WO2013111562A1 - Optical circuit, aligning system, and optical circuit aligning method - Google Patents

Optical circuit, aligning system, and optical circuit aligning method Download PDF

Info

Publication number
WO2013111562A1
WO2013111562A1 PCT/JP2013/000268 JP2013000268W WO2013111562A1 WO 2013111562 A1 WO2013111562 A1 WO 2013111562A1 JP 2013000268 W JP2013000268 W JP 2013000268W WO 2013111562 A1 WO2013111562 A1 WO 2013111562A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
port
waveguide
switch
input
Prior art date
Application number
PCT/JP2013/000268
Other languages
French (fr)
Japanese (ja)
Inventor
中村 滋
小倉 一郎
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2013111562A1 publication Critical patent/WO2013111562A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/422Active alignment, i.e. moving the elements in response to the detected degree of coupling or position of the elements
    • G02B6/4225Active alignment, i.e. moving the elements in response to the detected degree of coupling or position of the elements by a direct measurement of the degree of coupling, e.g. the amount of light power coupled to the fibre or the opto-electronic element

Definitions

  • the present invention relates to an optical circuit, an alignment system, and an optical circuit alignment method used in an optical communication system and an inter-device optical connection system.
  • wavelength division multiplexing (WDM) technology In an optical fiber communication system, wavelength division multiplexing (WDM) technology has become widespread. When the WDM technology is applied, various optical circuits including an optical switch are used to realize flexible wavelength path setting.
  • WDM wavelength division multiplexing
  • a plurality of optical fibers arranged on the same end surface of the connected component may be connected to an input side optical fiber and an output side optical fiber of the optical circuit, respectively.
  • the input side optical fiber and the output side optical fiber of the optical circuit are disposed on the same end face of the optical circuit.
  • Patent Documents 1 to 3 disclose alignment methods in the case where an input side optical fiber and an output side optical fiber of an optical circuit are connected to a plurality of optical fibers of connected parts on the same end face. .
  • an aligning optical waveguide extending to the opposite end face is disposed at a position shifted by 125 ⁇ m from the input side optical fiber and the output side optical fiber of the optical circuit, and connected using the aligning optical waveguide.
  • a technique is disclosed in which after aligning with a component, the optical circuit is moved by 125 ⁇ m to be bonded and fixed to the connected component.
  • Patent Document 2 two of the input / output optical waveguides of the optical circuit are extended to another end face to form an alignment optical waveguide, and two alignment optical fibers are added to the connected parts.
  • a technique for aligning using a centering optical waveguide and a centering optical fiber is disclosed.
  • Patent Document 3 discloses a technique for providing an optical waveguide that guides light having a specific wavelength passing through an arrayed waveguide diffraction grating to another end face, and performing an alignment operation of the optical fiber array using the optical waveguide. Yes.
  • Patent Document 2 requires that the number of optical fibers of the connected parts be prepared in excess of the originally required number, thereby reducing the versatility of the optical circuit.
  • Patent Document 3 needs to use light of a specific wavelength for alignment, and it is necessary to separately arrange a light source for alignment.
  • An object of the present invention is to connect an optical circuit and a connected device without providing a dedicated configuration for the measuring system and the connected component when the input / output side waveguide is connected to the same connected component on the predetermined end face side. It is an object to provide an optical circuit, an alignment system, and an optical circuit alignment method capable of aligning with a component.
  • an optical circuit includes a substrate, and in the first state, the first port is connected to the second port, the fourth port is connected to the third port, and in the second state. Includes a switch connecting the first port to the third port and the fourth port to the second port, an input waveguide extending from the first port to a predetermined end of the substrate, and a predetermined end from the second and third ports And two output waveguides each extending up to 4 mm, and an adjustment waveguide extending from the fourth port to an end other than the predetermined end of the substrate.
  • an alignment system includes the above-described optical circuit, a connected component having an optical fiber connected to each of an input waveguide and an output waveguide of the optical circuit, and an adjustment guide.
  • control means for controlling At the time of alignment between the optical circuit and the connected component, the switch is set to the first state, and the connected component outputs an alignment optical signal to the output waveguide extending from the third port.
  • the optical circuit alignment method is such that, in the first state, the first port is connected to the second port, the fourth port is connected to the third port, and the second state In this case, the connected component is brought close to a predetermined end of the substrate of the optical circuit having a switch for connecting the first port to the third port and the fourth port to the second port.
  • the optical signal is input from the output waveguide extending from the port, and the intensity of the optical signal output from the adjustment waveguide extending from the fourth port to the end other than the predetermined end of the substrate is measured.
  • the position that becomes is the alignment position.
  • the optical circuit, the alignment system, and the alignment method of the optical circuit according to the present invention align the measurement system and the connected component when the input / output side waveguide is connected to the same connected component on the predetermined end face side.
  • the alignment between the optical circuit and the connected component can be performed without providing a dedicated configuration.
  • 1 is a configuration diagram of an optical circuit 10 according to a first embodiment of the present invention. It is a lineblock diagram of alignment system 20 concerning a 1st embodiment of the present invention. 1 is a configuration diagram of an optical circuit 30 according to a first embodiment of the present invention. It is a block diagram of the optical circuit 40 which concerns on the modification of the 1st Embodiment of this invention. It is a block diagram of the optical circuit 50 which concerns on the modification of the 1st Embodiment of this invention. It is a block diagram of the optical circuit 60 which concerns on another modification of the 1st Embodiment of this invention. It is a block diagram of the optical circuit 70 which concerns on another modification of the 1st Embodiment of this invention.
  • FIG. 1A shows a configuration diagram of an optical circuit according to the present embodiment.
  • an optical circuit 10 according to the present embodiment includes a substrate 11, a switch 12, an input waveguide 13, two output waveguides 14a and 14b, and an adjustment waveguide 15.
  • a switch 12 On the substrate 11, a switch 12, an input waveguide 13, two output waveguides 14a and 14b, and an adjustment waveguide 15 are arranged.
  • the input waveguide 13 and the two output waveguides 14 a and 14 b extend from the switch 12 to the same end 11 a of the substrate 11.
  • the switch 12 includes four ports 12a to 12d and two optical paths (not shown), and a switch driving unit (not shown) is arranged in the vicinity of one of the optical paths, and voltage application, carrier injection, or heat source input is performed on the switch driving unit. Thus, the optical path is switched.
  • a state in which voltage application, carrier injection, or heat source input is not performed on the switch drive unit is a first state
  • a state in which voltage application is performed on the switch drive unit is a second state.
  • a predetermined threshold value is set, and a state where the applied voltage value or the like is smaller than the threshold value may be the first state, and a state larger than the threshold value may be the second state.
  • the switch 12 for example, a Mach-Zehnder type element can be applied.
  • the switch 12 according to the present embodiment connects the first port 12a to the second port 12b and the fourth port 12d to the third port 12c in the first state, and the first port in the second state. 12a is connected to the third port 12c, and the fourth port 12d is connected to the second port 12b.
  • the switch 12 is set to the first state at the time of alignment work with a connected part (not shown). By performing the alignment operation in the first state in which no voltage is applied to the switch drive unit, the alignment operation can be performed efficiently.
  • the input waveguide 13 extends from the first port 12a of the switch 12 to the end 11a of the substrate 11, and emits an optical signal incident from a connected component (not shown) to the first port 12a of the switch 12.
  • the output waveguides 14a and 14b extend from the second and third ports 12b and 12c of the switch 12 to the end 11a of the substrate 11, respectively.
  • the output waveguide 14a When the output waveguide 14a is in the first state, the output waveguide 14a emits an optical signal incident from a connected component (not shown) via the switch 12 to the connected component.
  • the output waveguide 14b In the second state, the output waveguide 14b emits an optical signal incident from the connected component via the switch 12 to the connected component. Further, the output waveguide 14b emits an optical signal incident from the connected component to the switch 12 during the alignment operation with the connected component.
  • the adjustment waveguide 15 extends from the fourth port 12d of the switch 12 to the end portion 11b facing the end portion 11a of the substrate 11, and exits from the connected component via the switch 12 during alignment with the connected component.
  • the optical signal thus emitted is emitted from the end 11 b side of the substrate 11.
  • the alignment system 20 includes an optical circuit 21, a connected component 22, a measurement unit 23, and a control unit 24.
  • the connected component 22 is disposed on the end 25 a side of the substrate 25 of the optical circuit 21, and the measuring means 23 is disposed at a position facing the adjustment waveguide 29 on the end 25 c side of the substrate 25.
  • the control means 24 is disposed below the connected component 22 and positions the connected component 22 in the up / down / left / right direction and the rotation direction.
  • the optical circuit 21 when performing alignment work between the optical circuit 21 and the connected component 22, first, the optical circuit 21 is set to the first state. Thereafter, the connected component 22 is brought into contact with the end 25a of the optical circuit 21, and the input waveguide 27 and the output waveguides 28a and 28b of the optical circuit 21 and the optical fibers 22a to 22c of the connected component 22 are coupled. Let In this state, an alignment optical signal is emitted from the optical fiber 22 b of the connected component 22 to the output waveguide 28 b of the optical circuit 21.
  • the alignment optical signal incident on the output waveguide 28b is emitted from the end 25c side of the substrate 25 to the outside through the third port 26c, the fourth port 26d, and the adjustment waveguide 29 of the switch 26. .
  • the measuring means 23 measures the intensity of the alignment optical signal emitted from the adjustment waveguide 29 at the end 25 c of the substrate 25 and outputs the measurement result to the control means 24.
  • the control unit 24 adjusts the relative position between the optical circuit 21 and the connected component 22 based on the measurement result input from the measurement unit 23.
  • the control unit 24 adjusts the position of the connected component 22 in the up / down / left / right direction and the rotation direction so that the measurement result input from the measurement unit 23 becomes the maximum value.
  • the optical circuit 21 and the connected component 22 are bonded and fixed at the position where the measurement result becomes the maximum value.
  • the end face on the end 25c side of the adjustment waveguide 29 is processed so that unnecessary optical signals do not enter from the adjustment waveguide 29 of the optical circuit 21 after the optical circuit 21 and the connected component 22 are bonded and fixed. It is desirable to do.
  • an optical signal enters the input waveguide 27 of the optical circuit 21 from the optical fiber 22c of the connected component 22 during normal operation.
  • the optical signal that has entered the input waveguide 27 is output to either the output waveguide 28 a or 28 b depending on the state of the switch 21, and enters one of the optical fibers 22 a and 22 b of the connected component 22.
  • the optical circuit 10 and the alignment system 20 connect the input waveguide and the output waveguide of the optical circuit on the same end surface side as the connected component, Alignment of the optical circuit and the connected component can be performed without providing a dedicated configuration for the connecting component.
  • the adjustment waveguide is extended to an end different from the end where the connected component is arranged, so that the optical circuit and Connected parts can be bonded and fixed.
  • the optical fiber used during normal operation is used for alignment work, it is not necessary to arrange the optical fiber for alignment work in the connected parts, and it has a special wavelength as an optical signal for adjustment There is no need to use an optical signal.
  • FIG. 1C shows a configuration diagram of an optical circuit in which two optical circuits described above are combined.
  • the optical circuit 30 includes a substrate 31, switches 32a and 32b, input waveguides 33a and 33b, output waveguides 34a to 34d, and adjustment waveguides 35a and 35b.
  • the aligning optical signal is incident from the output waveguides 34b and 34c.
  • the adjustment optical signals incident from the output waveguides 34b and 34c are emitted to the adjustment waveguides 35a and 35b through the switches 32a and 32b, respectively, and are emitted from the end portion 31b side of the substrate.
  • the intensity of the optical signal emitted from the adjustment waveguides 35a and 35b is measured by a measuring device (not shown) arranged on the end 31b side, and the optical circuit 30 is adjusted so that the intensity of the adjustment optical signal is maximized. Align.
  • an optical signal enters the input waveguides 33a and 33b from a connected component (not shown) during normal operation.
  • the optical signal that has entered the input waveguides 33a and 33b is incident on the switches 32a and 32b, and either one of the output waveguides 34a and 34b or the output waveguides 34c and 34d depending on the state of the switches 32a and 32b.
  • the light is emitted to either one and enters an optical fiber of a connected component (not shown).
  • FIG. 2A shows a configuration diagram of an optical circuit in which a second switch is disposed in the subsequent stage of the output waveguides 14a and 14b.
  • the 2A includes a substrate 41, a first switch 42, second switches 43a and 43b, an input waveguide 44, output waveguides 45a to 45d, connection waveguides 46a and 46b, and an adjustment waveguide 47. Is provided.
  • the first switch 42 is configured in the same manner as the switch 10 shown in FIG. 1A.
  • the second switches 43 a and 43 b are formed by terminating the fourth port 12 d of the switch 10.
  • the connection waveguides 46a and 46b connect the first switch 42 and the second switches 43a and 43b, respectively.
  • the first switch 42 and the second switches 43a and 43b are set to the first state, and then an optical signal for alignment is sent to the output waveguide 45d. Exit. Then, the adjustment optical signal incident on the output waveguide 45d is incident on the second switch 43b, and is emitted to the connection waveguide 46b because the second switch 43b is set to the first state. Is done.
  • the adjustment optical signal incident on the connection waveguide 46 b is emitted from the first switch 42 toward the adjustment waveguide 47, and is emitted from the end 41 b of the substrate 41. Then, the intensity of the adjustment optical signal emitted from the adjustment waveguide 47 is measured on the end 41b side, and the optical circuit 40 and the connected component are bonded and fixed at a position where the intensity becomes maximum.
  • the optical circuit 40 aligns the measurement system and the connected component when the input waveguide and the output waveguide of the optical circuit 40 are connected on the same end face side as the connected component (not shown).
  • the alignment of the optical circuit 40 and the connected component can be performed without providing a dedicated configuration.
  • an optical signal enters the input waveguide 44 of the optical circuit 40 from an optical fiber of a connected component (not shown) during normal operation.
  • the optical signal that has entered the input waveguide 44 enters the first switch 42, is output to one of the connection waveguides 46a and 46b depending on the state of the first switch 42, and the second switch 43a, It is incident on either of 43b.
  • the optical signal incident on either of the second switches 43a and 43b is emitted to one of the output waveguides 45a to 45d in accordance with the state of the second switches 43a and 43b, and is connected to a not-shown component. Is incident on the optical fiber.
  • the fourth ports of the second switches 43a and 43b are terminated. Instead of terminating, the fourth ports of the second switches 43a and 43b are connected to other than the end portion 41a.
  • An adjustment waveguide extending to the end can also be added.
  • An example of the added adjustment waveguides 47a and 47b is shown by a dotted line in FIG. 2A.
  • FIG. 2B shows a configuration diagram of the optical circuit 50 when the optical switches are arranged in three stages.
  • An example of the adjustment waveguides 59a to 59d that can be added is shown by a dotted line in FIG. 2B.
  • Detailed operation of the optical circuit 50 shown in FIG. 2B will be described in detail in the second embodiment.
  • FIG. 3A shows a configuration diagram of an optical circuit in which a second switch is arranged in front of the input waveguide 13.
  • the optical circuit 60 in FIG. 3A has a configuration in which a second optical switch 63 is added before the input waveguides 33a and 33b of the optical circuit 30 in FIG. 1C.
  • an optical circuit 60 includes a substrate 61, first switches 62a and 62b, a second switch 63, an input waveguide 64, output waveguides 65a to 65d, and connection waveguides 66a and 66b. And adjustment waveguides 67a and 67b.
  • the first switches 62a and 62b and the second switch 63 are set to the first state, and then are aligned from the output waveguides 65b and 65c, respectively.
  • An optical signal is incident.
  • the adjustment optical signal incident from the output waveguide 65b is incident on the first switch 62a, and is emitted to the adjustment waveguide 67a side because the first switch 62a is set to the first state.
  • the adjustment optical signal incident from the output waveguide 65b is emitted to the adjustment waveguide 67b side.
  • the intensity of the adjustment optical signal emitted from the adjustment waveguides 67a and 67b is measured by a measuring unit (not shown), and the total intensity of the adjustment optical signals emitted from the adjustment waveguides 67a and 67b is measured.
  • the optical circuit 60 is positioned so that is maximized.
  • an optical signal enters the input waveguide 64 of the optical circuit 60 from the optical fiber of the connected component during normal operation. Then, the optical signal incident on the input waveguide 64 is incident on the second switch 63 and is emitted to either the connection waveguide 66a or 66b depending on the state of the second switch 63. Incident on either 62a or 62b. The optical signal incident on either of the first switches 62a and 62b is emitted to one of the output waveguides 65a to 65d in accordance with the state of the first switches 62a and 62b, and enters the optical fiber of the connected component. Incident.
  • FIG. 3B shows a configuration diagram of the optical circuit 70 in which two optical circuits 60 are combined and the first switches 72a to 72d are nested.
  • an optical circuit 70 according to the present embodiment includes a substrate 71, first switches 72a to 72d, second switches 73a and 73b, input waveguides 74a and 74b, output waveguides 75a to 75h, and connection guides. Waveguides 76a to 76d and adjustment waveguides 77a and 77b are provided.
  • the first switches 72a to 72d and the second switches 73a and 73b are set to the first state, and then aligned to the output waveguides 75b and 75g, respectively.
  • An optical signal for use is emitted.
  • the adjustment optical signal incident on the output waveguide 75b is emitted from the end 71b via the first switch 72a and the adjustment waveguide 77a.
  • the adjustment optical signal incident on the output waveguide 75g is emitted from the end portion 71b via the first switch 72d and the adjustment waveguide 77b.
  • the optical circuit 70 is positioned so that the total intensity of the adjustment optical signals emitted from the adjustment waveguides 77a and 77b is maximized.
  • the optical system 70 is not provided with a configuration dedicated for alignment in the measurement system or the connected component. Alignment between the circuit 70 and a connected component (not shown) can be performed.
