2, the high-pass filter 3, and the delay adjuster 14). In the fourth embodiment, the same reference numerals as those in the second embodiment are the same as those in the second embodiment, so that the description thereof will be omitted and only the differences will be described in detail.
 入力信号のローパスフィルタ2及びハイパスフィルタ3は、2次のバターワースフィルタにより構成する。その場合の周波数特性は図5のようになる。出力信号のローパスフィルタ4及びハイパスフィルタ5と比べて、負荷側から見た出力インピーダンスに関して考慮しなくてよいことから、入力信号のローパスフィルタ2及びハイパスフィルタ3は、高次のフィルタで構成することが可能であり、バターワースフィルタに限定されない。 The low-pass filter 2 and high-pass filter 3 of the input signal are composed of secondary Butterworth filters. The frequency characteristic in that case is as shown in FIG. Compared with the low-pass filter 4 and the high-pass filter 5 for the output signal, it is not necessary to consider the output impedance viewed from the load side. Therefore, the low-pass filter 2 and the high-pass filter 3 for the input signal are configured by high-order filters. And is not limited to Butterworth filters.
 フィルタによる群遅延の影響を補正するために、ハイパスフィルタ3の後段には遅延調整器14が設置されている。遅延調整器14の遅延値は、ローパスフィルタ2及びハイパスフィルタ3の群遅延を計算した上で、オペアンプ51及びコンパレータ41に入力される信号が同期するように設定する。 In order to correct the influence of the group delay due to the filter, a delay adjuster 14 is installed at the subsequent stage of the high-pass filter 3. The delay value of the delay adjuster 14 is set so that the signals input to the operational amplifier 51 and the comparator 41 are synchronized after calculating the group delay of the low-pass filter 2 and the high-pass filter 3.
 オフセット調整機能部13は、ローパスフィルタ2を通過した入力信号の低周波成分Vref_lowのオフセット電圧を、電圧Vcc2に固定する機能を持つ。電圧Vcc2の変化に合わせて、コンパレータ41の-側に入力される電圧が変化するので、ハイパスフィルタ5の両端の電圧差が、電圧Vcc2で設定されたオフセット値に反映されて、結果的に出力電圧Voutのオフセット値を調整できる機能を持つ。なお、このオフセット機能調整は、実施形態1,3ではVrefそのもののオフセット調整に含まれている。 The offset adjustment function unit 13 has a function of fixing the offset voltage of the low-frequency component Vref_low of the input signal that has passed through the low-pass filter 2 to the voltage Vcc2. Since the voltage input to the negative side of the comparator 41 changes in accordance with the change of the voltage Vcc2, the voltage difference between both ends of the high-pass filter 5 is reflected in the offset value set by the voltage Vcc2, resulting in output It has a function of adjusting the offset value of the voltage Vout. This offset function adjustment is included in the offset adjustment of Vref itself in the first and third embodiments.
 なお、ローパスフィルタ2は、インダクタ211,212及びコンデンサ213からなる。ハイパスフィルタ3は、インダクタ311及びコンデンサ312,313からなる。オフセット調整機能部13は、ローパスフィルタ131を含む。 The low-pass filter 2 includes inductors 211 and 212 and a capacitor 213. The high pass filter 3 includes an inductor 311 and capacitors 312 and 313. The offset adjustment function unit 13 includes a low-pass filter 131.
 以上、上記各実施形態を参照して本発明を説明したが、本発明は上記各実施形態に限定されるものではない。本発明の構成や詳細については、当業者が理解し得るさまざまな変更を加えることができる。また、本発明には、上記各実施形態の構成の一部又は全部を相互に適宜組み合わせたものも含まれる。 As described above, the present invention has been described with reference to each of the above embodiments, but the present invention is not limited to each of the above embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention. Further, the present invention includes a combination of some or all of the configurations of the above-described embodiments as appropriate.
 上記の実施形態の一部又は全部は以下の付記のようにも記載され得るが、本発明は以下の構成に限定されるものではない。 Some or all of the above embodiments can be described as in the following supplementary notes, but the present invention is not limited to the following configurations.
[付記1]ローパスフィルタと、
 ハイパスフィルタと、
 入力信号の低周波成分を増幅して増幅後の低周波成分を前記ローパスフィルタを介して出力するスイッチング増幅部と、
 このスイッチング増幅部に並列接続されるとともに、前記入力信号の高周波成分を増幅して増幅後の高周波成分を前記ハイパスフィルタを介して出力する線形増幅部と、
 前記ローパスフィルタと前記ハイパスフィルタとの間に流れる電流を検知する電流検知部と、
 前記ハイパスフィルタの両端間の電圧を検知する電圧検知部と、
 前記入力信号の低周波成分と前記電流検知部で検知された電流値と前記電圧検知部で検知された電圧値とに基づき、前記スイッチング増幅部に対して制御信号を出力する制御部と、
 を備えたことを特徴とする電源装置。
[Appendix 1] a low-pass filter;
A high-pass filter,
