WO2013111997A1 - 무선 통신 시스템에서 보고 방법 및 이를 지원하는 장치 - Google Patents

무선 통신 시스템에서 보고 방법 및 이를 지원하는 장치 Download PDF

Info

Publication number
WO2013111997A1
WO2013111997A1 PCT/KR2013/000622 KR2013000622W WO2013111997A1 WO 2013111997 A1 WO2013111997 A1 WO 2013111997A1 KR 2013000622 W KR2013000622 W KR 2013000622W WO 2013111997 A1 WO2013111997 A1 WO 2013111997A1
Authority
WO
WIPO (PCT)
Prior art keywords
report
terminal
measurement
cell
network
Prior art date
Application number
PCT/KR2013/000622
Other languages
English (en)
French (fr)
Inventor
정성훈
천성덕
이재욱
이승준
이영대
박성준
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US14/373,876 priority Critical patent/US9838897B2/en
Priority to KR1020147020545A priority patent/KR101616253B1/ko
Publication of WO2013111997A1 publication Critical patent/WO2013111997A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0079Transmission or use of information for re-establishing the radio link in case of hand-off failure or rejection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • the present invention relates to wireless communication, and more particularly, to a reporting method and a device supporting the same in a wireless communication system.
  • 3GPP LTE long term evolution
  • UMTS Universal Mobile Telecommunications System
  • 3GPP LTE uses orthogonal frequency division multiple access (OFDMA) in downlink and single carrier-frequency division multiple access (SC-FDMA) in uplink.
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier-frequency division multiple access
  • MIMO multiple input multiple output
  • LTE-A 3GPP LTE-Advanced
  • the terminal performs measurement on the radio resource and reports the measurement result to the network.
  • the network can operate to optimize network performance based on the measurement results. Meanwhile, the terminal may report the location information related to the measurement together with the measurement result to the network.
  • the network can perform network parameter optimization that can affect performance degradation through location information related to the measurement results.
  • MDT Minimization of Driving Tests
  • MDTs can be divided into logged MDTs and immediate MDTs.
  • the terminal transmits a logged measurement to the network at a specific time after performing the MDT measurement.
  • the terminal performs the MDT measurement and then delivers the logged measurement to the network when the reporting condition is satisfied.
  • the logging of the measurement result in the logged MDT may be limited to logging the measurement result according to the measurement performed in the RRC idle mode. It is also possible that the measured measurements are used in RRC connected mode according to the instructions of the network.
  • the UE may perform the MDT measurement in the RRC connected mode.
  • Obtaining location information by the terminal requires additional battery consumption.
  • power efficiency of a terminal is one of very important factors in the performance of the terminal. Unnecessary battery consumption due to excessive position measurement may cause performance degradation of the terminal. Therefore, it is required to propose a more efficient method of reporting measurement results and location information.
  • the technical problem to be solved by the present invention is to provide a reporting method and a device supporting the same in a wireless communication system.
  • a reporting method performed by a terminal in a wireless communication system obtains a measurement result, attempts to obtain location information associated with the measurement result, determines whether a measurement result reporting condition is satisfied, starts a delay timer, and determines the location of the location information before expiration of the delay timer.
  • the method may include transmitting a report message including the measurement result and the acquired location information to the network.
  • the method may further include sending a report message to the network that the measurement result is included if the location information is not obtained before the delay timer expires.
  • the report message may further include information related to the reason for not obtaining the location information.
  • the method may further include information indicating a positioning technique based on obtaining the location information when the acquisition of the location information is completed before the delay timer expires.
  • the method detects a Radio Link Failure (RLF) occurrence, reports to the network that the RLF report is valid according to the RLF occurrence, and network a RLF (Radio Link Failure) report request message requesting to report the RLF report. It may further comprise receiving from.
  • the report message may be an RLF report message corresponding to the RLF report request message.
  • Determining whether the measurement result report condition is satisfied may include determining that the RLF report request message is satisfied when the RLF report request message is received.
  • the delay timer may be a value preset in the terminal.
  • the delay timer may be started upon detecting the RLF.
  • the method may further comprise receiving a measurement report setup message.
  • the measurement report setting message may include delay report indication information indicating that the report message is allowed to be transmitted within a specific time period from when the measurement result report condition is satisfied.
  • the specific period may be a driving duration of the delay timer.
  • the delay timer may be started when the measurement result report condition is satisfied.
  • the measurement report setting message may include delay timer setting information indicating a setting value of the delay timer.
  • a wireless device operating in a wireless communication system includes a radio frequency (RF) unit for transmitting and receiving a radio signal and a processor operatively coupled to the RF unit.
  • the processor acquires a measurement result, attempts to obtain location information related to the measurement result, determines whether a measurement result report condition is satisfied, starts a delay timer, and before the delay timer expires, When the acquisition is completed, a report message including the measurement result and the acquired location information is set to be transmitted to the network.
  • RF radio frequency
  • the terminal can minimize the power consumed to obtain the location information, and at the same time can expand the opportunity to transmit the measurement results and the associated location information in the measurement result report message. Therefore, the network can easily obtain not only the measurement result but also location information related thereto, and can improve network performance based on the measurement result. In addition, the terminal may improve battery efficiency in the measurement result report.
  • FIG. 1 shows a wireless communication system to which the present invention is applied.
  • FIG. 2 is a block diagram illustrating a radio protocol architecture for a user plane.
  • FIG. 3 is a block diagram illustrating a radio protocol structure for a control plane.
  • FIG. 4 is a flowchart illustrating an operation of a terminal in an RRC idle state.
  • FIG. 5 is a flowchart illustrating a process of establishing an RRC connection.
  • FIG. 6 is a flowchart illustrating a RRC connection resetting process.
  • FIG. 7 is a diagram illustrating a RRC connection reestablishment procedure.
  • FIG. 8 is a flowchart illustrating a method of performing a logged MDT.
  • FIG. 9 is a diagram illustrating an example of a logged MDT according to a logging region.
  • FIG. 10 is a diagram illustrating an example of a logged MDT according to a RAT change.
  • 11 is a diagram illustrating an example of logged measurements.
  • 12 is a diagram illustrating an example of an immediate MDT.
  • FIG. 13 is a diagram illustrating an example of a structure of a wireless communication system to which positioning of a terminal is applied according to an embodiment of the present invention.
  • FIG. 14 is a diagram illustrating various procedures for location service according to an embodiment of the present invention.
  • 15 is a flowchart illustrating a reporting method according to an embodiment of the present invention.
  • 16 is a flowchart illustrating an example of a reporting method according to an embodiment of the present invention.
  • 17 is a flowchart illustrating another example of a reporting method according to an embodiment of the present invention.
  • FIG. 18 is a block diagram illustrating a wireless device in which an embodiment of the present invention is implemented.
  • E-UTRAN Evolved-UMTS Terrestrial Radio Access Network
  • LTE Long Term Evolution
  • the E-UTRAN includes a base station (BS) 20 that provides a control plane and a user plane to a user equipment (UE).
  • the terminal 10 may be fixed or mobile and may be called by other terms such as a mobile station (MS), a user terminal (UT), a subscriber station (SS), a mobile terminal (MT), a wireless device (Wireless Device), and the like.
  • the base station 20 refers to a fixed station communicating with the terminal 10, and may be referred to by other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), an access point, and the like.
  • eNB evolved-NodeB
  • BTS base transceiver system
  • access point and the like.
  • the base stations 20 may be connected to each other through an X2 interface.
  • the base station 20 is connected to a Serving Gateway (S-GW) through an MME (Mobility Management Entity) and an S1-U through an Evolved Packet Core (EPC) 30, more specifically, an S1-MME through an S1 interface.
  • S-GW Serving Gateway
  • MME Mobility Management Entity
  • EPC Evolved Packet Core
  • EPC 30 is composed of MME, S-GW and P-GW (Packet Data Network-Gateway).
  • the MME has information about the access information of the terminal or the capability of the terminal, and this information is mainly used for mobility management of the terminal.
  • S-GW is a gateway having an E-UTRAN as an endpoint
  • P-GW is a gateway having a PDN as an endpoint.
  • Layers of the Radio Interface Protocol between the terminal and the network are based on the lower three layers of the Open System Interconnection (OSI) reference model, which is widely known in communication systems.
  • L2 second layer
  • L3 third layer
  • the RRC Radio Resource Control
  • the RRC layer located in the third layer plays a role of controlling radio resources between the terminal and the network. To this end, the RRC layer exchanges an RRC message between the terminal and the base station.
  • FIG. 2 is a block diagram illustrating a radio protocol architecture for a user plane.
  • 3 is a block diagram illustrating a radio protocol structure for a control plane.
  • the data plane is a protocol stack for user data transmission
  • the control plane is a protocol stack for control signal transmission.
  • a physical layer (PHY) layer provides an information transfer service to a higher layer using a physical channel.
  • the physical layer is connected to a medium access control (MAC) layer, which is an upper layer, through a transport channel. Data is moved between the MAC layer and the physical layer through the transport channel. Transport channels are classified according to how and with what characteristics data is transmitted over the air interface.
  • MAC medium access control
  • the physical channel may be modulated by an orthogonal frequency division multiplexing (OFDM) scheme and utilizes time and frequency as radio resources.
  • OFDM orthogonal frequency division multiplexing
  • the functions of the MAC layer include mapping between logical channels and transport channels and multiplexing / demultiplexing into transport blocks provided as physical channels on transport channels of MAC service data units (SDUs) belonging to the logical channels.
  • the MAC layer provides a service to a Radio Link Control (RLC) layer through a logical channel.
  • RLC Radio Link Control
  • RLC layer Functions of the RLC layer include concatenation, segmentation, and reassembly of RLC SDUs.
  • QoS Quality of Service
  • the RLC layer has a transparent mode (TM), an unacknowledged mode (UM), and an acknowledged mode (Acknowledged Mode).
  • TM transparent mode
  • UM unacknowledged mode
  • Acknowledged Mode acknowledged mode
  • AM Three modes of operation (AM).
  • AM RLC provides error correction through an automatic repeat request (ARQ).
  • the RRC (Radio Resource Control) layer is defined only in the control plane.
  • the RRC layer is responsible for the control of logical channels, transport channels, and physical channels in connection with configuration, re-configuration, and release of radio bearers.
  • RB means a logical path provided by the first layer (PHY layer) and the second layer (MAC layer, RLC layer, PDCP layer) for data transmission between the terminal and the network.
  • PDCP Packet Data Convergence Protocol
  • Functions of the Packet Data Convergence Protocol (PDCP) layer in the user plane include delivery of user data, header compression, and ciphering.
  • the functionality of the Packet Data Convergence Protocol (PDCP) layer in the user plane includes the transfer of control plane data and encryption / integrity protection.
  • the establishment of the RB means a process of defining characteristics of a radio protocol layer and a channel to provide a specific service, and setting each specific parameter and operation method.
  • RB can be further divided into SRB (Signaling RB) and DRB (Data RB).
  • SRB is used as a path for transmitting RRC messages in the control plane
  • DRB is used as a path for transmitting user data in the user plane.
  • the UE If an RRC connection is established between the RRC layer of the UE and the RRC layer of the E-UTRAN, the UE is in an RRC connected state, otherwise it is in an RRC idle state.
  • the downlink transmission channel for transmitting data from the network to the UE includes a BCH (Broadcast Channel) for transmitting system information and a downlink shared channel (SCH) for transmitting user traffic or control messages.
  • Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • the uplink transport channel for transmitting data from the terminal to the network includes a random access channel (RACH) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or control messages.
  • RACH random access channel
  • SCH uplink shared channel
  • BCCH broadcast control channel
  • PCCH paging control channel
  • CCCH common control channel
  • MCCH multicast control channel
  • MTCH multicast traffic
  • the physical channel is composed of several OFDM symbols in the time domain and several sub-carriers in the frequency domain.
  • One sub-frame consists of a plurality of OFDM symbols in the time domain.
  • the RB is a resource allocation unit and includes a plurality of OFDM symbols and a plurality of subcarriers.
  • each subframe may use specific subcarriers of specific OFDM symbols (eg, the first OFDM symbol) of the corresponding subframe for the physical downlink control channel (PDCCH), that is, the L1 / L2 control channel.
  • Transmission Time Interval is a unit time of subframe transmission.
  • the RRC state refers to whether or not the RRC layer of the UE is in a logical connection with the RRC layer of the E-UTRAN. If connected, the RRC connection state is called. Since the UE in the RRC connected state has an RRC connection, the E-UTRAN can grasp the existence of the corresponding UE in a cell unit, and thus can effectively control the UE. On the other hand, the UE of the RRC idle state cannot be recognized by the E-UTRAN, and is managed by the CN (core network) in units of a tracking area, which is a larger area unit than a cell. That is, the UE in the RRC idle state is identified only in a large area unit, and must move to the RRC connected state to receive a normal mobile communication service such as voice or data.
  • CN core network
  • the terminal When the user first powers on the terminal, the terminal first searches for an appropriate cell and then stays in an RRC idle state in the cell.
  • the UE in the RRC idle state needs to establish an RRC connection, it establishes an RRC connection with the E-UTRAN through an RRC connection procedure and transitions to the RRC connected state.
  • RRC connection procedure There are several cases in which the UE in RRC idle state needs to establish an RRC connection. For example, an uplink data transmission is necessary due to a user's call attempt, or a paging message is sent from E-UTRAN. If received, a response message may be sent.
  • the non-access stratum (NAS) layer located above the RRC layer performs functions such as session management and mobility management.
  • EMM-REGISTERED EPS Mobility Management-REGISTERED
  • EMM-DEREGISTERED EMM-DEREGISTERED
  • the initial terminal is in the EMM-DEREGISTERED state, and the terminal performs a process of registering with the corresponding network through an initial attach procedure to access the network. If the attach procedure is successfully performed, the UE and the MME are in the EMM-REGISTERED state.
  • an EPS Connection Management (ECM) -IDLE state In order to manage a signaling connection between the UE and the EPC, two states are defined, an EPS Connection Management (ECM) -IDLE state and an ECM-CONNECTED state, and these two states are applied to the UE and the MME.
  • ECM EPS Connection Management
  • ECM-IDLE state When the UE in the ECM-IDLE state establishes an RRC connection with the E-UTRAN, the UE is in the ECM-CONNECTED state.
  • the MME in the ECM-IDLE state becomes the ECM-CONNECTED state when it establishes an S1 connection with the E-UTRAN.
  • the E-UTRAN does not have context information of the terminal.
  • the UE in the ECM-IDLE state performs a terminal-based mobility related procedure such as cell selection or cell reselection without receiving a command from the network.
  • a terminal-based mobility related procedure such as cell selection or cell reselection without receiving a command from the network.
  • the terminal when the terminal is in the ECM-CONNECTED state, the mobility of the terminal is managed by the command of the network.
  • the terminal In the ECM-IDLE state, if the position of the terminal is different from the position known by the network, the terminal informs the network of the corresponding position of the terminal through a tracking area update procedure.
  • the system information includes essential information that the terminal needs to know in order to access the base station. Therefore, the terminal must receive all system information before accessing the base station, and must always have the latest system information. In addition, since the system information is information that all terminals in a cell should know, the base station periodically transmits the system information.
  • the system information includes a master information block (MIB) and a scheduling block (SB). , SIB System Information Block).
  • MIB master information block
  • SB scheduling block
  • the MIB enables the UE to know the physical configuration of the cell, for example, bandwidth.
  • SB informs transmission information of SIBs, for example, a transmission period.
  • SIB is a collection of related system information. For example, some SIBs contain only information of neighboring cells, and some SIBs contain only information of an uplink radio channel used by the terminal.
  • services provided by a network to a terminal can be classified into three types as follows.
  • the terminal also recognizes the cell type differently according to which service can be provided. The following describes the service type first, followed by the cell type.
  • Limited service This service provides Emergency Call and Tsunami Warning System (ETWS) and can be provided in an acceptable cell.
  • ETWS Emergency Call and Tsunami Warning System
  • Normal service This service means a public use for general use, and can be provided in a suitable or normal cell.
  • This service means service for network operator. This cell can be used only by network operator and not by general users.
  • the cell types may be classified as follows.
  • Acceptable cell A cell in which the terminal can receive limited service. This cell is a cell that is not barred from the viewpoint of the terminal and satisfies the cell selection criteria of the terminal.
  • Suitable cell The cell that the terminal can receive a regular service. This cell satisfies the conditions of an acceptable cell and at the same time satisfies additional conditions. As an additional condition, this cell must belong to a Public Land Mobile Network (PLMN) to which the terminal can access, and must be a cell which is not prohibited from performing a tracking area update procedure of the terminal. If the cell is a CSG cell, the terminal should be a cell that can be connected to the cell as a CSG member.
  • PLMN Public Land Mobile Network
  • Barred cell A cell that broadcasts information that a cell is a prohibited cell through system information.
  • Reserved cell A cell that broadcasts information that a cell is a reserved cell through system information.
  • 4 is a flowchart illustrating an operation of a terminal in an RRC idle state. 4 illustrates a procedure in which a UE, which is initially powered on, registers with a network through a cell selection process and then reselects a cell if necessary.
  • the terminal selects a radio access technology (RAT) for communicating with a public land mobile network (PLMN), which is a network to be serviced (S410).
  • RAT radio access technology
  • PLMN public land mobile network
  • S410 a network to be serviced
  • Information about the PLMN and the RAT may be selected by a user of the terminal or may be stored in a universal subscriber identity module (USIM).
  • USIM universal subscriber identity module
  • the terminal selects a cell having the largest value among the measured base station and a cell whose signal strength or quality is greater than a specific value (Cell Selection) (S420). This is referred to as initial cell selection by the UE that is powered on to perform cell selection. The cell selection procedure will be described later.
  • the terminal receives system information periodically transmitted by the base station.
  • the above specific value refers to a value defined in the system in order to ensure the quality of the physical signal in data transmission / reception. Therefore, the value may vary depending on the RAT applied.
  • the terminal performs a network registration procedure (S430).
  • the terminal registers its information (eg IMSI) in order to receive a service (eg paging) from the network.
  • IMSI information
  • a service eg paging
  • the terminal selects a cell, the terminal does not register to the access network, and if the network information received from the system information (e.g., tracking area identity; TAI) is different from the network information known to the network, the terminal registers to the network. do.
  • the system information e.g., tracking area identity; TAI
  • the terminal performs cell reselection based on the service environment provided by the cell or the environment of the terminal (S440).
  • the terminal selects one of the other cells that provides better signal characteristics than the cell of the base station to which the terminal is connected if the strength or quality of the signal measured from the base station being service is lower than the value measured from the base station of the adjacent cell. do.
  • This process is called Cell Re-Selection, which is distinguished from Initial Cell Selection of Step 2.
  • a time constraint is placed. The cell reselection procedure will be described later.
  • FIG. 5 is a flowchart illustrating a process of establishing an RRC connection.
  • the terminal sends an RRC connection request message to the network requesting an RRC connection (S510).
  • the network sends an RRC connection setup message in response to the RRC connection request (S520). After receiving the RRC connection configuration message, the terminal enters the RRC connection mode.
  • the terminal sends an RRC Connection Setup Complete message used to confirm successful completion of RRC connection establishment to the network (S530).
  • RRC connection reconfiguration is used to modify an RRC connection. It is used to establish / modify / release RBs, perform handovers, and set up / modify / release measurements.
  • the network sends an RRC connection reconfiguration message for modifying the RRC connection to the terminal (S610).
  • the UE sends an RRC connection reconfiguration complete message used to confirm successful completion of the RRC connection reconfiguration to the network (S620).
  • the terminal selects / reselects a cell of appropriate quality and performs procedures for receiving service.
  • the UE in the RRC idle state should always select a cell of appropriate quality and prepare to receive service through this cell. For example, a terminal that has just been powered on must select a cell of appropriate quality to register with the network. When the terminal in the RRC connected state enters the RRC idle state, the terminal should select a cell to stay in the RRC idle state. As such, the process of selecting a cell satisfying a certain condition in order for the terminal to stay in a service standby state such as an RRC idle state is called cell selection.
  • the cell selection is performed in a state in which the UE does not currently determine a cell to stay in the RRC idle state, it is most important to select the cell as soon as possible. Therefore, if the cell provides a radio signal quality of a predetermined criterion or more, even if this cell is not the cell providing the best radio signal quality to the terminal, it may be selected during the cell selection process of the terminal.
  • PLMN public land mobile network
  • PLMN is a network deployed or operated by a mobile network operator. Each mobile network operator operates one or more PLMNs. Each PLMN may be identified by a mobile country code (MCC) and a mobile network code (MCN). The PLMN information of the cell is included in the system information and broadcasted.
  • MCC mobile country code
  • MN mobile network code
  • the terminal attempts to register the selected PLMN. If the registration is successful, the selected PLMN becomes a registered PLMN (RPLMN).
  • the network may signal the PLMN list to the UE, which may consider PLMNs included in the PLMN list as PLMNs such as RPLMNs.
  • the terminal registered in the network should be reachable by the network at all times. If the terminal is in the ECM-CONNECTED state (same as RRC connected state), the network recognizes that the terminal is receiving the service. However, when the terminal is in the ECM-IDLE state (same as the RRC idle state), the situation of the terminal is not valid in the eNB but is stored in the MME. In this case, the location of the UE in the ECM-IDLE state is known only to the MME as granularity of the list of tracking areas (TAs). A single TA is identified by a tracking area identity (TAI) consisting of the PLMN identifier to which the TA belongs and a tracking area code (TAC) that uniquely represents the TA within the PLMN.
  • TAI tracking area identity
  • TAC tracking area code
  • the UE selects a cell having a signal quality and characteristics capable of receiving an appropriate service from among cells provided by the selected PLMN.
  • an initial cell selection process in which the terminal does not have prior information on the radio channel. Accordingly, the terminal searches all radio channels to find an appropriate cell. In each channel, the terminal finds the strongest cell. Thereafter, the terminal selects a corresponding cell if it finds a suitable cell that satisfies a cell selection criterion.
  • the terminal may select the cell by using the stored information or by using the information broadcast in the cell.
  • cell selection can be faster than the initial cell selection process.
  • the UE selects a corresponding cell if it finds a cell that satisfies the cell selection criteria. If a suitable cell that satisfies the cell selection criteria is not found through this process, the UE performs an initial cell selection process.
  • the terminal After the terminal selects a cell through a cell selection process, the strength or quality of a signal between the terminal and the base station may change due to a change in mobility or a wireless environment of the terminal. Therefore, if the quality of the selected cell is degraded, the terminal may select another cell that provides better quality. When reselecting a cell in this way, a cell that generally provides better signal quality than the currently selected cell is selected. This process is called cell reselection.
  • the cell reselection process has a basic purpose in selecting a cell that generally provides the best quality to a terminal in view of the quality of a radio signal.
  • the network may determine the priority for each frequency and notify the terminal. Upon receiving this priority, the UE considers this priority prior to the radio signal quality criteria in the cell reselection process.
  • a method of selecting or reselecting a cell according to a signal characteristic of a wireless environment In selecting a cell for reselection when reselecting a cell, the following cell reselection is performed according to a cell's RAT and frequency characteristics. There may be a method of selection.
  • Intra-frequency cell reselection Reselection of a cell having a center-frequency equal to the RAT, such as a cell where the UE is camping
  • Inter-frequency cell reselection Reselects a cell having a center frequency different from that of the same RAT as the cell camping
  • Inter-RAT cell reselection UE reselects a cell using a RAT different from the camping RAT
  • the UE measures the quality of a serving cell and a neighboring cell for cell reselection.
  • cell reselection is performed based on cell reselection criteria.
  • the cell reselection criteria have the following characteristics with respect to serving cell and neighbor cell measurements.
  • Intra-frequency cell reselection is basically based on ranking.
  • Ranking is an operation of defining index values for cell reselection evaluation and using the index values to order the cells in the order of the index values.
