WO2013111935A1 - 고온개질기를 이용한 폐음식물의 바이오 합성가스화 방법 - Google Patents

고온개질기를 이용한 폐음식물의 바이오 합성가스화 방법 Download PDF

Info

Publication number
WO2013111935A1
WO2013111935A1 PCT/KR2012/006789 KR2012006789W WO2013111935A1 WO 2013111935 A1 WO2013111935 A1 WO 2013111935A1 KR 2012006789 W KR2012006789 W KR 2012006789W WO 2013111935 A1 WO2013111935 A1 WO 2013111935A1
Authority
WO
WIPO (PCT)
Prior art keywords
reformer
solid waste
waste
supplying
gas
Prior art date
Application number
PCT/KR2012/006789
Other languages
English (en)
French (fr)
Inventor
김현영
Original Assignee
Kim Hyun Yong
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kim Hyun Yong filed Critical Kim Hyun Yong
Publication of WO2013111935A1 publication Critical patent/WO2013111935A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/10Treatment of sludge; Devices therefor by pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • C02F11/04Anaerobic treatment; Production of methane by such processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/08Production of synthetic natural gas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P3/00Preparation of elements or inorganic compounds except carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/027Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the present invention relates to a method of bio-syngas conversion of waste foods, which can convert all carbon of waste foods into synthesis gas without secondary pollution, and is applicable to most biomass as well as waste foods. It relates to a bio-synthesis gasification method of waste food using a high temperature reformer that can be applied.
  • the high temperature reformer technology is Lurgi's coal gas reaction (C + H 2 O ⁇ CO + H 2 ; carbon reforming to carbon monoxide). This reaction is thermodynamically balanced above 1200 ° C (Int'l J. of Hydrogen Energy vol. 28/11. 2003, pp. 1179-1186. 'A low cost production of hydrogen from carbonaceous wastes).
  • carbon refers to carbon contained in all carbonized materials, and carbon contained in all organic materials is reformed at this temperature (above 1200 ° C). Under these thermodynamic conditions the reforming efficiency is close to 100%.
  • the combined carbon monoxide and H 2 gas combined is called syngas (CO + H 2 ), and the syngas occupies an absolute position in the chemical industry as a chemical raw material before being a fuel. That is, all chemical raw materials can be synthesized from the synthesis gas.
  • syngas production in each country was used as a measure of the country's chemical industry. Still, syngas production is on the rise. Korea has the original technology for this reformer.
  • the 'high temperature furnace' that maintains H 2 O and CO 2 gas at more than 1200 °C is called 'reformer'. That is, in this environment any physical / chemical form of carbon is reformed into CO gas and hydrogen is reduced to hydrogen gas.
  • the syngas produced in the reformer becomes CO 2 gas and H 2 gas through a water shift reaction (CO + H 2 O ⁇ CO 2 + H 2 ), and the hydrogen gas fuel is separated by separating H 2 gas and CO 2 gas. Will be created.
  • This hydrogen gas fuel is synonymous with clean energy and used for power generation.
  • Synthetic gas goes through F / T process to produce other fuels and chemical raw materials.
  • This high temperature reformer technology is patented by the applicant through the Republic of Korea Patent No.
  • Waste foods which are chemically classified as part of biomass, present a significant burden at present. Waste food is first separated into solid waste and liquid sludge through an anaerobic fermenter. Solid wastes are dried and treated by combustion or pyrolysis, etc., but the final stage of the residue is ocean discharge. Liquid sludge also ends with ocean discharge. Increasingly, waste food disposal problems are serious. Since waste food has a large amount of carbon, if it is converted into any form of energy, various technologies are being developed because it can contribute greatly to the environment and energy problems, but technologies for eco-friendly waste food energy have not been introduced yet. It is a reality.
  • the present invention has been started with the idea of producing synthetic gas (CO + H 2 , Bio-syngas) by reforming carbon of organic matter forming solid waste and liquid sludge of waste food at high temperature.
  • synthetic gas CO + H 2 , Bio-syngas
  • the present invention is to solve the above problems, it is possible to convert all the carbon of the waste food to the synthesis gas without secondary pollution, high temperature reformer that can be applied to most biomass (biomass) as well as waste food
  • the purpose of the present invention is to provide a biosynthetic gasification method of waste food.
  • Bio-gas synthesis method of waste food using a high temperature reformer to achieve the above object, the first step of separating the waste food into solid waste and liquid sludge in an anaerobic tank; A second step of pyrolyzing and carbonizing the solid waste; A third step of supplying a flue gas generated by pyrolysis of the solid waste in the second step to the reformer, and pulverizing the carbonized solid waste to the reformer; Supplying a volatile organic substance evaporated in the liquid sludge to the reformer; And a fifth step of injecting hydrogen gas into the liquid sludge to hydrogenate to generate an oil, and supplying the evaporated oil to the reformer, wherein the flue gas, the solid waste pulverized and the volatile organic material , And the oil which is evaporated is reformed in the reformer to generate syngas.
