WO2013113283A1 - 一种传输时间间隔选择方法及用户设备 - Google Patents

一种传输时间间隔选择方法及用户设备 Download PDF

Info

Publication number
WO2013113283A1
WO2013113283A1 PCT/CN2013/071198 CN2013071198W WO2013113283A1 WO 2013113283 A1 WO2013113283 A1 WO 2013113283A1 CN 2013071198 W CN2013071198 W CN 2013071198W WO 2013113283 A1 WO2013113283 A1 WO 2013113283A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
random access
access preamble
network side
power margin
Prior art date
Application number
PCT/CN2013/071198
Other languages
English (en)
French (fr)
Inventor
贺传峰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CA2863244A priority Critical patent/CA2863244A1/en
Priority to KR1020147024357A priority patent/KR20140127295A/ko
Priority to EP13743284.5A priority patent/EP2800441A4/en
Priority to JP2014555065A priority patent/JP5867838B2/ja
Publication of WO2013113283A1 publication Critical patent/WO2013113283A1/zh
Priority to US14/447,314 priority patent/US20140341155A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • the invention relates to a method for selecting a transmission time interval and a user equipment.
  • the application is submitted to the Chinese Patent Office on January 31, 2012, and the application number is 201210021867.6.
  • the invention name is "a power time-based transmission time interval selection method and terminal equipment”. Priority of the Chinese Patent Application, the entire contents of which is incorporated herein by reference.
  • the present invention relates to the field of wireless communications, and in particular, to a transmission time interval selection method and user equipment.
  • 3rd Generation Partnership Project 3 rd Generation Partnership Project, 3 GPP
  • 3 GPP 3rd Generation Partnership Project
  • the bearers of the uplink and downlink services are all based on Dedicated Channel (DCH).
  • DCH Dedicated Channel
  • the 99th Release 99, R99
  • 3G technology is constantly evolving.
  • enhanced random access is introduced, and the random access in the 3GPP WCDMA (Wideband Code Division Multiple Access) R99 is enhanced.
  • Enhanced random access uses E-DCH (Enhanced Dedicated Channel) instead of RACH (Radom Access Channel) to implement uplink transmission.
  • E-DCH Enhanced Dedicated Channel
  • RACH Random Access Channel
  • Enhanced random access includes a random access preamble and resource allocation phase, a collision resolution phase, an E-DCH data transmission phase, and a release phase.
  • the 8th (Release 8, R8) enhanced random access signature subset is divided into 2ms TTI length E-DCH resources according to the length of the TTI (Transmission Time Interval). lOmsTTI length E-DCH resources.
  • the CTI-F ACH (Cell Forward Access Channel) state in the R8 version and the TTI type of the E-DCH uplink transmission of the UE in the Idle state include 10 ms TTI and 2 ms TTI, that is, The E-DCH uses the transmission time interval of 10ms and 2ms for uplink transmission, and the TTI type is configured by the network side, that is, each cell is fixedly configured with a type of ,, when the UE in the CELL-FACH and idle state is initiating.
  • the corresponding E-DCH transmission uses the TTI type configured by the cell.
  • the methods for calculating the power margin mainly include the following:
  • Margin ⁇ min (Maximum allowed UL TX Power, P—MAX)—max (Preamble _ Initial _ Power ,
  • the AT is the power offset between the last transmitted access preamble power and the initial DPCCH (Dedicated Physical Control Channel) transmission power.
  • Preamble- Initial _ Power is the initial transmit power of the random access preamble
  • Maximum allowed UL TX Power broadcasts the maximum uplink transmission power allowed by the UE through the system message for the network side, and P - MAX is the maximum output power of the UE.
  • the power margin can also be obtained according to the network side configuration service authorization Configured-SG.
  • Configured_SG can be the default SG ( Default_SG ) or the largest SG ( Max-SG ).
  • the SG is the default service authorization for network configuration. It can be considered as the initial service authorization or default service authorization for the uplink transmission of the UE.
  • Max-SG is the maximum service authorization for network configuration, that is, the maximum service authorization that the network can schedule for the UE. The calculation formula for this method is as follows:
  • Margin ⁇ min (Maximum allowed UL TX Power, P—MAX)—max (Preamble _ Initial _ Power ,
  • the power margin can also be broadcasted according to the network side through the system broadcast message.
  • E-TFCI Transport Format Indication Information
  • the E-TFCI is configured by the network side high layer, and according to the reference E-TFCI, the gain factor A d of the E-DPDCH (E-DCH Dedicated Physical Data Channel) can be obtained, and the network side high layer configuration is adopted.
  • E-DPCCH E-DCH Dedicated Physical Control Channel
  • HS-DPCCH Dedicated Physical Control Channel for High Speed Downlink Shared Channel
  • DPCCH Dedicated
  • Margin ⁇ min(Maximum allowed UL TX Power, P—MAX)—max (Preamble _ Initial _ Power, Preamble _ Initial _Power + P p _ e + 10 * log 10 (1 + J( ⁇ I fi + ' fi + (where ' ⁇ 2 ))); or
  • Margin ⁇ min(Maximum allowed UL TX Power, P—MAX)—max (Preamble_Initial_Power, Preamble_Initial_Power+P p _ e + 10 * log 10 (1 + J( ⁇ I fi + ' fi ) )).
  • the initial transmit power since the transmit power of the UE is estimated according to the initial transmit power of the UE random access preamble, the initial transmit power only indicates the transmit power of the UE that initiates the random access preamble for the first time.
  • Embodiments of the present invention provide a power time-based transmission time interval selection method and user equipment, which are capable of selecting a TTI type of a corresponding E-DCH resource according to an accurate power margin.
  • Embodiments of the present invention provide a method for selecting a transmission time interval based on a power margin, including:
  • the present invention further provides a user equipment, including:
  • control module configured to set, when the user equipment performs random access, a transmit power of a random access preamble to be sent;
  • a power margin acquisition module configured to obtain a power margin according to a transmit power of a random access preamble to be transmitted
  • a resource selection module configured to select, according to the power margin, a transmission time interval type of the corresponding enhanced dedicated channel resource.
  • the method for selecting a power margin based transmission time interval and the user equipment in the embodiment of the present invention when the user equipment is in a random access procedure, setting a transmit power of a random access preamble to be transmitted, and according to the random access to be sent
  • the transmit power of the preamble obtains a power margin, and then the TTI type of the corresponding E-DCH resource is selected according to the power margin, since the power margin is obtained according to the transmit power of the random access preamble to be transmitted, that is, the power margin
  • the amount is obtained according to the actual transmit power of the random access preamble to be transmitted each time, so that the obtained power margin is more accurate, and the TTI type of the E-DCH is also more accurate and effective according to the power margin.
  • FIG. 1 is a flow chart of an embodiment of a power margin based TTI selection method of the present invention
  • FIG. 2 is an embodiment of a power margin based TTI selection method of the present invention Fi ed /fi c schematic diagram of the quantization table;
  • FIG. 3 is a schematic diagram of a Bec /quantization table in an embodiment of a power margin based TTI selection method of the present invention
  • FIG. 4 is a functional block diagram of an embodiment of a user equipment of the present invention.
  • the technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention. It is obvious that the described embodiments are only a part of the embodiments of the present invention, and not all of the embodiments. example. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
  • a power margin based TTI selection method by setting a transmit power of a random access preamble to be transmitted, and calculating a power margin according to the set transmit power, and then performing corresponding according to the calculated power margin
  • the choice of TTI types for enhanced resources Since the power margin is obtained according to the actual transmit power of the random access preamble transmitted each time, the obtained power margin is more accurate, and the TTI type of the corresponding E-DCH resource is more accurately selected according to the power margin. , effective.