  • the cell with the best indicator is often called the best ranked cell.
  • the cell index value is a value obtained by applying a frequency offset or a cell offset as necessary based on the value measured by the terminal for the corresponding cell.
  • Inter-frequency cell reselection is based on the frequency priority provided by the network.
  • the terminal attempts to camp on the frequency with the highest frequency priority.
  • the network may provide the priorities to be commonly applied to the terminals in the cell or provide the frequency priority through broadcast signaling, or may provide the priority for each frequency for each terminal through dedicated signaling.
  • the network may provide the UE with parameters (for example, frequency-specific offset) used for cell reselection for each frequency.
  • the network may provide the UE with a neighboring cell list (NCL) used for cell reselection to the UE.
  • NCL neighboring cell list
  • This NCL contains cell-specific parameters (eg cell-specific offsets) used for cell reselection.
  • the network may provide the UE with a cell reselection prohibition list (black list) used for cell reselection to the UE.
  • the UE does not perform cell reselection for a cell included in the prohibition list.
  • the ranking criterion used to prioritize the cells is defined as in Equation 1.
  • Rs is a ranking indicator of the serving cell
  • Rn is a ranking indicator of the neighbor cell
  • Qmeas s is a quality value measured by the UE for the serving cell
  • Qmeas n is a quality value measured by the UE for the neighbor cell
  • Qhyst is The hysteresis value, Qoffset, for the ranking is the offset between two cells.
  • the ranking index Rs of the serving cell and the ranking index Rn of the neighboring cell change in a similar state, the ranking ranking is constantly changed as a result of the change, such that the terminal may alternately select two cells.
  • Qhyst is a parameter for giving hysteresis in cell reselection to prevent the UE from reselecting two cells alternately.
  • the UE measures the Rs of the serving cell and the Rn of the neighboring cell according to the above equation, considers the cell having the highest ranking indicator value as the best ranked cell, and reselects the cell.
  • the quality of the cell serves as the most important criterion in cell reselection. If the reselected cell is not a normal cell, the terminal excludes the frequency or the corresponding cell from the cell reselection target.
  • RRM radio resource management
  • the terminal may perform measurement for a specific purpose set by the network and report the measurement result to the network in order to provide information that may help the operator operate the network in addition to the purpose of mobility support. For example, the terminal receives broadcast information of a specific cell determined by the network.
  • the terminal may include a cell identity (also referred to as a global cell identifier) of the specific cell, location identification information (eg, tracking area code) to which the specific cell belongs, and / or other cell information (eg, For example, whether a member of a closed subscriber group (CSG) cell) may be reported to the serving cell.
  • a cell identity also referred to as a global cell identifier
  • location identification information eg, tracking area code
  • CSG closed subscriber group
  • the mobile station may report location information and measurement results of poor quality cells to the network.
  • the network can optimize the network based on the report of the measurement results of the terminals helping the network operation.
  • the terminal In a mobile communication system with a frequency reuse factor of 1, mobility is mostly between different cells in the same frequency band. Therefore, in order to ensure the mobility of the terminal well, the terminal should be able to measure the quality and cell information of neighboring cells having the same center frequency as the center frequency of the serving cell. As such, the measurement of the cell having the same center frequency as that of the serving cell is called an intra-frequency measurement. The terminal performs the same frequency measurement and reports the measurement result to the network at an appropriate time, so that the purpose of the corresponding measurement result is achieved.
  • the mobile operator may operate the network using a plurality of frequency bands.
  • the terminal may measure quality and cell information of neighboring cells having a center frequency different from that of the serving cell. Should be As such, a measurement for a cell having a center frequency different from that of the serving cell is referred to as another inter-frequency measurement.
  • the terminal should be able to report the measurement results to the network at an appropriate time by performing another frequency measurement.
  • the measurement of the cell of the heterogeneous network may be performed by the base station configuration.
  • This measurement for heterogeneous networks is referred to as inter-RAT (Radio Access Technology) measurement.
  • the RAT may include a UMTS Terrestrial Radio Access Network (UTRAN) and a GSM EDGE Radio Access Network (GERAN) conforming to the 3GPP standard, and may also include a CDMA 2000 system conforming to the 3GPP2 standard.
  • UTRAN UMTS Terrestrial Radio Access Network
  • GERAN GSM EDGE Radio Access Network
  • the terminal receives measurement configuration information from the base station.
  • a message including measurement setting information is called a measurement setting message.
  • the terminal performs the measurement based on the measurement setting information. If the measurement result satisfies the reporting conditions in the measurement configuration information, the terminal reports the measurement result to the base station.
  • a message containing a measurement result is called a measurement report message.
  • the measurement setting information may include the following information.
  • the measurement target includes at least one of an intra-frequency measurement target for intra-cell measurement, an inter-frequency measurement target for inter-cell measurement, and an inter-RAT measurement target for inter-RAT measurement.
  • the intra-frequency measurement object indicates a neighboring cell having the same frequency band as the serving cell
  • the inter-frequency measurement object indicates a neighboring cell having a different frequency band from the serving cell
  • the inter-RAT measurement object is
  • the RAT of the serving cell may indicate a neighboring cell of another RAT.
  • Reporting configuration information Information on a reporting condition and a report type relating to when a terminal reports a measurement result.
  • the reporting condition may include information about an event or a period at which the reporting of the measurement result is triggered.
  • the report type is information about what type of measurement result to configure.
  • Measurement identity information This is information about a measurement identifier that associates a measurement object with a report configuration, and allows the terminal to determine what type and when to report to which measurement object.
  • the measurement identifier information may be included in the measurement report message to indicate which measurement object the measurement result is and in which reporting condition the measurement report occurs.
  • Quantitative configuration information information on a parameter for setting filtering of a measurement unit, a reporting unit, and / or a measurement result value.
  • Measurement gap information Information about a measurement gap, which is a section in which a UE can only use measurement without considering data transmission with a serving cell because downlink transmission or uplink transmission is not scheduled. .
  • the terminal has a measurement target list, a measurement report configuration list, and a measurement identifier list to perform a measurement procedure.
  • the base station may set only one measurement target for one frequency band to the terminal.
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • RRC Radio Resource Control
  • Protocol specification Release 8
  • the terminal If the measurement result of the terminal satisfies the set event, the terminal transmits a measurement report message to the base station.
  • the measurement report may include a measurement identifier, a measured quality of the serving cell, and a measurement result of a neighboring cell.
  • the measurement identifier identifies the measurement object for which the measurement report is triggered.
  • the measurement result of the neighbor cell may include the cell identifier of the neighbor cell and the measured quality.
  • the measured quality may include at least one of Reference Signal Received Power (RSRP) and Reference Signal Received Quality (RSRQ).
  • the UE continuously measures to maintain the quality of the radio link with the serving cell receiving the service.
  • the terminal determines whether communication is impossible in the current situation due to deterioration of the quality of the radio link with the serving cell. If the quality of the serving cell is so low that communication is almost impossible, the terminal determines the current situation as a radio connection failure.
  • the UE abandons communication with the current serving cell, selects a new cell through a cell selection (or cell reselection) procedure, and reestablishes an RRC connection to the new cell (RRC connection re). -establishment).
  • the UE determines that there is a serious problem in the downlink communication quality based on the radio quality measurement result of the physical layer of the UE (when it is determined that the PCell quality is low during the RLM)
  • FIG. 7 is a diagram illustrating a RRC connection reestablishment procedure.
  • the terminal stops use of all radio bearers which have been set except for Signaling Radio Bearer # 0 (SRB 0) and initializes various sublayers of an access stratum (AS) (S710).
  • SRB 0 Signaling Radio Bearer # 0
  • AS access stratum
  • each sublayer and physical layer are set to a default configuration.
  • the UE maintains an RRC connection state.
  • the UE performs a cell selection procedure for performing an RRC connection reconfiguration procedure (S720).
  • the cell selection procedure of the RRC connection reestablishment procedure may be performed in the same manner as the cell selection procedure performed by the UE in the RRC idle state, although the UE maintains the RRC connection state.
  • the terminal After performing the cell selection procedure, the terminal checks the system information of the corresponding cell to determine whether the corresponding cell is a suitable cell (S730). If it is determined that the selected cell is an appropriate E-UTRAN cell, the terminal transmits an RRC connection reestablishment request message to the cell (S740).
  • the RRC connection re-establishment procedure is stopped, the terminal is in the RRC idle state Enter (S750).
  • the terminal may be implemented to complete the confirmation of the appropriateness of the cell within a limited time through the cell selection procedure and the reception of system information of the selected cell.
  • the UE may drive a timer as the RRC connection reestablishment procedure is initiated.
  • the timer may be stopped when it is determined that the terminal has selected a suitable cell. If the timer expires, the UE may consider that the RRC connection reestablishment procedure has failed and may enter the RRC idle state.
  • This timer is referred to hereinafter as a radio link failure timer.
  • a timer named T311 may be used as a radio link failure timer.
  • the terminal may obtain the setting value of this timer from the system information of the serving cell.
  • the cell When the RRC connection reestablishment request message is received from the terminal and the request is accepted, the cell transmits an RRC connection reestablishment message to the terminal.
  • the UE Upon receiving the RRC connection reestablishment message from the cell, the UE reconfigures the PDCP sublayer and the RLC sublayer for SRB1. In addition, it recalculates various key values related to security setting and reconfigures the PDCP sublayer responsible for security with newly calculated security key values. Through this, SRB 1 between the UE and the cell is opened and an RRC control message can be exchanged. The terminal completes the resumption of SRB1 and transmits an RRC connection reestablishment complete message indicating that the RRC connection reestablishment procedure is completed to the cell (S760).
  • the cell transmits an RRC connection reestablishment reject message to the terminal.
  • the cell and the terminal performs the RRC connection reestablishment procedure.
  • the UE recovers the state before performing the RRC connection reestablishment procedure and guarantees the continuity of the service to the maximum.
  • Subscriber and equipment traces provide very detailed information at the call level for one or more specific mobiles. This data can be an additional source of information for performance measurement and also allow for more advanced monitoring and optimization operations. Unlike performance measurements, which are always sources of information, traces can be activated at the request / needs of the user for a limited time period for specific analysis purposes. Tracking includes determining root cause of malfunctioning mobile, improved troubleshooting, optimizing resource usage and quality, controlling radio frequency (RF) coverage, improving capacity, analyzing dropouts, core network Network) and UTRAN play a very important role in operations such as UMTS procedure checks.
  • RF radio frequency
  • Log data on the interface at the call level for a service initiated by a particular user eg International Mobile Subscriber Identity
  • mobile type eg International Mobile Equipment Identity (IMEI) or IMEIS and Software Version (IMEISV)
  • performance measures such as recognition of end-user QoS during a call (eg requested QoS vs. provided QoS), correlation between protocol messages and RF measurements, or interoperability with specific mobile vendors.
  • Information that cannot be obtained can be obtained. Tracking data is collected at the TCE.
  • MDT Minimization of Driving Tests
  • MDT allows conventional operators to perform measurements and report the results to the terminal instead of using a drive test to measure the quality of the cell using a car. . Coverage depends on the location of the base station, the layout of the surrounding buildings, and the environment of use of the user. Therefore, the operator needs to periodically drive test, which is expensive and resource-intensive. In order to overcome this disadvantage, the MDT is proposed that the operator measures the coverage using the terminal.
  • the operator synthesizes the MDT measurement values received from the various terminals to create a coverage map that shows the distribution of service availability and quality of service over the entire area in which the operator provides the service. It can be utilized. For example, if a coverage problem of a specific area is reported from the terminal, the operator may expand the coverage of the corresponding area cell by increasing the transmission power of the base station providing the service of the corresponding area. In this way, the time and cost of network optimization can be minimized.
  • MDT is built on a framework of tracing, one of the operator's tools for operation, administration, and maintenance (OAM).
  • OAM operator's tools for operation, administration, and maintenance
  • the tracking function provides the operator with the ability to track and log the behavior of the terminal, thus making it possible to determine the main cause of terminal-side malfunction.
  • Traced data is collected on the network, which is called a trace collection entity (TCE).
  • TCE trace collection entity
  • Tracking functionality used for MDT includes tracking based signaling and management based tracking functions. Tracking function based signaling is used for activating an MDT task for a specific terminal, whereas tracking function based management is used for activating an MDT task without being limited to a specific terminal.
  • MDT can be divided into two types, the logged MDT (immediate MDT) and the immediate MDT (immediate MDT) according to whether the terminal reports the measured and stored log data in real time or in real time.
  • the logged MDT is a method in which the terminal logs the data after the MDT measurement and then transmits the data to the network.
  • MDT is a method of measuring MDT and sending the data directly to the network. According to the logged MDT, the UE performs the MDT measurement in the RRC idle state, but immediately according to MDT, the UE performs the MDT measurement in the RRC connected state.
  • FIG. 8 is a flowchart illustrating a method of performing a logged MDT.
  • the terminal receives a logged measurement configuration (S810).
  • the logged measurement configuration may be included in the RRC message and transmitted as a downlink control channel.
  • the logged measurement setting may include at least one of a TCE ID, reference time information for logging, logging duration, logging interval, and area configuration. It may include.
  • the logging interval indicates an interval for storing the measurement result.
  • the logging duration indicates the duration for which the terminal performs the logged MDT.
  • the reference time indicates a time that is a reference for the duration of performing the logged MDT.
  • the area setting indicates the area where the terminal is requested to perform logging.
  • the validity timer refers to the lifetime of the logged measurement setup, which can be specified by information about the logging duration.
  • the duration of the validity timer may indicate not only the valid lifetime of the logged measurement configuration but also the validity of the measurement results possessed by the terminal.
  • the procedure in which the UE sets the measured measurement and the related procedures are performed is called a configuration phase.
  • the terminal When the terminal enters the RRC idle state (S821), the terminal logs the measurement result while the validity timer is driven (S822).
  • the measurement result value may include RSRP, RSRQ, received signal code power (RSCP), Ec / No, and the like.
  • RSRP received signal code power
  • Ec / No information logging the measurement result
  • a temporal interval during which the UE logs at least one measurement result is called a logging phase.
  • the terminal performing the logged MDT based on the logged measurement configuration may vary depending on the location of the terminal.
  • FIG. 9 is a diagram illustrating an example of a logged MDT according to a logging region.
  • the network may set a logging area which is an area where the terminal should log.
  • the logging area may be represented by a cell list or a tracking area / location area list.
  • the terminal stops logging when it leaves the logging area.
  • the first area 910 and the third area 930 are areas set as logging areas, and the second area 920 is areas where logging is not allowed.
  • the terminal logs in the first area 910 but does not log in the second area 920.
  • the terminal moves from the second area 920 to the third area 930, the terminal performs logging again.
  • FIG. 10 is a diagram illustrating an example of a logged MDT according to a RAT change.
  • the UE performs logging only when it is camped on the RAT receiving the logged measurement configuration, and stops logging at another RAT. However, the UE may log cell information of another RAT in addition to the staying RAT.
  • the first region 1010 and the third region 1030 are E-UTRAN regions, and the second region 1020 is a UTRAN region.
  • the logged measurement settings are received from the E-UTRAN.
  • the terminal enters the second region 1020, the terminal does not perform the MDT measurement.
  • the terminal when the terminal enters the RRC connection state (831) and there is a logged measurement to report, the terminal informs the base station that there is a logged measurement to report (S832).
  • the terminal may inform the base station that there is a logged measurement when the RRC connection is established, the RRC connection is re-established, or the RRC connection is reconfigured.
  • the terminal performs the handover it may be notified that there is a logged measurement in the handover target cell.
  • Informing the base station that there is a logged measurement may include transmitting a logged measurements available indicator, which is indication information indicating that there is a logged measurement, in an RRC message transmitted by the terminal to the base station.
  • the RRC message may be an RRC connection setup complete message, an RRC connection reestablishment complete message, an RRC reset complete message, or a handover complete message.
  • the base station When the base station receives a signal indicating that there is a logged measurement from the terminal, it requests the terminal to report the logged measurement (S833). Requesting to report the logged measurement may include transmitting a logged measurement report request parameter related to the information indicating this in an RRC message.
  • the RRC message may be a UE information request message.
  • reporting the logged measurements to the base station may include sending a logged measurements report including the logged measurements to the base station in an RRC message.
  • the RRC message may be a UE information report message.
  • the terminal may report the entire logged measurement that the terminal has to the base station or report a part thereof to the base station. If some are reported, some reported may be discarded.
  • the terminal informs the base station that there is a logged measurement, is requested to report from the base station, and accordingly, a process in which the process of reporting the logged measurement is performed is called a reporting phase.
  • the measurement by the terminal while the logged MDT is performed is mainly related to the wireless environment.
  • MDT measurements may include the cell identifier, the signal quality and / or signal strength of the cell.
  • MDT measurements can include measurement time and measurement location.
  • the following table exemplifies contents logged by the terminal.
  • Information logged at different logging points may be stored to be divided into different log entries as shown below.
  • 11 is a diagram illustrating an example of logged measurements.
  • the logged measurement includes one or more log entries.
  • the log entry includes a logging location, a logging time, a serving cell identifier, a serving cell measurement result, and a neighbor cell measurement result.
  • the logging position indicates the position measured by the terminal.
  • the logging time represents the time measured by the terminal.
  • Information logged at different logging times is stored in different log entries.
  • the serving cell identifier may include a cell identifier in layer 3, which is called a global cell identity (GCI).
  • GCI is a set of physical cell identity (PCI) and PLMN identifiers.
  • the terminal may analyze and log performance related indicators of the terminal in addition to the wireless environment. For example, throughput, erroneous transmission / reception rate, and the like may be included.
  • the aforementioned logging phase and reporting phase may exist multiple times within the logging duration (S841, S842).
  • the base station When the base station receives the reported measurement, it can record / store it in the TCE.
  • the terminal After the validity timer expires, that is, after the logging duration has elapsed, if the terminal has a logged measurement that has not yet been reported, the terminal performs a procedure for reporting it to the base station.
  • the phase in which all the procedures are carried out is called the post-reporting phase.
  • the terminal discards the measured measurement configuration after the end of the logging duration and starts a conservation timer. After the logging duration ends, the UE stops measuring the MDT. However, the measurements already logged are not discarded. The retention timer indicates the lifetime of the remaining logged measurements.
  • the UE If the UE enters the RRC connection state before the retention timer expires (S851), it is possible to report a logged measurement not yet reported to the base station. In this case, the above-described procedure for the logged measurement report may be performed (S852, S853, S854). When the retention timer expires, the remaining logged measurements can be discarded. When the base station receives the reported measurement, it can record / store it in the TCE.
  • the preservation timer may be set to the terminal in advance by being fixed to a predetermined value in the terminal.
  • the value of the retention timer may be 48 hours.
  • the value of the retention timer may be included in the logged measurement setting and transmitted to the terminal, or may be included in another RRC message and transmitted to the terminal.
  • the terminal may update the existing logged measurement settings with the newly acquired logged measurement settings.
  • the validity timer may be restarted from the time when the logged measurement setting is newly received.
  • logged measurements based on previously logged measurement settings may be discarded.
  • MDT is a diagram illustrating an example of an immediate MDT.
  • MDT is based on RRM (radio resource management) measurement and reporting mechanism, and additionally reports the information to the base station by adding information related to the location when reporting.
  • RRM radio resource management
  • the terminal receives an RRC connection reset message (S1210) and transmits an RRC connection reset complete message (S1220). Through this, the terminal enters the RRC connection state.
  • the terminal may receive the measurement setting through receiving the RRC connection reset message.
  • the measurement setting is received through an RRC connection reestablishment message. However, this may be included in another RRC message and transmitted.
  • the terminal performs measurement and evaluation in the RRC connection state (S1231) and reports the measurement result to the base station (S1232).
  • the measurement results may provide accurate location information, if possible, such as an example of global navigation satellite system (GNSS) location information.
  • GNSS global navigation satellite system
  • location measurement such as an RF fingerprint, it may provide neighbor cell measurement information that may be used to determine the location of the terminal.
  • the UE reports this failure event to the network when an RLF occurs or a handover failure occurs in order to support Mobility Robustness Optimization (MRO) of the network.
  • MRO Mobility Robustness Optimization
  • the UE may provide an RLF report to the eNB.
  • Radio measurements included in the RLF report can be used as potential reasons for failure to identify coverage problems. This information can be used to exclude such events from the MRO evaluation of intra-LTE mobility connection failures and to write those events as input to other algorithms.
  • the UE may generate a valid RLF report for the eNB after reconnecting in the idle mode. For this purpose, the UE stores the latest RLF or handover failure related information, and for 48 hours after the RLF report is retrieved by the network or after the RLF or handover failure is detected, the RRC connection ( Re-establishment and handover may indicate to the LTE cell that the RLF report is valid.
  • the UE maintains the information during state transition and RAT change, and indicates that the RLF report is valid again after returning to the LTE RAT.
  • the validity of the RLF report in the RRC connection establishment procedure indicates that the UE has been interrupted such as a connection failure and that the RLF report due to this failure has not yet been delivered to the network.
  • the RLF report from the terminal includes the following information.
  • E-CGI of the target cell of the last cell in case of RRL or handover that provided a service to the terminal. If the E-CGI is unknown, PCI and frequency information is used instead.
  • E-CGI of the cell that serviced the terminal when the last handover initialization for example when message 7 (RRC connection reset) was received by the terminal.
  • the eNB receiving the RLF failure from the terminal may forward the report to the eNB that provided the service to the terminal before the reported connection failure.
  • Radio measurements included in the RLF report can be used to identify coverage issues as a potential cause of radio link failure. This information can be used to exclude these events from the MRO assessment of intra-LTE mobility connection failures and send them back as input to other algorithms.
  • RLF reporting can be considered as part of the MDT.
  • Dealing with the non-availability measurement of a connection for a terminal has many aspects, which deal with both common channels and connection procedures.
  • the terminal In order to inform the invalidity of the connection to the network, and thus to help optimize parameters for increasing the validity of the connection, the terminal performs accessibility measurement in case of connection establishment failure. In order to measure accessibility, the terminal performs the following logging.
  • a time stamp derived by using a relative timer that counts the time between failure and reporting is included.
  • the storage time for accessibility measurement is 48 hours.
  • Accessibility measures can be considered as part of the MDT.
  • the positioning function provides a means for determining the geographical location and / or speed of the terminal based on the measurement of the radio signal.
  • the location information may be requested and reported to the client by the client to which the terminal is coupled (e.g. application) or the client in or attached to the core network.
