WO2013111413A1 - Phase-sensitive amplifier and method of designing same, bpsk signal phase noise suppressor using phase-sensitive amplifier, bpsk signal regenerator, qpsk signal demultiplexer, and qpsk signal regenerator - Google Patents

Phase-sensitive amplifier and method of designing same, bpsk signal phase noise suppressor using phase-sensitive amplifier, bpsk signal regenerator, qpsk signal demultiplexer, and qpsk signal regenerator Download PDF

Info

Publication number
WO2013111413A1
WO2013111413A1 PCT/JP2012/078474 JP2012078474W WO2013111413A1 WO 2013111413 A1 WO2013111413 A1 WO 2013111413A1 JP 2012078474 W JP2012078474 W JP 2012078474W WO 2013111413 A1 WO2013111413 A1 WO 2013111413A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
phase
signal
bpsk
signal light
Prior art date
Application number
PCT/JP2012/078474
Other languages
French (fr)
Japanese (ja)
Inventor
井上 崇
ミンイ ゴウ
並木 周
Original Assignee
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所 filed Critical 独立行政法人産業技術総合研究所
Priority to JP2013555126A priority Critical patent/JP5979563B2/en
Publication of WO2013111413A1 publication Critical patent/WO2013111413A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/365Non-linear optics in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/39Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/39Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves
    • G02F1/392Parametric amplification
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/39Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves
    • G02F1/395Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves in optical waveguides

Definitions

  • the present invention relates to a phase-sensitive optical amplifier that can be used in an optical fiber communication system and the like, a design method thereof, a BPSK signal phase noise suppressor, a BPSK signal regenerator, and a QPSK signal demultiplexing using the phase-sensitive optical amplifier. And a QPSK signal regenerator.
  • phase-sensitive optical amplifier In order to remove the phase noise generated in the phase-modulated signal light, a phase-sensitive optical amplifier (PSA) has been studied.
  • PSA pump light and signal light are combined and incident on a nonlinear medium such as an optical fiber, and a parametric process generated there is used.
  • the parametric process is a four-wave mixing (Four-wave mixing) due to a nonlinear effect such as a Kerr effect generated when the pump light and the signal light combined and incident on the nonlinear medium propagate through the nonlinear medium. It is a process of exchanging energy through a phenomenon called mixing (FWM).
  • FWM mixing
  • idler light is generated from the pump light and the signal light.
  • the phase of the idler light depends on the phase of the signal light and the pump light at the time of incidence.
  • the PSA is designed so that the frequencies of the idler light and the signal light are equal, the signal light that originally existed and the newly generated idler light interfere with each other.
  • the gain obtained by the signal light depends on the relative phase difference between the pump light and the signal light when the nonlinear medium is incident, and the signal light is amplified or attenuated according to the phase state. Can be used for the signal processing.
  • PSA PSA
  • CW Continuous Wave
  • DP-PSA DP-PSA
  • FIG. 1A shows four signal complex amplitudes whose phases are shifted by 90 degrees on the complex plane.
  • the real axis indicated by Re indicates that when the signal light and the pump light are incident on the nonlinear medium, the amplification gain of the signal light after the PSA output is maximized.
  • the phase of the signal light is set to be 0 or ⁇ . That is, of the four signals shown in FIG. 1A, two signal components located on the real axis are components that maximize the amplification gain by the PSA.
  • phase component is hereinafter referred to as an “in-phase” component.
  • the imaginary axis shown as Im in FIG. 1A means that the signal light is 90 degrees out of phase with the signal light in the case of “in-phase”, and two signals on this axis.
  • the component is a component that is attenuated by the PSA.
  • this is referred to as an “orthogonal” component.
  • An arbitrary phase component of the signal light can be decomposed into the in-phase component and the quadrature component, and the former obtains an amplification gain, while the latter attenuates.
  • a signal as shown in FIG. 1C is obtained as an output signal of the PSA.
  • BPSK binary phase shift keying
  • “orthogonal” is obtained by adjusting the initial relative phase difference between the pump light and the signal light so that the phase of the modulation signal becomes an “in-phase” component in the PSA. Phase noise corresponding to the component can be suppressed.
  • FIG. 2 shows a typical configuration example of the PSA, and its operation will be described below.
  • the pump light generating means 10 generates pump light composed of two continuous lights having different frequencies. These pump lights are output with the light intensity adjusted by the first light intensity adjusting means 11. Further, the input signal light 1 is input to the signal light phase adjusting means 12, and the relative phase difference between the input signal light 1 and the pump light is adjusted and output. Since what value the relative phase difference is set changes depending on what PSA operation is performed, the phase adjustment signal 2 is input from the outside.
  • the means for generating the phase adjustment signal 2 may be installed inside the PSA 100, or the phase adjustment signal 2 does not exist and the phase adjustment amount of the signal light phase adjustment means 12 is fixed to a certain value.
  • the pump light and input signal light 1 output in this way are combined by a combined light generating means 13 such as an optical coupler.
  • the combined light is output after the light intensity is adjusted by the second light intensity adjusting means 14.
  • the combined light whose light intensity is adjusted is incident on a nonlinear medium 15 such as an optical fiber, where the parametric process occurs. At this time, as shown in FIGS.
  • the in-phase component is amplified and the quadrature component is attenuated.
  • the pump light is removed from the signal output from the nonlinear medium 15 by the signal light extraction means 16 such as a band pass filter, and only the output signal light 3 is output.
  • the signal light extraction means 16 such as a band pass filter
  • the PSA is an example in which the principle is confirmed with the configuration shown in FIG. 2 in mind, or an example in which the PSA is actually operated.
  • Non-Patent Document 2 the operating principle of PSA is experimentally confirmed
  • Non-Patent Documents 3 and 4 the PSA based on the configuration of FIG. 2 is generally used, and the effect of reducing phase noise of phase-modulated signal light is experimentally determined. It has been confirmed.
  • only an optical fiber is considered as the nonlinear medium 15.
  • An important index for operating the PSA is the ratio between the amplification gain of the in-phase component and the attenuation amount of the quadrature component of the phase components of the signal light, and this is the gain extinction ratio (Gain-Extension Ratio). GER).
  • the gain extinction ratio Gain-Extension Ratio
  • GER gain extinction ratio
  • the quadrature component with respect to the in-phase component becomes relatively small, so that the desired purpose of removing phase noise from the phase modulation signal can be achieved.
  • the quadrature component becomes relatively small and consequently the GER is increased. A method has been adopted.
  • Non-Patent Document 3 in which such a setting is made, the GER as large as 30 dB is achieved, but the light intensity of the pump light is as large as 32.5 dBm, and thus such a large light intensity. Has become a major obstacle to commercialization.
  • the nonlinear phase shift amount ⁇ NL can be used as an index indicating the amount of the parametric process in the fiber.
  • ⁇ and L are the nonlinear constant and effective length (propagation length) of the fiber for generating the parametric process, respectively, and P p is the intensity when pump light is input to the fiber.
  • the length is 5.64 m
  • the propagation loss is 1.4 dB / m
  • a normal fiber is a normal fiber.
  • the present invention uses a phase sensitive optical amplifier capable of obtaining a large gain extinction ratio with a small nonlinear effect and efficiently suppressing phase noise, a design method thereof, and the phase sensitive optical amplifier. It is an object of the present invention to provide a BPSK signal phase noise suppressor, a BPSK signal regenerator, a QPSK signal demultiplexer, and a QPSK signal regenerator.
  • Means for solving the problems are as follows. That is, ⁇ 1> Pump light generating means for generating pump light that is two continuous lights having different frequencies, signal light that is input as light whose center frequency matches an intermediate frequency of the two continuous lights, and the pump light A combined light generating means for generating a combined light, a phase difference adjusting means for adjusting a relative phase difference between the signal light and the pump light, and the combined light having the adjusted relative phase difference.
  • a phase-sensitive optical amplifier having a non-linear medium for generating a parametric process, wherein a gain extinction ratio of the target phase-sensitive optical amplifier is determined to be 20 dB or more.
  • the complex amplitude value of the output signal light when the phase of the input signal light coincides with the orthogonal component when a circle having a radius of the complex amplitude value is drawn on the complex plane with the origin as the center Is set such that the intensity of the pump light, the nonlinear constant, the propagation length, and the dispersion value of the nonlinear medium are within the circle, and the nonlinear constant, the propagation length, and the intensity of the pump light are set.
  • a phase-sensitive optical amplifier characterized by having a product of less than 1.7 rad.
  • ⁇ 3> The phase-sensitive light according to any one of ⁇ 1> to ⁇ 2>, wherein the nonlinear medium is a nonlinear optical fiber whose nonlinear constant ⁇ satisfies the following formula: ⁇ > 5 [1 / W / km] amplifier.
  • ⁇ 4> The phase sensitive optical amplifier according to any one of ⁇ 1> to ⁇ 3>, wherein the nonlinear medium is a nonlinear optical fiber including quartz glass.
  • ⁇ 5> The phase response according to any one of ⁇ 1> to ⁇ 4>, further including pump light intensity adjustment means for adjusting light intensity of pump light input to any one of the combined light generation means and the nonlinear medium.
  • Type optical amplifier The phase-sensitive light according to any one of ⁇ 1> to ⁇ 2>, wherein the nonlinear medium is a nonlinear optical fiber whose nonlinear constant ⁇ satisfies the following formula: ⁇ > 5 [1 / W / km] amplifier.
  • ⁇ 4> The phase sensitive optical
  • Pump light generating means for generating pump light that is two continuous lights having different frequencies, signal light that is input as light whose center frequency matches an intermediate frequency of the two continuous lights, and the pump light
  • Combined light generating means for generating combined light
  • phase difference adjusting means for adjusting the relative phase difference between the signal light and the pump light of the combined light, and the combined light whose relative phase difference has been adjusted.
  • a phase-sensitive optical amplifier having a nonlinear medium that generates a parametric process by inputting wave light, and radiates a complex amplitude value of the output signal light of the phase-sensitive optical amplifier determined by a target gain extinction ratio.
  • the complex amplitude value of the output signal light when the phase of the input signal light coincides with a quadrature component is included in the circle.
  • a design method of a phase sensitive optical amplifier wherein the intensity of the pump light and a nonlinear constant, a propagation length, and a dispersion value of the nonlinear medium are set.
  • phase sensitive optical amplifier according to any one of ⁇ 1> to ⁇ 5>, a phase adjustment signal generating unit that generates a phase adjustment signal and inputs the phase adjustment signal to the phase sensitive optical amplifier, An output signal light monitor that monitors the output signal light output from the phase sensitive optical amplifier and inputs a feedback signal to the phase adjustment signal generating means, and suppresses phase noise of the input BPSK signal light And outputting to the outside, a BPSK signal phase noise suppressor.
  • BPSK signal phase noise suppressor according to ⁇ 7>, and an amplitude stabilizer that converges the amplitude of the output signal light output from the BPSK signal phase noise suppressor to a constant value
  • a BPSK signal regenerator that outputs BPSK signal light in which phase noise and amplitude noise of BPSK signal light input as signal light are suppressed to the outside.
  • the first BPSK signal regenerator and the second BPSK signal regenerator configured by the BPSK signal regenerator described in ⁇ 8> above, and the QPSK signal light input as signal light branched into two And an input signal light branching means for outputting the branched light to the first BPSK signal regenerator and the second BPSK signal regenerator one by one, and the QPSK signal light
  • a QPSK signal demultiplexer characterized in that it is separated into two BPSK signal lights output from the first BPSK signal regenerator and the second BPSK signal regenerator and outputs them.
  • BPSK signal multiplexing means for generating one output QPSK signal light, and outputting the output QPSK signal light, in which noise of the QPSK signal light input as signal light is suppressed, to the outside A characteristic QPSK signal regenerator.
  • the phase-sensitive optical amplifier capable of solving the above-described problems in the prior art, obtaining a large gain extinction ratio with a small nonlinear effect, and efficiently suppressing phase noise, and its A design method, and a BPSK signal phase noise suppressor, a BPSK signal regenerator, a QPSK signal demultiplexer, and a QPSK signal regenerator using the phase sensitive optical amplifier can be provided.
  • phase sensitive optical amplifier The phase sensitive optical amplifier of the present invention will be described with reference to the drawings. First, referring to FIG. 2 again, a basic configuration example of the phase sensitive optical amplifier of the present invention will be described.
  • ⁇ Pump light generating means When the input signal light 1 is input to the PSA 100 by signal light input means (not shown) (arbitrary light source, BPSK signal generation means, QPSK signal generation means, etc.), a part is branched and input to the pump light generation means 10. .
  • An optical coupler (not shown) or the like is used for branching the input signal light 1.
  • the pump light generation means 10 generates continuous light having a single frequency synchronized with the input signal light 1 using, for example, a laser diode having an injection locking mechanism as a light source. By optically modulating the continuous light at a certain frequency ⁇ f, an optical frequency comb having a frequency interval of ⁇ f is generated.
  • the pump light (comb 1 and comb 2) composed of two continuous lights having different frequencies can be obtained. Further, due to the relationship between the input signal light 1 and the pump light, the center frequency of the input signal light 1 coincides with an intermediate frequency between the two continuous lights.
  • FIG. 3 is a conceptual diagram showing the frequency arrangement of the input signal light 1 and the pump light.
  • ⁇ f ′ indicates the frequency interval between one comb component of the pump light and the input signal light 1.
  • the pump light generating means used in the present invention is not particularly limited as long as it can generate pump light that is two continuous lights having different frequencies, and is not limited to the above configuration example.
  • the signal light input means is not particularly limited as long as it can input signal light having a center frequency that matches an intermediate frequency between the two continuous lights, and is not limited to the above configuration example.
  • each pump light generated by the pump light generation means 10 and the input signal light 1 are combined by a combined light generation means 13 such as an optical coupler to be combined light.
  • the signal light phase adjusting means 12 adjusts the relative phase difference between the input signal light 1 and each pump light generated by the pump light generating means 10, and the input signal light 1 having the adjusted relative phase difference is combined with the input signal light 1. It outputs to the wave light generation means 13.
  • the adjustment of the relative phase difference may be performed either before or after the multiplexing.
  • the pump light generating means 20 and the light intensity adjusting means 21 are used.
  • the signal light phase adjusting means 22 may be arranged so as to adjust the phase of the input signal light 1.
  • the signal light phase adjusting means 22 independently adjusts the phase for each frequency component of the combined pump light and input signal light 1. It must be a means that can be controlled.
  • FIG. 4 is an explanatory diagram showing another configuration example of the PSA, and the PSA 200 is configured in the same manner as the PSA 100 except for the arrangement of the signal light phase adjusting means 22.
  • the relative phase difference is set to varies depending on what kind of PSA operation is performed, and therefore the phase adjustment signal 2 is input from the outside. Thereby, the value of the relative phase difference can be appropriately set according to the purpose.
  • the intensity of each pump light output from the pump light generating means 10 is adjusted by the light intensity adjusting means 11. Further, the light intensity of the input signal light 1 and each of the pump lights output from the signal light phase adjusting means 12 is adjusted by the light intensity adjusting means 14. These light intensity adjusting means 11 and 14 are used, for example, to amplify the intensity of light output from each means, and are constituted by an optical amplifier such as an erbium-doped optical fiber amplifier.
  • the light intensity adjusting means 11 and 14 are not necessarily required when the intensity of light output from each of the means is sufficient. Further, only the light intensity adjusting means 11 may be provided to adjust the intensity of the light of each pump light alone, and only the light intensity adjusting means 14 may be provided and output from the signal light phase adjusting means 12. The light intensity of the input signal light 1 and each pump light may be adjusted. Further, when an optical amplifier such as the erbium-doped optical fiber amplifier is used as the light intensity adjusting means 11 and 14, the light intensity may be adjusted by adjusting the amplification gain, but the amplification gain is a large value instead. And a means for adjusting the light intensity by arranging a variable optical attenuator (VOA) or the like downstream of the light intensity adjusting means 11, 14.
  • VOA variable optical attenuator
  • the input signal light 1 output from the light intensity adjusting means 14 and the combined light of the pump lights are incident on a nonlinear medium 15 such as an optical fiber, where the aforementioned parametric process occurs.
  • a nonlinear medium 15 such as an optical fiber
  • the nonlinear medium 15 is not particularly limited as long as the target GER is obtained, and examples thereof include an optical fiber. Among these, an optical fiber having an anomalous dispersion value is preferable. When the optical fiber having the anomalous dispersion value is used, the target GER can be achieved with an ideal design for practical use of the PSA.
  • the nonlinear medium 15 is not particularly limited, but is preferably a highly nonlinear optical fiber whose nonlinear constant ⁇ satisfies the following equation, ⁇ ⁇ 5 [1 / W / Km]. When the nonlinear constant ⁇ is less than 5, the design width for achieving the target GER is likely to be limited.
  • the highly nonlinear optical fiber containing quartz glass is preferable.
  • the pump light is removed from the signal output from the nonlinear medium 15 by signal light extraction means 16 such as a band pass filter, and only the output signal light 3 in which the gain of the input signal light 1 is amplified is output.
  • the signal light extraction means 16 is not necessarily arranged in the PSA, and may be provided outside the PSA 100, for example.
  • the phase sensitive optical amplifier of the present invention can be constituted by appropriately adopting means other than the means shown in FIG. 2 as long as the effect is not hindered.
  • phase sensitive amplifier has the pump light intensity, the nonlinear constant of the nonlinear medium, the propagation length, and the dispersion value set according to the design principle described below.
  • FIG. 5 shows an experimental system for confirming the principle of PSA operation.
  • the optical pulse generator (OPG) 302 modulates continuous light having a wavelength of 1,561 nm output from the wavelength tunable light source (TLS) 301 to generate an optical frequency comb having a frequency interval of 43 GHz.
  • the bandpass optical filter (OBPF) 303 removes components other than the three frequency comb components centered on the frequency corresponding to the wavelength of 1,561 nm.
  • the three frequency comb components are in phase, and the center frequency comb component is signal light, and the other two comb components are combined into pump light.
  • the frequency difference between the two CWs constituting the pump light is 86 GHz, which is approximately 0.7 nm when converted to a wavelength difference.
  • the light intensity is amplified to an arbitrary value by an erbium-doped optical fiber amplifier (EDFA) 304, and spontaneous emission light noise is removed by OBPF 305.
  • EDFA erbium-doped optical fiber amplifier
  • OBPF spontaneous emission light noise
  • VBS variable band spectrum shaper
  • the phase of the signal light matches either the in-phase component or the quadrature component.
  • the relative phase difference between the signal light and the pump light is adjusted.
  • the light intensity of the signal light and the pump light is again amplified by the EDFA 307 and noise is removed by the OBPF 308, and then input to the highly nonlinear fiber (HNLF) 309 having an anomalous dispersion value.
  • HNLF highly nonlinear fiber
  • the dispersion slope value is 0.03 ps / nm 2 / km or less, and the propagation loss value is 1 dB / km or less.
  • the HNLF 309 used here is a non-perforated fiber in which quartz glass is used as a host glass and germanium is doped at a high concentration in the core.
  • This type of fiber has much smaller propagation loss and connection loss than those using lead glass or bismuth as the material, or those with a perforated shape, and has excellent controllability of dispersion value and dispersion slope. Therefore, it is most suitable for PSA applications.
  • the nonlinear constant is a condition of ⁇ ⁇ 5 [1 / W / km], and it has a great effect on shortening the length and reducing the required incident intensity compared to transmission optical fibers such as SMF and DSF. To do.
  • FIG. 6 shows a spectrum measurement result when setting is performed. 6A shows a spectrum measurement result when the phase of the signal light matches the “in-phase” component, and FIG. 6B shows a spectrum measurement result when the phase of the signal light matches the “quadrature” component. Yes.
  • FIG. 7 shows the input pump light ( ⁇ p1 and ⁇ p2), the input signal light ( ⁇ s), and the primary idler light ( ⁇ pp1 and ⁇ pp2) generated by the pump light-pump light FWM resulting from the parametric process occurring in the fiber.
  • the primary idler light ( ⁇ ps1 and ⁇ ps2) generated by the pump light-signal light FWM is represented on the frequency axis.
  • Conventionally used PSA configurations focus only on parametric processes that occur between input light components indicated by the dotted square frame in FIG. Here, this is called a “three-wave model”, and the existence of idler light components is not recognized.
  • the pump light-pump light FWM and the pump light-signal light FWM are generated. Therefore, a configuration in which the primary idler light component does not grow is required. This is because when the primary idler light component grows, the energy of the pump light is dissipated to those components or even higher order idler light components, and the parametric process grows before the signal light has sufficient amplification gain. Is saturated. On the other hand, it is known that the gain of the idler light is remarkably increased when the fiber for generating the parametric process has an anomalous dispersion value.
  • Non-Patent Document 2 to Non-Patent Document 4 use a fiber having a relatively large normal dispersion value.
  • the idler light component see FIG. 7
  • the attenuation amount of the quadrature component out of the phase components of the signal light has never been considered so far.
  • the large GER is achieved with the small nonlinear phase shift amount.
  • the high efficiency PSA operation obtained as shown in FIG. 6 using the experimental system shown in FIG. 5 is analyzed in consideration of the seven components shown in FIG. Here, this is referred to as a “7-wave model”.
  • the evolution equation for the light intensity P i of each light wave component and the propagation distance z of the phase ⁇ i is given by the following simultaneous ordinary differential equations.
  • the subscripts i, m, n, p, q, and o are the subscripts s, p1, p2, pp1, pp2, ps1, and ps2 of the seven waves shown in FIG. Any one of them, and ⁇ i, m, n, p are
  • represents the propagation constant at the frequency of each component.
  • the subscripts other than i are summed.
  • terms including p, m, and n are caused by non-degenerate FWM.
  • the phase of the input signal light is expressed by the in-phase component or the quadrature component of the PSA 300.
  • the ratio of the intensity of the signal light output to the initial value when matched with the phase is shown by changing the intensity P p of the input pump light.
  • the conditions excluding the input pump light intensity P p are the same as those for obtaining the result of FIG.
  • ⁇ NL it is considered that the same result can be obtained even if different values of ⁇ , P p , and L are used as combinations.
  • dots indicate experimental results
  • solid lines indicate calculation results obtained by solving the equations (1) and (2) in consideration of the seven-wave model
  • dotted lines indicate the three-wave model.
  • the calculation result which solved the said Formula (1) and the said Formula (2) in consideration of is shown.
  • the vertical axis takes a positive value, it indicates that the signal light is amplified with respect to the initial value, and the phase of the input signal light is made to coincide with the phase of the in-phase component of the PSA.
  • the vertical axis takes a negative value, it indicates that the signal light has attenuated with respect to the initial value, and the phase of the input signal light matches the phase of the orthogonal component of the PSA.
  • the difference between the result in the “in-phase” case and the result in the “quadrature” case means the GER at that ⁇ NL.
  • FIG. 9 shows how the complex amplitude of light develops on the complex plane.
  • each point indicated by a square and a circle corresponds to the case of the in-phase (square) and the orthogonal (circle), respectively, and indicates a value obtained by changing ⁇ NL every 0.1 rad.
  • the dispersion value of the fiber is set to zero.
  • the phase rotates around the vicinity of the origin, which is due to the self-phase modulation of the signal light itself and the mutual phase modulation from other components.
  • ⁇ NL 0.9 [rad]
  • the amplitude of the signal light is closest to the origin, and the GER at this time is 32 dB, which is the maximum in the calculation result.
  • the parameters of the PSA are determined so that the curve indicating the development of the complex amplitude of the signal light passes through the origin, the infinite GER can be obtained in principle at the parameters at the origin. It is predicted.
  • the present invention provides an optimum design method of the PSA based on this prediction.
  • a design method for obtaining a large GER by optimizing the dispersion value of the fiber and the nonlinear phase shift amount ⁇ NL will be described.
  • FIG. 10 shows how the complex amplitude of the signal light develops when the dispersion value of the fiber is changed. Specifically, the phase of the input signal light is changed to the phase of the orthogonal component. , The state in which the complex amplitude of the output signal light develops with respect to ⁇ NL every 0.1 rad from 0 to 1.4 rad is calculated using the expressions (1) and (2). The result calculated by the 7-wave model is shown. However, when the dispersion value of the fiber constituting the PSA is changed in four ways, and the square, circle, rhombus, and triangle points are -0.208 ps / nm / km (square), 0 ps, respectively.
  • the wavelength difference of the pump light is set to 3.5 nm.
  • the state of development of the complex amplitude of the output signal light can be understood from the nonlinear phase shift amount ⁇ NL and the dispersion value of the fiber.
  • the dispersion value is set to 0.208 ps / nm / km (diamonds) in the anomalous dispersion region and the nonlinear phase shift amount ⁇ NL is set to 0.9 rad
  • the GER can be set to the maximum value of 42 dB. That is, by considering the seven-wave model that allows the idler light, the PSA can be designed to achieve a very large GER under a considerably small amount of the nonlinear phase shift.
  • the input light intensity can be reduced, the fiber length can be shortened, and further the nonlinear constant of the fiber can be reduced.
  • the fiber having the anomalous dispersion value (dispersion value is greater than 0) that actively uses the idler light is adopted as the fiber, the intensity attenuation, self-phase modulation, and cross-phase modulation are used.
  • a moderate anomalous dispersion effect is exerted on both of the phase shift amounts due to the above, and the complex amplitude can be developed so that the balance between the two is balanced and, as a result, approaches the origin most (the diamond points in FIG. 10).
  • a preferable upper limit value of the anomalous dispersion value can be about 0.4 ps / nm / km.
  • the desired GER value when the desired GER value is given, it is possible to design the setting parameters of the intensity of the pump light, the nonlinear constant of the nonlinear medium, the propagation length, and the dispersion value with a range.
  • the ⁇ NL when the ⁇ NL is larger than 0.6 rad, the amplification gain of the output signal light when the phase of the input signal light is the same phase is substantially constant with respect to the ⁇ NL. Therefore, the GER in this case is determined by the attenuation amount of the output signal light when the phase of the input signal light is orthogonal.
  • a circle having a radius of the amplitude of the output signal light corresponding to the desired GER value can be drawn with the origin at the center in FIG.
  • the PSA operation is performed using the equations (1) and (2).
  • the dispersion value and the nonlinear phase shift amount ⁇ NL at that time give the desired GER Obtained as a design parameter.
  • the dispersion value and the nonlinear phase shift amount ⁇ NL are determined in this way, design parameters having a certain range can be obtained, which is advantageous when manufacturing the phase sensitive optical amplifier.
  • the frequency difference between two frequency combs forming the pump light is 430 GHz
  • the target GER value is set to 20 dB
  • ⁇ 0.52 ps / nm / km to 1.04 ps / nm /
  • an object of the phase sensitive optical amplifier is to achieve a large GER with a small nonlinear phase shift amount ⁇ NL. Therefore, the GER value is at least 20 dB, preferably 25 dB or more, and more preferably 30 dB or more. Furthermore, the nonlinear phase shift amount ⁇ NL for achieving the GER is preferably less than 1.7 rad and less than 1 rad.
  • the GER and the non-linear phase shift amount necessary for determining whether or not the complex amplitude value falls within the circle with respect to the non-linear phase shift amount within a certain range are as follows from the actual system of the PSA. Can be confirmed. That is, the signal light whose phase is adjusted to match that of the in-phase component or the quadrature component of the PSA is input, the intensity of the output signal light is measured, and the ratio of these is taken to obtain the GER value. Get the value.
  • the nonlinear phase shift amount is calculated by measuring the nonlinear constant ⁇ and length L of the optical fiber being used and the intensity P p of the input pump light.
  • the phase-sensitive optical amplifier design method of the present invention includes pump light generating means for generating pump light that is two continuous lights having different frequencies, and light whose center frequency matches the intermediate frequency between the two continuous lights.
  • Combined light generating means for combining the input signal light and the pump light to generate combined light; and a phase difference adjusting means for adjusting a relative phase difference between the signal light of the combined light and the pump light;
  • a phase-sensitive optical amplifier having a non-linear medium for generating a parametric process by inputting the combined light, the relative phase difference of which is adjusted, and being determined by a target gain extinction ratio
  • phase sensitive amplifier of the present invention can be applied to the pump light generating means, the combined light generating means, the phase difference adjusting means, and the nonlinear medium.
  • the phase sensitive amplifier of the present invention also describes details of a method for setting the intensity of the pump light in consideration of the complex amplitude value of the output signal light and the nonlinear constant, propagation length, and dispersion value of the nonlinear medium.
  • the matters described as the design principle can be applied.
  • the method for designing the phase sensitive optical amplifier can be applied to any of the phase sensitive optical amplifiers having the basic configuration of the phase sensitive optical amplifier (see, for example, FIG. 2 and FIG. 4). Unlike the description in the amplifier, the target GER and the nonlinear phase shift amount set when the GER is determined are not limited.
  • the set value of GER is preferably 20 dB or more, more preferably 25 dB or more, and particularly preferably 30 dB or more. Further, the value of the nonlinear phase shift amount ⁇ NL is preferably less than 1.7 rad, and more preferably less than 1 rad.
  • phase sensitive optical amplifier of the present invention By using the phase sensitive optical amplifier of the present invention, phase noise of a BPSK (binary phase shift keying) signal can be suppressed.
  • a BPSK signal phase noise suppressor and a BPSK signal regenerator using the phase sensitive optical amplifier of the present invention will be described below.
  • FIG. 11 shows a configuration example of a BPSK signal phase noise suppressor and a BPSK signal regenerator according to the present invention.
  • the BPSK signal phase noise suppressor 30 includes a PSA 100, phase adjustment signal generation means 32, and a signal light monitor 33.
  • the input BPSK signal light 31 is input to the PSA 100 from the outside, and is also generated from the phase adjustment signal generating means 32 by the input BPSK signal light 31 and the pump light generating means 10 of the PSA 100 (see FIG. 2).
  • a phase adjustment signal for adjusting a relative phase difference with each pump light is input.
  • the signal light monitor 33 monitors the output signal light and feeds it back to the phase adjustment signal generating means. Input the signal.
  • feedback control is performed so that the feedback signal is supplied to the PSA 100 as the phase adjustment signal that most amplifies the output signal light. That is, control is performed so that the phase of the input BPSK signal light 31 matches the phase of the in-phase component of the PSA 100.
  • the phase noise corresponding to the quadrature component of the PSA 100 is suppressed, and the desired output BPSK signal light 34 can be output from the BPSK signal phase noise suppressor 30 through the feedback-controlled PSA 100.
  • the BPSK signal regenerator 50 stabilizes it and outputs it. That is, the BPSK signal regenerator 50 includes a BPSK signal phase noise suppressor 30 and an amplitude stabilizer 51 that converges the amplitude of the output BPSK signal light 34 to a constant value.
  • the amplitude stabilizer 51 a known amplitude stabilizer using a parametric process generated in an optical fiber can be appropriately adopted and used.
  • the output BPSK signal light 52 in which the noise in the amplitude direction is further suppressed is obtained by the amplitude stabilizer 51 with respect to the output BPSK signal light 34 in which the noise in the phase direction is suppressed. Therefore, as a result, the noise of the input signal BPSK signal light 31 can be suppressed in both the amplitude direction and the phase direction.
  • phase sensitive optical amplifier of the present invention Furthermore, by using the phase sensitive optical amplifier of the present invention, it is possible to demultiplex QPSK (quaternary phase shift keying) signal light into two BPSK signals as they are and to suppress phase noise.
  • QPSK signal demultiplexer and a QPSK signal regenerator using the phase sensitive optical amplifier of the present invention will be described below.
  • FIG. 12 shows a configuration example of the QPSK signal demultiplexer according to the present invention.
  • This QPSK signal demultiplexer is configured as a QPSK signal demultiplexer that converts QPSK signal light into two BPSK signal lights.
  • the QPSK signal demultiplexer 70 includes an input signal light branching unit that branches the input QPSK signal light 71 into two parts, a first BPSK signal regenerator 50A, and a second BPSK signal regenerator 50B.
  • the BPSK signal regenerator of the present invention is used for each of these BPSK signal regenerators.
  • a 3 dB optical coupler or the like can be applied as the input signal light branching means.
  • the input QPSK signal light 71 When the input QPSK signal light 71 is input from the outside to the QPSK signal demultiplexer 70, the input QPSK signal light 71 is branched into two by the input signal light branching means (not shown), and the first split light is the first light.
  • the signals are input to the BPSK signal regenerator 50A and the second BPSK signal regenerator 50B, respectively.
  • the input QPSK signal light 71 is obtained by combining the I channel and the Q channel as phase components.
  • the I channel of the input QPSK signal light is converted to the PSA 100 (see FIGS. 2 and 11).
  • the Q channel of the input QPSK signal light 71 is adjusted to match the in-phase component of the PSA 100.
  • each of the I channel and Q channel of the input QPSK signal light 71 is output BPSK signal light (first output BPSK signal light 52A and second output BPSK signal light 52B) in a state where noise is suppressed. Demultiplexed and output.
  • two BPSK signal phase noise suppressors 30 shown in FIG. 11 are prepared, and these are used as the first BPSK signal phase noise suppressor and the second BPSK signal. It may be configured as a phase noise suppressor.
  • FIG. 13 shows a configuration example of a QPSK signal regenerator.
  • the QPSK signal regenerator 90 includes a QPSK signal demultiplexer 70 and a BPSK signal multiplexing unit 91 shown in FIG.
  • the BPSK signal multiplexing means 91 multiplexes the two output BPSK signal lights output from the QPSK signal demultiplexer 70 so that the relative phase difference between them is 90 degrees.
  • the BPSK signal multiplexing unit 91 converts the two output BPSK signal lights whose noises are suppressed by the QPSK signal demultiplexer 70 from the first output BPSK signal light 52A whose relative phase difference is 90 degrees and the first output BPSK signal light 52A. 2 output BPSK signal light 52B.
  • an output QPSK signal light 92 in which noise is suppressed in both the amplitude direction and the phase direction with respect to the original input QPSK signal light 71 is obtained.
  • This configuration is proposed in Non-Patent Document 5, but can be realized under more practical and highly efficient design parameters by using the phase sensitive optical amplifier of the present invention. .
  • the first BPSK signal regenerator 50A and the second BPSK signal regenerator 90 are obtained.
  • two BPSK signal phase noise suppressors 30 shown in FIG. 11 are prepared and arranged as a first BPSK signal phase noise suppressor and a second BPSK signal phase noise suppressor. Good.