  • the network side broadcasts, by the system message, the maximum uplink transmission power allowed by the UE, the maximum allowed uplink transmission power, the primary common pilot channel, the primary CPICH TX power, the uplink interference UL interference, the constant value Constant Value, etc., according to the type of the UE, the UE You can get its own maximum output power P - MAX.
  • the initial transmit power of the random access preamble is obtained by the UE according to the parameter obtained by the system message and the CPICH-RSCP (Common Pilot Channel Received Signal Code Power) of the CPICH. , its calculation formula is as follows:
  • FIG. 1 a flowchart of an embodiment of a power margin based TTI selection method according to the present invention is shown.
  • the method in this embodiment specifically includes the following steps:
  • the UE sets the transmit power of the random access preamble to be sent. ( Preamble _ Transmittied _ Power ).
  • the Preamble-Initial-Power configured on the network side is generally referred to as the initial transmit power, and the transmit power of the first broadcast of the random access preamble by the UE is based on the minimum power level and network side configuration permitted by the UE.
  • Preamble — Initial — Power is set. Specifically, if the Preamble_Initial-Power is less than the minimum power level, setting the commanded Preamble Power of the random access preamble to be transmitted (that is, the random access preamble sent for the first time) is greater than or equal to Preamble_Initial.
  • the command transmission power of the random access preamble (ie, the first random access preamble sent) to be transmitted is equal to Preamble—Initial—Power; If the command transmit power exceeds the maximum allowable value, set the transmit power of the random access preamble to be transmitted (reamble transmission power) equal to the maximum allowable value; if the set command transmit power is lower than the minimum power level, set the random to be sent.
  • the transmit power of the access preamble is greater than or equal to Commanded Preamble Power and is less than or equal to the required minimum power level; otherwise, the transmit power of the random access preamble to be transmitted is set equal to Commanded Preamble Power.
  • the UE transmits the random access preamble according to the set reamble transmission power.
  • the resource allocation indication is performed through the AICH (Acquisition Indicator Channel) and the E-AICH (Extended Acquisition Indicator Channel). If the UE receives the indication, the allocated resource is used for uplink transmission; if the network side acknowledgment indication is not received, the UE will send the random access preamble again until receiving the acknowledgement returned by the network side, that is, The random access preamble needs to be sent multiple times. In this process, the UE sets the command transmission power of the random access preamble to be sent by adding a step size based on the command transmission power of the random transmission preamble sent last time, and then repeats the above steps and transmits power according to the command. Set the transmit power of the UE
  • step S11 when the UE does not receive the network side confirmation indication, starting from the second transmission random access preamble, setting the transmission power used by the random access preamble to be transmitted every time is the last time.
  • the power margin may be obtained according to the transmit power of the random access preamble to be sent set by the UE, and the calculation formula is as follows:
  • Margin ⁇ min(Maximum allowed UL TX Power, P—MAX)—max (Preamble—Transmittied—Power, Preamble _ transmitted _ Power + P p _ e ) ⁇
  • is the power offset between the last transmitted access preamble power and the initial DPCCH transmission power.
  • the power margin can also be authorized according to the network side configuration service.
  • the SG is combined with the transmit power of the random access preamble to be sent.
  • Configured_SG can be the default SG ( Default_SG ) or the largest SG ( Max-SG ).
  • the Default-SG is the default service authorization of the network configuration, and can be regarded as the initial service authorization or the default service authorization of the uplink transmission of the UE.
  • the Max-SG is the maximum service authorization configured by the network, that is, the maximum network can be scheduled to the UE. Service authorization. Its calculation formula is as follows:
  • the power margin is more accurate.
  • the power margin may also be obtained according to the average grant service Average_SG of the UE in the random access preamble combined with the transmit power of the random access preamble to be transmitted. as follows:
  • Margin ⁇ min(Maximum allowed UL TX Power, P—MAX)—max (Preamble—Transmittied—Power, Preamble _ transmitted _ Power + P p _ e + 10 * log 10 (1 + Average _ SG) ) where Average—The SG can be calculated based on the buffer status of the last transmitted data.
  • the SG can more accurately reflect the transmission power required by the uplink data channel, making the calculated power margin more accurate.
  • the power margin may also be obtained according to the transmission format indication information E-TFCI broadcasted by the network side through the system broadcast message in combination with the actual transmission power of the random access preamble to be transmitted, as follows:
  • the UE After receiving the E-TFCI delivered by the network side, the UE obtains a gain factor A d from the E-TFCI to the E-DPDCH. In order to improve the accuracy of the gain factor A d of different transmission formats, the network side configures multiple reference transmission formats. When the UE selects a transmission format, it is determined that the transmission corresponds to the transmission. Gain factor A D of the input format
  • Margin ⁇ min (Maximum allowed UL TX Power, P—MAX)—max (Preamble—Transmittied—Power,
  • m is configured by the network side high layer or predefined, and is the number of E-DPDCH channels; (Ad /ALfig is obtained by E-TFCI configured by the network side high layer.
  • the power margin may not be obtained according to the reference E-TFCI, and the power margin may be obtained by directly combining the channel parameters of the network-side higher layer configuration with the actual transmit power of the random access preamble to be transmitted.
  • the UE directly obtains the gain factor of the E-DPDCH configured by the network side of the network, and the gain factor of the DPCCH, and then combines the transmit power of the random access preamble to be transmitted, Preamble_Transmittied_Power, and the calculation formula is as follows. The formula is the same, except that (Arf / ) ⁇ 113 ⁇ 4 is obtained by the channel parameters configured by the network side high layer.
  • the channel parameters configured by the upper layer of the network side may also be used.
  • Margin ⁇ min (Maximum allowed UL TX Power, P—MAX)—max (Preamble—Transmittied—Power,
  • a D /A ⁇ uses a minimum value ( /A) in the predefined /A quantization table as shown in Figure 2.
  • the power margin is calculated as follows:
  • Margin ⁇ min(Maximum allowed UL TX Power, P—MAX)—max (Preamble—Transmittied—Power, Preamble _ transmitted _ Power + P p _ e + 10 ⁇ log 10 (1 + ( fi ed IA) )) ⁇ or
  • Margin ⁇ min(Maximum allowed UL TX Power, P—MAX)—max (Preamble_Transmittied_Power, Preamble—transmitted—Power+P p — e +10* log 10 (l +( ⁇ A)L g )) ⁇
  • the power occupied by the E-DPCCH channel of the control channel may also be considered.
  • the UE also needs to obtain the channel parameter of the network-side higher layer configured by the system, that is, the E-DPCCH.
  • the gain factor of the channel is correspondingly calculated.
  • the formula for calculating the power margin is as follows:
  • Margin ⁇ min (Maximum allowed UL TX Power, P—MAX)—max (Preamble—Transmittied—Power,
  • Margin ⁇ min(Maximum allowed UL TX Power, P MAX)— max (Preamble Transmittied Power, Preamble _ transmitted _ Power + P p _ e + 10 * log 10 (l + ( ⁇ +( / IY . )) ⁇
  • Margin ⁇ min(Maximum allowed UL TX Power, P MAX)— max (Preamble—Transmittied—Power, Preamble _ transmitted _ Power + P p _ e + 10 * log 10 (l + ( ⁇ , + ⁇ ⁇ I ⁇ ) ) ⁇
  • Margin ⁇ min(Maximum allowed UL TX Power, P—MAX)—max (Preamble—Transmittied—Power, Preamble _ transmitted _ Power + P p _ e +10* log 10
  • a d /A can be obtained according to the E-TFCI or configured by the network side high-level, and of course, a certain value in the predefined corresponding quantization table can also be used; similarly, it can also be configured by the network-side high-level, or Use the minimum value in the predefined corresponding quantization table.