A switching amplifier for amplifying the low frequency component of the input signal and outputting the amplified low frequency component via the low pass filter;
A linear amplification unit that is connected in parallel to the switching amplification unit, amplifies the high-frequency component of the input signal, and outputs the amplified high-frequency component via the high-pass filter,
A current detector that detects a current flowing between the low-pass filter and the high-pass filter;
A voltage detector for detecting a voltage across the high-pass filter;
A control unit that outputs a control signal to the switching amplification unit based on a low frequency component of the input signal, a current value detected by the current detection unit, and a voltage value detected by the voltage detection unit;
A power supply device comprising:
 [付記2]付記1記載の電源装置であって、
 前記制御部は、前記入力信号の低周波成分と前記電流検知部での検知された電流値と前記電圧検知部で検知された電圧値とに基づき、前記ローパスフィルタと前記ハイパスフィルタとの共振を抑制するように、前記スイッチング増幅部に対して制御信号を出力する、
 ことを特徴とする電源装置。
[Appendix 2] The power supply device according to Appendix 1,
The control unit performs resonance between the low-pass filter and the high-pass filter based on a low-frequency component of the input signal, a current value detected by the current detection unit, and a voltage value detected by the voltage detection unit. Outputting a control signal to the switching amplifier so as to suppress,
A power supply device characterized by that.
 [付記3]付記2記載の電源装置であって、
 前記制御部は、前記入力信号の低周波成分と前記電流検知部での検知された電流値と前記電圧検知部で検知された電圧値とに基づき、前記電圧検知部で検知された電圧値が一定かつ前記電流検知部での検知された電流値が減少するように、前記スイッチング増幅部に対して制御信号を出力する、
 ことを特徴とする電源装置。
[Appendix 3] The power supply device according to Appendix 2,
The control unit is configured to obtain a voltage value detected by the voltage detection unit based on a low frequency component of the input signal, a current value detected by the current detection unit, and a voltage value detected by the voltage detection unit. Outputting a control signal to the switching amplification unit so that the current value detected by the current detection unit is constant and reduced;
A power supply device characterized by that.
 [付記4]付記1乃至3のいずれか一つに記載の電源装置であって、
 前記線形増幅部は、前記入力信号の高周波成分を線形増幅する機能を持ち、帰還信号をその出力端子から得るボルテージフォロア又は負帰還増幅器を有する、
 ことを特徴とする電源装置。
[Appendix 4] The power supply device according to any one of Appendixes 1 to 3,
The linear amplifying unit has a function of linearly amplifying a high frequency component of the input signal, and includes a voltage follower or a negative feedback amplifier that obtains a feedback signal from its output terminal.
A power supply device characterized by that.
 [付記5]付記1乃至4のいずれか一つに記載の電源装置であって、
 前記電圧検知部は、前記ハイパスフィルタの両端間の電圧を検知する機能を持ち、前記両端間の電圧を入力する差動アンプを有する、
 ことを特徴とする電源装置。
[Appendix 5] The power supply device according to any one of Appendixes 1 to 4,
The voltage detection unit has a function of detecting a voltage between both ends of the high-pass filter, and includes a differential amplifier that inputs a voltage between the both ends.
A power supply device characterized by that.
 [付記6]付記1乃至5のいずれか一つに記載の電源装置であって、
 前記ローパスフィルタ及び前記ハイパスフィルタは、負荷の抵抗とともに形成される回路のカットオフ周波数をそれぞれfl、fhとすると、fh<flを満たすインピーダンス値であることを特徴とする電源装置。
[Appendix 6] The power supply device according to any one of appendices 1 to 5,
The power supply apparatus according to claim 1, wherein the low-pass filter and the high-pass filter have impedance values satisfying fh <fl, where cut-off frequencies of a circuit formed with a load resistance are fl and fh, respectively.
 [付記7]付記1乃至6のいずれか一つに記載の電源装置であって、
 前記制御部は、前記電圧検知部で検知された電圧を、前記入力信号の低周波成分の定数倍とし、かつ前記電流検知部で検知された電流を0とするように、前記スイッチング増幅部を制御する、
 ことを特徴とする電源装置。
[Appendix 7] The power supply device according to any one of appendices 1 to 6,
The control unit sets the switching amplification unit so that a voltage detected by the voltage detection unit is a constant multiple of a low frequency component of the input signal, and a current detected by the current detection unit is zero. Control,
