WO2013111355A1 - Corrosion-resistant steel for hold of coal carrying vessel or coal/ore carrying vessel - Google Patents

Corrosion-resistant steel for hold of coal carrying vessel or coal/ore carrying vessel Download PDF

Info

Publication number
WO2013111355A1
WO2013111355A1 PCT/JP2012/061624 JP2012061624W WO2013111355A1 WO 2013111355 A1 WO2013111355 A1 WO 2013111355A1 JP 2012061624 W JP2012061624 W JP 2012061624W WO 2013111355 A1 WO2013111355 A1 WO 2013111355A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
coal
corrosion
steel
ship
Prior art date
Application number
PCT/JP2012/061624
Other languages
French (fr)
Japanese (ja)
Inventor
真孝 面田
釣 之郎
務 小森
星野 俊幸
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to EP12866465.3A priority Critical patent/EP2808411B1/en
Priority to KR1020147020844A priority patent/KR20140105862A/en
Priority to CN201280068152.4A priority patent/CN104105806A/en
Publication of WO2013111355A1 publication Critical patent/WO2013111355A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

The purpose of the present invention is to provide a corrosion-resistant steel for a hold of a coal carrying vessel and a coal/ore carrying vessel, which does not undergo corrosion after removal of a coating film therefrom under an environment in which drying and humidification are repeated and the pH value is low. Specifically provided is a corrosion-resistant steel for a hold of a coal carrying vessel or a coal/ore carrying vessel, which is characterized in that a material for the steel has a component composition containing 0.010 to 0.200 mass% of C, 0.05 to 0.50 mass% of Si, 0.10 to 2.0 mass% of Mn, 0.0250 mass% or less of P, 0.010 mass% or less of S, 0.0050 to 0.10 mass% of Al, 0.010 to 0.50 mass% of Sb and 0.0010 to 0.0080 mass% of N, with the remainder being Fe and unavoidable impurities.