Abstract

[Problem] To obtain a large gain-extinction ratio with a small nonlinear effect. [Solution] This phase-sensitive amplifier comprises: a pump beam emission means; a multiplexed beam emission means for multiplexing an inputted signal beam with the pump beam and emitting a multiplexed beam; a phase difference adjustment means for adjusting a relative phase difference between the signal beam and the pump beam; and a nonlinear medium which receives the relatively phase difference adjusted multiplexed beam and causes a parametric process. When a circle is drawn in a complex plane with the origin in the center, said circle having a radius which is a complex amplitude of an output signal beam of the phase-sensitive amplifier in which a target gain-extinction ratio is established to be 20dB or more, the intensity of the pump beam, and a nonlinear constant, a propagation length, and a distribution value of the nonlinear medium, are set such that the complex amplitude of the output signal beam when the phase of the input signal matches a quadrature component is contained in the circle, and the product of the nonlinear constant, the propagation length, and the intensity of the pump beam is less than 1.7rad.

Description

位相感応型光増幅器及びその設計方法、並びに、該位相感応型光増幅器を用いたBPSK信号位相雑音抑圧器、BPSK信号再生器、QPSK信号逆多重器及びQPSK信号再生器Phase sensitive optical amplifier and design method thereof, and BPSK signal phase noise suppressor, BPSK signal regenerator, QPSK signal demultiplexer and QPSK signal regenerator using the phase sensitive optical amplifier
 本発明は、光ファイバ通信システムなどに利用可能な位相感応型光増幅器及びその設計方法、並びに、該位相感応型光増幅器を用いたBPSK信号位相雑音抑圧器、BPSK信号再生器、QPSK信号逆多重器及びQPSK信号再生器に関する。 The present invention relates to a phase-sensitive optical amplifier that can be used in an optical fiber communication system and the like, a design method thereof, a BPSK signal phase noise suppressor, a BPSK signal regenerator, and a QPSK signal demultiplexing using the phase-sensitive optical amplifier. And a QPSK signal regenerator.
 位相変調信号光に生じた位相雑音を除去するために、位相感応型光増幅器(Phase-Sensitive Amplifier;PSA)の検討が進められている。PSAでは、ポンプ光と信号光を合波して光ファイバ等の非線形媒体に入射し、そこで生じるパラメトリックプロセスを利用する。
 前記パラメトリックプロセスとは、合波して前記非線形媒体に入射された前記ポンプ光と前記信号光が、前記非線形媒体を伝搬する際に生じるカー効果等の非線形効果によって、四光波混合(Four-wave mixing;FWM)という現象を通じてエネルギーを互いにやりとりするプロセスである。
 前記パラメトリックプロセスでは、前記ポンプ光と前記信号光からアイドラ光が発生するが、前記アイドラ光の位相は、入射時の前記信号光及び前記ポンプ光の位相に依存する。前記アイドラ光と前記信号光の周波数が等しくなるように前記PSAの設計を行った場合、元から存在していた前記信号光と、新たに発生したアイドラ光が互いに干渉する。その結果、前記信号光の得る利得が、前記非線形媒体入射時における前記ポンプ光と前記信号光の相対位相差に依存することになり、前記信号光をその位相状態に応じて増幅あるいは減衰させるための信号処理に用いることが可能となる。
In order to remove the phase noise generated in the phase-modulated signal light, a phase-sensitive optical amplifier (PSA) has been studied. In PSA, pump light and signal light are combined and incident on a nonlinear medium such as an optical fiber, and a parametric process generated there is used.
The parametric process is a four-wave mixing (Four-wave mixing) due to a nonlinear effect such as a Kerr effect generated when the pump light and the signal light combined and incident on the nonlinear medium propagate through the nonlinear medium. It is a process of exchanging energy through a phenomenon called mixing (FWM).
In the parametric process, idler light is generated from the pump light and the signal light. The phase of the idler light depends on the phase of the signal light and the pump light at the time of incidence. When the PSA is designed so that the frequencies of the idler light and the signal light are equal, the signal light that originally existed and the newly generated idler light interfere with each other. As a result, the gain obtained by the signal light depends on the relative phase difference between the pump light and the signal light when the nonlinear medium is incident, and the signal light is amplified or attenuated according to the phase state. Can be used for the signal processing.
 PSAにはいくつかの形態が存在するが、周波数の異なる2つの連続光(Continuous Wave;CW)を前記ポンプ光とし、これらポンプ光と、中心周波数を前記2つのポンプ光の周波数の平均値に一致させた前記信号光とを、光ファイバ等の非線形媒体に入射して、そこで生じる前記パラメトリックプロセスを用いる構成がしばしば用いられる(非特許文献1~4)。ここでは、この構成のPSA(Dual-Pump PSA;DP-PSAとも呼ばれる)にのみ着目し、以降は単にPSAと呼ぶ。 There are several forms of PSA, but two continuous lights (Continuous Wave; CW) having different frequencies are used as the pump light, and the pump light and the center frequency are set to an average value of the frequencies of the two pump lights. A configuration in which the matched signal light is incident on a nonlinear medium such as an optical fiber and the parametric process generated there is often used (Non-Patent Documents 1 to 4). Here, only the PSA (Dual-Pump PSA; also referred to as DP-PSA) having this configuration is focused, and hereinafter simply referred to as PSA.
 前記PSAを用いると、前記信号光の位相成分のうち、ある成分が増幅され、一方その成分と直交位相関係を持つ成分が減衰する。この様子を詳しく述べるため、図1(a)に複素平面上に位相が90度ずつずれた4つの信号複素振幅を示す。Reと示された実軸は、前記信号光と前記ポンプ光を前記非線形媒体に入射する際、PSA出力後の前記信号光の増幅利得が最も大きくなるように、前記信号光と前記ポンプ光の初期相対位相差を選んだ場合に、前記信号光の位相が0あるいはπとなるように設定されたものである。
 即ち、図1(a)に示された4つの信号のうち、実軸上に位置する2つの信号成分は、前記PSAによる増幅利得が最大になる成分である。このような位相成分を、以下では「同相」成分という。これに対して、図1(a)でImと示された虚軸は、「同相」の場合の前記信号光と位相が90度ずれていることを意味し、この軸上にある2つの信号成分は、前記PSAによって減衰する成分である。以下ではこれを「直交」成分という。前記信号光の任意の位相成分は、前記同相成分と前記直交成分に分解することができ、前者は増幅利得を得る一方、後者は減衰することになる。一例として、図1(b)に示された信号の同相成分が増幅され、直交成分が減衰した結果、図1(c)に示すような信号が前記PSAの出力信号として得られる。
 二値位相シフトキーイング(BPSK)変調の場合、変調信号の位相が前記PSAにおける「同相」成分となるように、前記ポンプ光と前記信号光の初期相対位相差を調整することで、「直交」成分に相当する位相雑音を抑圧することができる。
When the PSA is used, a certain component of the phase components of the signal light is amplified, while a component having a quadrature phase relationship with the component is attenuated. In order to describe this situation in detail, FIG. 1A shows four signal complex amplitudes whose phases are shifted by 90 degrees on the complex plane. The real axis indicated by Re indicates that when the signal light and the pump light are incident on the nonlinear medium, the amplification gain of the signal light after the PSA output is maximized. When the initial relative phase difference is selected, the phase of the signal light is set to be 0 or π.
That is, of the four signals shown in FIG. 1A, two signal components located on the real axis are components that maximize the amplification gain by the PSA. Such a phase component is hereinafter referred to as an “in-phase” component. On the other hand, the imaginary axis shown as Im in FIG. 1A means that the signal light is 90 degrees out of phase with the signal light in the case of “in-phase”, and two signals on this axis. The component is a component that is attenuated by the PSA. Hereinafter, this is referred to as an “orthogonal” component. An arbitrary phase component of the signal light can be decomposed into the in-phase component and the quadrature component, and the former obtains an amplification gain, while the latter attenuates. As an example, as a result of amplification of the in-phase component of the signal shown in FIG. 1B and attenuation of the quadrature component, a signal as shown in FIG. 1C is obtained as an output signal of the PSA.
In the case of binary phase shift keying (BPSK) modulation, “orthogonal” is obtained by adjusting the initial relative phase difference between the pump light and the signal light so that the phase of the modulation signal becomes an “in-phase” component in the PSA. Phase noise corresponding to the component can be suppressed.
 図2にPSAの代表的な構成例を示し、以下にその動作を述べる。
 入力信号光1がPSA100に入力されると、その一部が分岐されてポンプ光発生手段10に入力される。
 ポンプ光発生手段10では、周波数の異なる2つの連続光からなるポンプ光を発生させる。
 これらのポンプ光は、第1の光強度調整手段11によって光強度が調整されて出力される。また、入力信号光1は、信号光位相調整手段12に入力され、入力信号光1と前記ポンプ光との相対位相差が調整されて出力される。前記相対位相差をいかなる値に設定するかは、どのようなPSA動作をさせるかによって変化するため、外部より位相調整用信号2が入力されるものとするが、あらかじめ動作が規定されたPSAでは、位相調整用信号2を発生させる手段がPSA100の内部に設置されていてもよいし、あるいは位相調整用信号2が存在せず、信号光位相調整手段12の位相調整量がある値に固定されている構成でもよい。
 こうして出力される前記ポンプ光と入力信号光1とは、光カプラなどの合波光発生手段13によって合波される。合波された合波光は、第2の光強度調整手段14により光強度が調整されて出力される。
 光強度の調整された前記合波光は、光ファイバなどの非線形媒体15に入射され、そこで前記パラメトリックプロセスが生じる。このとき、図1(a)~(c)に示すように、入力信号光1の位相成分のうち、前記同相成分が増幅され、前記直交成分は減衰する。
 最後に、非線形媒体15から出力された信号から、帯域通過フィルタ等の信号光抽出手段16によって、前記ポンプ光が除去されて出力信号光3のみが出力される。
 従来知られているPSAは、おおむね図2の構成を念頭に置いて原理確認が行われた例、あるいは実際それに近い構成で動作した例である。非特許文献2ではPSAの動作原理が実験的に確認され、非特許文献3,4ではおおむね図2の構成にもとづいた前記PSAが用いられ、位相変調信号光の位相雑音低減効果が実験的に確認されている。なお、ここでは、非線形媒体15として光ファイバのみを考えている。
FIG. 2 shows a typical configuration example of the PSA, and its operation will be described below.
When the input signal light 1 is input to the PSA 100, a part of the input signal light 1 is branched and input to the pump light generation means 10.
The pump light generating means 10 generates pump light composed of two continuous lights having different frequencies.
These pump lights are output with the light intensity adjusted by the first light intensity adjusting means 11. Further, the input signal light 1 is input to the signal light phase adjusting means 12, and the relative phase difference between the input signal light 1 and the pump light is adjusted and output. Since what value the relative phase difference is set changes depending on what PSA operation is performed, the phase adjustment signal 2 is input from the outside. However, in the PSA whose operation is specified in advance, The means for generating the phase adjustment signal 2 may be installed inside the PSA 100, or the phase adjustment signal 2 does not exist and the phase adjustment amount of the signal light phase adjustment means 12 is fixed to a certain value. The structure which is may be sufficient.
The pump light and input signal light 1 output in this way are combined by a combined light generating means 13 such as an optical coupler. The combined light is output after the light intensity is adjusted by the second light intensity adjusting means 14.
The combined light whose light intensity is adjusted is incident on a nonlinear medium 15 such as an optical fiber, where the parametric process occurs. At this time, as shown in FIGS. 1A to 1C, among the phase components of the input signal light 1, the in-phase component is amplified and the quadrature component is attenuated.
Finally, the pump light is removed from the signal output from the nonlinear medium 15 by the signal light extraction means 16 such as a band pass filter, and only the output signal light 3 is output.
Conventionally known PSA is an example in which the principle is confirmed with the configuration shown in FIG. 2 in mind, or an example in which the PSA is actually operated. In Non-Patent Document 2, the operating principle of PSA is experimentally confirmed, and in Non-Patent Documents 3 and 4, the PSA based on the configuration of FIG. 2 is generally used, and the effect of reducing phase noise of phase-modulated signal light is experimentally determined. It has been confirmed. Here, only an optical fiber is considered as the nonlinear medium 15.
 前記PSAを動作させるにあたって重要な指標となるのは、前記信号光の位相成分のうち前記同相成分の増幅利得と前記直交成分の減衰量の比であり、これを利得消光比(Gain-Extinction Ratio;GER)という。前記GERが大きい場合、前記同相成分に対する前記直交成分が相対的に小さくなることから、位相変調信号に対する位相雑音の除去という所望の目的を達成することができる。
 従来知られている技術では、前記PSAを構成する際に前記同相成分の増幅利得をできるだけ大きくするよう設計することで、相対的に前記直交成分が小さくなって、結果的に前記GERを大きくする方法が採られてきた。
 ただし、前記PSAにおいて、前記同相成分の増幅利得を大きくするためには、前記ポンプ光の光強度を極端に大きくするなど、前記パラメトリックプロセスの程度を極めて大きくする必要がある。
 実際、このような設定を行った非特許文献3によると、30dBという大きな前記GERが達成されているが、前記ポンプ光の光強度は32.5dBmという大きな値であり、このように大きな光強度は実用化に向けて大きな障害となっている。
An important index for operating the PSA is the ratio between the amplification gain of the in-phase component and the attenuation amount of the quadrature component of the phase components of the signal light, and this is the gain extinction ratio (Gain-Extension Ratio). GER). When the GER is large, the quadrature component with respect to the in-phase component becomes relatively small, so that the desired purpose of removing phase noise from the phase modulation signal can be achieved.
In the conventionally known technology, by designing the PSA so as to increase the amplification gain of the in-phase component as much as possible, the quadrature component becomes relatively small and consequently the GER is increased. A method has been adopted.
However, in the PSA, in order to increase the amplification gain of the in-phase component, it is necessary to extremely increase the degree of the parametric process such as extremely increasing the light intensity of the pump light.
Actually, according to Non-Patent Document 3 in which such a setting is made, the GER as large as 30 dB is achieved, but the light intensity of the pump light is as large as 32.5 dBm, and thus such a large light intensity. Has become a major obstacle to commercialization.
 ところで、ファイバにおける前記パラメトリックプロセスの発現量を示す指標として、非線形位相シフト量φNLを用いることができる。φNLは、次式、φNL=γPLで与えられる。ただし、γ及びLはそれぞれ、前記パラメトリックプロセスを発生させるための前記ファイバの非線形定数及び実効長(伝搬長)であり、Pはポンプ光を前記ファイバに入力する際の強度である。
 非特許文献3に開示される設定では、前記非線形媒体として前記非線形定数がγ=1.1[1/W/m]、長さが5.64m、伝搬損失が1.4dB/m、通常ファイバとの融着損失が片端1.5dBという光ファイバを使用しており、非線形効果に対する実効長Lは、L=2.60mである。30dBという大きな前記GERを得るために用いたポンプ光の強度は32.5dBmであり、融着損失を考慮した結果、前記光ファイバへ実際に入力された光の強度Pは、P=31dBm、即ち、1.26Wであるから、このときの前記非線形位相シフト量φNLは、φNL=γPL=3.6radと見積もられる。同様に、20dBの前記GERを得るためのポンプ光強度は29.2dBmであり、融着損失を考慮した結果、前記ファイバへ実際に入力された光の強度Pは、P=27.7dBm、即ち、0.59Wであるから、このときの前記非線形位相シフト量φNLは、φNL=γPL=1.7radと見積もられる。
 前記ポンプ光の強度Pを減少させたうえで同じPSA動作を実現するためには、前記光ファイバの前記非線形定数γと前記長さLの片方あるいは両方を増加させる必要があり、コスト増につながるため問題である。即ち、小さな前記非線形位相シフト量φNLで大きな前記GERが実現されなければならない。
Incidentally, the nonlinear phase shift amount φNL can be used as an index indicating the amount of the parametric process in the fiber. φNL is given by the following equation: φNL = γP p L Where γ and L are the nonlinear constant and effective length (propagation length) of the fiber for generating the parametric process, respectively, and P p is the intensity when pump light is input to the fiber.
In the setting disclosed in Non-Patent Document 3, as the nonlinear medium, the nonlinear constant is γ = 1.1 [1 / W / m], the length is 5.64 m, the propagation loss is 1.4 dB / m, and a normal fiber. An optical fiber having a fusion loss of 1.5 dB at one end is used, and the effective length L for the non-linear effect is L = 2.60 m. The intensity of the pump light used to obtain the large GER of 30 dB is 32.5 dBm. As a result of considering the fusion loss, the intensity P p of the light actually input to the optical fiber is P p = 31 dBm. That is, since it is 1.26 W, the nonlinear phase shift amount φNL at this time is estimated as φNL = γP p L = 3.6 rad. Similarly, the pump light intensity for obtaining the GER of 20 dB is 29.2 dBm, and as a result of considering the fusion loss, the light intensity P p actually input to the fiber is P p = 27.7 dBm. That is, since it is 0.59 W, the nonlinear phase shift amount φNL at this time is estimated as φNL = γP p L = 1.7 rad.
In order to realize the same PSA operation while reducing the intensity P p of the pump light, it is necessary to increase one or both of the nonlinear constant γ and the length L of the optical fiber, which increases the cost. It is a problem because it connects. That is, the large GER must be realized with the small nonlinear phase shift amount φNL.
 本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、小さな非線形効果で大きな利得消光比が得られ、位相雑音を効率的に抑圧することが可能な位相感応型光増幅器及びその設計方法、並びに、該位相感応型光増幅器を用いたBPSK信号位相雑音抑圧器、BPSK信号再生器、QPSK信号逆多重器及びQPSK信号再生器を提供することを目的とする。 This invention makes it a subject to solve the said various problems in the past and to achieve the following objectives. That is, the present invention uses a phase sensitive optical amplifier capable of obtaining a large gain extinction ratio with a small nonlinear effect and efficiently suppressing phase noise, a design method thereof, and the phase sensitive optical amplifier. It is an object of the present invention to provide a BPSK signal phase noise suppressor, a BPSK signal regenerator, a QPSK signal demultiplexer, and a QPSK signal regenerator.
 前記課題を解決するための手段としては、以下の通りである。即ち、