  • the bio-synthesis gasification method of the waste food using a high temperature reformer according to the present invention, the solid waste, the volatile organic matter, or the oil that is evaporated, the oil with the part of the synthesis gas produced in the reformer with the reformer Can be supplied to
  • the present invention can convert all the carbon of the waste foods into the synthesis gas without secondary pollution, and can be applied to most biomass as well as waste foods, which has the effect of simultaneously solving environmental problems and energy problems. .
  • Bio-synthesis gasification method of waste food using a high temperature reformer the first step of separating the waste food into solid waste and liquid sludge in an anaerobic tank; A second step of pyrolyzing and carbonizing the solid waste; A third step of supplying a flue gas generated by pyrolysis of the solid waste in the second step to the reformer, and pulverizing the carbonized solid waste to the reformer; Supplying a volatile organic substance evaporated in the liquid sludge to the reformer; And a fifth step of injecting hydrogen gas into the liquid sludge to hydrogenate to generate an oil, and supplying the evaporated oil to the reformer, wherein the flue gas, the solid waste pulverized and the volatile organic material , And the oil which is evaporated is reformed in the reformer to generate syngas.
  • the first step is to separate the waste food into solid waste and liquid sludge in the anaerobic tank.
  • the waste food is separated into solid form (cellulose) and liquid sludge. It can also be separated into solid and liquid.
  • hydrolysis also has the advantage of removing the odor of the waste food, the heat required for hydrolysis can be covered by heat exchange with the hot syngas generated in the reformer.
  • the second stage is a process of pyrolyzing and carbonizing solid waste, and supplying a high temperature (more than 1200 ° C) syngas generated from a reformer to a pyrolysis furnace or burning a part of flue gas generated by pyrolysis of solid waste.
  • Pyrolysis and carbonization of solid waste in a pyrolysis furnace at 300 to 600 ° C. That is, most of the flue gas generated by pyrolyzing solid waste in the pyrolysis furnace is supplied to the reformer, and only a part of the flue gas is burned to be used for heating the pyrolysis furnace.
  • the flue gas generated by pyrolyzing the solid waste in the second stage is supplied to the reformer, and the carbonized solid waste (charcoal) is crushed and supplied to the reformer. At this time, the carbonized and pulverized solid waste is supplied to the reformer together with a part of the syngas produced in the reformer.
  • the fourth step is a process of supplying the reformer with volatile organics that evaporate in the liquid sludge, which is supplied to the reformer together with a portion of the syngas produced in the reformer.
  • the liquid sludge consists of a large amount of organic acid, the highly volatile organic acid is evaporated and supplied to the reformer with a portion of the syngas produced in the reformer, and the non-volatile organic acid is treated by injecting hydrogen gas in the fifth step. .
  • the fifth step is a process of injecting hydrogen gas into the liquid sludge to hydrogenate to produce an oil, and supplying the evaporating oil to the reformer, the evaporating oil is supplied to the reformer with a portion of the syngas generated in the reformer.
  • hydrogen gas is injected into the liquid sludge, non-volatile organic acids are hydrogenated, produced as oil and floated on the liquid. Only a small amount of minerals remain in the liquid sludge.
  • the hydrogenation reaction requires an inorganic metal catalyst, the liquid sludge contains an inorganic heavy metal, so the reaction proceeds without a separate catalyst.
  • Hydrogenation is a reaction that proceeds well at room temperature without high pressure, chemically making organic acids into hydrocarbons. Hydrocarbons are commercially known as oils, although their names vary depending on the number of carbons they are linked to. The oil that floats over the liquid is evaporated and fed to the reformer with some of the syngas produced in the reformer.
  • Gasification method according to the present invention is capable of producing syngas from forestry / agricultural by-products and biomass (biomass), there is no problem of tar formation. And it can be applied to sludge treatment generated in sewage treatment.
  • the biosynthesis gasification method of waste food using a high temperature reformer according to the present invention is the most environmentally friendly and economical, and can be applied to renewable energy of all biomass as well as waste food.
  • the present invention can solve all environmental and energy problems at the same time by using a high-temperature reformer that can convert all the carbon of the waste food into a synthesis gas without secondary pollution, and can be applied to most biomass as well as waste food. Can be.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Mechanical Engineering (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