  • Margin ⁇ min(Maximum allowed UL TX Power, P—MAX)—max (Preamble—Transmittied—Power, Preamble—transmit—P Ower +P p — e +10*l Ogl .(l+ 3 ⁇ 4 A)L g + (J)) ⁇
  • Margin ⁇ min (Maximum allowed UL TX Power, P—MAX)—max (Preamble—Transmittied—Power, Preamble_transmitted_Power+P p _ e
  • Margin ⁇ min (Maximum allowed UL TX Power, — max (Preamble—Transmittied—Power, Preamble—transmit—P Ower +P p — e +10*l Ogl . (l+
  • Ufi JH fls respectively represents the minimum value in the ⁇ ⁇ IA quantization table and a certain value obtained by the channel parameters configured by the network side higher layer.
  • the power margin is calculated as follows:
  • Margin ⁇ min(Maximum allowed UL TX Power, P—MAX)—max (Preamble _Transmittied _Power, Preamble—transmit—P Ower +P p — e +10*l Ogl . (l+Zd ' fi + ( ⁇ ' fif)))
  • a d /A may be the minimum value d / A) mm in the A d /A quantization table, or may be obtained from the channel parameters of the network side high-level configuration or according to a reference E-TFCI
  • (A d AL, g ; ⁇ can also be ⁇ .
  • / ) 2 is the sum of the transmission powers of the plurality of code channels, and when there is only one code channel, only the transmission power of the code track needs to be estimated, then / / 2 in the above formula becomes d I ⁇ . Hey.
  • the enhanced uplink random access may be divided into E-DCH and 10-msTTI length E-DCH resources according to the TTI length, and therefore, the UE is based on the acquired power.
  • the margin is selected E-DCH, it is first determined whether the power margin is greater than or equal to the set threshold, and if so, the TTI length of the E-DCH resource is selected to be 2 ms; otherwise, the TTI length of the E-DCH resource is selected to be 10 ms. .
  • the threshold may be configured by the network side and broadcasted by a system message, or may be predefined by a user.
  • the power margin-based resource selection method obtains a power head of a random access preamble to be transmitted, and obtains a power margin according to the set transmit power, and then selects a corresponding E- according to the power margin.
  • the TTI type of the DCH is obtained according to the actual transmit power of the random access preamble, which avoids the step size that is increased according to the increase of the access times when calculating according to the initial transmit power, so that the calculation is performed in this embodiment.
  • the power margin is more accurate, and the E-DCH selected based on the power margin is more efficient.
  • the embodiment of the present invention further provides a user equipment.
  • the user equipment according to the embodiment of the present invention will be described in detail below with reference to FIG. 4 and specific embodiments.
  • FIG. 4 it is a functional block diagram of an embodiment of a user equipment according to the present invention.
  • the user equipment in this embodiment includes:
  • the control module 41 is configured to: when the user equipment performs random access, set the transmit power of the current random access preamble; when the UE is in the random access process, the preamble-initial power configured on the network side is generally referred to as an initial transmission. Power, and the UE transmits the random access preamble's transmit power for the first time according to its permitted minimum power level and the network side configured Preamble-Initial-Power.
  • the commanded Preamble Power of the current random access preamble (ie, the first random access preamble sent) is set to be greater than or equal to the Preamble— Initial—Power, and less than or equal to the minimum power level allowed; otherwise, The command transmission power of the current random access preamble (that is, the random access preamble sent for the first time) is equal to Preamble_Initial-Power; meanwhile, if the set transmit power exceeds the maximum allowable value, the current random access preamble is set.
  • the reamble transmission power is equal to the maximum allowable value; if the set command transmission power is lower than the minimum power level, the transmit power of the current random access preamble is set to be greater than or equal to Commanded Preamble Power, and is less than or equal to the required minimum power.
  • the control module 41 specifically includes :
  • a transmit power setting sub-module configured to set a transmit power of the current random access preamble when the user equipment performs random access
  • the parameter acquisition sub-module is configured to obtain the service authorization Configured_SG or the average service authorization Average-SG of the network side or the reference E-TFCI broadcasted by the network side or the channel parameter configured by the network side high layer.
  • the power margin acquisition module 42 is specifically configured to: according to the set transmit power and service authorization Configured_SG of the random access preamble to be sent, or the average service grant Average_SG, or refer to the E-TFCI and the channel configured by the network side high layer.
  • the parameter obtains a power margin; that is, the power margin obtaining module 42 may obtain a power margin by combining the set transmit power of the random access preamble with any one of the configured parameters of the Configured-SG, Average-SG, and the network side high-level configuration, or The power consumption margin is obtained by combining the set transmit power with the reference E-TFCI and the channel parameters configured by the network side higher layer.
  • the power margin acquisition module 42 includes: a gain factor acquisition submodule, according to the network side.
  • the broadcast reference E-TFCI obtains or directly acquires the gain factor AJ of the enhanced dedicated physical data channel configured on the network side, and acquires the E-DCH dedicated physical control channel, the dedicated physical channel, and the high-speed downlink shared channel dedicated physical control of the network side high-level configuration.
  • channel The gain factor is A.
  • a power margin calculation sub-module configured to obtain a power margin according to the transmit power, A D and A of the random access preamble to be transmitted; or according to the transmit power of the random access preamble to be transmitted, A d And obtaining a power margin; or according to the transmit power of the random access preamble to be transmitted, ⁇ fi ei , A and the obtained power margin; the power margin calculation sub-module may also directly transmit according to the random access preamble to be transmitted
  • the power obtains the power margin, but in order to obtain the power margin more accurately, the power of the random access preamble to be transmitted is combined with the gain factor of the enhanced dedicated physical data channel to calculate the power margin, and then the calculation is performed according to the calculation.
  • the obtained power margin to select the corresponding ⁇ type of resources is more accurate and effective
  • the resource selection module 43 is configured to select a time interval type of the corresponding enhanced dedicated channel E-DCH resource according to the foregoing power margin.
  • the resource selection module 43 specifically includes: a determining submodule, configured to determine the power Whether the margin is greater than or equal to the set threshold;
  • the sub-module is configured to: when the judgment result of the sub-module is that the power margin is greater than or equal to the set threshold, the transmission time interval TTI of the E-DCH resource is selected to be 2 ms; or when determining the judgment result of the sub-module When the power margin is less than the set threshold, the transmission time interval TTI of the E-DCH resource is selected to be 10 ms.
  • the user equipment in the embodiment of the present invention sets the transmit power of the random access preamble to be transmitted through the control module, and the power margin acquisition module obtains the power margin according to the set transmit power, and finally the resource selection module according to the power margin
  • the E-DCH resource is selected according to the amount, and the power margin is obtained according to the actual transmit power of the random access preamble, which avoids the step size that is increased according to the increase of the access times when calculating according to the initial transmit power, thereby making the present
  • the embodiment calculates that the power margin is more accurate, and the E-DCH selected according to the power margin is more effective.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种传输时间间隔选择方法,包括,UE根据设置的当前随机接入前导的发射功率得到功率裕量,并根据该功率裕量来选择相应类型的TTI。由于本实施例的方法中,获得的功率裕量实际上是根据当前随机接入前导的实际的发射功率得到的,因此,其具备更好的准确性,从而根据该功率裕量来选择E-DCH资源的TTI类型也更有效。本发明还公开了一种用户设备。