 <1> 周波数の異なる2つの連続光であるポンプ光を発生させるポンプ光発生手段と、中心周波数が前記2つの連続光の中間の周波数に一致する光として入力される信号光と前記ポンプ光とを合波して合波光を発生する合波光発生手段と、前記信号光と前記ポンプ光との相対位相差を調整する位相差調整手段と、相対位相差が調整された前記合波光を入力してパラメトリックプロセスを発生させる非線形媒体と、を有する位相感応型光増幅器において、目的とする前記位相感応型光増幅器の利得消光比を20dB以上として決定される前記位相感応型光増幅器の出力信号光の複素振幅値を半径とする円を、原点を中心として複素平面上に描いたときに、入力される前記信号光の位相が直交成分に一致する際の前記出力信号光の前記複素振幅値が前記円内に収まるように、前記ポンプ光の強度と、前記非線形媒体の非線形定数、伝搬長及び分散値とが設定されており、かつ、前記非線形定数と前記伝搬長と前記ポンプ光の強度との積が1.7rad未満であることを特徴とする位相感応型光増幅器。
 <2> 非線形媒体が異常分散値を有する光ファイバである前記<1>に記載の位相感応型光増幅器。
 <3> 非線形媒体は、その非線形定数γが次式、γ>5[1/W/km]を満たす非線形光ファイバである前記<1>から<2>のいずれかに記載の位相感応型光増幅器。
 <4> 非線形媒体は、石英ガラスを含む非線形光ファイバである前記<1>から<3>のいずれかに記載の位相感応型光増幅器。
 <5> 更に、合波光発生手段及び非線形媒体のいずれかに入力されるポンプ光の光強度を調整するポンプ光強度調整手段を有する前記<1>から<4>のいずれかに記載の位相感応型光増幅器。
 <6> 周波数の異なる2つの連続光であるポンプ光を発生させるポンプ光発生手段と、中心周波数が前記2つの連続光の中間の周波数に一致する光として入力される信号光と前記ポンプ光とを合波して合波光を発生する合波光発生手段と、前記合波光の前記信号光と前記ポンプ光との相対位相差を調整する位相差調整手段と、相対位相差が調整された前記合波光を入力してパラメトリックプロセスを発生させる非線形媒体と、を有する位相感応型光増幅器に対し、目的とする利得消光比によって決定される前記位相感応型光増幅器の出力信号光の複素振幅値を半径とする円を、原点を中心として複素平面上に描いたときに、入力される前記信号光の位相が直交成分に一致する際の前記出力信号光の前記複素振幅値が前記円内に収まるように、前記ポンプ光の強度と、前記非線形媒体の非線形定数、伝搬長及び分散値とを設定することを特徴とする位相感応型光増幅器の設計方法。
 <7> 前記<1>から<5>のいずれかに記載の位相感応型光増幅器と、位相調整用信号を発生させて前記位相感応型光増幅器に入力する位相調整用信号発生手段と、前記位相感応型光増幅器より出力される出力信号光をモニタして前記位相調整用信号発生手段にフィードバック信号を入力する出力信号光モニタと、を有し、入力されるBPSK信号光の位相雑音を抑圧して外部に出力することを特徴とするBPSK信号位相雑音抑圧器。
 <8> 前記<7>に記載のBPSK信号位相雑音抑圧器と、前記BPSK信号位相雑音抑圧器から出力される出力信号光の振幅を一定値に収束させる振幅安定化器と、を有し、信号光として入力されるBPSK信号光の位相雑音及び振幅雑音が抑圧されたBPSK信号光を外部に出力することを特徴とするBPSK信号再生器。
 <9> 前記<7>に記載のBPSK信号位相雑音抑圧器で構成される、第1のBPSK信号位相雑音抑圧器及び第2のBPSK信号位相雑音抑圧器と、信号光として入力されるQPSK信号光を2つに分岐して、その分岐光を前記第1のBPSK信号位相雑音抑圧器及び前記第2のBPSK信号位相雑音抑圧器に対してどちらか1方ずつ出力する入力信号光分岐手段と、を有し、前記QPSK信号光を前記第1のBPSK信号位相雑音抑圧器及び前記第2のBPSK信号位相雑音抑圧器から出力される2つのBPSK信号光に分離してこれらを出力することを特徴とするQPSK信号逆多重器。
 <10> 前記<8>に記載のBPSK信号再生器で構成される、第1のBPSK信号再生器及び第2のBPSK信号再生器と、信号光として入力されるQPSK信号光を2つに分岐して、その分岐光を前記第1のBPSK信号再生器及び前記第2のBPSK信号再生器に対してどちらか1方ずつ出力する入力信号光分岐手段と、を有し、前記QPSK信号光を前記第1のBPSK信号再生器及び前記第2のBPSK信号再生器から出力される2つのBPSK信号光に分離してこれらを出力することを特徴とするQPSK信号逆多重器。
 <11> 前記<9>から<10>のいずれかに記載のQPSK信号逆多重器と、前記QPSK信号逆多重器から出力される2つのBPSK信号の相対位相差を90度に調整して合波し、1つの出力QPSK信号光を発生させるBPSK信号合波手段と、を有し、信号光として入力されるQPSK信号光の雑音が抑圧された前記出力QPSK信号光を外部に出力することを特徴とするQPSK信号再生器。
Means for solving the problems are as follows. That is,
<1> Pump light generating means for generating pump light that is two continuous lights having different frequencies, signal light that is input as light whose center frequency matches an intermediate frequency of the two continuous lights, and the pump light A combined light generating means for generating a combined light, a phase difference adjusting means for adjusting a relative phase difference between the signal light and the pump light, and the combined light having the adjusted relative phase difference. A phase-sensitive optical amplifier having a non-linear medium for generating a parametric process, wherein a gain extinction ratio of the target phase-sensitive optical amplifier is determined to be 20 dB or more. The complex amplitude value of the output signal light when the phase of the input signal light coincides with the orthogonal component when a circle having a radius of the complex amplitude value is drawn on the complex plane with the origin as the center Is set such that the intensity of the pump light, the nonlinear constant, the propagation length, and the dispersion value of the nonlinear medium are within the circle, and the nonlinear constant, the propagation length, and the intensity of the pump light are set. And a phase-sensitive optical amplifier characterized by having a product of less than 1.7 rad.
<2> The phase sensitive optical amplifier according to <1>, wherein the nonlinear medium is an optical fiber having an anomalous dispersion value.
<3> The phase-sensitive light according to any one of <1> to <2>, wherein the nonlinear medium is a nonlinear optical fiber whose nonlinear constant γ satisfies the following formula: γ> 5 [1 / W / km] amplifier.
<4> The phase sensitive optical amplifier according to any one of <1> to <3>, wherein the nonlinear medium is a nonlinear optical fiber including quartz glass.
<5> The phase response according to any one of <1> to <4>, further including pump light intensity adjustment means for adjusting light intensity of pump light input to any one of the combined light generation means and the nonlinear medium. Type optical amplifier.
<6> Pump light generating means for generating pump light that is two continuous lights having different frequencies, signal light that is input as light whose center frequency matches an intermediate frequency of the two continuous lights, and the pump light Combined light generating means for generating combined light, phase difference adjusting means for adjusting the relative phase difference between the signal light and the pump light of the combined light, and the combined light whose relative phase difference has been adjusted. A phase-sensitive optical amplifier having a nonlinear medium that generates a parametric process by inputting wave light, and radiates a complex amplitude value of the output signal light of the phase-sensitive optical amplifier determined by a target gain extinction ratio. When the circle is drawn on the complex plane with the origin as the center, the complex amplitude value of the output signal light when the phase of the input signal light coincides with a quadrature component is included in the circle. In addition, A design method of a phase sensitive optical amplifier, wherein the intensity of the pump light and a nonlinear constant, a propagation length, and a dispersion value of the nonlinear medium are set.
<7> The phase sensitive optical amplifier according to any one of <1> to <5>, a phase adjustment signal generating unit that generates a phase adjustment signal and inputs the phase adjustment signal to the phase sensitive optical amplifier, An output signal light monitor that monitors the output signal light output from the phase sensitive optical amplifier and inputs a feedback signal to the phase adjustment signal generating means, and suppresses phase noise of the input BPSK signal light And outputting to the outside, a BPSK signal phase noise suppressor.
<8> The BPSK signal phase noise suppressor according to <7>, and an amplitude stabilizer that converges the amplitude of the output signal light output from the BPSK signal phase noise suppressor to a constant value, A BPSK signal regenerator that outputs BPSK signal light in which phase noise and amplitude noise of BPSK signal light input as signal light are suppressed to the outside.
<9> First BPSK signal phase noise suppressor and second BPSK signal phase noise suppressor configured by the BPSK signal phase noise suppressor according to <7>, and a QPSK signal input as signal light Input signal light branching means for splitting the light into two and outputting the branched light to the first BPSK signal phase noise suppressor and the second BPSK signal phase noise suppressor, one by one The QPSK signal light is separated into two BPSK signal lights output from the first BPSK signal phase noise suppressor and the second BPSK signal phase noise suppressor, and these are output. A characteristic QPSK signal demultiplexer.
<10> The first BPSK signal regenerator and the second BPSK signal regenerator configured by the BPSK signal regenerator described in <8> above, and the QPSK signal light input as signal light branched into two And an input signal light branching means for outputting the branched light to the first BPSK signal regenerator and the second BPSK signal regenerator one by one, and the QPSK signal light A QPSK signal demultiplexer characterized in that it is separated into two BPSK signal lights output from the first BPSK signal regenerator and the second BPSK signal regenerator and outputs them.
<11> The relative phase difference between the QPSK signal demultiplexer according to any one of <9> to <10> and two BPSK signals output from the QPSK signal demultiplexer is adjusted to 90 degrees. And BPSK signal multiplexing means for generating one output QPSK signal light, and outputting the output QPSK signal light, in which noise of the QPSK signal light input as signal light is suppressed, to the outside A characteristic QPSK signal regenerator.
 本発明によれば、従来技術における前記諸問題を解決することができ、小さな非線形効果で大きな利得消光比が得られ、位相雑音を効率的に抑圧することが可能な位相感応型光増幅器及びその設計方法、並びに、該位相感応型光増幅器を用いたBPSK信号位相雑音抑圧器、BPSK信号再生器、QPSK信号逆多重器及びQPSK信号再生器を提供することができる。 According to the present invention, the phase-sensitive optical amplifier capable of solving the above-described problems in the prior art, obtaining a large gain extinction ratio with a small nonlinear effect, and efficiently suppressing phase noise, and its A design method, and a BPSK signal phase noise suppressor, a BPSK signal regenerator, a QPSK signal demultiplexer, and a QPSK signal regenerator using the phase sensitive optical amplifier can be provided.
複素平面と、位相が90度ずつずれた4つの信号複素振幅を示す図である。It is a figure which shows four signal complex amplitudes which the phase shifted 90 degree | times from a complex plane. 入力信号光の1例を示す図である。It is a figure which shows one example of input signal light. 入力信号光の同相成分が増幅され、直交成分が減衰された結果、得られる出力信号光を示す図である。It is a figure which shows the output signal light obtained as a result of amplifying the in-phase component of input signal light, and attenuating a quadrature component. 位相感応型光増幅器の基本的な構成を示す図である。It is a figure which shows the basic composition of a phase sensitive type optical amplifier. 入力信号光とポンプ光の周波数配置を示した概念図である。It is the conceptual diagram which showed the frequency arrangement | positioning of input signal light and pump light. PSAの構成例を示す説明図である。It is explanatory drawing which shows the structural example of PSA. PSA動作の原理を確認するための実験系を示す図である。It is a figure which shows the experimental system for confirming the principle of PSA operation | movement. ポンプ光と信号光の相対位相が同相の場合のスペクトル図である。It is a spectrum figure in case the relative phase of pump light and signal light is the same phase. ポンプ光と信号光の相対位相が直交の場合のスペクトル図である。It is a spectrum figure in case the relative phase of pump light and signal light is orthogonal. 周波数軸上における入力ポンプ光、入力信号光、ポンプ光-ポンプ光FWMで発生する一次アイドラ光、ポンプ光-信号光FWMで発生する一次アイドラ光を示す図である。It is a figure which shows the primary idler light generate | occur | produced by the input pump light on the frequency axis, input signal light, the primary idler light generate | occur | produced with pump light-pump light FWM, and pump light-signal light FWM. 非線形位相シフト量φNLに対する信号光の利得量又は減衰量を示す図である。It is a figure which shows the gain amount or attenuation amount of the signal light with respect to nonlinear phase shift amount (phi) NL. 非線形位相シフト量φNLを0から1.4radで変化させた場合の出力信号光の複素振幅が複素平面上で発展する様子を示した図である。It is the figure which showed a mode that the complex amplitude of output signal light developed on a complex plane at the time of changing nonlinear phase shift amount (phi) NL from 0 to 1.4 rad. ファイバの分散値を変化させたときの信号光の複素振幅が発展する様子を示した図である。It is the figure which showed a mode that the complex amplitude of the signal beam | light developed when the dispersion value of a fiber was changed. BPSK信号位相雑音抑圧器及びBPSK信号再生器の構成例を示す図である。It is a figure which shows the structural example of a BPSK signal phase noise suppressor and a BPSK signal regenerator. QPSK信号逆多重器の構成例を示す図である。It is a figure which shows the structural example of a QPSK signal demultiplexer. QPSK信号再生器の構成例を示す図である。It is a figure which shows the structural example of a QPSK signal regenerator.
(位相感応型光増幅器)
 本発明の位相感応型光増幅器について、図を参照しつつ説明する。
 先ず、再び図2を参照して、本発明の位相感応型光増幅器の基本的な構成例を説明する。
(Phase sensitive optical amplifier)
The phase sensitive optical amplifier of the present invention will be described with reference to the drawings.
First, referring to FIG. 2 again, a basic configuration example of the phase sensitive optical amplifier of the present invention will be described.
<ポンプ光発生手段>
 PSA100に図示しない信号光入力手段(任意の光源、BPSK信号発生手段、QPSK信号発生手段等)により入力信号光1が入力されると、一部が分岐されてポンプ光発生手段10に入力される。また、入力信号光1の分岐には、図示しない光カプラなどが用いられる。
 ポンプ光発生手段10では、例えば、インジェクションロッキング機構を持つレーザダイオードなどを光源として、入力信号光1に同期した単一周波数の連続光を発生させる。
 この連続光をある周波数Δfで外部変調することで、周波数間隔がΔfである光周波数コムが生成される。このコム成分のうち、入力信号光1との周波数配置が図3となるような2成分のみを切り出して、ポンプ光とする。これにより、周波数の異なる2つの連続光からなる前記ポンプ光(コム1及びコム2)が得られる。
 また、入力信号光1と前記ポンプ光との関係性から、入力信号光1では、その中心周波数が前記2つの連続光の中間の周波数に一致することとなる。
<Pump light generating means>
When the input signal light 1 is input to the PSA 100 by signal light input means (not shown) (arbitrary light source, BPSK signal generation means, QPSK signal generation means, etc.), a part is branched and input to the pump light generation means 10. . An optical coupler (not shown) or the like is used for branching the input signal light 1.
The pump light generation means 10 generates continuous light having a single frequency synchronized with the input signal light 1 using, for example, a laser diode having an injection locking mechanism as a light source.
By optically modulating the continuous light at a certain frequency Δf, an optical frequency comb having a frequency interval of Δf is generated. Of these comb components, only two components whose frequency arrangement with the input signal light 1 is as shown in FIG. Thus, the pump light (comb 1 and comb 2) composed of two continuous lights having different frequencies can be obtained.
Further, due to the relationship between the input signal light 1 and the pump light, the center frequency of the input signal light 1 coincides with an intermediate frequency between the two continuous lights.
 なお、図3は、入力信号光1と前記ポンプ光の周波数配置を示した概念図であり、該図において、Δf’は前記ポンプ光の1つのコム成分と入力信号光1の周波数間隔を示している。
 また、本発明に用いられるポンプ光発生手段としては、周波数の異なる2つの連続光であるポンプ光を発生可能である限り、特に制限はなく、前記構成例に限定されるものではない。また、前記信号光入力手段についても、中心周波数が前記2つの連続光の中間の周波数に一致する信号光を入力可能である限り、特に制限はなく、前記構成例に限定されるものではない。
FIG. 3 is a conceptual diagram showing the frequency arrangement of the input signal light 1 and the pump light. In FIG. 3, Δf ′ indicates the frequency interval between one comb component of the pump light and the input signal light 1. ing.
Further, the pump light generating means used in the present invention is not particularly limited as long as it can generate pump light that is two continuous lights having different frequencies, and is not limited to the above configuration example. Further, the signal light input means is not particularly limited as long as it can input signal light having a center frequency that matches an intermediate frequency between the two continuous lights, and is not limited to the above configuration example.
<合波光発生手段>
 次に、ポンプ光発生手段10で発生させた前記各ポンプ光と、入力信号光1とは、光カプラなどの合波光発生手段13によって合波され、合波光とされる。
<Combined light generation means>
Next, each pump light generated by the pump light generation means 10 and the input signal light 1 are combined by a combined light generation means 13 such as an optical coupler to be combined light.
<信号光位相調整手段>
 信号光位相調整手段12は、入力信号光1と前記ポンプ光発生手段10で発生される前記各ポンプ光との相対位相差を調整し、相対位相差が調整された入力信号光1を前記合波光発生手段13に出力する。
 もっとも、前記相対位相差の調整は、合波の前後どちらかで行えばよく、合波後に調整する場合には、例えば、図4に示すように、ポンプ光発生手段20、光強度調整手段21,24、合波光発生手段23、信号光位相調整手段22、非線形媒体25及び信号光抽出手段26で構成されたPSA200において、合波光発生手段23で合波された入力信号光1と2つのポンプ光のうち、入力信号光1の位相を調整するように信号光位相調整手段22を配してもよい。
 ただし、合波後に入力信号光1の位相を調整するPSA200においては、信号光位相調整手段22が、合波された前記各ポンプ光と入力信号光1の周波数成分毎に独立して、位相を制御できる手段でなければならない。
 なお、図4は、他のPSAの構成例を示す説明図であり、PSA200は、信号光位相調整手段22の配置以外、PSA100と同様に構成される。
<Signal light phase adjusting means>
The signal light phase adjusting means 12 adjusts the relative phase difference between the input signal light 1 and each pump light generated by the pump light generating means 10, and the input signal light 1 having the adjusted relative phase difference is combined with the input signal light 1. It outputs to the wave light generation means 13.
