WO2013113211A1 - 一种上行闭环发送分集激活状态更新方法及系统 - Google Patents

一种上行闭环发送分集激活状态更新方法及系统 Download PDF

Info

Publication number
WO2013113211A1
WO2013113211A1 PCT/CN2012/078888 CN2012078888W WO2013113211A1 WO 2013113211 A1 WO2013113211 A1 WO 2013113211A1 CN 2012078888 W CN2012078888 W CN 2012078888W WO 2013113211 A1 WO2013113211 A1 WO 2013113211A1
Authority
WO
WIPO (PCT)
Prior art keywords
cltd
activation
srnc
request message
nodeb
Prior art date
Application number
PCT/CN2012/078888
Other languages
English (en)
French (fr)
Inventor
赵杰
贺美芳
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2013113211A1 publication Critical patent/WO2013113211A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station

Definitions

  • the present invention relates to the field of mobile communications, and in particular, to a method and system for updating an uplink closed loop transmit diversity (CLTD) activation state.
  • CLTD closed loop transmit diversity
  • BACKGROUND OF THE INVENTION Multi-antenna technology achieves higher system capacity, wider cell coverage, and better quality of service by using multiple antennas at the transmitting and/or receiving end. Multiple antennas at the transmitting end and/or the receiving end can be used to implement either transmit or receive diversity or spatial multiplexing.
  • the transmit diversity technology is an anti-fading technology in the field of wireless communication in which at least two signals containing the same information are transmitted at a transmitting end, and signals carrying the same information are derived from at least two mutually independent signal sources.
  • the transmit diversity technology can be divided into three basic types: space, frequency and time according to the structure and statistical characteristics of the transmitted signal samples and the radio resources it occupies. It can also be a combination of these three types; so-called space diversity It refers to the difference in the statistical characteristics of the signal when it reaches the receiving end after the channel is used, and realizes the anti-fading function.
  • space diversity refers to the difference in the statistical characteristics of the signal when it reaches the receiving end after the channel is used, and realizes the anti-fading function.
  • the so-called frequency diversity refers to the fading of signals in different frequency bands.
  • the statistically uncorrelated characteristics after the channel that is, the difference in statistic characteristics of the fading of different frequency bands, to achieve the function of anti-fading (frequency selective), the information to be transmitted can be separately modulated on the carrier with no frequency correlation.
  • time diversity refers to the use of a random fading signal.
  • the transmit diversity technology is classified into an open loop transmit diversity mode and a closed loop transmit diversity mode according to whether the receiving end needs to feed back the diversity of the transmit end.
  • the open-loop transmit diversity mode the receiving end does not feed back any additional transmission-related information to the transmitting end, and the transmitting end can perform transmission diversity by using the corresponding coding technique (for example, simple space-time coding).
  • the receiver In the closed-loop transmit diversity mode, the receiver needs to use feedback channel feedback to the transmitter for a parameter related to transmit diversity (such as the precoding vector required for transmit diversity, indicated by precoding indication information), and the sender uses the feedback after receiving. The information completes the send diversity.
  • a parameter related to transmit diversity such as the precoding vector required for transmit diversity, indicated by precoding indication information
  • the sender uses the feedback after receiving. The information completes the send diversity.
  • the uplink open-loop transmit diversity of the HSUPA system client has been completed in the standard formulation (TR25.863).
  • TR25.863 the Transmitted Precoding indication
  • TPI Transmitted Precoding indication
  • the industry has reached a consensus on the channel structure of the uplink closed-loop transmit diversity, as shown in FIG.
  • an uplink channel that is, a secondary dedicated physical control channel (S-DPCCH)
  • the monitoring frequency value is uploaded to the network side, and the network uses the pilot value in the received pilot frequency value and the dedicated physical control channel (DPCCH) to learn the weakening of the channel path, and is used to estimate the TPI value; a new downlink channel is added.
  • DPCCH dedicated physical control channel
  • the TPI indicates that the update rate is 3 time slots.
  • the terminal Upon receiving the 512 chip rate after the TPI, the terminal applies the precoding weight indicated in the TPI at the first DPCCH slot boundary.
  • the terminal For receiving the TPI, the terminal will measure its reliability. If the terminal estimates the domain from the F-TPICH on the service link in the previous 3 or 240 time slots, at least one ⁇ compliant code can satisfy a certain measurement threshold. Tpi , where Q tpi is determined by the correlation test. The 3 slots or 240 slots are determined by the upper layer. The terminal applies the received TPI command, and uses both the precoding values in the TPI domain for beamforming operation to complete the uplink closed loop. Send diversity. The terminal is configured with uplink closed-loop transmit diversity, and there are five active states:
  • the DPCCH, DPDCH, E-DPCCH, E-DPDCH and other channels form a link and the S-DPCCH channel link is beamformed and sent to the two antennas.
  • This state is called uplink closed-loop transmit diversity activation state 1;
  • Uplink closed loop transmit diversity activation state 2 P S-DPCCH channel links are transmitted on antenna 1 and antenna 2, respectively.
  • This state is called uplink closed loop transmit diversity activation state 2;
  • Uplink closed-loop transmit diversity activation state 3 This state is called uplink closed-loop transmit diversity activation state 3;
  • Channels such as DPCCH, DPDCH, E-DPCCH, and E-DPDCH form a link to be transmitted on antenna 1.
  • the S-DPCCH channel is closed, the antenna 2 is turned off, and the state is called uplink closed-loop transmit diversity activation state 4; DPCCH, DPDCH, E-DPCCH, E-DPDCH and other channels form a link to be transmitted on the antenna 2,