본 발명은 폐음식물의 모든 탄소를 2차 오염 없이 합성가스로 변환할 수 있고, 폐음식물 뿐만 아니라 대부분의 바이오매스(biomass)에도 적용할 수 있는 고온개질기를 이용한 폐음식물의 바이오 합성가스화 방법에 관한 것으로, 폐음식물을 혐기조에서 고체 폐기물과 액체 슬러지로 분리하는 제1단계; 상기 고체 폐기물을 열분해하고 탄화시키는 제2단계; 상기 제2단계에서 상기 고체 폐기물이 열분해되어 발생하는 플루 가스(flue gas)를 개질기에 공급하고, 탄화된 상기 고체 폐기물을 분쇄하여 상기 개질기에 공급하는 제3단계; 상기 액체 슬러지 중에서 증발하는 휘발성 유기물을 상기 개질기에 공급하는 제4단계; 및 상기 액체 슬러지에 수소가스를 주입하여 수소화시켜 오일을 생성하고, 증발하는 상기 오일을 상기 개질기에 공급하는 제5단계;를 포함하고, 상기 플루 가스, 탄화되어 분쇄된 상기 고체 폐기물, 상기 휘발성 유기물, 및 증발하는 상기 오일을 상기 개질기에서 개질 반응시켜 합성가스를 생성한다.