  • the location information is reported in a standard format, which is cell based or geographic coordinates with an estimated error (uncertainty) of the location and speed of the terminal and, if possible, the location method (or list of methods) used to obtain the location estimate. It can be implemented as.
  • the majority of activating or deactivating terminals in the network may be able to use the LoCation Service (LCS) feature without compromising the E-UTRAN's radio transmission or signaling capabilities.
  • LCS LoCation Service
  • the uncertainty of the location information depends on the method used, the location of the terminal in the coverage area and the movement of the terminal.
  • the various design options of the E-UTRAN system eg cell size, adjustable antenna technology, path loss estimates, timing accuracy, eNB surveys
  • Positioning functions may be used internally by EPS, by value-added network services, by the terminal itself or over the network, and by third party services.
  • the function may also be necessary or used by additional emergency services, but location services may not be exclusively assigned for location services.
  • Positioning methods supported by E-UTRAN include network-assisted GNSS method, downlink positioning method, enhanced cell ID (E-CID) method, and uplink positioning (uplink). There may be a positioning method, and a hybrid positioning method in which one or more of the above-described methods are simultaneously applied.
  • the GNSS assisted network method is based on a terminal having a wireless receiver capable of receiving GNSS signals.
  • GNSS includes Global Positioning System (GPS), Galileo, Global Navigation Satellite System (GLONASS), Space Based Augmentation Systems (SBAS), and Quasi Zenith Satellite System (QZSS).
  • GPS Global Positioning System
  • GLONASS Global Navigation Satellite System
  • SBAS Space Based Augmentation Systems
  • QZSS Quasi Zenith Satellite System
  • different GNSSs may be used individually to determine the location of the terminal, or at least one system may be used in combination.
  • the downlink positioning method is based on measured timing of downlink signals received from a plurality of eNBs to a UE.
  • the terminal measures the timing of the received signals using assistance data received from the positioning server.
  • the measurement result is used to determine the position of the terminal relative to the neighbor eNBs.
  • the location of the terminal is estimated based on the knowledge of the serving eNB of the terminal and the serving cell.
  • Information about the serving eNB and the serving cell may be obtained by paging, tracking area update or other methods.
  • the E-CID positioning method refers to a technique that uses an additional terminal and / or E-UTRAN radio resource and other measurements to improve the terminal location estimation.
  • the E-CID positioning method utilizes some of the same measurements as the measurement control system on the RRC protocol, the UE is generally not expected to make additional measurements only for positioning. For example, no separate measurement setting or measurement control message is provided for positioning, and the terminal reports valid measurements that it has rather than required to take additional measurement actions.
  • the uplink positioning method also called Uplink Time Difference OF Arrival (UTDOA) is based on measurement timings of a plurality of Location Measurement Units (LMUs) for uplink signals transmitted from a terminal.
  • LMUs Location Measurement Units
  • the LMU measures signal reception timing using assistance data received from the positioning server, and the result of the measurement is used to estimate the position of the terminal.
  • FIG. 13 is a diagram illustrating an example of a structure of a wireless communication system to which positioning of a terminal is applied according to an embodiment of the present invention.
  • the MME may receive a request for a location service related to a specific target terminal from a specific entity (e.g. Global Mobile Location Center (GMLC) or terminal).
  • a specific entity e.g. Global Mobile Location Center (GMLC) or terminal.
  • IMS emergency call IP Multimedia Subsystem emergency call
  • the MME may decide to start location service for a specific target terminal. Accordingly, the MME sends a location service request to the Evolved-Service Mobile Location Center (E-SMLC).
  • E-SMLC Evolved-Service Mobile Location Center
  • the E-SMLC handles location service requests.
  • the E-SMLC may deliver assistance data to the target terminal to assist in terminal based and / or terminal assist positioning.
  • the E-SMLC may perform positioning of the target terminal.
  • the E-SMLC may deliver configuration data to selected location measurement units (LMUs). Accordingly, the E-SMLC may return the result of the location service to the MME. Meanwhile, when the location service is requested by an entity other than the MME (UE or E-SMLC), the MME may return the result to the corresponding entity.
  • LMUs location measurement units
  • SULP Location Platform is a Secure User Plane Location (SUPL) entity responsible for positioning on a user plane.
  • location related functions are provided, and such functions may be appropriately distributed and implemented in the structure of FIG. 13. Meanwhile, referring to FIG. 14, location service related operations that may be performed between such entities.
  • FIG. 14 is a diagram illustrating various procedures for location service according to an embodiment of the present invention.
  • the MME When the MME receives a location service request when the terminal is in the ECM-IDLE state, the MME performs a network-induced service request to establish a signaling connection with the terminal and allocate a specific eNB. It is assumed that the terminal enters the connected state before the various procedures shown in FIG. 14 are started.
  • the location service is started by a location service request of a specific entity (S1410).
  • the location service request may be initiated as follows.
  • the terminal may request a location service (e.g. positioning or support data delivery) to the serving MME on the NAS level (S1410a).
  • a location service e.g. positioning or support data delivery
  • a specific entity in an Evolved Packet Core (EPC) such as GMLC may request a location service (e.g. positioning) for a target terminal to the serving MME (S1410b).
  • the serving MME for the target terminal determines whether the location service is necessary, and if necessary, may request the location service itself (S1410c). This may be for positioning the terminal at a specific location or for emergency calls.
  • the MME forwards the location service request to the E-SMLC (S1420).
  • the E-SMLC performs a location service procedure in response to the location service request (S1430).
  • the E-SMLC may perform a location service procedure with the serving eNB of the terminal (S1430a). This may include acquiring positioning measurements or assistance data.
  • the E-SMLC may perform a location service procedure with the UE (S1430b). This may include obtaining location estimation or positioning measurements or delivering location assistance data to the terminal.
  • uplink positioning e.g. UTDOA
  • the E-SMLC may perform location service procedures with one or more LMUs for the target terminal (S1430c). This may include obtaining a positioning measurement.
  • the E-SMLC provides a location service response to the MME (S1440).
  • the location service response may include the necessary results and may include, for example, a location estimate for the indicator and / or terminal indicating success or failure.
  • the location service response is provided to the entity requesting the location service (S1450).
  • the MME may transmit a location service response to the terminal (S1450a).
  • the location service response may include a result requested or required, such as a location estimation of the terminal.
  • the MME may transmit a location service response to the corresponding entity (S1450b).
  • the location service response may include a result requested or required, such as a location estimation of the terminal.
  • the location service response received from the E-SMLC may be used for location service (S1450c).
  • the E-SMLC may interact with elements in the E-UTRAN to obtain measurement information supporting one or more position methods for all terminals.
  • the E-SMLC may acquire location related information to support the downlink position method, and for this purpose, the E-SMLC may interact with an accessible eNB from an MME that is signaling with the E-SMLC.
  • the information may include timing information for the eNB that is related to absolute GNSS time or timing for other eNBs.
  • the information may include information about a supported cell, and for example, a Positioning Reference Signal (PRS) schedule may be included. Signaling access between the E-SMLC and the eNB may be performed through the MME maintaining signaling access with the E-SMLC and the eNB.
  • PRS Positioning Reference Signal
  • the E-SMLC may interact with the serving eNB of the UE to retrieve target UE configuration information for supporting the uplink positioning method.
  • the configuration information may include information required from the LMU to obtain uplink time measurement.
  • the E-SMLC may indicate to the serving eNB that it needs to transmit an SRS signal to the terminal for uplink positioning. If the requested resource is not available, the eNB may allocate another resource and report the resource allocation to the E-SMLC.
  • the E-SMLC may also request the LMU to perform uplink time measurements and report the results.
  • the terminal may transmit a signal required for uplink based terminal position measurement. It can also measure downlink signals from other resources, such as E-UTRAN and other GNSS systems. The measurement method may be determined based on the selected positioning method.
  • the terminal may access the location service application, including the location service application, or via communication with the network or other applications present in the terminal.
  • the location service application includes the measurement and calculation functions required to determine the location of the terminal with or without the support of the required network.
  • the terminal may include an independent positioning function (e.g. GPS) and may report the result independently of the E-UTRAN transmission.
  • a terminal having an independent positioning function may utilize assistance information obtained from a network.
  • An eNB is an element of an E-UTRAN network that provides measurement results for location estimation and can measure radio signals for a target terminal and send the measurements to the E-SMLC.
  • the eNB may perform measurement in response to the request, or may automatically perform measurement and reporting when a change in a regular or specific radio state occurs.
  • the eNB may configure the terminal to transmit periodic SRS.
  • the E-SMLC manages the support of location services for the target terminal, which includes positioning of the terminal and delivery of assistance data to the terminal.
  • the E-SMLC may interact with the serving eNB of the terminal to obtain location measurements for the terminal. Measurement includes uplink measurement by eNB and downlink measurement by UE. Among them, downlink measurement by the UE may be provided to the eNB through another function such as support of handover.
  • the E-SMLC enables the uplink positioning method and instructs the serving eNB that the UE needs to instruct the UE to transmit the SRS signal in order to obtain the target UE configuration data necessary for the LMU to calculate the timing of the signal. Interact with The E-SMLC may select the set of LMUs used for UTDOA positioning. The E-SMLC may interact with the selected LMUs to request timing measurements.
  • the E-SMLC may interact with the target terminal to convey assistance data when requested or to obtain a location estimate.
  • the E-SMLC may determine the positioning method to be used based on factors including the LCS client type, the required QoS, the terminal positioning capability, the positioning capability of the eNB, and the like. Accordingly, the E-SMLC may apply the positioning method to the terminal and / or serving eNB. Positioning methods include position estimation for terminal-based positioning methods and / or position measurement for terminal-assisted and network-based positioning methods. The E-SMLC may combine all received results and determine a single location estimate for the target terminal. Additional information such as the accuracy and speed of the position estimate may also be determined.
  • the LMU performs the measurements and passes the measured results to the E-SMLC. All position measurements obtained by the LMU can be provided to the requested E-SMLC.
  • the terminal positioning request may involve measurement by a plurality of LMUs.
  • the location information is provided by the terminal when the network utilizes the measurement results of the terminal. This is because the location information related to the measurement result allows the network to perform network optimization, such as controlling / resetting network parameters that affect the location where performance degradation occurs.
  • the terminal when the terminal reports the location information to the network together with the measurement result, additional battery consumption may occur.
  • the terminal performs an operation for obtaining location information separately from an operation for performing measurement. Therefore, the acquisition of the location information by the terminal may be efficient in terms of power management of the terminal only when reporting of the location information is necessary.
  • the power of the terminal consumed due to the location information acquisition it is possible to consider starting the location information acquisition at the moment when the report of the measurement result required for the location information acquisition of the terminal is likely to occur. As a result, when the reporting condition of the measurement result is satisfied, a case where acquisition of the position information may not be completed may occur. In this case, the terminal may report the measurement result without the location information. If measurement results are reported without location information, it can be difficult to efficiently optimize network performance.
  • measurement reporting related to network performance optimization may be more important to include location information than reporting urgency. Accordingly, a method of delaying the reporting time point of the measurement result is proposed so that the acquisition of the location information is completed and reported together even if the condition for performing the measurement report is satisfied.
  • 15 is a flowchart illustrating a reporting method according to an embodiment of the present invention.
  • the terminal determines whether the measurement result reporting condition is satisfied (S1510).
  • the terminal may determine whether the measurement result report condition is satisfied based on whether the event related to the measurement result report is satisfied.
  • the event may be events A1, A2, A3, A4, A5, B1, and B2 of Table 1.
  • the terminal may determine that the measurement result report condition is satisfied.
  • the terminal receives the logged measurement report request message from the network when reporting the logged measurement according to the logged MDT, it may determine that the measurement result reporting condition is satisfied.
  • the UE detects a connection failure (e.g. RLF, handover failure, RRC connection establishment failure, etc.)
  • the UE may determine that the measurement result reporting condition is satisfied.
  • the terminal receives a report request message corresponding to a connection failure (e.g. RLF, handover failure, RRC connection establishment failure, etc.) from the network, it may determine that the measurement result reporting condition is satisfied.
  • a connection failure e.g. RLF, handover failure, RRC connection establishment failure, etc.
  • the terminal determines whether to report the location information associated with the measurement result to the network when reporting the measurement result (S1520).
  • the terminal may determine to report the location information along with the measurement result to the network.
  • the terminal may determine to report the location information together with the measurement result when the reporting of the location information is possible.
  • the terminal may decide to transmit the location information to the network when reporting the measurement result.
  • the terminal may decide to transmit the measurement result and the location information together to the network.
  • the UE may determine to transmit the location information to the network along with the measurement result related thereto in delivering a message according to a connection failure such as an RLF, a handover failure or an RRC connection establishment failure.
  • a connection failure such as an RLF, a handover failure or an RRC connection establishment failure.
  • the terminal attempts to acquire location information to be transmitted to the network together with the measurement result (S1530).
  • the terminal may perform the above-described positioning technique for obtaining location information.
  • the time point at which the terminal starts to acquire the location information is performed after the decision to report the measurement result is not limited thereto.
  • the terminal may attempt to acquire the location information associated with the time of obtaining the measurement result.
  • the terminal may attempt to acquire the location information after completing the acquisition of the measurement result, or may attempt to acquire the location information when the reporting condition of the measurement result is satisfied.
  • the acquisition of the location information when the reporting condition of the measurement result is satisfied means that when the event related to the measurement result report is satisfied for the first time, the acquisition of the location information is attempted or the event is satisfied for a certain time after the initial satisfaction of the event related to the measurement result measurement. If the result reporting condition is satisfied, the location information acquisition may be started.
  • the terminal determines whether to report the delay of the measurement result (S1540). That is, if the acquisition of the location information related to the measurement result is not completed even though the conditions for reporting the measurement result are satisfied, the terminal acquires the measurement result first or suspends the report of the measurement result and then acquires it when the acquisition of the location information is completed. Whether to report with the location information can be determined.
  • the terminal may determine whether the delay report is indicated based on the separate signaling by the network.
  • the network may transmit the configuration message related to the measurement result report of the terminal by including indication information indicating whether the delay of the measurement result can be reported.
  • the determination of whether the terminal reports the delay of the measurement may be performed according to whether the delay report is set in advance in the terminal.
  • the terminal decides to report delay and suspends the reporting of the measurement result until the position information is obtained and / or until a specific time point. Can be. Thereafter, when the acquisition of the location information is completed, a report message including a measurement result and related location information is transmitted to the network (S1550).
  • the terminal transmits a report message including the measurement result to the network excluding the location information.
  • the terminal may stop the current location information acquisition operation or continuously attempt to acquire the location information, and transmit the location information obtained to the network through a later report message.
  • the specific time may be the maximum time allowed for the delay report.
  • the maximum time may be a time set by the network, which may be included in a configuration message for reporting a measurement result of the terminal and signaled to the terminal.
  • the specific time may be a specific value previously set in the terminal.
  • the terminal may start a delay timer, which is a timer related to the time. If the acquisition of the location information is completed before the delay timer expires, the terminal may transmit a report message including the measurement result and the location information to the network.
  • the delay timer can be initialized according to the report message. If the delay timer expires before completing the location information acquisition, the terminal may transmit a report message not including the location information to the network.
  • the report message may further include information related to the reason that the location information is not included. That is, when the location information is not reported together with the network, the terminal may include the reason for not reporting the location information in the report message and transmit the same to the network. The reason may be impossible to obtain location information, a lack of time allowed for acquisition, or the like.
  • the terminal may be divided into more detailed reasons, such as a case in which the terminal does not support the positioning related function and a case in which the positioning related function is supported but the location information cannot be obtained.
  • the report message reported to the network by the terminal in step S1550 includes the location information
  • the information indicating the positioning technique based on obtaining the location information may be further included.
  • 16 is a flowchart illustrating an example of a reporting method according to an embodiment of the present invention.
  • the terminal receives a measurement report setup message from the network (S1610).
  • the measurement report setting message may include information indicating to report the location information together when reporting the measurement result.
  • the measurement report setting message may include information indicating that the delayed measurement result report is possible.
  • the terminal performs measurement and evaluation (S1610).
  • the terminal obtains a measurement result by measuring a radio resource, and determines whether the measurement result reporting condition is satisfied.
  • the terminal may determine whether the measurement result report condition is satisfied, based on whether an event related to the measurement result report is satisfied. If the event related to the measurement result report is satisfied, the terminal may determine that the measurement result reporting condition is satisfied.
  • TTT specific time period
  • the measurement result terminal does not complete the acquisition of location information related to the measurement result even though the measurement result reporting condition is satisfied, and thus suspends the measurement result report to the network.
  • the terminal may start the delay timer when the measurement result report condition is satisfied.
  • the information indicating the setting value of the delay timer may be included in the measurement report setting message or preset in the terminal.
  • the terminal acquires location information (S1630).
  • the terminal may perform an operation based on the above-described positioning technique for obtaining location information.
  • the terminal transmits a measurement result report message to the network (S1640).
  • the interval between the time when the measurement result report message is transmitted from the time point when the measurement result report condition is satisfied may be a delay time.
  • the terminal may transmit the measurement result and related location information to the network by including the measurement result in the measurement result report message.
  • the measurement result report message may further include information indicating a positioning technique on which the location information is obtained.
  • the terminal may include the measurement result in the measurement result report message and transmit it to the network.
  • the measurement result report message may further include information indicating a reason for not obtaining location information.
  • FIG. 17 is a flowchart illustrating another example of a reporting method according to an embodiment of the present invention.
  • a communication management entity including cell 1 and cell 2 may be collectively referred to as a network.
  • the terminal establishes an RRC connection with the cell 1 (S1710).
  • the RRC connection establishment process may be performed through the same procedure as in FIG. 5 described above.
  • the terminal detects the occurrence of the RLF (S1720).
  • the UE establishes an RRC connection with the cell 2 after the RLF is generated (S1730).
  • the UE may perform an RRC reestablishment procedure with the cell 2.
  • the UE may inform that there is an RLF report to be reported to the network through the cell 2 and the RRC reestablishment procedure.
  • Cell 2 requests the RLF report from the terminal (S1740).
  • the UE may determine that the measurement result report condition is satisfied.
  • the UE determines that the measurement result reporting condition is satisfied, and when the acquisition of the location information related to the measurement result is completed at this point, the UE may report the measurement result and the location information to the network by including the RLF report message. However, when the acquisition of the location information is not completed when the measurement result report condition is satisfied, the terminal may suspend transmission of the RLF report message. In addition, the terminal may initiate a delay timer. In this case, the value of the delay timer may be set to a value preset in the terminal.
  • the UE may transmit the measurement result and related location information to the network by including the RLF report message.
  • the RLF report message may further include information indicating a positioning technique based on location information acquisition.
  • the terminal may transmit the measurement result to the network by including the measurement result in the RLF report message.
  • the RLF report message may further include information indicating a reason for not obtaining location information.
  • the cell 2 may transmit it to the cell 1.
  • the terminal may start a delay timer when the terminal detects the RLF and not when receiving the RLF report request message.
  • the measurement result and the related location information may be included in the RLF report message and transmitted to the network.
  • the delay timer expires, the RLF report may be delayed until the location information is obtained despite the reception of the RLF report request message.
  • the terminal may start a delay timer at the time of detecting the RLF.
  • the RLF report message including the location information and the measurement result may be performed before the delay timer expires from the reception of the RLF report request message.
  • the terminal can minimize the power consumed to obtain the location information, and at the same time can expand the opportunity to transmit the measurement results and the associated location information in the measurement result report message. Therefore, the network can easily obtain not only the measurement result but also location information related thereto, and can improve network performance based on the measurement result. In addition, the terminal may improve battery efficiency in the measurement result report.
  • FIG. 18 is a block diagram illustrating a wireless device in which an embodiment of the present invention is implemented. This device may implement the operation of a terminal and / or a network that performs the embodiments described above with reference to FIGS. 13 to 17.
  • the wireless device 1800 includes a processor 1810, a memory 1820, and a radio frequency unit 1830.
  • the processor 1810 implements the proposed functions, processes, and / or methods.
  • the processor 1810 may be configured to perform measurement on a radio resource and to obtain location information related thereto.
  • the processor 1810 may be configured to determine whether a reporting condition of a measurement result is satisfied.
  • the processor 1810 may be configured to determine whether delayed reporting due to delayed location information acquisition is possible.
  • the processor 1810 may be configured to determine whether to transmit the location information together with the measurement result by driving the timer.
  • the processor 1810 may be configured to transmit a report message including the measurement result and / or location information to the network after the measurement result report condition is satisfied.
  • the processor 1810 may be configured to implement the embodiments of the present invention described above with reference to the drawings.
  • the RF unit 1830 is connected to the processor 1810 to transmit and receive a radio signal.
  • the processor 1810 and the RF unit 1830 may be implemented to transmit and receive wireless signals according to at least one communication standard.
  • the RF unit 1830 may include at least one transceiver capable of transmitting and receiving wireless signals.
  • the processor may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices.
  • the memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium and / or other storage device.
  • the RF unit may include a baseband circuit for processing a radio signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in memory and executed by a processor.
  • the memory may be internal or external to the processor and may be coupled to the processor by various well known means.