  • the S-DPCCH channel is closed and the antenna 1 is turned off. This state is called the uplink closed loop transmit diversity active state 5.
  • the above five activation states are all active states that can be used for uplink closed-loop transmit diversity.
  • Node B Node B
  • DRNC Drift Radio Network Controller
  • the present invention provides an uplink closed loop transmit diversity activation state update method and system, which can support a NodeB or a DRNC to request to update to use other active states after using an activation state to ensure an uplink closed loop.
  • the implementation of the send diversity function can support a NodeB or a DRNC to request to update to use other active states after using an activation state to ensure an uplink closed loop.
  • an uplink closed loop transmit diversity activation state update method including:
  • the NodeB or the drift radio network controller DRNC sends an activation status update request message for the uplink closed-loop transmit diversity CLTD of the UE to the serving radio network controller SRNC, where the activation status update request message carries at least the expected CLTD activation status; the SRNC decides to change the CLTD of the UE.
  • the CLTD activation state of the UE in the NodeB and the UE is updated to the desired CLTD activation state.
  • the NodeB sends an activation status update request message to the CNC for the CLTD of the UE:
  • the control radio network controller CRNC is the SRNC
  • the NodeB directly sends an activation status update request message for the CLTD of the UE to the SRNC;
  • the CRNC is the DRNC
  • the NodeB passes the DRNC.
  • An activation status update request message for the CLTD of the UE is sent to the SRNC.
  • the SRNC decides whether to change the CLTD activation status of the UE according to the system status and the preset algorithm.
  • the system status includes one or more of the following: The status of the radio network controller RNC, the status of the NodeB, and the status of the UE.
  • the activation status update request message is a radio link parameter update message or a new message.
  • an uplink closed loop transmit diversity activation state update system including: a NodeB and a SRNC;
  • an uplink closed loop transmit diversity activation state update system including:
  • the DRNC is configured to send, to the SRNC, an activation status update request message for the CLTD of the UE, where the activation status update request message carries at least the expected CLTD activation status;
  • an uplink closed loop transmit diversity activation state update system including: a NodeB, a DRNC, and a SRSR;
  • NodeB configured to send an activation status update request message to the DRNC for the CLTD of the UE, where the activation status update request message carries at least the expected CLTD activation status;
  • DRNC configured to forward an activation status update request message from the NodeB to the SRNC;
  • the SRNC is configured to, after receiving the activation status update request message, decide whether to change the CLTD activation status of the UE, and determine to change the CLTD activation status of the UE, and update the CLTD activation status of the UE in the NodeB and the UE to the desired CLTD activation status.
  • the activation status update request message is a radio link parameter update message or a new message.
  • the NodeB or the drift radio network controller sends an activation of the uplink closed loop transmit diversity (CLTD) for the UE to a Serving Radio Network Controller (SRNC)
  • CLTD uplink closed loop transmit diversity
  • SRNC Serving Radio Network Controller
  • the status update request message, the activation status update request message carries at least the expected CLTD activation status; the SRNC decides to change the CLTD activation status of the UE, and then updates the CLTD activation status of the UE in the NodeB and the UE to the desired CLTD activation status.
  • FIG. 1 is a schematic diagram of a channel structure of an uplink closed-loop transmit diversity
  • FIG. 2 is a schematic flowchart of a NodeB requesting an update of a CLTD activation state according to Embodiment 1 of the present invention
  • a NodeB or a Drift Radio Network Controller transmits an activation of an uplink closed loop transmit diversity (CLTD) for a UE to a Serving Radio Network Controller (SRNC).
  • DRNC Drift Radio Network Controller
  • SRNC Serving Radio Network Controller
  • a status update request message the activation status update request message carries at least a desired CLTD activation status
  • the SRNC determines to change the CLTD activation status of the UE, and updates the CLTD activation status of the UE in the NodeB and the UE as Describe the expected CLTD activation status.
  • the NodeB sends an activation status update request message to the CNC for the CLTD of the UE: when the Control Radio Network Controller (CRNC) is the SRNC, the NodeB directly sends the activation status update of the CLTD for the UE to the SRNC. Request message; when the CRNC is a DRNC, the NodeB sends an activation status update request message for the CLTD of the UE to the SRNC through the DRNC.
  • CRNC Control Radio Network Controller
  • the NodeB after activation of the CLTD for a specific UE, the NodeB requests the CRNC to change the activation state used by the CLTD for the specific UE, and the NodeB transmits an activation status request update request message for the CLTD of the UE to the CRNC, the activation status update request message Carrying the expected CLTD activation status; after the CRNC receives the activation status update request message, if the CRNC is a DRNC, the DRNC forwards the activation status update request message to the SRNC, and then the SRNC is based on the system status (generally including the following or Multiple: The state of the RNC, the state of the NodeB, the state of the UE) and the preset algorithm decision to change the CLTD activation state of the UE, and update the corresponding CLTD activation state in the NodeB and the UE. It should be noted that the activation status update request message may use an existing radio link parameter update message, or may use a new activation status update request message
  • CRNC NodeB DRNC SRNC
  • DRNC SRNC NodeB DRNC SRNC
  • a preferred embodiment of the present invention also correspondingly discloses an uplink closed loop transmit diversity activation state update system, the system comprising: a NodeB and an SRNC;