Description

고온개질기를 이용한 폐음식물의 바이오 합성가스화 방법
본 발명은 폐음식물의 바이오 합성가스(Bio-syngas)화 방법에 관한 것으로, 폐음식물의 모든 탄소를 2차 오염 없이 합성가스로 변환할 수 있고, 폐음식물 뿐만 아니라 대부분의 바이오매스(biomass)에도 적용할 수 있는 고온개질기를 이용한 폐음식물의 바이오 합성가스화 방법에 관한 것이다.
고온개질기 기술은 Lurgi의 coal gas reaction(C+H2O→CO+H2; 탄소가 일산화탄소로 개질되는 반응)이다. 이 반응은 1200℃ 이상에서 열역학적 균형을 이룬다(Int'l J. of Hydrogen Energy vol. 28/11. 2003, pp. 1179-1186. ‘A low cost production of hydrogen from carbonaceous wastes). 여기서 탄소는 모든 탄화물질에 포함되어 있는 탄소를 의미하며, 모든 유기물에 내포되어 있는 탄소는 이 온도(1200℃ 이상)에서 개질된다. 이러한 열역학적 조건에서 개질 효율은 100%에 가깝다. 개질된 일산화탄소와 H2가스를 합하여 합성가스(CO+H2)라 부르고, 합성가스는 연료이기 전에 화학원료로서 화학 공업에서 절대적인 위치를 차지한다. 즉, 합성가스에서 모든 화학원료를 합성할 수 있다. 한때 각 나라의 합성가스 생산량은 그 나라 화학공업의 척도로 쓰일 때도 있었다. 아직도 계속해서 합성가스의 생산량은 증가하고 있다. 이 개질기에 대한 원천기술을 보유하고 있는 나라가 대한민국이다.
H2O와 CO2가스를 1200℃이상에서 유지하는 ‘고온로’를 ‘개질기’라고 한다. 즉, 이 환경에서 어떠한 물리적/화학적 형태의 탄소는 CO 가스로 개질되고, 수소는 수소가스로 환원된다. 개질기에서 생성되는 합성가스는 Water shift reaction(CO+H2O→CO2+H2)을 통해서 CO2 가스와 H2 가스가 되고, H2 가스와 CO2 가스를 분리함으로써, 수소가스 연료를 생성하게 된다. 이 수소가스 연료는 청정에너지의 대명사로서 전력발전에 사용되고, 합성가스는 F/T Process를 거쳐서 기타 연료와 화학원료를 생산한다. 이 고온개질기 기술은 본 출원인이 대한민국 특허 제10-0637340호 ‘고온개질기’와 대한민국 특허 제10-1038465호 ‘열분해 개질기’를 통해서 특허 등록하였고, 특히 열분해 개질기에서는 개질기의 바닥에 나선형 경사부를 형성함으로써, 연소실에서 유입되는 고온가스(CO2+H2O)와 하부에서 유입되는 플루가스(flue gas)가 함께 상승 회전하면서 개질반응 효율이 크게 향상되고, 개질기 내부온도를 더욱 균일하게 유지할 수 있어 개질기의 내구성에서도 향상을 도모하였다. 이 열분해 개질기는 ‘Kim reformer V’라는 상표로 상품화되었다. 고체 유기물 중에서 열분해가 잘 되는 고체 Feedstock을 어떻게 고온개질기에 연결할 수 있는지를 보여주고 있다(대한민국 특허 제10-0887137호 ‘탄화물 열분해 개질 방법 및 장치’).
화학적으로 바이오매스(biomass)의 일부로 분류되는 폐음식물은 그 처리가 현시점에서 큰 부담이 되고 있다. 폐음식물은 일차적으로 혐기성 발효조를 거쳐 고체(Cellulose) 폐기물과 액체인 슬러지로 분리된다. 고체 폐기물은 건조되어 연소 또는 열분해 등으로 처리되지만, 잔여물의 마지막 단계는 해양 투하이다. 액체의 슬러지 역시 해양투하로서 끝을 맺는다. 날로 증가하는 폐음식물의 처리 문제는 심각하다. 폐음식물은 많은 탄소를 보유하고 있기 때문에 어떤 형태의 에너지로 전환된다면, 환경 및 에너지 문제에 크게 공헌할 수 있기 때문에 여러 가지 기술개발이 이루어지고 있으나, 폐음식물을 친환경적으로 에너지화시키는 기술은 아직 소개되지 않고 있는 것이 현실이다.