Abstract

무선 통신 시스템에서 단말에 의해 수행되는 보고 방법이 제공된다. 상기 방법은 측정 결과를 획득하고, 상기 측정 결과와 관련된 위치 정보를 획득을 시도하고, 측정 결과 보고 조건의 만족 여부를 결정하고, 지연 타이머를 개시하고, 및 상기 지연 타이머 만료 이전에 상기 위치 정보의 획득이 완료되면, 상기 측정 결과 및 상기 획득된 위치 정보를 포함하는 보고 메시지를 네트워크로 전송하는 것을 포함한다.

Description

무선 통신 시스템에서 보고 방법 및 이를 지원하는 장치
본 발명은 무선 통신에 관한 것으로서, 보다 상세하게는, 무선 통신 시스템에서 보고 방법과 이를 지원하는 장치를 지원하는 것이다.
UMTS(Universal Mobile Telecommunications System)의 향상인 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 3GPP 릴리이즈(release) 8로 소개되고 있다. 3GPP LTE는 하향링크에서 OFDMA(orthogonal frequency division multiple access)를 사용하고, 상향링크에서 SC-FDMA(Single Carrier-frequency division multiple access)를 사용한다. 최대 4개의 안테나를 갖는 MIMO(multiple input multiple output)를 채용한다. 최근에는 3GPP LTE의 진화인 3GPP LTE-A(LTE-Advanced)에 대한 논의가 진행 중이다.
단말은 무선 자원에 대한 측정을 수행하고 측정 결과를 네트워크로 보고한다. 네트워크는 측정 결과를 기반으로 네트워크 성능 최적화를 위한 운영을 할 수 있다. 한편, 단말은 측정 결과와 함께 측정과 관련된 위치 정보를 함께 네트워크로 보고할 수 있다. 네트워크는 측정 결과와 관련된 위치 정보를 통해 성능의 열화에 영향을 줄 수 있는 네트워크 파라미터 최적화를 수행할 수 있다.
MDT(Minimization of Driving Tests)는 커버리지 최적화(coverage optimization)를 위해 사업자들이 자동차 대신 단말을 이용해서 테스트한다는 것이다. 커버리지는 기지국의 위치, 주변 건물의 배치, 및 사용자의 이용 환경에 따라서 달라진다. 따라서, 사업자는 주기적으로 드라이빙 테스트(driving test)를 하는 것이 필요하고, 많은 비용과 자원이 소요된다. MDT는 사업자가 단말을 이용하여 커버리지를 측정하는 것이다.
MDT는 로그된(logged) MDT와 즉시(Immediate) MDT로 나눌 수 있다. 로그된 MDT에 의하면, 단말이 MDT 측정을 수행한 후 로그된 측정(logged measurement)을 특정 시점에 네트워크에게 전달한다. 즉시 MDT에 의하면, 단말은 MDT 측정을 수행한 후 보고 조건이 만족되는 때 로그된 측정을 네트워크에게 전달한다. 로그된 MDT에서 측정 결과의 로깅은 RRC 아이들 모드에서 수행된 측정에 따른 측정 결과를 로깅하는 것으로 한정할 수 있다. 네트워크의 명령에 따라 로그된 측정이 RRC 연결 모드에서 사용되는 것도 가능하다. 즉시 MDT에 따르면, 단말은 RRC 연결 모드에서 MDT 측정을 수행할 수 있다.
단말이 위치 정보를 획득하는 것은 추가적인 배터리 소모를 요구한다. 이동성이 보다 확장되는 무선 통신 시스템에서 단말의 파워 효율은 단말의 성능에서 매우 중요한 요인 중 하나이다. 과도한 위치 측정으로 인하여 불필요하게 배터리를 소모하는 것은 단말의 성능 저하를 야기할 수 있다. 따라서, 보다 효율적인 측정 결과 및 위치 정보의 보고 방법이 제안될 것이 요구된다.
본 발명이 해결하고자 하는 기술적 과제는 무선 통신 시스템에서 보고 방법 및 이를 지원하는 장치를 제공하는 것이다.
일 양태에 있어서, 무선 통신 시스템에서 단말에 의해 수행되는 보고 방법이 제공된다. 상기 방법은 측정 결과를 획득하고, 상기 측정 결과와 관련된 위치 정보를 획득을 시도하고, 측정 결과 보고 조건의 만족 여부를 결정하고, 지연 타이머를 개시하고, 및 상기 지연 타이머 만료 이전에 상기 위치 정보의 획득이 완료되면, 상기 측정 결과 및 상기 획득된 위치 정보를 포함하는 보고 메시지를 네트워크로 전송하는 것을 포함한다.
상기 방법은 상기 지연 타이머 만료 전에 상기 위치 정보를 획득하지 못하면, 상기 측정 결과를 포함하는 것을 보고 메시지를 상기 네트워크로 전송하는 것을 더 포함할 수 있다.
상기 방법은 상기 지연 타이머 만료 전에 상기 위치 정보를 획득하지 못하면, 상기 보고 메시지는 상기 위치 정보를 획득하지 못한 이유와 관련된 정보를 더 포함할 수 있다.
상기 방법은 상기 지연 타이머 만료 전에 상기 위치 정보의 획득이 완료되면, 상기 보고 메시지는 상기 위치 정보 획득의 기반이된 포지셔닝 기법을 지시하는 정보를 더 포함할 수 있다.
상기 방법은 RLF(Radio Link Failure) 발생을 감지하고, 상기 RLF 발생에 따른 RLF 보고가 유효함을 네트워크로 보고하고 및 상기 RLF 보고를 보고할 것을 요청하는 RLF(Radio Link Failure) 보고 요청 메시지를 네트워크로부터 수신하는 것을 더 포함할 수 있다. 상기 보고 메시지는 상기 RLF 보고 요청 메시지에 대응한 RLF 보고 메시지일 수 있다.
상기 측정 결과 보고 조건의 만족 여부를 결정하는 것은 상기 RLF 보고 요청 메시지를 수신하면 만족되었다고 결정하는 것을 포함할 수 있다.
상기 지연 타이머는 상기 단말에 미리 설정된 값일 수 있다. 상기 지연 타이머는 상기 RLF 감지시에 개시될 수 있다.
상기 방법은 측정 보고 설정 메시지를 수신하는 것을 더 포함할 수 있다. 상기 측정 보고 설정 메시지는 상기 측정 결과 보고 조건이 만족된 시점으로부터 특정 기간 내에 보고 메시지를 전송하는 것이 허용됨을 지시하는 지연 보고 지시 정보를 포함할 수 있다.
상기 특정 기간은 상기 지연 타이머의 구동 지속시간일 수 있다. 상기 지연 타이머는 상기 측정 결과 보고 조건이 만족된 시점에 개시될 수 있다. 상기 측정 보고 설정 메시지는 상기 지연 타이머의 설정 값을 지시하는 지연 타이머 설정 정보를 포함할 수 있다.
다른 양태에 있어서, 무선 통신 시스템에서 동작하는 무선 장치가 제공된다. 상기 무선 장치는 무선 신호를 송신 및 수신하는 RF(Radio Frequency)부 및 상기 RF 부와 기능적으로 결합하여 동작하는 프로세서를 포함한다. 상기 프로세서는 측정 결과를 획득하고, 상기 측정 결과와 관련된 위치 정보를 획득을 시도하고, 측정 결과 보고 조건의 만족 여부를 결정하고, 지연 타이머를 개시하고, 및 상기 지연 타이머 만료 이전에 상기 위치 정보의 획득이 완료되면, 상기 측정 결과 및 상기 획득된 위치 정보를 포함하는 보고 메시지를 네트워크로 전송하도록 설정된다.
본 발명에서 제안되는 보고 방법에 따르면, 단말은 위치 정보 획득을 위해 소모되는 파워를 최소화 하면서, 동시에 측정 결과 보고 메시지에 측정 결과 및 이와 관련된 위치 정보를 전송할 수 있는 기회를 확장할 수 있다. 따라서, 네트워크는 측정 결과 뿐만 아니라 이와 관련된 위치 정보를 용이하게 획득할 수 있고 이를 기반으로 네트워크 성능을 향상시킬 수 있다. 또한, 단말은 측정 결과 보고에 있어서 배터리 효율을 향상시킬 수 있다.
도 1은 본 발명이 적용되는 무선통신 시스템을 나타낸다.
도 2는 사용자 평면(user plane)에 대한 무선 프로토콜 구조(radio protocol architecture)를 나타낸 블록도이다.
도 3은 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타낸 블록도이다.
도 4는 RRC 아이들 상태의 단말의 동작을 나타내는 흐름도이다.
도 5는 RRC 연결을 확립하는 과정을 나타낸 흐름도이다.
도 6은 RRC 연결 재설정 과정을 나타낸 흐름도이다.
도 7은 RRC 연결 재확립 절차를 나타내는 도면이다.
도 8은 로그된 MDT를 수행하는 방법을 나타내는 흐름도이다.
도 9는 로깅 지역에 따른 로그된 MDT의 예시를 나타내는 도면이다.
도 10은 RAT 변경에 따른 로그된 MDT의 예시를 나타내는 도면이다.
도 11은 로그된 측정의 일례를 나타내는 도면이다.
도 12는 즉시 MDT의 예시를 나타내는 도면이다.
도 13은 본 발명의 실시예에 따른 단말의 포지셔닝이 적용되는 무선통신 시스템 구조의 일례를 나타내는 도면이다.
도 14는 본 발명의 실시예에 따른 위치 서비스를 위한 제반 절차를 나타내는 도면이다.
도 15는 본 발명의 실시예에 따른 보고 방법을 나타내는 흐름도이다.
도 16은 본 발명의 실시예에 따른 보고 방법의 일례를 나타내는 흐름도이다.
도 17은 본 발명의 실시예에 따른 보고 방법의 다른 일례를 나타내는 흐름도이다.
도 18은 본 발명의 실시예가 구현되는 무선 장치를 나타낸 블록도이다.
도 1은 본 발명이 적용되는 무선통신 시스템을 나타낸다. 이는 E-UTRAN(Evolved-UMTS Terrestrial Radio Access Network), 또는 LTE(Long Term Evolution)/LTE-A 시스템이라고도 불릴 수 있다.
E-UTRAN은 단말(10; User Equipment, UE)에게 제어 평면(control plane)과 사용자 평면(user plane)을 제공하는 기지국(20; Base Station, BS)을 포함한다. 단말(10)은 고정되거나 이동성을 가질 수 있으며, MS(Mobile station), UT(User Terminal), SS(Subscriber Station), MT(mobile terminal), 무선기기(Wireless Device) 등 다른 용어로 불릴 수 있다. 기지국(20)은 단말(10)과 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
기지국(20)들은 X2 인터페이스를 통하여 서로 연결될 수 있다. 기지국(20)은 S1 인터페이스를 통해 EPC(Evolved Packet Core, 30), 보다 상세하게는 S1-MME를 통해 MME(Mobility Management Entity)와 S1-U를 통해 S-GW(Serving Gateway)와 연결된다.
EPC(30)는 MME, S-GW 및 P-GW(Packet Data Network-Gateway)로 구성된다. MME는 단말의 접속 정보나 단말의 능력에 관한 정보를 가지고 있으며, 이러한 정보는 단말의 이동성 관리에 주로 사용된다. S-GW는 E-UTRAN을 종단점으로 갖는 게이트웨이이며, P-GW는 PDN을 종단점으로 갖는 게이트웨이이다.
단말과 네트워크 사이의 무선인터페이스 프로토콜 (Radio Interface Protocol)의 계층들은 통신시스템에서 널리 알려진 개방형 시스템간 상호접속 (Open System Interconnection; OSI) 기준 모델의 하위 3개 계층을 바탕으로 L1 (제1계층), L2 (제2계층), L3(제3계층)로 구분될 수 있는데, 이 중에서 제1계층에 속하는 물리계층은 물리채널(Physical Channel)을 이용한 정보전송서비스(Information Transfer Service)를 제공하며, 제 3계층에 위치하는 RRC(Radio Resource Control) 계층은 단말과 네트워크 간에 무선자원을 제어하는 역할을 수행한다. 이를 위해 RRC 계층은 단말과 기지국간 RRC 메시지를 교환한다.
도 2는 사용자 평면(user plane)에 대한 무선 프로토콜 구조(radio protocol architecture)를 나타낸 블록도이다. 도 3은 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타낸 블록도이다. 데이터 평면은 사용자 데이터 전송을 위한 프로토콜 스택(protocol stack)이고, 제어 평면은 제어신호 전송을 위한 프로토콜 스택이다.
도 2 및 3을 참조하면, 물리계층(PHY(physical) layer)은 물리채널(physical channel)을 이용하여 상위 계층에게 정보 전송 서비스(information transfer service)를 제공한다. 물리계층은 상위 계층인 MAC(Medium Access Control) 계층과는 전송채널(transport channel)을 통해 연결되어 있다. 전송채널을 통해 MAC 계층과 물리계층 사이로 데이터가 이동한다. 전송채널은 무선 인터페이스를 통해 데이터가 어떻게 어떤 특징으로 전송되는가에 따라 분류된다.
서로 다른 물리계층 사이, 즉 송신기와 수신기의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 OFDM(Orthogonal Frequency Division Multiplexing) 방식으로 변조될 수 있고, 시간과 주파수를 무선자원으로 활용한다.
MAC 계층의 기능은 논리채널과 전송채널간의 맵핑 및 논리채널에 속하는 MAC SDU(service data unit)의 전송채널 상으로 물리채널로 제공되는 전송블록(transport block)으로의 다중화/역다중화를 포함한다. MAC 계층은 논리채널을 통해 RLC(Radio Link Control) 계층에게 서비스를 제공한다.
RLC 계층의 기능은 RLC SDU의 연결(concatenation), 분할(segmentation) 및 재결합(reassembly)를 포함한다. 무선베어러(Radio Bearer; RB)가 요구하는 다양한 QoS(Quality of Service)를 보장하기 위해, RLC 계층은 투명모드(Transparent Mode, TM), 비확인 모드(Unacknowledged Mode, UM) 및 확인모드(Acknowledged Mode, AM)의 세 가지의 동작모드를 제공한다. AM RLC는 ARQ(automatic repeat request)를 통해 오류 정정을 제공한다.
RRC(Radio Resource Control) 계층은 제어 평면에서만 정의된다. RRC 계층은 무선 베어러들의 설정(configuration), 재설정(re-configuration) 및 해제(release)와 관련되어 논리채널, 전송채널 및 물리채널들의 제어를 담당한다. RB는 단말과 네트워크간의 데이터 전달을 위해 제1 계층(PHY 계층) 및 제2 계층(MAC 계층, RLC 계층, PDCP 계층)에 의해 제공되는 논리적 경로를 의미한다.
사용자 평면에서의 PDCP(Packet Data Convergence Protocol) 계층의 기능은 사용자 데이터의 전달, 헤더 압축(header compression) 및 암호화(ciphering)를 포함한다. 사용자 평면에서의 PDCP(Packet Data Convergence Protocol) 계층의 기능은 제어 평면 데이터의 전달 및 암호화/무결정 보호(integrity protection)를 포함한다.
RB가 설정된다는 것은 특정 서비스를 제공하기 위해 무선 프로토콜 계층 및 채널의 특성을 규정하고, 각각의 구체적인 파라미터 및 동작 방법을 설정하는 과정을 의미한다. RB는 다시 SRB(Signaling RB)와 DRB(Data RB) 두가지로 나누어 질 수 있다. SRB는 제어 평면에서 RRC 메시지를 전송하는 통로로 사용되며, DRB는 사용자 평면에서 사용자 데이터를 전송하는 통로로 사용된다.
단말의 RRC 계층과 E-UTRAN의 RRC 계층 사이에 RRC 연결(RRC Connection)이 확립되면, 단말은 RRC 연결(RRC connected) 상태에 있게 되고, 그렇지 못할 경우 RRC 아이들(RRC idle) 상태에 있게 된다.
네트워크에서 단말로 데이터를 전송하는 하향링크 전송채널로는 시스템정보를 전송하는 BCH(Broadcast Channel)과 그 이외에 사용자 트래픽이나 제어메시지를 전송하는 하향링크 SCH(Shared Channel)이 있다. 하향링크 멀티캐스트 또는 브로드캐스트 서비스의 트래픽 또는 제어메시지의 경우 하향링크 SCH를 통해 전송될 수도 있고, 또는 별도의 하향링크 MCH(Multicast Channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향링크 전송채널로는 초기 제어메시지를 전송하는 RACH(Random Access Channel)와 그 이외에 사용자 트래픽이나 제어메시지를 전송하는 상향링크 SCH(Shared Channel)가 있다.
전송채널 상위에 있으며, 전송채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.
물리채널(Physical Channel)은 시간 영역에서 여러 개의 OFDM 심벌과 주파수 영역에서 여러 개의 부반송파(Sub-carrier)로 구성된다. 하나의 서브프레임(Sub-frame)은 시간 영역에서 복수의 OFDM 심벌(Symbol)들로 구성된다. 자원블록은 자원 할당 단위로, 복수의 OFDM 심벌들과 복수의 부반송파(sub-carrier)들로 구성된다. 또한 각 서브프레임은 PDCCH(Physical Downlink Control Channel) 즉, L1/L2 제어채널을 위해 해당 서브프레임의 특정 OFDM 심벌들(예, 첫번째 OFDM 심볼)의 특정 부반송파들을 이용할 수 있다. TTI(Transmission Time Interval)는 서브프레임 전송의 단위시간이다.
이하 단말의 RRC 상태 (RRC state)와 RRC 연결 방법에 대해 상술한다.
RRC 상태란 단말의 RRC 계층이 E-UTRAN의 RRC 계층과 논리적 연결(logical connection)이 되어 있는가 아닌가를 말하며, 연결되어 있는 경우는 RRC 연결 상태, 연결되어 있지 않은 경우는 RRC 아이들 상태라고 부른다. RRC 연결 상태의 단말은 RRC 연결이 존재하기 때문에 E-UTRAN은 해당 단말의 존재를 셀 단위에서 파악할 수 있으며, 따라서 단말을 효과적으로 제어할 수 있다. 반면에 RRC 아이들 상태의 단말은 E-UTRAN이 파악할 수는 없으며, 셀 보다 더 큰 지역 단위인 트랙킹 구역(Tracking Area) 단위로 CN(core network)이 관리한다. 즉, RRC 아이들 상태의 단말은 큰 지역 단위로 존재 여부만 파악되며, 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 RRC 연결 상태로 이동해야 한다.
사용자가 단말의 전원을 맨 처음 켰을 때, 단말은 먼저 적절한 셀을 탐색한 후 해당 셀에서 RRC 아이들 상태에 머무른다. RRC 아이들 상태의 단말은 RRC 연결을 맺을 필요가 있을 때 비로소 RRC 연결 과정(RRC connection procedure)을 통해 E-UTRAN과 RRC 연결을 확립하고, RRC 연결 상태로 천이한다. RRC 아이들 상태에 있던 단말이 RRC 연결을 맺을 필요가 있는 경우는 여러 가지가 있는데, 예를 들어 사용자의 통화 시도 등의 이유로 상향 데이터 전송이 필요하다거나, 아니면 E-UTRAN으로부터 호출(paging) 메시지를 수신한 경우 이에 대한 응답 메시지 전송 등을 들 수 있다.
RRC 계층 상위에 위치하는 NAS(Non-Access Stratum) 계층은 연결관리(Session Management)와 이동성 관리(Mobility Management) 등의 기능을 수행한다.
NAS 계층에서 단말의 이동성을 관리하기 위하여 EMM-REGISTERED(EPS Mobility Management-REGISTERED) 및 EMM-DEREGISTERED 두 가지 상태가 정의되어 있으며, 이 두 상태는 단말과 MME에게 적용된다. 초기 단말은 EMM-DEREGISTERED 상태이며, 이 단말이 네트워크에 접속하기 위해서 초기 연결(Initial Attach) 절차를 통해서 해당 네트워크에 등록하는 과정을 수행한다. 상기 연결(Attach) 절차가 성공적으로 수행되면 단말 및 MME는 EMM-REGISTERED 상태가 된다.
단말과 EPC간 시그널링 연결(signaling connection)을 관리하기 위하여 ECM(EPS Connection Management)-IDLE 상태 및 ECM-CONNECTED 상태 두 가지 상태가 정의되어 있으며, 이 두 상태는 단말 및 MME에게 적용된다. ECM-IDLE 상태의 단말이 E-UTRAN과 RRC 연결을 맺으면 해당 단말은 ECM-CONNECTED 상태가 된다. ECM-IDLE 상태에 있는 MME는 E-UTRAN과 S1 연결(S1 connection)을 맺으면 ECM-CONNECTED 상태가 된다. 단말이 ECM-IDLE 상태에 있을 때에는 E-UTRAN은 단말의 배경(context) 정보를 가지고 있지 않다. 따라서 ECM-IDLE 상태의 단말은 네트워크의 명령을 받을 필요 없이 셀 선택(cell selection) 또는 셀 재선택(reselection)과 같은 단말 기반의 이동성 관련 절차를 수행한다. 반면 단말이 ECM-CONNECTED 상태에 있을 때에는 단말의 이동성은 네트워크의 명령에 의해서 관리된다. ECM-IDLE 상태에서 단말의 위치가 네트워크가 알고 있는 위치와 달라질 경우 단말은 트랙킹 구역 갱신(Tracking Area Update) 절차를 통해 네트워크에 단말의 해당 위치를 알린다.
다음은, 시스템 정보(System Information)에 관한 설명이다.
시스템 정보는 단말이 기지국에 접속하기 위해서 알아야 하는 필수 정보를 포함한다. 따라서 단말은 기지국에 접속하기 전에 시스템 정보를 모두 수신하고 있어야 하고, 또한 항상 최신의 시스템 정보를 가지고 있어야 한다. 그리고 상기 시스템 정보는 한 셀 내의 모든 단말이 알고 있어야 하는 정보이므로, 기지국은 주기적으로 상기 시스템 정보를 전송한다.
3GPP TS 36.331 V8.7.0 (2009-09) "Radio Resource Control (RRC); Protocol specification (Release 8)"의 5.2.2절에 의하면, 상기 시스템 정보는 MIB(Master Information Block), SB(Scheduling Block), SIB System Information Block)로 나뉜다. MIB는 단말이 해당 셀의 물리적 구성, 예를 들어 대역폭(Bandwidth) 같은 것을 알 수 있도록 한다. SB은 SIB들의 전송정보, 예를 들어, 전송 주기 등을 알려준다. SIB은 서로 관련 있는 시스템 정보의 집합체이다. 예를 들어, 어떤 SIB는 주변의 셀의 정보만을 포함하고, 어떤 SIB는 단말이 사용하는 상향링크 무선 채널의 정보만을 포함한다.
일반적으로, 네트워크가 단말에게 제공하는 서비스는 아래와 같이 세가지 타입으로 구분할 수 있다. 또한, 어떤 서비스를 제공받을 수 있는지에 따라 단말은 셀의 타입 역시 다르게 인식한다. 아래에서 먼저 서비스 타입을 서술하고, 이어 셀의 타입을 서술한다.
1) 제한적 서비스(Limited service): 이 서비스는 응급 호출(Emergency call) 및 재해 경보 시스템(Earthquake and Tsunami Warning System; ETWS)를 제공하며, 수용가능 셀(acceptable cell)에서 제공할 수 있다.
2) 정규 서비스(Normal service) : 이 서비스는 일반적 용도의 범용 서비스(public use)를 의미하여, 정규 셀(suitable or normal cell)에서 제공할 수 있다.
3) 사업자 서비스(Operator service) : 이 서비스는 통신망 사업자를 위한 서비스를 의미하며, 이 셀은 통신망 사업자만 사용할 수 있고 일반 사용자는 사용할 수 없다.
셀이 제공하는 서비스 타입과 관련하여, 셀의 타입은 아래와 같이 구분될 수 있다.
1) 수용가능 셀(Acceptable cell) : 단말이 제한된(Limited) 서비스를 제공받을 수 있는 셀. 이 셀은 해당 단말 입장에서, 금지(barred)되어 있지 않고, 단말의 셀 선택 기준을 만족시키는 셀이다.
2) 정규 셀(Suitable cell) : 단말이 정규 서비스를 제공받을 수 있는 셀. 이 셀은 수용가능 셀의 조건을 만족시키며, 동시에 추가 조건들을 만족시킨다. 추가적인 조건으로는, 이 셀이 해당 단말이 접속할 수 있는 PLMN(Public Land Mobile Network) 소속이어야 하고, 단말의 트랙킹 구역(Tracking Area) 갱신 절차의 수행이 금지되지 않은 셀이어야 한다. 해당 셀이 CSG 셀이라고 하면, 단말이 이 셀에 CSG 멤버로서 접속이 가능한 셀이어야 한다.
3) 금지된 (Barred cell) : 셀이 시스템 정보를 통해 금지된 셀이라는 정보를 브로드캐스트하는 셀이다.
4) 예약된 셀(Reserved cell) : 셀이 시스템 정보를 통해 예약된 셀이라는 정보를 브로드캐스트하는 셀이다.
도 4는 RRC 아이들 상태의 단말의 동작을 나타내는 흐름도이다. 도 4는 초기 전원이 켜진 단말이 셀 선택 과정을 거쳐 네트워크 망에 등록하고 이어 필요할 경우 셀 재선택을 하는 절차를 나타낸다.
도 4를 참조하면, 단말은 자신이 서비스 받고자 하는 망인 PLMN(public land mobile network)과 통신하기 위한 라디오 접속 기술(radio access technology; RAT)를 선택한다(S410). PLMN 및 RAT에 대한 정보는 단말의 사용자가 선택할 수도 있으며, USIM(universal subscriber identity module)에 저장되어 있는 것을 사용할 수도 있다.
단말은 측정한 기지국과 신호세기나 품질이 특정한 값보다 큰 셀 중에서, 가장 큰 값을 가지는 셀을 선택한다(Cell Selection)(S420). 이는 전원이 켜진 단말이 셀 선택을 수행하는 것으로서 초기 셀 선택(initial cell selection)이라 할 수 있다. 셀 선택 절차에 대해서 이후에 상술하기로 한다. 셀 선택 이후 단말은, 기지국이 주기적으로 보내는 시스템 정보를 수신한다. 상기 말하는 특정한 값은 데이터 송/수신에서의 물리적 신호에 대한 품질을 보장받기 위하여 시스템에서 정의된 값을 말한다. 따라서, 적용되는 RAT에 따라 그 값은 다를 수 있다.
