WO2013111693A1 - Cooling device and sensible heat exchanger - Google Patents

Cooling device and sensible heat exchanger Download PDF

Info

Publication number
WO2013111693A1
WO2013111693A1 PCT/JP2013/051053 JP2013051053W WO2013111693A1 WO 2013111693 A1 WO2013111693 A1 WO 2013111693A1 JP 2013051053 W JP2013051053 W JP 2013051053W WO 2013111693 A1 WO2013111693 A1 WO 2013111693A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensible heat
heat exchanger
airflow
primary
cooling device
Prior art date
Application number
PCT/JP2013/051053
Other languages
French (fr)
Japanese (ja)
Inventor
秀 板橋
Original Assignee
株式会社ニットー冷熱製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニットー冷熱製作所 filed Critical 株式会社ニットー冷熱製作所
Priority to DE112013000685.5T priority Critical patent/DE112013000685T5/en
Priority to JP2013513491A priority patent/JP5654670B2/en
Publication of WO2013111693A1 publication Critical patent/WO2013111693A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/02Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
    • F24F1/032Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing characterised by heat exchangers
    • F24F1/0323Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D5/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0041Indoor units, e.g. fan coil units characterised by exhaustion of inside air from the room
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/02Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
    • F24F1/032Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing characterised by heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/02Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
    • F24F1/032Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing characterised by heat exchangers
    • F24F1/0325Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing characterised by heat exchangers by the shape of the heat exchangers or of parts thereof, e.g. of their fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/02Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
    • F24F1/0328Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing with means for purifying supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/02Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
    • F24F1/037Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing with humidification means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F12/006Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an air-to-air heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/0035Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using evaporation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/044Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being pontual, e.g. dimples
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/54Free-cooling systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/56Heat recovery units