Description

一种传输时间间隔选择方法及用户设备 本申请要求于 2012年 1月 31 日提交中国专利局、 申请号为 201210021867.6、 发明名称为"一种基于功率裕量的传输时间间隔选择方法 及终端设备"的中国专利申请的优先权, 其全部内容通过引用结合在本申请 中。
技术领域 本发明涉及无线通信领域, 尤其涉及一种传输时间间隔选择方法和用 户设备。 背景技术 第三代合作伙伴项目 ( 3rd Generation Partnership Project, 3 GPP )作为 移动通信领域的重要组织推动了第三代移动通信 ( The Third Generation, 3G )技术的标准化工作, 其早期的协议版本中上行和下行业务的承载都是 基于专用信道(Dedicated Channel, DCH ) 的。 其中, 99版(Release 99, R99 ) 中上行和下行能够达到的数据传输速率为 384kbps。
随着移动通信技术的发展, 3G技术在不断的发展演进。 为了降低上行 传输时延以及提高上行传输速率, 引入了增强随机接入, 增强随机接入对 3GPP WCDMA ( Wideband Code Division Multiple Access , 宽带码分多址) R99中的随机接入进行了增强。 增强随机接入使用 E-DCH ( Enhanced Dedicated Channel, 增强专用信道)代替 RACH ( Radom Access Channel, 随机接入信道) 实现上行传输。
增强随机接入包括随机接入前导(preamble )和资源分配阶段、 冲突解 决阶段、 E-DCH数据传输阶段和释放阶段。
当 MAC ( Medium Access Control, 介质访问控制)层触发增强随机接 入过程后, 物理层需要选定上行接入时隙、 签名和前导发射功率来发射前 导。 8版( Release 8, R8 )的增强随机接入的签名子集合根据 TTI( Transmission Time Interval , 传输时间间隔) 的长度分为 2msTTI长度的 E-DCH资源和 lOmsTTI长度的 E-DCH资源。 UE进行随机接入时, 选择需要的资源类型, 并选择相应的前导签名发起随机接入过程。
R8版本中的 CELL-F ACH ( Cell Forward Access Channel , 小区前向接入 信道)状态和 Idle(空闲)状态下的 UE的 E-DCH上行传输的 TTI类型包括 10ms TTI和 2ms TTI两种, 即 E-DCH分别釆用 10ms和 2ms的传输时间间隔进行上 行传输, 并且 TTI类型由网络侧进行配置, 即每个小区会固定配置一种 ΤΉ 类型, 当 CELL-FACH和 idle状态下的 UE在发起增强上行接入时, 对应的 E-DCH传输釆用该小区所配置的 TTI类型。
UE在 CELL-FACH状态下进行接入时需要根据一定的规则进行 ΤΉ的选 择, 目前, 主要是根据功率裕量(power margin )原则进行 ΤΉ的选择。 目 前, 计算功率裕量的方法主要包括以下几种:
1、 根据随机接入前导的初始发射功率 Preamble— Initial— Power计算得到 功率裕量, 其计算公式如下:
Margin={min (Maximum allowed UL TX Power, P— MAX)— max (Preamble _ Initial _ Power ,
Preamble _ Initial—Power + ΔΡρ_ε)}
其中, AT 是最后传输的接入前导功率与初始的 DPCCH ( Dedicated Physical Control Channel, 专用物理控制信道)传输功率的之间的功率偏 置。 Preamble- Initial _ Power 为 随机接入前导的初始发射功率,
Maximum allowed UL TX Power为网络侧通过系统消息广播 UE 允许的最大上 行传输功率, P-MAX为 UE最大的输出功率。
2、 功率裕量还可以根据网络侧配置服务授权 Configured— SG得到,
Configured_SG 可以为缺省 SG ( Default_SG )或者最大 SG ( Max-SG ) 。
Default— SG是网络配置的缺省的服务授权,可以认为是 UE上行传输的初始 服务授权或缺省服务授权, Max-SG是网络配置的最大服务授权, 即网络可 以调度给 UE的最大服务授权, 该方法的计算公式如下:
Margin={min (Maximum allowed UL TX Power, P— MAX)— max (Preamble _ Initial _ Power ,
Preamble _ Initial—Power + P +10* log10(l + Configured _ SG) )}
3、 功率裕量还可以根据网络侧通过系统广播消息广播的 common E-DCH资源配置中的 E-TFCI (传输格式指示信息)来获得。 该 E-TFCI由 网络侧高层配置,根据该参考 E-TFCI可以得到 E-DPDCH( E-DCH Dedicated Physical Data Channel, E-DCH专用物理数据信道)的增益因子 Ad , 以及通 过网络侧高层配置的 E-DPCCH( E-DCH Dedicated Physical Control Channel, E-DCH专用物理控制信道)、HS-DPCCH( Dedicated Physical Control Channel for High Speed Downlink Shared Channel, 高速下行共享信道专用物理控制 信道)和 DPCCH ( Dedicated Physical Control Channel, 专用物理控制信道 ) 的增益因子, 分别为 A。 、 凡和 然后根据下面的公式计算得到所需要 的功率裕量:
Margin={min (Maximum allowed UL TX Power, P— MAX)— max (Preamble _ Initial _ Power, Preamble _ Initial _Power + Pp_e + 10 * log10 (1 + J( ^ I fi + ' fi + (凡 ' β 2))) ; 或者
Margin={min (Maximum allowed UL TX Power, P— MAX)— max (Preamble _ Initial _ Power, Preamble _ Initial _Power + Pp_e + 10 * log10 (1 + J( ^ I fi + ' fi ))) 。 上述的三种计算功率裕量的方法中, 由于 UE的发射功率是根据 UE随 机接入前导的初始发射功率估计得到,所述初始发射功率仅表示 UE第一次 发起随机接入前导的发射功率, 然而在 UE的随机接入前导的发射过程中, 如果没有收到基站的确认指示, 其发射功率会以步长为单位逐渐攀升, 因 此现有技术中根据 UE的初始发射功率来计算功率裕量,再根据计算的功率 裕量来决定 TTI的类型的方式并不准确。 发明内容 本发明实施例提供了一种基于功率裕量的传输时间间隔选择方法和用 户设备, 能够根据准确的功率裕量选择相应的 E-DCH资源的 TTI类型。
本发明实施例提供了一种基于功率裕量的传输时间间隔选择方法, 包 括:
用户设备进行随机接入时, 设置将要发送的随机接入前导的发射功率; 根据将要发送的随机接入前导的发射功率得到功率裕量; 根据所述功率裕量选择相应的增强专用信道资源的传输时间间隔类 型。
相应地, 本发明还提供了一种用户设备, 包括:
控制模块, 用于在用户设备进行随机接入时, 设置将要发送的随机接 入前导的发射功率;
功率裕量获取模块, 用于根据将要发送的随机接入前导的发射功率得 到功率裕量;
资源选择模块, 用于根据所述功率裕量选择相应的增强专用信道资源 的传输时间间隔类型。
实施本发明实施例, 具有如下有益效果:
本发明实施例的基于功率裕量的传输时间间隔选择方法和用户设备, 当用户设备在随机接入过程中, 设置将要发送的随机接入前导的发射功率, 并根据该将要发送的随机接入前导的发射功率得到功率裕量, 再根据该功 率裕量来选择相应的 E-DCH资源的 TTI类型, 由于该功率裕量是根据将要 发送的随机接入前导的发射功率得到的, 即功率裕量是根据每次所要发送 的随机接入前导的实际的发射功率得到的, 从而使得到的功率裕量更加准 确, 进而根据该功率裕量来选择 E-DCH的 TTI类型也更加准确、 有效。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对 实施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员 来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的 附图。
图 1是本发明的一种基于功率裕量的 TTI选择方法的一实施例的流程 图;
图 2 是本发明的一种基于功率裕量的 TTI选择方法的一实施例中的 fied/fic量化表的示意图;
图 3 是本发明的一种基于功率裕量的 TTI选择方法的一实施例中的 Bec/ 量化表的示意图;
图 4是本发明的一种用户设备的一实施例的功能模块图。 具体实施方式 下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进 行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没 有作出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的 范围。
本发明实施例的基于功率裕量的 TTI选择方法, 通过设置将要发送的 随机接入前导的发射功率, 并根据设置的发射功率来计算功率裕量, 再根 据计算得到的功率裕量来进行相应的增强资源的 TTI类型的选择。 由于根 据每次发送的随机接入前导的实际的发射功率得到功率裕量, 从而使得到 的功率裕量更加准确, 进而根据该功率裕量来选择相应的 E-DCH 资源的 TTI类型也更加准确、 有效。