단말은 망 등록 필요가 있는 경우 망 등록 절차를 수행한다(S430). 단말은 망으로부터 서비스(예:Paging)를 받기 위하여 자신의 정보(예:IMSI)를 등록한다. 단말은 셀을 선택 할 때 마다 접속하는 망에 등록을 하는 것은 아니며, 시스템 정보로부터 받은 망의 정보(예:Tracking Area Identity; TAI)와 자신이 알고 있는 망의 정보가 다른 경우에 망에 등록을 한다.
단말은 셀에서 제공되는 서비스 환경 또는 단말의 환경 등을 기반으로 셀 재선택을 수행한다(S440). 단말은 서비스 받고 있는 기지국으로부터 측정한 신호의 세기나 품질의 값이 인접한 셀의 기지국으로부터 측정한 값보다 낮다면, 단말이 접속한 기지국의 셀 보다 더 좋은 신호 특성을 제공하는 다른 셀 중 하나를 선택한다. 이 과정을 2번 과정의 초기 셀 선택(Initial Cell Selection)과 구분하여 셀 재선택(Cell Re-Selection)이라 한다. 이때, 신호특성의 변화에 따라 빈번히 셀이 재선택되는 것을 방지하기 위하여 시간적인 제약조건을 둔다. 셀 재선택 절차에 대해서 이후에 상술하기로 한다.
도 5는 RRC 연결을 확립하는 과정을 나타낸 흐름도이다.
단말은 RRC 연결을 요청하는 RRC 연결 요청(RRC Connection Request) 메시지를 네트워크로 보낸다(S510). 네트워크는 RRC 연결 요청에 대한 응답으로 RRC 연결 설정(RRC Connection Setup) 메시지를 보낸다(S520). RRC 연결 설정 메시지를 수신한 후, 단말은 RRC 연결 모드로 진입한다.
단말은 RRC 연결 확립의 성공적인 완료를 확인하기 위해 사용되는 RRC 연결 설정 완료(RRC Connection Setup Complete) 메시지를 네트워크로 보낸다(S530).
도 6은 RRC 연결 재설정 과정을 나타낸 흐름도이다. RRC 연결 재설정(reconfiguration)은 RRC 연결을 수정하는데 사용된다. 이는 RB 확립/수정(modify)/해제(release), 핸드오버 수행, 측정 셋업/수정/해제하기 위해 사용된다.
네트워크는 단말로 RRC 연결을 수정하기 위한 RRC 연결 재설정(RRC Connection Reconfiguration) 메시지를 보낸다(S610). 단말은 RRC 연결 재설정에 대한 응답으로, RRC 연결 재설정의 성공적인 완료를 확인하기 위해 사용되는 RRC 연결 재설정 완료(RRC Connection Reconfiguration Complete) 메시지를 네트워크로 보낸다(S620).
다음은 단말이 셀을 선택하는 절차에 대해서 자세히 설명한다.
전원이 켜지거나 셀에 머물러 있을 때, 단말은 적절한 품질의 셀을 선택/재선택하여 서비스를 받기 위한 절차들을 수행한다.
RRC 아이들 상태의 단말은 항상 적절한 품질의 셀을 선택하여 이 셀을 통해 서비스를 제공받기 위한 준비를 하고 있어야 한다. 예를 들어, 전원이 막 켜진 단말은 네트워크에 등록을 하기 위해 적절한 품질의 셀을 선택해야 한다. RRC 연결 상태에 있던 상기 단말이 RRC 아이들 상태에 진입하면, 상기 단말은 RRC 아이들 상태에서 머무를 셀을 선택해야 한다. 이와 같이, 상기 단말이 RRC 아이들 상태와 같은 서비스 대기 상태로 머물고 있기 위해서 어떤 조건을 만족하는 셀을 고르는 과정을 셀 선택(Cell Selection)이라고 한다. 중요한 점은, 상기 셀 선택은 상기 단말이 상기 RRC 아이들 상태로 머물러 있을 셀을 현재 결정하지 못한 상태에서 수행하는 것이므로, 가능한 신속하게 셀을 선택하는 것이 무엇보다 중요하다. 따라서 일정 기준 이상의 무선 신호 품질을 제공하는 셀이라면, 비록 이 셀이 단말에게 가장 좋은 무선 신호 품질을 제공하는 셀이 아니라고 하더라도, 단말의 셀 선택 과정에서 선택될 수 있다.
이제 3GPP TS 36.304 V8.5.0 (2009-03) "User Equipment (UE) procedures in idle mode (Release 8)"을 참조하여, 3GPP LTE에서 단말이 셀을 선택하는 방법 및 절차에 대하여 상술한다.
단말은 초기에 전원이 켜지면 사용 가능한 PLMN(public land mobile network)을 검색하고 서비스를 받을 수 있는 적절한 PLMN을 선택한다. PLMN은 모바일 네트워크 운영자(mobile network operator)에 의해 배치되거나(deploy) 운영되는 네트워크이다. 각 모바일 네트워크 운영자는 하나 또는 그 이상의 PLMN을 운영한다. 각각의 PLMN은 MCC(mobile country code) 및 MNC(mobile network code)에 의하여 식별될 수 있다. 셀의 PLMN 정보는 시스템 정보에 포함되어 브로드캐스트된다. 단말은 선택한 PLMN을 등록하려고 시도한다. 등록이 성공한 경우, 선택된 PLMN은 RPLMN(registered PLMN)이 된다. 네트워크는 단말에게 PLMN 리스트를 시그널링할 수 있는데, 이는 PLMN 리스트에 포함된 PLMN들을 RPLMN과 같은 PLMN이라 고려할 수 있다. 네트워크에 등록된 단말은 상시 네트워크에 의하여 접근될 수(reachable) 있어야 한다. 만약 단말이 ECM-CONNECTED 상태(동일하게는 RRC 연결 상태)에 있는 경우, 네트워크는 단말이 서비스를 받고 있음을 인지한다. 그러나, 단말이 ECM-IDLE 상태(동일하게는 RRC 아이들 상태)에 있는 경우, 단말의 상황이 eNB에서는 유효하지 않지만 MME에는 저장되어 있다. 이 경우, ECM-IDLE 상태의 단말의 위치는 TA(tracking Area)들의 리스트의 입도(granularity)로 오직 MME에게만 알려진다. 단일 TA는 TA가 소속된 PLMN 식별자로 구성된 TAI(tracking area identity)및 PLMN 내의 TA를 유일하게 표현하는 TAC(tracking area code)에 의해 식별된다.
이어, 선택한 PLMN이 제공하는 셀들 중에서 상기 단말이 적절한 서비스를 제공받을 수 있는 신호 품질과 특성을 가진 셀을 선택한다.
셀 선택 과정은 크게 두 가지로 나뉜다.
먼저 초기 셀 선택 과정으로, 이 과정에서는 상기 단말이 무선 채널에 대한 사전 정보가 없다. 따라서 상기 단말은 적절한 셀을 찾기 위해 모든 무선 채널을 검색한다. 각 채널에서 상기 단말은 가장 강한 셀을 찾는다. 이후, 상기 단말이 셀 선택 기준을 만족하는 적절한(suitable) 셀을 찾기만 하면 해당 셀을 선택한다.
다음으로 단말은 저장된 정보를 활용하거나, 셀에서 방송하고 있는 정보를 활용하여 셀을 선택할 수 있다. 따라서, 초기 셀 선택 과정에 비해 셀 선택이 신속할 수 있다. 단말이 셀 선택 기준을 만족하는 셀을 찾기만 하면 해당 셀을 선택한다. 만약 이 과정을 통해 셀 선택 기준을 만족하는 적절한 셀을 찾지 못하면, 단말은 초기 셀 선택 과정을 수행한다.
상기 단말이 일단 셀 선택 과정을 통해 어떤 셀을 선택한 이후, 단말의 이동성 또는 무선 환경의 변화 등으로 단말과 기지국간의 신호의 세기나 품질이 바뀔 수 있다. 따라서 만약 선택한 셀의 품질이 저하되는 경우, 단말은 더 좋은 품질을 제공하는 다른 셀을 선택할 수 있다. 이렇게 셀을 다시 선택하는 경우, 일반적으로 현재 선택된 셀보다 더 좋은 신호 품질을 제공하는 셀을 선택한다. 이런 과정을 셀 재선택(Cell Reselection)이라고 한다. 상기 셀 재선택 과정은, 무선 신호의 품질 관점에서, 일반적으로 단말에게 가장 좋은 품질을 제공하는 셀을 선택하는데 기본적인 목적이 있다.
무선 신호의 품질 관점 이외에, 네트워크는 주파수 별로 우선 순위를 결정하여 단말에게 알릴 수 있다. 이러한 우선 순위를 수신한 단말은, 셀 재선택 과정에서 이 우선 순위를 무선 신호 품질 기준보다 우선적으로 고려하게 된다.
위와 같이 무선 환경의 신호 특성에 따라 셀을 선택 또는 재선택하는 방법이 있으며, 셀 재선택시 재선택을 위한 셀을 선택하는데 있어서, 셀의 RAT와 주파수(frequency) 특성에 따라 다음과 같은 셀 재선택 방법이 있을 수 있다.
- Intra-frequency 셀 재선택 : 단말이 캠핑(camp) 중인 셀과 같은 RAT과 같은 중심 주파수(center-frequency)를 가지는 셀을 재선택
- Inter-frequency 셀 재선택 : 단말이 캠핑 중인 셀과 같은 RAT과 다른 중심 주파수를 가지는 셀을 재선택
- Inter-RAT 셀 재선택 : 단말이 캠핑 중인 RAT와 다른 RAT을 사용하는 셀을 재선택
셀 재선택 과정의 원칙은 다음과 같다
첫째, 단말은 셀 재선택을 위하여 서빙 셀(serving cell) 및 이웃 셀(neighboring cell)의 품질을 측정한다.
둘째, 셀 재선택은 셀 재선택 기준에 기반하여 수행된다. 셀 재선택 기준은 서빙 셀 및 이웃 셀 측정에 관련하여 아래와 같은 특성을 가지고 있다.
Intra-frequency 셀 재선택은 기본적으로 랭킹(ranking)에 기반한다. 랭킹이라는 것은, 셀 재선택 평가를 위한 지표값을 정의하고, 이 지표값을 이용하여 셀들을 지표값의 크기 순으로 순서를 매기는 작업이다. 가장 좋은 지표를 가지는 셀을 흔히 best ranked cell이라고 부른다. 셀 지표값은 단말이 해당 셀에 대해 측정한 값을 기본으로, 필요에 따라 주파수 오프셋 또는 셀 오프셋을 적용한 값이다.
Inter-frequency 셀 재선택은 네트워크에 의해 제공된 주파수 우선순위에 기반한다. 단말은 가장 높은 주파수 우선순위를 가진 주파수에 머무를(camp on) 수 있도록 시도한다. 네트워크는 브로드캐스트 시그널링(broadcast signaling)를 통해서 셀 내 단말들이 공통적으로 적용할 또는 주파수 우선순위를 제공하거나, 단말별 시그널링(dedicated signaling)을 통해 단말 별로 각각 주파수 별 우선순위를 제공할 수 있다.
Inter-frequency 셀 재선택을 위해 네트워크는 단말에게 셀 재선택에 사용되는 파라미터(예를 들어 주파수별 오프셋(frequency-specific offset))를 주파수별로 제공할 수 있다.
Intra-frequency 셀 재선택 또는 inter-frequency 셀 재선택을 위해 네트워크는 단말에게 셀 재선택에 사용되는 이웃 셀 리스트(Neighboring Cell List, NCL)를 단말에게 제공할 수 있다. 이 NCL은 셀 재선택에 사용되는 셀 별 파라미터(예를 들어 셀 별 오프셋(cell-specific offset))를 포함한다
Intra-frequency 또는 inter-frequency 셀 재선택을 위해 네트워크는 단말에게 셀 재선택에 사용되는 셀 재선택 금지 리스트(black list)를 단말에게 제공할 수 있다. 금지 리스트에 포함된 셀에 대해 단말은 셀 재선택을 수행하지 않는다.
이어서, 셀 재선택 평가 과정에서 수행하는 랭킹에 관해 설명한다.
셀의 우선순위를 주는데 사용되는 랭킹 지표(ranking criterion)은 수학식 1와 같이 정의된다.
Figure PCTKR2013000622-appb-M000001
여기서, Rs는 서빙 셀의 랭킹 지표, Rn은 이웃 셀의 랭킹 지표, Qmeas,s는 단말이 서빙 셀에 대해 측정한 품질값, Qmeas,n는 단말이 이웃 셀에 대해 측정한 품질값, Qhyst는 랭킹을 위한 히스테리시스(hysteresis) 값, Qoffset은 두 셀간의 오프셋이다.
Intra-frequency에서, 단말이 서빙 셀과 이웃 셀 간의 오프셋(Qoffsets,n)을 수신한 경우 Qoffset=Qoffsets,n 이고, 단말이 Qoffsets,n 을 수신하지 않은 경우에는 Qoffset = 0 이다.
Inter-frequency에서, 단말이 해당 셀에 대한 오프셋(Qoffsets,n)을 수신한 경우 Qoffset = Qoffsets,n + Qfrequency 이고, 단말이 Qoffsets,n 을 수신하지 않은 경우 Qoffset = Qfrequency 이다.
서빙 셀의 랭킹 지표(Rs)과 이웃 셀의 랭킹 지표(Rn)이 서로 비슷한 상태에서 변동하면, 변동 결과 랭킹 순위가 자꾸 뒤바뀌어 단말이 두 셀을 번갈아가면서 재선택을 할 수 있다. Qhyst는 셀 재선택에서 히스테리시스를 주어, 단말이 두 셀을 번갈아가면서 재선택하는 것을 막기 위한 파라미터이다.
단말은 위 식에 따라 서빙 셀의 Rs 및 이웃 셀의 Rn을 측정하고, 랭킹 지표 값이 가장 큰 값을 가진 셀을 best ranked 셀로 간주하고, 이 셀을 재선택한다.
상기 기준에 의하면, 셀의 품질이 셀 재선택에서 가장 주요한 기준으로 작용하는 것을 확인할 수 있다. 만약 재선택한 셀이 정규 셀(suitable cell)이 아니면 단말은 해당 주파수 또는 해당 셀을 셀 재선택 대상에서 제외한다.
이하에서 측정 및 측정 보고에 대하여 설명한다.
이동 통신 시스템에서 단말의 이동성(mobility) 지원은 필수적이다. 따라서, 단말은 현재 서비스를 제공하는 서빙 셀(serving cell)에 대한 품질 및 이웃셀에 대한 품질을 지속적으로 측정한다. 단말은 측정 결과를 적절한 시간에 네트워크에게 보고하고, 네트워크는 핸드오버 등을 통해 단말에게 최적의 이동성을 제공한다. 흔히 이러한 목적의 측정을 무선 자원 관리 측정 (RRM(radio resource management) measurement)라고 일컫는다.
단말은 이동성 지원의 목적 이외에 사업자가 네트워크를 운영하는데 도움이 될 수 있는 정보를 제공하기 위해, 네트워크가 설정하는 특정한 목적의 측정을 수행하고, 그 측정 결과를 네트워크에게 보고할 수 있다. 예를 들어, 단말이 네트워크가 정한 특정 셀의 브로드캐스트 정보를 수신한다. 단말은 상기 특정 셀의 셀 식별자(Cell Identity)(이를 광역(Global) 셀 식별자라고도 함), 상기 특정 셀이 속한 위치 식별 정보(예를 들어, Tracking Area Code) 및/또는 기타 셀 정보(예를 들어, CSG(Closed Subscriber Group) 셀의 멤버 여부)를 서빙 셀에게 보고할 수 있다.
이동 중의 단말은 특정 지역의 품질이 매우 나쁘다는 것을 측정을 통해 확인한 경우, 품질이 나쁜 셀들에 대한 위치 정보 및 측정 결과를 네트워크에 보고할 수 있다. 네트워크는 네크워크의 운영을 돕는 단말들의 측정 결과의 보고를 바탕으로 네트워크의 최적화를 꾀할 수 있다.
주파수 재사용(Frequency reuse factor)이 1인 이동 통신 시스템에서는, 이동성이 대부분 동일한 주파수 밴드에 있는 서로 다른 셀 간에 이루어진다. 따라서, 단말의 이동성을 잘 보장하기 위해서는, 단말은 서빙 셀의 중심 주파수와 동일한 중심 주파수를 갖는 주변 셀들의 품질 및 셀 정보를 잘 측정할 수 있어야 한다. 이와 같이 서빙 셀의 중심 주파수와 동일한 중심 주파수를 갖는 셀에 대한 측정을 동일 주파수 측정(intra-frequency measurement)라고 부른다. 단말은 동일 주파수 측정을 수행하여 측정 결과를 네트워크에게 적절한 시간에 보고하여, 해당되는 측정 결과의 목적이 달성되도록 한다.
이동 통신 사업자는 복수의 주파수 밴드를 사용하여 네트워크를 운용할 수도 있다. 복수의 주파수 밴드를 통해 통신 시스템의 서비스가 제공되는 경우, 단말에게 최적의 이동성을 보장하기 위해서는, 단말은 서빙 셀의 중심 주파수와 다른 중심 주파수를 갖는 주변 셀들의 품질 및 셀 정보를 잘 측정할 수 있어야 한다. 이와 같이, 서빙 셀의 중심 주파수와 다른 중심 주파수를 갖는 셀에 대한 측정을 다른 주파수 측정(inter-frequency measurement)라고 부른다. 단말은 다른 주파수 측정을 수행하여 측정 결과를 네트워크에게 적절한 시간에 보고할 수 있어야 한다.
단말이 이종(heterogeneous) 네트워크에 대한 측정을 지원할 경우, 기지국 설정에 의해 이종 네크워크의 셀에 대한 측정을 할 수도 있다. 이러한, 이종 네트워크에 대한 측정을 inter-RAT(Radio Access Technology) 측정이라고 한다. 예를 들어, RAT는 3GPP 표준 규격을 따르는 UTRAN(UMTS Terrestrial Radio Access Network) 및 GERAN(GSM EDGE Radio Access Network)을 포함할 수 있으며, 3GPP2 표준 규격을 따르는 CDMA 2000 시스템 역시 포함할 수 있다.
단말은 기지국으로부터 측정 설정(measurement configuration) 정보를 수신한다. 측정 설정 정보를 포함하는 메시지를 측정 설정 메시지라 한다. 단말은 측정 설정 정보를 기반으로 측정을 수행한다. 단말은 측정 결과가 측정 설정 정보 내의 보고 조건을 만족하면, 측정 결과를 기지국에게 보고한다. 측정 결과를 포함하는 메시지를 측정 보고 메시지라 한다.
측정 설정 정보는 다음과 같은 정보를 포함할 수 있다.
(1) 측정 대상(Measurement object) 정보: 단말이 측정을 수행할 대상에 관한 정보이다. 측정 대상은 셀내 측정의 대상인 intra-frequency 측정 대상, 셀간 측정의 대상인 inter-frequency 측정 대상, 및 inter-RAT 측정의 대상인 inter-RAT 측정 대상 중 적어도 어느 하나를 포함한다. 예를 들어, intra-frequency 측정 대상은 서빙 셀과 동일한 주파수 밴드를 갖는 주변 셀을 지시하고, inter-frequency 측정 대상은 서빙 셀과 다른 주파수 밴드를 갖는 주변 셀을 지시하고, inter-RAT 측정 대상은 서빙 셀의 RAT와 다른 RAT의 주변 셀을 지시할 수 있다.
(2) 보고 설정(Reporting configuration) 정보: 단말이 측정 결과를 언제 보고하는지에 관한 보고 조건 및 보고 타입(type)에 관한 정보이다. 보고 조건은 측정 결과의 보고가 유발(trigger)되는 이벤트나 주기에 관한 정보를 포함할 수 있다. 보고 타입은 측정 결과를 어떤 타입으로 구성할 것인지에 관한 정보이다.
(3) 측정 식별자(Measurement identity) 정보: 측정 대상과 보고 설정을 연관시켜, 단말이 어떤 측정 대상에 대해 언제 어떤 타입으로 보고할 것인지를 결정하도록 하는 측정 식별자에 관한 정보이다. 측정 식별자 정보는 측정 보고 메시지에 포함되어, 측정 결과가 어떤 측정 대상에 대한 것이며, 측정 보고가 어떤 보고 조건으로 발생하였는지를 나타낼 수 있다.
(4) 양적 설정(Quantity configuration) 정보: 측정 단위, 보고 단위 및/또는 측정 결과값의 필터링을 설정하기 위한 파라미터에 관한 정보이다.
(5) 측정 갭(Measurement gap) 정보: 하향링크 전송 또는 상향링크 전송이 스케쥴링되지 않아, 단말이 서빙 셀과의 데이터 전송에 대한 고려 없이 오직 측정을 하는데 사용될 수 있는 구간인 측정 갭에 관한 정보이다.
단말은 측정 절차를 수행하기 위해, 측정 대상 리스트, 측정 보고 설정 리스트 및 측정 식별자 리스트를 가지고 있다.
3GPP LTE에서 기지국은 단말에게 하나의 주파수 밴드에 대해 하나의 측정 대상만을 설정할 수 있다. 3GPP TS 36.331 V8.5.0 (2009-03) "Evolved Universal Terrestrial Radio Access (E-UTRA) Radio Resource Control (RRC); Protocol specification (Release 8)"의 5.5.4절에 의하면, 다음 표와 같은 측정 보고가 유발되는 이벤트들이 정의되어 있다.
이벤트 보고 조건
Event A1 Serving becomes better than threshold
Event A2 Serving becomes worse than threshold
Event A3 Neighbour becomes offset better than serving
Event A4 Neighbour becomes better than threshold
Event A5 Serving becomes worse than threshold1 and neighbour becomes better than threshold2
Event B1 Inter RAT neighbour becomes better than threshold
Event B2 Serving becomes worse than threshold1 and inter RAT neighbour becomes better than threshold2
단말의 측정 결과가 설정된 이벤트를 만족하면, 단말은 측정 보고 메시지를 기지국으로 전송한다.
측정 보고는 측정 식별자, 서빙셀의 측정된 품질 및 주변 셀(neighboring cell)의 측정 결과를 포함할 수 있다. 측정 식별자는 측정 보고가 트리거된 측정 대상을 식별한다. 주변 셀의 측정 결과는 주변 셀의 셀 식별자 및 측정된 품질을 포함할 수 있다. 측정된 품질은 RSRP(Reference Signal Received Power) 및 RSRQ(Reference Signal Received Quality) 중 적어도 하나를 포함할 수 있다.
이제 무선 링크 실패에 대하여 설명한다.
단말은 서비스를 수신하는 서빙셀과의 무선 링크의 품질 유지를 위해 지속적으로 측정을 수행한다. 단말은 서빙셀과의 무선 링크의 품질 악화(deterioration)로 인하여 현재 상황에서 통신이 불가능한지 여부를 결정한다. 만약, 서빙셀의 품질이 너무 낮아서 통신이 거의 불가능한 경우, 단말은 현재 상황을 무선 연결 실패로 결정한다.
만약 무선 링크 실패가 결정되면, 단말은 현재의 서빙셀과의 통신 유지를 포기하고, 셀 선택(또는 셀 재선택) 절차를 통해 새로운 셀을 선택하고, 새로운 셀로의 RRC 연결 재확립(RRC connection re-establishment)을 시도한다.
3GPP LTE의 스펙에서는 정상적인 통신을 할 수 없는 경우로 아래와 같은 예시를 들고 있다.
- 단말의 물리 계층의 무선 품질 측정 결과를 기반으로 단말이 하향 통신 링크 품질에 심각한 문제가 있다고 판단한 경우(RLM 수행 중 PCell의 품질이 낮다고 판단한 경우)
- MAC 부계층에서 랜덤 액세스(random access) 절차가 계속적으로 실패하여 상향링크 전송에 문제가 있다고 판단한 경우.
- RLC 부계층에서 상향 데이터 전송이 계속적으로 실패하여 상향 링크 전송에 문제가 있다고 판단한 경우.
- 핸드오버를 실패한 것으로 판단한 경우.
- 단말이 수신한 메시지가 무결성 검사(integrity check)를 통과하지 못한 경우.
이하에서는 RRC 연결 재확립(RRC connection re-establishment) 절차에 대하여 보다 상세히 설명한다.
도 7은 RRC 연결 재확립 절차를 나타내는 도면이다.
도 7을 참조하면, 단말은 SRB 0(Signaling Radio Bearer #0)을 제외한 설정되어 있던 모든 무선 베어러(radio bearer) 사용을 중단하고, AS(Access Stratum)의 각종 부계층을 초기화 시킨다(S710). 또한, 각 부계층 및 물리 계층을 기본 구성(default configuration)으로 설정한다. 이와 같은 과정중에 단말은 RRC 연결 상태를 유지한다.
단말은 RRC 연결 재설정 절차를 수행하기 위한 셀 선택 절차를 수행한다(S720). RRC 연결 재확립 절차 중 셀 선택 절차는 단말이 RRC 연결 상태를 유지하고 있음에도 불구하고, 단말이 RRC 아이들 상태에서 수행하는 셀 선택 절차와 동일하게 수행될 수 있다.
단말은 셀 선택 절차를 수행한 후 해당 셀의 시스템 정보를 확인하여 해당 셀이 적합한 셀인지 여부를 판단한다(S730). 만약 선택된 셀이 적절한 E-UTRAN 셀이라고 판단된 경우, 단말은 해당 셀로 RRC 연결 재확립 요청 메시지(RRC connection reestablishment request message)를 전송한다(S740).
한편, RRC 연결 재확립 절차를 수행하기 위한 셀 선택 절차를 통하여 선택된 셀이 E-UTRAN 이외의 다른 RAT을 사용하는 셀이라고 판단된 경우, RRC 연결 재확립 절차를 중단되고, 단말은 RRC 아이들 상태로 진입한다(S750).
단말은 셀 선택 절차 및 선택한 셀의 시스템 정보 수신을 통하여 셀의 적절성 확인은 제한된 시간 내에 마치도록 구현될 수 있다. 이를 위해 단말은 RRC 연결 재확립 절차를 개시함에 따라 타이머를 구동시킬 수 있다. 타이머는 단말이 적합한 셀을 선택하였다고 판단된 경우 중단될 수 있다. 타이머가 만료된 경우 단말은 RRC 연결 재확립 절차가 실패하였음을 간주하고 RRC 아이들 상태로 진입할 수 있다. 이 타이머를 이하에서 무선 링크 실패 타이머라고 언급하도록 한다. LTE 스펙 TS 36.331에서는 T311이라는 이름의 타이머가 무선 링크 실패 타이머로 활용될 수 있다. 단말은 이 타이머의 설정 값을 서빙 셀의 시스템 정보로부터 획득할 수 있다.
단말로부터 RRC 연결 재확립 요청 메시지를 수신하고 요청을 수락한 경우, 셀은 단말에게 RRC 연결 재확립 메시지(RRC connection reestablishment message)를 전송한다.
셀로부터 RRC 연결 재확립 메시지를 수신한 단말은 SRB1에 대한 PDCP 부계층과 RLC 부계층을 재구성한다. 또한 보안 설정과 관련된 각종 키 값들을 다시 계산하고, 보안을 담당하는 PDCP 부계층을 새로 계산한 보안키 값들로 재구성한다. 이를 통해 단말과 셀간 SRB 1이 개방되고 RRC 제어 메시지를 주고 받을 수 있게 된다. 단말은 SRB1의 재개를 완료하고, 셀로 RRC 연결 재확립 절차가 완료되었다는 RRC 연결 재확립 완료 메시지(RRC connection reestablishment complete message)를 전송한다(S760).
반면, 단말로부터 RRC 연결 재확립 요청 메시지를 수신하고 요청을 수락하지 않은 경우, 셀은 단말에게 RRC 연결 재확립 거절 메시지(RRC connection reestablishment reject message)를 전송한다.