  • NodeB configured to send an activation status update request message to the CNC for the CLTD of the UE, the activation status update request message carries at least the expected CLTD activation status; and the SRNC is set to decide whether to change the UE after receiving the activation status update request message.
  • the CLTD activation state the decision to change the CLTD activation state of the UE, updates the CLTD activation state of the UE in the NodeB and the UE to the desired CLTD activation state.
  • the activation status update request message is a radio link parameter update message or a new message.
  • a preferred embodiment of the present invention also correspondingly discloses an uplink closed loop transmit diversity activation state update system, the system comprising: DRNC and SRNC;
  • the DRNC is configured to send, to the SRNC, an activation status update request message for the CLTD of the UE, where the activation status update request message carries at least the expected CLTD activation status;
  • the SRNC is configured to, after receiving the activation status update request message, decide whether to change the CLTD activation status of the UE, and decide to change the CLTD activation status of the UE, and update the CLTD activation status of the UE in the NodeB and the UE to the desired CLTD activation status.
  • a preferred embodiment of the present invention also correspondingly discloses an uplink closed loop transmit diversity activation state update system, the system comprising: a NodeB, a DRNC, and a SRSR;
  • NodeB configured to send an activation status update request message for the CLTD of the UE to the DRNC, the activation status update request message carries at least the expected CLTD activation status; and the DRNC is configured to forward the activation status update request message from the NodeB to the SRNC;
  • the SRNC is configured to, after receiving the activation status update request message, decide whether to change the CLTD activation status of the UE, and determine to change the CLTD activation status of the UE, and update the CLTD activation status of the UE in the NodeB and the UE to the desired CLTD activation status.
  • the activation status update request message is a radio link parameter update message or a new message.
  • Step 201 Send diversity activation in an uplink closed loop
  • the NodeB requests the CRNC to change the activation state used by the uplink closed-loop transmit diversity, and carries the CLTD activation state (also referred to as a new active state) requesting the update.
  • the CLTD activation state that is requested to be updated may be represented by an enumeration type, and the enumeration type may be specifically a first state, a second state, a third state, a fourth state, or a fifth state, respectively, which is described in the background art.
  • the five activation states may be represented by an enumeration type, and the enumeration type may be specifically a first state, a second state, a third state, a fourth state, or a fifth state, respectively, which is described in the background art.
  • the five activation states may be represented by an enumeration type, and the enumeration type may be specifically a first state, a second state, a third state, a
  • Step 202 After receiving the uplink closed loop transmit diversity activation state update request message, the SRNC changes the activation state used by the uplink closed loop transmit diversity according to the system state and a certain algorithm decision.
  • Step 203 The SRNC updates the uplink closed-loop transmit diversity activation state of the NodeB and the UE by using the CLTD activation status that requests the update. Specifically, the SRNC sends an uplink closed-loop transmit diversity activation state update indication to the NodeB and the UE, and carries a new activation state.
  • Step 204 After receiving the uplink closed loop transmit diversity activation state update indication, the NodeB and the UE activate the uplink closed loop transmit diversity by using the new active state.
  • FIG. 3 is a schematic flowchart of a NodeB requesting to update an uplink closed loop transmit diversity activation state according to Embodiment 2 of the present invention. As shown in FIG. 3, the process includes: Step 301: Sending in an uplink closed loop After the diversity is activated, the NodeB requests the CRNC to change the activation state used by the uplink closed-loop transmit diversity, and carries the CLTD activation state that requests the update.
  • the CLTD activation state that is requested to be updated may be represented by an enumeration type, and the enumeration type may be specifically a first state, a second state, a third state, a fourth state, or a fifth state, respectively, which is described in the background art.
  • the five activation states After receiving the uplink closed loop transmit diversity active state update request message, the CRNC passes the uplink closed loop transmit diversity active state update request message to the SRNC.
  • Step 304 The SRNC updates the uplink closed-loop transmit diversity activation state of the NodeB and the UE by using the CLTD activation status that requests the update.
  • the SRNC sends an uplink closed-loop transmit diversity activation state update indication to the DRNC to carry a new activation state.
  • the DRNC After receiving the SRNC uplink closed-loop transmit diversity activation state update indication, the DRNC transmits an uplink closed-loop transmit diversity activation state update indication (carrying a new activation). Status) to NodeB.
  • Step 305 After receiving the uplink closed loop transmit diversity activation state update indication, the NodeB and the UE activate the uplink closed loop transmit diversity by using the new active state.
  • the present invention can solve the problem that after the activation of the uplink closed loop transmit diversity by using an activation state, the request update is activated by using other active states, thereby ensuring the uplink closed loop transmit diversity function.
  • the above is only the preferred embodiment of the present invention and is not intended to limit the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明公开了一种上行闭环发送分集激活状态更新方法,包括:NodeB或漂移无线网络控制器(DRNC)向服务无线网络控制器(SRNC)发送针对UE的上行闭环发送分集(CLTD)的激活状态更新请求消息;SRNC决策变更UE的CLTD激活状态,则更新NodeB和UE中UE的CLTD激活状态为期望的CLTD激活状态。本发明还相应地公开了一种上行闭环发送分集激活状态更新系统。通过本发明,在使用某种激活状态激活上行闭环发送分集后,如果NodeB或DRNC需要变更上行闭环发送分集的激活状态,则可以请求更新为使用其他上行闭环发送分集激活状态,从而保证上行闭环发送分集功能的实现。