Definitions

  • the present invention relates to a cooling device and a sensible heat exchanger.
  • This cooling device changes the cooling capacity by changing the spray area of the spray means, and suppresses the accumulation of impurities on the sensible heat exchanger by making the spray amount per unit area constant.
  • the cooling capacity is changed by changing the spray area, in order to achieve the predetermined cooling capacity, the inlet of the flow path of the primary side airflow of the sensible heat exchanger is changed.
  • the area it is necessary to secure an area corresponding to the predetermined cooling capacity, which limits the design of the sensible heat exchanger.
  • an object of the present invention is to provide a cooling device and a sensible heat exchanger that reduce the restriction on the design of the sensible heat exchanger compared to the conventional cooling device and sensible heat exchanger.
  • One embodiment of the present invention provides the following cooling device and sensible heat exchanger in order to achieve the above object.
  • a vaporization filter that humidifies the passing primary airflow to lower the temperature;
  • the primary side airflow and the secondary side are arranged by overlapping the primary side tube through which the primary side airflow that has passed through the vaporization filter passes and the secondary side tube through which the secondary airflow that circulates the cooling target passes.
  • the sensible heat is exchanged between the air flow and has a pair of convex shapes having a height to maintain the interval between the plate members constituting the primary side tube and the secondary side tube on the plate members facing each other.
  • a sensible heat exchanger A fan that discharges the primary airflow that has passed through the sensible heat exchanger to the outside;
  • a cooling device comprising: a fan that circulates the secondary airflow between the cooling object and the sensible heat exchanger.
  • the outside from which the primary airflow is discharged and the object to be cooled by the secondary airflow can be hermetically separated.
  • FIG. 1 is a diagram showing a schematic configuration example of a cooling device according to an embodiment of the present invention.
  • FIG. 2 is a schematic perspective view showing an example of the configuration of the sensible heat exchanger.
  • FIG. 3 is a schematic perspective view showing an example of the configuration of the vaporization filter.
  • FIG. 4 is a schematic perspective view illustrating an example of a flow path of the primary airflow and the secondary airflow of the cooling device.
  • FIG. 5 is a moist air diagram illustrating an example of a state change of the primary airflow and the secondary airflow of the cooling device.
  • FIG. 6A is a schematic perspective view illustrating a configuration example of a sensible heat exchanger.
  • FIG. 6B is a cross-sectional perspective view taken along line AA showing a configuration example of the sensible heat exchanger.
  • FIG. 6C is a cross-sectional view taken along the line AA showing a configuration example of the sensible heat exchanger.
  • FIG. 7A is a perspective view for explaining a step of forming dimples on an aluminum thin plate.
  • FIG. 7B is a perspective view for explaining a step of forming dimples on the aluminum thin plate.
  • FIG. 7C is a perspective view for explaining a step of forming dimples on the aluminum thin plate.
  • FIG. 7D is a perspective view for explaining a step of forming dimples on the aluminum thin plate.
  • FIG. 8 is a cross-sectional view for explaining a process of forming dimples on an aluminum thin plate.
  • FIG. 9 is a perspective view for explaining a manufacturing process of the sensible heat exchanger.
  • FIG. 1 is a diagram showing a schematic configuration example of a cooling device according to an embodiment of the present invention.
  • the cooling device 1 is used by being attached to a control panel 2 as an example of a cooling target, and a vaporizing filter 10 that humidifies input air to lower the temperature, and a water supply header 11 that supplies water to the vaporizing filter 10. And a drain pan 12 that receives water droplets of the vaporization filter 10 and a sensible heat exchanger 13 that exchanges only sensible heat without exchanging mutual latent heat (moisture) from two orthogonal air paths.
  • the cooling device 1 takes out the air in the control panel 2 and the fan 14 that generates an airflow (hereinafter referred to as “primary airflow”) that passes through the vaporization filter 10 and the sensible heat exchanger 13. And a fan 15 that generates an airflow (hereinafter referred to as “secondary airflow”) that sends air that has passed through the control panel 2 into the control panel 2.
  • primary airflow an airflow
  • secondary airflow an airflow
  • positioning of the fans 14 and 15 is an example, and it is good also as another arrangement
  • the cooling device 1 has a control unit (not shown), and controls the flow rate of the primary airflow by changing the rotation speed of the fan 14 and the flow rate of the secondary airflow by changing the rotation speed of the fan 15. To do.
  • the water supply header 11 is supplied with water from an external water source Wext through an electromagnetic valve 11a that adjusts the amount of water supply according to an external signal.
  • the drain pan 12 has a float switch 12a that outputs a signal based on the water level of the drain pan 12, and controls the electromagnetic valve 11a by the output signal of the float switch 12a to control the amount of water supplied from the water supply header 11 to the vaporization filter 10. Control.
  • FIG. 2 is a schematic perspective view showing an example of the configuration of the sensible heat exchanger 13.
  • Sensible heat exchanger 13 includes a primary cylinder 13a which passes the primary air flow F 1, a structure superimposed alternately so as to be orthogonal to the secondary side cylinder 13b of the secondary-side stream F 2 passes. Note that the airflow passage direction of the primary side tube 13a and the airflow passage direction of the secondary side tube 13b are not limited to being orthogonal to each other, but may be any different angle.
  • the pitch (width) of the primary side cylinder 13a and the secondary side cylinder 13b is 2 mm
  • the plate thickness is 0.2 mm
  • the plate material may bend when the air flow is passed through the primary side tube 13a and the secondary side tube 13b.
  • a plurality of them may be provided to suppress deflection.
  • the convex shape increases the heat transfer area, and also has the purpose of improving the heat exchange efficiency due to the heat transfer enhancement effect caused by overflow.
  • the size of the sensible heat exchanger 13 is 320 mm long ⁇ 320 mm wide ⁇ 160 mm deep. That is, the heat transfer area on both the primary side and the secondary side is 8.09 m 2 .
  • Primary cylinder 13a and secondary cylinder 13b is formed with a good thermal conductivity such as aluminum or copper material, the flow path of the primary side stream F 1 and the secondary-side air flow F 2 is hermetically. Since the primary airflow F 1 and the secondary airflow F 2 passing through the sensible heat exchanger 13 exchange only sensible heat without replacing latent heat (moisture), the absolute humidity varies depending on the input and output. Without it, only the temperature will change.
  • the wind speed of the airflow passing through the primary side cylinder 13a and the secondary side cylinder 13b is about 2 m / s, and an average air-side thermal conductivity of 0.05 kW / m 2 ⁇ k, which is comparable to that of a gas-liquid fin tube, is achieved.
  • the effective primary / secondary heat transfer area ratio is 1
  • FIG. 3 is a schematic perspective view showing an example of the configuration of the vaporization filter 10.
  • the vaporization filter 10 has a filter medium 100 in which high moisture absorption / release fibers are knitted in a mesh shape so that the primary airflow F 1 passes through.
  • the filter medium 100 receives water from the water supply header 11 and always maintains a wet state.
  • the vaporization filter 10 has a size of 80 mm in length, 320 mm in width, and 150 mm in depth, for example, and has an input side vent 10a and an output side vent 10b.
  • the humidifier filter medium of Ueno Kogyo etc. can be used as an example of a high moisture absorption / release fiber.
  • the input and output of the primary airflow F 1 passing through the vaporization filter 10 increases the humidity and decreases the temperature, but there is no change in the specific enthalpy of input and output.
  • FIG. 4 is a schematic perspective view showing an example of a flow path of the primary airflow and the secondary airflow of the cooling device 1.
  • a control unit controls the fans 14 and 15 to generate a primary airflow F 1 and a secondary airflow F 2 .
  • the airflows of the primary airflow F 1 and the secondary airflow F 2 are 3 m 3 / min.
  • control unit controls the electromagnetic valve 11a of the water supply header 11 and starts water supply to the vaporization filter 10.
  • the amount of water supply is adjusted by controlling the solenoid valve 11 a based on the water level of the drain pan 12 by a float switch 12 a provided in the drain pan 12.
  • the primary airflow F 1 passes through the vaporization filter 10.
  • State S 11 of the input of the primary-side air flow F 1 of vaporized filter 10 as an example, the ambient temperature 35 ° C., when the relative humidity of 40%, the specific enthalpy is 17kcal / kg.
  • the primary-side state S 12 at the output of the air flow F 1 of vaporized filter 10 is determined from the psychrometric chart shown below.
  • FIG. 5 is a moist air diagram showing an example of changes in the state of the primary side airflow and the secondary side airflow of the cooling device 1.
  • the temperature S is 26.5 ° C. and the relative humidity is 80% as an example.
  • the absolute humidity of the state S 11 is 0.014 kg / kg
  • the absolute humidity of the state S 12 is 0. 0175kg / kg
  • the primary airflow F 1 passes through the primary cylinder 13 a of the sensible heat exchanger 13. Further, the secondary air flow F 2 passes through the secondary cylinder 13 b of the sensible heat exchanger 13.
  • the primary airflow F 1 and the secondary airflow F 2 each exchange only sensible heat without changing the absolute humidity.
  • This exchange the difference in specific enthalpy of the state S 22 at the output of the secondary-side air flow F 2 and the difference in specific enthalpy between the states S 21 of the input of the secondary air flow F 2 is the state S 12 and state S 13 Is equal to +4.5 kcal / kg.
  • the state S 21 of the secondary-side air flow F 2 of sensible heat exchanger 13 is a temperature 50 ° C.
  • a state S 22 of the secondary-side air flow F 2 is temperature 31.5 ° C., relative The humidity is 47%.
  • the specific enthalpy is 20.6kcal / kg of states S 21
  • the specific enthalpy of the state S 22 is 16.1kcal / kg
  • the air volume 3m 3 / min since the specific volume of the state S 21 is 0.934m 3 / kg, (20.6-16.1) kcal / kg ⁇ 3m 3 /min ⁇ 60min ⁇ 0.934m 3 / kg ⁇ 0. 86 kcal / W ⁇ 1000 W.
  • the power consumption is about 66 W
  • the cooling capacity is 1000 W (OA 35 ° C.-40%, RA 50 ° C.-18%), so that the energy consumption efficiency 15.2 It is.
  • a cooling device that sends air cooled by a compressor-type cooling method into a case such as a control panel and cools the temperature inside the case requires electric power of 670 W to operate the compressor, and has a cooling capacity of 1000 W ( OA 35 °C -40%, RA35 °C -40%), the energy consumption efficiency is 1.5, which can greatly improve the energy consumption efficiency compared to the energy consumption efficiency 6 which is the best value of home appliances it can.
  • the humidity of S 11 is improved lower the cooling capacity.
  • the cooling side (primary side) and the cooled side (secondary side) are separated in an airtight manner, that is, the air passing through the cooling side and the air passing through the cooled side are separated without mixing. Therefore, it is not necessary to consider the air cleanliness outside the control panel 2 in order to maintain the air cleanliness within the control panel 2.
  • the secondary side may be separated from other spaces and hermetically sealed. In “airtight separation” and “airtight”, external air other than the separated space is used for the purpose of adjusting the pressure level of the separated space or maintaining the life of animals and plants. Including the case of capturing.
  • the weight can be reduced as compared with the conventional cooling device, and the configuration can be simplified.
  • rain water etc. can also be used for the quality of the water supplied to the vaporization filter 10, and the cost required for driving can be reduced.
  • FIG. 6A is a schematic perspective view showing a configuration example of a sensible heat exchanger.
  • the sensible heat exchanger 13A of the embodiment is configured by stacking a plurality of aluminum thin plates 131 at predetermined intervals.
  • the sensible heat exchanger 13A has a plurality of dimples 130 in order to maintain the interval.
  • plate material with good heat conductivity or a paper board
  • FIG. 6B is a cross-sectional perspective view taken along line AA showing a configuration example of the sensible heat exchanger 13A.
  • the aluminum thin plate 131 has a dimple 130t formed in a dome shape in the vertical upward direction of the drawing and a dimple 130b formed in a dome shape in the vertical downward direction. Further, the dimples 130t and the dimples 130b are formed so as to face each other between the adjacent aluminum thin plates 131.
  • the dimple 130 preferably has a dome shape so that the aluminum thin plate 131 is not cracked or torn when the aluminum thin plate 131 is pressed as described later.
  • Other shapes may be used as long as the problem of cracking and tearing does not occur.
  • FIG. 6C is a cross-sectional view taken along the line AA showing a configuration example of the sensible heat exchanger 13A.
  • Aluminum sheet 131 has a thickness T l, the height of the dimples 130t and 130b H l, the interval between the dimples 130t and 130b is the distance W l, from end to dimple 130t or 130b is formed in W e
  • T l 1mm
  • T l 0.1mm
  • W l 20mm
  • W e 20 mm
  • T 1 can be appropriately changed between 0.05 and 0.3 mm.
  • the flat bar 133 has a thickness T f and a width W f and is bonded to the aluminum thin plate 131 by the adhesive 132.
  • the adhesive 132 a resin adhesive having water resistance and heat resistance can be used.
  • a double-sided adhesive tape in which a nonwoven fabric is impregnated with a pressure sensitive adhesive is used.
  • the aluminum thin plate and the flat bar 133 may be fixed by soldering or brazing. The amount of the adhesive 132 is adjusted so that the thickness becomes Tb .
  • the distance between the facing dimples 130t and 130b is C.
  • FIG. 7A to 7D are perspective views for explaining a process of forming the dimple 130 on the aluminum thin plate 131.
  • FIG. 7A to 7D are perspective views for explaining a process of forming the dimple 130 on the aluminum thin plate 131.
  • a lower die 131 1 having a hole for forming a dome-shaped dimple 130 having a height of 1 mm is prepared, and an aluminum thin plate 131 to be processed is placed on the lower die 131 1. Overlapping. Further, overlapping rubber sheets 131 2 for cracking prevention during processing on an aluminum thin plate 131, further overlaying press type receiving plate 131 3 having a pore diameter 9mm undergoing pressing die 131 4 described later.
  • FIG. 8 is a cross-sectional view for explaining a process of forming the dimple 130 on the aluminum thin plate 131.
  • Pressing die 131 by being limited to push-in amount by press-type receiving plate 131 3, deforming only 1mm aluminum sheet 131 in the normal direction of the plate surface. Further, the lower mold 131 1 is configured so that the deformed shape of the aluminum thin plate 131 is a dome shape.
  • the lower die 131 1, the rubber sheet 131 2, dimples 130t or 130b by removing the pressing die receiving plate 131 3 and the push-type 131 4 are formed.
  • a lower die 131 1 is prepared, and an aluminum thin plate 131 on which one of the dimples 130t or 130b is formed is overlaid on the lower die 131 1 . Further, overlapping rubber sheets 131 5 having a hole at a position corresponding to the dimples 130t or 130b for cracking prevention during processing on an aluminum thin plate 131, further overlaying press type receiving plate 131 3.
  • FIG. 9 is a perspective view for explaining a manufacturing process of the sensible heat exchanger 13A.
  • a plurality of aluminum thin plates 131 on which the dimples 130t and 130b are formed are stacked such that the dimples 130t and 130b face each other. Further, the flat bars 133 are disposed between the plurality of aluminum thin plates 131 and at the end portions of the aluminum thin plates 131, and are disposed in directions orthogonal to each other between the adjacent aluminum thin plates 131.
  • the sensible heat exchanger 13A according to the present embodiment is higher in height than the case where the dimples 130t and 130b are formed in a dome shape without edges and the dimples 130t and 130b are opposed to each other so that the dimples are provided only on one plate. Therefore, the deformation amount of the aluminum thin plate 131 can be suppressed during the processing of the dimples 130t and 130b, and the problem that the aluminum thin plate 131 is cracked or broken during the processing is reduced, and the yield is improved.
  • the dimples 130 are uniformly arranged on the aluminum thin plate 131, the aluminum thin plate 131 is not easily distorted, and the end portions of the plurality of aluminum thin plates 131 are less likely to be uneven, and as a result, the plurality of aluminum thin plates 131 are arranged. The process of cutting and aligning the ends of the film becomes unnecessary.
  • the primary airflow F 1 and the secondary airflow F 2 are passed between the aluminum thin plates 131 corresponding to the primary cylinder 13 a and the secondary cylinder 13 b, the primary airflow F 1 and the secondary airflow F Even when the wind pressure of 2 varies, the facing dimples 130t and 130b suppress the deflection of the aluminum thin plate 131.
  • the aluminum thin plate 131 having a thickness of 0.05 to 0.3 mm can be used, and the pitch P between the aluminum thin plates 131 is set to be small. It can be as small as 1-3 mm.
  • the vessel 13 was arranged so that the condensed water dropped in the vertical direction under its own weight. At this time, if the pitch P between the aluminum thin plates 131 is too small, water stays between the aluminum thin plates 131 and is blown out of the sensible heat exchanger 13 by the wind pressure, but when the pitch P is 2 mm. It was confirmed that the condensed water falls vertically due to its own weight.
  • the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.
  • the cooling target is not limited to the control panel, but can be applied to a server rack, a storage, a warehouse, a living room, and the like.
  • the cooling device and the sensible heat exchanger of the present invention are industrially useful because they can reduce the restrictions on the design of the sensible heat exchanger compared to the conventional cooling device and the sensible heat exchanger.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Provided are a cooling device and a sensible heat exchanger with which design restrictions with respect to the heat exchanger can be reduced in comparison with a conventional cooling device and sensible heat exchanger. This cooling device (1) has: a vaporization filter (10) that humidifies and thus lowers the temperature of a passing primary-side airflow; a sensible heat exchanger (13) that exchanges sensible heat between the primary-side airflow that has passed through the vaporization filter (10) and a secondary-side airflow that circulates in a control panel (2); a fan (14) that discharges to the outside the primary-side airflow that has passed through the sensible heat exchanger (13); and a fan (15) that circulates the secondary-side airflow between the control panel (2) and the sensible heat exchanger (13).