  • an example of the adjustment waveguides 77c and 77d that can be added is shown by a dotted line in FIG. 3B.
  • the adjustment optical signal is incident from the output waveguides 75 d and 75 e of the optical circuit 70.
  • FIG. 3C shows a configuration diagram of an optical circuit in the case where an optical splitter is arranged at the subsequent stage of the output waveguides 75a to 75h.
  • an optical circuit 80 includes a substrate 81, first switches 82a to 82d, second switches 83a and 83b, input waveguides 84a and 84b, connection waveguides 85a to 85h, and 86a to 86a. 86d, adjustment waveguides 87a and 87b, optical splitters 88a to 88d, and output waveguides 89a to 89d.
  • An example of the adjustment waveguides 87c and 87d that can be added is indicated by a dotted line in FIG. 3C.
  • Each of the optical splitters 88a to 88d includes two input ports and one output port.
  • the optical splitters 88a to 88d select one of the two input ports and emit an optical signal incident from the selected input port to the output port. Then, the optical signal emitted from the output port is emitted from the output waveguides 89a to 89d to the end portion 81a side.
  • the two input ports operate in conjunction with each other. For example, when the optical splitter 88a selects the first input port, the other optical splitters 88b to 88d also select the first input port.
  • optical signals incident from the input waveguides 84a and 84b can be alternately emitted from the output waveguides 89a to 89d.
  • Detailed operation of the optical circuit including the optical splitter will be described in a third embodiment.
  • FIG. 4 shows a configuration diagram in a state where the optical circuit according to the present embodiment is connected to the optical fiber array.
  • the optical circuit 100 includes seven optical switch elements 110a to 110d, 120a, 120b, and 130, an input optical waveguide 140, eight output optical waveguides 150a to 150h, and two alignment optical waveguides 160. , 170 and six connection optical waveguides 180a to 180f for connecting the optical switch elements.
  • Each optical waveguide has a core made of silicon and a clad made of quartz.
  • the optical fiber array 200 includes a fixing glass block 210 and nine optical fibers 220a to 220i.
  • an optical fiber array 200 is disposed on the end face 101 side of the optical circuit 100, the output optical waveguides 150 a to 150 h and the input optical waveguide 140 of the optical circuit 100, and the nine optical fibers 220 a to 220 i of the optical fiber array 200. Are connected via a fixing glass block 210.
  • the input optical waveguide 140 and the eight output optical waveguides 150a to 150h extend toward the end face 101 where the optical fiber array 200 is disposed.
  • the two aligning optical waveguides 160 and 170 extend to the end surface 102 side opposite to the end surface 101 where the optical fiber array 200 is not disposed.
  • the emission direction of the optical signal is switched according to the driving state.
  • the optical switch elements 110a to 110d, 120a, 120b, and 130 Mach-Zehnder type elements that change the light intensity using interference between two optical paths can be applied.
  • the optical switch elements 110a to 110d, 120a, 120b, and 130 are driven by being heated using a heater.
  • the optical switch element 110a will be described in detail.
  • a perspective view of the optical switch element 110a is shown in FIG.
  • the optical switch element 110a forms an optical waveguide by forming a core 112a using silicon and a clad 113a using quartz on a silicon substrate 111a.
  • two input ports 114a and 115a are formed at one of a pair of opposing ends, and two output ports 116a and 117a are formed at the other end.
  • the input port 114a is connected to the output optical waveguide 150b in FIG.
  • the input port 115a is connected to the output optical waveguide 150a
  • the output port 116a is connected to the connection optical waveguide 180a
  • the output port 117a is connected.
  • Each is connected to the aligning optical waveguide 160.
  • the input optical signal is joined again via the two arms of Mach-Zehnder and interferes at the output ports 116a and 117a.
  • a pair of electrode pairs 118a is disposed above one arm of the optical switch element 110a, and a heater 119a is disposed between the electrode pairs 118a.
  • the optical switch element 110a By applying a voltage to the electrode pair 118a of the optical switch element 110a, a current flows through the heater 119a and the heater 119a generates heat.
  • the heater 119a When the heater 119a generates heat and the optical waveguide directly below is maintained at a predetermined temperature, the refractive index of the core 112a changes, and the optical path lengths of both arms are shifted by a half wavelength. Therefore, the optical signal input from the input port 114a and passing through the two arms has a phase difference of 0 at the output port 116a, and the optical signals of each other are strengthened.
  • the optical signal input from the input port 114a and passing through the two arms has a phase difference of ⁇ at the output port 117a, and the optical signals cancel each other. That is, when a predetermined voltage is applied to the electrode pair 118a, the optical signal input from the input port 114a is output to the output port 116a.
  • the optical path lengths of both arms of the optical switch element 110a are equal. Therefore, the optical signal input from the input port 114a and passing through the two arms has a phase difference of ⁇ at the output port 116a, and the optical signals cancel each other.
  • the optical signal input from the input port 114a and passing through the two arms has a phase difference of 0 at the output port 117a, and the optical signals of each other are strengthened. That is, when no voltage is applied to the electrode pair 118a, the optical signal input from the input port 114a is output to the output port 117a.
  • the state in which no voltage is applied to the electrode pair 118a corresponds to the first state of the claims, and the state in which voltage is applied to the electrode pair 118a corresponds to the second state.
  • the optical switch element 130 is also formed in the same manner as the optical switch element 110a. Further, the optical switch element 110a is a 2 ⁇ 2 optical switch, but by terminating any one of the four ports 114a, 115a, 116a, and 117a, the 1 ⁇ 2 optical switch elements 110b to 110d are terminated. , 120a, 120b can be formed.
  • the alignment procedure between the optical circuit 100 and the optical fiber array 200 will be described with reference to FIGS.
  • no voltage is applied to each electrode pair of all the optical switch elements.
  • alignment optical signals are emitted from the optical fibers 220b and 220h of the optical fiber array 200.
  • the optical fiber array 200 is brought close to the end face 101 of the optical circuit 100, and the output optical waveguides 150a to 150h and the input optical waveguide 140 of the optical circuit 100 and the optical fibers 220a to 220i of the optical fiber array 200 are coupled.
  • the alignment optical signal emitted from the optical fiber 220b is input to the optical waveguide 150b and input to the input port 114a of the optical switch element 110a. Since no voltage is applied to the electrode pair of the optical switch element 110a, the alignment optical signal input from the input port 114a is output to the output port 117a and output from the alignment optical waveguide 160 to the outside. The Then, on the end face 102 side, the aligning optical signal intensity output from the aligning optical waveguide 160 is measured using a measuring instrument (not shown).
  • the optical signal for alignment emitted from the optical fiber 220h is input to the optical waveguide 150h and input to the optical switch element 110d.
  • the alignment optical signal input to the optical switch element 110d is output to the connection optical waveguide 180d because no voltage is applied to the electrode pair of the optical switch element 110d, and the optical switch element 120b, the connection optical waveguide 180f,
  • the light is output from the alignment optical waveguide 170 to the outside via the optical switch element 130.
  • the aligning optical signal intensity output from the aligning optical waveguide 170 is measured by a measuring instrument (not shown).
  • the optical fiber array 200 is bonded and fixed to the optical circuit 100 at a position where the total intensity of the alignment optical signals output from the alignment optical waveguides 160 and 170 is maximized.
  • an optical signal is input from the optical fiber 220 i of the optical fiber array 200 to the input optical waveguide 140, and from the input optical waveguide 140 to the optical switch element 130. Emitted.
  • the optical signal incident on the optical switch element 130 is emitted to the optical switch element 120a or the optical switch element 120b side according to the driving state of the optical switch element 130, and the optical switch element 120a, 120b according to the driving state of the optical switch element 120a.
  • the light is emitted to any one of 110a to 110d, and further emitted from any one of the output optical waveguides 150a to 150h according to the driving state of the optical switch elements 110a to 110d.
  • the optical signal emitted from any one of the output optical waveguides 150a to 150h is incident on any one of the optical fibers 220a to 220h.
  • the optical circuit 100 and the optical fiber array 200 include the output optical waveguides 150a to 150h and the input optical waveguide 140 without providing a configuration dedicated for alignment in the measurement system or the connected component.
  • the optical fibers 220a to 220i can be aligned.
  • the aligning optical waveguides 160 and 170 are both drawn out to the end face 102 side facing the optical fiber array 200, but the present invention is not limited to this.
  • the aligning optical waveguides 160 and 170 can be drawn to the upper end surface side or the lower end surface side where the optical fiber array 200 is not disposed.
  • a branch may be provided in the middle of the aligning optical waveguides 160 and 170 and drawn out to a plurality of end faces.
  • FIG. 6 shows a configuration diagram of the state in which the optical circuit according to the present embodiment is connected to the optical fiber array.
  • the optical circuit 300 shown in FIG. 6 is formed by disposing the optical switches 310a to 310d in the subsequent stage of the output waveguides 65a to 65d in FIG. 3A described in the modification of the first embodiment.
  • an optical circuit 300 includes seven optical switch elements 310a to 310d, 320a, 320b, 330, an input optical waveguide 340, eight output optical waveguides 350a to 350h, and two alignments.
  • the optical fiber array 400 includes a fixing glass block 410 and nine optical fibers 420a to 420i.
  • the optical switch elements 310a to 310d, 320a, 320b, and 330 according to this embodiment are the same as the optical switch elements 110a to 110d, 120a, 120b, and 130 of FIGS. 4 and 5 described in the second embodiment. It is configured.
  • an optical fiber array 400 is arranged on one end face 301 side of the optical circuit 300.
  • the input optical waveguide 340 and the eight output optical waveguides 350a to 350h of the optical circuit 300 extend toward the end face 301 on which the optical fiber array 400 is disposed.
  • the two alignment optical waveguides 360 and 370 extend to the end surface 302 side opposite to the end surface 301 where the optical fiber array 400 is not disposed.
  • the output optical waveguides 350 a to 350 h and the input optical waveguide 340 of the optical circuit 300 and the nine optical fibers 420 a to 420 i of the optical fiber array 400 are connected via a fixing glass block 410.
  • an optical signal for alignment is input to the optical waveguide 350b and input to the optical switch element 310a. Since no voltage is applied to the electrode pair of the optical switch element 310a, the incident alignment optical signal is emitted to the alignment optical waveguide 360, and the intensity is measured on the end face 302 side.
  • the aligning optical signal emitted from the optical fiber 420h is emitted from the aligning optical waveguide 370 to the outside via the optical waveguide 350g, the optical switch element 310d, and the aligning optical waveguide 370, and is end faced.
  • the intensity is measured on the 302 side.
  • the optical fiber array 400 is bonded and fixed to the optical circuit 300 at a position where the total intensity of the alignment optical signals emitted from the alignment optical waveguides 360 and 370 is maximized.
  • the measurement of the light intensity at the time of alignment may be performed at only one location, but it is desirable to perform the measurement at two locations because the variation in coupling efficiency can be reduced.
  • an optical signal is emitted from the optical fiber 420e of the optical fiber array 400, and the emitted optical signal is transmitted via the input optical waveguide 340.
  • it is emitted to either the optical switch element 320a or the optical switch element 320b, and further depending on the driving state of the optical switch element 330a ⁇ It is emitted to any one of 310d.
  • An optical signal incident on one of the optical switch elements 310a to 310d is emitted from one of the output optical waveguides 350a to 350h according to the driving state thereof, and is coupled to the optical fibers 420a to 420d of the optical fiber array 400 that is coupled. The light is emitted to any one of 420f to 420i.
  • the optical circuit 300 and the optical fiber array 400 align the optical circuit 300 and the optical fiber array 400 without providing a dedicated configuration for the measuring system or the connected component. be able to.
  • the aligning optical waveguides 360 and 370 are both drawn to the end face 302 side facing the optical fiber array 400, but the present invention is not limited to this.
  • the aligning optical waveguides 360 and 370 can be drawn to the upper end surface side or the lower end surface side where the optical fiber array 400 is not disposed.
  • a branch may be provided in the middle of the aligning optical waveguides 360 and 370 and drawn out to a plurality of end faces.
  • FIG. 7 shows a configuration diagram of the state in which the optical circuit according to the present embodiment is connected to the optical fiber array.
  • the optical circuit 500 includes twelve optical switch elements 510a to 510d, 520a to 520d, 530a to 530d, four 1 ⁇ 4 optical splitter elements 540a to 540d, and four input optical waveguides. Waveguides 550a to 550d, four output optical waveguides 560a to 560d, two alignment optical waveguides 570 and 580, and a plurality of connection optical waveguides respectively connecting the optical switch element and the optical splitter element are provided.
  • the optical switch elements 510a to 510d, 520a to 520d, and 530a to 530d are configured in the same manner as the optical switch elements shown in FIG.
  • the optical fiber array 600 includes a fixing glass block 610 and eight optical fibers 620a to 620h.
  • an optical fiber array 600 is arranged on one end face 501 side of the optical circuit 500.
  • the input optical waveguides 550a to 550d and the output optical waveguides 560a to 560d of the optical circuit 500 extend to the end face 501 side where the optical fiber array 600 is disposed.
  • the two aligning optical waveguides 570 and 580 extend toward the end face 502 where the optical fiber array 600 is not disposed.
  • each optical waveguide has a core made of silicon and a clad made of quartz.
  • the input optical waveguides 550a to 550d and the output optical waveguides 560a to 560d of the optical circuit 500 are connected to the eight optical fibers 620a to 620h of the optical fiber array 600.
  • Each of the optical splitter elements 540a to 540d includes four input ports and one output port.
  • the optical splitter elements 540a to 540d emit optical signals incident from the selected input port from the output port.
  • the optical splitter elements 540a to 540d operate in conjunction with each other after the connection / fixation between the optical circuit 500 and the optical fiber array 600 is completed. For example, when the optical splitter element 540a selects the first input port, the other optical splitter elements 540b to 540d also select the first input port.
  • the alignment procedure between the optical circuit 500 and the optical fiber array 600 will be described.
  • voltages are applied to the electrode pairs of all the optical switch elements.
  • the optical fiber 620b, 620g of the optical fiber array 600 is set to a state where no application is performed, and an optical signal for alignment is emitted, and the optical splitter element 540b selects the first input port, and the optical splitter element 540c performs the fourth operation. Select the input port.
  • the optical fiber array 600 is brought close to the end surface 501 of the optical circuit 500, and the input optical waveguides 550a to 550d and the output optical waveguides 560a to 560d of the optical circuit 500 and the optical fibers 620a to 620h of the optical fiber array 600 are coupled. .
  • the aligning optical signal enters the optical waveguide 560b and is input to the optical splitter element 540b. Since the optical splitter element 540b selects the first input port, the alignment optical signal input to the optical splitter element 540b is input to the optical switch element 510a via the first input port. Since no voltage is applied to the electrode pair of the optical switch element 510a, the input alignment optical signal is input to the alignment optical waveguide 570, and the intensity is measured on the end face 502 side.
  • the alignment optical signal is emitted to the outside through the optical waveguide 560c, the optical splitter element 540c, the optical switch element 520d, and the alignment optical waveguide 580. Then, the strength is measured at the end face 502.
  • the optical fiber array 600 is bonded and fixed to the optical circuit 500 at a position where the total intensity of the aligning optical signals emitted from the aligning optical waveguides 570 and 580 is maximized, and further, the optical splitter element 540a. ⁇ 540d are associated with each other.
  • an optical signal is emitted from the optical fiber 620d of the optical fiber array 600, and the emitted optical signal is transmitted via the input optical waveguide 550b. It enters the optical switch element 530b and enters the optical switch element 510c or the optical switch element 520c depending on the driving state of the optical switch element 530b. Further, the optical signal incident on the optical switch element 510c or the optical switch element 520c is output to the third input port of the optical splitter element 540a or 540b, 540c or 540d according to the driving state of the optical switch element 510c or 520c. .
  • any one of the optical splitter elements 540a to 540d is selected.
  • the optical signal incident on the third input port is output to the output optical waveguide 560a or 560b, 560c or 560d. That is, the optical signal incident from the optical fiber 620d is emitted from one of the output optical waveguides 560a to 560d in the optical circuit 500 according to the driving state of the optical splitter element, and the optical fibers 620a, 620b, 620g of the optical fiber array 600 are emitted. , 620h.
  • optical signals emitted from the optical fibers 620c, 620e, and 620f of the optical fiber array 600 are incident on one of the optical splitter elements 540a to 540d in the optical circuit 500 according to the driving state of the optical splitter element. Then, by switching the four input ports of the optical splitter elements 540a to 540d in conjunction with each other, the optical signals incident from the input optical waveguides 550a to 550d can be appropriately selected and emitted to the optical fiber array 600.
  • the aligning optical waveguides 570 and 580 are both drawn to the end face 502 side facing the optical fiber array 600, but the present invention is not limited to this.
  • the aligning optical waveguides 570 and 580 can be drawn to the upper end surface side or the lower end surface side where the optical fiber array 600 is not disposed.
  • a branch may be provided in the middle of the aligning optical waveguides 570 and 580 and drawn out to a plurality of end faces.
  • the core of the optical circuit is formed of silicon and the cladding is formed of quartz glass, but the present invention is not limited to this.
  • the core and the clad can be formed of quartz glass, a compound semiconductor, an organic material, or the like. Even when the core and the clad are formed of these materials, the same effect as the optical circuit described in the above embodiment can be obtained.
  • the optical path of the optical switch element is switched by heating the optical waveguide using a heater, but the present invention is not limited to this.
  • the optical path of the optical switch element can be switched by applying a voltage to the optical waveguide or injecting carriers.
  • the present invention can be applied to all optical devices including a circuit including an optical switch and a connected component connected to the switch.
  • Optical circuit 11 31, 41, 61 Substrate 12, 32a, 32b Switch 42, 62a, 62b First switch 43a, 43b, 63 Second switch 13, 33a, 33b, 44, 64 Input waveguides 14a, 14b, 34a to 34d, 45a to 45d, 65a to 65d Output waveguides 46a, 46b, 66a, 66b Connection waveguides 15, 35a, 35b, 47, 67a, 67b Adjustment waveguides 20 Alignment System 21 Optical circuit 22 Connected component 23 Measuring means 24 Control means 100, 300, 500 Optical circuit 110a to 110d, 120a, 120b, 130, 310a to 310d, 320a, 320b, 330, 510a to 510d, 520a to 520d, 530a to 530d Optical switch element 111a Silicon substrate 112a Core 113a Clad 114a, 115a Input port 116a, 117a Output