Description

一种上行闭环发送分集激活状态更新方法及系统 技术领域 本发明涉及移动通信领域, 尤其涉及一种上行闭环发送分集(CLTD)激活状态更 新方法及系统。 背景技术 多天线技术通过在发送端和 /或接收端使用多根天线来实现更高的系统容量、更广 的小区覆盖以及更好的业务质量。发送端和 /或接收端的多根天线既可以用来实现发送 或接收分集也可以用来实现空间复用。 其中, 发送分集技术是一种在发送端发送至少两个含有相同信息的信号的无线通 信领域的抗衰落技术, 承载相同信息的信号来源于至少两个相互独立的信号源。 发送 分集技术依据其发射信号样值的结构与统计特性以及其所占无线资源的不同, 可以划 分为空间、 频率、 时间三大基本类型, 也可以是这三种类型的相互结合; 所谓空间分 集是指利用不同发射地点 (空间) 位置的不同, 信号在经历信道后达到接收端时在统 计特性上的不相关性, 实现抗衰落的功能; 所谓频率分集是指利用位于不同频段的信 号经衰落信道后在统计上的不相关特性, 即不同频段衰落统计特性上的差异, 来实现 抗衰落 (频率选择性) 的功能, 实现时可以将待发送的信息分别调制在频率不相关的 载波上进行发射; 所谓时间分集是指利用一个随机衰落信号, 当取样点的时间间隔足 够大时(大于传输信道相干时间), 样点间的衰落在统计上是互不相关的, 即利用时间 上衰落统计特性上的差异来实现抗时间选择性衰落。 发送分集技术依据接收端是否需要向发送端反馈分集需要的参数分为开环发送分 集模式和闭环发送分集模式。 开环发送分集模式下, 接收端不向发送端反馈任何额外 的与发射相关的信息, 发送端可以自行使用相应的编码技术 (例如简单的空-时编码) 完成发送分集。 闭环发送分集模式下, 接收端需要使用反馈信道反馈给发射端一个与 发送分集相关的参数 (例如发送分集所需的预编码向量, 通过预编码指示信息指示), 发送端在接收后使用该反馈信息完成发送分集。 在 3GPP Release 10中, HSUPA系统用户端的上行开环发送分集已经完成在了标 准的制定(TR25.863 ), 目前正在讨论闭环发送分集的相关内容, 引入被传送预编码指 示(Transmitted Precoding indication, TPI)。 当前业界在上行闭环发送分集的信道结构 达成共识,如图 1所示确认,增加一个上行信道,即辅专用物理控制信道(S-DPCCH), 上传辅导频值给网络侧, 网络会利用接收到辅导频值和专用物理控制信道 (DPCCH) 中的导频值来了解到信道路径的衰弱情况, 用于估算 TPI值; 新增加一个下行信道, 类似于分数专用物理信道 (F-DPCH) , 即 F-PCICH分数预编码指示信道, 用于传送 上行发射分集的预编码值给终端。 TPI指示更新速率是 3个时隙。 收到 TPI后的 512 码片速率, 终端在第一个 DPCCH时隙边界应用 TPI中指示的预编码加权。 对于接收 到 TPI, 终端将测量其可靠性, 如果终端在先前 3或 240时隙里估算来自服务链路上 F-TPICH上的 ΤΡΙ域, 至少有一个 ΤΡΙ符合码能够满足一定测量门限值 Qtpi, 其中 Qtpi 是由相关测试决定的, 3时隙或 240时隙是由高层决定的, 终端就应用这个接收到 TPI 命令, 既使用这个 TPI域中预编码值进行 beamforming运算, 完成上行闭环发送分集。 终端配置了上行闭环发送分集, 就有五种激活状态:
DPCCH、 DPDCH、 E-DPCCH、 E-DPDCH等信道组成一条链路和 S-DPCCH信道 链路经过 beamforming后到两个天线上发送, 该状态称为上行闭环发送分集激活状态 1;
DPCCH、 DPDCH、 E-DPCCH、 E-DPDCH等信道组成一条链路 禾 P S-DPCCH信 道链路分别在天线 1和天线 2上发送, 该状态称为上行闭环发送分集激活状态 2;
DPCCH、 DPDCH、 E-DPCCH、 E-DPDCH等信道组成一条链路和 S-DPCCH信道 链路分别在天线 2和天线 1上发送, 该状态称为上行闭环发送分集激活状态 3 ;
DPCCH、 DPDCH、 E-DPCCH、 E-DPDCH等信道组成一条链路在天线 1上发送,
S-DPCCH信道关闭, 天线 2关闭, 状态称为上行闭环发送分集激活状态 4; DPCCH、 DPDCH、 E-DPCCH、 E-DPDCH等信道组成一条链路在天线 2上发送,
S-DPCCH信道关闭, 天线 1关闭, 该状态称为上行闭环发送分集激活状态 5。 上述五个激活状态都是上行闭环发送分集可以使用的激活状态, 而目前节点 B (NodeB)在上行闭环发送分集激活时默认都使用激活状态 1。随着技术的发展, NodeB 或漂移无线网络控制器(Drift Radio Network Controller, DRNC)在使用某种激活状态 激活后, 需要支持请求变更为使用其他激活状态激活, 以保证上行闭环发送分集功能 的实现, 但是, 目前尚未提出相关解决方案。 发明内容 有鉴于此, 本发明提供了一种上行闭环发送分集激活状态更新方法及系统, 能够 支持 NodeB或 DRNC在使用某种激活状态激活后, 可以请求更新为使用其他激活状 态, 以保证上行闭环发送分集功能的实现。
根据本发明的一个方面,提供了一种上行闭环发送分集激活状态更新方法,包括:
NodeB或漂移无线网络控制器 DRNC向服务无线网络控制器 SRNC发送针对 UE 的上行闭环发送分集 CLTD的激活状态更新请求消息, 激活状态更新请求消息至少携 带期望的 CLTD激活状态; SRNC决策变更 UE的 CLTD激活状态, 则更新 NodeB和 UE中 UE的 CLTD激 活状态为期望的 CLTD激活状态。
NodeB向 SRNC发送针对 UE的 CLTD的激活状态更新请求消息为: 控制无线网络控制器 CRNC为 SRNC时, NodeB直接向 SRNC发送针对 UE的 CLTD的激活状态更新请求消息; CRNC为 DRNC时, NodeB通过 DRNC向 SRNC发送针对 UE的 CLTD的激活状 态更新请求消息。
SRNC决策是否变更 UE的 CLTD激活状态为:
SRNC依据系统状态和预设算法决策是否变更 UE的 CLTD激活状态。 系统状态包括以下一项或多项: 无线网络控制器 RNC的状态、 NodeB 的状态、 UE的状态。 激活状态更新请求消息为无线链路参数更新消息或新增的消息。 根据本发明的另一方面,提供了一种上行闭环发送分集激活状态更新系统,包括: NodeB和 SRNC; 其中,
NodeB, 设置为向 SRNC发送针对 UE的 CLTD的激活状态更新请求消息, 激活 状态更新请求消息至少携带期望的 CLTD激活状态; SRNC, 设置为在收到激活状态更新请求消息后, 决策是否变更 UE的 CLTD激活 状态, 决策变更 UE的 CLTD激活状态, 则更新 NodeB和 UE中 UE的 CLTD激活状 态为期望的 CLTD激活状态。 激活状态更新请求消息为无线链路参数更新消息或新增的消息。 根据本发明的再一方面,提供了一种上行闭环发送分集激活状态更新系统,包括:
DRNC禾 P SRNC; 其中,
DRNC, 设置为向 SRNC发送针对 UE的 CLTD的激活状态更新请求消息, 激活 状态更新请求消息至少携带期望的 CLTD激活状态;
SRNC, 设置为在收到激活状态更新请求消息后, 决策是否变更 UE的 CLTD激活 状态, 决策变更 UE的 CLTD激活状态, 则更新 NodeB和 UE中 UE的 CLTD激活状 态为期望的 CLTD激活状态。 根据本发明的又一方面,提供了一种上行闭环发送分集激活状态更新系统,包括: NodeB、 DRNC禾 P SRNC; 其中,
NodeB, 设置为向 DRNC发送针对 UE的 CLTD的激活状态更新请求消息, 激活 状态更新请求消息至少携带期望的 CLTD激活状态;
DRNC, 设置为将来自 NodeB的激活状态更新请求消息转发给 SRNC;
SRNC, 设置为在收到激活状态更新请求消息后, 决策是否变更 UE的 CLTD激活 状态, 决策变更 UE的 CLTD激活状态, 则更新 NodeB和 UE中 UE的 CLTD激活状 态为期望的 CLTD激活状态。 激活状态更新请求消息为无线链路参数更新消息或新增的消息。 本发明上行闭环发送分集激活状态更新方法及系统, NodeB或漂移无线网络控制 器 (DRNC) 向服务无线网络控制器 (Serving Radio Network Controller, SRNC) 发送 针对 UE的上行闭环发送分集(CLTD) 的激活状态更新请求消息, 激活状态更新请求 消息至少携带期望的 CLTD激活状态; SRNC决策变更 UE的 CLTD激活状态, 则更 新 NodeB和 UE中 UE的 CLTD激活状态为期望的 CLTD激活状态。 通过本发明, 在 使用某种激活状态激活上行闭环发送分集后, 如果 NodeB或 DRNC需要变更上行闭 环发送分集的激活状态, 则可以请求更新为使用其他上行闭环发送分集激活状态, 从 而保证上行闭环发送分集功能的实现。 附图说明 图 1为上行闭环发送分集的信道结构示意图; 图 2为本发明实施例 1中 NodeB请求更新 CLTD激活状态的流程示意图; 以及 图 3为本发明实施例 2中 NodeB请求更新 CLTD激活状态的流程示意图。 具体实施方式 在本发明所提供的实施例中, NodeB 或漂移无线网络控制器 (DRNC) 向服务无 线网络控制器(Serving Radio Network Controller, SRNC)发送针对 UE的上行闭环发 送分集(CLTD)的激活状态更新请求消息, 所述激活状态更新请求消息至少携带期望 的 CLTD激活状态; SRNC决策变更所述 UE的 CLTD激活状态, 则更新所述 NodeB 和所述 UE中所述 UE的 CLTD激活状态为所述期望的 CLTD激活状态。 下面主要以 NodeB请求变更激活状态为例进行说明。 具体的, NodeB向 SRNC发送针对 UE的 CLTD的激活状态更新请求消息可以为: 控制无线网络控制器(Control Radio Network Controller, CRNC)为 SRNC时, NodeB 直接向 SRNC发送针对 UE的 CLTD的激活状态更新请求消息; CRNC为 DRNC时, NodeB通过 DRNC向 SRNC发送针对 UE的 CLTD的激活状态更新请求消息。 换言之, 在针对特定 UE的 CLTD激活后, NodeB 向 CRNC请求变更针对特定 UE的 CLTD所使用的激活状态, NodeB向 CRNC发送针对 UE的 CLTD的激活状态 请求更新请求消息,所述激活状态更新请求消息中携带期望的 CLTD激活状态; CRNC 收到激活状态更新请求消息后,如果 CRNC是 DRNC,则 DRNC转发所述激活状态更 新请求消息到 SRNC,之后, 由 SRNC依据系统状态(一般包括以下一项或多项: RNC 的状态, NodeB的状态, UE的状态)及预设的算法决策变更所述 UE的 CLTD激活状 态, 则更新 NodeB和 UE中相应的 CLTD激活状态。 需要说明的是, 所述激活状态更新请求消息可以使用现有的无线链路参数更新消 息, 也可以使用新增的激活状态更新请求消息。 可以看出, 本发明中激活状态更新请求消息的路径可以是 NodeB SRNC