RRC 연결 재확립 절차가 성공적으로 수행되면, 셀과 단말은 RRC 연결 재설정 절차를 수행한다. 이를 통하여 단말은 RRC 연결 재확립 절차를 수행하기 전의 상태를 회복하고, 서비스의 연속성을 최대한 보장한다.
이어서 TCE(Tacking Collection Entity)에 대하여 설명한다.
가입자 및 기기 추적(subscriber and equipment trace)은 하나 또는 그 이상의 특정 모바일에 대하여 통화 레벨(call level)상 매우 상세한 정보를 제공한다. 이 데이터는 성능 측정을 위한 정보를 위한 추가적인 소스가 될 수 있으며, 또한 보다 심화된 모니터링 및 최적화 운영이 허용될 수 있도록 한다. 항시 정보의 소스가 되는 성능 측정과는 달리, 추적(trace)은 특정한 분석 목적을 위한 제한된 시간 구간 동안 사용자의 요구/필요에 의하여 활성화될 수 있다. 추적은 오작동하는 모바일의 근본적 원인 결정, 개선된 고장 수리, 자원 사용 및 품질의 최적화, RF(Radio Frequency) 커버리지 제어, 캐패시티 향상(capacity improvement), 통화중 끊김 현상에 대한 분석, 코어 네트워크(Core Network) 및 UTRAN 양단간 UMTS 절차 확인과 같은 동작들에 있어서 매우 중요한 역할을 차지한다.
특정 유저(e.g. IMSI(International Mobile Subscriber Identity)) 또는 모바일 타입(e.g. IMEI(International Mobile Equipment Identity) 또는 IMEISV(IMEI and Software Version)) 또는 사용자에 의해 개시된 서비스를 위해서 통화 레벨에서의 인터페이스상 데이터를 로깅하는 기능은, 통화중 최종 사용자 QoS의 인식(e.g. 요청된 QoS vs. 제공된 QoS), 프로토콜 메시지들 및 RF 측정들간 상관, 또는 특정 모바일 벤더들과의 정보처리 상호 운용과 같이, 성능 측정으로부터는 추론될 수 없는 정보를 획득될 수 있도록 한다. 추적 데이터는 TCE에서 수집된다.
이제 MDT(Minimization of Driving Tests)에 대해서 설명한다.
MDT는 셀 커버리지의 최적화(coverage optimization)를 위해 종래의 사업자들이 자동차를 사용하여 셀의 품질을 측정하는 드라이브 테스트(drive test)를 하는 것 대신, 단말에게 측정을 수행하고 그 결과를 보고하도록 하는 것이다. 커버리지는 기지국의 위치, 주변 건물의 배치, 및 사용자의 이용 환경에 따라서 달라진다. 따라서, 사업자는 주기적으로 드라이브 테스트를 하는 것이 필요하고, 이는 많은 비용과 자원이 소요된다. 이와 같은 단점을 극복하기 위해, 사업자가 단말을 이용하여 커버리지를 측정하는 MDT가 제안된다.
사업자는 여러 단말로부터 수신한 MDT 측정값을 종합하여 사업자가 서비스를 제공하는 전반의 영역에 걸쳐 서비스 가능 여부 및 서비스의 품질도의 분포를 나타내는 커버리지 맵(coverage map)을 작성하여 네트워크 운용 및 최적화에 활용할 수 있다. 예를 들어, 단말로부터 특정 지역의 커버리지 문제를 보고받으면, 사업자는 해당 영역의 서비스를 제공하는 기지국의 송신 전력을 증가하여 해당 지역 셀의 커버리지를 확장할 수 있다. 이러한 방법을 통하여 네트워크 최적화에 들어가는 시간과 비용을 최소화할 수 있다.
MDT는 OAM(operation, administration, and maintenance)를 위한 운영자의 도구 중 하나인 추적 기능의 프레임워크(framework)를 기반으로 만들어졌다. 추적 기능은 운영자에게 추적하고 단말의 행동들을 로깅(logging)할 수 있는 능력을 제공하므로, 단말 측 기능 불량의 주된 원인을 결정하는 것을 가능하게 할 수 있다. 추적된 데이터(traced data)는 네트워크상에 수집되는데, 이를 TCE(trace collection entity)라고 한다. 운영자는 분석 및 평가를 위해 TCE에 수집된 데이터를 사용한다. MDT를 위해 사용되는 추적 기능은 추적 기능 기반의 시그널링 및 추적 기능들을 기반으로 한 관리를 포함한다. 추적 기능 기반 시그널링은 특정 단말을 향한 MDT 작업을 활성화시키기 위하여 사용되는 반해, 추적 기능 기반 관리는 특정 단말에 한정됨이 없이 MDT 작업을 활성화시키기 위하여 사용된다.
MDT는 단말이 측정 및 저장한 로그 데이터를 비실시간으로 보고하는지 또는 실시간으로 보고하는지에 따라 로그된 MDT(logged MDT) 와 즉시 MDT(immediate MDT)의 두 가지 종류로 나뉘어질 수 있다. 로그된 MDT는 단말이 MDT 측정을 진행한 후 그 데이터를 로깅했다가 이후에 네트워크에게 전송 하는 방법이다. 반면 즉시 MDT는 MDT 측정을 한 후 그 데이터를 네트워크에게 바로 전송하는 방법이다. 로그된 MDT에 따르면, 단말은 RRC 아이들 상태에서 MDT 측정을 수행하지만, 즉시 MDT에 따르면, 단말은 RRC 연결 상태에서 MDT 측정을 수행한다.
도 8은 로그된 MDT를 수행하는 방법을 나타내는 흐름도이다.
도 8을 참조하면, 단말은 로그된 측정 설정(logged measurements configuration)을 수신한다(S810). 로그된 측정 설정은 RRC 메시지에 포함되어 하향링크 제어 채널로서 전송될 수 있다. 로그된 측정 설정은 TCE ID, 로깅을 수행하는데 기준이 되는 시간(reference time) 정보, 로깅 지속 시간(logging duration), 로깅 인터벌(logging interval), 영역 설정(area configuration)에 대한 정보 중 적어도 하나를 포함할 수 있다. 로깅 인터벌은 측정 결과를 저장하는 인터벌(interval)을 가리킨다. 로깅 지속 시간은 단말이 로그된 MDT를 수행하는 지속 시간을 지시한다. 기준 시간은 로그된 MDT를 수행하는 지속시간의 기준이 되는 시간을 지시한다. 영역 설정은 단말이 로깅을 수행하도록 요청된 영역을 지시한다.
한편 단말은 로그된 측정 설정을 수신하면 유효성 타이머(validity timer)을 개시한다. 유효성 타이머는 로그된 측정 설정의 수명(lifetime)을 의미하며, 이는 로깅 지속 시간에 대한 정보에 의하여 특정될 수 있다. 유효성 타이머의 지속 시간은 로그된 측정 설정의 유효 수명뿐 아니라, 단말이 가지고 있는 측정 결과들의 유효성을 지시할 수도 있다.
이상과 같이 단말이 로그된 측정 설정하고 이에 따른 제반 절차가 수행되는 절차를 설정 국면(configuration phase)라고 한다.
단말이 RRC 아이들 상태에 진입하면(S821), 단말은 유효성 타이머가 구동되는 동안 측정 결과를 로깅 한다(S822). 측정 결과 값은 RSRP, RSRQ, RSCP(received signal code power), Ec/No등이 있을 수 있다. 이하에서 측정 결과를 로깅한 정보를 로그된 측정(logged measurements) 및/또는 측정 결과 로그라고 한다. 단말이 적어도 한번 이상 측정 결과를 로깅하는 시간적인 구간을 로깅 국면(logging phase)라고 한다.
단말이 로그된 측정 설정을 기반으로 로그된 MDT를 수행하는 것은 단말이 존재하는 위치에 따라 달라질 수 있다.
도 9는 로깅 지역에 따른 로그된 MDT의 예시를 나타내는 도면이다.
네트워크는 단말이 로깅을 해야 하는 지역인 로깅 지역을 설정할 수 있다. 로깅 지역은 셀 리스트로 표현되거나 트래킹 영역(tracking area)/로케이션 영역(location area) 리스트로 표현될 수 있다. 단말에게 로깅 지역이 설정된 경우, 단말은 로깅 지역을 벗어나면 로깅을 중단한다.
도 9를 참조하면, 제1 영역(910) 및 제3 영역(930)은 로깅 지역으로 설정된 영역이고, 제2 영역(920)은 로깅이 허용되지 않는 영역이다. 단말은 제1 영역(910)에서는 로깅을 하지만, 제2 영역(920)에서는 로깅을 하지 않는다. 단말은 제2 영역(920)에서 제3 영역(930)으로 이동하면 다시 로깅을 수행한다.
도 10은 RAT 변경에 따른 로그된 MDT의 예시를 나타내는 도면이다.
단말은 로그된 측정 설정을 수신한 RAT에 머무르고(camp on) 있을 때에만 로깅을 수행하고, 다른 RAT에서는 로깅을 중단한다. 다만, 단말은 머무르고 있는 RAT 외에 다른 RAT의 셀 정보를 로깅할 수 있다.
제1 영역(1010)과 제3 영역(1030)은 E-UTRAN 영역이고, 제2 영역(1020)은 UTRAN 영역이다. 로그된 측정 설정은 E-UTRAN으로부터 수신된다. 단말은 제2 영역(1020)으로 진입하면 MDT 측정을 수행하지 않는다.
다시 도 8을 참조하면, 단말이 RRC 연결 상태에 진입하고(831), 보고할 로그된 측정이 있는 경우, 단말은 보고할 로그된 측정이 있음을 기지국에게 알린다(S832). 단말은 RRC 연결이 확립되거나, RRC 연결이 재확립(re-establish)되거나, RRC 연결이 재설정(reconfiguration)될 때 로그된 측정이 있음을 기지국에게 알릴 수 있다. 또한, 단말이 핸드오버를 수행하는 경우, 핸드오버 대상 셀에 로그된 측정이 있음을 알릴 수 있다. 단말이 로그된 측정이 있음을 기지국에게 알리는 것은, 단말이 기지국으로 전송하는 RRC 메시지에 로그된 측정이 있음을 알리는 지시 정보인 로그된 측정 가용성(logged measurements available) 지시자를 포함시켜 전송하는 것일 수 있다. 상기 RRC 메시지는 RRC 연결 설정 완료 메시지, RRC 연결 재확립 완료 메시지, RRC 재설정 완료 메시지 또는 핸드오버 완료 메시지일 수 있다.
기지국은 단말로부터 로그된 측정이 있음을 알리는 신호를 수신하면, 단말에게 로그된 측정을 보고하도록 요청한다(S833). 로그된 측정을 보고할 것을 요청하는 것은, 이를 지시하는 정보에 관한 로그된 측정 보고 요청(logged measurement report request) 파라미터를 RRC 메시지에 포함시켜 전송하는 것일 수 있다. 상기 RRC 메시지는 단말 정보 요청 메시지(UE information request message)일 수 있다.
단말은 기지국으로부터 로그된 측정을 보고할 것을 요청 받으면, 로그된 측정을 기지국으로 보고한다(S834). 로그된 측정을 기지국으로 보고하는 것은, 로그된 측정들을 포함하는 로그된 측정 보고(logged measurements report)를 RRC 메시지에 포함시켜 기지국으로 전송하는 것일 수 있다. 상기 RRC 메시지는 단말 정보 보고 메시지(UE information report message)일 수 있다. 단말은 로그된 측정을 보고함에 있어, 보고 시점에 단말이 가진 로그된 측정 전체를 기지국으로 보고하거나 또는 그 일부를 기지국으로 보고할 수 있다. 일부를 보고하는 경우, 보고된 일부는 폐기될 수 있다.
위와 같이 단말이 기지국에게 로그된 측정이 있음을 알리고, 기지국으로부터 보고할 것을 요청 받고, 이에 따라 로그된 측정을 보고하는 과정이 수행되는 국면을 보고 국면(reporting phase)라고 한다.
로그된 MDT이 수행되는 동안 단말이 측정하는 것은 주로 무선 환경에 관한 것이다. MDT 측정은 셀 식별자, 셀의 신호 품질 및/또는 신호 강도를 포함할 수 있다. MDT 측정은 측정 시간과 측정 장소를 포함할 수 있다. 하기 테이블은 단말이 로깅하는 내용을 예시한다.
Figure PCTKR2013000622-appb-T000001
서로 다른 로깅 시점에 로깅한 정보는 아래와 같이 서로 다른 로그 엔트리(log entry)로 구분되도록 저장될 수 있다.
도 11은 로그된 측정의 일례를 나타내는 도면이다.
로그된 측정은 하나 또는 그 이상의 로그 엔트리를 포함한다.
로그 엔트리는 로깅 위치(logging location), 로깅 시간(logging time), 서빙셀 식별자, 서빙셀 측정 결과 및 이웃셀 측정 결과를 포함한다.
로깅 위치는 단말이 측정한 위치를 나타낸다. 로깅 시간은 단말이 측정한 시간을 나타낸다. 서로 다른 로깅 시간에 로깅한 정보는 서로 다른 로그 엔트리에 저장된다.
서빙셀 식별자는 계층 3에서의 셀 식별자, 이를 GCI(Global Cell Identity)라 함, 가 포함될 수 있다. GCI는 PCI(Physical Cell Identity)와 PLMN 식별자의 집합이다.
한편, 단말은 무선 환경 외에 단말의 성능(performance) 관련 지표들을 분석하여 로깅할 수 있다. 예를 들어, 처리율(throughput, 잘못된 전송/수신율(erroneous transmission/reception rate)등이 포함될 수 있다.
다시 도 8을 참조하면, 전술한 로깅 국면 및 보고 국면은 로깅 지속시간 내에 복수회에 걸쳐 존재할 수 있다(S841, S842).
기지국은 로그된 측정을 보고받으면 이를 TCE에 기록/저장할 수 있다
유효성 타이머가 만료된 이후, 즉 로깅 지속 시간이 경과된 이후에, 단말이 아직 보고하지 않은 로그된 측정을 가지고 있는 경우, 단말은 이를 기지국으로 보고하기 위한 절차를 수행한다. 이를 위한 제반 절차가 수행되는 국면을 탈 보고 국면(post-reporting phase)라고 한다.
단말은 로깅 지속 시간 종료 후 로그된 측정 설정을 폐기(discard)하고, 보존 타이머(conservation timer)를 개시시킨다. 로깅 지속 시간 종료 후 단말은 MDT 측정을 중단한다. 하지만, 이미 로그되어있는 측정은 폐기되지 않고 유지된다. 보존 타이머는 남아있는 로그된 측정의 수명을 나타낸다.
보존 타이머 만료 전에 단말이 RRC 연결 상태로 진입하면(S851) 아직 보고하지 않은 로그된 측정을 기지국으로 보고할 수 있다. 이 경우, 전술한 로그된 측정 보고를 위한 절차가 수행될 수 있다(S852, S853, S854). 보존 타이머가 만료되면 남아있는 로그된 측정은 폐기될 수 있다. 기지국은 로그된 측정을 보고받으면 이를 TCE에 기록/저장할 수 있다
상기 보존 타이머는 단말에 특정 값(predetermined value)로 고정되어 사전에 단말에게 설정될 수 있다. 예를 들어, 보존 타이머의 값은 48시간일 수 있다. 또는, 보존 타이머의 값은 로그된 측정 설정에 포함되어 단말에게 전달되거나, 또는 다른 RRC 메시지에 포함되어 단말에게 전달될 수 있다.
한편, 단말에게 새로운 로그된 측정 설정이 전달되면, 단말은 기존의 로그된 측정 설정을 새로 획득한 로그된 측정 설정으로 갱신할 수 있다. 이 경우, 유효성 타이머는 로그된 측정 설정을 새로이 수신한 시점부터 다시 시작될 수 있다. 또한, 이전 로그된 측정 설정을 기반으로 하는 로그된 측정은 폐기될 수 있다.
도 12는 즉시 MDT의 예시를 나타내는 도면이다. 즉시 MDT는 RRM(radio resource management) 측정 및 보고 메커니즘을 기본으로 하며, 추가적으로 측정 보고시에 위치와 관련된 정보를 추가하여 기지국으로 보고한다.
도 12를 참조하면, 단말은 RRC 연결 재설정 메시지를 수신하고(S1210), RRC 연결 재설정 완료 메시지를 전송한다(S1220). 이를 통하여 단말은 RRC 연결 상태로 진입한다. 단말은 RRC 연결 재설정 메시지를 수신함을 통해 측정 설정을 수신할 수 있다. 도 12의 예시에서 측정 설정은 RRC 연결 재설정 메시지를 통하여 수신하지만, 이는 예시에 다른 RRC 메시지에 포함되어 전송될 수도 있다.
단말은 RRC 연결 상태에서 측정 및 평가(measurement and evaluation)을 수행하고(S1231) 측정 결과를 기지국에 보고한다(S1232). 즉시 MDT 에서, 측정 결과는, 가능하다면, GNSS(global navigation satellite system)위치 정보의 예시와 같이, 정확한 위치 정보를 제공할 수 있다. RF 핑거프린트(fingerprint)와 같은 위치 측정을 위해, 단말의 위치를 결정하는데 사용될 수 있는 이웃 셀 측정 정보를 제공해줄 수도 있다.
도 12에서, 먼저 수행된 측정 및 평가(S1231), 보고(S1232) 이후에도, 단말은 측정 및 평가(S1241)를 수행한 후 즉시 기지국에게 측정 결과를 보고(S1242)하는 것을 알 수 있다. 이는 로그된 MDT와 즉시 MDT의 가장 큰 차이점이라 할 수 있다.
이어서 RLF의 보고와 관련하여 설명하도록 한다.
단말은 네트워크의 MRO(Mobility Robustness Optimization)를 지원하기 위하여 RLF가 발생하거나 핸드오버 실패(handover failure)가 발생하면 이러한 실패 이벤트를 네트워크에 보고한다.
RRC 연결 재확립 후, 단말은 RLF 보고를 eNB로 제공할 수 있다. RLF 보고에 포함된 무선 측정은 커버리지 문제들을 식별하기 위해 실패의 잠재적 이유로서 사용될 수 있다. 이 정보는 intra-LTE 이동성 연결 실패에 대한 MRO 평가에서 이와 같은 이벤트들을 배제시키고, 그 이벤트들을 다른 알고리듬들에 대한 입력으로 돌려 쓰기 위하여 사용될 수 있다.
RRC 연결 재확립이 실패하거나 또는 단말이 RRC 연결 재확립을 수행하지 못하는 경우, 단말은 아이들 모드에서 재연결한 후 eNB에대한 유효한 RLF 보고를 생성할 수 있다. 이와 같은 목적을 위하여, 단말은 가장 최근 RLF 또는 핸드오버 실패관련 정보를 저장하고, 네트워크에 의하여 RLF 보고가 불러들여지기까지 또는 상기 RLF 또는 핸드오버 실패가 감지된 후 48시간 동안, 이후 RRC 연결 (재)확립 및 핸드오버 마다 RLF 보고가 유효함을 LTE 셀에게 지시할 수 있다.
단말은 상태 천이 및 RAT 변경 동안 상기 정보를 유지하고, 상기 LTE RAT로 되돌아 온 후 다시 RLF 보고가 유효함을 지시한다.
RRC 연결 설정 절차에서 RLF 보고의 유효함은, 단말이 연결 실패와 같은 방해를 받았고, 이 실패로 인한 RLF 보고가 아직 네트워크로 전달되지 않았음을 지시하는 지시하는 것이다. 단말로부터의 RLF 보고는 이하의 정보를 포함한다.
- 단말에 서비스를 제공했던 마지막 셀 (RLF의 경우) 또는 핸드오버의 타겟의 E-CGI. E-CGI가 알려지지 않았다면, PCI 및 주파수 정보가 대신 사용된다.
- 재확립 시도가 있었던 셀의 E-CGI.
- 마지막 핸드오버 초기화시, 일례로 메시지 7 (RRC 연결 재설정)이 단말에 의해 수신되었을 시, 단말에 서비스를 제공했던 셀의 E-CGI.
- 마지막 핸드오버 초기화부터 연결 실패까지 경과한 시간.
- 연결 실패가 RLF에 의한 것인지 또는 핸드오버 실패로 인한 것인지를 지시하는 정보.
- 무선 측정들.
- 실패의 위치.
단말로부터 RLF 실패를 수신한 eNB는 보고된 연결 실패 이전에 단말에 서비스를 제공하였던 eNB로 상기 보고를 포워딩할 수 있다. RLF 보고에 포함된 무선 측정들은 무선 링크 실패의 잠재적인 원인으로서의 커버리지 이슈들을 식별하기 위해 사용될 수 있다. 이 정보는 intra-LTE 이동성 연결 실패의 MRO 평가로부터 이와 같은 이벤트들을 배제시기고 이들을 다른 알고리즘에 입력으로 다시 보내기 위하여 사용될 수 있다. RLF 보고는 MDT의 일부로서 고려될 수 있다.
이어서 접근성 측정(accessibility measurement)에 대하여 설명한다.
단말을 위한 연결의 비유효성(non-availability) 측정을 다루는 것은 많은 양상이 있는데, 이는 공용 채널들(common channels) 및 연결 절차들 모두에 대해 다룬다. 네트워크로 연결의 비유효성을 알리고, 이에 따라 연결의 유효성을 증가시키기 위한 파라미터 최적화를 돕기 위하여, 단말은 연결 확립 실패시 접근성 측정을 수행한다. 접근성 측정을 위하여, 단말은 이하와 같은 로깅을 수행한다.
- 실패 및 보고 사이의 시간을 카운팅하는 상태적 타이머(relative timer)를 사용함으로써 유도된 타임 스탬프가 포함된다. 접근성 측정을 위한 저장 시간은 48 시간이다.
- 전송된 랜덤 액세스 프리앰블의 개수를 보고하는 것이 지원된다.
- 최대 파워 레벨에 도달했는지 여부를 지시하는 것이 포함된다.
- 연결 확립을 위한 랜덤 액세스 절차 중에 경쟁(contention)이 감지되었는지 여부를 지시하는 것이 포함된다.
접근성 측정은 MDT의 일부로서 고려될 수 있다.
이어서 포지셔닝에 대하여 설명하도록 한다.
포지셔닝 기능은 무선 신호의 측정을 기반으로 하여 단말의 지리적인 위치 및/또는 속도를 결정하는 수단을 제공한다. 위치 정보는 단말이 결합된 클라이언트 (e.g. 어플리케이션) 또는 코어네트워크 내에 있거나 코어 네트워크에 붙어있는 클라이언트에 의해 요청되고 클라이언트로 보고될 수 있다. 위치 정보는 표준 포맷으로 보고되며, 이는 단말의 위치 및 속도의 추정된 에러(불확실성) 및, 가능한 경우, 위치 추정을 획득하기 위해 사용된 위치 방법(또는 방법들의 리스트)과 함께 셀 기반 또는 지리적 좌표로서 구현될 수 있다.
네트워크 내의 활성화 또는 비활성화 단말들의 대다수들은 E-UTRAN의 무선 전송 또는 시그널링 능력치(signaling capabilities)의 타협(compromising) 없이 LCS(LoCation Service) 특성을 사용하는 것이 가능할 수 있다.
위치 정보의 불확실성은 사용된 방법, 커버리지 지역 내 단말의 위치 및 단말의 움직임에 의존한다. E-UTRAN 시스템의 다양한 디자인 옵션들(e.g. 셀의 크기, 조정 가능한 안테나 기술, 경로 손실 추정치, 타이밍 정확성, eNB 측량(surveys))은 네트워크 운용자로 하여금 마켓을 위한 적절하고 비용 효율이 높은(cost-effective) 단말 포지셔닝 방법이 제공되도록 할 수 있다.
포지셔닝 정보를 위해 가능한 다양한 사용예들이 있다. 포지셔닝 기능들은 내부적으로 EPS에 의해, 부가가치 네트워크 서비스(value-added network services)에 의해, 단말 자체에 의해 또는 네트워크를 통해, 그리고 제 3자 서비스에 의해 사용될 수 있다. 상기 기능은 필수적이거나 또는 부가적인 긴급 서비스에 의해서도 사용될 수 있지만, 위치 서비스는 위치 서비스를 위해 독점적으로 할당되지는 않을 수 있다.
E-UTRAN에서 지원되는 포지셔닝 방법은 GNSS 지원형 네트워크(network-assisted GNSS) 방법, 하향링크 포지셔닝(downlink positioning) 방법, 강화된 셀 식별자(enhanced cell ID; E-CID) 방법 및 상향링크 포지셔닝(uplink positioning) 방법이 있을 수 있으며, 하나 이상의 전술한 방법이 동시에 적용되는 하이브리드 포지셔닝 방법도 가능하다.
GNSS 지원형 네트워크 방법은 GNSS 신호를 수신할 수 있는 무선 수신기를 구비한 단말을 기반으로 한다. GNSS은 GPS(Global Positioning system), Galileo, GLONASS(Global Navigation Satellite System), SBAS(Space Based Augmentation Systems), 및 QZSS(Quasi Zenith Satellite System)를 포함한다. GNSS 지원형 네트워크 방법에 따르면, 다른 GNSS들이 단말의 위치를 결정하는데 각각 개별적으로 사용되거나, 적어도 하나의 시스템이 결합되어 사용될 수 있다.
OTDOA(Observed Time Difference of Arrival)이라고도 불리우는, 하향링크 포지셔닝 방법은 복수의 eNB로부터 단말로 수신된 하향링크 신호들에 대한 측정된 타이밍을 기반으로 한다. 단말은 포지셔닝 서버(positioning server)로부터 수신한 지원 데이터(assistance data)를 사용하여 수신된 신호들의 타이밍을 측정한다. 측정 결과는 이웃 eNB들에 대비한 단말의 위치를 결정하는데 사용된다.
셀 식별자(Cell ID; CID) 포지셔닝 방법에서, 단말의 위치는 단말의 서빙 eNB 및 서빙 셀의 인지(knowledgement)를 기반으로 추정된다. 서빙 eNB 및 서빙 셀에 대한 정보는 페이징, 트래킹 영역 업데이트 또는 다른 방법들에 의하여 획득될 수 있다. E-CID포지셔닝 방법은 단말 위치 추정을 개선하기 위하여 추가적인 단말 및/또는 E-UTRAN 무선 자원과 다른 측정을 사용하는 기술을 의미한다.
비록 E-CID 포지셔닝 방법은 RRC 프로토콜 상에서 측정 제어 시스템과 같이 일부 동일한 측정을 활용함에도 불구하고, 단말은 일반적으로 포지셔닝만을 위하여 추가적인 측정을 할 것으로는 기대되지 않는다. 예를 들어, 포지셔닝을 위하여 별도의 측정 설정 또는 측정 제어 메시지를 제공되지는 않으며, 단말은 추가적인 측정 액션을 취할 것이 요구되기 보다는 가지고 있는 유효한 측정을 보고한다.
UTDOA(Uplink Time Difference OF Arrival)이라고도 불리우는 상향링크 포지셔닝 방법은 단말에서 전송된 상향링크 신호에 대한 복수의 LMU(Location Measurement Unit)측의 측정 타이밍을 기반으로 한다. LMU는 포지셔닝 서버로부터 수신된 지원 데이터(assistance data)를 사용하여 신호 수신 타이밍을 측정하고, 측정의 결과는 단말의 위치를 추정하는데 사용된다.
도 13은 본 발명의 실시예에 따른 단말의 포지셔닝이 적용되는 무선통신 시스템 구조의 일례를 나타내는 도면이다.
MME는 특정한 타겟 단말과 관련된 위치 서비스에 대한 요청을 특정 개체(e.g. GMLC(Global Mobile Location Center) 또는 단말)로부터 받을 수 있다. 또한, 단말로부터의 IMS 긴급 통화(IP Multimedia Subsystem emergency call)과 같은 목적으로, MME는 자신이 특정 타겟 단말에 대한 위치 서비스를 개시하기로 결정할 수도 있다. 이에 따라, MME는 E-SMLC(Evolved-Service Mobile Location Center)로 위치 서비스 요청을 전송한다.