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

A component to be connected (22) is brought close to a predetermined end portion (25a) of a substrate (25) of an optical circuit (21) that is provided with a switch (26), which connects a first port (26a) to a second port (26b), and a fourth port (26d) to a third port (26c) in a first state. In the first state, optical signals are inputted to an output waveguide (28b) that extends from the third port (26c), intensity of optical signals outputted from an aligning waveguide (29) is measured, said aligning waveguide extending from the fourth port (26d) to an end portion (25c) other than the end portion (25a), and a position where the intensity of the optical signals thus measured is maximum is set as an aligning position.

Description

光回路、調心システムおよび光回路の調心方法Optical circuit, alignment system, and alignment method for optical circuit
 本発明は、光通信システムや装置間光接続システムに用いられる光回路、調心システムおよび光回路の調心方法に関する。 The present invention relates to an optical circuit, an alignment system, and an optical circuit alignment method used in an optical communication system and an inter-device optical connection system.
 光ファイバ通信システムにおいては、波長分割多重(WDM:Wavelength Division Multiplexing)技術が普及してきている。WDM技術を適用する場合、柔軟な波長パス設定を実現するために、光スイッチを含む各種の光回路が用いられる。 In an optical fiber communication system, wavelength division multiplexing (WDM) technology has become widespread. When the WDM technology is applied, various optical circuits including an optical switch are used to realize flexible wavelength path setting.
 光回路と被接続部品との接続においては、被接続部品の同一端面に配置された複数の光ファイバと、光回路の入力側光ファイバおよび出力側光ファイバと、をそれぞれ接続する場合がある。この場合、光回路の入力側光ファイバと出力側光ファイバとは光回路の同一端面に配置される。 In connection between an optical circuit and a connected component, a plurality of optical fibers arranged on the same end surface of the connected component may be connected to an input side optical fiber and an output side optical fiber of the optical circuit, respectively. In this case, the input side optical fiber and the output side optical fiber of the optical circuit are disposed on the same end face of the optical circuit.
 ここで、光回路の入力側光ファイバおよび出力側光ファイバと被接続部品の複数の光ファイバとを同一端面において接続する場合の調心方法は、例えば、特許文献1~3に開示されている。 Here, for example, Patent Documents 1 to 3 disclose alignment methods in the case where an input side optical fiber and an output side optical fiber of an optical circuit are connected to a plurality of optical fibers of connected parts on the same end face. .
 特許文献1には、光回路の入力側光ファイバおよび出力側光ファイバから125μmずらした位置に、対向する端面まで伸びる調心用光導波路を配置し、この調心用光導波路を用いて被接続部品との調心を行った後、光回路を125μm移動させて被接続部品と接着・固定する技術が開示されている。 In Patent Document 1, an aligning optical waveguide extending to the opposite end face is disposed at a position shifted by 125 μm from the input side optical fiber and the output side optical fiber of the optical circuit, and connected using the aligning optical waveguide. A technique is disclosed in which after aligning with a component, the optical circuit is moved by 125 μm to be bonded and fixed to the connected component.
 特許文献2には、光回路の入出力光導波路のうちの2本を別の端面まで伸ばして調心用光導波路とすると共に被接続部品に調心用の光ファイバを2本追加し、調心用光導波路と調心用光ファイバとを用いて調心する技術が開示されている。 In Patent Document 2, two of the input / output optical waveguides of the optical circuit are extended to another end face to form an alignment optical waveguide, and two alignment optical fibers are added to the connected parts. A technique for aligning using a centering optical waveguide and a centering optical fiber is disclosed.
 特許文献3には、アレイ導波路回折格子を通過する特定の波長の光を別の端面に導く光導波路を設け、光導波路を用いて光ファイバアレイの調心作業等を行う技術が開示されている。 Patent Document 3 discloses a technique for providing an optical waveguide that guides light having a specific wavelength passing through an arrayed waveguide diffraction grating to another end face, and performing an alignment operation of the optical fiber array using the optical waveguide. Yes.
特開2004-004907号公報JP 2004-004907 A 特開平10-227936号公報JP-A-10-227936 特開2000-292636号公報JP 2000-292636 A
 しかし、特許文献1の技術では、被接続部品の光ファイバと調心用光導波路との調心を行った後、光回路を移動させて被接続部品と接着・固定する。移動によって被接続部品と光回路との相対位置が最適位置からずれてしまう可能性があり、接続精度が低下する。さらに、光回路を高精度に移動させるための設備を設ける必要がある。 However, in the technique of Patent Document 1, after aligning the optical fiber of the connected component and the aligning optical waveguide, the optical circuit is moved and bonded and fixed to the connected component. The relative position between the connected component and the optical circuit may be shifted from the optimum position due to the movement, and the connection accuracy is lowered. Furthermore, it is necessary to provide equipment for moving the optical circuit with high accuracy.
 また、特許文献2の技術は、被接続部品の光ファイバの本数を、本来必要な本数よりも余分に用意する必要があり、光回路の汎用性が低下する。 In addition, the technique of Patent Document 2 requires that the number of optical fibers of the connected parts be prepared in excess of the originally required number, thereby reducing the versatility of the optical circuit.
 さらに、特許文献3の技術は、調心用に特定の波長の光を用いる必要があり、調心用の光源を別途配置する必要がある。 Furthermore, the technique of Patent Document 3 needs to use light of a specific wavelength for alignment, and it is necessary to separately arrange a light source for alignment.
 本発明の目的は、入出力側導波路を同一の被接続部品と所定の端面側で接続する場合に、測定系や被接続部品に調心専用の構成を設けることなく、光回路と被接続部品との調心を行うことができる光回路、調心システムおよび光回路の調心方法を提供することにある。 An object of the present invention is to connect an optical circuit and a connected device without providing a dedicated configuration for the measuring system and the connected component when the input / output side waveguide is connected to the same connected component on the predetermined end face side. It is an object to provide an optical circuit, an alignment system, and an optical circuit alignment method capable of aligning with a component.
 上記目的を達成するために本発明に係る光回路は、基板と、第1の状態の時は第1ポートを第2ポート、第4ポートを第3ポートに接続し、第2の状態の時は第1ポートを第3ポート、第4ポートを第2ポートに接続するスイッチと、第1ポートから基板の所定の端
部まで伸びる入力導波路と、第2および第3ポートから所定の端部までそれぞれ伸びる2本の出力導波路と、第4ポートから基板の所定の端部以外の端部まで伸びる調整用導波路と、を備える。
In order to achieve the above object, an optical circuit according to the present invention includes a substrate, and in the first state, the first port is connected to the second port, the fourth port is connected to the third port, and in the second state. Includes a switch connecting the first port to the third port and the fourth port to the second port, an input waveguide extending from the first port to a predetermined end of the substrate, and a predetermined end from the second and third ports And two output waveguides each extending up to 4 mm, and an adjustment waveguide extending from the fourth port to an end other than the predetermined end of the substrate.
 上記目的を達成するために本発明に係る調心システムは、上記の光回路と、光回路の入力導波路および出力導波路とそれぞれ接続される光ファイバを備えた被接続部品と、調整用導波路の対向位置に配置され、調整用導波路から出射された調整用の光信号の強度を計測する測定手段と、計測した強度が最大となるように、光回路と被接続部品との相対位置を制御する制御手段と、を備える。そして、光回路と被接続部品との調心時に、スイッチは第1の状態に設定され、被接続部品は第3ポートから伸びる出力導波路に調心用の光信号を出力する。 In order to achieve the above object, an alignment system according to the present invention includes the above-described optical circuit, a connected component having an optical fiber connected to each of an input waveguide and an output waveguide of the optical circuit, and an adjustment guide. Measuring means for measuring the intensity of the optical signal for adjustment emitted from the optical waveguide for adjustment arranged at the opposite position of the waveguide, and the relative position of the optical circuit and the connected component so that the measured intensity is maximized And control means for controlling. At the time of alignment between the optical circuit and the connected component, the switch is set to the first state, and the connected component outputs an alignment optical signal to the output waveguide extending from the third port.
 上記目的を達成するために本発明に係る光回路の調心方法は、第1の状態の時は第1ポートを第2ポートに、第4ポートを第3ポートに接続し、第2の状態の時は第1ポートを第3ポートに、第4ポートを第2ポートに接続するスイッチを備えた光回路の基板の所定の端部に被接続部品を近づけ、第1の状態において、第3ポートから伸びる出力導波路から光信号を入力し、第4ポートから基板の所定の端部以外の端部まで伸びる調整用導波路から出力される光信号の強度を計測し、計測した強度が最大となる位置を調心位置とする。 To achieve the above object, the optical circuit alignment method according to the present invention is such that, in the first state, the first port is connected to the second port, the fourth port is connected to the third port, and the second state In this case, the connected component is brought close to a predetermined end of the substrate of the optical circuit having a switch for connecting the first port to the third port and the fourth port to the second port. The optical signal is input from the output waveguide extending from the port, and the intensity of the optical signal output from the adjustment waveguide extending from the fourth port to the end other than the predetermined end of the substrate is measured. The position that becomes is the alignment position.
 本発明に係る光回路、調心システムおよび光回路の調心方法は、入出力側導波路を同一の被接続部品と所定の端面側で接続する場合に、測定系や被接続部品に調心専用の構成を設けることなく、光回路と被接続部品との調心を行うことができる。 The optical circuit, the alignment system, and the alignment method of the optical circuit according to the present invention align the measurement system and the connected component when the input / output side waveguide is connected to the same connected component on the predetermined end face side. The alignment between the optical circuit and the connected component can be performed without providing a dedicated configuration.
本発明の第1の実施形態に係る光回路10の構成図である。1 is a configuration diagram of an optical circuit 10 according to a first embodiment of the present invention. 本発明の第1の実施形態に係る調心システム20の構成図である。It is a lineblock diagram of alignment system 20 concerning a 1st embodiment of the present invention. 本発明の第1の実施形態に係る光回路30の構成図である。1 is a configuration diagram of an optical circuit 30 according to a first embodiment of the present invention. 本発明の第1の実施形態の変形例に係る光回路40の構成図であるIt is a block diagram of the optical circuit 40 which concerns on the modification of the 1st Embodiment of this invention. 本発明の第1の実施形態の変形例に係る光回路50の構成図であるIt is a block diagram of the optical circuit 50 which concerns on the modification of the 1st Embodiment of this invention. 本発明の第1の実施形態の別の変形例に係る光回路60の構成図である。It is a block diagram of the optical circuit 60 which concerns on another modification of the 1st Embodiment of this invention. 本発明の第1の実施形態の別の変形例に係る光回路70の構成図である。It is a block diagram of the optical circuit 70 which concerns on another modification of the 1st Embodiment of this invention. 本発明の第1の実施形態の別の変形例に係る光回路80の構成図である。It is a block diagram of the optical circuit 80 which concerns on another modification of the 1st Embodiment of this invention. 本発明の第2の実施形態に係る光回路100が光ファイバアレイ200と接続されている状態の構成図である。It is a block diagram of the state in which the optical circuit 100 which concerns on the 2nd Embodiment of this invention is connected with the optical fiber array. 本発明の第2の実施形態に係る光スイッチ素子110aの斜視図である。It is a perspective view of the optical switch element 110a which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態の変形例に係る光回路300が光ファイバアレイ400と接続されている状態の構成図である。It is a block diagram of the state in which the optical circuit 300 which concerns on the modification of the 2nd Embodiment of this invention is connected with the optical fiber array 400. 本発明の第3の実施形態に係る光回路500が光ファイバアレイ600と接続されている状態の構成図である。It is a block diagram of the state in which the optical circuit 500 which concerns on the 3rd Embodiment of this invention is connected with the optical fiber array 600.
 (第1の実施形態)
 本発明の第1の実施形態に係る光回路について説明する。本実施形態に係る光回路の構成図を図1Aに示す。図1Aにおいて、本実施形態に係る光回路10は、基板11、スイッチ12、入力導波路13、2本の出力導波路14a、14bおよび調整用導波路15を備える。
(First embodiment)
An optical circuit according to the first embodiment of the present invention will be described. FIG. 1A shows a configuration diagram of an optical circuit according to the present embodiment. 1A, an optical circuit 10 according to the present embodiment includes a substrate 11, a switch 12, an input waveguide 13, two output waveguides 14a and 14b, and an adjustment waveguide 15.
 基板11の上に、スイッチ12、入力導波路13、2本の出力導波路14a、14bおよび調整用導波路15が配置されている。また、入力導波路13および2本の出力導波路14a、14bはそれぞれ、スイッチ12から基板11の同一の端11aまで伸びている。 On the substrate 11, a switch 12, an input waveguide 13, two output waveguides 14a and 14b, and an adjustment waveguide 15 are arranged. The input waveguide 13 and the two output waveguides 14 a and 14 b extend from the switch 12 to the same end 11 a of the substrate 11.
 スイッチ12は、4つのポート12a~12dおよび図示しない2つの光路を備え、一方の光路の近傍に図示しないスイッチ駆動部を配置し、このスイッチ駆動部に電圧印加、キャリア注入、または、熱源投入等することにより、光路を切り替える。ここで、スイッチ駆動部に電圧印加、キャリア注入または熱源投入を行っていない状態を第1の状態、スイッチ駆動部に電圧印加等を行った状態を第2の状態とする。なお、所定の閾値を設定し、印加する電圧値等が閾値より小さい状態を第1の状態、閾値より大きい状態を第2の状態とすることもできる。スイッチ12として、例えば、マッハ・ツェンダ型素子を適用することができる。 
 本実施形態に係るスイッチ12は、第1の状態の時、第1ポート12aを第2ポート12bに、第4ポート12dを第3ポート12cに接続し、第2の状態の時、第1ポート12aを第3ポート12cに、第4ポート12dを第2ポート12bに接続する。スイッチ12は、図示しない被接続部品との調心作業時には第1の状態に設定される。スイッチ駆動部に電圧印加等を行っていない第1の状態で調芯作業を行うことにより、調心作業を効率よく行うことができる。
The switch 12 includes four ports 12a to 12d and two optical paths (not shown), and a switch driving unit (not shown) is arranged in the vicinity of one of the optical paths, and voltage application, carrier injection, or heat source input is performed on the switch driving unit. Thus, the optical path is switched. Here, a state in which voltage application, carrier injection, or heat source input is not performed on the switch drive unit is a first state, and a state in which voltage application is performed on the switch drive unit is a second state. Note that a predetermined threshold value is set, and a state where the applied voltage value or the like is smaller than the threshold value may be the first state, and a state larger than the threshold value may be the second state. As the switch 12, for example, a Mach-Zehnder type element can be applied.
The switch 12 according to the present embodiment connects the first port 12a to the second port 12b and the fourth port 12d to the third port 12c in the first state, and the first port in the second state. 12a is connected to the third port 12c, and the fourth port 12d is connected to the second port 12b. The switch 12 is set to the first state at the time of alignment work with a connected part (not shown). By performing the alignment operation in the first state in which no voltage is applied to the switch drive unit, the alignment operation can be performed efficiently.
 入力導波路13は、スイッチ12の第1ポート12aから基板11の端部11aまで伸び、図示しない被接続部品から入射した光信号を、スイッチ12の第1ポート12aへ出射する。 The input waveguide 13 extends from the first port 12a of the switch 12 to the end 11a of the substrate 11, and emits an optical signal incident from a connected component (not shown) to the first port 12a of the switch 12.
 出力導波路14a、14bはそれぞれ、スイッチ12の第2および第3ポート12b、12cから基板11の端部11aまで伸びる。出力導波路14aは、第1の状態の時、スイッチ12を介して図示しない被接続部品から入射した光信号を被接続部品へ出射する。一方、出力導波路14bは、第2の状態の時、スイッチ12を介して被接続部品から入射した光信号を被接続部品へ出射する。さらに、出力導波路14bは、被接続部品との調心作業時、被接続部品から入射した光信号をスイッチ12へ出射する。 The output waveguides 14a and 14b extend from the second and third ports 12b and 12c of the switch 12 to the end 11a of the substrate 11, respectively. When the output waveguide 14a is in the first state, the output waveguide 14a emits an optical signal incident from a connected component (not shown) via the switch 12 to the connected component. On the other hand, in the second state, the output waveguide 14b emits an optical signal incident from the connected component via the switch 12 to the connected component. Further, the output waveguide 14b emits an optical signal incident from the connected component to the switch 12 during the alignment operation with the connected component.
 調整用導波路15は、スイッチ12の第4ポート12dから、基板11の端部11aと対向する端部11bまで伸び、被接続部品との調心作業時にスイッチ12を介して被接続部品から出射された光信号を、基板11の端部11b側から出射する。 The adjustment waveguide 15 extends from the fourth port 12d of the switch 12 to the end portion 11b facing the end portion 11a of the substrate 11, and exits from the connected component via the switch 12 during alignment with the connected component. The optical signal thus emitted is emitted from the end 11 b side of the substrate 11.
 上記のように構成された光回路を含む調心システムについて説明する。本実施形態に係る調心システムの構成図を図1Bに示す。図1Bにおいて、調心システム20は、光回路21、被接続部品22、測定手段23および制御手段24を備える。 The alignment system including the optical circuit configured as described above will be described. The block diagram of the alignment system which concerns on this embodiment is shown to FIG. 1B. In FIG. 1B, the alignment system 20 includes an optical circuit 21, a connected component 22, a measurement unit 23, and a control unit 24.
 図1Bにおいて、被接続部品22は光回路21の基板25の端部25a側に配置され、測定手段23は基板25の端部25c側の調整用導波路29と対向する位置に配置されている。制御手段24は、被接続部品22の下方に配置され、被接続部品22を上下左右方向および回転方向に位置決めする。 In FIG. 1B, the connected component 22 is disposed on the end 25 a side of the substrate 25 of the optical circuit 21, and the measuring means 23 is disposed at a position facing the adjustment waveguide 29 on the end 25 c side of the substrate 25. . The control means 24 is disposed below the connected component 22 and positions the connected component 22 in the up / down / left / right direction and the rotation direction.
 本実施形態に係る調芯システム20において、光回路21と被接続部品22との調心作業を行う場合、先ず、光回路21を第1の状態に設定する。その後、被接続部品22を光回路21の端部25aへ当接させ、光回路21の入力導波路27および出力導波路28a、28bと、被接続部品22の光ファイバ22a~22cと、を結合させる。その状態で、被接続部品22の光ファイバ22bから光回路21の出力導波路28bへ調心用の光信号を出射する。 In the alignment system 20 according to this embodiment, when performing alignment work between the optical circuit 21 and the connected component 22, first, the optical circuit 21 is set to the first state. Thereafter, the connected component 22 is brought into contact with the end 25a of the optical circuit 21, and the input waveguide 27 and the output waveguides 28a and 28b of the optical circuit 21 and the optical fibers 22a to 22c of the connected component 22 are coupled. Let In this state, an alignment optical signal is emitted from the optical fiber 22 b of the connected component 22 to the output waveguide 28 b of the optical circuit 21.
 出力導波路28bへ入射した調心用の光信号は、スイッチ26の第3ポート26c、第4ポート26d、調整用導波路29を介して、基板25の端部25c側から外部へ出射される。測定手段23は、基板25の端部25cにおいて、調整用導波路29から出射された調心用の光信号の強度を計測し、計測結果を制御手段24へ出力する。 The alignment optical signal incident on the output waveguide 28b is emitted from the end 25c side of the substrate 25 to the outside through the third port 26c, the fourth port 26d, and the adjustment waveguide 29 of the switch 26. . The measuring means 23 measures the intensity of the alignment optical signal emitted from the adjustment waveguide 29 at the end 25 c of the substrate 25 and outputs the measurement result to the control means 24.