A power supply device characterized by that.
 [付記8]付記1乃至7のいずれか一つに記載の電源装置であって、
 前記制御部は、PWM(Pulse Width Modulation)制御回路、PFM(Pulse Frequency Modulation)制御回路又はコンパレータを有する、
 ことを特徴とする電源装置。
[Appendix 8] The power supply device according to any one of appendices 1 to 7,
The control unit includes a PWM (Pulse Width Modulation) control circuit, a PFM (Pulse Frequency Modulation) control circuit, or a comparator.
A power supply device characterized by that.
 [付記9]付記1乃至8のいずれか一つに記載の電源装置であって、
 前記制御部に入力される前記入力信号の低周波成分に対してオフセット電圧を調整するオフセット調整機能部を、
 更に備えたことを特徴とする電源装置。
[Supplementary note 9] The power supply device according to any one of supplementary notes 1 to 8,
An offset adjustment function unit for adjusting an offset voltage with respect to a low frequency component of the input signal input to the control unit;
A power supply device further comprising the power supply device.
 [付記10]付記1乃至9のいずれか一つに記載の電源装置が増幅器の電源として用いられた、
 ことを特徴とする送信装置。
[Supplementary Note 10] The power supply device according to any one of Supplementary notes 1 to 9 is used as a power source of an amplifier.
A transmission apparatus characterized by the above.
 [付記11]付記1乃至9のいずれか一つに記載の電源装置であって、
 前記ローパスフィルタ及び前記ハイパスフィルタは、受動素子のみで構成される、
 ことを特徴とする電源装置。
[Appendix 11] The power supply device according to any one of Appendixes 1 to 9,
The low-pass filter and the high-pass filter are composed only of passive elements,
A power supply device characterized by that.
 [付記12]付記1乃至9のいずれか一つに記載の電源装置であって、
 前記電流検知部は、前記ハイパスフィルタと前記ローパスフィルタとの間に流れる電流を検知する機能を持ち、センス抵抗とバンドパスフィルタと差動アンプとを有する、
 ことを特徴とする電源装置。
[Supplementary Note 12] The power supply device according to any one of Supplementary notes 1 to 9,
The current detection unit has a function of detecting a current flowing between the high pass filter and the low pass filter, and includes a sense resistor, a band pass filter, and a differential amplifier.
A power supply device characterized by that.
 [付記13]付記12記載の電源装置であって、
 前記バンドフィルタは、前記ハイパスフィルタと前記ローパスフィルタとで形成される回路の共振点を通過帯域とする、
 ことを特徴とする電源装置。
[Supplementary Note 13] The power supply device according to Supplementary Note 12,
The band filter uses a resonance point of a circuit formed by the high pass filter and the low pass filter as a pass band,
A power supply device characterized by that.
 この出願は2012年2月3日に出願された日本出願特願2012-021595を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2012-021595 filed on February 3, 2012, the entire disclosure of which is incorporated herein.
 本発明の活用例として、携帯電話や無線LAN、WiMAX(Worldwide Interoperability for Microwave Access)向けの端末や基地局、地上波デジタル放送局に用いられる送信装置などが挙げられる。 Examples of the use of the present invention include mobile phones, wireless LANs, terminals for WiMAX (Worldwide Interoperability for Microwave Access), base stations, and transmitters used in terrestrial digital broadcasting stations.
 1 負荷(高周波増幅器)
 2 ローパスフィルタ
 3 ハイパスフィルタ
 4 ローパスフィルタ
 5 ハイパスフィルタ
 6 スイッチング増幅部
 7 線形増幅部
 10 電圧検知部
 11 電流検知部
 12 制御部
 13 オフセット調整機能部
 14 遅延調整器
 21 スイッチング素子
 22 ダイオード
 23 インダクタ
 24 インダクタ
 25 センス抵抗
 26 コンデンサ
 27 コンデンサ
 31 ヒステリシスアンプ
 41 コンパレータ
 42 差動アンプ
 43 差動アンプ
 44 差動アンプ
 51 オペアンプ
 61 PWM発生回路
 62 三角波発生回路
 101 電源装置
 102 電源装置
 103 電源装置
 104 電源装置
 111 送信装置
1 Load (high frequency amplifier)
DESCRIPTION OF SYMBOLS 2 Low pass filter 3 High pass filter 4 Low pass filter 5 High pass filter 6 Switching amplification part 7 Linear amplification part 10 Voltage detection part 11 Current detection part 12 Control part 13 Offset adjustment function part 14 Delay regulator 21 Switching element 22 Diode 23 Inductor 24 Inductor 25 Sense resistor 26 Capacitor 27 Capacitor 31 Hysteresis amplifier 41 Comparator 42 Differential amplifier 43 Differential amplifier 44 Differential amplifier 51 Operational amplifier 61 PWM generation circuit 62 Triangular wave generation circuit 101 Power supply device 102 Power supply device 103 Power supply device 104 Power supply device 111 Transmission device