그리하여 본 발명은 폐음식물의 고체 폐기물과 액체 슬러지를 형성하고 있는 유기물의 탄소를 고온에서 개질하여 합성가스(CO+H2, Bio-syngas)를 생성하자는 착안에서 시작되었다.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 폐음식물의 모든 탄소를 2차 오염 없이 합성가스로 변환할 수 있고, 폐음식물 뿐만 아니라 대부분의 바이오매스(biomass)에도 적용할 수 있는 고온개질기를 이용한 폐음식물의 바이오 합성가스화 방법을 제공하는데 그 목적이 있다.
상기와 같은 목적을 달성하기 위하여 본 발명에 따른 고온개질기를 이용한 폐음식물의 바이오 합성가스화 방법은, 폐음식물을 혐기조에서 고체 폐기물과 액체 슬러지로 분리하는 제1단계; 상기 고체 폐기물을 열분해하고 탄화시키는 제2단계; 상기 제2단계에서 상기 고체 폐기물이 열분해되어 발생하는 플루 가스(flue gas)를 개질기에 공급하고, 탄화된 상기 고체 폐기물을 분쇄하여 상기 개질기에 공급하는 제3단계; 상기 액체 슬러지 중에서 증발하는 휘발성 유기물을 상기 개질기에 공급하는 제4단계; 및 상기 액체 슬러지에 수소가스를 주입하여 수소화시켜 오일을 생성하고, 증발하는 상기 오일을 상기 개질기에 공급하는 제5단계;를 포함하고, 상기 플루 가스, 탄화되어 분쇄된 상기 고체 폐기물, 상기 휘발성 유기물, 및 증발하는 상기 오일을 상기 개질기에서 개질 반응시켜 합성가스를 생성한다.
또한, 본 발명에 따른 고온개질기를 이용한 폐음식물의 바이오 합성가스화 방법은, 탄화되어 분쇄된 상기 고체 폐기물, 상기 휘발성 유기물, 또는 증발하는 상기 오일을 상기 개질기에서 생성된 합성가스의 일부와 함께 상기 개질기에 공급할 수 있다.
본 발명은 폐음식물의 모든 탄소를 2차 오염 없이 합성가스로 변환할 수 있고, 폐음식물 뿐만 아니라 대부분의 바이오매스(biomass)에도 적용할 수 있어 환경 문제와 에너지 문제를 동시에 해결할 수 있는 효과가 있다.
본 발명의 바람직한 실시예에 따른 고온개질기를 이용한 폐음식물의 바이오 합성가스화 방법은, 폐음식물을 혐기조에서 고체 폐기물과 액체 슬러지로 분리하는 제1단계; 상기 고체 폐기물을 열분해하고 탄화시키는 제2단계; 상기 제2단계에서 상기 고체 폐기물이 열분해되어 발생하는 플루 가스(flue gas)를 개질기에 공급하고, 탄화된 상기 고체 폐기물을 분쇄하여 상기 개질기에 공급하는 제3단계; 상기 액체 슬러지 중에서 증발하는 휘발성 유기물을 상기 개질기에 공급하는 제4단계; 및 상기 액체 슬러지에 수소가스를 주입하여 수소화시켜 오일을 생성하고, 증발하는 상기 오일을 상기 개질기에 공급하는 제5단계;를 포함하고, 상기 플루 가스, 탄화되어 분쇄된 상기 고체 폐기물, 상기 휘발성 유기물, 및 증발하는 상기 오일을 상기 개질기에서 개질 반응시켜 합성가스를 생성한다.
본 발명의 바람직한 실시예를 상세히 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 상세한 설명을 생략한다.
제1단계는 폐음식물을 혐기조에서 고체 폐기물과 액체 슬러지로 분리하는 공정으로서, 혐기성 발효조에서 폐음식물은 고체형태(cellulose)와 액체인 슬러지로 분리되고, 혐기조를 대신하여 200℃ 정도에서 가수분해를 통해 고형과 액상으로 분리할 수도 있다. 이때, 가수분해는 폐음식물의 악취를 제거하는 장점도 있으며, 가수분해에 필요한 열은 개질기에서 생성된 고온의 합성가스와의 열교환으로 충당할 수 있다.