网络侧通过系统消息广播 UE 允许的最大上行传输功率 Maximum allowed UL TX power、 主公共导频信道的发射功率 Primary CPICH TX power、 上行干扰 UL interference, 常数值 Constant Value等, 同时根据 UE 的类型, UE可以得到自身最大的输出功率 P— MAX。 UE根据系统消息得到 的参数和 UE对 CPICH的测量结果 CPICH— RSCP ( Common Pilot Channel Received Signal Code Power, 公共导频信道接收码功率), 可以得到随机接 入前导的初始发射功率 Preamble— Initial— Power, 其计算公式如下:
Figure imgf000006_0001
CPICH TXPo丽 -CPICH— RSCP+UL interference Constant Value 参见图 1 ,为本发明的一种基于功率裕量的 TTI选择方法的一实施例的 流程图。 具体实施时, 本实施例中的方法具体包括步骤:
Sll , UE 设置将要发送的 随机接入前导 的发射功率 ( Preamble _ Transmittied _ Power )。
UE进行随机接入时, 通常将网络侧高层配置的 Preamble— Initial— Power 称为初始发射功率,而 UE第一次发送随机接入前导的发射功率是根据其准 许的最小功率等级和网络侧配置的 Preamble— Initial— Power进行设置的。 具 体为若 Preamble— Initial— Power小于最小功率等级, 则设置将要发送的随机 接入前导 (即第一次发送的随机接入前导) 的命令发射功率 (Commanded Preamble Power )为大于或者等于 Preamble— Initial— Power , 并且小于或者等 于准许的最小功率等级; 否则, 设置将要发送的随机接入前导 (即第一次 发送的随机接入前导 )的命令发射功率等于 Preamble— Initial— Power; 同时, 若设置的该命令发射功率超过最大允许值, 则设置将要发送的随机接入前 导的发射功率 ( reamble transmission power )等于最大允许值; 若设置的命 令发射功率低于最小功率等级, 则设置将要发送的随机接入前导的发射功 率大于或者等于 Commanded Preamble Power, 并且小于或者等于要求的最 小功率等级; 否则, 设置将要发送的随机接入前导的发射功率等于 Commanded Preamble Power。 UE根据设置的 reamble transmission power 发射该随机接入前导。
当网络侧检测到接入前导时, 会通过 AICH ( Acquisition Indicator Channel,获取指示信道 )和 E-AICH( Extended Acquisition Indicator Channel, 扩展获取指示信道)进行资源分配指示。 若 UE接收到该指示后, 则使用分 配的资源进行上行传输; 若没有收到网络侧的确认指示,则该 UE将会再次 发送随机接入前导直至接收到网络侧返回的确认指示为止, 即需要多次发 送随机接入前导。 在此过程中, UE设置将要发送的随机接入前导的命令发 射功率为在上一次发送的随机接入前导的命令发射功率的基础上增加一个 步长, 然后重复上面步骤并根据该命令发射功率设置 UE 的发射功率
( reamble transmission power )。
因此, 本步骤 S11中, 当 UE没有接收到网络侧的确认指示时, 从第二 次发送随机接入前导开始, 设置每次将要发送的随机接入前导所釆用的发 射功率是其上一次发送随机接入前导时的发射功率加上一个步长。
S12, 根据上述的将要发送的随机接入前导的发射功率得到功率裕量。 作为一实施例,可根据 UE设置的将要发送的随机接入前导的发射功率 得到功率裕量, 其计算公式如下:
Margin={min (Maximum allowed UL TX Power, P— MAX)— max (Preamble— Transmittied— Power, Preamble _ transmitted _ Power + Pp_e)}
其中, 错误! 未找到引用源。 ?^是最后传输的接入前导功率与初始的 DPCCH传输功率之间的功率偏置。
在另一具体实施例中, 功率裕量还可根据网络侧配置服务授权
Configured— SG 结合将要发送的随机接入前导的发射功率得到。
Configured_SG可以为缺省 SG ( Default_SG )或者最大 SG ( Max-SG )。 其 中, Default— SG是网络配置的缺省的服务授权,可以认为是 UE上行传输的 初始服务授权或缺省服务授权, Max-SG是网络配置的最大服务授权, 即网 络可以调度给 UE的最大服务授权。 其计算公式如下:
Margin={min (Maximum allowed UL TX Power, P— MAX)— max (Preamble _Transmittied _Power, Preamble _ transmitted _ Power + Pp_e +10* log10 (1 + Configured— SG) )} 为了使得到的功率裕量更加准确, 在另一具体实施例中, 功率裕量还 可根据 UE在随机接入前导中的平均授权服务 Average— SG结合将要发送的 随机接入前导的发射功率得到, 其计算公式如下:
Margin={min (Maximum allowed UL TX Power, P— MAX)— max (Preamble— Transmittied— Power, Preamble _ transmitted _ Power + Pp_e + 10 * log10 (1 + Average _ SG) ) } 其中, Average— SG可根据上次传输数据的緩存器状态计算得到。 通过
Average— SG 可以更加准确地反映上行传输的数据信道所需要的传输功率 情况, 从而使得计算得到的功率裕量更加准确。
在另一具体实施例中, 功率裕量还可根据网络侧通过系统广播消息广 播的传输格式指示信息 E-TFCI结合将要发送的随机接入前导的实际发射功 率来获得, 具体如下:
UE接收到网络侧下发的 E-TFCI后,根据该 E-TFCI到 E-DPDCH的增 益因子 Ad。 由于为了提高不同传输格式增益因子 Ad的准确性, 网络侧会配 置多个参考传输格式。 当 UE选择了一种传输格式时,则确定了对应于该传 输格式的增益因子 AD
获取由系统下发的网络侧高层配置的 DPCCH 的增益因子 A , 然后结 合将要发送的随机接入前导的实际发射功率 Preamble— Transmittied— Power计 算得到所需要的功率裕量, 其计算公式如下:
Margin={min (Maximum allowed UL TX Power, P— MAX)— max (Preamble— Transmittied— Power,
m
Preamble _ transmitted _ Power + Pp_e + 10 * log10 (1 + J( fied I fic) 》}
k=l config
其中, m 由网络侧高层配置或者预定义的, 是 E-DPDCH信道个数; (Ad /ALfig由网络侧高层配置的 E-TFCI得到。
当然本实施例中, 也可不根据该参考 E-TFCI来得到功率裕量, 而直接 根据网络侧高层配置的信道参数结合将要发送的随机接入前导的实际的发 射功率来得到功率裕量, 具体为: UE直接获取由系统下发的网络侧高层配 置的 E-DPDCH的增益因子 , 以及 DPCCH的增益因子 然后结合将 要发送的随机接入前导的发射功率 Preamble _ Transmittied _ Power ,其计算公式 与上述公式相同, 不同的是, 其中的 (Arf / )∞11¾由网络侧高层配置的信 道参数得到。
本实施例中也可不釆用 由网络侧高层配置的信道参数得到
(Ad /ALfig来得到功率裕量, 而釆用预定义的 / A量化表来计算得到 所需要的功率裕量, 其计算公式如下:
Margin={min (Maximum allowed UL TX Power, P— MAX)— max (Preamble— Transmittied— Power,
m L
Preamble _ transmitted _ Power + Pp_e + 10 * log10 (1 + J( fied I fic) 》}
k=l min
其中, AD /A釆用如图 2所示的预定义的 /A量化表中的一个最小 值( /A)
具体实现中, 若 E-DPDCH信道只有一条, 即当 k=m=l时, 则对应地, 功率裕量计算公式如下:
Margin={min (Maximum allowed UL TX Power, P— MAX)— max (Preamble— Transmittied— Power, Preamble _ transmitted _ Power + Pp_e + 10 ^ log10 (1 + ( fied I A) ))} 或者
Margin={min (Maximum allowed UL TX Power, P— MAX)— max (Preamble _Transmittied _Power, Preamble— transmitted— Power+Ppe +10* log10(l +(^ A)Lg))} 上述实施例中只考虑了数据信道的发射功率, 为了更准确, 还可考虑 控制信道 E-DPCCH信道占用的功率, 则 UE还需要获取由系统下发的网络 侧高层配置的信道参数即 E-DPCCH信道的增益因子 则对应地, 该功 率裕量的计算公式如下:
Margin={min (Maximum allowed UL TX Power, P —MAX)— max (Preamble— Transmittied— Power,
Preamble _ transmitted _ Power + Pp_e + 10 * log10 (l + (^ 或者
Margin={min (Maximum allowed UL TX Power, P MAX)— max (Preamble Transmittied Power , Preamble _ transmitted _ Power + Pp_e + 10 * log10 (l + (^ +( / I Y . ))}
config config^
或者