 制御手段24は、測定手段23から入力した測定結果に基づいて、光回路21と被接続部品22との相対位置を調整する。本実施形態において、制御手段24は測定手段23から入力した測定結果が最大値となるように被接続部品22の上下左右方向および回転方向の位置を調整する。そして、測定結果が最大値となる位置で、光回路21と被接続部品22とを接着・固定する。なお、光回路21および被接続部品22の接着・固定後に、光回路21の調整用導波路29から不要な光信号が入射しないように、調整用導波路29の端部25c側の端面を処理することが望ましい。 The control unit 24 adjusts the relative position between the optical circuit 21 and the connected component 22 based on the measurement result input from the measurement unit 23. In the present embodiment, the control unit 24 adjusts the position of the connected component 22 in the up / down / left / right direction and the rotation direction so that the measurement result input from the measurement unit 23 becomes the maximum value. Then, the optical circuit 21 and the connected component 22 are bonded and fixed at the position where the measurement result becomes the maximum value. The end face on the end 25c side of the adjustment waveguide 29 is processed so that unnecessary optical signals do not enter from the adjustment waveguide 29 of the optical circuit 21 after the optical circuit 21 and the connected component 22 are bonded and fixed. It is desirable to do.
 調芯済みの光回路21および被接続部品22は、通常動作時において、被接続部品22の光ファイバ22cから光回路21の入力導波路27に光信号が入射する。入力導波路27に入射した光信号は、スイッチ21の状態に応じて出力導波路28aまたは28bのどちらかへ出射され、被接続部品22の光ファイバ22a、22bのどちらかに入射する。 In the optical circuit 21 and the connected component 22 that have been aligned, an optical signal enters the input waveguide 27 of the optical circuit 21 from the optical fiber 22c of the connected component 22 during normal operation. The optical signal that has entered the input waveguide 27 is output to either the output waveguide 28 a or 28 b depending on the state of the switch 21, and enters one of the optical fibers 22 a and 22 b of the connected component 22.
 以上のように、本実施形態に係る光回路10および調心システム20は、光回路の入力導波路および出力導波路を、被接続部品と同一の端面側で接続する場合に、測定系や被接続部品に調心専用の構成を設けることなく、光回路と被接続部品との調心を行うことができる。 As described above, when the optical circuit 10 and the alignment system 20 according to the present embodiment connect the input waveguide and the output waveguide of the optical circuit on the same end surface side as the connected component, Alignment of the optical circuit and the connected component can be performed without providing a dedicated configuration for the connecting component.
 すなわち、本実施形態に係る光回路10および調心システム20において、調整用導波路を被接続部品が配置されている端部とは別の端部に伸ばすことにより、最適位置においてそのまま光回路および被接続部品を接着・固定することができる。また、調心作業には通常動作時に使用する光ファイバを利用することから、被接続部品に調心作業用の光ファイバを配置する必要がないと共に、調整用の光信号として特殊な波長を有する光信号を用いる必要がない。 That is, in the optical circuit 10 and the alignment system 20 according to the present embodiment, the adjustment waveguide is extended to an end different from the end where the connected component is arranged, so that the optical circuit and Connected parts can be bonded and fixed. In addition, since the optical fiber used during normal operation is used for alignment work, it is not necessary to arrange the optical fiber for alignment work in the connected parts, and it has a special wavelength as an optical signal for adjustment There is no need to use an optical signal.
 ここで、上述の光回路を複数組み合わせることもできる。例えば、上述の光回路を2つ組み合わせた光回路の構成図を図1Cに示す。図1Cにおいて、光回路30は、基板31、スイッチ32a、32b、入力導波路33a、33b、出力導波路34a~34dおよび調整用導波路35a、35bを備える。 Here, a plurality of the optical circuits described above can be combined. For example, FIG. 1C shows a configuration diagram of an optical circuit in which two optical circuits described above are combined. 1C, the optical circuit 30 includes a substrate 31, switches 32a and 32b, input waveguides 33a and 33b, output waveguides 34a to 34d, and adjustment waveguides 35a and 35b.
 上記の光回路30を図示しない被接続部品と端面31aにおいて調心する場合、スイッチ32a、32bを第1の状態に設定した後、出力導波路34b、34cから調心用の光信号を入射させる。出力導波路34b、34cから入射した調整用の光信号は、スイッチ32a、32bを介してそれぞれ調整用導波路35a、35bに出射され、基板の端部31b側から出射される。そして、調整用導波路35a、35bから出射された光信号の強度を端部31b側に配置した図示しない測定器で計測し、調整用の光信号の強度が最大となるように光回路30を調心する。 When aligning the above-described optical circuit 30 at the connected part (not shown) and the end face 31a, after setting the switches 32a and 32b to the first state, the aligning optical signal is incident from the output waveguides 34b and 34c. . The adjustment optical signals incident from the output waveguides 34b and 34c are emitted to the adjustment waveguides 35a and 35b through the switches 32a and 32b, respectively, and are emitted from the end portion 31b side of the substrate. Then, the intensity of the optical signal emitted from the adjustment waveguides 35a and 35b is measured by a measuring device (not shown) arranged on the end 31b side, and the optical circuit 30 is adjusted so that the intensity of the adjustment optical signal is maximized. Align.
 そして、調芯済みの光回路30は、通常動作時に、図示しない被接続部品から入力導波路33a、33bに光信号が入射する。入力導波路33a、33bに入射した光信号は、スイッチ32a、32bに入射し、スイッチ32a、32bの状態に応じて出力導波路34a、34bのどちらか一方、および、出力導波路34c、34dのどちらか一方に出射され、図示しない被接続部品の光ファイバへ入射する。 In the aligned optical circuit 30, an optical signal enters the input waveguides 33a and 33b from a connected component (not shown) during normal operation. The optical signal that has entered the input waveguides 33a and 33b is incident on the switches 32a and 32b, and either one of the output waveguides 34a and 34b or the output waveguides 34c and 34d depending on the state of the switches 32a and 32b. The light is emitted to either one and enters an optical fiber of a connected component (not shown).
 (第1の実施形態の変形例)
 第1の実施形態の変形例について説明する。先ず、第1の実施形態の第1の変形例として、第1の実施形態で説明した図1Aの光回路10において、出力導波路14a、14bの後段にそれぞれ、第2のスイッチを配置する場合について説明する。出力導波路14a、14bの後段にそれぞれ第2のスイッチを配置した光回路の構成図を図2Aに示す。
(Modification of the first embodiment)
A modification of the first embodiment will be described. First, as a first modification of the first embodiment, in the optical circuit 10 of FIG. 1A described in the first embodiment, a second switch is disposed at each stage subsequent to the output waveguides 14a and 14b. Will be described. FIG. 2A shows a configuration diagram of an optical circuit in which a second switch is disposed in the subsequent stage of the output waveguides 14a and 14b.
 図2Aの光回路40は、基板41、第1のスイッチ42、第2のスイッチ43a、43b、入力導波路44、出力導波路45a~45d、接続用導波路46a、46bおよび調整用導波路47を備える。第1のスイッチ42は、図1Aに示したスイッチ10と同様に構成されている。第2のスイッチ43a、43bは、スイッチ10の第4ポート12dを終端することにより形成されている。接続用導波路46a、46bは、第1のスイッチ42と第2のスイッチ43a、43bとをそれぞれ接続する。 2A includes a substrate 41, a first switch 42, second switches 43a and 43b, an input waveguide 44, output waveguides 45a to 45d, connection waveguides 46a and 46b, and an adjustment waveguide 47. Is provided. The first switch 42 is configured in the same manner as the switch 10 shown in FIG. 1A. The second switches 43 a and 43 b are formed by terminating the fourth port 12 d of the switch 10. The connection waveguides 46a and 46b connect the first switch 42 and the second switches 43a and 43b, respectively.
 光回路40を図示しない被接続部品と調心する場合、第1のスイッチ42および第2のスイッチ43a、43bを第1の状態に設定した後、出力導波路45dへ調心用の光信号を出射する。そして、出力導波路45dに入射した調整用の光信号は、第2のスイッチ43bに入射し、第2のスイッチ43bが第1の状態に設定されていることから、接続用導波路46bへ出射される。 When aligning the optical circuit 40 with a connected component (not shown), the first switch 42 and the second switches 43a and 43b are set to the first state, and then an optical signal for alignment is sent to the output waveguide 45d. Exit. Then, the adjustment optical signal incident on the output waveguide 45d is incident on the second switch 43b, and is emitted to the connection waveguide 46b because the second switch 43b is set to the first state. Is done.
 接続用導波路46bに入射した調整用の光信号は、第1のスイッチ42において調整用導波路47側へ出射され、基板41の端部41bから出射される。そして、端部41b側において調整用導波路47から出射された調整用の光信号の強度を計測し、強度が最大となるよう位置で、光回路40と被接続部品とを接着・固定する。 The adjustment optical signal incident on the connection waveguide 46 b is emitted from the first switch 42 toward the adjustment waveguide 47, and is emitted from the end 41 b of the substrate 41. Then, the intensity of the adjustment optical signal emitted from the adjustment waveguide 47 is measured on the end 41b side, and the optical circuit 40 and the connected component are bonded and fixed at a position where the intensity becomes maximum.
 従って、本実施形態に係る光回路40は、光回路40の入力導波路および出力導波路を、図示しない被接続部品と同一の端面側で接続する場合に、測定系や被接続部品に調心専用の構成を設けることなく、光回路40と被接続部品との調心を行うことができる。 Therefore, the optical circuit 40 according to the present embodiment aligns the measurement system and the connected component when the input waveguide and the output waveguide of the optical circuit 40 are connected on the same end face side as the connected component (not shown). The alignment of the optical circuit 40 and the connected component can be performed without providing a dedicated configuration.
 そして、調心済みの光回路40は、通常動作時に、図示しない被接続部品の光ファイバから光回路40の入力導波路44に光信号が入射する。入力導波路44に入射した光信号は、第1のスイッチ42に入射し、第1のスイッチ42の状態に応じて接続用導波路46a、46bのどちらかへ出射され、第2のスイッチ43a、43bのどちらかに入射する。さらに、第2のスイッチ43a、43bのどちらかに入射した光信号は、第2のスイッチ43a、43bの状態に応じて、出力導波路45a~45dのいずれかに出射され、図示しない被接続部品の光ファイバに入射する。 In the aligned optical circuit 40, an optical signal enters the input waveguide 44 of the optical circuit 40 from an optical fiber of a connected component (not shown) during normal operation. The optical signal that has entered the input waveguide 44 enters the first switch 42, is output to one of the connection waveguides 46a and 46b depending on the state of the first switch 42, and the second switch 43a, It is incident on either of 43b. Further, the optical signal incident on either of the second switches 43a and 43b is emitted to one of the output waveguides 45a to 45d in accordance with the state of the second switches 43a and 43b, and is connected to a not-shown component. Is incident on the optical fiber.
 ここで、上記の光回路40では、第2のスイッチ43a、43bの第4ポートを終端処理したが、終端処理する代わりに、第2のスイッチ43a、43bの第4ポートから端部41a以外の端部まで伸びる調整用導波路を追加することもできる。追加した調整用導波路47a、47bの一例を図2Aに点線で示す。追加した調整用導波路47a、47bを用いて調心する場合、光回路40の出力導波路45b、45cから調整用の光信号を入射する。3本の調整用導波路47、47a、47bから出射された調整用の光信号を用いて調心することにより、結合効率のばらつきが低減され、より精度の高い調心を行うことができる。 Here, in the optical circuit 40 described above, the fourth ports of the second switches 43a and 43b are terminated. Instead of terminating, the fourth ports of the second switches 43a and 43b are connected to other than the end portion 41a. An adjustment waveguide extending to the end can also be added. An example of the added adjustment waveguides 47a and 47b is shown by a dotted line in FIG. 2A. When alignment is performed using the added adjustment waveguides 47 a and 47 b, adjustment optical signals are incident from the output waveguides 45 b and 45 c of the optical circuit 40. By performing alignment using the adjustment optical signals emitted from the three adjustment waveguides 47, 47a, and 47b, variations in coupling efficiency are reduced, and alignment with higher accuracy can be performed.
 ここで、上述の光回路40の出力導波路45a~45dの後段に、さらに第3のスイッチを配置することもできる。光スイッチを3段に配置した場合の光回路50の構成図を図2Bに示す。また、追加することが可能な調整用導波路59a~59dの一例を、図2Bに点線で示す。図2Bに示した光回路50の詳細動作については、第2の実施形態で詳細に述べる。 Here, a third switch may be further arranged in the subsequent stage of the output waveguides 45a to 45d of the optical circuit 40 described above. FIG. 2B shows a configuration diagram of the optical circuit 50 when the optical switches are arranged in three stages. An example of the adjustment waveguides 59a to 59d that can be added is shown by a dotted line in FIG. 2B. Detailed operation of the optical circuit 50 shown in FIG. 2B will be described in detail in the second embodiment.
 次に、第1の実施形態の第2の変形例として、第1の実施形態で説明した図1Aの光回路10において、入力導波路13の前段に第2のスイッチを配置する場合について説明する。入力導波路13の前段に第2のスイッチを配置した光回路の構成図を図3Aに示す。図3Aの光回路60は、図1Cの光回路30の入力導波路33a、33bの前段に第2の光スイッチ63を追加した構成となっている。 Next, as a second modification of the first embodiment, a case will be described in which the second switch is arranged before the input waveguide 13 in the optical circuit 10 of FIG. 1A described in the first embodiment. . FIG. 3A shows a configuration diagram of an optical circuit in which a second switch is arranged in front of the input waveguide 13. The optical circuit 60 in FIG. 3A has a configuration in which a second optical switch 63 is added before the input waveguides 33a and 33b of the optical circuit 30 in FIG. 1C.
 図3Aにおいて、本実施形態に係る光回路60は、基板61、第1のスイッチ62a、62b、第2のスイッチ63、入力導波路64、出力導波路65a~65d、接続用導波路66a、66bおよび調整用導波路67a、67bを備える。 3A, an optical circuit 60 according to this embodiment includes a substrate 61, first switches 62a and 62b, a second switch 63, an input waveguide 64, output waveguides 65a to 65d, and connection waveguides 66a and 66b. And adjustment waveguides 67a and 67b.
 光回路60を図示しない被接続部品と調心する場合、第1のスイッチ62a、62bおよび第2のスイッチ63を第1の状態に設定した後、出力導波路65b、65cからそれぞれ調心用の光信号を入射させる。出力導波路65bから入射した調整用の光信号は、第1のスイッチ62aに入射し、第1のスイッチ62aが第1の状態に設定されていることから、調整用導波路67a側へ出射される。一方、出力導波路65bから入射した調整用の光信号は調整用導波路67b側へ出射される。 When aligning the optical circuit 60 with a connected part (not shown), the first switches 62a and 62b and the second switch 63 are set to the first state, and then are aligned from the output waveguides 65b and 65c, respectively. An optical signal is incident. The adjustment optical signal incident from the output waveguide 65b is incident on the first switch 62a, and is emitted to the adjustment waveguide 67a side because the first switch 62a is set to the first state. The On the other hand, the adjustment optical signal incident from the output waveguide 65b is emitted to the adjustment waveguide 67b side.
 そして、調整用導波路67a、67bから出射された調整用の光信号の強度を、図示しない計測手段によって計測し、調整用導波路67a、67bから出射された調整用の光信号の強度の合計が最大となるように、光回路60を位置決めする。 Then, the intensity of the adjustment optical signal emitted from the adjustment waveguides 67a and 67b is measured by a measuring unit (not shown), and the total intensity of the adjustment optical signals emitted from the adjustment waveguides 67a and 67b is measured. The optical circuit 60 is positioned so that is maximized.
 従って、測定系や被接続部品に調心専用の構成を設けることなく光回路60と被接続部品とを調心でき、光回路60と被接続部品とを基板61の所定の端面61a側で接続することができる。 Therefore, it is possible to align the optical circuit 60 and the connected component without providing a dedicated configuration for the measuring system and the connected component, and the optical circuit 60 and the connected component are connected to the predetermined end surface 61a side of the substrate 61. can do.
 そして、調心済みの光回路60は、通常動作時に、被接続部品の光ファイバから光回路60の入力導波路64に光信号が入射する。そして、入力導波路64に入射した光信号は、第2のスイッチ63に入射し、第2のスイッチ63の状態に応じて接続用導波路66aまたは66bのどちらかへ出射され、第1のスイッチ62a、62bのどちらかに入射する。第1のスイッチ62a、62bのどちらかに入射した光信号は、第1のスイッチ62a、62bの状態に応じて、出力導波路65a~65dのいずれかに出射され、被接続部品の光ファイバに入射する。 In the aligned optical circuit 60, an optical signal enters the input waveguide 64 of the optical circuit 60 from the optical fiber of the connected component during normal operation. Then, the optical signal incident on the input waveguide 64 is incident on the second switch 63 and is emitted to either the connection waveguide 66a or 66b depending on the state of the second switch 63. Incident on either 62a or 62b. The optical signal incident on either of the first switches 62a and 62b is emitted to one of the output waveguides 65a to 65d in accordance with the state of the first switches 62a and 62b, and enters the optical fiber of the connected component. Incident.
 また、上述の光回路60を2つ組み合わせることもできる。図3Bに、上述の光回路60を2つ組み合わせ、第1のスイッチ72a~72dを入れ子に配置した場合の光回路70の構成図を示す。図3Bにおいて、本実施形態に係る光回路70は、基板71、第1のスイッチ72a~72d、第2のスイッチ73a、73b、入力導波路74a、74b、出力導波路75a~75h、接続用導波路76a~76dおよび調整用導波路77a、77bを備える。 Also, two optical circuits 60 described above can be combined. FIG. 3B shows a configuration diagram of the optical circuit 70 in which two optical circuits 60 are combined and the first switches 72a to 72d are nested. 3B, an optical circuit 70 according to the present embodiment includes a substrate 71, first switches 72a to 72d, second switches 73a and 73b, input waveguides 74a and 74b, output waveguides 75a to 75h, and connection guides. Waveguides 76a to 76d and adjustment waveguides 77a and 77b are provided.
 光回路70を図示しない被接続部品と調心する場合、第1のスイッチ72a~72dおよび第2のスイッチ73a、73bを第1の状態に設定した後、出力導波路75b、75gへそれぞれ調心用の光信号を出射する。出力導波路75bに入射した調整用の光信号は、第1のスイッチ72aおよび調整用導波路77aを介して端部71bから出射される。一方、出力導波路75gに入射した調整用の光信号は、第1のスイッチ72dおよび調整用導波路77bを介して端部71bから出射される。そして、調整用導波路77a、77bから出射された調整用の光信号の強度の合計が最大となるように、光回路70を位置決めする。 When aligning the optical circuit 70 with a connected component (not shown), the first switches 72a to 72d and the second switches 73a and 73b are set to the first state, and then aligned to the output waveguides 75b and 75g, respectively. An optical signal for use is emitted. The adjustment optical signal incident on the output waveguide 75b is emitted from the end 71b via the first switch 72a and the adjustment waveguide 77a. On the other hand, the adjustment optical signal incident on the output waveguide 75g is emitted from the end portion 71b via the first switch 72d and the adjustment waveguide 77b. Then, the optical circuit 70 is positioned so that the total intensity of the adjustment optical signals emitted from the adjustment waveguides 77a and 77b is maximized.
 従って、入力導波路74a、74bおよび出力導波路75a~75hを基板71の所定の端面71a側に配置した光回路70において、測定系や被接続部品に調心専用の構成を設けることなく、光回路70と図示しない被接続部品との調心を行うことができる。 Therefore, in the optical circuit 70 in which the input waveguides 74a and 74b and the output waveguides 75a to 75h are arranged on the predetermined end surface 71a side of the substrate 71, the optical system 70 is not provided with a configuration dedicated for alignment in the measurement system or the connected component. Alignment between the circuit 70 and a connected component (not shown) can be performed.
 ここで、追加することが可能な調整用導波路77c、77dの一例を図3Bに点線で示す。追加した調整用導波路77c、77dを用いて調心作業を実施する場合は光回路70の出力導波路75d、75eから調整用の光信号を入射する。 Here, an example of the adjustment waveguides 77c and 77d that can be added is shown by a dotted line in FIG. 3B. When the alignment work is performed using the added adjustment waveguides 77 c and 77 d, the adjustment optical signal is incident from the output waveguides 75 d and 75 e of the optical circuit 70.
 調心済みの光回路70は、通常動作時に、被接続部品の光ファイバから光回路70の入力導波路74a、74bに光信号が入射する。入力導波路74aに入射した光信号は、第2のスイッチ73aに入射し、第2のスイッチ73aの状態に応じて接続用導波路76aまたは76bのどちらかへ出射され、第1のスイッチ72a、72cのどちらかに入射する。そして、第1のスイッチ72a、72cのどちらかに入射した光信号は、スイッチの状態に応じて出力導波路75a、75b、75e、75fのいずれかに入射し、被接続部品の光ファイバへ出射される。同様に、入力導波路74bに入射した光信号は、出力導波路75c、75d、75g、75hのいずれかに入射し、被接続部品の光ファイバへ出射される。 In the aligned optical circuit 70, an optical signal enters the input waveguides 74a and 74b of the optical circuit 70 from the optical fiber of the connected component during normal operation. The optical signal incident on the input waveguide 74a enters the second switch 73a, and is output to either the connection waveguide 76a or 76b depending on the state of the second switch 73a. It is incident on either one of 72c. Then, an optical signal that has entered one of the first switches 72a and 72c enters one of the output waveguides 75a, 75b, 75e, and 75f depending on the state of the switch, and is emitted to the optical fiber of the connected component. Is done. Similarly, the optical signal incident on the input waveguide 74b enters one of the output waveguides 75c, 75d, 75g, and 75h, and is emitted to the optical fiber of the connected component.