Description

冷却装置及び顕熱交換器Cooling device and sensible heat exchanger
 本発明は、冷却装置及び顕熱交換器に関する。 The present invention relates to a cooling device and a sensible heat exchanger.
 本出願は、2012年1月25日に日本国に本出願人により出願された特願2012-012929号に基づくものであり、その全内容は参照により本出願に組み込まれる。 This application is based on Japanese Patent Application No. 2012-012929 filed in Japan by the applicant on January 25, 2012, the entire contents of which are incorporated into this application by reference.
 従来の冷却装置として、一次側気流と、冷却対象を循環する二次側気流との間で顕熱を交換する顕熱交換器と、顕熱交換器の一次側気流の流路に水を噴霧して加湿する噴霧手段を有するものが知られている(例えば、特許文献1参照)。 As a conventional cooling device, water is sprayed on the flow path of the sensible heat exchanger that exchanges sensible heat between the primary airflow and the secondary airflow that circulates the object to be cooled, and the primary airflow passage of the sensible heat exchanger. There is known one having a spraying means for humidifying (see, for example, Patent Document 1).
 この冷却装置は、噴霧手段の噴霧面積を変化させることで冷却能力を変化させ、単位面積あたりの噴霧量を一定とすることで顕熱交換器に不純物が堆積することを抑制する。 This cooling device changes the cooling capacity by changing the spray area of the spray means, and suppresses the accumulation of impurities on the sensible heat exchanger by making the spray amount per unit area constant.
特開2002-206834号公報JP 2002-206834 A
 しかし、従来の冷却装置によれば、噴霧面積を変化させることで冷却能力を変化させているため、所定の冷却能力を達成するには、顕熱交換器の一次側気流の流路の入り口の面積について当該所定の冷却能力に応じた面積を確保する必要があり、顕熱交換器の設計に制限が生じる。 However, according to the conventional cooling device, since the cooling capacity is changed by changing the spray area, in order to achieve the predetermined cooling capacity, the inlet of the flow path of the primary side airflow of the sensible heat exchanger is changed. As for the area, it is necessary to secure an area corresponding to the predetermined cooling capacity, which limits the design of the sensible heat exchanger.
 従って、本発明の目的は、従来の冷却装置及び顕熱交換器に比べて、顕熱交換器の設計の制限を低減する冷却装置及び顕熱交換器を提供することにある。 Therefore, an object of the present invention is to provide a cooling device and a sensible heat exchanger that reduce the restriction on the design of the sensible heat exchanger compared to the conventional cooling device and sensible heat exchanger.
 本発明の一態様は、上記目的を達成するため、以下の冷却装置及び顕熱交換器を提供する。 One embodiment of the present invention provides the following cooling device and sensible heat exchanger in order to achieve the above object.
[1]通過する一次側気流を加湿して温度を下げる気化フィルタと、
 前記気化フィルタを通過した一次側気流の通過する一次側筒と冷却対象を循環する二次側気流の通過する二次側筒とを重ね合わせて配置することで当該一次側気流と当該二次側気流との間で顕熱を交換するものであって、当該一次側筒及び当該二次側筒を構成する板材の間隔を保持する高さの凸形状を互いに対向する前記板材上に対で有する顕熱交換器と、
 前記顕熱交換器を通過した一次側気流を外部に排出するファンと、
 前記二次側気流を前記冷却対象と前記顕熱交換器との間を循環させるファンとを有する冷却装置。
[1] A vaporization filter that humidifies the passing primary airflow to lower the temperature;
The primary side airflow and the secondary side are arranged by overlapping the primary side tube through which the primary side airflow that has passed through the vaporization filter passes and the secondary side tube through which the secondary airflow that circulates the cooling target passes. The sensible heat is exchanged between the air flow and has a pair of convex shapes having a height to maintain the interval between the plate members constituting the primary side tube and the secondary side tube on the plate members facing each other. A sensible heat exchanger,
A fan that discharges the primary airflow that has passed through the sensible heat exchanger to the outside;
A cooling device comprising: a fan that circulates the secondary airflow between the cooling object and the sensible heat exchanger.
[2]前記顕熱交換器の前記凸形状は、ドーム型である[1]に記載の冷却装置。 [2] The cooling device according to [1], wherein the convex shape of the sensible heat exchanger is a dome shape.
[3]前記顕熱交換器の前記凸形状は、板材上に均一に形成される[1]又は[2]に記載の冷却装置。 [3] The cooling device according to [1] or [2], wherein the convex shape of the sensible heat exchanger is uniformly formed on a plate material.
[4]前記一次側気流が排出される前記外部と、前記二次側気流が冷却する前記冷却対象とは気密的に分離されている[1]-[3]のいずれかに記載の冷却装置。 [4] The cooling device according to any one of [1] to [3], wherein the outside from which the primary airflow is discharged and the cooling target to be cooled by the secondary airflow are hermetically separated. .
[5]前記二次側気流が冷却する前記冷却対象は気密されている[1]-[4]のいずれかに記載の冷却装置。 [5] The cooling device according to any one of [1] to [4], wherein the cooling target to be cooled by the secondary airflow is airtight.
[6]前記気化フィルタを通過した一次側気流の通過する一次側筒と冷却対象を循環する二次側気流の通過する二次側筒とを重ね合わせて配置することで当該一次側気流と当該二次側気流との間で顕熱を交換するものであって、当該一次側筒及び当該二次側筒を構成する板材の間隔を保持する高さの凸形状を互いに対向する前記板材上に対で有する顕熱交換器。 [6] The primary-side airflow and the secondary-side tube through which the primary-side airflow that has passed through the vaporization filter and the secondary-side tube through which the secondary-side airflow that circulates the object to be cooled are overlapped and arranged. A sensible heat is exchanged with the secondary side airflow, and a convex shape having a height that holds the interval between the primary side tube and the plate material constituting the secondary side tube is placed on the plate material facing each other. A sensible heat exchanger in pairs.
 請求項1及び6に係る発明によれば、従来の冷却装置及び顕熱交換器に比べて、顕熱交換器の設計の制限を低減することができる。 According to the inventions according to claims 1 and 6, it is possible to reduce restrictions on the design of the sensible heat exchanger as compared with the conventional cooling device and sensible heat exchanger.
 請求項2に係る発明によれば、顕熱交換器の板材の加工の際に板材の割れや破れが生じにくくなる。 According to the invention of claim 2, it is difficult for the plate material to be cracked or torn during the processing of the plate material of the sensible heat exchanger.
 請求項3に係る発明によれば、顕熱交換器の板材の加工の際に板材の端部が不揃いになりにくくなる。 According to the invention of claim 3, it is difficult for the end portions of the plate material to become uneven when the plate material of the sensible heat exchanger is processed.
 請求項4に係る発明によれば、一次側気流が排出される外部と、二次側気流が冷却する冷却対象とを気密的に分離することができる。 According to the invention of claim 4, the outside from which the primary airflow is discharged and the object to be cooled by the secondary airflow can be hermetically separated.
 請求項5に係る発明によれば、気密する必要がある冷却対象を冷却することができる。 According to the invention of claim 5, it is possible to cool a cooling target that needs to be airtight.
図1は、本発明の実施の形態に係る冷却装置の概略の構成例を示す図である。FIG. 1 is a diagram showing a schematic configuration example of a cooling device according to an embodiment of the present invention. 図2は、顕熱交換器の構成の一例を示す概略斜視図である。FIG. 2 is a schematic perspective view showing an example of the configuration of the sensible heat exchanger. 図3は、気化フィルタの構成の一例を示す概略斜視図である。FIG. 3 is a schematic perspective view showing an example of the configuration of the vaporization filter. 図4は、冷却装置の一次側気流及び二次側気流の流路の一例を示す概略斜視図である。FIG. 4 is a schematic perspective view illustrating an example of a flow path of the primary airflow and the secondary airflow of the cooling device. 図5は、冷却装置の一次側気流及び二次側気流の状態変化の一例を示す湿り空気線図である。FIG. 5 is a moist air diagram illustrating an example of a state change of the primary airflow and the secondary airflow of the cooling device. 図6Aは、顕熱交換器の構成例を示す概略斜視図である。FIG. 6A is a schematic perspective view illustrating a configuration example of a sensible heat exchanger. 図6Bは、顕熱交換器の構成例を示すA-Aにおける断面斜視図である。FIG. 6B is a cross-sectional perspective view taken along line AA showing a configuration example of the sensible heat exchanger. 図6Cは、顕熱交換器の構成例を示すA-Aにおける断面図である。FIG. 6C is a cross-sectional view taken along the line AA showing a configuration example of the sensible heat exchanger. 図7Aは、アルミ薄板にディンプルを形成する工程を説明するための斜視図である。FIG. 7A is a perspective view for explaining a step of forming dimples on an aluminum thin plate. 図7Bは、アルミ薄板にディンプルを形成する工程を説明するための斜視図である。FIG. 7B is a perspective view for explaining a step of forming dimples on the aluminum thin plate. 図7Cは、アルミ薄板にディンプルを形成する工程を説明するための斜視図である。FIG. 7C is a perspective view for explaining a step of forming dimples on the aluminum thin plate. 図7Dは、アルミ薄板にディンプルを形成する工程を説明するための斜視図である。FIG. 7D is a perspective view for explaining a step of forming dimples on the aluminum thin plate. 図8は、アルミ薄板にディンプルを形成する工程を説明するための断面図である。FIG. 8 is a cross-sectional view for explaining a process of forming dimples on an aluminum thin plate. 図9は、顕熱交換器の製造工程を説明するための斜視図である。FIG. 9 is a perspective view for explaining a manufacturing process of the sensible heat exchanger.
(冷却装置の構成)
 図1は、本発明の実施の形態に係る冷却装置の概略の構成例を示す図である。
(Configuration of cooling device)
FIG. 1 is a diagram showing a schematic configuration example of a cooling device according to an embodiment of the present invention.
 この冷却装置1は、冷却対象の一例としての制御盤2に取り付けて使用されるものであり、入力される空気を加湿して温度を下げる気化フィルタ10と、気化フィルタ10に給水する給水ヘッダ11と、気化フィルタ10の水滴を受けるドレンパン12と、直交する2経路の空気から互いの潜熱(水分)は交換せずに顕熱だけを交換する顕熱交換器13とを有する。 The cooling device 1 is used by being attached to a control panel 2 as an example of a cooling target, and a vaporizing filter 10 that humidifies input air to lower the temperature, and a water supply header 11 that supplies water to the vaporizing filter 10. And a drain pan 12 that receives water droplets of the vaporization filter 10 and a sensible heat exchanger 13 that exchanges only sensible heat without exchanging mutual latent heat (moisture) from two orthogonal air paths.