제2단계는 고체 폐기물을 열분해하고 탄화시키는 공정으로서, 개질기에서 생성되는 고온(1200℃ 이상)의 합성가스를 열분해로에 공급하거나 고체 폐기물이 열분해되어 발생하는 플루 가스(flue gas)의 일부를 연소시켜 300∼600℃의 열분해로에서 고체 폐기물을 열분해하고 탄화시킨다. 즉, 고체 폐기물을 열분해로에서 열분해하여 발생하는 플루 가스의 대부분은 개질기에 공급되고, 플루 가스의 일부만을 연소시켜 열분해로의 가열에 사용하는 것이다.
제3단계에서는 제2단계에서 고체 폐기물을 열분해하여 발생하는 플루 가스를 개질기에 공급하고, 탄화된 고체 폐기물(숯)을 분쇄하여 개질기에 공급한다. 이때, 탄화되어 분쇄된 고체 폐기물을 개질기에서 생성된 합성가스의 일부와 함께 개질기에 공급한다.
제4단계는 액체 슬러지 중에서 증발하는 휘발성 유기물을 개질기에 공급하는 공정으로서, 휘발성 유기물은 개질기에서 생성된 합성가스의 일부와 함께 개질기에 공급된다. 액체 슬러지는 많은 양의 유기성 산으로 구성되는데, 휘발성이 높은 유기성 산은 증발하여 개질기에서 생성된 합성가스의 일부와 함께 개질기에 공급되고, 휘발성이 없는 유기성 산은 제5단계에서 수소가스를 주입하여 처리한다.
제5단계는 액체 슬러지에 수소가스를 주입하여 수소화시켜 오일을 생성하고, 증발하는 오일을 개질기에 공급하는 공정으로서, 증발하는 오일은 개질기에서 생성된 합성가스의 일부와 함께 개질기에 공급된다. 액체 슬러지에 수소가스를 주입하면, 휘발성이 없는 유기성 산은 수소화(hydrogenation)되고 오일로 생성되어 액체 위로 떠오른다. 액체 슬러지 중에서 남는 것은 소량의 무기물 뿐이다. 통상적으로 수소화 반응에는 무기 금속 촉매가 필요한데, 액체 슬러지에는 무기 중금속이 내포되어 있으므로 별도의 촉매 없이도 반응이 진행된다. 수소화 반응은 상온에서 고압없이 잘 진행되는 반응으로서, 화학적으로 유기성 산을 탄화수소로 만드는 반응이며, 탄화수소는 연결된 탄소수에 따라 이름이 다르지만 상업적으로 오일로 알려져 있다. 액체 위로 떠오른 오일은 증발하여 개질기에서 생성된 합성가스의 일부와 함께 개질기에 공급되는 것이다.
개질기에 공급되는 플루 가스, 탄화되어 분쇄된 고체 폐기물, 휘발성 유기물, 및 증발하는 오일은 탄소 개질이 일어나서 합성가스를 생성한다. 개질기 내에서 연소는 일어나지 않고, 탄소는 CO와 CO2 형태로 존재하는데 1200℃ 이상에서는 열역학적으로 개질 반응이 우세하여 CO로 남는다.
본 발명에 따른 고온개질기를 이용한 폐음식물의 바이오 합성가스화 방법에 의해서 폐음식물에 내포된 모든 탄소는 합성가스로 변환되고 남는 것은 소량의 무기물에 불과하다. 본 발명에 따른 가스화 방법은 임업/농업 부산물 및 바이오매스(biomass)에서 합성가스 생산이 가능하고, 타르 형성의 문제도 없다. 그리고, 하수처리에서 발생하는 슬러지 처리에도 적용될 수 있다. 본 발명에 따른 고온개질기를 이용한 폐음식물의 바이오 합성가스화 방법이 가장 환경 친화적이고 경제성도 뛰어나며, 폐음식물뿐만 아니라 모든 바이오매스(biomass)의 재생에너지화에도 적용될 수 있다.
이상의 설명은 본 발명의 기술사상을 예시적으로 설명한 것에 불과한 것으로 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서 본 발명에 개시된 실시예는 본 발명의 기술사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술사상의 범위가 한정되는 것은 아니다. 본 발명의 보호범위는 아래의 특허청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
본 발명은 폐음식물의 모든 탄소를 2차 오염 없이 합성가스로 변환할 수 있고, 폐음식물 뿐만 아니라 대부분의 바이오매스(biomass)에도 적용할 수 있는 고온개질기를 이용하므로 환경 문제와 에너지 문제를 동시에 해결할 수 있다.