Margin={min (Maximum allowed UL TX Power, P MAX)— max (Preamble— Transmittied— Power, Preamble _ transmitted _ Power + Pp_e + 10 * log10 (l + (^ , +ί β I Β ))}
config
或者
Margin={min (Maximum allowed UL TX Power, P —MAX)— max (Preamble— Transmittied— Power, Preamble _ transmitted _ Power + Pp_e +10* log10
其中, Ad /A既可根据 E-TFCI得到或者由网络侧高层配置, 当然也可 釆用预定义的对应的量化表中的某一个值; 同理, 也可由网络侧高 层配置, 或者釆用预定义的对应的量化表中的最小值。 以上公式中均只考虑了一条码道的情况, 当具有多条码道时, 则对应 地, 功率裕量计算公式如下: Margin={min (Maximum allowed UL TX Power, P— MAX)— max (Preamble _Transmittied _Power, Preamble— transmitted— P。wer+Ppe +10*l。gl。(l+¾ 1 β^ )
k=l 或者
Margin={min (Maximum allowed UL TX Power, P— MAX)— max (Preamble— Transmittied— Power, Preamble— transmitted— POwer+Ppe +10*lOgl。(l+¾ A)Lg +( J ))}
k=l
或者
Margin={min (Maximum allowed UL TX Power, P— MAX)— max (Preamble— Transmittied— Power, Preamble_transmitted_Power+Pp_e
Figure imgf000011_0001
或者
Margin={min (Maximum allowed UL TX Power, — max (Preamble— Transmittied— Power, Preamble— transmitted— POwer+Ppe +10*lOgl。(l+
Figure imgf000011_0002
参见图 3 , 为预先定义的 量化表, 其中, Ufi JH fls 分别表示 ββά I A量化表中的最小值和由网络侧高层配置的信道参数得到的 某个值。
若进一步考虑到 HS-DPCCH信道的占用功率, 再获取由网络侧高层配 置的信道参数即 HS-DPCCH信道的增益因子凡,对应地, 功率裕量的计算 公式如下:
Margin={min (Maximum allowed UL TX Power, P— MAX)— max (Preamble _Transmittied _Power, Preamble— transmitted— POwer+Ppe +10*lOgl。(l+Zd
Figure imgf000011_0003
' fi + (凡 ' fif)))
其中, Ad /A可以是 Ad /A量化表中的最小值 d /A)mm , 也可为网络 侧高层配置的信道参数得到的或者根据参考 E-TFCI 得到的某个值
(Ad AL,g ; Λο 也可以是 Α。 量化表中的最小值 。 /A)mm或者为网 络侧高层配置的信道参数得到的某个值 ( /A)fi 。 上述公式中的 / )2对多条码道的发射功率的和, 而当只有一条 码道时,则只需要估计该条码道的发射功率,则上述公式中的 // 2则 变为 d I β。ΐ。
S13 , 根据该功率裕量选择相应 E-DCH资源的 TTI类型。 具体实施时, 由于 UE进行随机接入时, 在 R11中, 增强上行随机接入可根据 TTI长度 分为 2ms长度的 E-DCH和 lOmsTTI长度的 E-DCH资源, 因此, UE在根 据获取的功率裕量选择 E-DCH时, 首先判断该功率裕量是否大于或者等于 设定的门限值, 若是, 则选择 E-DCH资源的 TTI长度为 2ms; 否则选择 E-DCH资源的 TTI长度为 10ms。
本实施例中, 该门限值可以由网络侧配置, 并通过系统消息进行广播, 也可以由用户预先定义。
本发明实施例的基于功率裕量的资源选择方法, 通过获取设置将要发 送的随机接入前导的发射功率, 并根据设置的发射功率得到功率裕量, 再 根据该功率裕量来选择相应 E-DCH的 TTI类型, 由于该功率裕量是根据随 机接入前导的实际的发射功率得到, 避免了根据初始发射功率计算时省却 了随接入次数增加而增加的步长, 从而使得本实施例计算得到功率裕量更 加准确, 进而根据该功率裕量选择的 E-DCH更有效。
对应上述方法实施例, 本发明实施例还提供了一种用户设备, 下面将 结合附图 4和具体实施例对本发明实施例的用户设备进行详细的说明。
参见图 4, 为本发明的一种用户设备的一实施例的功能模块图。 具体实 施时, 本实施例的用户设备包括:
控制模块 41 , 用于在用户设备进行随机接入时, 设置当前随机接入前 导的发射功率; 当 UE 在随机接入过程中, 通常将网络侧高层配置的 Preamble— Initial— Power称为初始发射功率,而 UE第一次发送随机接入前导 的发射功率是根据其准许的最小功率等级和网络侧配置的 Preamble— Initial— Power进行设置々。 具体为若 Preamble— Initial— Power 'J、于 最小功率等级, 则设置当前随机接入前导(即第一次发送的随机接入前导) 的命令发射功率 ( Commanded Preamble Power ) 为大于或者等于 Preamble— Initial— Power, 并且小于或者等于准许的最小功率等级; 否则, 设 置当前随机接入前导 (即第一次发送的随机接入前导) 的命令发射功率等 于 Preamble— Initial— Power; 同时, 若设置的该命令发射功率超过最大允许 值, 则设置当前随机接入前导的发射功率 ( reamble transmission power )等 于最大允许值; 若设置的命令发射功率低于最小功率等级, 则设置当前随 机接入前导的发射功率大于或者等于 Commanded Preamble Power, 并且小 于或者等于要求的最小功率等级, 否则, 设置当前随机接入前导的发射功 率等于 Commanded Preamble Power; UE根据设置的 reamble transmission power发射该随机接入前导; 若 UE接收到该指示后, 则使用分配的资源进 行上行传输,若没有收到网络侧的确认指示, 则该 UE将会再次发送随机接 入前导直至接收到网络侧返回的确认指示为止, 即需要多次发送随机接入 前导, 在此过程中, 当前随机接入前导的命令发射功率会在上一次发送的 随机接入前导的命令发射功率的基础上增加一个步长, 然后重复上面步骤 并根据该命令发射功率设置 UE的发射功率 ( reamble transmission power ); 具体实施时, 该控制模块 41具体包括:
发射功率设置子模块, 用于在用户设备进行随机接入时, 设置当前随 机接入前导的发射功率;
参数获取子模块,用于获取网络侧配置的服务授权 Configured— SG或者 平均服务授权 Average— SG或者网络侧广播的参考 E-TFCI或者网络侧高层 配置的信道参数。
功率裕量获取模块 42, 具体用于根据设置的将要发送的随机接入前导 的发射功率和服务授权 Configured— SG, 或者平均服务授权 Average— SG, 或者参考 E-TFCI与网络侧高层配置的信道参数得到功率裕量; 即该功率裕 量获取模块 42可以将设置的随机接入前导的发射功率结合 Configured— SG、 Average— SG和网络侧高层配置的信道参数中任意一个得到功率裕量, 或者 将该设置的发射功率结合参考 E-TFCI和由网络侧高层配置的信道参数来得 到功率裕量; 具体实施时, 该功率裕量获取模块 42包括: 增益因子获取子 模块,用于根据网络侧广播的参考 E-TFCI得到或者直接获取网络侧配置的 增强专用物理数据信道的增益因子 AJ , 以及获取网络侧高层配置的 E-DCH 专用物理控制信道、 专用物理信道和高速下行共享信道专用物理控制信道 的增益因子, 分别为 A。、 A和 ; 功率裕量计算子模块, 用于根据将要发 送的随机接入前导的发射功率、 AD和 A得到功率裕量; 或者根据将要发送 的随机接入前导的发射功率、 、 Ad和 得到功率裕量; 或者根据将要发 送的随机接入前导的发射功率、 β fiei 、 A和 得到功率裕量; 该功率 裕量计算子模块也可直接根据将要发送的随机接入前导的发射功率得到功 率裕量, 但为了更够更加准确的得到功率裕量, 从而将将要发送的随机接 入前导的发射功率结合增强专用物理数据信道等的增益因子来计算功率裕 量, 进而得到根据计算得到的功率裕量来选择相应 ττι类型的资源更加准 确、 有效
资源选择模块 43 , 用于根据上述的功率裕量选择相应的增强专用信道 E-DCH资源的时间间隔类型; 具体实施时, 该资源选择模块 43具体包括: 判断子模块, 用于判断上述的功率裕量是否大于或者等于设定的门限 值;
选择子模块, 用于当判断子模块的判断结果为功率裕量大于或者等于 设定的门限值时, 选择 E-DCH资源的传输时间间隔 TTI长度为 2ms; 或者 当判断子模块的判断结果为功率裕量小于设定的门限值时, 选择 E-DCH资 源的传输时间间隔 TTI长度为 10ms。
本发明实施例的用户设备, 通过控制模块设置将要发送的随机接入前 导的发射功率, 并由功率裕量获取模块根据设置的发射功率来得到功率裕 量, 最后由资源选择模块根据该功率裕量来选择 E-DCH资源, 由于该功率 裕量是根据随机接入前导的实际的发射功率得到, 避免了根据初始发射功 率计算时省却了随接入次数增加而增加的步长, 从而使得本实施例计算得 到功率裕量更加准确, 进而根据该功率裕量选择的 E-DCH更有效。
以上所揭露的仅为本发明较佳实施例而已, 当然不能以此来限定本发 明之权利范围, 本领域普通技术人员可以理解实现上述实施例的全部或部 分流程, 并依本发明权利要求所作的等同变化, 仍属于发明所涵盖的范围。