Of course, the adjustment of the relative phase difference may be performed either before or after the multiplexing. When adjusting after the multiplexing, for example, as shown in FIG. 4, the pump light generating means 20 and the light intensity adjusting means 21 are used. , 24, the combined light generating means 23, the signal light phase adjusting means 22, the nonlinear medium 25, and the signal light extracting means 26, the input signal light 1 combined by the combined light generating means 23 and two pumps Of the light, the signal light phase adjusting means 22 may be arranged so as to adjust the phase of the input signal light 1.
However, in the PSA 200 that adjusts the phase of the input signal light 1 after combining, the signal light phase adjusting means 22 independently adjusts the phase for each frequency component of the combined pump light and input signal light 1. It must be a means that can be controlled.
FIG. 4 is an explanatory diagram showing another configuration example of the PSA, and the PSA 200 is configured in the same manner as the PSA 100 except for the arrangement of the signal light phase adjusting means 22.
 また、前記相対位相差をいかなる値に設定するかは、どのようなPSA動作をさせるかによって変化するため、外部より位相調整用信号2が入力されるものとする。これにより、前記相対位相差の値を目的に応じて適宜設定することができる。 Also, what value the relative phase difference is set to varies depending on what kind of PSA operation is performed, and therefore the phase adjustment signal 2 is input from the outside. Thereby, the value of the relative phase difference can be appropriately set according to the purpose.
<光強度調整手段>
 図2において、ポンプ光発生手段10から出力される前記各ポンプ光は、光強度調整手段11により、光の強度が調整される。また、信号光位相調整手段12から出力される入力信号光1及び前記各ポンプ光は、光強度調整手段14により、光の強度が調整される。これら光強度調整手段11,14は、例えば、各手段から出力される光の強度を増幅させるために用いられ、エルビウム添加光ファイバ増幅器などの光増幅器で構成される。
<Light intensity adjusting means>
In FIG. 2, the intensity of each pump light output from the pump light generating means 10 is adjusted by the light intensity adjusting means 11. Further, the light intensity of the input signal light 1 and each of the pump lights output from the signal light phase adjusting means 12 is adjusted by the light intensity adjusting means 14. These light intensity adjusting means 11 and 14 are used, for example, to amplify the intensity of light output from each means, and are constituted by an optical amplifier such as an erbium-doped optical fiber amplifier.
 ただし、光強度調整手段11,14としては、前記各手段から出力される光の強度が十分である場合、必ずしも必要ではない。また、光強度調整手段11のみを配して前記各ポンプ光のみの光の強度を調整してもよく、更に、光強度調整手段14のみを配して信号光位相調整手段12から出力される入力信号光1及び前記各ポンプ光の光強度を調整することとしてもよい。また、光強度調整手段11,14として前記エルビウム添加光ファイバ増幅器などの光増幅器を用いる場合、増幅利得を調整することで光強度を調整してもよいが、これに代えて増幅利得は大きな値の一定値とし、光強度調整手段11,14の後段に可変光減衰器(VOA)などを配して、光強度を調整する手段をとってもよい。 However, the light intensity adjusting means 11 and 14 are not necessarily required when the intensity of light output from each of the means is sufficient. Further, only the light intensity adjusting means 11 may be provided to adjust the intensity of the light of each pump light alone, and only the light intensity adjusting means 14 may be provided and output from the signal light phase adjusting means 12. The light intensity of the input signal light 1 and each pump light may be adjusted. Further, when an optical amplifier such as the erbium-doped optical fiber amplifier is used as the light intensity adjusting means 11 and 14, the light intensity may be adjusted by adjusting the amplification gain, but the amplification gain is a large value instead. And a means for adjusting the light intensity by arranging a variable optical attenuator (VOA) or the like downstream of the light intensity adjusting means 11, 14.
 光強度調整手段14から出力される入力信号光1及び前記各ポンプ光の合波光は、光ファイバなどの非線形媒体15に入射され、そこで前述のパラメトリックプロセスが生じる。このとき、図1(a)~(c)に示したように、入力信号光1の位相成分のうち、前記同相成分が増幅され、前記直交成分は減衰する。 The input signal light 1 output from the light intensity adjusting means 14 and the combined light of the pump lights are incident on a nonlinear medium 15 such as an optical fiber, where the aforementioned parametric process occurs. At this time, as shown in FIGS. 1A to 1C, among the phase components of the input signal light 1, the in-phase component is amplified and the quadrature component is attenuated.
<非線形媒体>
 非線形媒体15としては、目的とする前記GERが得られる限り、特に制限はなく、光ファイバなどを挙げることができるが、中でも異常分散値を有する光ファイバが好ましい。前記異常分散値を有する光ファイバを用いると、目的とする前記GERを前記PSAの実用化に向けて理想的な設計で達成することができる。
 また、非線形媒体15としては、特に制限はないが、その非線形定数γが次式、γ≧5[1/W/Km]を満たす高非線形光ファイバであることが好ましい。前記非線形定数γが5未満であると、目的とする前記GERを達成するための設計幅が限られやすい。
 このような非線形媒体15としては、特に制限はないが、石英ガラスを含む高非線形光ファイバが好ましい。例えば、石英ガラスをベースとし、コア部に屈折率を上昇させる他の材料(ゲルマニウム等)を高濃度でドープし、更にコア部の直径を通常のファイバよりも小さく設計した高非線形光ファイバなどが好ましい。
<Nonlinear media>
The nonlinear medium 15 is not particularly limited as long as the target GER is obtained, and examples thereof include an optical fiber. Among these, an optical fiber having an anomalous dispersion value is preferable. When the optical fiber having the anomalous dispersion value is used, the target GER can be achieved with an ideal design for practical use of the PSA.
The nonlinear medium 15 is not particularly limited, but is preferably a highly nonlinear optical fiber whose nonlinear constant γ satisfies the following equation, γ ≧ 5 [1 / W / Km]. When the nonlinear constant γ is less than 5, the design width for achieving the target GER is likely to be limited.
Although there is no restriction | limiting in particular as such a nonlinear medium 15, The highly nonlinear optical fiber containing quartz glass is preferable. For example, a highly nonlinear optical fiber based on quartz glass, which is doped with other materials (germanium, etc.) that increase the refractive index in the core at a high concentration, and the core is designed to have a smaller diameter than a normal fiber. preferable.
<その他の手段>
 非線形媒体15から出力された信号から、帯域通過フィルタ等の信号光抽出手段16によって、前記ポンプ光が除去されて、入力信号光1の利得が増幅された出力信号光3のみが出力される。
 ただし、信号光抽出手段16は、前記PSAに必ず配されるものではなく、例えば、PSA100の外部に備えられていてもよい。
 また、本発明の位相感応型光増幅器においては、その効果を妨げない限り、図2に示す手段以外の手段を適宜採用して構成することができる。
<Other means>
The pump light is removed from the signal output from the nonlinear medium 15 by signal light extraction means 16 such as a band pass filter, and only the output signal light 3 in which the gain of the input signal light 1 is amplified is output.
However, the signal light extraction means 16 is not necessarily arranged in the PSA, and may be provided outside the PSA 100, for example.
Further, the phase sensitive optical amplifier of the present invention can be constituted by appropriately adopting means other than the means shown in FIG. 2 as long as the effect is not hindered.
<設計原理>
 前記位相感応型増幅器(PSA)は、前記ポンプ光の強度、前記非線形媒体の非線形定数、伝搬長及び分散値が以下に説明する設計原理に従って設定されていることを技術の核とする。
<Design principle>
The core of the technology is that the phase sensitive amplifier (PSA) has the pump light intensity, the nonlinear constant of the nonlinear medium, the propagation length, and the dispersion value set according to the design principle described below.
 先ず、前記位相感応型増幅器の設計原理の有効性を確認するために行った実験系から説明する。図5は、PSA動作の原理を確認するための実験系を示す。
 波長可変光源(TLS)301から出力される波長1,561nmの連続光を光パルス発生器(OPG)302によってパルス変調し、周波数間隔43GHzの光周波数コムを発生させる。
 このうち、波長1,561nmに対応する周波数を中心とする3つの周波数コム成分以外を、帯域通過光フィルタ(OBPF)303によって除去する。OBPF303を通過した時点で3つの周波数コム成分は位相がそろっており、中心周波数コム成分を信号光、その他の2つのコム成分を合わせてポンプ光とする。
 なお、前記ポンプ光を構成する2つのCWの周波数差は、86GHzであり、波長差に換算すると約0.7nmである。
First, an experimental system performed to confirm the effectiveness of the design principle of the phase sensitive amplifier will be described. FIG. 5 shows an experimental system for confirming the principle of PSA operation.
The optical pulse generator (OPG) 302 modulates continuous light having a wavelength of 1,561 nm output from the wavelength tunable light source (TLS) 301 to generate an optical frequency comb having a frequency interval of 43 GHz.
Of these, the bandpass optical filter (OBPF) 303 removes components other than the three frequency comb components centered on the frequency corresponding to the wavelength of 1,561 nm. At the time of passing through the OBPF 303, the three frequency comb components are in phase, and the center frequency comb component is signal light, and the other two comb components are combined into pump light.
The frequency difference between the two CWs constituting the pump light is 86 GHz, which is approximately 0.7 nm when converted to a wavelength difference.
 エルビウム添加光ファイバ増幅器(EDFA)304によって光強度を任意の値に増幅し、OBPF305によって自然放出光雑音を除去する。
 周波数成分毎の位相調整が可能な可変帯域スペクトル成形器(VBS)306を用い、PSA300のPSA動作において、前記信号光の位相が前記同相成分又は前記直交成分のいずれかに一致するように、前記信号光と前記ポンプ光の相対位相差を調整する。
 再度、EDFA307で前記信号光と前記ポンプ光の光強度を増幅してOBPF308で雑音を除去した後、異常分散値を持つ高非線形ファイバ(HNLF)309に入力する。
The light intensity is amplified to an arbitrary value by an erbium-doped optical fiber amplifier (EDFA) 304, and spontaneous emission light noise is removed by OBPF 305.
Using a variable band spectrum shaper (VBS) 306 capable of phase adjustment for each frequency component, in the PSA operation of the PSA 300, the phase of the signal light matches either the in-phase component or the quadrature component. The relative phase difference between the signal light and the pump light is adjusted.
The light intensity of the signal light and the pump light is again amplified by the EDFA 307 and noise is removed by the OBPF 308, and then input to the highly nonlinear fiber (HNLF) 309 having an anomalous dispersion value.
 HNLF309の長さは、600mであり、分散値は、異常分散領域の0.482ps/nm/kmであり、非線形定数は、γ=10[1/W/km]である。また、分散スロープの値は、0.03ps/nm/km以下であり、伝搬損失の値は、1dB/km以下である。
 なお、ここで用いたHNLF309としては、石英ガラスをホストガラスとし、コアにゲルマニウムが高濃度でドープされた、非穴あき型のファイバである。この種のファイバは、材料に鉛ガラスやビスマスを用いたもの、あるいは形状が穴あき型のものと比べて、伝搬損失や接続損失が極めて小さく、分散値や分散スロープの制御性に優れているため、PSA用途に最も適している。
 また、非線形定数がγ≧5[1/W/km]の条件であり、SMFやDSFなどの伝送用光ファイバと比較して、長さの短尺化及び所要入射強度の低減に大きな効果を発揮する。
The length of the HNLF 309 is 600 m, the dispersion value is 0.482 ps / nm / km in the anomalous dispersion region, and the nonlinear constant is γ = 10 [1 / W / km]. The dispersion slope value is 0.03 ps / nm 2 / km or less, and the propagation loss value is 1 dB / km or less.
The HNLF 309 used here is a non-perforated fiber in which quartz glass is used as a host glass and germanium is doped at a high concentration in the core. This type of fiber has much smaller propagation loss and connection loss than those using lead glass or bismuth as the material, or those with a perforated shape, and has excellent controllability of dispersion value and dispersion slope. Therefore, it is most suitable for PSA applications.
In addition, the nonlinear constant is a condition of γ ≧ 5 [1 / W / km], and it has a great effect on shortening the length and reducing the required incident intensity compared to transmission optical fibers such as SMF and DSF. To do.
 HNLF309入力前と出力後の光スペクトルを光スペクトラムアナライザ(OSA)310,311で測定し、前記信号光の利得又は減衰量を評価する。また、パワーメータ(PM)312で出力光の強度をモニタする。
 一例として、HNLF309への入力光強度をP=21.8dBmとし、前記ポンプ光と前記信号光の相対位相差を、信号光の位相がPSA300の「同相」成分又は「直交」成分のそれに一致するように設定した場合のスペクトル測定結果を図6に示す。なお、図6(a)が前記信号光の位相が「同相」成分に一致する場合のスペクトル測定結果を示し、図6(b)が「直交」成分に一致する場合のスペクトル測定結果を示している。
The optical spectrum before and after the HNLF 309 is input is measured by an optical spectrum analyzer (OSA) 310 and 311 to evaluate the gain or attenuation of the signal light. Further, the intensity of output light is monitored by a power meter (PM) 312.
As an example, the input light intensity to the HNLF 309 is P p = 21.8 dBm, and the relative phase difference between the pump light and the signal light is the same as that of the “in-phase” component or “quadrature” component of the PSA 300 FIG. 6 shows a spectrum measurement result when setting is performed. 6A shows a spectrum measurement result when the phase of the signal light matches the “in-phase” component, and FIG. 6B shows a spectrum measurement result when the phase of the signal light matches the “quadrature” component. Yes.
 図6(a)及び(b)の結果を比較すると、前記信号光の前記GERとして約30dBという非常に大きな値が得られていることがわかる。このとき、前記非線形位相シフト量φNLは、φNL=0.9radである。非特許文献3では、前述のとおり、30dBの前記GERを得るための前記非線形位相シフト量φNLがφNL=3.6radと見積もられるが、この値と、前記実験系の値を比較すると、前記実験系では相当小さなφNLで大きな前記GERを実現できたといえる。 6A and 6B, it can be seen that a very large value of about 30 dB is obtained as the GER of the signal light. At this time, the nonlinear phase shift amount φNL is φNL = 0.9 rad. In Non-Patent Document 3, as described above, the nonlinear phase shift amount φNL for obtaining the GER of 30 dB is estimated to be φNL = 3.6 rad. When this value is compared with the value of the experimental system, the experiment It can be said that the system was able to realize a large GER with a considerably small φNL.
 以下では、上述のように効率的なPSA動作が実現できた理由を解明し、前記PSAの最適な設計方法を明らかにする。 Hereinafter, the reason why the efficient PSA operation can be realized as described above will be clarified, and the optimum design method of the PSA will be clarified.
 図7は、入力ポンプ光(ωp1及びωp2)と入力信号光(ωs)、そして前記ファイバで生じるパラメトリックプロセスの結果として生じる、ポンプ光-ポンプ光FWMで発生する一次アイドラ光(ωpp1及びωpp2)と、ポンプ光-信号光FWMで発生する一次アイドラ光(ωps1及びωps2)を周波数軸上で表したものである。
 従来用いられてきたPSAの構成では、図7の点線四角枠で示した入力光成分の間で発生するパラメトリックプロセスにのみ着目していた。
 ここでは、これを「3波モデル」と呼び、アイドラ光成分の存在を認めないものとする。前記3波モデルにおいて、効率良く前記パラメトリックプロセスを発生させ、入力される前記信号光に対して大きな前記GERを得るためには、前記ポンプ光-ポンプ光FWMや前記ポンプ光-信号光FWMで発生する前記一次アイドラ光成分が成長しない構成が必要とされる。
 なぜなら、前記一次アイドラ光成分が成長すると、前記ポンプ光のエネルギーがそれらの成分あるいは更には高次のアイドラ光成分に散逸し、前記信号光が十分な増幅利得を得る前に前記パラメトリックプロセスの成長が飽和してしまうためである。
 一方、前記パラメトリックプロセスを発生させるための前記ファイバが異常分散値を持つ場合に、前記アイドラ光の利得が著しく大きくなる現象が知られている。これを抑制して前記3波モデルのPSAで信号光の前記GERを高めるために、非特許文献2~非特許文献4では、比較的大きな正常分散値を持つファイバが用いられている。
 これに対して本発明では、前記アイドラ光成分(図7参照)を積極的に成長させることで、前記信号光の位相成分のうち、前記直交成分の減衰量をこれまで考えられなかったほどに増大させ、結果的に小さな前記非線形位相シフト量で大きな前記GERを達成する。
FIG. 7 shows the input pump light (ωp1 and ωp2), the input signal light (ωs), and the primary idler light (ωpp1 and ωpp2) generated by the pump light-pump light FWM resulting from the parametric process occurring in the fiber. The primary idler light (ωps1 and ωps2) generated by the pump light-signal light FWM is represented on the frequency axis.
Conventionally used PSA configurations focus only on parametric processes that occur between input light components indicated by the dotted square frame in FIG.
Here, this is called a “three-wave model”, and the existence of idler light components is not recognized. In the three-wave model, in order to efficiently generate the parametric process and obtain a large GER with respect to the input signal light, the pump light-pump light FWM and the pump light-signal light FWM are generated. Therefore, a configuration in which the primary idler light component does not grow is required.
This is because when the primary idler light component grows, the energy of the pump light is dissipated to those components or even higher order idler light components, and the parametric process grows before the signal light has sufficient amplification gain. Is saturated.
On the other hand, it is known that the gain of the idler light is remarkably increased when the fiber for generating the parametric process has an anomalous dispersion value. In order to suppress this and increase the GER of the signal light with the PSA of the three-wave model, Non-Patent Document 2 to Non-Patent Document 4 use a fiber having a relatively large normal dispersion value.
On the other hand, in the present invention, by actively growing the idler light component (see FIG. 7), the attenuation amount of the quadrature component out of the phase components of the signal light has never been considered so far. As a result, the large GER is achieved with the small nonlinear phase shift amount.
 図5に示す実験系を用いて図6のように得られた高効率PSA動作に関して、図7に示されている7つの成分を考慮した解析を行う。ここでは、これを「7波モデル」と呼ぶ。
 各光波成分の光強度Pと位相φの伝搬距離zに対する発展方程式は、以下の連立常微分方程式で与えられる。
The high efficiency PSA operation obtained as shown in FIG. 6 using the experimental system shown in FIG. 5 is analyzed in consideration of the seven components shown in FIG. Here, this is referred to as a “7-wave model”.
The evolution equation for the light intensity P i of each light wave component and the propagation distance z of the phase φ i is given by the following simultaneous ordinary differential equations.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 ただし、前記式(2)中、添え字のi,m,n,p,q,oは、図7に示した7波の各添え字s、p1、p2、pp1、pp2、ps1及びps2のいずれかを表すものとし、θi,m,n,pは、