 また、冷却装置1は、気化フィルタ10及び顕熱交換器13を通過する気流(以下、「一次側気流」という。)を生じさせるファン14と、制御盤2内の空気を取り出し顕熱交換器13を通過した空気を制御盤2内に送り出す気流(以下、「二次側気流」という。)を生じさせるファン15とを有する。 In addition, the cooling device 1 takes out the air in the control panel 2 and the fan 14 that generates an airflow (hereinafter referred to as “primary airflow”) that passes through the vaporization filter 10 and the sensible heat exchanger 13. And a fan 15 that generates an airflow (hereinafter referred to as “secondary airflow”) that sends air that has passed through the control panel 2 into the control panel 2.
 なお、ファン14、15の配置は一例であり、他の配置としてもよい。 In addition, arrangement | positioning of the fans 14 and 15 is an example, and it is good also as another arrangement | positioning.
 また、冷却装置1は、図示しない制御部を有し、ファン14の回転数等を変化させて一次側気流の流量を、ファン15の回転数等を変化させて二次側気流の流量を制御する。 The cooling device 1 has a control unit (not shown), and controls the flow rate of the primary airflow by changing the rotation speed of the fan 14 and the flow rate of the secondary airflow by changing the rotation speed of the fan 15. To do.
 給水ヘッダ11は、外部信号に応じて給水量を調整する電磁弁11aを介して外部水源Wextから給水される。 The water supply header 11 is supplied with water from an external water source Wext through an electromagnetic valve 11a that adjusts the amount of water supply according to an external signal.
 また、ドレンパン12は、ドレンパン12の水位に基づいて信号を出力するフロートスイッチ12aを有し、フロートスイッチ12aの出力信号により電磁弁11aを制御して給水ヘッダ11から気化フィルタ10への給水量を制御する。 Further, the drain pan 12 has a float switch 12a that outputs a signal based on the water level of the drain pan 12, and controls the electromagnetic valve 11a by the output signal of the float switch 12a to control the amount of water supplied from the water supply header 11 to the vaporization filter 10. Control.
 図2は、顕熱交換器13の構成の一例を示す概略斜視図である。 FIG. 2 is a schematic perspective view showing an example of the configuration of the sensible heat exchanger 13.
 顕熱交換器13は、一次側気流F1が通過する一次側筒13aと、二次側気流F2が通過する二次側筒13bとを直交するように交互に重ね合わせた構造を有する。なお、一次側筒13aの気流の通過方向と二次側筒13bの気流の通過方向とは直交に限らず、異なる任意の角度にしてもよい。 Sensible heat exchanger 13 includes a primary cylinder 13a which passes the primary air flow F 1, a structure superimposed alternately so as to be orthogonal to the secondary side cylinder 13b of the secondary-side stream F 2 passes. Note that the airflow passage direction of the primary side tube 13a and the airflow passage direction of the secondary side tube 13b are not limited to being orthogonal to each other, but may be any different angle.
 一例として、一次側筒13a及び二次側筒13bのピッチ(幅)は2mm、板厚は0.2mmであり、板材を曲げ加工して形成してもよいし、複数の板材間の両端にピッチ厚を有する角材を設けて接着してもよい。また、板厚が薄いため、一次側筒13a及び二次側筒13bに気流を通過させると板材がたわむことがあるが、板材に板材の間隔を保持する高さの凸形状をプレス加工等で複数設けて、たわみを抑制してもよい。また、凸形状は、伝熱面積を増加させると共に、過流による伝熱促進効果によって、熱交換効率を向上する目的も併せ持つ。 As an example, the pitch (width) of the primary side cylinder 13a and the secondary side cylinder 13b is 2 mm, the plate thickness is 0.2 mm, and may be formed by bending a plate material, or at both ends between a plurality of plate materials. A square member having a pitch thickness may be provided and bonded. Also, since the plate thickness is thin, the plate material may bend when the air flow is passed through the primary side tube 13a and the secondary side tube 13b. A plurality of them may be provided to suppress deflection. In addition, the convex shape increases the heat transfer area, and also has the purpose of improving the heat exchange efficiency due to the heat transfer enhancement effect caused by overflow.
 一例として、顕熱交換器13のサイズは、縦320mm×横320mm×奥行160mmである。つまり、一次側、二次側共に伝熱面積は、8.09m2である。 As an example, the size of the sensible heat exchanger 13 is 320 mm long × 320 mm wide × 160 mm deep. That is, the heat transfer area on both the primary side and the secondary side is 8.09 m 2 .
 一次側筒13aと二次側筒13bは、アルミニウムや銅等の熱伝導率の良い素材で形成され、一次側気流F1と二次側気流F2の流路は気密されている。この顕熱交換器13を通過する一次側気流F1及び二次側気流F2は、潜熱(水分)は交換せずに顕熱だけを交換するため、その入力と出力とで絶対湿度は変化せず、温度だけが変化することとなる。 Primary cylinder 13a and secondary cylinder 13b is formed with a good thermal conductivity such as aluminum or copper material, the flow path of the primary side stream F 1 and the secondary-side air flow F 2 is hermetically. Since the primary airflow F 1 and the secondary airflow F 2 passing through the sensible heat exchanger 13 exchange only sensible heat without replacing latent heat (moisture), the absolute humidity varies depending on the input and output. Without it, only the temperature will change.
 ここで、一次側筒13aと二次側筒13bを通過する気流の風速が2m/s程度であって、気液フィンチューブ並の空気側平均熱伝導率0.05kw/m2・kが達成されると仮定すると、有効一次・二次伝熱面積比を1として、期待される熱通過率は、1÷(1/0.05+1/0.05)=25W/m2・kとなる。 Here, the wind speed of the airflow passing through the primary side cylinder 13a and the secondary side cylinder 13b is about 2 m / s, and an average air-side thermal conductivity of 0.05 kW / m 2 · k, which is comparable to that of a gas-liquid fin tube, is achieved. Assuming that the effective primary / secondary heat transfer area ratio is 1, the expected heat transmission rate is 1 / (1 / 0.05 + 1 / 0.05) = 25 W / m 2 · k.
 従って、二次-一次側の平均温度差を5Kとすると、例えば、冷却能力1000Wを達成するのに必要な有効伝熱面積は、1000W÷25W/m2・k÷5K=8m2となる。つまり、上述した伝熱面積8.09m2はこの条件を満たす。 Therefore, if the average temperature difference between the secondary and primary sides is 5K, for example, the effective heat transfer area necessary to achieve the cooling capacity of 1000 W is 1000 W ÷ 25 W / m 2 · k ÷ 5 K = 8 m 2 . That is, the above-described heat transfer area of 8.09 m 2 satisfies this condition.
 図3は、気化フィルタ10の構成の一例を示す概略斜視図である。 FIG. 3 is a schematic perspective view showing an example of the configuration of the vaporization filter 10.
 気化フィルタ10は、一次側気流F1が通過するよう高吸放湿繊維をメッシュ状に編みこんだろ材100を有し、ろ材100は給水ヘッダ11から給水を受けて常に湿潤な状態を維持する。また、気化フィルタ10は、一例として、縦80mm×横320mm×奥行150mmのサイズであって、入力側通気口10aと、出力側通気口10bとを有する。なお、高吸放湿繊維の一例として上野工業の加湿器ろ材等を用いることができる。 The vaporization filter 10 has a filter medium 100 in which high moisture absorption / release fibers are knitted in a mesh shape so that the primary airflow F 1 passes through. The filter medium 100 receives water from the water supply header 11 and always maintains a wet state. . Moreover, the vaporization filter 10 has a size of 80 mm in length, 320 mm in width, and 150 mm in depth, for example, and has an input side vent 10a and an output side vent 10b. In addition, the humidifier filter medium of Ueno Kogyo etc. can be used as an example of a high moisture absorption / release fiber.
 ここで、気化フィルタ10を通過する一次側気流F1の入力と出力とで湿度が上がり、温度が下がるが、入力と出力の比エンタルピーに変化はない。 Here, the input and output of the primary airflow F 1 passing through the vaporization filter 10 increases the humidity and decreases the temperature, but there is no change in the specific enthalpy of input and output.
(冷却装置の動作)
 以下に、冷却装置1の動作例を各図を参照しつつ説明する。
(Cooling device operation)
Below, the operation example of the cooling device 1 is demonstrated, referring each figure.
 図4は、冷却装置1の一次側気流及び二次側気流の流路の一例を示す概略斜視図である。 FIG. 4 is a schematic perspective view showing an example of a flow path of the primary airflow and the secondary airflow of the cooling device 1.
 まず、冷却装置1の電源を投入すると、図示しない制御部は、ファン14及び15を制御し、一次側気流F1及び二次側気流F2を生じさせる。一例として、一次側気流F1及び二次側気流F2の風量は3m3/minとする。 First, when the power supply of the cooling device 1 is turned on, a control unit (not shown) controls the fans 14 and 15 to generate a primary airflow F 1 and a secondary airflow F 2 . As an example, the airflows of the primary airflow F 1 and the secondary airflow F 2 are 3 m 3 / min.
 また、制御部は給水ヘッダ11の電磁弁11aを制御し、気化フィルタ10に給水を開始する。なお、給水量は、ドレンパン12に設けられたフロートスイッチ12aによりドレンパン12の水位に基づいて電磁弁11aを制御することで調整される。 Further, the control unit controls the electromagnetic valve 11a of the water supply header 11 and starts water supply to the vaporization filter 10. The amount of water supply is adjusted by controlling the solenoid valve 11 a based on the water level of the drain pan 12 by a float switch 12 a provided in the drain pan 12.
 まず、一次側気流F1は、気化フィルタ10を通過する。気化フィルタ10の一次側気流F1の入力の状態S11は、一例として、周囲温度35℃、相対湿度40%とすると、比エンタルピーは17kcal/kgである。 First, the primary airflow F 1 passes through the vaporization filter 10. State S 11 of the input of the primary-side air flow F 1 of vaporized filter 10, as an example, the ambient temperature 35 ° C., when the relative humidity of 40%, the specific enthalpy is 17kcal / kg.
 また、気化フィルタ10の一次側気流F1の出力の状態S12は、次に示す湿り空気線図から求められる。 The primary-side state S 12 at the output of the air flow F 1 of vaporized filter 10 is determined from the psychrometric chart shown below.
 図5は、冷却装置1の一次側気流及び二次側気流の状態変化の一例を示す湿り空気線図である。 FIG. 5 is a moist air diagram showing an example of changes in the state of the primary side airflow and the secondary side airflow of the cooling device 1.
 気化フィルタ10の通過後の一次側気流F1の状態S12は、状態S11に対して比エンタルピー17kcal/kgが変化しないため、一例として、温度26.5℃、相対湿度80%となるようにする。 Since the specific enthalpy 17 kcal / kg does not change in the state S 12 of the primary air flow F 1 after passing through the vaporization filter 10 with respect to the state S 11 , the temperature S is 26.5 ° C. and the relative humidity is 80% as an example. To.
 ここで、上記した状態S12を達成するために必要な気化フィルタ10への1時間あたりの給水量は、状態S11の絶対湿度が0.014kg/kg、状態S12の絶対湿度が0.0175kg/kg、風量が3m3/min、状態S11の比容積が0.892m3/kgであるため、(0.0175-0.0140)kg/kg×3m3/min×60min÷0.892m3/kg=0.71kg/hとなる。 Here, the amount of water supplied per hour to the vaporization filter 10 necessary to achieve the state S 12 described above, the absolute humidity of the state S 11 is 0.014 kg / kg, the absolute humidity of the state S 12 is 0. 0175kg / kg, since the air volume is 3m 3 / min, the specific volume of the state S 11 is 0.892m 3 / kg, (0.0175-0.0140) kg / kg × 3m 3 / min × 60min ÷ 0. 892 m 3 /kg=0.71 kg / h.
 なお、給水に必要な水量は、1ヶ月あたり、0.71kg/h×24h×30day=511lである。これを一般的な水道代に換算すると150~200円程度となる。 In addition, the amount of water required for water supply is 0.71 kg / h × 24 h × 30 day = 511 l per month. If this is converted into a general water bill, it will be about 150-200 yen.