Claims (10)

  1.  ローパスフィルタと、
     ハイパスフィルタと、
     入力信号の低周波成分を増幅して増幅後の低周波成分を前記ローパスフィルタを介して出力するスイッチング増幅部と、
     このスイッチング増幅部に並列接続されるとともに、前記入力信号の高周波成分を増幅して増幅後の高周波成分を前記ハイパスフィルタを介して出力する線形増幅部と、
     前記ローパスフィルタと前記ハイパスフィルタとの間に流れる電流を検知する電流検知部と、
     前記ハイパスフィルタの両端間の電圧を検知する電圧検知部と、
     前記入力信号の低周波成分と前記電流検知部で検知された電流値と前記電圧検知部で検知された電圧値とに基づき、前記スイッチング増幅部に対して制御信号を出力する制御部と、
     を備えたことを特徴とする電源装置。
    A low-pass filter,
    A high-pass filter,
    A switching amplifier for amplifying the low frequency component of the input signal and outputting the amplified low frequency component via the low pass filter;
    A linear amplification unit that is connected in parallel to the switching amplification unit, amplifies the high-frequency component of the input signal, and outputs the amplified high-frequency component via the high-pass filter,
    A current detector that detects a current flowing between the low-pass filter and the high-pass filter;
    A voltage detector for detecting a voltage across the high-pass filter;
    A control unit that outputs a control signal to the switching amplification unit based on a low frequency component of the input signal, a current value detected by the current detection unit, and a voltage value detected by the voltage detection unit;
    A power supply device comprising:
  2.  請求項1記載の電源装置であって、
     前記制御部は、前記入力信号の低周波成分と前記電流検知部での検知された電流値と前記電圧検知部で検知された電圧値とに基づき、前記ローパスフィルタと前記ハイパスフィルタとの共振を抑制するように、前記スイッチング増幅部に対して制御信号を出力する、
     ことを特徴とする電源装置。
    The power supply device according to claim 1,
    The control unit performs resonance between the low-pass filter and the high-pass filter based on a low-frequency component of the input signal, a current value detected by the current detection unit, and a voltage value detected by the voltage detection unit. Outputting a control signal to the switching amplifier so as to suppress,
    A power supply device characterized by that.
  3.  請求項2記載の電源装置であって、
     前記制御部は、前記入力信号の低周波成分と前記電流検知部での検知された電流値と前記電圧検知部で検知された電圧値とに基づき、前記電圧検知部で検知された電圧値が一定かつ前記電流検知部での検知された電流値が減少するように、前記スイッチング増幅部に対して制御信号を出力する、
     ことを特徴とする電源装置。
    The power supply device according to claim 2,
    The control unit is configured to obtain a voltage value detected by the voltage detection unit based on a low frequency component of the input signal, a current value detected by the current detection unit, and a voltage value detected by the voltage detection unit. Outputting a control signal to the switching amplification unit so that the current value detected by the current detection unit is constant and reduced;
    A power supply device characterized by that.
  4.  請求項1乃至3のいずれか一つに記載の電源装置であって、
     前記線形増幅部は、前記入力信号の高周波成分を線形増幅する機能を持ち、帰還信号をその出力端子から得るボルテージフォロア又は負帰還増幅器を有する、
     ことを特徴とする電源装置。
    The power supply device according to any one of claims 1 to 3,