 ここで、上述の光回路70の出力導波路75a~75hの後段に光スプリッタを配置し、入力導波路74a、74bから入射した光信号を出射端で切替えることもできる。出力導波路75a~75hの後段に光スプリッタを配置した場合の光回路の構成図を図3Cに示す。 Here, it is also possible to arrange an optical splitter downstream of the output waveguides 75a to 75h of the optical circuit 70 described above, and to switch the optical signal incident from the input waveguides 74a and 74b at the output end. FIG. 3C shows a configuration diagram of an optical circuit in the case where an optical splitter is arranged at the subsequent stage of the output waveguides 75a to 75h.
 図3Cにおいて、本実施形態に係る光回路80は、基板81、第1のスイッチ82a~82d、第2のスイッチ83a、83b、入力導波路84a、84b、接続用導波路85a~85h、86a~86d、調整用導波路87a、87b、光スプリッタ88a~88dおよび出力導波路89a~89dを備える。なお、追加することが可能な調整用導波路87c、87dの一例を図3Cに点線で示す。 3C, an optical circuit 80 according to the present embodiment includes a substrate 81, first switches 82a to 82d, second switches 83a and 83b, input waveguides 84a and 84b, connection waveguides 85a to 85h, and 86a to 86a. 86d, adjustment waveguides 87a and 87b, optical splitters 88a to 88d, and output waveguides 89a to 89d. An example of the adjustment waveguides 87c and 87d that can be added is indicated by a dotted line in FIG. 3C.
 光スプリッタ88a~88dはそれぞれ、2つの入力ポートと1つの出力ポートとを備える。光スプリッタ88a~88dは、2つの入力ポートの一方を選択し、選択した入力ポートから入射した光信号を出力ポートへ出射する。そして、出力ポートから出射された光信号は、出力導波路89a~89dから端部81a側に出射される。また、本実施形態に係る光スプリッタ88a~88dは、2つの入力ポートが連動して動作する。例えば、光スプリッタ88aが第1の入力ポートを選択している場合、他の光スプリッタ88b~88dも第1の入力ポートを選択する。光スプリッタ88a~88dの入力ポートを交互に切り替えることにより、入力導波路84a、84bから入射した光信号を出力導波路89a~89dから交互に出射させることができる。光スプリッタを備えた光回路の詳細動作は、第3の実施形態で説明する。 Each of the optical splitters 88a to 88d includes two input ports and one output port. The optical splitters 88a to 88d select one of the two input ports and emit an optical signal incident from the selected input port to the output port. Then, the optical signal emitted from the output port is emitted from the output waveguides 89a to 89d to the end portion 81a side. In the optical splitters 88a to 88d according to the present embodiment, the two input ports operate in conjunction with each other. For example, when the optical splitter 88a selects the first input port, the other optical splitters 88b to 88d also select the first input port. By alternately switching the input ports of the optical splitters 88a to 88d, optical signals incident from the input waveguides 84a and 84b can be alternately emitted from the output waveguides 89a to 89d. Detailed operation of the optical circuit including the optical splitter will be described in a third embodiment.
 (第2の実施形態)
 第2の実施形態について説明する。本実施形態において、光回路として1×8光スイッチを適用する。本実施形態に係る光回路が光ファイバアレイと接続されている状態の構成図を図4に示す。
(Second Embodiment)
A second embodiment will be described. In this embodiment, a 1 × 8 optical switch is applied as the optical circuit. FIG. 4 shows a configuration diagram in a state where the optical circuit according to the present embodiment is connected to the optical fiber array.
 本実施形態に係る光回路100は、7個の光スイッチ素子110a~110d、120a、120b、130、入力光導波路140、8本の出力光導波路150a~150h、2本の調心用光導波路160、170、および、各光スイッチ素子を接続する6本の接続光導波路180a~180fを備える。各光導波路は、コアがシリコンで、クラッドが石英で形成されている。光ファイバアレイ200は、固定用ガラスブロック210および9本の光ファイバ220a~220iを備える。 The optical circuit 100 according to this embodiment includes seven optical switch elements 110a to 110d, 120a, 120b, and 130, an input optical waveguide 140, eight output optical waveguides 150a to 150h, and two alignment optical waveguides 160. , 170 and six connection optical waveguides 180a to 180f for connecting the optical switch elements. Each optical waveguide has a core made of silicon and a clad made of quartz. The optical fiber array 200 includes a fixing glass block 210 and nine optical fibers 220a to 220i.
 図4において、光回路100の端面101側に光ファイバアレイ200が配置され、光回路100の出力光導波路150a~150hおよび入力光導波路140と、光ファイバアレイ200の9本の光ファイバ220a~220iとが、固定用ガラスブロック210を介して接続されている。 In FIG. 4, an optical fiber array 200 is disposed on the end face 101 side of the optical circuit 100, the output optical waveguides 150 a to 150 h and the input optical waveguide 140 of the optical circuit 100, and the nine optical fibers 220 a to 220 i of the optical fiber array 200. Are connected via a fixing glass block 210.
 光回路100において、入力光導波路140および8本の出力光導波路150a~150hは、光ファイバアレイ200が配置されている端面101側に伸びている。一方、2本の調心用光導波路160、170は、端面101と反対側の、光ファイバアレイ200が配置されていない端面102側に伸びている。 In the optical circuit 100, the input optical waveguide 140 and the eight output optical waveguides 150a to 150h extend toward the end face 101 where the optical fiber array 200 is disposed. On the other hand, the two aligning optical waveguides 160 and 170 extend to the end surface 102 side opposite to the end surface 101 where the optical fiber array 200 is not disposed.
 光スイッチ素子110a~110d、120a、120b、130は、駆動状態に応じて光信号の出射方向が切り替わる。光スイッチ素子110a~110d、120a、120b、130として、2つの光路の干渉を利用して光強度を変化させるマッハ・ツェンダ型素子を適用することができる。本実施形態では、光スイッチ素子110a~110d、120a、120b、130を、ヒータを用いて加熱することで駆動する。 In the optical switch elements 110a to 110d, 120a, 120b, and 130, the emission direction of the optical signal is switched according to the driving state. As the optical switch elements 110a to 110d, 120a, 120b, and 130, Mach-Zehnder type elements that change the light intensity using interference between two optical paths can be applied. In the present embodiment, the optical switch elements 110a to 110d, 120a, 120b, and 130 are driven by being heated using a heater.
 光スイッチ素子110aについて詳細に説明する。光スイッチ素子110aの斜視図を図5に示す。光スイッチ素子110aは、シリコン基板111a上に、シリコンを用いてコア112aを、石英を用いてクラッド113aを形成することにより光導波路を構成している。光スイッチ素子110aは、対向する1組の端部の一方に2つの入力ポート114a、115aを、他方の端部に2つの出力ポート116a、117aが形成されている。そして、本実施形態に係る光スイッチ素子110aは、入力ポート114aが図4の出力光導波路150bに、入力ポート115aが出力光導波路150aに、出力ポート116aが接続光導波路180aに、出力ポート117aが調心用光導波路160に、それぞれ接続される。入力ポート114aから光信号が入力した場合、入力した光信号は、マッハ・ツェンダの二つのアームを経由して再び合流し、出力ポート116a、117aにおいて干渉する。また、光スイッチ素子110aの一方のアームの上方に一対の電極対118aが配置され、この電極対118aの間にヒータ119aが配置されている。 The optical switch element 110a will be described in detail. A perspective view of the optical switch element 110a is shown in FIG. The optical switch element 110a forms an optical waveguide by forming a core 112a using silicon and a clad 113a using quartz on a silicon substrate 111a. In the optical switch element 110a, two input ports 114a and 115a are formed at one of a pair of opposing ends, and two output ports 116a and 117a are formed at the other end. In the optical switch element 110a according to the present embodiment, the input port 114a is connected to the output optical waveguide 150b in FIG. 4, the input port 115a is connected to the output optical waveguide 150a, the output port 116a is connected to the connection optical waveguide 180a, and the output port 117a is connected. Each is connected to the aligning optical waveguide 160. When an optical signal is input from the input port 114a, the input optical signal is joined again via the two arms of Mach-Zehnder and interferes at the output ports 116a and 117a. Also, a pair of electrode pairs 118a is disposed above one arm of the optical switch element 110a, and a heater 119a is disposed between the electrode pairs 118a.
 光スイッチ素子110aの電極対118aに電圧を印加することにより、ヒータ119aに電流が流れ、ヒータ119aが発熱する。ヒータ119aが発熱し、直下の光導波路が所定の温度に維持されることにより、コア112aの屈折率が変化し、両アームの光路長が半波長分ずれる。従って、入力ポート114aから入力して2つのアームを経由して来た光信号は、出力ポート116aにおいて位相差が0となり、互いの光信号が強め合う。一方、入力ポート114aから入力して2つのアームを経由して来た光信号は、出力ポート117aにおいて位相差がπとなり、互いの光信号が打ち消し合う。すなわち、電極対118aに所定の電圧を印加した場合、入力ポート114aから入力した光信号は、出力ポート116aへ出力される。 By applying a voltage to the electrode pair 118a of the optical switch element 110a, a current flows through the heater 119a and the heater 119a generates heat. When the heater 119a generates heat and the optical waveguide directly below is maintained at a predetermined temperature, the refractive index of the core 112a changes, and the optical path lengths of both arms are shifted by a half wavelength. Therefore, the optical signal input from the input port 114a and passing through the two arms has a phase difference of 0 at the output port 116a, and the optical signals of each other are strengthened. On the other hand, the optical signal input from the input port 114a and passing through the two arms has a phase difference of π at the output port 117a, and the optical signals cancel each other. That is, when a predetermined voltage is applied to the electrode pair 118a, the optical signal input from the input port 114a is output to the output port 116a.
 一方、光スイッチ素子110aの電極対118aに電圧を印加しない場合は、光スイッチ素子110aの両アームの光路長は等しい。従って、入力ポート114aから入力して2つのアームを経由して来た光信号は、出力ポート116aにおいて位相差がπとなり、互いの光信号が打ち消し合う。一方、入力ポート114aから入力して2つのアームを経由して来た光信号は、出力ポート117aにおいて位相差が0となり、互いの光信号が強め合う。すなわち、電極対118aに電圧を印加しない場合、入力ポート114aから入力した光信号は、出力ポート117aへ出力される。なお、電極対118aに電圧を印加しない状態が請求項の第1の状態に対応し、電極対118aに電圧を印加した状態が第2の状態に対応する。 On the other hand, when no voltage is applied to the electrode pair 118a of the optical switch element 110a, the optical path lengths of both arms of the optical switch element 110a are equal. Therefore, the optical signal input from the input port 114a and passing through the two arms has a phase difference of π at the output port 116a, and the optical signals cancel each other. On the other hand, the optical signal input from the input port 114a and passing through the two arms has a phase difference of 0 at the output port 117a, and the optical signals of each other are strengthened. That is, when no voltage is applied to the electrode pair 118a, the optical signal input from the input port 114a is output to the output port 117a. The state in which no voltage is applied to the electrode pair 118a corresponds to the first state of the claims, and the state in which voltage is applied to the electrode pair 118a corresponds to the second state.
 光スイッチ素子130も光スイッチ素子110aと同様に形成されている。また、光スイッチ素子110aは2×2の光スイッチであるが、4つのポート114a、115a、116a、117aのうちいずれか1つのポートを終端することにより、1×2の光スイッチ素子110b~110d、120a、120bを形成することができる。 The optical switch element 130 is also formed in the same manner as the optical switch element 110a. Further, the optical switch element 110a is a 2 × 2 optical switch, but by terminating any one of the four ports 114a, 115a, 116a, and 117a, the 1 × 2 optical switch elements 110b to 110d are terminated. , 120a, 120b can be formed.
 次に、光回路100と光ファイバアレイ200との調心手順を、図4および図5を用いて説明する。光回路100の出力光導波路150a~150hおよび入力光導波路140と、光ファイバアレイ200の光ファイバ220a~220iと、の調心を行う場合、全ての光スイッチ素子の各電極対に電圧を印加しない状態(第1の状態)に設定した後、光ファイバアレイ200の光ファイバ220b、220hから調心用の光信号を出射する。そして、光ファイバアレイ200を光回路100の端面101に近づけ、光回路100の出力光導波路150a~150hおよび入力光導波路140と、光ファイバアレイ200の光ファイバ220a~220iと、を結合させる。 Next, the alignment procedure between the optical circuit 100 and the optical fiber array 200 will be described with reference to FIGS. When aligning the output optical waveguides 150a to 150h and the input optical waveguide 140 of the optical circuit 100 and the optical fibers 220a to 220i of the optical fiber array 200, no voltage is applied to each electrode pair of all the optical switch elements. After setting to the state (first state), alignment optical signals are emitted from the optical fibers 220b and 220h of the optical fiber array 200. Then, the optical fiber array 200 is brought close to the end face 101 of the optical circuit 100, and the output optical waveguides 150a to 150h and the input optical waveguide 140 of the optical circuit 100 and the optical fibers 220a to 220i of the optical fiber array 200 are coupled.
 光ファイバ220bと光導波路150bとが結合することにより、光ファイバ220bから出射された調心用の光信号は光導波路150bへ入力し、光スイッチ素子110aの入力ポート114aに入力する。そして、光スイッチ素子110aの電極対に電圧が印加されていないことから、入力ポート114aから入力した調心用の光信号は出力ポート117aへ出力し、調心用光導波路160から外部へ出力される。そして、端面102側において、調心用光導波路160から出力された調心用の光信号強度を図示しない計測器を用いて計測する。 When the optical fiber 220b and the optical waveguide 150b are coupled, the alignment optical signal emitted from the optical fiber 220b is input to the optical waveguide 150b and input to the input port 114a of the optical switch element 110a. Since no voltage is applied to the electrode pair of the optical switch element 110a, the alignment optical signal input from the input port 114a is output to the output port 117a and output from the alignment optical waveguide 160 to the outside. The Then, on the end face 102 side, the aligning optical signal intensity output from the aligning optical waveguide 160 is measured using a measuring instrument (not shown).
 一方、光ファイバ220hと光導波路150hとが結合することにより、光ファイバ220hから出射された調心用の光信号は光導波路150hへ入力し、光スイッチ素子110dに入力する。光スイッチ素子110dに入力した調心用の光信号は、光スイッチ素子110dの電極対に電圧が印加されていないことから、接続光導波路180dへ出力し、光スイッチ素子120b、接続光導波路180f、光スイッチ素子130を介して調心用光導波路170から外部へ出力される。そして、端面102側において、調心用光導波路170から出力された調心用の光信号強度を図示しない計測器で計測する。 On the other hand, when the optical fiber 220h and the optical waveguide 150h are coupled, the optical signal for alignment emitted from the optical fiber 220h is input to the optical waveguide 150h and input to the optical switch element 110d. The alignment optical signal input to the optical switch element 110d is output to the connection optical waveguide 180d because no voltage is applied to the electrode pair of the optical switch element 110d, and the optical switch element 120b, the connection optical waveguide 180f, The light is output from the alignment optical waveguide 170 to the outside via the optical switch element 130. Then, on the end face 102 side, the aligning optical signal intensity output from the aligning optical waveguide 170 is measured by a measuring instrument (not shown).
 そして、調心用光導波路160、170から出力された調心用の光信号の強度の合計が最大となる位置で、光ファイバアレイ200を光回路100に接着・固定する。2本の調心用光導波路160、170から出力された調整用の光信号を用いて調心することにより、結合効率のばらつきが低減され、より精度の高い調心を行うことができる。 Then, the optical fiber array 200 is bonded and fixed to the optical circuit 100 at a position where the total intensity of the alignment optical signals output from the alignment optical waveguides 160 and 170 is maximized. By performing alignment using the optical signals for adjustment output from the two alignment optical waveguides 160 and 170, variations in coupling efficiency are reduced, and alignment with higher accuracy can be performed.
 そして、調心済みの光回路100および光ファイバアレイ200は、通常動作時に、光信号が光ファイバアレイ200の光ファイバ220iから入力光導波路140へ入射され、入力光導波路140から光スイッチ素子130へ出射される。光スイッチ素子130に入射した光信号は、光スイッチ素子130の駆動状態に応じて光スイッチ素子120aまたは光スイッチ素子120b側へ出射され、光スイッチ素子120a、120bの駆動状態に応じて光スイッチ素子110a~110dのいずれかに出射され、さらに、光スイッチ素子110a~110dの駆動状態に応じて出力光導波路150a~150hのいずれかから出射される。出力光導波路150a~150hのいずれかから出射された光信号は、光ファイバ220a~220hのいずれかへ入射する。 In the aligned optical circuit 100 and optical fiber array 200, during normal operation, an optical signal is input from the optical fiber 220 i of the optical fiber array 200 to the input optical waveguide 140, and from the input optical waveguide 140 to the optical switch element 130. Emitted. The optical signal incident on the optical switch element 130 is emitted to the optical switch element 120a or the optical switch element 120b side according to the driving state of the optical switch element 130, and the optical switch element 120a, 120b according to the driving state of the optical switch element 120a. The light is emitted to any one of 110a to 110d, and further emitted from any one of the output optical waveguides 150a to 150h according to the driving state of the optical switch elements 110a to 110d. The optical signal emitted from any one of the output optical waveguides 150a to 150h is incident on any one of the optical fibers 220a to 220h.
 以上のように、本実施形態に係る光回路100および光ファイバアレイ200は、測定系や被接続部品に調心専用の構成を設けることなく、出力光導波路150a~150hおよび入力光導波路140と、光ファイバ220a~220iと、を調心することができる。 As described above, the optical circuit 100 and the optical fiber array 200 according to the present embodiment include the output optical waveguides 150a to 150h and the input optical waveguide 140 without providing a configuration dedicated for alignment in the measurement system or the connected component. The optical fibers 220a to 220i can be aligned.
 なお、本実施形態では調心用光導波路160、170を共に光ファイバアレイ200と対向する端面102側に引き出したが、これに限定されない。調心用光導波路160、170を、光ファイバアレイ200が配置されていない上端面側または下端面側に引き出すこともできる。また、調心用光導波路160、170の途中に分岐を設け、複数の端面に引き出すこともできる。 In this embodiment, the aligning optical waveguides 160 and 170 are both drawn out to the end face 102 side facing the optical fiber array 200, but the present invention is not limited to this. The aligning optical waveguides 160 and 170 can be drawn to the upper end surface side or the lower end surface side where the optical fiber array 200 is not disposed. Further, a branch may be provided in the middle of the aligning optical waveguides 160 and 170 and drawn out to a plurality of end faces.
 (第2の実施形態の変形例)
 第2の実施形態の変形例について説明する。本実施形態に係る光回路が光ファイバアレイと接続されている状態の構成図を図6に示す。図6に示した光回路300は、第1の実施形態の変形例で説明した図3Aの出力導波路65a~65dの後段にそれぞれ、光スイッチ310a~310dを配置することにより形成される。
(Modification of the second embodiment)
A modification of the second embodiment will be described. FIG. 6 shows a configuration diagram of the state in which the optical circuit according to the present embodiment is connected to the optical fiber array. The optical circuit 300 shown in FIG. 6 is formed by disposing the optical switches 310a to 310d in the subsequent stage of the output waveguides 65a to 65d in FIG. 3A described in the modification of the first embodiment.
 図6において、本実施形態に係る光回路300は、7個の光スイッチ素子310a~310d、320a、320b、330、入力光導波路340、8本の出力光導波路350a~350h、2本の調心用光導波路360、370、および、各光スイッチ素子を接続する6本の接続光導波路380a~380fを備える。光ファイバアレイ400は、固定用ガラスブロック410および9本の光ファイバ420a~420iを備える。ここで、本実施形態に係る光スイッチ素子310a~310d、320a、320b、330は、第2の実施形態で説明した図4および図5の光スイッチ素子110a~110d、120a、120b、130と同様に構成されている。 In FIG. 6, an optical circuit 300 according to this embodiment includes seven optical switch elements 310a to 310d, 320a, 320b, 330, an input optical waveguide 340, eight output optical waveguides 350a to 350h, and two alignments. Optical waveguides 360 and 370, and six connection optical waveguides 380a to 380f for connecting the optical switch elements. The optical fiber array 400 includes a fixing glass block 410 and nine optical fibers 420a to 420i. Here, the optical switch elements 310a to 310d, 320a, 320b, and 330 according to this embodiment are the same as the optical switch elements 110a to 110d, 120a, 120b, and 130 of FIGS. 4 and 5 described in the second embodiment. It is configured.