 次に、一次側気流F1は、顕熱交換器13の一次側筒13aを通過する。また、二次側気流F2は、顕熱交換器13の二次側筒13bを通過する。 Next, the primary airflow F 1 passes through the primary cylinder 13 a of the sensible heat exchanger 13. Further, the secondary air flow F 2 passes through the secondary cylinder 13 b of the sensible heat exchanger 13.
 顕熱交換器13の一次側気流F1の入力が状態S12であるから、一次側気流F1の出力の状態S13が温度45℃であるならば、絶対湿度が0.0175kg/kgであるため、相対湿度は28%である。また、状態S12と状態S13との比エンタルピーの差は、17kcal/kg-21.5kcal/kg=-4.5kcal/kgである。 Since the input of the primary side air flow F 1 of the sensible heat exchanger 13 is the state S 12 , if the output state S 13 of the primary side air flow F 1 is a temperature of 45 ° C., the absolute humidity is 0.0175 kg / kg. Therefore, the relative humidity is 28%. Further, the difference in specific enthalpy between the state S 12 and the state S 13 is 17 kcal / kg-21.5 kcal / kg = −4.5 kcal / kg.
 一次側気流F1及び二次側気流F2は、それぞれ絶対湿度を変化させずに顕熱のみを交換する。この交換により、二次側気流F2の出力の状態S22と二次側気流F2の入力の状態S21との比エンタルピーの差は、状態S12と状態S13との比エンタルピーの差と等しく+4.5kcal/kgである。 The primary airflow F 1 and the secondary airflow F 2 each exchange only sensible heat without changing the absolute humidity. This exchange, the difference in specific enthalpy of the state S 22 at the output of the secondary-side air flow F 2 and the difference in specific enthalpy between the states S 21 of the input of the secondary air flow F 2 is the state S 12 and state S 13 Is equal to +4.5 kcal / kg.
 従って、顕熱交換器13の二次側気流F2の状態S21が温度50℃、相対湿度18%であるとすると、二次側気流F2の状態S22は温度31.5℃、相対湿度47%となる。 Therefore, the state S 21 of the secondary-side air flow F 2 of sensible heat exchanger 13 is a temperature 50 ° C., When the relative humidity of 18%, a state S 22 of the secondary-side air flow F 2 is temperature 31.5 ° C., relative The humidity is 47%.
 状態S22及び状態S21を比較することにより、冷却装置1の冷却能力は、状態S21の比エンタルピーが20.6kcal/kg、状態S22の比エンタルピーが16.1kcal/kg、風量が3m3/min、状態S21の比容積が0.934m3/kgであるため、(20.6-16.1)kcal/kg×3m3/min×60min÷0.934m3/kg÷0.86kcal/W≒1000Wとなる。 By comparing the states S 22 and the state S 21, the cooling capacity of the cooling device 1, the specific enthalpy is 20.6kcal / kg of states S 21, the specific enthalpy of the state S 22 is 16.1kcal / kg, the air volume 3m 3 / min, since the specific volume of the state S 21 is 0.934m 3 / kg, (20.6-16.1) kcal / kg × 3m 3 /min×60min÷0.934m 3 / kg ÷ 0. 86 kcal / W≈1000 W.
 ここで、制御盤2の内部負荷の大きさは、制御盤2内の平均温度が40.75℃であるから、制御盤2のケース外装の表面積を5m2、ケース外装の熱通過率5W/m2・Kとすると、1000W+(40.75-35)K×5m2×5W/m2・K=1144Wとなる。 Here, the magnitude of the internal load of the control panel 2 is that the average temperature in the control panel 2 is 40.75 ° C., the surface area of the case exterior of the control panel 2 is 5 m 2 , and the heat passage rate of the case exterior is 5 W / Assuming m 2 · K, 1000 W + (40.75-35) K × 5 m 2 × 5 W / m 2 · K = 1144 W.
 また、冷却装置1を稼働させない場合の制御盤2内の平均温度は、35℃+1144W÷5m2÷5W/m2・K=81℃である。 The average temperature in the control panel 2 when the cooling device 1 is not operated is 35 ° C. + 1144 W ÷ 5 m 2 ÷ 5 W / m 2 · K = 81 ° C.
(実施の形態の効果)
 上記した実施の形態によると、顕熱交換器13に直接水を噴霧する必要がないため、顕熱交換器13の設計の制限を低減することができ、顕熱交換器13の一次側筒13a及び二次側筒13bのピッチを、一例として、2mmとすることもでき、十分な伝熱面積を確保することができる結果、十分な冷却能力(1000W)を達成することができる。
(Effect of embodiment)
According to the above-described embodiment, since it is not necessary to spray water directly on the sensible heat exchanger 13, the design restriction of the sensible heat exchanger 13 can be reduced, and the primary side tube 13a of the sensible heat exchanger 13 can be reduced. As an example, the pitch of the secondary cylinder 13b can be set to 2 mm, and a sufficient heat transfer area can be ensured. As a result, a sufficient cooling capacity (1000 W) can be achieved.
 また、駆動が必要なのはファンのみであるため、一例として、消費電力は66W程度であり、冷却能力は1000W(OA35℃-40%、RA50℃-18%)であるため、エネルギー消費効率15.2である。一方、コンプレッサー式の冷却方法で冷やされた空気を制御盤等のケース内に送り、ケース内の温度を冷却する冷却装置では、コンプレッサーを稼働するために電力670Wを必要とし、その冷却能力1000W(OA35℃-40%、RA35℃-40%)を考慮するとエネルギー消費効率は1.5であり、家電製品の最良値であるエネルギー消費効率6に比べてもエネルギー消費効率を大幅に向上することができる。なお、状態S21の温度が高いほど、S11の湿度が低いほど冷却能力が向上する。 Further, since only a fan needs to be driven, as an example, the power consumption is about 66 W, and the cooling capacity is 1000 W (OA 35 ° C.-40%, RA 50 ° C.-18%), so that the energy consumption efficiency 15.2 It is. On the other hand, a cooling device that sends air cooled by a compressor-type cooling method into a case such as a control panel and cools the temperature inside the case requires electric power of 670 W to operate the compressor, and has a cooling capacity of 1000 W ( OA 35 ℃ -40%, RA35 ℃ -40%), the energy consumption efficiency is 1.5, which can greatly improve the energy consumption efficiency compared to the energy consumption efficiency 6 which is the best value of home appliances it can. Incidentally, as the temperature of the state S 21 is high, the humidity of S 11 is improved lower the cooling capacity.
 また、冷却側(一次側)と被冷却側(二次側)が気密的に分離されている、つまり、冷却側を通過する空気と被冷却側を通過する空気とが混ざり合うことなく分離されているため、制御盤2内の空気清浄度を維持するために制御盤2外の空気清浄度を考慮する必要がない。なお、二次側をその他の空間と分離して気密してもよい。なお、「気密的に分離」及び「気密」には、分離された空間の圧力レベルを調整する目的や、動植物の生命を維持する目的等のために、分離された空間以外の外部の空気を取り込む場合も含むものとする。 Also, the cooling side (primary side) and the cooled side (secondary side) are separated in an airtight manner, that is, the air passing through the cooling side and the air passing through the cooled side are separated without mixing. Therefore, it is not necessary to consider the air cleanliness outside the control panel 2 in order to maintain the air cleanliness within the control panel 2. The secondary side may be separated from other spaces and hermetically sealed. In “airtight separation” and “airtight”, external air other than the separated space is used for the purpose of adjusting the pressure level of the separated space or maintaining the life of animals and plants. Including the case of capturing.
 また、コンプレッサー等を必要としないため、従来の冷却装置に比べて軽量化が図れ、構成を簡素にすることができる。また、気化フィルタ10に給水する水の水質は雨水等を用いることもでき、駆動に必要なコストを削減することができる。 In addition, since a compressor or the like is not required, the weight can be reduced as compared with the conventional cooling device, and the configuration can be simplified. Moreover, rain water etc. can also be used for the quality of the water supplied to the vaporization filter 10, and the cost required for driving can be reduced.
[実施例]
 以下に、本発明の冷却装置の実施例を、特に顕熱交換器について、図6A-6C及び図7A-7D、図8、図9を参照しつつ具体的に説明する。
[Example]
In the following, embodiments of the cooling device of the present invention will be specifically described with reference to FIGS. 6A-6C, FIGS. 7A-7D, FIGS.
 図6Aは、顕熱交換器の構成例を示す概略斜視図である。 FIG. 6A is a schematic perspective view showing a configuration example of a sensible heat exchanger.
 実施例の顕熱交換器13Aは、図6Aに示すように、複数のアルミ薄板131を予め定めた間隔で重ねて構成される。なお、顕熱交換器13Aは、当該間隔を保持するために複数のディンプル130を有する。 As shown in FIG. 6A, the sensible heat exchanger 13A of the embodiment is configured by stacking a plurality of aluminum thin plates 131 at predetermined intervals. The sensible heat exchanger 13A has a plurality of dimples 130 in order to maintain the interval.
 なお、アルミ薄板131に代えて、熱伝導率のよい樹脂製の板材や紙製の板材を用いてもよい。 In addition, it may replace with the aluminum thin plate 131, and may use the resin-made board | plate material with good heat conductivity, or a paper board | substrate.
 図6Bは、顕熱交換器13Aの構成例を示すA-Aにおける断面斜視図である。 FIG. 6B is a cross-sectional perspective view taken along line AA showing a configuration example of the sensible heat exchanger 13A.
 アルミ薄板131は、図面の垂直上方向にドーム状に形成されたディンプル130tと、垂直下方向にドーム状に形成されたディンプル130bとを有する。また、隣り合うアルミ薄板131間においてディンプル130tとディンプル130bとがそれぞれ対向する位置となるように形成される。 The aluminum thin plate 131 has a dimple 130t formed in a dome shape in the vertical upward direction of the drawing and a dimple 130b formed in a dome shape in the vertical downward direction. Further, the dimples 130t and the dimples 130b are formed so as to face each other between the adjacent aluminum thin plates 131.
 なお、ディンプル130の形状は、後述するようにアルミ薄板131をプレス加工する際にアルミ薄板131に割れや破れが生じないようにするため、ドーム状であることが望ましいが、プレス加工の際に割れや破れの問題が生じなければ他の形状であってもよい。 The dimple 130 preferably has a dome shape so that the aluminum thin plate 131 is not cracked or torn when the aluminum thin plate 131 is pressed as described later. Other shapes may be used as long as the problem of cracking and tearing does not occur.
 図6Cは、顕熱交換器13Aの構成例を示すA-Aにおける断面図である。 FIG. 6C is a cross-sectional view taken along the line AA showing a configuration example of the sensible heat exchanger 13A.
 アルミ薄板131は、厚さTlであり、ディンプル130t及び130bの高さはHl、ディンプル130tと130bとの間隔はWl、端部からディンプル130t又は130bまでの間隔はWeで形成される。本実施例において上記した寸法は、Hl=1mm、Tl=0.1mm、Wl=20mm、We=20mmである。なお、T1は0.05-0.3mmの間で適宜変更可能である。 Aluminum sheet 131 has a thickness T l, the height of the dimples 130t and 130b H l, the interval between the dimples 130t and 130b is the distance W l, from end to dimple 130t or 130b is formed in W e The Dimensions described above in this example, H l = 1mm, T l = 0.1mm, W l = 20mm, a W e = 20 mm. T 1 can be appropriately changed between 0.05 and 0.3 mm.
 フラットバー133は、厚さTf、幅Wfであり、接着剤132によってアルミ薄板131に接着される。接着剤132は、耐水性及び耐熱変動性のある樹脂系接着剤を用いることができ、本実施例では不織布に感圧性接着剤を含浸させた両面接着テープを用いている。なお、接着剤132に代えて半田やろう付けによってアルミ薄板とフラットバー133とを固定してもよい。接着剤132は、厚さがTbとなるように量が調整される。実施例において上記した寸法は、Tf=2mm、Wf=10mm、Tb=0.12mmである。 The flat bar 133 has a thickness T f and a width W f and is bonded to the aluminum thin plate 131 by the adhesive 132. As the adhesive 132, a resin adhesive having water resistance and heat resistance can be used. In this embodiment, a double-sided adhesive tape in which a nonwoven fabric is impregnated with a pressure sensitive adhesive is used. Instead of the adhesive 132, the aluminum thin plate and the flat bar 133 may be fixed by soldering or brazing. The amount of the adhesive 132 is adjusted so that the thickness becomes Tb . In the examples, the dimensions described above are T f = 2 mm, W f = 10 mm, and T b = 0.12 mm.