Figure JPOXMLDOC01-appb-M000002
However, in the formula (2), the subscripts i, m, n, p, q, and o are the subscripts s, p1, p2, pp1, pp2, ps1, and ps2 of the seven waves shown in FIG. Any one of them, and θ i, m, n, p are
Figure JPOXMLDOC01-appb-M000003
で与えられ、前記式(3)中、Δβi,m,n,pは、
Figure JPOXMLDOC01-appb-M000003
In the equation (3), Δβ i, m, n, p is
Figure JPOXMLDOC01-appb-M000004
であり、βは、各成分の周波数における伝搬定数を表す。
 ただし、前記式(1)右辺及び前記式(2)右辺の和記号では、i以外の添え字について和を取るものとするが、このうちp,m,nを含む項は非縮退FWMに起因するものであり、
Figure JPOXMLDOC01-appb-M000004
And β represents the propagation constant at the frequency of each component.
However, in the sum sign of the right side of the formula (1) and the right side of the formula (2), the subscripts other than i are summed. Among these, terms including p, m, and n are caused by non-degenerate FWM. Is what
Figure JPOXMLDOC01-appb-M000005
の関係が成立する添え字の組み合わせに対して和を取るものとする。
 また、q,oを含む項は縮退FWMに起因するものであり、
Figure JPOXMLDOC01-appb-M000005
Suppose that the sum of subscript combinations for which
The term including q and o is due to the degenerate FWM.
Figure JPOXMLDOC01-appb-M000006
の関係が成立する添え字の組み合わせに対して和をとるものとする。
 なお、前記式(1)及び前記式(2)中、θi,q,q,oは、θi,m,n,pと同様に与えられる。
Figure JPOXMLDOC01-appb-M000006
It is assumed that a sum is taken for combinations of subscripts that satisfy the above relationship.
In the equations (1) and (2), θ i, q, q, o is given in the same manner as θ i, m, n, p .
 図8は、前記非線形位相シフト量φNL(φNL=γPpL)に対する前記信号光の利得量又は減衰量を示したものであり、入力した前記信号光の位相をPSA300の前記同相成分又は前記直交成分の位相に一致させた場合に、それぞれ出力される前記信号光の強度の初期値に対する比を、入力する前記ポンプ光の強度Pを変化させて示したものである。
 なお、入力する前記ポンプ光の強度Pを除く条件は、図6の結果を得たものと同じである。
 また、図8中の横軸は、前記非線形位相シフト量φNL(φNL=γPL)を示すが、前記ファイバの非線形定数及び長さは、それぞれγ=10[1/W/km]及びL=600[m]に固定され、入力する前記ポンプ光の強度Pだけを変化させたものである。同じφNLの値に対しては、組み合わせとして異なるγ、P、Lの値を用いても、同様の結果が得られるものと考えられる。
FIG. 8 shows the gain amount or attenuation amount of the signal light with respect to the nonlinear phase shift amount φNL (φNL = γPpL). The phase of the input signal light is expressed by the in-phase component or the quadrature component of the PSA 300. The ratio of the intensity of the signal light output to the initial value when matched with the phase is shown by changing the intensity P p of the input pump light.
The conditions excluding the input pump light intensity P p are the same as those for obtaining the result of FIG.
The horizontal axis in FIG. 8 indicates the nonlinear phase shift amount φNL (φNL = γP p L), and the nonlinear constant and length of the fiber are γ = 10 [1 / W / km] and L, respectively. = 600 [m], and only the intensity P p of the input pump light is changed. For the same value of φNL, it is considered that the same result can be obtained even if different values of γ, P p , and L are used as combinations.
 この図8において、点は、実験結果を示し、実線は、前記7波モデルを考慮して前記式(1)及び前記式(2)を解いた計算結果を示し、点線は、前記3波モデルを考慮して前記式(1)及び前記式(2)を解いた計算結果を示す。また、縦軸が正の値をとる場合は、前記信号光が初期値に対して増幅されたことを示しており、入力する前記信号光の位相を前記PSAの前記同相成分の位相に一致させて得られた結果を示す。同様に、縦軸が負の値をとる場合は、前記信号光が初期値に対して減衰したことを示しており、入力する前記信号光の位相を前記PSAの前記直交成分の位相に一致させて得られた結果を示す。また、1つのφNL=γPLに対して、前記「同相」の場合の結果と、前記「直交」の場合の結果の差が、そのφNLにおける前記GERを意味する。 In FIG. 8, dots indicate experimental results, solid lines indicate calculation results obtained by solving the equations (1) and (2) in consideration of the seven-wave model, and dotted lines indicate the three-wave model. The calculation result which solved the said Formula (1) and the said Formula (2) in consideration of is shown. Further, when the vertical axis takes a positive value, it indicates that the signal light is amplified with respect to the initial value, and the phase of the input signal light is made to coincide with the phase of the in-phase component of the PSA. The results obtained are shown below. Similarly, when the vertical axis takes a negative value, it indicates that the signal light has attenuated with respect to the initial value, and the phase of the input signal light matches the phase of the orthogonal component of the PSA. The results obtained are shown below. Further, for one φNL = γP p L, the difference between the result in the “in-phase” case and the result in the “quadrature” case means the GER at that φNL.
 図8より、φNL=γPL=0.9[rad]、即ち、P=0.15[W](21.8dBm)の場合に、前記GERの最大値30dBが得られていることがわかる。また、前記7波モデルによる計算結果(実線)が前記3波モデルによる計算結果(点線)よりも実験結果に良く一致している。両モデルの計算結果の相違は、次のように解釈できる。
 前記3波モデルでは、前記アイドラ光が存在しないため前記ポンプ光の強度が飽和せず、前記同相の場合の増幅利得が比較的大きい一方で、前記直交の場合の減衰量は、前記同相の場合の利得と逆数(対数軸で正負反転)の関係であるため、劇的に大きな値とはなり得ない。
 これに対して、前記7波モデルでは、前記アイドラ成分が成長することで、前記ポンプ光の強度が減少し、前記同相の場合の増幅利得は比較的小さいものの、前記信号光のエネルギーが前記アイドラ成分に移る結果、前記直交の場合の減衰量が急激に大きくなり、結果として大きな前記GERが得られたものと考えられる。
FIG. 8 shows that the maximum GER value of 30 dB is obtained when φNL = γP p L = 0.9 [rad], that is, P p = 0.15 [W] (21.8 dBm). Recognize. Further, the calculation result (solid line) based on the 7-wave model agrees better with the experimental result than the calculation result (dotted line) based on the 3-wave model. The difference between the calculation results of both models can be interpreted as follows.
In the three-wave model, since the idler light does not exist, the intensity of the pump light does not saturate, and the amplification gain in the case of the in-phase is relatively large, while the attenuation amount in the case of the quadrature is the case of the in-phase. Because of the relationship between the gain and the reciprocal (positive / negative inversion on the logarithmic axis), it cannot be dramatically large.
On the other hand, in the seven-wave model, the intensity of the pump light is reduced by the growth of the idler component, and the gain of the signal light is relatively small, but the energy of the signal light is the idler. As a result of shifting to the component, it is considered that the attenuation amount in the case of the orthogonality suddenly increases, and as a result, a large GER is obtained.
 次に、前記式(1)及び前記式(2)を用いて前記7波モデルの計算を行い、前記非線形位相シフト量φNLを0から1.4radまで変化させた場合に、前記PSAの出力信号光の複素振幅が複素平面上で発展する様子を図9に示す。
 図9中、四角及び円で示された各点が、それぞれ前記同相(四角)及び前記直交(円)の場合に該当し、φNLを0.1radごとに変化させて得られた値を示す。ただし、図6及び図8で示した結果を得た際の条件とは違って、前記ファイバの分散値を0としている。
Next, when the 7-wave model is calculated using the equations (1) and (2) and the nonlinear phase shift amount φNL is changed from 0 to 1.4 rad, the output signal of the PSA FIG. 9 shows how the complex amplitude of light develops on the complex plane.
In FIG. 9, each point indicated by a square and a circle corresponds to the case of the in-phase (square) and the orthogonal (circle), respectively, and indicates a value obtained by changing φNL every 0.1 rad. However, unlike the conditions for obtaining the results shown in FIGS. 6 and 8, the dispersion value of the fiber is set to zero.
 両方の場合で、原点付近を中心として位相が回転しているが、これは前記信号光自身の自己位相変調及びそれ以外の各成分からの相互位相変調に起因するものである。前記直交の場合でφNL=0.9[rad]のときに、前記信号光の振幅が最も原点に近くなっていて、このときの前記GERは計算結果中、最大となる32dBであった。これから、前記信号光の複素振幅の発展する様子を示す曲線が原点を通過するように前記PSAのパラメータを決定すれば、その原点でのパラメータにおいて、原理的には無限大の前記GERが得られることが予測される。本発明はこの予測に基づいて、前記PSAの最適設計方法を提供するものである。以下では、前記ファイバの分散値と、前記非線形位相シフト量φNLを最適化することにより、大きな前記GERを得る設計方法を示す。 In both cases, the phase rotates around the vicinity of the origin, which is due to the self-phase modulation of the signal light itself and the mutual phase modulation from other components. In the orthogonal case, when φNL = 0.9 [rad], the amplitude of the signal light is closest to the origin, and the GER at this time is 32 dB, which is the maximum in the calculation result. From this, if the parameters of the PSA are determined so that the curve indicating the development of the complex amplitude of the signal light passes through the origin, the infinite GER can be obtained in principle at the parameters at the origin. It is predicted. The present invention provides an optimum design method of the PSA based on this prediction. Hereinafter, a design method for obtaining a large GER by optimizing the dispersion value of the fiber and the nonlinear phase shift amount φNL will be described.
 図10は、前記ファイバの分散値を変化させたときの前記信号光の複素振幅が発展する様子を示したものであり、具体的には、入力する前記信号光の位相を前記直交成分の位相に一致させた場合に、0から1.4radまで0.1radごとのφNLに対して前記出力信号光の複素振幅が発展する様子を、前記式(1)及び前記式(2)を用いた前記7波モデルによって計算した結果を示している。
 ただし、前記PSAを構成する前記ファイバの分散値を4通りに変化させていて、四角、円、ひし形、そして三角の点が、それぞれ、-0.208ps/nm/kmの場合(四角),0ps/nm/kmの場合(円),0.208ps/nm/kmの場合(ひし形),そして0.494ps/nm/kmの場合(三角)の結果を示している。
 また、分散の効果を大きくするために、前記ポンプ光の波長差を3.5nmとしている。
FIG. 10 shows how the complex amplitude of the signal light develops when the dispersion value of the fiber is changed. Specifically, the phase of the input signal light is changed to the phase of the orthogonal component. , The state in which the complex amplitude of the output signal light develops with respect to φNL every 0.1 rad from 0 to 1.4 rad is calculated using the expressions (1) and (2). The result calculated by the 7-wave model is shown.
However, when the dispersion value of the fiber constituting the PSA is changed in four ways, and the square, circle, rhombus, and triangle points are -0.208 ps / nm / km (square), 0 ps, respectively. The results are shown for / nm / km (circle), 0.208 ps / nm / km (diamond), and 0.494 ps / nm / km (triangle).
In order to increase the dispersion effect, the wavelength difference of the pump light is set to 3.5 nm.
 この図10に示されるように、前記非線形位相シフト量φNLと前記ファイバの分散値によって、前記出力信号光の複素振幅の発展の様子がわかる。いま、前記分散値を異常分散領域の0.208ps/nm/km(ひし形)、前記非線形位相シフト量φNLを0.9radに設定すると、前記GERを最大値42dBとすることができる。即ち、前記アイドラ光を容認する前記7波モデルを考慮することで、相当に小さな前記非線形位相シフト量のもとで、非常に大きな前記GERを達成する前記PSAの設計が可能になる。
 前記φNLの所要値を小さくできれば、入力光強度を小さくすることができ、また前記ファイバ長を短くすることができ、更には前記ファイバの前記非線形定数を小さくすることもでき、工業上重要な価値を提供することができる。
 特に、前記ファイバとして、前記アイドラ光を積極的に利用する前記異常分散値(分散値が0より大きい)を有するファイバを採用する場合には、強度の減衰量と、自己位相変調や相互位相変調による位相シフト量の双方に適度な異常分散効果が及ぼされ、両者の間でバランスが取れ、結果的に最も原点に近づくように複素振幅を発展させることができており(図10のひし形の点を参照)、正常分散値を有するものや零分散のものよりも、小さな前記非線形位相シフト量で大きな前記GERが得られやすい。ただし、過大な異常分散効果は、前記バランスを崩すため、大きなGERは逆に得られにくい。前記異常分散値の好ましい上限値としては、0.4ps/nm/km程度が考えられる。
As shown in FIG. 10, the state of development of the complex amplitude of the output signal light can be understood from the nonlinear phase shift amount φNL and the dispersion value of the fiber. Now, if the dispersion value is set to 0.208 ps / nm / km (diamonds) in the anomalous dispersion region and the nonlinear phase shift amount φNL is set to 0.9 rad, the GER can be set to the maximum value of 42 dB. That is, by considering the seven-wave model that allows the idler light, the PSA can be designed to achieve a very large GER under a considerably small amount of the nonlinear phase shift.
If the required value of φNL can be reduced, the input light intensity can be reduced, the fiber length can be shortened, and further the nonlinear constant of the fiber can be reduced. Can be provided.
In particular, when the fiber having the anomalous dispersion value (dispersion value is greater than 0) that actively uses the idler light is adopted as the fiber, the intensity attenuation, self-phase modulation, and cross-phase modulation are used. A moderate anomalous dispersion effect is exerted on both of the phase shift amounts due to the above, and the complex amplitude can be developed so that the balance between the two is balanced and, as a result, approaches the origin most (the diamond points in FIG. 10). In other words, it is easier to obtain a large GER with a small amount of the nonlinear phase shift than those having a normal dispersion value or zero dispersion. However, since an excessive anomalous dispersion effect breaks the balance, it is difficult to obtain a large GER. A preferable upper limit value of the anomalous dispersion value can be about 0.4 ps / nm / km.
 以上から、所望の前記GER値が与えられた場合、前記ポンプ光の強度と、前記非線形媒体の非線形定数、伝搬長及び分散値の各設定パラメータに幅を持たせて設計することができる。
 図10の結果において、前記φNLが0.6radより大きい場合、入力する前記信号光の位相が前記同相の場合の前記出力信号光の増幅利得は、前記φNLに対してほぼ一定である。よって、この場合の前記GERは、入力する前記信号光の位相が前記直交の場合の、前記出力信号光の減衰量によって定まる。
 ここで所望される前記GERが与えられると、図10で原点を中心に、所望GERの値に応じた前記出力信号光の振幅を半径とする円を描くことができる。
 そこで、前記ファイバの分散値と、前記非線形位相シフト量φNL(φNL=γPL)をパラメータとし、前記7波モデルに基づき、前記式(1)及び前記式(2)を用いて前記PSA動作時の前記出力信号光の複素振幅の発展の様子を計算し、この複素振幅がその円の内部を通過していれば、そのときの前記分散値と前記非線形位相シフト量φNLが所望GERを与える設計パラメータとして得られる。
 また、このようにして前記分散値と前記非線形位相シフト量φNLを決定すれば、一定範囲を持つ設計パラメータが得られるため、前記位相感応型光増幅器を製造する際にも有利である。
 具体例として、前記ポンプ光を成す2つの周波数コムの周波数差が430GHzの場合に、目的とする前記GERの値を20dBと設定すると、-0.52ps/nm/km~1.04ps/nm/kmという範囲の前記分散値に対して、条件を満たす前記非線形位相シフト量φNLが少なくとも1つ存在することが判明する。
From the above, when the desired GER value is given, it is possible to design the setting parameters of the intensity of the pump light, the nonlinear constant of the nonlinear medium, the propagation length, and the dispersion value with a range.
In the result of FIG. 10, when the φNL is larger than 0.6 rad, the amplification gain of the output signal light when the phase of the input signal light is the same phase is substantially constant with respect to the φNL. Therefore, the GER in this case is determined by the attenuation amount of the output signal light when the phase of the input signal light is orthogonal.
When the desired GER is given, a circle having a radius of the amplitude of the output signal light corresponding to the desired GER value can be drawn with the origin at the center in FIG.
Therefore, based on the seven-wave model and using the dispersion value of the fiber and the nonlinear phase shift amount φNL (φNL = γP p L) as parameters, the PSA operation is performed using the equations (1) and (2). When the complex amplitude of the output signal light at the time is calculated and the complex amplitude passes through the inside of the circle, the dispersion value and the nonlinear phase shift amount φNL at that time give the desired GER Obtained as a design parameter.
In addition, if the dispersion value and the nonlinear phase shift amount φNL are determined in this way, design parameters having a certain range can be obtained, which is advantageous when manufacturing the phase sensitive optical amplifier.
As a specific example, when the frequency difference between two frequency combs forming the pump light is 430 GHz, if the target GER value is set to 20 dB, −0.52 ps / nm / km to 1.04 ps / nm / It is found that there is at least one nonlinear phase shift amount φNL that satisfies the condition for the dispersion value in the range of km.
 ここで、前記位相感応型光増幅器としては、小さい前記非線形位相シフト量φNLで大きな前記GERを達成することを目的とする。
 したがって、そのGERの値としては、小さくとも20dBであり、25dB以上が好ましく、30dB以上がより好ましい。更には、そのGERを達成するにあたっての前記非線形位相シフト量φNLは、大きくとも1.7rad未満であり、1rad以下であることが好ましい。
Here, an object of the phase sensitive optical amplifier is to achieve a large GER with a small nonlinear phase shift amount φNL.
Therefore, the GER value is at least 20 dB, preferably 25 dB or more, and more preferably 30 dB or more. Furthermore, the nonlinear phase shift amount φNL for achieving the GER is preferably less than 1.7 rad and less than 1 rad.
 なお、前記GERによって決定される前記出力信号光の振幅値を半径とする円を複素平面上に描いたときに、入力される前記信号光の位相が直交成分に一致する際の前記出力信号光の複素振幅値が、ある範囲の前記非線形位相シフト量に対して前記円内に収まるか否かの判断に必要な前記GER及び前記非線形位相シフト量については、前記PSAの現実の系から、次のように確認することができる。
 即ち、前記PSAの前記同相成分又は前記直交成分のそれに一致するよう、位相を調整した前記信号光を入力し、その出力信号光の強度を測定して、これらの比を取ることで前記GERの値を得る。次いで、使用されている光ファイバの前記非線形定数γと長さL、そして入力する前記ポンプ光の強度Pを測定することで、前記非線形位相シフト量を算出する。  
The output signal light when the phase of the input signal light coincides with a quadrature component when a circle having a radius of the amplitude value of the output signal light determined by the GER is drawn on a complex plane. The GER and the non-linear phase shift amount necessary for determining whether or not the complex amplitude value falls within the circle with respect to the non-linear phase shift amount within a certain range are as follows from the actual system of the PSA. Can be confirmed.