Claims (3)

  1. 폐음식물을 혐기조에서 고체 폐기물과 액체 슬러지로 분리하는 제1단계;
    상기 고체 폐기물을 열분해하고 탄화시키는 제2단계;
    상기 제2단계에서 상기 고체 폐기물이 열분해되어 발생하는 플루 가스(flue gas)를 개질기에 공급하고, 탄화된 상기 고체 폐기물을 분쇄하여 상기 개질기에 공급하는 제3단계;
    상기 액체 슬러지 중에서 증발하는 휘발성 유기물을 상기 개질기에 공급하는 제4단계; 및
    상기 액체 슬러지에 수소가스를 주입하여 수소화시켜 오일을 생성하고, 증발하는 상기 오일을 상기 개질기에 공급하는 제5단계;를 포함하고,
    상기 플루 가스, 탄화되어 분쇄된 상기 고체 폐기물, 상기 휘발성 유기물, 및 증발하는 상기 오일을 상기 개질기에서 개질 반응시켜 합성가스를 생성하는 것을 특징으로 하는 고온개질기를 이용한 폐음식물의 바이오 합성가스화 방법.
  2. 제1항에 있어서,
    탄화되어 분쇄된 상기 고체 폐기물을 상기 개질기에서 생성된 합성가스의 일부와 함께 상기 개질기에 공급하는 것을 특징으로 하는 고온개질기를 이용한 폐음식물의 바이오 합성가스화 방법.
  3. 제1항 또는 제2항에 있어서,
    상기 휘발성 유기물 또는 증발하는 상기 오일을 상기 개질기에서 생성된 합성가스의 일부와 함께 상기 개질기에 공급하는 것을 특징으로 하는 고온개질기를 이용한 폐음식물의 바이오 합성가스화 방법.
PCT/KR2012/006789 2012-01-27 2012-08-24 고온개질기를 이용한 폐음식물의 바이오 합성가스화 방법 WO2013111935A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0008412 2012-01-27
KR1020120008412A KR101146582B1 (ko) 2012-01-27 2012-01-27 고온개질기를 이용한 폐음식물의 바이오 합성가스화 방법

Publications (1)

Publication Number Publication Date
WO2013111935A1 true WO2013111935A1 (ko) 2013-08-01

Family

ID=46272190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/006789 WO2013111935A1 (ko) 2012-01-27 2012-08-24 고온개질기를 이용한 폐음식물의 바이오 합성가스화 방법

Country Status (2)