Claims

权利要求书
1、 一种传输时间间隔选择方法, 其特征在于, 包括:
用户设备进行随机接入时, 设置将要发送的随机接入前导的发射功率; 根据所述将要发送的随机接入前导的发射功率得到功率裕量; 根据所述功率裕量选择相应的增强专用信道资源的传输时间间隔类 型。
2、 如权利要求 1所述的传输时间间隔选择方法, 其特征在于, 所述根 据所述将要发送的随机接入前导的发射功率得到功率裕量具体为:
根据所述将要发送的随机接入前导的发射功率和网络侧配置的服务授 权得到功率裕量; 或者
根据所述将要发送的随机接入前导的发射功率和平均服务授权得到功 率裕量; 或者
根据所述将要发送的随机接入前导的发射功率和网络侧配置的信道参 数得到功率裕量; 或者
根据所述将要发送的随机接入前导的发射功率、 网络侧配置的信道参 数和网络侧广播的传输格式指示信息得到功率裕量。
3、 如权利要求 2所述的传输时间间隔选择方法, 其特征在于, 所述根 据所述将要发送的随机接入前导的发射功率和网络侧配置的信道参数得到 功率裕量具体包括:
所述用户设备获取网络侧配置的增强专用物理数据信道的增益因子 以及专用物理控制信道的增益因子
所述用户设备根据所述将要发送的随机接入前导的发射功率, 以及由 网络侧配置的 和 A得到功率裕量。
4、 如权利要求 2所述的传输时间间隔选择方法, 其特征在于, 所述根 据所述将要发送的随机接入前导的发射功率、 网络侧配置的信道参数和网 络侧广播的传输格式指示信息得到功率裕量具体包括:
所述用户设备根据网络侧广播的传输格式指示信息得到增强专用物理 数据信道的增益因子 Ad ;
所述用户设备获取网络侧配置的专用物理控制信道的增益因子 A; 所述用户设备根据所述将要发送的随机接入前导的发射功率, 以及根 据所述传输格式指示信息得到的 和网络侧配置的 A得到功率裕量。
5、 如权利要求 3或 4所述的传输时间间隔选择方法, 其特征在于, 还 包括:
所述用户设备获取网络侧配置的增强专用物理控制信道的增益因子 则, 所述用户设备根据所述将要发送的随机接入前导的发射功率、 所 述 A。、 Ad和 fic得到功率裕量。
6、如权利要求 5所述的传输时间间隔选择方法,其特征在于,还包括: 所述用户设备获取网络侧配置的高速下行共享信道专用物理控制信道 的增益因子 A
则, 所述用户设备根据所述将要发送的随机接入前导的发射功率、 所 述 A Ad 、 A和 ¾得到功率裕量。
7、 如权利要求 6所述的传输时间间隔选择方法, 其特征在于, 所述根 据所述功率裕量选择相应的增强专用信道资源的传输时间间隔类型, 具体 包括:
判断所述根据将要发送的随机接入前导的发射功率得到的功率裕量是 否大于或者等于设定门限值;
若是, 则选择增强专用信道资源的传输时间间隔长度为 2ms;
否则, 选择增强专用信道资源的传输时间间隔长度为 10ms。
8、 一种用户设备, 其特征在于, 包括: 控制模块, 用于在用户设备进行随机接入时, 设置将要发送的随机接 入前导的发射功率;
功率裕量获取模块, 根据所述将要发送的随机接入前导的发射功率得 到功率裕量;
资源选择模块, 用于根据所述功率裕量选择相应的增强专用信道资源 的传输时间间隔类型。
9、 如权利要求 8所述的用户设备, 其特征在于, 所述控制模块包括: 发射功率设置子模块, 用于设置将要发送的随机接入前导的发射功率; 和参数获取子模块, 用于获取网络侧配置的服务授权或者平均服务授 权或者网络侧广播的参考 E-TFCI或者网络侧高层配置的信道参数;
所述功率裕量获取模块具体用于根据将要发送的随机接入前导的发射 功率和所述服务授权, 或者所述平均服务授权, 或者网络侧配置的信道参 数, 或者所述网络侧配置的信道参数与所述传输格式指示信息得到功率裕 量。
10、 如权利要求 9所述的用户设备, 其特征在于, 所述功率裕量获取 模块包括 :
增益因子获取子模块, 用于根据网络侧广播的传输格式指示信息得到 或者直接获取网络侧配置的增强专用物理数据信道的增益因子 , 以及获 取网络侧配置的专用物理控制信道、 增强专用物理控制信道和高速下行共 享信道专用物理控制信道的增益因子, 分别为 A、 和 ;
功率裕量计算子模块, 用于根据将要发送的随机接入前导的发射功率、 所述 Ad和 A得到功率裕量;或者根据将要发送的随机接入前导的发射功率、 所述 A。、 Ad和 A得到功率裕量; 或者根据将要发送的随机接入前导的发射 功率、 所述 A。、 Ad 、 A和 /;«得到功率裕量。
11、 如权利要求 8至 10中任意一项所述的用户设备, 其特征在于, 所 述资源选择模块包括: 判断子模块, 用于判断所述功率裕量是否大于或者等于设定的门限值; 选择子模块, 用于当所述判断子模块的判断结果为功率裕量大于或者 等于设定的门限值时, 选择增强专用信道资源的传输时间间隔长度为 2ms; 或者当所述判断子模块的判断结果为功率裕量小于设定的门限值时, 选择 增强专用信道资源的传输时间间隔长度为 10 ms。
PCT/CN2013/071198 2012-01-31 2013-01-31 一种传输时间间隔选择方法及用户设备 WO2013113283A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA2863244A CA2863244A1 (en) 2012-01-31 2013-01-31 Transmission time interval selection method and user equipment
KR1020147024357A KR20140127295A (ko) 2012-01-31 2013-01-31 전송 시간 간격 선택 방법 및 사용자 기기
EP13743284.5A EP2800441A4 (en) 2012-01-31 2013-01-31 METHOD FOR SELECTING TRANSMISSION TIME INTERVAL AND USER EQUIPMENT
JP2014555065A JP5867838B2 (ja) 2012-01-31 2013-01-31 送信時間間隔選択方法とユーザー端末
US14/447,314 US20140341155A1 (en) 2012-01-31 2014-07-30 Transmission Time Interval Selection Method And User Equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2012100218676A CN103228036A (zh) 2012-01-31 2012-01-31 一种基于功率裕量的传输时间间隔选择方法及终端设备
CN201210021867.6 2012-01-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/447,314 Continuation US20140341155A1 (en) 2012-01-31 2014-07-30 Transmission Time Interval Selection Method And User Equipment