That is, the signal light whose phase is adjusted to match that of the in-phase component or the quadrature component of the PSA is input, the intensity of the output signal light is measured, and the ratio of these is taken to obtain the GER value. Get the value. Next, the nonlinear phase shift amount is calculated by measuring the nonlinear constant γ and length L of the optical fiber being used and the intensity P p of the input pump light.
(位相感応型光増幅器の設計方法)
 本発明の位相感応型光増幅器の設計方法は、周波数の異なる2つの連続光であるポンプ光を発生させるポンプ光発生手段と、中心周波数が前記2つの連続光の中間の周波数に一致する光として入力される信号光と前記ポンプ光とを合波して合波光を発生する合波光発生手段と、前記合波光の前記信号光と前記ポンプ光との相対位相差を調整する位相差調整手段と、相対位相差が調整された前記合波光を入力してパラメトリックプロセスを発生させる非線形媒体と、を有する位相感応型光増幅器に対し、目的とする利得消光比によって決定される前記位相感応型光増幅器の出力信号光の複素振幅値を半径とする円を、原点を中心として複素平面上に描いたときに、入力される前記信号光の位相が直交成分に一致する際の前記出力信号光の前記複素振幅値が前記円内に収まるように、前記ポンプ光の強度と、前記非線形媒体の非線形定数、伝搬長及び分散値とを設定することを特徴とする。
(Design method of phase sensitive optical amplifier)
The phase-sensitive optical amplifier design method of the present invention includes pump light generating means for generating pump light that is two continuous lights having different frequencies, and light whose center frequency matches the intermediate frequency between the two continuous lights. Combined light generating means for combining the input signal light and the pump light to generate combined light; and a phase difference adjusting means for adjusting a relative phase difference between the signal light of the combined light and the pump light; A phase-sensitive optical amplifier having a non-linear medium for generating a parametric process by inputting the combined light, the relative phase difference of which is adjusted, and being determined by a target gain extinction ratio When the circle having the radius of the complex amplitude value of the output signal light is drawn on the complex plane with the origin as the center, the phase of the input signal light when the phase of the signal light matches the orthogonal component Duplicate So that the amplitude value falls within the circle, the intensity of the pump light, the nonlinear constant of the nonlinear medium, and sets a propagation length and variance.
 前記ポンプ光発生手段、前記合波光発生手段、前記位相差調整手段、前記非線形媒体については、本発明の前記位相感応型増幅器において説明した事項を適用することができる。
 また、前記出力信号光の前記複素振幅値を考慮した前記ポンプ光の強度と、前記非線形媒体の非線形定数、伝搬長及び分散値とを設定方法の詳細についても、本発明の前記位相感応型増幅器の設計原理として説明した事項を適用することができる。
 なお、前記位相感応型光増幅器の設計方法は、前記位相感応型光増幅器の基本構成を有する、あらゆる前記位相感応型光増幅器(例えば図2、図4参照)に適用でき、前記位相感応型光増幅器における説明と異なり、目的とする前記GER及びこのGERを決定したときに設定される前記非線形位相シフト量に制限はないが、小さい前記非線形位相シフト量φNLで大きな前記GERを達成する観点から、そのGERの設定値としては、20dB以上が好ましく、25dB以上がより好ましく、30dB以上が特に好ましい。また、前記非線形位相シフト量φNLの値としては、1.7rad未満であることが好ましく、1rad未満であることがより好ましい。
The matters described in the phase sensitive amplifier of the present invention can be applied to the pump light generating means, the combined light generating means, the phase difference adjusting means, and the nonlinear medium.
The phase sensitive amplifier of the present invention also describes details of a method for setting the intensity of the pump light in consideration of the complex amplitude value of the output signal light and the nonlinear constant, propagation length, and dispersion value of the nonlinear medium. The matters described as the design principle can be applied.
The method for designing the phase sensitive optical amplifier can be applied to any of the phase sensitive optical amplifiers having the basic configuration of the phase sensitive optical amplifier (see, for example, FIG. 2 and FIG. 4). Unlike the description in the amplifier, the target GER and the nonlinear phase shift amount set when the GER is determined are not limited. However, from the viewpoint of achieving a large GER with a small nonlinear phase shift amount φNL, The set value of GER is preferably 20 dB or more, more preferably 25 dB or more, and particularly preferably 30 dB or more. Further, the value of the nonlinear phase shift amount φNL is preferably less than 1.7 rad, and more preferably less than 1 rad.
(BPSK信号位相雑音抑圧器及びBPSK信号再生器)
 本発明の前記位相感応型光増幅器を用いて、BPSK(二値位相シフトキーイング)信号の位相雑音を抑圧することができる。以下に、本発明の前記位相感応型光増幅器を用いた、BPSK信号位相雑音抑圧器及びBPSK信号再生器を説明する。
(BPSK signal phase noise suppressor and BPSK signal regenerator)
By using the phase sensitive optical amplifier of the present invention, phase noise of a BPSK (binary phase shift keying) signal can be suppressed. A BPSK signal phase noise suppressor and a BPSK signal regenerator using the phase sensitive optical amplifier of the present invention will be described below.
 図11に本発明のBPSK信号位相雑音抑圧器及びBPSK信号再生器の構成例を示す。
 BPSK信号位相雑音抑圧器30は、PSA100と、位相調整用信号発生手段32と、信号光モニタ33とを有する。
 PSA100に対しては、外部から入力BPSK信号光31が入力され、また、位相調整用信号発生手段32から、入力BPSK信号光31とPSA100のポンプ光発生手段10(図2参照)で発生される前記各ポンプ光との相対位相差を調整する位相調整用信号とが入力される。
 これにより、PSA100から出力信号光が出力され、信号光モニタ(出力信号光モニタ)33に入力されると、信号光モニタ33は、前記出力信号光をモニタして位相調整用信号発生手段にフィードバック信号を入力する。
 このとき、前記フィードバック信号を前記出力信号光が最も増幅される前記位相調整用信号としてPSA100に供給するようにフィードバック制御を行う。即ち、入力BPSK信号光31の位相がPSA100の前記同相成分の位相に一致するように制御を行う。
 その結果、PSA100の前記直交成分に相当する位相雑音が抑圧され、フィードバック制御されたPSA100を通じて、BPSK信号位相雑音抑圧器30から目的とする出力BPSK信号光34が外部出力可能とされる。
FIG. 11 shows a configuration example of a BPSK signal phase noise suppressor and a BPSK signal regenerator according to the present invention.
The BPSK signal phase noise suppressor 30 includes a PSA 100, phase adjustment signal generation means 32, and a signal light monitor 33.
The input BPSK signal light 31 is input to the PSA 100 from the outside, and is also generated from the phase adjustment signal generating means 32 by the input BPSK signal light 31 and the pump light generating means 10 of the PSA 100 (see FIG. 2). A phase adjustment signal for adjusting a relative phase difference with each pump light is input.
As a result, when the output signal light is output from the PSA 100 and input to the signal light monitor (output signal light monitor) 33, the signal light monitor 33 monitors the output signal light and feeds it back to the phase adjustment signal generating means. Input the signal.
At this time, feedback control is performed so that the feedback signal is supplied to the PSA 100 as the phase adjustment signal that most amplifies the output signal light. That is, control is performed so that the phase of the input BPSK signal light 31 matches the phase of the in-phase component of the PSA 100.
As a result, the phase noise corresponding to the quadrature component of the PSA 100 is suppressed, and the desired output BPSK signal light 34 can be output from the BPSK signal phase noise suppressor 30 through the feedback-controlled PSA 100.
 出力BPSK信号光34は、振幅方向に雑音を持っているので、BPSK信号再生器50では、これを安定化させて出力するようにする。
 即ち、BPSK信号再生器50は、BPSK信号位相雑音抑制器30と、出力BPSK信号光34の振幅を一定値に収束させる振幅安定化器51とを有して構成される。
 この振幅安定化器51としては、光ファイバ中で発生するパラメトリックプロセスを利用する公知の振幅安定化器を適宜採用して用いることができる。
 このBPSK信号再生器50では、位相方向の雑音が抑圧された出力BPSK信号光34に対して、振幅安定化器51により、更に振幅方向の雑音が抑圧された出力BPSK信号光52が得られる。
 したがって、結果的に入力信号BPSK信号光31の雑音を振幅方向、位相方向ともに抑圧することが可能になる。
Since the output BPSK signal light 34 has noise in the amplitude direction, the BPSK signal regenerator 50 stabilizes it and outputs it.
That is, the BPSK signal regenerator 50 includes a BPSK signal phase noise suppressor 30 and an amplitude stabilizer 51 that converges the amplitude of the output BPSK signal light 34 to a constant value.
As the amplitude stabilizer 51, a known amplitude stabilizer using a parametric process generated in an optical fiber can be appropriately adopted and used.
In the BPSK signal regenerator 50, the output BPSK signal light 52 in which the noise in the amplitude direction is further suppressed is obtained by the amplitude stabilizer 51 with respect to the output BPSK signal light 34 in which the noise in the phase direction is suppressed.
Therefore, as a result, the noise of the input signal BPSK signal light 31 can be suppressed in both the amplitude direction and the phase direction.
(QPSK信号逆多重器及びQPSK信号再生器)
 更に、本発明の前記位相感応型光増幅器を用いて、QPSK(四値位相シフトキーイング)信号光を2つのBPSK信号に光のままで逆多重することや位相雑音を抑圧することができる。以下に、本発明の前記位相感応型光増幅器を用いた、QPSK信号逆多重器及びQPSK信号再生器を説明する。
(QPSK signal demultiplexer and QPSK signal regenerator)
Furthermore, by using the phase sensitive optical amplifier of the present invention, it is possible to demultiplex QPSK (quaternary phase shift keying) signal light into two BPSK signals as they are and to suppress phase noise. A QPSK signal demultiplexer and a QPSK signal regenerator using the phase sensitive optical amplifier of the present invention will be described below.
 図12に本発明のQPSK信号逆多重器の構成例を示す。このQPSK信号逆多重器は、QPSK信号光を2つのBPSK信号光に変換するQPSK信号逆多重器として構成される。
 QPSK信号逆多重器70は、入力QPSK信号光71を2つに分岐する入力信号光分岐手段と、第1のBPSK信号再生器50Aと、第2のBPSK信号再生器50Bとを有する。これらのBPSK信号再生器には、それぞれ本発明の前記BPSK信号再生器が用いられる。なお、前記入力信号光分岐手段としては、3dB光カプラなどを適用することができる。
 QPSK信号逆多重器70に外部から入力QPSK信号光71が入力されると、入力QPSK信号光71は、図示しない前記入力信号光分岐手段により、2つに分岐され、その分岐光として第1のBPSK信号再生器50Aと、第2のBPSK信号再生器50Bにそれぞれ入力される。
 入力QPSK信号光71は、位相成分としてIチャネルとQチャネルが合成されたものであるが、第1のBPSK信号再生器50Aでは、入力QPSK信号光のIチャネルをPSA100(図2及び図11参照)の同相成分に一致させるように調整され、一方で、第2のBPSK信号再生器50Aでは、入力QPSK信号光71のQチャネルをPSA100の同相成分に一致させるように調整されている。
 その結果、入力QPSK信号光71のIチャネルとQチャネルのそれぞれが、雑音が抑圧された状態の出力BPSK信号光(第1の出力BPSK信号光52A及び第2の出力BPSK信号光52B)として、逆多重化されて出力される。
FIG. 12 shows a configuration example of the QPSK signal demultiplexer according to the present invention. This QPSK signal demultiplexer is configured as a QPSK signal demultiplexer that converts QPSK signal light into two BPSK signal lights.
The QPSK signal demultiplexer 70 includes an input signal light branching unit that branches the input QPSK signal light 71 into two parts, a first BPSK signal regenerator 50A, and a second BPSK signal regenerator 50B. The BPSK signal regenerator of the present invention is used for each of these BPSK signal regenerators. A 3 dB optical coupler or the like can be applied as the input signal light branching means.
When the input QPSK signal light 71 is input from the outside to the QPSK signal demultiplexer 70, the input QPSK signal light 71 is branched into two by the input signal light branching means (not shown), and the first split light is the first light. The signals are input to the BPSK signal regenerator 50A and the second BPSK signal regenerator 50B, respectively.
The input QPSK signal light 71 is obtained by combining the I channel and the Q channel as phase components. In the first BPSK signal regenerator 50A, the I channel of the input QPSK signal light is converted to the PSA 100 (see FIGS. 2 and 11). On the other hand, in the second BPSK signal regenerator 50A, the Q channel of the input QPSK signal light 71 is adjusted to match the in-phase component of the PSA 100.
As a result, each of the I channel and Q channel of the input QPSK signal light 71 is output BPSK signal light (first output BPSK signal light 52A and second output BPSK signal light 52B) in a state where noise is suppressed. Demultiplexed and output.
 なお、前記QPSK信号逆多重器の機能として、前記出力BPSK信号光として振幅方向の雑音まで抑圧されていることは必ずしも必要ではなく、図12に示すQPSK信号逆多重器において、第1のBPSK信号再生器50A及び第2のBPSK信号再生器50Bに代えて、図11に示すBPSK信号位相雑音抑制器30を2つ用意し、これらを第1のBPSK信号位相雑音抑制器及び第2のBPSK信号位相雑音抑制器として配した構成としてもよい。 Note that, as a function of the QPSK signal demultiplexer, it is not always necessary to suppress noise in the amplitude direction as the output BPSK signal light. In the QPSK signal demultiplexer shown in FIG. Instead of the regenerator 50A and the second BPSK signal regenerator 50B, two BPSK signal phase noise suppressors 30 shown in FIG. 11 are prepared, and these are used as the first BPSK signal phase noise suppressor and the second BPSK signal. It may be configured as a phase noise suppressor.
 次に、図13を用いて本発明のQPSK信号再生器を説明する。図13は、QPSK信号再生器の構成例を示す。
 QPSK信号再生器90は、図12に示すQPSK信号逆多重器70と、BPSK信号合波手段91とを有する。
 BPSK信号合波手段91では、QPSK信号用逆多重器70から出力される2つの出力BPSK信号光をそれらの相対位相差が90度となるように調整して合波する。即ち、BPSK信号合波手段91では、QPSK信号逆多重器70により雑音が抑圧された2つの出力BPSK信号光を、それらの相対位相差が90度である第1の出力BPSK信号光52Aと第2の出力BPSK信号光52Bとして合波する。
 これにより、もとの入力QPSK信号光71に対して雑音が振幅方向、位相方向ともに抑圧された出力QPSK信号光92が得られる。この構成は、非特許文献5で提案されているものであるが、本発明の前記位相感応型光増幅器を用いることにより、より実用的かつ高効率な設計パラメータのもとで実現することができる。
Next, the QPSK signal regenerator of the present invention will be described with reference to FIG. FIG. 13 shows a configuration example of a QPSK signal regenerator.
The QPSK signal regenerator 90 includes a QPSK signal demultiplexer 70 and a BPSK signal multiplexing unit 91 shown in FIG.
The BPSK signal multiplexing means 91 multiplexes the two output BPSK signal lights output from the QPSK signal demultiplexer 70 so that the relative phase difference between them is 90 degrees. That is, the BPSK signal multiplexing unit 91 converts the two output BPSK signal lights whose noises are suppressed by the QPSK signal demultiplexer 70 from the first output BPSK signal light 52A whose relative phase difference is 90 degrees and the first output BPSK signal light 52A. 2 output BPSK signal light 52B.
As a result, an output QPSK signal light 92 in which noise is suppressed in both the amplitude direction and the phase direction with respect to the original input QPSK signal light 71 is obtained. This configuration is proposed in Non-Patent Document 5, but can be realized under more practical and highly efficient design parameters by using the phase sensitive optical amplifier of the present invention. .
 なお、図13に示すQPSK信号再生器90では、雑音が振幅方向、位相方向ともに抑圧された出力QPSK信号光92が得られることから、第1のBPSK信号再生器50A及び第2のBPSK信号再生器50Bに代えて、図11に示すBPSK信号位相雑音抑制器30を2つ用意し、これらを第1のBPSK信号位相雑音抑制器及び第2のBPSK信号位相雑音抑制器として配した構成としてもよい。 In the QPSK signal regenerator 90 shown in FIG. 13, since the output QPSK signal light 92 in which noise is suppressed in both the amplitude direction and the phase direction is obtained, the first BPSK signal regenerator 50A and the second BPSK signal regenerator 90 are obtained. In place of the detector 50B, two BPSK signal phase noise suppressors 30 shown in FIG. 11 are prepared and arranged as a first BPSK signal phase noise suppressor and a second BPSK signal phase noise suppressor. Good.
   1           入力信号光
   2           位相調整用信号
   3           出力信号光
   10、20       ポンプ光発生手段
   11、21       光強度調整手段
   12、22       信号光位相調整手段
   13、23       合波光発生手段
   14、24       光強度調整手段
   15、25       非線形媒体
   16、26       信号光抽出手段
   30          BPSK信号位相雑音抑圧器
   31          入力BPSK信号光
   32          位相調整用信号発生手段
   33          信号光モニタ
   34、52       出力BPSK信号光
   50A         第1のBPSK信号再生器
   50B         第2のBPSK信号再生器
   50          BPSK信号再生器
   51          振幅安定化器
   52A         第1の出力BPSK信号光
   52B         第2の出力BPSK信号光
   70          QPSK信号逆多重器
   71          入力QPSK信号光
   90          QPSK信号再生器
   91          BPSK信号合波手段
   92          出力QPSK信号光
   100、200、300 PSA
   301         波長可変光源(TLS)
   302         光パルス発生器(OPG)
   303、305、308 帯域通過先フィルタ(OBPF)
   304、307     エルビウム添加光ファイバ増幅器(EDFA)
   306         可変帯域スペクトル成形器(VBS)
   309         光非線形ファイバ(HNLF)
   310、311     光スペクトルアナライザ(OSA)
   312         パワーメータ(PM)
DESCRIPTION OF SYMBOLS 1 Input signal light 2 Phase adjustment signal 3 Output signal light 10, 20 Pump light generation means 11, 21 Light intensity adjustment means 12, 22 Signal light phase adjustment means 13, 23 Combined light generation means 14, 24 Light intensity adjustment means 15 , 25 Non-linear medium 16, 26 Signal light extraction means 30 BPSK signal phase noise suppressor 31 Input BPSK signal light 32 Phase adjustment signal generation means 33 Signal light monitor 34, 52 Output BPSK signal light 50A First BPSK signal regenerator 50B Second BPSK signal regenerator 50 BPSK signal regenerator 51 Amplitude stabilizer 52A First output BPSK signal light 52B Second output BPSK signal light 70 PSK signal inverse multiplexer 71 input QPSK signal light 90 QPSK signal regenerator 91 BPSK signal combining means 92 output QPSK signal light 100, 200, 300 PSA
301 Variable wavelength light source (TLS)
302 Optical pulse generator (OPG)
303, 305, 308 Bandpass filter (OBPF)
304,307 Erbium-doped fiber amplifier (EDFA)
306 Variable band spectrum shaper (VBS)
309 Optical Nonlinear Fiber (HNLF)
310, 311 Optical spectrum analyzer (OSA)
312 Power meter (PM)