Country Link
KR (1) KR101146582B1 (ko)
WO (1) WO2013111935A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101205962B1 (ko) 2012-09-07 2012-11-29 주식회사 이엔이티아이 고함수율 유기성 폐기물을 이용한 합성석탄 제조방법, 합성가스 제조방법, 합성석탄 제조장치 및 합성가스 제조장치
KR102219865B1 (ko) 2018-09-21 2021-02-23 한경남 음식물 쓰레기 처리 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0136987B1 (ko) * 1994-12-29 1998-04-25 강박광 촉매 열분해에 의한 음식물 쓰레기의 처리방법
KR100390776B1 (ko) * 2000-08-25 2003-07-10 한국화학연구원 음식물 쓰레기로부터 합성 가스를 얻는 방법
JP2005125319A (ja) * 2003-09-30 2005-05-19 Ebara Corp 有機性廃棄物による発電方法及び装置
KR20080064866A (ko) * 2005-10-17 2008-07-09 에이비-씨더블유티, 엘엘씨 유기 및 비-유기 폐기 물질을 유용한 제품으로 변환시키는방법
KR100887137B1 (ko) * 2008-06-12 2009-03-04 김현영 탄화물 열분해 개질 방법 및 그 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0136987B1 (ko) * 1994-12-29 1998-04-25 강박광 촉매 열분해에 의한 음식물 쓰레기의 처리방법
KR100390776B1 (ko) * 2000-08-25 2003-07-10 한국화학연구원 음식물 쓰레기로부터 합성 가스를 얻는 방법
JP2005125319A (ja) * 2003-09-30 2005-05-19 Ebara Corp 有機性廃棄物による発電方法及び装置
KR20080064866A (ko) * 2005-10-17 2008-07-09 에이비-씨더블유티, 엘엘씨 유기 및 비-유기 폐기 물질을 유용한 제품으로 변환시키는방법
KR100887137B1 (ko) * 2008-06-12 2009-03-04 김현영 탄화물 열분해 개질 방법 및 그 장치

Also Published As

Publication number Publication date
KR101146582B1 (ko) 2012-05-18

Similar Documents

Publication Publication Date Title
Lang et al. Co-hydrothermal carbonization of corn stalk and swine manure: Combustion behavior of hydrochar by thermogravimetric analysis
Arun et al. Hydrothermal liquefaction of Scenedesmus obliquus using a novel catalyst derived from clam shells: Solid residue as catalyst for hydrogen production
Park et al. Characterized hydrochar of algal biomass for producing solid fuel through hydrothermal carbonization
Chen et al. Air gasification of biogas-derived digestate in a downdraft fixed bed gasifier
Biller et al. Production of biofuels via hydrothermal conversion
CN102875005B (zh) 一种基于水热反应的污泥生物炭化工艺
Liu et al. The state of technologies and research for energy recovery from municipal wastewater sludge and biosolids
AU2010335047A1 (en) Method and device for simultaneous production of energy in the forms electricity, heat and hydrogen gas
Lewandowski et al. Modern methods of thermochemical biomass conversion into gas, liquid and solid fuels
Timofeeva et al. Steam gasification of digestate after anaerobic digestion and dark fermentation of lignocellulosic biomass to produce syngas with high hydrogen content
Muh et al. Biomass conversion to fuels and value-added chemicals: a comprehensive review of the thermochemical processes
Ani Utilization of bioresources as fuels and energy generation
Kurniawan et al. Wastewater sludge as an alternative energy resource: A review
Xu et al. Treatment of secondary sludge for energy recovery
Menezes et al. Alternative valuation pathways for primary, secondary, and tertiary sewage sludge: biochar and bio-oil production for sustainable energy
KR101507956B1 (ko) 유기성 폐기물을 이용한 열병합 발전 통합 에너지화 시스템 및 방법
Shahbaz et al. Technical readiness level of biohydrogen production process and its value chain
Pelaez-Samaniego et al. Biomass carbonization technologies
Kumari et al. Thermochemical routes applying biomass: a critical assessment
Kwon et al. Urban energy mining from sewage sludge
Kumar et al. Pulp-paper industry sludge waste biorefinery for sustainable energy and value-added products development: A systematic valorization towards waste management
Güleç et al. Progress in lignocellulosic biomass valorization for biofuels and value‐added chemical production in the EU: A focus on thermochemical conversion processes
US20130340322A1 (en) Enhanced methods of synthetic chemical and fuel production through integrated processing and emission recovery
KR101146582B1 (ko) 고온개질기를 이용한 폐음식물의 바이오 합성가스화 방법
Lin et al. EEffect of moisture on gasification of hydrochar derived from real-MSW

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12866722

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12866722

Country of ref document: EP

Kind code of ref document: A1