    The linear amplifying unit has a function of linearly amplifying a high frequency component of the input signal, and includes a voltage follower or a negative feedback amplifier that obtains a feedback signal from its output terminal.
    A power supply device characterized by that.
  5.  請求項1乃至4のいずれか一つに記載の電源装置であって、
     前記電圧検知部は、前記ハイパスフィルタの両端間の電圧を検知する機能を持ち、前記両端間の電圧を入力する差動アンプを有する、
     ことを特徴とする電源装置。
    The power supply device according to any one of claims 1 to 4,
    The voltage detection unit has a function of detecting a voltage between both ends of the high-pass filter, and includes a differential amplifier that inputs a voltage between the both ends.
    A power supply device characterized by that.
  6.  請求項1乃至5のいずれか一つに記載の電源装置であって、
     前記ローパスフィルタ及び前記ハイパスフィルタは、負荷の抵抗とともに形成される回路のカットオフ周波数をそれぞれfl、fhとすると、fh<flを満たすインピーダンス値であることを特徴とする電源装置。
    The power supply device according to any one of claims 1 to 5,
    The power supply apparatus according to claim 1, wherein the low-pass filter and the high-pass filter have impedance values satisfying fh <fl, where cut-off frequencies of a circuit formed with a load resistance are fl and fh, respectively.
  7.  請求項1乃至6のいずれか一つに記載の電源装置であって、
     前記制御部は、前記電圧検知部で検知された電圧を、前記入力信号の低周波成分の定数倍とし、かつ前記電流検知部で検知された電流を0とするように、前記スイッチング増幅部を制御する、
     ことを特徴とする電源装置。
    The power supply device according to any one of claims 1 to 6,
    The control unit sets the switching amplification unit so that a voltage detected by the voltage detection unit is a constant multiple of a low frequency component of the input signal, and a current detected by the current detection unit is zero. Control,
    A power supply device characterized by that.
  8.  請求項1乃至7のいずれか一つに記載の電源装置であって、
     前記制御部は、PWM制御回路、PFM制御回路又はコンパレータを有する、
     ことを特徴とする電源装置。
    The power supply device according to any one of claims 1 to 7,
    The control unit includes a PWM control circuit, a PFM control circuit, or a comparator.
    A power supply device characterized by that.
  9.  請求項1乃至8のいずれか一つに記載の電源装置であって、
     前記制御部に入力される前記入力信号の低周波成分に対してオフセット電圧を調整するオフセット調整機能部を、
     更に備えたことを特徴とする電源装置。
    The power supply device according to any one of claims 1 to 8,
    An offset adjustment function unit for adjusting an offset voltage with respect to a low frequency component of the input signal input to the control unit;
    A power supply device further comprising the power supply device.
  10.  請求項1乃至9のいずれか一つに記載の電源装置が増幅器の電源として用いられた、
     ことを特徴とする送信装置。
    The power supply device according to any one of claims 1 to 9 is used as a power supply for an amplifier.
    A transmission apparatus characterized by the above.
PCT/JP2013/051345 2012-02-03 2013-01-23 Power supply device and transmission device using same WO2013115039A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013556344A JP6115477B2 (en) 2012-02-03 2013-01-23 Power supply device and transmission device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012021595 2012-02-03
JP2012-021595 2012-02-03