E-SMLC는 위치 서비스 요청을 처리한다. E-SMLC는 단말 기반 및/또는 단말 지원 포지셔닝에 도움을 주기 위하여 타겟 단말로 지원 데이터(assistance data)를 전달할 수 있다. E-SMLC는 목적 단말의 포지셔닝을 수행할수도 있다. 상향링크 방법에 따라 위치 서비스를 처리함에 있어서, E-SMLC는 선택된 LMU(Location Measurement Unit)들로 설정 데이터를 전달할 수 있다. 이에 따라, E-SMLC는 위치 서비스의 결과를 MME로 리턴시킬 수 있다. 한편, 위치 서비스가 MME가 아닌 다른 개체(UE 또는 E-SMLC)에 의하여 요청된 경우, MME는 그 결과를 해당하는 개체로 리턴시킬 수 있다.
SLP(SUPL Location Platform)은 사용자 평면상 포지셔닝을 담당하는 SUPL(Secure User Plane Location) 개체이다.
타겟 단말의 포지셔닝과 단말로의 위치 지원 데이터 전달을 지원하기 위해서, 위치 관련 기능들이 제공되며, 이와 같은 기능들은 도 13과 같은 구조내에 적절히 분배되어 구현될 수 있다. 한편, 이와 같은 개체들간에서 수행될 수 있는 위치 서비스 관련 동작들은 도 14를 참조할 수 있다.
도 14는 본 발명의 실시예에 따른 위치 서비스를 위한 제반 절차를 나타내는 도면이다.
단말이 ECM-IDLE 상태에 있을 때 MME가 위치 서비스 요청을 수신한 경우, MME는 단말과의 시그널링 연결을 설립하고 특정 eNB를 할당하기 위하여 네트워크 유발 서비스 요청을 수행한다. 단말은 도 14에 도시된 제반 절차들이 개시되기 전에 연결 상태로 진입하는 것을 가정한다.
위치 서비스는 특정 개체의 위치 서비스 요청(location service request)에 의해 개시된다(S1410). 위치 서비스 요청은 아래와 같이 개시될 수 있다.
단말은 위치 서비스(e.g. 포지셔닝 또는 지원 데이터 전달)를 NAS 레벨상 서빙 MME로 요청할 수 있다(S1410a). GMLC와 같은 EPC(Evolved Packet Core)내 특정 개체는 타겟 단말을 위한 위치 서비스(e.g. 포지셔닝)을 서빙 MME로 요청할 수 있다(S1410b). 목적 단말을 위한 서빙 MME는 위치 서비스의 필요성 여부를 결정하고, 필요한 경우 자체적으로 위치 서비스를 요청할 수 있다(S1410c). 이는 단말을 특정 위치에 위치시키거나 또는 긴급 통화를 위한 것일 수 있다.
MME는 E-SMLC로 위치 서비스 요청을 전달한다(S1420).
E-SMLC는 위치 서비스 요청에 대응하여 위치 서비스 절차(location service procedure)를 수행한다(S1430). E-SMLC는 단말의 서빙 eNB와 위치 서비스 절차를 수행할 수 있다(S1430a). 이는 포지셔닝 측정 또는 지원 데이터를 획득하는 것을 포함할 수 있다. S1430a와 함께 또는 S1430a 대신, 하향링크 포지셔닝을 위해, E-SMLC는 단말과 위치 서비스 절차를 수행할 수 있다(S1430b). 이는 위치 추정 또는 포지셔닝 측정을 획득하거나 단말로 위치 지원 데이터를 전달하는 것을 포함할 수 있다. 상향링크 포지셔닝(e.g. UTDOA)를 위해, S1430a와 더불어, E-SMLC는 목적 단말을 위한 하나 이상의 LMU와 위치 서비스 절차를 수행할 수 있다(S1430c). 이는 포지셔닝 측정을 획득하는 것을 포함할 수 있다.
E-SMLC는 위치 서비스 응답(location service response)를 MME로 제공한다(S1440). 위치 서비스 응답에는 필요한 결과들이 포함될 수 있으며, 예를 들어 성공 또는 실패를 지시하는 지시자 및/또는 단말을 위한 위치 추정이 포함될 수 있다.
위치 서비스 응답은 위치 서비스를 요청한 개체에게 제공된다(S1450). S1410a와 같이 단말로부터 위치 서비스 요청이 개시된경우, MME는 위치 서비스 응답을 단말에게 전달할 수 있다(S1450a). 이 경우, 위치 서비스 응답은 단말의 위치 추정과 같이 요청되거나 필요한 결과를 포함할 수 있다. S1410b와 같이 EPC내 특정 개체에 의하여 위치 서비스 요청이 개시된 경우, MME는 위치 서비스 응답을 해당 개체로 전달할 수 있다(S1450b). 이 경우, 위치 서비스 응답은 단말의 위치 추정과 같이 요청되거나 필요한 결과를 포함할 수 있다. S1410c와 같이 MME가 자체적으로 위치 서비스 요청을 개시한 경우, E-SMLC로부터 수신한 위치 서비스 응답을 위치 서비스를 위해 사용할 수 있다(S1450c).
이하에서는 무선 통신 시스템에서 포지셔닝 운영에 대하여 설명하도록 한다.
특정 단말들에 대한 위치 서비스 지원과는 달리, E-SMLC는 모든 단말들을 위한 하나 이상의 포지션 방법들을 지원하는 측정 정보를 획득하기 위하여 E-UTRAN 내의 요소들과 상호작용을 할 수 있다.
하향링크 포지션 방법 지원: E-SMLC는 하향링크 포지션 방법을 지원하기 하기 위하여 위치 관련 정보를 획득할 수 있으며, 이를 위해 E-SMLC와 시그널링 접근되어 있는 MME로부터 접근가능한 eNB와 상호작용할 수 있다. 상기 정보는 절대적인 GNSS 시간 또는 다른 eNB들에 대한 타이밍과 관련되어 있는 상기 eNB에 대한 타이밍 정보를 포함할 수 있다. 또한, 상기 정보는 지원되는 셀에 대한 정보를 포함할 수 있으며, 그 일례로, PRS(Positioning Reference Signal) 스케쥴이 포함될 수 있다. E-SMLC 및 eNB간 시그널링 액세스는 상기 E-SMLC 및 상기 eNB와 시그널링 액세스를 유지하고 있는 MME를 통해 수행될 수 있다.
상향링크 위치 방법 지원: E-SMLC는 상향링크 포지셔닝 방법을 지원하기 위한 타겟 단말 설정 정보를 회수하기 위해 단말의 서빙 eNB와 상호작용할 수 있다. 설정 정보는 상향링크 시간 측정을 획득하기 위해 LMU로부터 요구된 정보를 포함할 수 있다. E-SMLC는 상향링크 포지셔닝을 위해 단말로 SRS 신호를 전송할 필요가 있음을 서빙 eNB로 지시할 수 있다. 요청된 자원이 가용하지 않은 경우, eNB는 다른 자원을 할당하고 자원 할당을 E-SMLC로 보고할 수 있다. E-SMLC는 또한 LMU로 하여금 상향링크 시간 측정을 수행하고 그 결과를 보고할 것을 요청할 수 있다.
이하에서는 무선 통신 시스템에서 단말 포지셔닝과 관련된 개체들의 동작에 대해서 상세히 설명하도록 한다.
단말은 상향링크기반 단말 위치 측정을 위해 필요한 신호를 전송할 수 있다. 또한 E-UTRAN 및 다른 GNSS 시스템과 같이 다른 자원으로부터의 하향링크 신호를 측정할 수 있다. 측정 방법은 선택된 포지셔닝 방법을 기반으로 결정될 수 있다.
단말은 위치 서비스 어플리케이션을 포함하거나 또는 네트워크와의 커뮤니케이션 또는 단말내 존재하는 다른 어플리케이션을 통해 위치 서비스 어플리케이션에 접근할 수 있다. 위치 서비스 어플리케이션은 요구되는 네트워크의 지원과 함께 또는 네트워크의 지원 없이 단말의 위치를 결정하기 위해 요구되는 측정 및 계산 기능을 포함한다.
예를 들어, 단말은 독립적인 포지셔닝 기능(e.g. GPS)을 포함할 수도 있으며, E-UTRAN 전송과는 독립적으로 그 결과를 보고할 수도 있다. 독립적인 포지셔닝 기능을 구비한 단말은 네트워크로부터 획득된 지원 정보를 활용할 수도 있다.
eNB는 위치 추정을 위한 측정 결과를 제공하는 E-UTRAN 네트워크의 요소이며, 타겟 단말을 위한 무선 신호를 측정하고 그 측정을 E-SMLC로 전송할 수 있다. eNB는 요청에 대한 응답으로 측정을 수행하거나, 또는 규칙적이거나 특정 무선 상태의 변화가 발생한 경우 자동적으로 측정 및 보고를 수행할 수 있다. eNB는 단말이 주기적인 SRS를 전송하도록 설정할 수 있다.
E-SMLC는 타겟 단말을 위한 위치 서비스의 지원을 관리하며, 이는 단말의 포지셔닝 및 단말로의 지원 데이터 전달을 포함한다. E-SMLC는 단말을 위한 위치 측정을 획득하기 위해 단말의 서빙 eNB와 상호작용할 수 있다. 측정은 eNB에 의한 상향링크 측정 및 단말에 의한 하향링크 측정을 포함한다. 이 중 단말에 의한 하향링크 측정은 핸드오버의 지원과 같은 다른 기능을 통하여 eNB로 제공될 수 있다. E-SMLC는 상향링크 포지셔닝 방법을 가능케 하고 LMU가 신호의 타이밍을 계산하기 위해 필요한 타겟 단말 설정 데이터를 획득하는 것을 위하여 단말이 SRS 신호를 전송할 것을 지시할 필요가 있음을 서빙 eNB에게 지시하기 위하여 eNB와 상호작용을 할 수 있다. E-SMLC는 UTDOA 포지셔닝을 위해 사용되는 LMU의 집합을 선택할 수 있다. E-SMLC는 타이밍 측정을 요청하기 위하여 선택된 LMU들과 상호작용할 수 있다. E-SMLC는 요청이 있는 경우 지원 데이터를 전달하기 위해 또는 위치 추정을 획득하기 위하여 타겟 단말과 상호작용할 수 있다.
타겟 단말의 포지셔닝을 위하여, E-SMLC는 LCS 클라이언트 타입, 요구되는 QoS, 단말 포지셔닝 능력치 및 eNB의 포지셔닝 능력치 등을 포함하는 요인들을 기반으로 사용될 포지셔닝 방법을 결정할 수 있다. 이에 따라, E-SMLC는 포지셔닝 방법을 단말 및/또는 서빙 eNB에 적용할 수 있다. 포지셔닝 방법은 단말 기반 포지셔닝 방법을 위한 위치 추정 및/또는 단말지원 및 네트워크 기반 포지셔닝 방법을 위한 위치 측정이 있다. E-SMLC는 모든 수신된 결과를 결합하고, 타겟 단말을 위한 단일 위치 추정을 결정할 수 있다. 위치 추정의 정확도 및 속도와 같은 부가적인 정보 역시 결정될 수 있다.
LMU는 측정을 수행하고 측정된 결과를 E-SMLC로 전달한다. LMU에 의해 획득된 모든 위치 측정들은 요청한 E-SMLC로 제공될 수 있다. 단말 포지셔닝 요청은 복수의 LMU에 의한 측정을 수반할 수 있다.
네트워크의 성능 최적화를 위해 네트워크가 단말의 측정 결과를 활용함에 있어서 단말에 의해 위치 정보가 제공되는 것은 매우 중요하다. 측정 결과와 관련된 위치 정보를 통해 네트워크는 성능의 열화가 발생한 위치에 영향을 주고 있는 네트워크 파라미터를 제어/(재)설정 하는 등 네트워크 최적화를 수행할 수 있기 때문이다.
한편, 단말이 측정 결과와 함께 위치 정보를 네트워크로 보고하는 것은 추가적인 배터리 소모를 야기할 수 있다. 단말은 측정을 수행하는 동작과는 별도로 위치 정보를 획득하기 위한 동작을 수행한다. 따라서, 단말에 의한 위치 정보의 획득은 위치 정보의 보고가 필요한 경우에 한하여 수행하는 것이 단말의 파워 관리 측면에서 효율적일 수 있다. 위치 정보 획득으로 인해 소모되는 단말의 파워를 고려할 떄, 단말의 위치 정보 획득에 요구되는 측정 결과의 보고가 발생할 가능성이 높은 순간 위치 정보 획득을 시작하는 것을 고려할 수 있다. 그 결과, 측정 결과의 보고 조건이 만족된 시점에, 위치 정보의 획득이 완료되지 못한 경우가 발생할 수 있다. 이 경우, 단말은 위치 정보 없이 측정 결과를 보고하게 될 수 있다. 위치 정보 없이 측정 결과를 보고받은 경우, 효율적으로 네트워크 성능을 최적화하기 어려울 수 있다.
일반적으로, 네트워크 성능 최적화와 관련된 측정 보고는 보고의 시급성보다는 위치 정보의 포함여부가 더 중요할 수 있다. 따라서, 측정 보고를 수행할 조건이 만족되더라도 위치 정보의 획득이 완료되어 함께 보고할 수 있도록, 측정 결과의 보고 시점을 지연시키는 방식을 제안한다.
도 15는 본 발명의 실시예에 따른 보고 방법을 나타내는 흐름도이다.
도 15를 참조하면, 단말은 측정 결과 보고 조건의 만족 여부를 결정한다(S1510). 단말은 측정 결과 보고와 관련된 이벤트의 만족 여부를 기반으로 측정 결과 보고 조건이 만족되었는지 여부를 결정할 수 있다. 상기 이벤트는 상기 표 1의 이벤트 A1, A2, A3, A4, A5, B1, B2일 수 있다.
단말은 측정 결과 보고 요청 메시지를 네트워크로부터 수신하면, 측정 결과 보고 조건이 만족된 것으로 결정할 수 있다. 단말은 로그된 MDT에 따른 로그된 측정의 보고 여부시 로그된 측정 보고 요청 메시지를 네트워크로부터 수신하면, 측정 결과 보고 조건이 만족되었다고 결정할 수 있다. 단말은 연결 실패(e.g. RLF, 핸드오버 실패, RRC 연결 확립 실패 등)를 감지하면, 측정 결과 보고 조건이 만족되었다고 결정할 수 있다. 단말은 연결 실패(e.g. RLF, 핸드오버 실패, RRC 연결 확립 실패 등)에 따른 보고 요청 메시지를 네트워크로부터 수신하면, 측정 결과 보고 조건이 만족되었다고 결정할 수 있다.
단말은 측정 결과 보고시 측정 결과와 관련된 위치 정보를 함께 네트워크로 보고할지 여부를 결정한다(S1520). 측정 결과 보고시 위치 정보를 함께 전송할 것을 지시하는 시그널링 정보를 네트워크로 수신한 경우, 단말은 위치 정보를 측정 결과와 함께 네트워크로 보고할 것을 결정할 수 있다. 또는, 단말은 위치 정보의 보고가 가능한 경우 측정 결과와 함께 위치 정보를 보고하기로 결정할 수 있다.
네트워크로부터 전송된 로그된 측정 설정을 기반으로 측정 결과를 로깅하고, 로그된 측정을 네트워크로 전송하는 경우, 단말은 측정 결과 보고시에 위치 정보를 네트워크로 전송하기로 결정할 수 있다.
단말은 즉시 MDT 설정에 대응하여 측정 결과를 보고하는 경우, 측정 결과와 위치 정보를 함께 네트워크로 전송하기로 결정할 수 있다.
단말은 RLF, 핸드오버 실패 또는 RRC 연결 확립 실패와 같은 연결 실패에 따른 메시지를 네트워크로 전달함에 있어서, 이와 관련된 측정 결과와 함께 위치 정보를 네트워크로 전송하기로 결정할 수 있다.
단말은 측정 결과와 함께 네트워크로 전송할 위치 정보의 획득을 시도한다(S1530). 단말은 위치 정보의 획득을 위해 전술한 포지셔닝 기법을 수행할 수 있다.
본 실시예에 기반한 도면상에 단말이 위치 정보의 획득을 개시하는 시점이 측정 결과를 보고하기로 결정한 이후에 수행되는 것이 도시되어 있으나, 이에 한정되지 아니한다. 단말은 측정 결과를 획득하는 시점과 동시에 관련된 위치 정보를 획득하고자 시도할 수 있다. 단말은 측정 결과의 획득 완료 후 위치 정보 획득을 시도하거나, 또는 측정 결과의 보고 조건이 만족되면 위치 정보의 획득을 시도할 수 있다. 측정 결과의 보고 조건 만족시 위치 정보의 획득을 개시하는 것은, 측정 결과 보고 관련 이벤트가 최초로 만족되면 위치 정보 획득을 시도하거나 또는 측정 결과 보고 관련 이벤트의 최초 만족 후 일정 시간 동안 해당 이벤트가 만족되어 측정 결과 보고 조건이 만족되면 위치 정보 획득을 개시하는것일 수 있다.
단말은 측정 결과의 지연 보고 여부를 결정한다(S1540). 즉, 측정 결과를 보고할 조건이 만족되었음에도 불구하고 이와 관련된 위치 정보의 획득이 완료되지 않은 경우, 단말은 측정 결과를 먼저 보고할지 또는 측정 결과의 보고를 보류하고 이후 위치 정보의 획득이 완료되면 획득된 위치 정보와 함께 보고할지 여부를 결정할 수 있다. 단말이 측정 결과 지연 보고 여부를 결정하는 것은, 네트워크에 의한 별도의 시그널링을 기반으로 지연 보고의 지시 여부를 결정하는 것일 수 있다. 네트워크는 단말의 측정 결과 보고와 관련된 설정 메시지에 측정 결과의 지연 보고 가능 여부를 지시하는 지시 정보를 포함시켜 전송할 수 있다. 또한, 단말이 측정 결과 지연 보고 여부를 결정하는 것은 단말에 미리 설정된 지연 보고 허용 여부에 따라 수행될 수 있다.
네트워크에 의하여 지연 보고가 지시된 경우이거나 또는 단말에 미리 지연 보고할 것이 설정된 경우, 단말은 지연 보고하기로 결정하고, 위치 정보를 획득할 때 까지 및/또는 특정 시점까지 측정 결과의 보고를 보류할 수 있다. 이 후 위치 정보의 획득이 완료된 시점에 측정 결과 및 관련된 위치 정보를 포함하는 보고 메시지를 네트워크로 전송한다(S1550).
한편, 단말이 지연 보고하기로 결정하였음에도 불구하고 특정 시점까지 위치 정보의 획득이 완료되지 않은 경우, 단말은 특정 시점이 도래하면 위치 정보를 제외하고 측정 결과를 포함한 보고 메시지를 네트워크로 전송한다. 이 경우, 단말은 수행중인 위치 정보 획득 동작을 중단하거나, 또는 위치 정보 획득을 계속 시도하여 획득된 위치 정보를 차후 보고 메시지를 통해서 네트워크로 전송할 수 있다.
상기 특정 시간은 지연 보고가 허용된 최대 시간일 수 있다. 상기 최대 시간은 네트워크에 의하여 설정된 시간일 수 있으며, 이는 단말의 측정 결과 보고를 위한 설정 메시지에 포함되어 단말로 시그널링될 수 있다. 또한, 상기 특정 시간은 미리 단말에 설정된 특정 값일 수 있다. 단말은 측정 결과의 보고 조건이 만족되면, 상기 시간과 관련된 타이머인 지연 타이머(delay timer)를 개시시킬 수 있다. 지연 타이머가 만료되기 이전에 위치 정보 획득이 완료되면, 단말은 측정 결과 및 위치 정보를 포함하는 보고 메시지를 네트워크로 전송할 수 있다. 보고 메시지 전송에 따라 지연 타이머를 초기화시킬 수 있다. 위치 정보 획득을 완료하기 전에 지연 타이머가 만료되면, 단말은 위치 정보를 포함하지 않은 보고 메시지를 네트워크로 전송할 수 있다.
S1550 단계에서 단말이 네트워크로 보고하는 보고 메시지가 위치 정보를 포함하지 않는 경우, 보고 메시지는 위치 정보가 포함되지 않은 이유와 관련된 정보를 더 포함할 수 있다. 즉, 위치 정보를 함께 네트워크로 보고하지 못한 경우, 단말은 위치 정보 미보고 이유를 보고 메시지에 포함시켜 네트워크로 전송할 수 있다. 상기 이유는 위치 정보 획득 불가능, 획득 가능하나 획득을 위해 허용된 시간 부족 등일 수 있다. 위치 정보 획득이 불가능한 경우는, 단말이 포지셔닝 관련 기능을 지원하지 못하는 경우와 포지셔닝 관련 기능은 지원하나 위치 정보를 획득할 수 없는 경우와 같이 보다 세부적인 이유로 나뉘어질 수 있다.
S1550 단계에서 단말이 네트워크로 보고하는 보고 메시지가 위치 정보를 포함하는 경우, 위치 정보를 획득하는 기반이된 포지셔닝 기법을 지시하는 정보가 더 포함될 수 있다.
도 16은 본 발명의 실시예에 따른 보고 방법의 일례를 나타내는 흐름도이다.
도 16을 참조하면, 단말은 측정 보고 설정 메시지를 네트워크로부터 수신한다(S1610). 상기 측정 보고 설정 메시지는 측정 결과 보고시 위치 정보를 함께 보보고할 것 지시하는 정보를 포함할 수 있다. 상기 측정 보고 설정 메시지는 지연된 측정 결과 보고가 가능함을 지시하는 정보를 포함할 수 있다.
단말은 측정 및 평가를 수행한다(S1610). 단말은 무선 자원을 측정하여 측정 결과를 획득하고, 측정 결과 보고 조건의 만족 여부를 결정한다. 단말이 측정 결과 보고 조건의 만족 여부를 결정하는 것은, 측정 결과 보고와 관련된 이벤트가 만족되었는지 여부를 기반으로 할 수 있다. 단말은 측정 결과 보고와 관련된 이벤트가 만족되면 측정 결과 보고 조건이 만족되었다고 결정할 수 있다. 단말은, 측정 결과 보고와 관련된 이벤트가 특정 시간 구간(Time To Trigger; TTT) 동안 만족되면, 측정 결과 보고 조건이 만족되었다고 결정할 수 있다.
단말은 측정 결과 보고 조건이 만족되었다고 결정한 시점에서 측정 결과 단말은 측정 결과 보고 조건이 만족되었음에도 불구하고, 측정 결과와 관련된 위치 정보의 획득이 완료되지 않았음으로, 네트워크로 측정 결과 보고를 보류한다.
단말은 측정 결과 보고 조건이 만족된 시점에 지연 타이머를 개시시킬 수 있다. 지연 타이머의 설정 값을 지시하는 정보는 측정 보고 설정 메시지에 포함되거나 또는 단말에 미리 설정되어 있을 수 있다.
단말은 위치 정보를 획득한다(S1630). 단말은 위치 정보 획득을 위하여 전술한 포지셔닝 기법을 기반으로 한 동작을 수행할 수 있다.
단말은 측정 결과 보고 메시지를 네트워크로 전송한다(S1640). 측정 결과 보고 조건이 만족된 시점부터 측정 결과 보고 메시지를 전송한 시점간 인터벌이 지연 시간일 수 있다.
지연 타이머가 동작중에 위치 정보의 획득이 완료된 경우, 단말은 측정 결과 보고 메시지에 측정 결과 및 관련된 위치 정보를 포함시켜 네트워크로 전송할 수 있다. 이 경우, 측정 결과 보고 메시지는 위치 정보 획득의 기반이된 포지셔닝 기법을 지시하는 정보를 더 포함할 수 있다.
도시된 바와 달리, 지연 타이머가 만료될 때까지 위치 정보가 획득되지 않은 경우, 단말은 측정 결과 보고 메시지에 측정 결과를 포함시켜 네트워크로 전송할 수 있다. 이 경우, 측정 결과 보고 메시지는 위치 정보를 획득하지 못하는 이유를 지시하는 정보를 더 포함할 수 있다.
도 17은 본 발명의 실시예에 따른 보고 방법의 다른 일례를 나타내는 흐름도이다. 도 17에서 셀 1 및 셀 2를 포함하는 통신 관리 개체를 네트워크라고 통칭할 수도 있을 것이다.
도 17을 참조하면, 단말은 셀 1과 RRC 연결을 확립한다(S1710). RRC 연결 확립 과정은 전술한 도 5와 같은 절차를 통해 수행될 수 있다.
단말은 RLF 발생을 감지한다(S1720).
단말은 RLF 발생 후 셀 2와 RRC 연결을 확립한다(S1730). 이 경우, 단말은 셀 2와 RRC 재확립 절차를 수행할 수 있다. 단말은 셀 2와 RRC 재확립 절차를 통하여 네트워크로 보고할 RLF 보고가 있음을 알릴 수 있다.
셀 2는 단말에게 RLF 보고를 요청한다(S1740). 단말은 셀 2로부터 RLF 보고를 수신하면 측정 결과 보고 조건이 만족되었다고 결정할 수 있다.
단말은 측정 결과 보고 조건이 만족되었다고 결정하였고, 이 시점에 측정 결과와 관련된 위치 정보의 획득이 완료되었으면, RLF 보고 메시지에 측정 결과 및 위치 정보를 포함시켜 네트워크로 보고할 수 있다. 다만, 측정 결과 보고 조건이 만족된 시점에 위치 정보의 획득이 완료되지 않은 경우, 단말은 RLF 보고 메시지의 전송을 보류할 수 있다. 이와 함께, 단말은 지연 타이머를 개시시킬 수 있다. 이 경우, 지연 타이머의 값은 단말에 미리 설정된 값으로 설정될 수 있다.
지연 타이머가 동작중에 위치 정보의 획득이 완료된 경우, 단말은 RLF 보고 메시지에 측정 결과 및 관련된 위치 정보를 포함시켜 네트워크로 전송할 수 있다. 이 경우, RLF 보고 메시지는 위치 정보 획득의 기반이된 포지셔닝 기법을 지시하는 정보를 더 포함할 수 있다.
도시된 바와 달리, 지연 타이머가 만료될 때 까지 위치 정보가 획득되지 않은 경우, 단말은 RLF 보고 메시지에 측정 결과를 포함시켜 네트워크로 전송할 수 있다. 이 경우, RLF 보고 메시지는 위치 정보를 획득하지 못하는 이유를 지시하는 정보를 더 포함할 수 있다.
한편, 셀 2는 단말로부터 RLF 보고 메시지를 수신하면 이를 셀 1로 전달할 수 있다.
도 17에 따른 보고 방법의 예시에 있어서, 단말은 RLF 보고 요청 메시지 수신시가 아닌 RLF을 감지했을 때 지연 타이머를 개시시킬 수 있다. 이 경우, 지연 타이머가 만료되기 이전에 측정 결과 관련 위치 정보의 획득이 완료되고, RLF 보고 요청 메시지를 수신하면, RLF 보고 메시지에 측정 결과 및 관련된 위치 정보를 포함시켜 네트워크로 전송할 수 있다. 또한, 지연 타이머가 만료되기 전이라면, RLF 보고 요청 메시지 수신에도 불구하고, 위치 정보 획득시까지 RLF 보고를 지연시킬 수 있다.
RLF 보고 요청 메시지의 수신시가 아닌 RLF 감지시에 측정 결과 보고 조건이 만족되었다고 결정할 수 있다. 이 경우, 단말은 RLF 감지시에 지연 타이머를 개시시킬 수 있다. 다만, 위치 정보 및 측정 결과를 포함하는 RLF 보고 메시지는 RLF 보고 요청 메시지 수신시부터 지연 타이머 만료 이전에 수행될 수 있다.
본 발명에서 제안되는 보고 방법에 따르면, 단말은 위치 정보 획득을 위해 소모되는 파워를 최소화 하면서, 동시에 측정 결과 보고 메시지에 측정 결과 및 이와 관련된 위치 정보를 전송할 수 있는 기회를 확장할 수 있다. 따라서, 네트워크는 측정 결과 뿐만 아니라 이와 관련된 위치 정보를 용이하게 획득할 수 있고 이를 기반으로 네트워크 성능을 향상시킬 수 있다. 또한, 단말은 측정 결과 보고에 있어서 배터리 효율을 향상시킬 수 있다.
도 18은 본 발명의 실시예가 구현되는 무선 장치를 나타낸 블록도이다. 이 장치는 도 13 내지 도 17을 참조하여 상술한 실시예를 수행하는 단말 및/또는 네트워크의 동작을 구현할 수 있다.
무선 장치(1800)는 프로세서(1810), 메모리(1820) 및 RF부(radio frequency unit, 1830)을 포함한다. 프로세서(1810)는 제안된 기능, 과정 및/또는 방법을 구현한다. 프로세서(1810)는 무선 자원에 대한 측정을 수행하고, 이와 관련된 위치 정보를 획득하도록 설정될 수 있다. 프로세서(1810)는 측정 결과의 보고 조건이 만족되었는지 여부를 결정하도록 설정될 수 있다. 프로세서(1810)는 지연된 위치 정보 획득으로 인한 지연된 보고가 가능한지 여부를 결정하도록 설정될 수 있다. 프로세서(1810)는 타이머의 구동을 통해 위치 정보를 측정 결과와 함께 전송할지 여부를 결정하도록 설정될 수 있다. 프로세서(1810)는 측정 결과 보고 조건 만족 이후에 측정 결과 및/또는 위치 정보를 포함하는 보고 메시지를 네트워크로 전송하도록 설정될 수 있다. 프로세서(1810)는 도면을 참조하여 상술한 본 발명의 실시예를 구현하도록 설정될 수 있다.
RF부(1830)은 프로세서(1810)와 연결되어 무선 신호를 송신 및 수신한다.
상기 프로세서(1810) 및 상기 RF 부(1830)는 적어도 하나 이상의 통신 규격에 따른 무선 신호 송수신을 할 수 있도록 구현될 수 있다. 상기 RF 부(1830)는 무선 신호를 송신 및 수신할 수 있는 적어도 하나 이상의 송수신기를 포함할 수 있다.
프로세서는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부는 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다.
상술한 예시적인 시스템에서, 방법들은 일련의 단계 또는 블록으로써 순서도를 기초로 설명되고 있지만, 본 발명은 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당업자라면 순서도에 나타낸 단계들이 배타적이지 않고, 다른 단계가 포함되거나 순서도의 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.