(CRNC), 或者 NodeB DRNC SRNC (CRNC), 或者 DRNC SRNC。 本发明的一个优选实施例还相应地公开了一种上行闭环发送分集激活状态更新系 统, 该系统包括: NodeB和 SRNC; 其中,
NodeB, 设置为向 SRNC发送针对 UE的 CLTD的激活状态更新请求消息, 激活 状态更新请求消息至少携带期望的 CLTD激活状态; SRNC, 设置为在收到激活状态更新请求消息后, 决策是否变更 UE的 CLTD激活 状态, 决策变更 UE的 CLTD激活状态, 则更新 NodeB和 UE中 UE的 CLTD激活状 态为期望的 CLTD激活状态。 激活状态更新请求消息为无线链路参数更新消息或新增的消息。 本发明的一个优选实施例还相应地公开了一种上行闭环发送分集激活状态更新系 统, 该系统包括: DRNC和 SRNC; 其中,
DRNC, 设置为向 SRNC发送针对 UE的 CLTD的激活状态更新请求消息, 激活 状态更新请求消息至少携带期望的 CLTD激活状态;
SRNC, 设置为在收到激活状态更新请求消息后, 决策是否变更 UE的 CLTD激活 状态, 决策变更 UE的 CLTD激活状态, 则更新 NodeB和 UE中 UE的 CLTD激活状 态为期望的 CLTD激活状态。 本发明的一个优选实施例还相应地公开了一种上行闭环发送分集激活状态更新系 统, 该系统包括: NodeB、 DRNC禾 P SRNC; 其中,
NodeB, 设置为向 DRNC发送针对 UE的 CLTD的激活状态更新请求消息, 激活 状态更新请求消息至少携带期望的 CLTD激活状态; DRNC, 设置为将来自 NodeB的激活状态更新请求消息转发给 SRNC;
SRNC, 设置为在收到激活状态更新请求消息后, 决策是否变更 UE的 CLTD激活 状态, 决策变更 UE的 CLTD激活状态, 则更新 NodeB和 UE中 UE的 CLTD激活状 态为期望的 CLTD激活状态。 所述激活状态更新请求消息为无线链路参数更新消息或新增的消息。 以下结合具体实施例对本发明的技术方案作进一步详细说明。 实施例 1 本实施例中, CRNC为 SRNC, 图 2是本发明实施例 1中 NodeB请求更新 CLTD 激活状态的流程示意图, 如图 2所示, 该流程包括: 步骤 201 : 在上行闭环发送分集激活后, NodeB向 CRNC请求变更上行闭环发送 分集所使用的激活状态, 携带请求更新的 CLTD激活状态 (也可称为新的激活状态)。 其中, 请求更新的 CLTD激活状态可以用枚举类型表示, 枚举类型具体可以取值 为第一状态、 第二状态、 第三状态、 第四状态或第五状态, 分别表示背景技术中所述 的五个激活状态。 步骤 202: SRNC 收到上行闭环发送分集激活状态更新请求消息后, 依据系统状 态及一定的算法决策变更上行闭环发送分集所使用的激活状态。 步骤 203 : SRNC使用请求更新的 CLTD激活状态更新 NodeB和 UE的上行闭环 发射分集激活状态。 具体的, SRNC给 NodeB和 UE发送上行闭环发送分集激活状态更新指示, 携带 新的激活状态。 步骤 204: NodeB和 UE接收到上行闭环发送分集激活状态更新指示后, 使用新 的激活状态激活上行闭环发送分集。 实施例 2 本实施例中, CRNC为 DRNC, 图 3是本发明实施例 2中 NodeB请求更新上行闭 环发送分集激活状态的流程示意图, 如图 3所示该流程包括: 步骤 301 : 在上行闭环发送分集激活后, NodeB向 CRNC请求变更上行闭环发送 分集所使用的激活状态, 携带请求更新的 CLTD激活状态。 其中, 请求更新的 CLTD激活状态可以用枚举类型表示, 枚举类型具体可以取值 为第一状态、 第二状态、 第三状态、 第四状态或第五状态, 分别表示背景技术中所述 的五个激活状态。 步骤 302: CRNC收到上行闭环发送分集激活状态更新请求消息后, 传递上行闭 环发送分集激活状态更新请求消息到 SRNC。 步骤 303 : SRNC 收到上行闭环发送分集激活状态更新请求消息后, 依据系统状 态及一定的算法决策变更上行闭环发送分集所使用的激活状态。 步骤 304: SRNC使用请求更新的 CLTD激活状态更新 NodeB和 UE的上行闭环 发射分集激活状态。 其中, SRNC给 DRNC发送上行闭环发送分集激活状态更新指示, 携带新的激活 状态; DRNC收到 SRNC的上行闭环发送分集激活状态更新指示后, 传递上行闭环发 送分集激活状态更新指示 (携带新的激活状态) 给 NodeB。 步骤 305: NodeB和 UE接收到上行闭环发送分集激活状态更新指示后, 使用新 的激活状态激活上行闭环发送分集。 可以看出, 与现有技术相比, 本发明可以解决在使用某种激活状态激活上行闭环 发送分集后, 请求更新使用其他激活状态激活, 从而保证上行闭环发送分集功能的实 现。 以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保护范围。