 図6において、光回路300の一方の端面301側に光ファイバアレイ400が配置されている。光回路300の入力光導波路340および8本の出力光導波路350a~350hは、光ファイバアレイ400が配置されている端面301側に伸びている。一方、2本の調心用光導波路360、370は、端面301と反対側の、光ファイバアレイ400が配置されていない端面302側に伸びている。そして、光回路300の出力光導波路350a~350hおよび入力光導波路340と、光ファイバアレイ400の9本の光ファイバ420a~420iとは、固定用ガラスブロック410を介して接続されている。 In FIG. 6, an optical fiber array 400 is arranged on one end face 301 side of the optical circuit 300. The input optical waveguide 340 and the eight output optical waveguides 350a to 350h of the optical circuit 300 extend toward the end face 301 on which the optical fiber array 400 is disposed. On the other hand, the two alignment optical waveguides 360 and 370 extend to the end surface 302 side opposite to the end surface 301 where the optical fiber array 400 is not disposed. The output optical waveguides 350 a to 350 h and the input optical waveguide 340 of the optical circuit 300 and the nine optical fibers 420 a to 420 i of the optical fiber array 400 are connected via a fixing glass block 410.
 次に、光回路300と光ファイバアレイ400との調心手順について説明する。光回路300の出力光導波路350a~350hおよび入力光導波路340と、光ファイバアレイ400の光ファイバ420a~420iと、の調心を行う場合、全ての光スイッチ素子の電極対に電圧を印加しない状態で、光ファイバアレイ400の光ファイバ420b、420hから調心用の光信号を出射し、光ファイバアレイ400を光回路300の端面301に近づける。 Next, the alignment procedure between the optical circuit 300 and the optical fiber array 400 will be described. When alignment is performed between the output optical waveguides 350a to 350h and the input optical waveguide 340 of the optical circuit 300 and the optical fibers 420a to 420i of the optical fiber array 400, no voltage is applied to the electrode pairs of all the optical switch elements. Thus, alignment optical signals are emitted from the optical fibers 420 b and 420 h of the optical fiber array 400, and the optical fiber array 400 is brought close to the end face 301 of the optical circuit 300.
 光ファイバ420bと光導波路350bとが結合することにより、調心用の光信号は光導波路350bへ入力し、光スイッチ素子310aに入力する。光スイッチ素子310aの電極対に電圧が印加されていないことから、入射した調心用の光信号は調心用光導波路360へ出射され、端面302側において強度が計測される。 When the optical fiber 420b and the optical waveguide 350b are coupled, an optical signal for alignment is input to the optical waveguide 350b and input to the optical switch element 310a. Since no voltage is applied to the electrode pair of the optical switch element 310a, the incident alignment optical signal is emitted to the alignment optical waveguide 360, and the intensity is measured on the end face 302 side.
 同様に、光ファイバ420hから出射された調心用の光信号は、光導波路350g、光スイッチ素子310d、調心用光導波路370を介して、調心用光導波路370から外部へ出射され、端面302側において強度が計測される。 Similarly, the aligning optical signal emitted from the optical fiber 420h is emitted from the aligning optical waveguide 370 to the outside via the optical waveguide 350g, the optical switch element 310d, and the aligning optical waveguide 370, and is end faced. The intensity is measured on the 302 side.
 そして、調心用光導波路360、370から出射された調心用光信号の強度の合計が最大となる位置で、光ファイバアレイ400を光回路300に接着・固定する。調心時の光強度の計測は1ヶ所だけで行ってもよいが、2ヶ所で行う方が結合効率のばらつきを低減できて望ましい。 Then, the optical fiber array 400 is bonded and fixed to the optical circuit 300 at a position where the total intensity of the alignment optical signals emitted from the alignment optical waveguides 360 and 370 is maximized. The measurement of the light intensity at the time of alignment may be performed at only one location, but it is desirable to perform the measurement at two locations because the variation in coupling efficiency can be reduced.
 そして、調心済みの光回路300および光ファイバアレイ400は、通常動作時において、光信号が光ファイバアレイ400の光ファイバ420eから出射され、出射された光信号は、入力光導波路340を介して光スイッチ素子330に入射し、光スイッチ素子330の駆動状態に応じて、光スイッチ素子320aまたは光スイッチ素子320bのどちらかへ出射され、光スイッチ素子の駆動状態に応じてさらに光スイッチ素子310a~310dのいずれかに出射される。光スイッチ素子310a~310dのいずれかに入射した光信号は、その駆動状態に応じて出力光導波路350a~350hのいずれかから出射され、結合されている光ファイバアレイ400の光ファイバ420a~420d、420f~420iのいずれかに出射される。 In the aligned optical circuit 300 and optical fiber array 400, during normal operation, an optical signal is emitted from the optical fiber 420e of the optical fiber array 400, and the emitted optical signal is transmitted via the input optical waveguide 340. Depending on the driving state of the optical switch element 330, it is emitted to either the optical switch element 320a or the optical switch element 320b, and further depending on the driving state of the optical switch element 330a˜ It is emitted to any one of 310d. An optical signal incident on one of the optical switch elements 310a to 310d is emitted from one of the output optical waveguides 350a to 350h according to the driving state thereof, and is coupled to the optical fibers 420a to 420d of the optical fiber array 400 that is coupled. The light is emitted to any one of 420f to 420i.
 以上のように、本実施形態に係る光回路300および光ファイバアレイ400は、測定系や被接続部品に調心専用の構成を設けることなく、光回路300と光ファイバアレイ400とを調心することができる。 As described above, the optical circuit 300 and the optical fiber array 400 according to the present embodiment align the optical circuit 300 and the optical fiber array 400 without providing a dedicated configuration for the measuring system or the connected component. be able to.
 なお、本実施形態では調心用光導波路360、370を共に光ファイバアレイ400と対向する端面302側に引き出したが、これに限定されない。調心用光導波路360、370を、光ファイバアレイ400が配置されていない上端面側または下端面側に引き出すこともできる。また、調心用光導波路360、370の途中に分岐を設け、複数の端面に引き出すこともできる。 In the present embodiment, the aligning optical waveguides 360 and 370 are both drawn to the end face 302 side facing the optical fiber array 400, but the present invention is not limited to this. The aligning optical waveguides 360 and 370 can be drawn to the upper end surface side or the lower end surface side where the optical fiber array 400 is not disposed. Further, a branch may be provided in the middle of the aligning optical waveguides 360 and 370 and drawn out to a plurality of end faces.
 (第3の実施形態)
 第3の実施形態について説明する。本実施形態において、光回路として4×4光スイッチを適用する。本実施形態に係る光回路が光ファイバアレイと接続されている状態の構成図を図7に示す。
(Third embodiment)
A third embodiment will be described. In this embodiment, a 4 × 4 optical switch is applied as the optical circuit. FIG. 7 shows a configuration diagram of the state in which the optical circuit according to the present embodiment is connected to the optical fiber array.
 図7において、本実施形態に係る光回路500は、12個の光スイッチ素子510a~510d、520a~520d、530a~530d、4個の1×4光スプリッタ素子540a~540d、4本の入力光導波路550a~550d、4本の出力光導波路560a~560d、2本の調心用光導波路570、580、および、光スイッチ素子と光スプリッタ素子とをそれぞれ接続する複数の接続光導波路を備える。光スイッチ素子510a~510d、520a~520d、530a~530dは、図5に示した光スイッチ素子と同様に構成されている。光ファイバアレイ600は、固定用ガラスブロック610および8本の光ファイバ620a~620hを備える。 7, the optical circuit 500 according to the present embodiment includes twelve optical switch elements 510a to 510d, 520a to 520d, 530a to 530d, four 1 × 4 optical splitter elements 540a to 540d, and four input optical waveguides. Waveguides 550a to 550d, four output optical waveguides 560a to 560d, two alignment optical waveguides 570 and 580, and a plurality of connection optical waveguides respectively connecting the optical switch element and the optical splitter element are provided. The optical switch elements 510a to 510d, 520a to 520d, and 530a to 530d are configured in the same manner as the optical switch elements shown in FIG. The optical fiber array 600 includes a fixing glass block 610 and eight optical fibers 620a to 620h.
 図7において、光回路500の一つの端面501側に光ファイバアレイ600が配置されている。光回路500の入力光導波路550a~550dおよび出力光導波路560a~560dは、光ファイバアレイ600が配置されている端面501側に伸びている。一方、2本の調心用光導波路570、580は、光ファイバアレイ600が配置されていない端面502側に伸びている。本実施形態において、各光導波路はコアがシリコンで、クラッドが石英で形成されている。そして、光回路500の入力光導波路550a~550dおよび出力光導波路560a~560dと、光ファイバアレイ600の8本の光ファイバ620a~620hとが接続されている。 In FIG. 7, an optical fiber array 600 is arranged on one end face 501 side of the optical circuit 500. The input optical waveguides 550a to 550d and the output optical waveguides 560a to 560d of the optical circuit 500 extend to the end face 501 side where the optical fiber array 600 is disposed. On the other hand, the two aligning optical waveguides 570 and 580 extend toward the end face 502 where the optical fiber array 600 is not disposed. In this embodiment, each optical waveguide has a core made of silicon and a clad made of quartz. The input optical waveguides 550a to 550d and the output optical waveguides 560a to 560d of the optical circuit 500 are connected to the eight optical fibers 620a to 620h of the optical fiber array 600.
 光スプリッタ素子540a~540dはそれぞれ、4つの入力ポートと1つの出力ポートとを備える。光スプリッタ素子540a~540dは、選択した入力ポートから入射した光信号を出力ポートから出射する。光スプリッタ素子540a~540dは、光回路500と光ファイバアレイ600との接続・固定が完了した後、連動して動作する。例えば、光スプリッタ素子540aが第1の入力ポートを選択している場合、他の光スプリッタ素子540b~540dも第1の入力ポートを選択する。 Each of the optical splitter elements 540a to 540d includes four input ports and one output port. The optical splitter elements 540a to 540d emit optical signals incident from the selected input port from the output port. The optical splitter elements 540a to 540d operate in conjunction with each other after the connection / fixation between the optical circuit 500 and the optical fiber array 600 is completed. For example, when the optical splitter element 540a selects the first input port, the other optical splitter elements 540b to 540d also select the first input port.
 次に、光回路500と光ファイバアレイ600との調心手順について説明する。光回路500の入力光導波路550a~550dおよび出力光導波路560a~560dと、光ファイバアレイ600の光ファイバ620a~620hと、の調心を行う場合、全ての光スイッチ素子の各電極対に電圧を印加しない状態に設定し、光ファイバアレイ600の光ファイバ620b、620gから調心用の光信号を出射すると共に、光スプリッタ素子540bに第1の入力ポートを選択させ、光スプリッタ素子540cに第4の入力ポートを選択させる。そして、光ファイバアレイ600を光回路500の端面501に近づけ、光回路500の入力光導波路550a~550dおよび出力光導波路560a~560dと、光ファイバアレイ600の光ファイバ620a~620hと、を結合させる。 Next, the alignment procedure between the optical circuit 500 and the optical fiber array 600 will be described. When aligning the input optical waveguides 550a to 550d and the output optical waveguides 560a to 560d of the optical circuit 500 and the optical fibers 620a to 620h of the optical fiber array 600, voltages are applied to the electrode pairs of all the optical switch elements. The optical fiber 620b, 620g of the optical fiber array 600 is set to a state where no application is performed, and an optical signal for alignment is emitted, and the optical splitter element 540b selects the first input port, and the optical splitter element 540c performs the fourth operation. Select the input port. Then, the optical fiber array 600 is brought close to the end surface 501 of the optical circuit 500, and the input optical waveguides 550a to 550d and the output optical waveguides 560a to 560d of the optical circuit 500 and the optical fibers 620a to 620h of the optical fiber array 600 are coupled. .
 光ファイバ620bと光導波路560bとが結合することにより、調心用の光信号は、光導波路560bへ入射し、光スプリッタ素子540bに入力する。光スプリッタ素子540bが第1の入力ポートを選択していることから、光スプリッタ素子540bに入力した調心用の光信号は第1の入力ポートを経由して光スイッチ素子510aに入力する。光スイッチ素子510aの電極対に電圧が印加されていないことから、入力した調心用の光信号は調心用光導波路570へ入力し、端面502側において強度が計測される。 When the optical fiber 620b and the optical waveguide 560b are coupled, the aligning optical signal enters the optical waveguide 560b and is input to the optical splitter element 540b. Since the optical splitter element 540b selects the first input port, the alignment optical signal input to the optical splitter element 540b is input to the optical switch element 510a via the first input port. Since no voltage is applied to the electrode pair of the optical switch element 510a, the input alignment optical signal is input to the alignment optical waveguide 570, and the intensity is measured on the end face 502 side.
 一方、光ファイバ620gと光導波路560cとが結合することにより、調心用の光信号は、光導波路560c、光スプリッタ素子540c、光スイッチ素子520dおよび調心用光導波路580を介して外部へ出射され、端面502において強度が計測される。 On the other hand, when the optical fiber 620g and the optical waveguide 560c are coupled, the alignment optical signal is emitted to the outside through the optical waveguide 560c, the optical splitter element 540c, the optical switch element 520d, and the alignment optical waveguide 580. Then, the strength is measured at the end face 502.
 そして、調心用光導波路570、580から出射された調心用光信号の強度の合計が最大となる位置で、光ファイバアレイ600を光回路500に接着・固定し、さらに、光スプリッタ素子540a~540dをそれぞれ関連づける。 The optical fiber array 600 is bonded and fixed to the optical circuit 500 at a position where the total intensity of the aligning optical signals emitted from the aligning optical waveguides 570 and 580 is maximized, and further, the optical splitter element 540a. ˜540d are associated with each other.
 そして、調心済みの光回路300および光ファイバアレイ400は、通常動作時において、光信号が光ファイバアレイ600の光ファイバ620dから出射され、出射された光信号は、入力光導波路550bを介して光スイッチ素子530bに入射し、光スイッチ素子530bの駆動状態に応じて光スイッチ素子510cまたは光スイッチ素子520cに入射する。さらに、光スイッチ素子510cまたは光スイッチ素子520cに入射した光信号は、光スイッチ素子510c、520cの駆動状態に応じて光スプリッタ素子540aまたは540b、540cまたは540dの第3の入力ポートへ出射される。 In the aligned optical circuit 300 and optical fiber array 400, during normal operation, an optical signal is emitted from the optical fiber 620d of the optical fiber array 600, and the emitted optical signal is transmitted via the input optical waveguide 550b. It enters the optical switch element 530b and enters the optical switch element 510c or the optical switch element 520c depending on the driving state of the optical switch element 530b. Further, the optical signal incident on the optical switch element 510c or the optical switch element 520c is output to the third input port of the optical splitter element 540a or 540b, 540c or 540d according to the driving state of the optical switch element 510c or 520c. .
 上述のように、光スプリッタ素子540a~540dは連動して動作し、4つの光スプリッタ素子540a~540dは全て第3の入力ポートを選択していることから、光スプリッタ素子540a~540dのいずれかの第3の入力ポートに入射した光信号は、出力光導波路560aまたは560b、560cまたは560dへ出射される。すなわち、光ファイバ620dから入射した光信号は、光回路500において光スプリッタ素子の駆動状態に応じて出力光導波路560a~560dのいずれかから出射され、光ファイバアレイ600の光ファイバ620a、620b、620g、620hのいずれかへ入射する。 As described above, since the optical splitter elements 540a to 540d operate in conjunction with each other, and all the four optical splitter elements 540a to 540d select the third input port, any one of the optical splitter elements 540a to 540d is selected. The optical signal incident on the third input port is output to the output optical waveguide 560a or 560b, 560c or 560d. That is, the optical signal incident from the optical fiber 620d is emitted from one of the output optical waveguides 560a to 560d in the optical circuit 500 according to the driving state of the optical splitter element, and the optical fibers 620a, 620b, 620g of the optical fiber array 600 are emitted. , 620h.
 同様に、光ファイバアレイ600の光ファイバ620c、620e、620fから出射された光信号は、光回路500において光スプリッタ素子の駆動状態に応じて光スプリッタ素子540a~540dのいずれかへ入射する。そして、光スプリッタ素子540a~540dの4つの入力ポートを連動して切り替えることにより、入力光導波路550a~550dから入射した光信号を適宜選択して光ファイバアレイ600へ出射させることができる。 Similarly, optical signals emitted from the optical fibers 620c, 620e, and 620f of the optical fiber array 600 are incident on one of the optical splitter elements 540a to 540d in the optical circuit 500 according to the driving state of the optical splitter element. Then, by switching the four input ports of the optical splitter elements 540a to 540d in conjunction with each other, the optical signals incident from the input optical waveguides 550a to 550d can be appropriately selected and emitted to the optical fiber array 600.
 なお、本実施形態では調心用光導波路570、580を共に光ファイバアレイ600と対向する端面502側に引き出したが、これに限定されない。調心用光導波路570、580を、光ファイバアレイ600が配置されていない上端面側または下端面側に引き出すこともできる。また、調心用光導波路570、580の途中に分岐を設け、複数の端面に引き出すこともできる。 In this embodiment, the aligning optical waveguides 570 and 580 are both drawn to the end face 502 side facing the optical fiber array 600, but the present invention is not limited to this. The aligning optical waveguides 570 and 580 can be drawn to the upper end surface side or the lower end surface side where the optical fiber array 600 is not disposed. Further, a branch may be provided in the middle of the aligning optical waveguides 570 and 580 and drawn out to a plurality of end faces.
 ここで、上記の実施形態では、光回路のコアをシリコンで、クラッドを石英ガラスで形成したがこれに限定されない。例えば、コアおよびクラッドを、石英ガラス、化合物半導体または有機材料等で形成することもできる。これらの材料でコアおよびクラッドを形成した場合も、上記の実施形態で説明した光回路と同様の効果を得ることができる。 Here, in the above embodiment, the core of the optical circuit is formed of silicon and the cladding is formed of quartz glass, but the present invention is not limited to this. For example, the core and the clad can be formed of quartz glass, a compound semiconductor, an organic material, or the like. Even when the core and the clad are formed of these materials, the same effect as the optical circuit described in the above embodiment can be obtained.
 また、上記実施形態では、ヒータを用いて光導波路を加熱することにより光スイッチ素子の光路を切り替えたが、これに限定されない。例えば、光導波路に電圧を印加したり、キャリアを注入したりすることにより、光スイッチ素子の光路を切り替えこともできる。 In the above embodiment, the optical path of the optical switch element is switched by heating the optical waveguide using a heater, but the present invention is not limited to this. For example, the optical path of the optical switch element can be switched by applying a voltage to the optical waveguide or injecting carriers.
 本願発明は上記実施形態に限定されるものではなく、この発明の要旨を逸脱しない範囲の設計の変更等があってもこの発明に含まれる。また、この出願は、2012年1月23日に出願された日本出願特願2012-011228を基礎とする優先権を主張し、その開示の全てをここに取り込む。 The invention of the present application is not limited to the above-described embodiment, and any design change or the like within a range not departing from the gist of the invention is included in the invention. This application claims priority based on Japanese Patent Application No. 2012-011228 filed on January 23, 2012, the entire disclosure of which is incorporated herein.
 光スイッチを備える回路と、このスイッチと接続される被接続部品と、を含む光装置全般に適用することができる。 The present invention can be applied to all optical devices including a circuit including an optical switch and a connected component connected to the switch.
 10、30、40、60  光回路
 11、31、41、61  基板
 12、32a、32b  スイッチ
 42、62a、62b  第1のスイッチ
 43a、43b、63  第2のスイッチ
 13、33a、33b、44、64  入力導波路
 14a、14b、34a~34d、45a~45d、65a~65d  出力導波路
 46a、46b、66a、66b  接続用導波路
 15、35a、35b、47、67a、67b  調整用導波路
 20  調心システム
 21  光回路
 22  被接続部品
 23  測定手段
 24  制御手段
 100、300、500  光回路
 110a~110d、120a、120b、130、310a~310d、320a、
320b、330、510a~510d、520a~520d、530a~530d  
光スイッチ素子
 111a  シリコン基板
 112a  コア
 113a  クラッド
 114a、115a  入力ポート
 116a、117a  出力ポート
 140、340、550a~550d  入力光導波路
 150a~150h、350a~350h、560a~560d  出力光導波路
 160、170、360、370、570、580  調心用光導波路
 180a~180f、380a~380f  接続光導波路
 540a~540d  光スプリッタ素子
 200、400、600  光ファイバアレイ
 210、410、610  固定用ガラスブロック
 220a~220i、420a~420i、620a~620h  光ファイバ
10, 30, 40, 60 Optical circuit 11, 31, 41, 61 Substrate 12, 32a, 32b Switch 42, 62a, 62b First switch 43a, 43b, 63 Second switch 13, 33a, 33b, 44, 64 Input waveguides 14a, 14b, 34a to 34d, 45a to 45d, 65a to 65d Output waveguides 46a, 46b, 66a, 66b Connection waveguides 15, 35a, 35b, 47, 67a, 67b Adjustment waveguides 20 Alignment System 21 Optical circuit 22 Connected component 23 Measuring means 24 Control means 100, 300, 500 Optical circuit 110a to 110d, 120a, 120b, 130, 310a to 310d, 320a,
320b, 330, 510a to 510d, 520a to 520d, 530a to 530d
Optical switch element 111a Silicon substrate 112a Core 113a Clad 114a, 115a Input port 116a, 117a Output port 140, 340, 550a-550d Input optical waveguide 150a-150h, 350a-350h, 560a-560d Output optical waveguide 160, 170, 360, 370, 570, 580 Alignment optical waveguide 180a to 180f, 380a to 380f Connection optical waveguide 540a to 540d Optical splitter element 200, 400, 600 Optical fiber array 210, 410, 610 Fixed glass block 220a to 220i, 420a to 420i 620a-620h Optical fiber