Publications (1)

Publication Number Publication Date
WO2013113283A1 true WO2013113283A1 (zh) 2013-08-08

Family

ID=48838244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/071198 WO2013113283A1 (zh) 2012-01-31 2013-01-31 一种传输时间间隔选择方法及用户设备

Country Status (7)

Country Link
US (1) US20140341155A1 (zh)
EP (1) EP2800441A4 (zh)
JP (1) JP5867838B2 (zh)
KR (1) KR20140127295A (zh)
CN (1) CN103228036A (zh)
CA (1) CA2863244A1 (zh)
WO (1) WO2013113283A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9565568B2 (en) * 2014-11-14 2017-02-07 Blackberry Limited Sharing channels in a licensed-assisted access in long term evolution operation
WO2016129896A1 (ko) * 2015-02-09 2016-08-18 한양대학교 산학협력단 통신시스템에서의 채널적응형 임의접근채널 전송을 위한 방법 및 장치
CN107613557B (zh) * 2016-07-11 2020-03-24 电信科学技术研究院 一种发射功率确定方法、终端、网络设备和系统
CN107613553B (zh) 2016-07-11 2019-11-22 电信科学技术研究院 一种上行传输功率控制的方法及装置
US10433343B2 (en) 2016-07-28 2019-10-01 Asustek Computer Inc. Method and apparatus for improving random access procedure in a wireless communication system
WO2018203402A1 (ja) * 2017-05-02 2018-11-08 株式会社Nttドコモ ユーザ装置及び基地局

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101174886A (zh) * 2006-10-30 2008-05-07 华为技术有限公司 增强专用信道的传输时间间隔设置方法、系统和用户设备
US20100220623A1 (en) * 2009-03-02 2010-09-02 Interdigital Patent Holdings, Inc. Method and apparatus for extending coverage for ul transmission over e-dch in idle mode and cell_fach state
CN102119560A (zh) * 2008-08-11 2011-07-06 高通股份有限公司 用于对在节点b处自调整发射功率和灵敏度电平进行补偿的自动参数调整的方法和装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009048279A2 (en) * 2007-10-10 2009-04-16 Lg Electronics Inc. High speed access system and method in a mobile communications network
CN101572944B (zh) * 2008-04-29 2013-12-04 华为技术有限公司 随机接入中资源选择方法和终端设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101174886A (zh) * 2006-10-30 2008-05-07 华为技术有限公司 增强专用信道的传输时间间隔设置方法、系统和用户设备
CN102119560A (zh) * 2008-08-11 2011-07-06 高通股份有限公司 用于对在节点b处自调整发射功率和灵敏度电平进行补偿的自动参数调整的方法和装置
US20100220623A1 (en) * 2009-03-02 2010-09-02 Interdigital Patent Holdings, Inc. Method and apparatus for extending coverage for ul transmission over e-dch in idle mode and cell_fach state

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2800441A4 *

Also Published As

Publication number Publication date
CA2863244A1 (en) 2013-08-08
US20140341155A1 (en) 2014-11-20
JP5867838B2 (ja) 2016-02-24
JP2015509340A (ja) 2015-03-26
EP2800441A1 (en) 2014-11-05
KR20140127295A (ko) 2014-11-03
CN103228036A (zh) 2013-07-31
EP2800441A4 (en) 2015-01-07

Similar Documents

Publication Publication Date Title
JP6252957B2 (ja) 通信装置、通信方法および集積回路
KR101230392B1 (ko) Cell_fach 상태 및 유휴 모드에서의 e-tfc를 선택하는 방법 및 장치
EP3086608B1 (en) Method and apparatus for power headroom reporting during multi-carrier operation
JP6024935B2 (ja) 通信装置、通信方法および集積回路
TWI359582B (en) Cdma wireless communication systems
TWI422199B (zh) 產生服務許可的裝置及方法
JP5620569B2 (ja) 端末装置、電力制御方法及び集積回路
TWI466570B (zh) 進行功率回報的方法及相關通訊裝置
JP5603944B2 (ja) 選択したリソースにおいて全カバー範囲を有するランダムアクセス
WO2013078946A1 (zh) D2d的功率控制方法、用户设备、基站和通讯系统
WO2011134351A1 (zh) 一种功率裕量报告(phr)上报的方法及设备
WO2020221861A1 (en) Enhanced initial access for efficient small data transmission
WO2013113283A1 (zh) 一种传输时间间隔选择方法及用户设备
US20090175248A1 (en) Apparatus and method for transmitting and receiving enhanced rach in a mobile communication system
JP2011509581A (ja) 上りリソースを解放するようユーザ装置を制御する方法、装置、及びシステム
WO2014042569A1 (en) Congestion control method for wcdma uplink
KR101417058B1 (ko) 향상된 역방향 서비스를 이용하는 이동 통신 시스템에서송수신 시점을 설정하는 방법 및 장치
KR101475071B1 (ko) 이동통신 시스템에서 향상된 역방향 억세스 채널의 송수신장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13743284

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2863244

Country of ref document: CA

Ref document number: 2014555065

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013743284

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013743284

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147024357

Country of ref document: KR

Kind code of ref document: A