 上記のようにアルミ薄板131どうしをフラットバー133に接着剤132で接着することで対向するディンプル130tと130bとの間隔はCとなる。本実施例において上記した寸法は、C=0.24mmである。また、アルミ薄板131のピッチPは、P=Tl+Tb+Tf+Tb=0.1+0.12+2+0.12=2.34mmである。なお、Pは1-3mmの間で適宜変更可能である。また、上記した全ての寸法は、設計に合わせて適宜変更可能である。 As described above, when the aluminum thin plates 131 are bonded to the flat bar 133 with the adhesive 132, the distance between the facing dimples 130t and 130b is C. In the present embodiment, the above-described dimension is C = 0.24 mm. The pitch P of the aluminum thin plate 131 is P = T 1 + T b + T f + T b = 0.1 + 0.12 + 2 + 0.12 = 2.34 mm. Note that P can be appropriately changed between 1-3 mm. Moreover, all the above-mentioned dimensions can be appropriately changed according to the design.
(顕熱交換器13Aの製造工程)
 以下に顕熱交換器13Aの製造工程を図7-図9を用いて説明する。
(Manufacturing process of sensible heat exchanger 13A)
Hereinafter, the manufacturing process of the sensible heat exchanger 13A will be described with reference to FIGS.
 図7A-図7Dは、アルミ薄板131にディンプル130を形成する工程を説明するための斜視図である。 7A to 7D are perspective views for explaining a process of forming the dimple 130 on the aluminum thin plate 131. FIG.
 まず、図7Aに示すように、高さ1mmのドーム型のディンプル130を形成するための穴を有する下型1311を用意し、下型1311の上に被加工物となるアルミ薄板131を重ねる。また、アルミ薄板131の上に加工時の割れ防止のためにゴムシート1312を重ね、さらに後述する押し型1314を受ける直径9mmの孔を有する押し型受板1313を重ねる。 First, as shown in FIG. 7A, a lower die 131 1 having a hole for forming a dome-shaped dimple 130 having a height of 1 mm is prepared, and an aluminum thin plate 131 to be processed is placed on the lower die 131 1. Overlapping. Further, overlapping rubber sheets 131 2 for cracking prevention during processing on an aluminum thin plate 131, further overlaying press type receiving plate 131 3 having a pore diameter 9mm undergoing pressing die 131 4 described later.
 次に、図7Bに示すように、押し型受板1313の孔に直径11mmの押し型1314を押し付けることでディンプル130t又は130bを形成する。 Next, as shown in FIG 7B, to form a dimple 130t or 130b by the hole of the push-type receiving plate 131 3 presses the push-type 131 4 diameter 11 mm.
 図8は、アルミ薄板131にディンプル130を形成する工程を説明するための断面図である。 FIG. 8 is a cross-sectional view for explaining a process of forming the dimple 130 on the aluminum thin plate 131.
 押し型1314は、押し型受板1313によって押し込み量を制限されることにより、アルミ薄板131を板面の法線方向に1mmだけ変形させる。さらに下型1311が、アルミ薄板131の変形後の形状がドーム型となるようにする。 Pressing die 131 4, by being limited to push-in amount by press-type receiving plate 131 3, deforming only 1mm aluminum sheet 131 in the normal direction of the plate surface. Further, the lower mold 131 1 is configured so that the deformed shape of the aluminum thin plate 131 is a dome shape.
 この後、下型1311、ゴムシート1312、押し型受板1313及び押し型1314を外すことでディンプル130t又は130bが形成される。 Thereafter, the lower die 131 1, the rubber sheet 131 2, dimples 130t or 130b by removing the pressing die receiving plate 131 3 and the push-type 131 4 are formed.
 次に、図7Cに示すように、下型1311を用意し、下型1311の上にディンプル130t又は130bの一方が形成されたアルミ薄板131を重ねる。また、アルミ薄板131の上に加工時の割れ防止のためにディンプル130t又は130bに該当する位置に孔を有するゴムシート1315を重ね、さらに押し型受板1313を重ねる。 Next, as shown in FIG. 7C, a lower die 131 1 is prepared, and an aluminum thin plate 131 on which one of the dimples 130t or 130b is formed is overlaid on the lower die 131 1 . Further, overlapping rubber sheets 131 5 having a hole at a position corresponding to the dimples 130t or 130b for cracking prevention during processing on an aluminum thin plate 131, further overlaying press type receiving plate 131 3.
 次に、図7Dに示すように、押し型受板1313の孔のうちディンプル130t又は130b以外の孔に押し型1314を押し付けることでディンプル130b又は130tを形成する。 Next, as shown in FIG. 7D, to form the dimple 130b or 130t by pressing the push-type 131 4 in a hole other than the dimples 130t or 130b of the push-type receiving plate 131 3 holes.
 図9は、顕熱交換器13Aの製造工程を説明するための斜視図である。 FIG. 9 is a perspective view for explaining a manufacturing process of the sensible heat exchanger 13A.
 ディンプル130t及び130bが形成されたアルミ薄板131は、ディンプル130tと130bとが対向するように複数枚重ねられる。また、フラットバー133は、複数のアルミ薄板131の間であってアルミ薄板131の端部に配置され、隣り合うアルミ薄板131の間において交互に直交する向きに配置される。 A plurality of aluminum thin plates 131 on which the dimples 130t and 130b are formed are stacked such that the dimples 130t and 130b face each other. Further, the flat bars 133 are disposed between the plurality of aluminum thin plates 131 and at the end portions of the aluminum thin plates 131, and are disposed in directions orthogonal to each other between the adjacent aluminum thin plates 131.
 本実施例の顕熱交換器13Aは、ディンプル130t及び130bをエッジのないドーム状にし、かつ、ディンプル130tと130bとを対向させることで一方の板にのみディンプルを設ける場合に比べて高さが減少するため、ディンプル130t及び130bの加工の際にアルミ薄板131の変形量を抑制することができ、加工時にアルミ薄板131が割れたり破れたりする不具合が減少し、歩留まりが向上する。 The sensible heat exchanger 13A according to the present embodiment is higher in height than the case where the dimples 130t and 130b are formed in a dome shape without edges and the dimples 130t and 130b are opposed to each other so that the dimples are provided only on one plate. Therefore, the deformation amount of the aluminum thin plate 131 can be suppressed during the processing of the dimples 130t and 130b, and the problem that the aluminum thin plate 131 is cracked or broken during the processing is reduced, and the yield is improved.
 また、ディンプル130をアルミ薄板131に均一に配置したことで、アルミ薄板131の歪みが生じにくく、複数枚のアルミ薄板131の端部が不揃いになりにくくなり、その結果として複数枚のアルミ薄板131の端部を切り揃える工程が不要となる。 Further, since the dimples 130 are uniformly arranged on the aluminum thin plate 131, the aluminum thin plate 131 is not easily distorted, and the end portions of the plurality of aluminum thin plates 131 are less likely to be uneven, and as a result, the plurality of aluminum thin plates 131 are arranged. The process of cutting and aligning the ends of the film becomes unnecessary.
 また、一次側筒13a及び二次側筒13bに該当するアルミ薄板131間に一次側気流F1及び二次側気流F2を通過させた場合に、一次側気流F1及び二次側気流F2の風圧にばらつきが生じた場合であっても、対向するディンプル130t及び130bがアルミ薄板131のたわみを抑制する。 Further, when the primary airflow F 1 and the secondary airflow F 2 are passed between the aluminum thin plates 131 corresponding to the primary cylinder 13 a and the secondary cylinder 13 b, the primary airflow F 1 and the secondary airflow F Even when the wind pressure of 2 varies, the facing dimples 130t and 130b suppress the deflection of the aluminum thin plate 131.
 また、上記のように対向するディンプル130t及び130bがアルミ薄板131のたわみを抑制するため、厚さ0.05-0.3mmのアルミ薄板131を用いることができ、アルミ薄板131間のピッチPを1-3mm程度に小さくすることができる。 Further, since the opposing dimples 130t and 130b suppress the deflection of the aluminum thin plate 131 as described above, the aluminum thin plate 131 having a thickness of 0.05 to 0.3 mm can be used, and the pitch P between the aluminum thin plates 131 is set to be small. It can be as small as 1-3 mm.
 また、上記のようにアルミ薄板131間のピッチPを1-3mm程度に小さくしたため、小さい容積の顕熱交換器で大きな伝熱面積を確保することができる。 In addition, since the pitch P between the aluminum thin plates 131 is reduced to about 1-3 mm as described above, a large heat transfer area can be secured with a sensible heat exchanger having a small volume.
 また、一次側筒13aを通過する一次側気流F1は湿度が飽和状態に近いため、結露した水を処理する必要があるが、一次側気流F1が鉛直方向に通過するように顕熱交換器13を配置し、結露した水が自重で鉛直方向に落下する構造とした。この際、アルミ薄板131間のピッチPを小さくし過ぎると水がアルミ薄板131間に滞留してしまい、風圧により顕熱交換器13外に噴出されてしまうが、ピッチPを2mmとした場合には結露した水が自重で鉛直方向に落下することが確認された。 The primary-side air flow F 1 passing through the primary-side tube 13a since humidity is close to saturation, it is necessary to process the condensed water, sensible heat exchanger as the primary air flow F 1 passes vertically The vessel 13 was arranged so that the condensed water dropped in the vertical direction under its own weight. At this time, if the pitch P between the aluminum thin plates 131 is too small, water stays between the aluminum thin plates 131 and is blown out of the sensible heat exchanger 13 by the wind pressure, but when the pitch P is 2 mm. It was confirmed that the condensed water falls vertically due to its own weight.
[他の実施の形態]
 なお、本発明は、上記実施の形態に限定されず、本発明の趣旨を逸脱しない範囲で種々な変形が可能である。例えば、冷却対象は制御盤に限られず、サーバーラック、保存庫、倉庫、居室等にも適用することができる。
[Other embodiments]
The present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention. For example, the cooling target is not limited to the control panel, but can be applied to a server rack, a storage, a warehouse, a living room, and the like.
 本発明の冷却装置及び顕熱交換器は、従来の冷却装置及び顕熱交換器に比べて、顕熱交換器の設計の制限を低減することができるので、産業上有用である。 The cooling device and the sensible heat exchanger of the present invention are industrially useful because they can reduce the restrictions on the design of the sensible heat exchanger compared to the conventional cooling device and the sensible heat exchanger.
1     冷却装置
2     制御盤
10   気化フィルタ
10a 入力側通気口
10b 出力側通気口
11   給水ヘッダ
11a 電磁弁
12   ドレンパン
12a フロートスイッチ
13   顕熱交換器
13A 顕熱交換器
13a 一次側筒
13b 二次側筒
14   ファン
15   ファン
100 ろ材
130、130b、130t  ディンプル
131 アルミ薄板
132 接着剤
133 フラットバー
1311       下型
1312       ゴムシート
1313       押し型受板
1314       押し型
1315       ゴムシート
DESCRIPTION OF SYMBOLS 1 Cooling device 2 Control panel 10 Evaporation filter 10a Input side vent 10b Output side vent 11 Water supply header 11a Solenoid valve 12 Drain pan 12a Float switch 13 Sensible heat exchanger 13A Sensible heat exchanger 13a Primary side cylinder 13b Secondary side cylinder 14 Fan 15 Fan 100 Filter medium 130, 130b, 130t Dimple 131 Aluminum thin plate 132 Adhesive 133 Flat bar 131 1 Lower die 131 2 Rubber sheet 131 3 Push die receiving plate 131 4 Push die 131 5 Rubber sheet