Claims

权利要求书
、 一种上行闭环发送分集激活状态更新方法, 该方法包括:
NodeB或漂移无线网络控制器 DRNC向服务无线网络控制器 SRNC发送针 对 UE的上行闭环发送分集 CLTD的激活状态更新请求消息, 所述激活状态更 新请求消息至少携带期望的 CLTD激活状态;
SRNC决策变更所述 UE的 CLTD激活状态, 则更新所述 NodeB和所述 UE中所述 UE的 CLTD激活状态为所述期望的 CLTD激活状态。 、 根据权利要求 1所述的方法,其中,所述 NodeB向 SRNC发送针对 UE的 CLTD 的激活状态更新请求消息为:
控制无线网络控制器 CRNC为 SRNC时, 所述 NodeB直接向所述 SRNC 发送针对 UE的 CLTD的激活状态更新请求消息;
CRNC为 DRNC时, 所述 NodeB通过所述 DRNC向 SRNC发送针对 UE 的 CLTD的激活状态更新请求消息。 、 根据权利要求 1所述的方法, 其中, SRNC决策是否变更所述 UE的 CLTD激 活状态为:
SRNC依据系统状态和预设算法决策是否变更所述 UE的 CLTD激活状态。 、 根据权利要求 3所述的方法, 其中, 所述系统状态包括以下一项或多项: 无线 网络控制器 RNC的状态、 NodeB的状态、 UE的状态。 、 根据权利要求 1至 4任一项所述的方法, 其中, 所述激活状态更新请求消息为 无线链路参数更新消息或新增的消息。 、 一种上行闭环发送分集激活状态更新系统, 该系统包括: NodeB和 SRNC; 其 中,
所述 NodeB, 设置为向 SRNC发送针对 UE的 CLTD的激活状态更新请求 消息, 所述激活状态更新请求消息至少携带期望的 CLTD激活状态;
所述 SRNC, 设置为在收到所述激活状态更新请求消息后, 决策是否变更 所述 UE的 CLTD激活状态, 决策变更所述 UE的 CLTD激活状态, 则更新所 述 NodeB和所述 UE中所述 UE的 CLTD激活状态为所述期望的 CLTD激活状 态。 、 根据权利要求 6所述的系统, 其中, 所述激活状态更新请求消息为无线链路参 数更新消息或新增的消息。 、 一种上行闭环发送分集激活状态更新系统, 该系统包括: DRNC和 SRNC; 其 中,
所述 DRNC, 设置为向 SRNC发送针对 UE的 CLTD的激活状态更新请求 消息, 所述激活状态更新请求消息至少携带期望的 CLTD激活状态;
所述 SRNC, 设置为在收到所述激活状态更新请求消息后, 决策是否变更 所述 UE的 CLTD激活状态,决策变更所述 UE的 CLTD激活状态,则更新 NodeB 和 UE中所述 UE的 CLTD激活状态为所述期望的 CLTD激活状态。 、 一种上行闭环发送分集激活状态更新系统, 该系统包括: NodeB、 DRNC 和 SRNC; 其中,
所述 NodeB, 设置为向 DRNC发送针对 UE的 CLTD的激活状态更新请求 消息, 所述激活状态更新请求消息至少携带期望的 CLTD激活状态;
所述 DRNC, 设置为将来自 NodeB 的所述激活状态更新请求消息转发给 SRNC;
所述 SRNC, 设置为在收到所述激活状态更新请求消息后, 决策是否变更 所述 UE的 CLTD激活状态,决策变更所述 UE的 CLTD激活状态,则更新 NodeB 和 UE中所述 UE的 CLTD激活状态为所述期望的 CLTD激活状态。 0、 根据权利要求 9所述的系统, 其中, 所述激活状态更新请求消息为无线链路参 数更新消息或新增的消息。
PCT/CN2012/078888 2012-01-31 2012-07-19 一种上行闭环发送分集激活状态更新方法及系统 WO2013113211A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210021875.0A CN103227985B (zh) 2012-01-31 2012-01-31 一种上行闭环发送分集激活状态更新方法及系统
CN201210021875.0 2012-01-31