Publications (1)

Publication Number Publication Date
WO2013115039A1 true WO2013115039A1 (en) 2013-08-08

Family

ID=48905081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051345 WO2013115039A1 (en) 2012-02-03 2013-01-23 Power supply device and transmission device using same

Country Status (2)

Country Link
JP (1) JP6115477B2 (en)
WO (1) WO2013115039A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016505230A (en) * 2013-02-01 2016-02-18 スナップトラック・インコーポレーテッド Improved efficiency of the linear amplifier of the envelope tracking modulator
JP2016507190A (en) * 2013-02-01 2016-03-07 スナップトラック・インコーポレーテッド Improved resonance suppression for envelope tracking modulators
JP2017139940A (en) * 2016-02-05 2017-08-10 日本電信電話株式会社 Deterioration measuring instrument for power supply unit
CN108847854A (en) * 2018-06-15 2018-11-20 中国科学院声学研究所 A kind of low power consumption adaptive transmitter supply system
JP2020195061A (en) * 2019-05-28 2020-12-03 ルネサスエレクトロニクス株式会社 Amplification device and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003500873A (en) * 1999-05-17 2003-01-07 エリクソン インコーポレイテッド Power modulator and method for separately amplifying high and low frequency parts of amplitude waveform
WO2012046668A1 (en) * 2010-10-05 2012-04-12 日本電気株式会社 Power amplifier, high-frequency power amplifying device, and amplification control method
WO2012144392A1 (en) * 2011-04-21 2012-10-26 日本電気株式会社 Power supply circuit

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6052607B2 (en) * 1979-05-10 1985-11-20 ヤマハ株式会社 amplifier
JP2011097504A (en) * 2009-11-02 2011-05-12 Hitachi Kokusai Electric Inc Power supply circuit
WO2010089971A1 (en) * 2009-02-05 2010-08-12 日本電気株式会社 Power amplifier and power amplification method
JP2011009923A (en) * 2009-06-24 2011-01-13 Hitachi Kokusai Electric Inc Power supply circuit of envelope tracking power supply, power amplifier, and radio base station

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003500873A (en) * 1999-05-17 2003-01-07 エリクソン インコーポレイテッド Power modulator and method for separately amplifying high and low frequency parts of amplitude waveform
WO2012046668A1 (en) * 2010-10-05 2012-04-12 日本電気株式会社 Power amplifier, high-frequency power amplifying device, and amplification control method
WO2012144392A1 (en) * 2011-04-21 2012-10-26 日本電気株式会社 Power supply circuit

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016505230A (en) * 2013-02-01 2016-02-18 スナップトラック・インコーポレーテッド Improved efficiency of the linear amplifier of the envelope tracking modulator
JP2016507190A (en) * 2013-02-01 2016-03-07 スナップトラック・インコーポレーテッド Improved resonance suppression for envelope tracking modulators
EP2951922B1 (en) * 2013-02-01 2019-01-02 Snaptrack, Inc. Improved resonance suppression for envelope tracking modulator
JP2017139940A (en) * 2016-02-05 2017-08-10 日本電信電話株式会社 Deterioration measuring instrument for power supply unit
CN108847854A (en) * 2018-06-15 2018-11-20 中国科学院声学研究所 A kind of low power consumption adaptive transmitter supply system
CN108847854B (en) * 2018-06-15 2020-02-18 中国科学院声学研究所 Low-power-consumption self-adaptive transmitter power supply system
JP2020195061A (en) * 2019-05-28 2020-12-03 ルネサスエレクトロニクス株式会社 Amplification device and method
JP7366589B2 (en) 2019-05-28 2023-10-23 ルネサスエレクトロニクス株式会社 Amplification device and method

Also Published As

Publication number Publication date
JPWO2013115039A1 (en) 2015-05-11
JP6115477B2 (en) 2017-04-19

Similar Documents

Publication Publication Date Title
JP5472119B2 (en) Power amplifier
JP5929906B2 (en) Power supply device, transmission device using the same, and operation method of power supply device
US20050136854A1 (en) Transmitter
US9350302B2 (en) Reduced bandwith of signal in an envelope path for envelope tracking system
JP4012165B2 (en) Transmitter
JP5505311B2 (en) Power amplifier
JP5867501B2 (en) Power supply device and control method
JP6115477B2 (en) Power supply device and transmission device using the same
JP5472115B2 (en) Power amplifier
US9490754B2 (en) High-frequency drain power supply to decrease power dissipation in class-AB power amplifiers
WO2013133170A1 (en) Transmission device
JP5516400B2 (en) Power amplification device and power amplification method
JP2011009923A (en) Power supply circuit of envelope tracking power supply, power amplifier, and radio base station
JP5991199B2 (en) Power supply device and power amplification device using the same
JP3824610B2 (en) Transmitter circuit
WO2016071888A1 (en) An amplifier system for amplifying an rf signal
WO2023154823A1 (en) System and method for adjusting amplifier bias using envelope tracking
WO2022173862A1 (en) System and method for adjusting amplifier bias current based on input signal envelope tracking

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13743533

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013556344

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13743533

Country of ref document: EP

Kind code of ref document: A1