Claims (11)

  1.  周波数の異なる2つの連続光であるポンプ光を発生させるポンプ光発生手段と、
     中心周波数が前記2つの連続光の中間の周波数に一致する光として入力される信号光と前記ポンプ光とを合波して合波光を発生する合波光発生手段と、
     前記信号光と前記ポンプ光との相対位相差を調整する位相差調整手段と、
     相対位相差が調整された前記合波光を入力してパラメトリックプロセスを発生させる非線形媒体と、を有する位相感応型光増幅器において、
     目的とする前記位相感応型光増幅器の利得消光比を20dB以上として決定される前記位相感応型光増幅器の出力信号光の複素振幅値を半径とする円を、原点を中心として複素平面上に描いたときに、入力される前記信号光の位相が直交成分に一致する際の前記出力信号光の前記複素振幅値が前記円内に収まるように、前記ポンプ光の強度と、前記非線形媒体の非線形定数、伝搬長及び分散値とが設定されており、かつ、前記非線形定数と前記伝搬長と前記ポンプ光の強度との積が1.7rad未満であることを特徴とする位相感応型光増幅器。
    Pump light generating means for generating pump light that is two continuous lights having different frequencies;
    A combined light generating means for generating a combined light by combining the pumping light with the signal light that is input as light having a center frequency matching an intermediate frequency between the two continuous lights;
    A phase difference adjusting means for adjusting a relative phase difference between the signal light and the pump light;
    A phase-sensitive optical amplifier comprising: a nonlinear medium that inputs the combined light with the adjusted relative phase difference and generates a parametric process;
    A circle whose radius is the complex amplitude value of the output signal light of the phase-sensitive optical amplifier, which is determined with the gain extinction ratio of the target phase-sensitive optical amplifier being 20 dB or more, is drawn on the complex plane with the origin as the center. The intensity of the pump light and the nonlinear medium of the nonlinear medium so that the complex amplitude value of the output signal light when the phase of the input signal light coincides with a quadrature component is within the circle. A phase sensitive optical amplifier, wherein a constant, a propagation length, and a dispersion value are set, and a product of the nonlinear constant, the propagation length, and the intensity of the pump light is less than 1.7 rad.
  2.  非線形媒体が異常分散値を有する光ファイバである請求項1に記載の位相感応型光増幅器。 2. The phase sensitive optical amplifier according to claim 1, wherein the nonlinear medium is an optical fiber having an anomalous dispersion value.
  3.  非線形媒体は、その非線形定数γが次式、γ>5[1/W/km]を満たす非線形光ファイバである請求項1から2のいずれかに記載の位相感応型光増幅器。 3. The phase sensitive optical amplifier according to claim 1, wherein the nonlinear medium is a nonlinear optical fiber whose nonlinear constant γ satisfies the following formula, γ> 5 [1 / W / km].
  4.  非線形媒体は、石英ガラスを含む非線形光ファイバである請求項1から3のいずれかに記載の位相感応型光増幅器。 4. The phase sensitive optical amplifier according to claim 1, wherein the nonlinear medium is a nonlinear optical fiber containing quartz glass.
  5.  更に、合波光発生手段及び非線形媒体のいずれかに入力されるポンプ光の光強度を調整するポンプ光強度調整手段を有する請求項1から4のいずれかに記載の位相感応型光増幅器。 5. The phase sensitive optical amplifier according to claim 1, further comprising pump light intensity adjusting means for adjusting the light intensity of the pump light input to either the multiplexed light generating means or the nonlinear medium.
  6.  周波数の異なる2つの連続光であるポンプ光を発生させるポンプ光発生手段と、
     中心周波数が前記2つの連続光の中間の周波数に一致する光として入力される信号光と前記ポンプ光とを合波して合波光を発生する合波光発生手段と、
     前記合波光の前記信号光と前記ポンプ光との相対位相差を調整する位相差調整手段と、
     相対位相差が調整された前記合波光を入力してパラメトリックプロセスを発生させる非線形媒体と、を有する位相感応型光増幅器に対し、
     目的とする利得消光比によって決定される前記位相感応型光増幅器の出力信号光の複素振幅値を半径とする円を、原点を中心として複素平面上に描いたときに、入力される前記信号光の位相が直交成分に一致する際の前記出力信号光の前記複素振幅値が前記円内に収まるように、前記ポンプ光の強度と、前記非線形媒体の非線形定数、伝搬長及び分散値とを設定することを特徴とする位相感応型光増幅器の設計方法。
    Pump light generating means for generating pump light that is two continuous lights having different frequencies;
    A combined light generating means for generating a combined light by combining the pumping light with the signal light that is input as light having a center frequency matching an intermediate frequency between the two continuous lights;
    A phase difference adjusting means for adjusting a relative phase difference between the signal light of the combined light and the pump light;
    A phase-sensitive optical amplifier having a nonlinear medium that receives the combined light with the adjusted relative phase difference and generates a parametric process;
    The signal light input when a circle having a radius of the complex amplitude value of the output signal light of the phase sensitive optical amplifier determined by the target gain extinction ratio is drawn on the complex plane with the origin as the center The intensity of the pump light, the nonlinear constant of the nonlinear medium, the propagation length, and the dispersion value are set so that the complex amplitude value of the output signal light when the phase of the output signal coincides with a quadrature component falls within the circle A method for designing a phase-sensitive optical amplifier.
  7.  請求項1から5のいずれかに記載の位相感応型光増幅器と、
     位相調整用信号を発生させて前記位相感応型光増幅器に入力する位相調整用信号発生手段と、
     前記位相感応型光増幅器より出力される出力信号光をモニタして前記位相調整用信号発生手段にフィードバック信号を入力する出力信号光モニタと、を有し、
     入力されるBPSK信号光の位相雑音を抑圧して外部に出力することを特徴とするBPSK信号位相雑音抑圧器。
    A phase sensitive optical amplifier according to any one of claims 1 to 5;
    A phase adjusting signal generating means for generating a phase adjusting signal and inputting it to the phase sensitive optical amplifier;
    An output signal light monitor that monitors the output signal light output from the phase sensitive optical amplifier and inputs a feedback signal to the phase adjustment signal generating means;
    A BPSK signal phase noise suppressor for suppressing phase noise of input BPSK signal light and outputting the same to the outside.
  8.  請求項7に記載のBPSK信号位相雑音抑圧器と、
     前記BPSK信号位相雑音抑圧器から出力される出力信号光の振幅を一定値に収束させる振幅安定化器と、を有し、
     信号光として入力されるBPSK信号光の位相雑音及び振幅雑音が抑圧されたBPSK信号光を外部に出力することを特徴とするBPSK信号再生器。
    A BPSK signal phase noise suppressor according to claim 7;
    An amplitude stabilizer that converges the amplitude of the output signal light output from the BPSK signal phase noise suppressor to a constant value;
    A BPSK signal regenerator that outputs BPSK signal light in which phase noise and amplitude noise of BPSK signal light input as signal light are suppressed to the outside.
  9.  請求項7に記載のBPSK信号位相雑音抑圧器で構成される、第1のBPSK信号位相雑音抑圧器及び第2のBPSK信号位相雑音抑圧器と、
     信号光として入力されるQPSK信号光を2つに分岐して、その分岐光を前記第1のBPSK信号位相雑音抑圧器及び前記第2のBPSK信号位相雑音抑圧器に対してどちらか1方ずつ出力する入力信号光分岐手段と、を有し、
     前記QPSK信号光を前記第1のBPSK信号位相雑音抑圧器及び前記第2のBPSK信号位相雑音抑圧器から出力される2つのBPSK信号光に分離してこれらを出力することを特徴とするQPSK信号逆多重器。
    A first BPSK signal phase noise suppressor and a second BPSK signal phase noise suppressor, each comprising the BPSK signal phase noise suppressor according to claim 7;
    QPSK signal light input as signal light is branched into two, and one of the branched lights is supplied to the first BPSK signal phase noise suppressor and the second BPSK signal phase noise suppressor. An input signal light branching means for outputting,
    The QPSK signal is characterized by separating the QPSK signal light into two BPSK signal lights output from the first BPSK signal phase noise suppressor and the second BPSK signal phase noise suppressor and outputting them. Inverse multiplexer.
  10.  請求項8に記載のBPSK信号再生器で構成される、第1のBPSK信号再生器及び第2のBPSK信号再生器と、
     信号光として入力されるQPSK信号光を2つに分岐して、その分岐光を前記第1のBPSK信号再生器及び前記第2のBPSK信号再生器に対してどちらか1方ずつ出力する入力信号光分岐手段と、を有し、
     前記QPSK信号光を前記第1のBPSK信号再生器及び前記第2のBPSK信号再生器から出力される2つのBPSK信号光に分離してこれらを出力することを特徴とするQPSK信号逆多重器。
    A first BPSK signal regenerator and a second BPSK signal regenerator, each comprising the BPSK signal regenerator according to claim 8;
    An input signal for branching the QPSK signal light input as signal light into two and outputting the branched light to the first BPSK signal regenerator and the second BPSK signal regenerator one by one Optical branching means,
    A QPSK signal demultiplexer, wherein the QPSK signal light is separated into two BPSK signal lights output from the first BPSK signal regenerator and the second BPSK signal regenerator, and these are output.
  11.  請求項9から10のいずれかに記載のQPSK信号逆多重器と、
     前記QPSK信号逆多重器から出力される2つのBPSK信号の相対位相差を90度に調整して合波し、1つの出力QPSK信号光を発生させるBPSK信号合波手段と、を有し、
     信号光として入力されるQPSK信号光の雑音が抑圧された前記出力QPSK信号光を外部に出力することを特徴とするQPSK信号再生器。
    QPSK signal demultiplexer according to any of claims 9 to 10,
    BPSK signal multiplexing means for adjusting and multiplexing the relative phase difference between the two BPSK signals output from the QPSK signal demultiplexer to 90 degrees and generating one output QPSK signal light;
    A QPSK signal regenerator that outputs the output QPSK signal light, in which noise of the QPSK signal light input as signal light is suppressed, to the outside.
PCT/JP2012/078474 2012-01-24 2012-11-02 Phase-sensitive amplifier and method of designing same, bpsk signal phase noise suppressor using phase-sensitive amplifier, bpsk signal regenerator, qpsk signal demultiplexer, and qpsk signal regenerator WO2013111413A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013555126A JP5979563B2 (en) 2012-01-24 2012-11-02 Design method of phase sensitive optical amplifier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012012056 2012-01-24
JP2012-012056 2012-01-24