Claims (10)

  1. 基板と、
    第1の状態の時は第1ポートを第2ポート、第4ポートを第3ポートに接続し、第2の状態の時は第1ポートを第3ポート、第4ポートを第2ポートに接続するスイッチと、
    前記第1ポートから前記基板の所定の端部まで伸びる入力導波路と、
    前記第2および第3ポートから前記所定の端部までそれぞれ伸びる2本の出力導波路と、
    前記第4ポートから前記基板の前記所定の端部以外の端部まで伸びる調整用導波路と、
    を備え、
    調心時に、前記スイッチは前記第1の状態に設定され、前記第3ポートから伸びる出力導波路に調心用の光信号が入力されることを特徴とする光回路。
    A substrate,
    In the first state, the first port is connected to the second port and the fourth port is connected to the third port. In the second state, the first port is connected to the third port and the fourth port is connected to the second port. A switch to
    An input waveguide extending from the first port to a predetermined end of the substrate;
    Two output waveguides each extending from the second and third ports to the predetermined end;
    An adjustment waveguide extending from the fourth port to an end other than the predetermined end of the substrate;
    With
    At the time of alignment, the switch is set to the first state, and an optical signal for alignment is input to an output waveguide extending from the third port.
  2. 前記スイッチは2つの光路および一方の前記光路の近傍に配置されたスイッチ駆動部を備え、前記スイッチ駆動部に熱源投入、電圧印加またはキャリア注入することにより、前記第1の状態から前記第2の状態へ変化する、請求項1記載の光回路。 The switch includes two optical paths and a switch driving unit disposed in the vicinity of one of the optical paths, and the switch driving unit is switched from the first state to the second state by applying a heat source, applying a voltage, or injecting carriers. The optical circuit according to claim 1, wherein the optical circuit changes to a state.
  3. 前記出力導波路の前記所定の端部側に、さらに前記スイッチおよび前記2本の出力導波路が配置された、請求項1または2記載の光回路。 The optical circuit according to claim 1, wherein the switch and the two output waveguides are further arranged on the predetermined end portion side of the output waveguide.
  4. 前記スイッチおよび2本の出力導波路が多段に配置されている、請求項3記載の光回路。 The optical circuit according to claim 3, wherein the switch and the two output waveguides are arranged in multiple stages.
  5. 前記スイッチ、入力導波路、2本の出力導波路および調整用導波路をさらに備える、請求項1または2記載の光回路。 The optical circuit according to claim 1, further comprising the switch, an input waveguide, two output waveguides, and an adjustment waveguide.
  6. 前記2本の入力導波路の前記所定の端部側に、さらに前記スイッチおよび前記入力導波路が配置された、請求項5記載の光回路。 The optical circuit according to claim 5, wherein the switch and the input waveguide are further arranged on the predetermined end portion side of the two input waveguides.
  7. 複数の前記スイッチが並列に配置され、前記入力導波路と接続された複数のスイッチは、その他のスイッチに順次接続される、請求項6記載の光回路。 The optical circuit according to claim 6, wherein the plurality of switches are arranged in parallel, and the plurality of switches connected to the input waveguide are sequentially connected to other switches.
  8. 前記その他のスイッチに接続された出力導波路の前記所定の端部側に配置され、前記入力導波路と接続された複数のスイッチとそれぞれ対応する複数の入力ポートと出力ポートとを備えた少なくとも4つの光スプリッタをさらに備え、
    前記4つの光スプリッタの複数の入力ポートは互いに関連付けられている、請求項7記載の光回路。
    At least 4 provided with the some input port and output port which are arrange | positioned at the said predetermined end part side of the output waveguide connected to the said other switch, and each correspond to the some switch connected with the said input waveguide. One optical splitter,
    The optical circuit according to claim 7, wherein a plurality of input ports of the four optical splitters are associated with each other.
  9. 請求項1乃至8のいずれか1項記載の光回路と、
    前記光回路の入力導波路および出力導波路とそれぞれ接続される光ファイバを備えた被接続部品と、
    前記調整用導波路の対向位置に配置され、前記調整用導波路から出射された調整用の光信号の強度を計測する測定手段と、
    前記計測した強度が最大となるように、前記光回路と前記被接続部品との相対位置を制御する制御手段と、
    を備え、
    前記光回路と前記被接続部品との調心時に、
    前記スイッチは前記第1の状態に設定され、前記被接続部品は前記第3ポートから伸びる出力導波路に調心用の光信号を出力することを特徴とする調心システム。
    An optical circuit according to any one of claims 1 to 8,
    A connected component including optical fibers connected to the input waveguide and the output waveguide of the optical circuit, and
    A measuring means disposed at a position opposite to the adjustment waveguide and measuring the intensity of the adjustment optical signal emitted from the adjustment waveguide;
    Control means for controlling the relative position between the optical circuit and the connected component so that the measured intensity is maximized;
    With
    When aligning the optical circuit and the connected component,
    The alignment system according to claim 1, wherein the switch is set in the first state, and the connected component outputs an alignment optical signal to an output waveguide extending from the third port.
  10. 第1の状態の時は第1ポートを第2ポートに、第4ポートを第3ポートに接続し、第2の状態の時は第1ポートを第3ポートに、第4ポートを第2ポートに接続するスイッチを備えた光回路の基板の所定の端部に被接続部品を近づけ、
    前記第1の状態において、
     前記第3ポートから伸びる出力導波路から光信号を入力し、
     前記第4ポートから前記基板の前記所定の端部以外の端部まで伸びる調整用導波路から出力される光信号の強度を計測し、
     前記計測した強度が最大となる位置を調心位置とする、
    光回路の調心方法。
    In the first state, the first port is connected to the second port, and the fourth port is connected to the third port. In the second state, the first port is connected to the third port, and the fourth port is the second port. The connected component is brought close to a predetermined end of the substrate of the optical circuit having a switch to be connected to
    In the first state,
    An optical signal is input from an output waveguide extending from the third port;
    Measuring the intensity of the optical signal output from the adjustment waveguide extending from the fourth port to an end other than the predetermined end of the substrate;
    The position where the measured intensity is maximum is the alignment position,
    Optical circuit alignment method.
PCT/JP2013/000268 2012-01-23 2013-01-22 Optical circuit, aligning system, and optical circuit aligning method WO2013111562A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012011228 2012-01-23
JP2012-011228 2012-01-23