Claims (6)

  1.  通過する一次側気流を加湿して温度を下げる気化フィルタと、
     前記気化フィルタを通過した一次側気流の通過する一次側筒と冷却対象を循環する二次側気流の通過する二次側筒とを重ね合わせて配置することで当該一次側気流と当該二次側気流との間で顕熱を交換するものであって、当該一次側筒及び当該二次側筒を構成する板材の間隔を保持する高さの凸形状を互いに対向する前記板材上に対で有する顕熱交換器と、
     前記顕熱交換器を通過した一次側気流を外部に排出するファンと、
     前記二次側気流を前記冷却対象と前記顕熱交換器との間を循環させるファンとを有する冷却装置。
    A vaporization filter that humidifies the passing primary air stream and lowers the temperature;
    The primary side airflow and the secondary side are arranged by overlapping the primary side tube through which the primary side airflow that has passed through the vaporization filter passes and the secondary side tube through which the secondary airflow that circulates the cooling target passes. The sensible heat is exchanged between the air flow and has a pair of convex shapes having a height to maintain the interval between the plate members constituting the primary side tube and the secondary side tube on the plate members facing each other. A sensible heat exchanger,
    A fan that discharges the primary airflow that has passed through the sensible heat exchanger to the outside;
    A cooling device comprising: a fan that circulates the secondary airflow between the cooling object and the sensible heat exchanger.
  2.  前記顕熱交換器の前記凸形状は、ドーム型である請求項1に記載の冷却装置。 The cooling device according to claim 1, wherein the convex shape of the sensible heat exchanger is a dome shape.
  3.  前記顕熱交換器の前記凸形状は、板材上に均一に形成される請求項1又は2に記載の冷却装置。 The cooling device according to claim 1 or 2, wherein the convex shape of the sensible heat exchanger is uniformly formed on a plate material.
  4.  前記一次側気流が排出される前記外部と、前記二次側気流が冷却する前記冷却対象とは気密的に分離されている請求項1-3のいずれか1項に記載の冷却装置。 The cooling device according to any one of claims 1 to 3, wherein the outside from which the primary airflow is discharged and the cooling target to be cooled by the secondary airflow are hermetically separated.
  5.  前記二次側気流が冷却する前記冷却対象は気密されている請求項1-4のいずれか1項に記載の冷却装置。 The cooling device according to any one of claims 1 to 4, wherein the cooling target to be cooled by the secondary airflow is airtight.
  6.  気化フィルタを通過した一次側気流の通過する一次側筒と冷却対象を循環する二次側気流の通過する二次側筒とを重ね合わせて配置することで当該一次側気流と当該二次側気流との間で顕熱を交換するものであって、当該一次側筒及び当該二次側筒を構成する板材の間隔を保持する高さの凸形状を互いに対向する前記板材上に対で有する顕熱交換器。