Publications (1)

Publication Number Publication Date
WO2013113211A1 true WO2013113211A1 (zh) 2013-08-08

Family

ID=48838202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/078888 WO2013113211A1 (zh) 2012-01-31 2012-07-19 一种上行闭环发送分集激活状态更新方法及系统

Country Status (2)

Country Link
CN (1) CN103227985B (zh)
WO (1) WO2013113211A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102035584A (zh) * 2009-09-29 2011-04-27 华为技术有限公司 确定上行链路发射分集方式的方法及通信装置
WO2011053220A1 (en) * 2009-10-30 2011-05-05 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for supporting uplink transmit diversity
US20110194637A1 (en) * 2010-02-05 2011-08-11 Qualcomm Incorporated Apparatus and method for enabling uplink beamforming transit diversity
CN102217343A (zh) * 2011-04-29 2011-10-12 华为技术有限公司 上行链路发射分集的传输方法、装置及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102035584A (zh) * 2009-09-29 2011-04-27 华为技术有限公司 确定上行链路发射分集方式的方法及通信装置
WO2011053220A1 (en) * 2009-10-30 2011-05-05 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for supporting uplink transmit diversity
US20110194637A1 (en) * 2010-02-05 2011-08-11 Qualcomm Incorporated Apparatus and method for enabling uplink beamforming transit diversity
CN102217343A (zh) * 2011-04-29 2011-10-12 华为技术有限公司 上行链路发射分集的传输方法、装置及系统

Also Published As

Publication number Publication date
CN103227985A (zh) 2013-07-31
CN103227985B (zh) 2017-12-15

Similar Documents

Publication Publication Date Title
JP6529563B2 (ja) 無線通信システムにおいてビーム動作のための電力ヘッドルーム報告についての方法及び装置
JP5548815B2 (ja) オープンループマルチストリーム送信とクローズドループマルチストリーム送信との切換え
TWI435620B (zh) 無線電信系統
JP2018061246A (ja) 無線通信システムにおいて上り(ul)参照信号(rs)の送信電力を導出するための方法及び装置
US20220095308A1 (en) Technique for Sidelink Radio Communication
JP6352280B2 (ja) ネットワーク装置及びユーザ端末
EP3669484A1 (en) Wireless communication method, user equipment, and base station
US9369997B2 (en) Methods and arrangements for coordinating uplink transmit diversity mode adaptation
JP6101544B2 (ja) 基地局、通信制御方法、及びプロセッサ
EP4000195B1 (en) Cqi saturation mitigation in massive mu-mimo systems
JP6101580B2 (ja) 移動通信システム、ユーザ端末、及び通信制御方法
US10798599B2 (en) System and method for controlling user equipment offloading
WO2013137814A2 (en) Pilot channel configuration for mimo network
WO2015046271A1 (ja) 通信制御方法、基地局、及びユーザ端末
WO2013113211A1 (zh) 一种上行闭环发送分集激活状态更新方法及系统
WO2013060151A1 (zh) 上行发送分集配置方法及装置
WO2013166990A1 (zh) 提高信道功率的方法及装置
WO2013056563A1 (zh) 一种上行发送分集能力上报的方法和终端
CN110268668B (zh) 用户设备和无线通信方法
CN103227691B (zh) 上行闭环发送分集的激活状态更新方法、系统和rnc
US9490884B2 (en) Method and device for activating uplink closed loop transmit diversity
WO2012155546A1 (zh) 一种控制上行闭环发射分集的方法和系统
WO2014048077A1 (zh) 指示导频状态的方法和设备
WO2013174311A1 (zh) 上行闭环发送分集配置信息的处理方法及装置
WO2013071760A1 (zh) 发射分集的控制方法、系统及无线网络控制器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12867666

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12867666

Country of ref document: EP

Kind code of ref document: A1