Claims (18)

  1. 무선 통신 시스템에서 단말에 의해 수행되는 보고 방법에 있어서,
    측정 결과를 획득하고;
    상기 측정 결과와 관련된 위치 정보의 획득을 시도하고;
    지연 타이머를 개시하고; 및
    상기 지연 타이머 만료 이전에 상기 위치 정보의 획득이 완료되면, 상기 측정 결과 및 상기 획득된 위치 정보를 포함하는 보고 메시지를 네트워크로 전송하는 것;을 포함하는 보고 방법.
  2. 제 1항에 있어서, 상기 방법은,
    상기 지연 타이머 만료 전에 상기 위치 정보를 획득하지 못하면, 상기 측정 결과를 포함하는 보고 메시지를 상기 네트워크로 전송하는 것을 더 포함함을 특징으로 하는 보고 방법.
  3. 제 2항에 있어서,
    상기 지연 타이머 만료 전에 상기 위치 정보를 획득하지 못하면, 상기 보고 메시지는 상기 위치 정보를 획득하지 못한 이유와 관련된 정보를 더 포함하는 것을 특징으로 하는 보고 방법.
  4. 제 3항에 있어서,
    상기 지연 타이머 만료 전에 상기 위치 정보의 획득이 완료되면, 상기 보고 메시지는 상기 위치 정보 획득의 기반이된 포지셔닝 기법을 지시하는 정보를 더 포함함을 특징으로 하는 보고 방법.
  5. 제 1항에 있어서, 상기 방법은
    RLF(Radio Link Failure) 발생을 감지하고;
    상기 RLF 발생에 따른 RLF 보고가 유효함을 네트워크로 보고하고; 및
    상기 RLF 보고를 보고할 것을 요청하는 RLF(Radio Link Failure) 보고 요청 메시지를 네트워크로부터 수신하는 것;을 더 포함하되,
    상기 보고 메시지는 상기 RLF 보고 요청 메시지에 대응한 RLF 보고 메시지인 것을 특징으로 하는 보고 방법.
  6. 제 5항에 있어서,
    상기 지연 타이머는 상기 RLF 발생 감지시에 개시되고,
    상기 지연 타이머는 상기 단말에 미리 설정된 값으로 설정되는 것을 특징으로 하는 보고 방법.
  7. 제 5항에 있어서,
    상기 지연 타이머는 상기 RLF 보고 요청 메시지의 수신시에 개시되고,
    상기 지연 타이머는 상기 단말에 미리 설정된 값으로 설정되는 것을 특징으로 하는 보고 방법.
  8. 제 1항에 있어서, 상기 방법은,
    측정 보고 설정 메시지를 수신하고; 및
    측정 결과 보고 조건의 만족 여부를 결정하는 것;을 더 포함하되,
    상기 측정 보고 설정 메시지는 상기 측정 결과 보고 조건이 만족된 시점으로부터 특정 기간 내에 보고 메시지를 전송하는 것이 허용됨을 지시하는 지연 보고 지시 정보를 포함하는 것을 특징으로 하는 보고 방법.
  9. 제 8항에 있어서,
    상기 특정 기간은 상기 지연 타이머의 구동 지속시간이고,
    상기 지연 타이머는 상기 측정 결과 보고 조건이 만족된 시점에 개시되고,
    상기 측정 보고 설정 메시지는 상기 지연 타이머의 설정 값을 지시하는 지연 타이머 설정 정보를 포함함을 특징으로 하는 보고 방법.
  10. 무선 통신 시스템에서 동작하는 무선 장치에 있어서, 상기 무선 장치는
    무선 신호를 송신 및 수신하는 RF(Radio Frequency)부 및;
    상기 RF 부와 기능적으로 결합하여 동작하는 프로세서;를 포함하되, 상기 프로세서는,
    측정 결과를 획득하고,
    상기 측정 결과와 관련된 위치 정보를 획득을 시도하고,
    지연 타이머를 개시하고, 및
    상기 지연 타이머 만료 이전에 상기 위치 정보의 획득이 완료되면, 상기 측정 결과 및 상기 획득된 위치 정보를 포함하는 보고 메시지를 네트워크로 전송하도록 설정되는 것을 특징으로 하는 무선 장치.
  11. 제 10항에 있어서, 상기 프로세서는,
    상기 지연 타이머 만료 전에 상기 위치 정보를 획득하지 못하면, 상기 측정 결과를 포함하는 보고 메시지를 상기 네트워크로 전송하도록 설정되는 것을 특징으로 하는 무선 장치.
  12. 제 11항에 있어서,
    상기 지연 타이머 만료 전에 상기 위치 정보를 획득하지 못하면, 상기 보고 메시지는 상기 위치 정보를 획득하지 못한 이유와 관련된 정보를 더 포함하는 것을 특징으로 하는 무선 장치.
  13. 제 12항에 있어서,
    상기 지연 타이머 만료 전에 상기 위치 정보의 획득이 완료되면, 상기 보고 메시지는 상기 위치 정보 획득의 기반이된 포지셔닝 기법을 지시하는 정보를 더 포함함을 특징으로 하는 무선 장치.
  14. 제 10항에 있어서, 상기 프로세서는
    RLF(Radio Link Failure) 발생을 감지하고,
    상기 RLF 발생에 따른 RLF 보고가 유효함을 네트워크로 보고하고, 및
    상기 RLF 보고를 보고할 것을 요청하는 RLF(Radio Link Failure) 보고 요청 메시지를 네트워크로부터 수신하도록 설정되되,
    상기 보고 메시지는 상기 RLF 보고 요청 메시지에 대응한 RLF 보고 메시지인 것을 특징으로 하는 무선 장치.
  15. 제 14항에 있어서,
    상기 지연 타이머는 상기 RLF 발생 감지시에 개시되고,
    상기 지연 타이머는 상기 무선 장치에 미리 설정된 값으로 설정되는 것을 특징으로 하는 무선 장치.
  16. 제 14항에 있어서,
    상기 지연 타이머는 상기 RLF 보고 메시지의 수신시에 개시되고,
    상기 지연 타이머는 상기 무선 장치에 미리 설정된 값으로 설정되는 것을 특징으로 하는 무선 장치.
  17. 제 10항에 있어서, 상기 프로세서는,
    측정 보고 설정 메시지를 수신하고, 및
    측정 결과 보고 조건의 만족 여부를 결정하도록 설정되되,
    상기 측정 보고 설정 메시지는 상기 측정 결과 보고 조건이 만족된 시점으로부터 특정 기간 내에 보고 메시지를 전송하는 것이 허용됨을 지시하는 지연 보고 지시 정보를 포함하는 것을 특징으로 하는 무선 장치.
  18. 제 17항에 있어서,
    상기 특정 기간은 상기 지연 타이머의 구동 지속시간이고,
    상기 지연 타이머는 상기 측정 결과 보고 조건이 만족된 시점에 개시되고,
    상기 측정 보고 설정 메시지는 상기 지연 타이머의 설정 값을 지시하는 지연 타이머 설정 정보를 포함함을 특징으로 하는 무선 장치.
PCT/KR2013/000622 2012-01-26 2013-01-25 무선 통신 시스템에서 보고 방법 및 이를 지원하는 장치 WO2013111997A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/373,876 US9838897B2 (en) 2012-01-26 2013-01-25 Method for reporting in wireless communication system and apparatus therefor
KR1020147020545A KR101616253B1 (ko) 2012-01-26 2013-01-25 무선 통신 시스템에서 보고 방법 및 이를 지원하는 장치

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201261591242P 2012-01-26 2012-01-26
US61/591,242 2012-01-26
US201261592511P 2012-01-30 2012-01-30
US61/592,511 2012-01-30

Publications (1)

Publication Number Publication Date
WO2013111997A1 true WO2013111997A1 (ko) 2013-08-01

Family

ID=48873678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/000622 WO2013111997A1 (ko) 2012-01-26 2013-01-25 무선 통신 시스템에서 보고 방법 및 이를 지원하는 장치

Country Status (3)

Country Link
US (1) US9838897B2 (ko)
KR (1) KR101616253B1 (ko)
WO (1) WO2013111997A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015115782A1 (en) * 2014-01-30 2015-08-06 Lg Electronics Inc. Method and apparatus for supporting minimization of drive tests for radio access network sharing in wireless communication system
EP3171638A4 (en) * 2014-07-18 2018-03-21 Samsung Electronics Co., Ltd. Method and apparatus for improving handover success rate
WO2019031943A1 (en) * 2017-08-11 2019-02-14 Lg Electronics Inc. METHOD OF REPORTING A MEASUREMENT RESULT AND DEVICE SUPPORTING THE METHOD

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9596616B2 (en) * 2013-09-30 2017-03-14 Telefonaktiebolaget L M Ericsson (Publ) Enhancement on radio link failure report to record necessary timing details for a dual-threshold handover trigger event
US20150281989A1 (en) * 2014-04-01 2015-10-01 Qualcomm Incorporated Delaying transmission of measurement report
JP6449841B2 (ja) * 2016-12-27 2019-01-09 Kddi株式会社 端末装置、測定システム、測定方法、及びコンピュータプログラム
US11350321B2 (en) * 2017-07-20 2022-05-31 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Measurement configuration method and related product
CN109842924B (zh) 2017-11-27 2021-01-12 维沃移动通信有限公司 一种位置获取的控制方法、用户终端和装置
EP3771232B1 (en) * 2018-03-28 2023-08-16 Beijing Xiaomi Mobile Software Co., Ltd. Information reporting and configuration method and device, user equipment and base station
US11653241B2 (en) * 2018-06-01 2023-05-16 Telefonaktiebolaget Lm Ericsson (Publ) Reporting performance degradation in a communications system
EP3846544B1 (en) * 2019-01-28 2023-10-25 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communication method, terminal device and network device
KR20200099000A (ko) * 2019-02-13 2020-08-21 삼성전자주식회사 무선 통신 시스템에서 캐리어 어그리게이션을 지원하기 위한 방법 및 장치
US10999755B1 (en) 2019-10-19 2021-05-04 Skylo Technologies, Inc. Data package selection for data reporting of one or more data sources
WO2021194825A1 (en) * 2020-03-26 2021-09-30 Qualcomm Incorporated Methods and apparatuses for postponed reporting of at least one positioning state information (psi) report element
US11770791B2 (en) 2020-04-03 2023-09-26 Qualcomm Incorporated Positioning measurement data reported via L1 or L2 signaling

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100088085A (ko) * 2009-01-29 2010-08-06 엘지전자 주식회사 이동 통신 시스템에서 전송이 억제된 측정 결과를 모아서 보고하는 방법
WO2010151064A2 (en) * 2009-06-24 2010-12-29 Lg Electronics Inc. Method of transmitting measurement report in wireless communication system

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6236365B1 (en) * 1996-09-09 2001-05-22 Tracbeam, Llc Location of a mobile station using a plurality of commercial wireless infrastructures
WO2005074312A1 (en) * 2004-02-02 2005-08-11 Electronics And Telecommunications Research Institute A method for requesting and reporting channel quality information in wireless portable internet system
US7974639B2 (en) * 2005-02-04 2011-07-05 Qualcomm Incorporated Method and apparatus for performing position determination with a short circuit call flow
KR101133850B1 (ko) 2005-10-10 2012-04-06 삼성전자주식회사 위치 서비스 제공 시스템의 단말 및 서버와 그 방법
KR100922101B1 (ko) 2005-11-23 2009-10-16 엘지전자 주식회사 위치 정보 시스템에서의 측위 방식 대체방법
US8830818B2 (en) * 2007-06-07 2014-09-09 Qualcomm Incorporated Forward handover under radio link failure
JP5234004B2 (ja) * 2007-11-09 2013-07-10 日本電気株式会社 無線通信システム及び方法並びにプログラム
KR20090056232A (ko) 2007-11-30 2009-06-03 포스데이타 주식회사 광대역 무선 접속 통신 시스템에서 위치 기반 서비스 제공시스템 및 방법
US8780732B2 (en) * 2008-03-18 2014-07-15 Qualcomm Incorporated Method of network management by assistance from terminal using control-plane signaling between terminal and network
JP5538802B2 (ja) * 2008-11-04 2014-07-02 三菱電機株式会社 通信方法、移動体通信システム、移動端末および基地局制御装置
EP2356834B1 (en) * 2008-11-11 2013-09-18 Telefonaktiebolaget LM Ericsson (publ) Method for sending emergency messages to mobile terminals
WO2010071345A2 (en) * 2008-12-15 2010-06-24 Lg Electronics Inc. Method of location update in a wireless communication system
WO2010083006A2 (en) * 2009-01-16 2010-07-22 Rambus Inc. Methods and circuits for detecting and reporting high-energy particles using mobile phones and other portable computing devices
US8295165B2 (en) * 2009-07-27 2012-10-23 Lg Electronics Inc. Apparatus and method for handling radio link failure in wireless communication system
KR101674222B1 (ko) 2010-02-09 2016-11-09 엘지전자 주식회사 무선 통신 시스템에서 로그된 측정 보고 방법 및 장치
US8577360B2 (en) * 2010-04-12 2013-11-05 Telefonaktiebolaget Lm Ericsson (Publ) UE-based MDT measuring and reporting in a cellular radio access network
US8594657B2 (en) 2010-06-15 2013-11-26 Htc Corporation Method for reporting MDT log and mobile communication device utilizing the same
US9668154B2 (en) * 2010-09-21 2017-05-30 Kyocera Corporation Radio measurement collection method and radio terminal
GB2484117A (en) * 2010-09-30 2012-04-04 Fujitsu Ltd Automated network coverage hole detection by systematically modifying a connection reestablishment timer (T311) in a number of UEs
KR20130081289A (ko) * 2010-10-04 2013-07-16 교세라 가부시키가이샤 이동통신방법, 무선단말, 및 기지국
CN103190169B (zh) * 2010-11-30 2016-03-30 富士通株式会社 报告无线链路失败信息的方法、终端设备和基站
CN103959845B (zh) * 2011-09-30 2019-02-01 诺基亚通信公司 降低无线网络中的无线电链路失效数据量的方法和装置
US20130095819A1 (en) * 2011-10-18 2013-04-18 Qualcomm Incorporated Method and apparatus for performing neighboring cell measurements in wireless networks

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100088085A (ko) * 2009-01-29 2010-08-06 엘지전자 주식회사 이동 통신 시스템에서 전송이 억제된 측정 결과를 모아서 보고하는 방법
WO2010151064A2 (en) * 2009-06-24 2010-12-29 Lg Electronics Inc. Method of transmitting measurement report in wireless communication system

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NTT DOCOMO, INC.: "Summary of email discussion [71#51] UMTS/LTE: MDT - Potential enhancements related to location info reporting", 3GPP TSG-RAN2 #7LBIS, R2-105738, 15 October 2010 (2010-10-15) *
NTT DOCOMO, INC.: "Validity of location information for Immediate MDT", 3GPP TSG- RAN2#72, R2-106313, 19 November 2010 (2010-11-19) *
NTT DOCOMO, INC.: "Validity time of location information for Immediate MDT", 3GPP TSG-RAN2#72BIS, R2-110281, 21 January 2011 (2011-01-21) *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015115782A1 (en) * 2014-01-30 2015-08-06 Lg Electronics Inc. Method and apparatus for supporting minimization of drive tests for radio access network sharing in wireless communication system
US9888403B2 (en) 2014-01-30 2018-02-06 Lg Electronics Inc. Method and apparatus for supporting minimization of drive tests for radio access network sharing in wireless communication system
EP3171638A4 (en) * 2014-07-18 2018-03-21 Samsung Electronics Co., Ltd. Method and apparatus for improving handover success rate
US10154444B2 (en) 2014-07-18 2018-12-11 Samsung Electronics Co., Ltd. Method and apparatus for improving handover success rate
WO2019031943A1 (en) * 2017-08-11 2019-02-14 Lg Electronics Inc. METHOD OF REPORTING A MEASUREMENT RESULT AND DEVICE SUPPORTING THE METHOD
US11096103B2 (en) 2017-08-11 2021-08-17 Lg Electronics Inc. Method for reporting measurement result and device supporting the same

Also Published As

Publication number Publication date
KR20140123501A (ko) 2014-10-22
US9838897B2 (en) 2017-12-05
US20140370914A1 (en) 2014-12-18
KR101616253B1 (ko) 2016-04-28

Similar Documents

Publication Publication Date Title
US9420451B2 (en) Method for limited positioning-based reporting in wireless communication system and apparatus therefor
KR102077746B1 (ko) 무선 통신 시스템에서 측정 보고 방법 및 이를 지원하는 장치
KR101616253B1 (ko) 무선 통신 시스템에서 보고 방법 및 이를 지원하는 장치
KR101584463B1 (ko) 무선 통신 시스템에서 위치 정보를 함께 보고하는 방법 및 이를 지원하는 장치
WO2013172612A1 (ko) 무선 통신 시스템에서 가변적 포지셔닝 기반 보고 방법 및 이를 지원하는 장치
WO2013169030A1 (ko) 무선 통신 시스템에서 상관성 유효 평가 및 이를 기반으로 한 보고 방법 및 장치
EP2922334B1 (en) Method of reporting measurement in wireless communication system and device for supporting said method
US9713115B2 (en) Method for reporting positioning status in a wireless communication system and apparatus therefor
KR102038001B1 (ko) 무선 통신 시스템에서 보고 방법 및 이를 지원하는 장치
KR101637797B1 (ko) 무선 통신 시스템에서 위치 정보 처리 방법 및 이를 지원하는 장치
WO2013169027A1 (ko) 무선 통신 시스템에서 위치 추정 기반 정보 보고 및 위치 추정을 위한 방법과 이를 지원하는 장치
US20150024788A1 (en) Method for processing location information in wireless communication system and apparatus for supporting same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13741375

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147020545

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14373876

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13741375

Country of ref document: EP

Kind code of ref document: A1