     
    The primary side airflow and the secondary side airflow are arranged by overlapping the primary side tube through which the primary airflow that has passed through the vaporization filter passes and the secondary side tube through which the secondary airflow that circulates the cooling target passes. Sensible heat is exchanged between the plate member and the plate member constituting the primary side tube and the secondary side tube. Heat exchanger.



PCT/JP2013/051053 2012-01-25 2013-01-21 Cooling device and sensible heat exchanger WO2013111693A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112013000685.5T DE112013000685T5 (en) 2012-01-25 2013-01-21 Cooling device and heat exchanger for sensible heat
JP2013513491A JP5654670B2 (en) 2012-01-25 2013-01-21 Cooling device and sensible heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012012929 2012-01-25
JP2012-012929 2012-01-25

Publications (1)

Publication Number Publication Date
WO2013111693A1 true WO2013111693A1 (en) 2013-08-01

Family

ID=48873413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051053 WO2013111693A1 (en) 2012-01-25 2013-01-21 Cooling device and sensible heat exchanger

Country Status (3)

Country Link
JP (1) JP5654670B2 (en)
DE (1) DE112013000685T5 (en)
WO (1) WO2013111693A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110316476A (en) * 2019-06-22 2019-10-11 辛秀 A kind of Cold Chain Logistics safety transport case
US10502438B2 (en) 2015-05-13 2019-12-10 The Research Foundation For The State University Of New York Latent and sensible cooling membrane heat pump

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61107020A (en) * 1984-10-30 1986-05-24 Matsushita Seiko Co Ltd Air conditioner
JPS6386567U (en) * 1986-11-17 1988-06-06
JP2006214646A (en) * 2005-02-03 2006-08-17 Xenesys Inc Heat exchanging plate

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2165267A1 (en) * 1971-12-29 1973-07-12 Krupp Gmbh HEAT EXCHANGER
JPS5235655U (en) * 1975-09-05 1977-03-14
JPS5237659U (en) * 1975-09-10 1977-03-17
JPS53137460A (en) * 1977-05-07 1978-11-30 Howa Mach Ltd Parting plate for heat exchanger
JPS55128742A (en) * 1979-03-28 1980-10-04 Hitachi Ltd Ventilator equipped with heat exchanger
JPS60196183U (en) * 1984-06-07 1985-12-27 株式会社トキメック heat exchange element
JPH0784990B2 (en) * 1987-02-16 1995-09-13 日本電装株式会社 Stacked heat exchanger
JPH01184399A (en) * 1988-01-18 1989-07-24 Nippon Denso Co Ltd Tube for heat exchanger
JPH0829087A (en) * 1994-07-18 1996-02-02 Daikin Ind Ltd Heat exchange element
JP2004012029A (en) * 2002-06-07 2004-01-15 Hitachi Hometec Ltd Humidifier
JP4654073B2 (en) * 2005-06-08 2011-03-16 サンデン株式会社 Refrigeration air conditioning system
JP5108351B2 (en) * 2007-03-27 2012-12-26 積水化学工業株式会社 Building ventilation system and unit building
CN102292611A (en) * 2009-01-22 2011-12-21 大金工业株式会社 Heat exchanger and heat pump type hot water supply apparatus equipped with same
JP4517057B1 (en) * 2009-03-30 2010-08-04 株式会社Gf技研 Heat exchange method and heat exchange apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61107020A (en) * 1984-10-30 1986-05-24 Matsushita Seiko Co Ltd Air conditioner
JPS6386567U (en) * 1986-11-17 1988-06-06
JP2006214646A (en) * 2005-02-03 2006-08-17 Xenesys Inc Heat exchanging plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10502438B2 (en) 2015-05-13 2019-12-10 The Research Foundation For The State University Of New York Latent and sensible cooling membrane heat pump
CN110316476A (en) * 2019-06-22 2019-10-11 辛秀 A kind of Cold Chain Logistics safety transport case

Also Published As

Publication number Publication date
JP5654670B2 (en) 2015-01-14
DE112013000685T5 (en) 2014-10-23
JPWO2013111693A1 (en) 2015-05-11

Similar Documents

Publication Publication Date Title
JP5905015B2 (en) Double air flow exchanger with improved heat and moisture transfer
US9404689B2 (en) Heat exchange matrix
WO2008126372A1 (en) Heat exchange element
US20080078185A1 (en) Thermoelectric air conditioning unit & a thermoelectric air conditioner thereof
MY152104A (en) Induced draft cooling tower
JP5654670B2 (en) Cooling device and sensible heat exchanger
JP3193430U (en) Cooling system
AU2012363660B2 (en) Heat exchanger plate and a fill pack of heat exchanger plates
WO2014129027A1 (en) Vaporization air conditioner
WO2013080478A1 (en) Heat exchanging element and heat exchanging ventilation apparatus using same
US10451352B2 (en) Micro-channel heat exchanger
JP2008190816A (en) Sensible heat exchange element
JP3178038U (en) Condenser air cooling system
US20070144454A1 (en) Evaporative humidifier for fuel cell system
US20120047937A1 (en) Indirect Evaporative Cooling System
JP2012072941A (en) Outdoor unit of air conditioner
JP6643569B2 (en) Dehumidifier
CN107576218B (en) Heat exchanger assembly and method of manufacturing the same
JP2011174629A (en) Air conditioner
JP2013019624A (en) Indoor unit of air conditioner
CN207095366U (en) Heat exchanger assembly and air-conditioning
JP2019113238A (en) Heat exchange element and heat exchange type ventilation device using the same
JP2010151344A (en) Total heat exchanger
CN210980194U (en) Band type porous ceramic filler
KR101746172B1 (en) Sensible heat exchange device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013513491

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13741078

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112013000685

Country of ref document: DE

Ref document number: 1120130006855

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13741078

Country of ref document: EP

Kind code of ref document: A1