Publications (1)

Publication Number Publication Date
WO2013111413A1 true WO2013111413A1 (en) 2013-08-01

Family

ID=48873155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078474 WO2013111413A1 (en) 2012-01-24 2012-11-02 Phase-sensitive amplifier and method of designing same, bpsk signal phase noise suppressor using phase-sensitive amplifier, bpsk signal regenerator, qpsk signal demultiplexer, and qpsk signal regenerator

Country Status (2)

Country Link
JP (1) JP5979563B2 (en)
WO (1) WO2013111413A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014089253A (en) * 2012-10-29 2014-05-15 Nippon Telegr & Teleph Corp <Ntt> Optical amplification apparatus
CN103885266A (en) * 2014-03-13 2014-06-25 江苏金迪电子科技有限公司 Double-conjugation pumping modulating signal all-optical regeneration device and method based on optical frequency comb
JP2015161827A (en) * 2014-02-27 2015-09-07 日本電信電話株式会社 Optical amplification device
WO2015133227A1 (en) * 2014-03-04 2015-09-11 独立行政法人産業技術総合研究所 Optical phase regeneration method and device
WO2023145524A1 (en) * 2022-01-28 2023-08-03 浜松ホトニクス株式会社 Optical device and light production method

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
INWOONG KIM ET AL.: "All-Optical Carrier Phase and Polarization Recovery Using a Phase- Sensitive Oscillator", OPTICAL FIBER COMMUNICATION AND THE NATIONAL FIBER OPTIC ENGINEERS CONFERENCE, 2007. OFC/NFOEC 2007. CONFERENCE, 2007, pages 1 - 3, XP031146403 *
KEVIN CROUSSORE ET AL.: "BPSK Phase and Amplitude Regeneration Using a Traveling-Wave Phase-Sensitive Amplifier", IEEE/LEOS WINTER TOPICAL MEETING SERIES, 2008, pages 45 - 46, XP031211294 *
LARS GRUNER-NIELSEN ET AL.: "A Silica Based Highly Nonlinear Fibre with Improved Threshold for Stimulated Brillouin Scattering", OPTICAL COMMUNICATION (ECOC), 2010 36TH EUROPEAN CONFERENCE AND EXHIBITION, 2010, pages 1 - 3, XP031789658 *
NING KANG ET AL.: "Extinction Ratio and Gain Optimization of Dual-Pump Degenerate-Idler Phase Sensitive Amplifiers", PHOTONICS CONFERENCE (PHO), 2011, pages 103 - 104, XP032077319 *
ZHENG ZHENG ET AL.: "All-Optical Regeneration of DQPSK/QPSK Signals Based on Phase-Sensitive Amplification", OPTICAL FIBER COMMUNICATION/ NATIONAL FIBER OPTIC ENGINEERS CONFERENCE, 2008. OFC/NFOEC 2008. CONFERENCE, 2008, pages 1 - 3, XP031391333 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014089253A (en) * 2012-10-29 2014-05-15 Nippon Telegr & Teleph Corp <Ntt> Optical amplification apparatus
JP2015161827A (en) * 2014-02-27 2015-09-07 日本電信電話株式会社 Optical amplification device
WO2015133227A1 (en) * 2014-03-04 2015-09-11 独立行政法人産業技術総合研究所 Optical phase regeneration method and device
JPWO2015133227A1 (en) * 2014-03-04 2017-04-06 国立研究開発法人産業技術総合研究所 Optical phase reproduction method and apparatus
US10256912B2 (en) 2014-03-04 2019-04-09 National Institute Of Advanced Industrial Science And Technology Optical phase regeneration method and device
CN103885266A (en) * 2014-03-13 2014-06-25 江苏金迪电子科技有限公司 Double-conjugation pumping modulating signal all-optical regeneration device and method based on optical frequency comb
WO2023145524A1 (en) * 2022-01-28 2023-08-03 浜松ホトニクス株式会社 Optical device and light production method

Also Published As

Publication number Publication date
JP5979563B2 (en) 2016-08-24
JPWO2013111413A1 (en) 2015-05-11

Similar Documents

Publication Publication Date Title
Ellis et al. Capacity limits of systems employing multiple optical phase conjugators
EP2148242B1 (en) Polarisation-independent optical waveform shaping device
EP2346122A2 (en) Optical amplifier and optical amplifying apparatus
JP5979563B2 (en) Design method of phase sensitive optical amplifier
EP1906230A1 (en) Optical parametric amplifier
Sackey et al. Kerr nonlinearity mitigation in 5× 28-GBd PDM 16-QAM signal transmission over a dispersion-uncompensated link with backward-pumped distributed Raman amplification
JP6119394B2 (en) Optical amplification apparatus and optical amplification method
Al-Khateeb et al. Nonlinearity compensation using optical phase conjugation deployed in discretely amplified transmission systems
Sygletos et al. A practical phase sensitive amplification scheme for two channel phase regeneration
Olsson et al. Nonlinear phase noise mitigation in phase-sensitive amplified transmission systems
Cheng et al. Pump RIN-induced impairments in unrepeatered transmission systems using distributed Raman amplifier
Fu et al. Raman-enhanced phase-sensitive fibre optical parametric amplifier
Stephens et al. 1.14 Tb/s DP-QPSK WDM polarization-diverse optical phase conjugation
Porzi et al. Regeneration of DPSK signals in a saturated SOA
Chang et al. 150 x 120 Gb/s unrepeatered transmission over 409.6 km of large effective area fiber with commercial Raman DWDM system
Lali-Dastjerdi et al. Parametric amplification and phase preserving amplitude regeneration of a 640 Gbit/s RZ-DPSK signal
Wang et al. Dynamic control of phase matching in four-wave mixing wavelength conversion of amplitude-and phase-modulated signals
Kassegne et al. Influence of nonlinear effects on 6.4 Tb/s dual polarization quadrature phase shift keying modulated dense wavelength division multiplexed system
Liang et al. Optical back propagation for compensating nonlinear impairments in fiber optic links with ROADMs
Sobhanan et al. Compensation of SOA-induced nonlinear phase distortions by optical phase conjugation
Wang et al. 4× 160-Gbit/s multi-channel regeneration in a single fiber
Vijayan et al. Modulation format dependence on transmission reach in phase-sensitively amplified fiber links
Zhou et al. Total date rate of multi-wavelength 2R regenerators for time-interleaved RZ-OOK signals
Das et al. Development of new all-optical signal regeneration technique
Singh et al. Investigation of four wave mixing effect at different transmission power levels and channel spacing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12866764

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013555126

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12866764

Country of ref document: EP

Kind code of ref document: A1