Publications (1)

Publication Number Publication Date
WO2013111562A1 true WO2013111562A1 (en) 2013-08-01

Family

ID=48873294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000268 WO2013111562A1 (en) 2012-01-23 2013-01-22 Optical circuit, aligning system, and optical circuit aligning method

Country Status (2)

Country Link
JP (1) JPWO2013111562A1 (en)
WO (1) WO2013111562A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020145284A1 (en) * 2019-01-11 2020-07-16 日本電信電話株式会社 Planar optical waveguide circuit
JP2021162558A (en) * 2020-04-03 2021-10-11 住友電気工業株式会社 Method, device and program for measuring optical characteristic of optical modulation element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0212226A (en) * 1988-06-30 1990-01-17 Nec Corp Matrix optical switch
JPH0321932A (en) * 1989-05-12 1991-01-30 American Teleph & Telegr Co <Att> Optical mutual connector
JPH0694936A (en) * 1992-09-09 1994-04-08 Nikon Corp Aligning device for optical waveguide device
JP2001083555A (en) * 1999-09-13 2001-03-30 Hitachi Ltd Optical switch
JP2006023517A (en) * 2004-07-08 2006-01-26 Yokogawa Electric Corp Optical signal exchange device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0212226A (en) * 1988-06-30 1990-01-17 Nec Corp Matrix optical switch
JPH0321932A (en) * 1989-05-12 1991-01-30 American Teleph & Telegr Co <Att> Optical mutual connector
JPH0694936A (en) * 1992-09-09 1994-04-08 Nikon Corp Aligning device for optical waveguide device
JP2001083555A (en) * 1999-09-13 2001-03-30 Hitachi Ltd Optical switch
JP2006023517A (en) * 2004-07-08 2006-01-26 Yokogawa Electric Corp Optical signal exchange device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020145284A1 (en) * 2019-01-11 2020-07-16 日本電信電話株式会社 Planar optical waveguide circuit
JP2021162558A (en) * 2020-04-03 2021-10-11 住友電気工業株式会社 Method, device and program for measuring optical characteristic of optical modulation element
JP7354906B2 (en) 2020-04-03 2023-10-03 住友電気工業株式会社 Measuring method, measuring device, and measuring program for optical characteristics of a light modulation element

Also Published As

Publication number Publication date
JPWO2013111562A1 (en) 2015-05-11

Similar Documents

Publication Publication Date Title
JP6462564B2 (en) Switch device
TWI472820B (en) Core-selective optical switches and method of forming thereof
JP4105724B2 (en) Interferometer type optical switch and variable optical attenuator
CN109906393A (en) The method and system of integrated circuit is enabled for optical alignment silicon photon
WO2013111562A1 (en) Optical circuit, aligning system, and optical circuit aligning method
Lu et al. 4× 4 nonblocking silicon thermo-optic switches based on multimode interferometers
JP5603847B2 (en) Microlens array and optical transmission parts
JP5045416B2 (en) Optical waveguide device and optical device using the same
JPH08262259A (en) Polarization-insensitive wavelength multiple 2-by-2 fiber coupler and its manufacture
WO2012172760A1 (en) Optical switch control method, optical switch control device, and optical transmission system
JPH10227936A (en) Hybrid plane type optical circuit and its manufacture
US9366821B2 (en) Method of forming fused coupler
JP2017053886A (en) Optical circuit and alignment method for optical circuit
EP1728118B1 (en) Apparatus for controlling polarization of light inputted to polarization-maintaining waveguide components
JP6060900B2 (en) Optical circuit
WO2014049942A1 (en) Switch device
JP2006038897A (en) Waveguide type optical switch unit element and waveguide type matrix optical switch
JP2004157332A (en) Optical module, optical switch constituting the same, and optical matrix switch
WO2016174876A1 (en) Optical signal processing device
JP7079391B2 (en) Optical transmission equipment and optical elements
CN215640059U (en) Testing device for optical chip
JP3041825B2 (en) Waveguide type matrix optical switch
JP2015187636A (en) Optical module
JP2003005231A (en) Optical matrix switch
KR102088999B1 (en) Optical multiplexer to multiplex optical signals using an optical waveguide block including laminated layers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13740987

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013555194

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13740987

Country of ref document: EP

Kind code of ref document: A1