Description

石炭船または石炭・鉱石兼用船ホールド用の耐食鋼Corrosion resistant steel for holding coal ships or coal / ore combined ships
 本発明は、石炭船(coal carrier)または石炭・鉱石兼用船(ore/coal carrier)のホールド(hold)(船倉とも言う)ホールドに用いられる耐食性に優れた鋼材に関する。 The present invention relates to a steel material having excellent corrosion resistance used for a hold (also called a hold) of a coal carrier or a coal / ore carrier (ore / coal carrier).
 ばら積み貨物船(bulk carrier)において、1990年代初頭に海難事故(maritime accidents)が相次ぎ国際問題(international problem)となった。特に、石炭船や石炭・鉄鉱石兼用船で事故が多く報告されおり、その原因の大部分は船倉内の損傷であった。ばら積み貨物船では、積荷を直接ホールドに積載するため、腐食性の積荷の影響を受け易く、船倉(以下「ホールド」とも言う。)内の腐食、特に石炭船、石炭・鉄鉱石兼用船の船倉内の側壁部(side shell)での孔食(pitting corrosion)により、局所的に強度が減少することが問題と考えられている。この孔食が著しく進行した事例や、船の強度を確保する肋骨(side frame)部分の板厚が極端に減少している事例が報告されており、事故防止のために非特許文献1において、ホールド側壁部鋼材の切替基準を図面板厚の70%以下の場合、ホールド肋骨部鋼材の切替基準を図面板厚の75%以下の場合(但し、図面板厚−腐食代−腐食余裕厚より大きな値とする必要はない)と定めている。 In the bulk carrier, maritime accidents became an international problem in the early 1990s. In particular, many accidents were reported on coal ships and coal / iron ore combined ships, most of which were damage in the hold. Bulk cargo ships are loaded directly on the hold, so they are easily affected by corrosive loads. Corrosion in the hold (hereinafter also referred to as “hold”), especially the hold of coal ships and coal / iron ore combined ships. It is considered a problem that the strength locally decreases due to pitting corrosion at the inner side wall (side shell). Cases where this pitting corrosion has progressed remarkably and cases where the plate thickness of the side frame that secures the strength of the ship has been extremely reduced have been reported. When the change standard of the hold side wall steel is 70% or less of the drawing plate thickness, and the change standard of the hold rib steel is 75% or less of the drawing plate thickness (however, the drawing plate thickness-corrosion allowance-larger than the corrosion allowance thickness) It is not necessary to have a value).
 前記孔食の発生するばら積み貨物船の側壁部は、シングルハル(single−hull)となっていて、積荷(cargo)と海水(seawater)とは鋼材一枚隔てているだけである。そして、ホールド内の温度は、石炭が有する自己発熱牲(self−heating)により上昇する。そのため、海水と船倉内の温度差により、船倉側壁部には結露水(dew condensation water)が生じやすい。こうした、船倉側壁部に結露水が生じた場所に石炭のSO 2−が溶け出し、結露水と反応し硫酸を生成するので、船倉内は硫酸腐食が生じやすい低pH環境となっている。そこで、低pH環境(low pH environment)に対しては「水素発生反応(hydrogen generation reaction)を抑制」すること、鉄の溶解のカウンターアニオン(counter anion)となるSO 2−の地鉄−錆界面への透過(SO 2−permeation to rust/steel interface)に対しては、「SO 2−の錆透過抑制(inhibition of SO 2−permeation in rust layers)」することの2つの防食メカニズム(corrosion protection mechanism)が必要となる。 The side wall portion of the bulk cargo ship where pitting corrosion occurs is a single-hull, and the cargo and seawater are separated from each other only by one steel material. The temperature in the hold rises due to self-heating of coal. Therefore, dew condensation water is likely to occur on the side wall of the hold due to the temperature difference between the seawater and the hold. Since coal SO 4 2− dissolves in a place where dew condensation water is generated on the side wall of the cargo hold and reacts with the dew condensation water to produce sulfuric acid, the inside of the hold has a low pH environment in which sulfuric acid corrosion is likely to occur. Therefore, for low pH environment, “suppress hydrogen generation reaction”, SO 4 2− base iron-rust which becomes counter anion of iron dissolution transmission to the interface for the (SO 4 2- permeation to rust / steel interface), "SO 4 2-rust permeation inhibiting (inhibition of SO 4 2- permeation in rust layers) " two corrosion mechanisms that (Corrosion protection mechanism) is required.
 このような船倉内の腐食対策(corrosion control method)として、船倉内には変性エポキシ系塗装(modified epoxy resin coating)が被覆厚さ約150~200μm施されている。しかし、石炭や鉄鉱石(iron ore)によるメカニカルダメージ(mechanical damage)や積荷搬出の際の重機(heavy machinery)による傷・磨耗により、塗装が剥がれる場合が多いため、十分な防食効果(effect of corrosion protection)が得られていない。 As a countermeasure against corrosion in such a hold (corrosion control method), a modified epoxy-based coating is applied in the hold to a coating thickness of about 150 to 200 μm. However, since the paint is often peeled off due to mechanical damage due to coal or iron ore, heavy scratches and heavy machinery during loading and unloading, sufficient anticorrosion effect (effect of corrosion) (protection) is not obtained.
 そこで、さらに腐食対策として定期的に再塗装(repainting)や一部の補修(touch−up)する方法が取られているが、このような方法は、非常に大きなコストがかかるため、船舶のメンテナンス費用(maintenance cost)を含め、ライフサイクルコスト(life cycle cost)を低減させることが課題となっている。 Therefore, as a countermeasure against corrosion, a method of periodically repainting or partially repairing is taken, but since such a method is very expensive, it is necessary to maintain the ship. The challenge is to reduce the life cycle cost, including the cost of maintenance.
 ところで、船舶用の耐食鋼としては、カーゴオイルタンク(cargo oil tank)用やバラストタンク(ballast tank)用に開発された鋼が知られている。 By the way, as corrosion-resistant steel for ships, steels developed for cargo oil tanks and ballast tanks are known.
 カーゴオイルタンクの上甲板裏面(upper deck of cargo oil tank side)は、防爆(explosion protection)対策のためにタンク内に吹き込まれるイナートガス(inert gas)中に含まれるO、CO、SOや原油(crude oil)から揮発するHS等の腐食性ガス(corrosive gas)の環境に曝される。底板(bottom plate)は、原油由来の保護性フィルム「オイルコート」とも称す)(protective film)があるものの、フィルムが剥離した箇所でお椀型(bowl−shaped)の局部腐食(local corrosion)が生じる環境に曝される。例えば、特許文献1では、「pH低下抑制による耐食性向上」および「硫化物微細分散による耐局部腐食性向上」の防食メカニズムを利用することによる耐食鋼が提案されている。 The upper deck side of the cargo oil tank is an O 2 , CO 2 , SO 2 or the like contained in an inert gas that is blown into the tank in order to prevent explosion protection. It is exposed to an environment of corrosive gas such as H 2 S that volatilizes from crude oil. Although the bottom plate has a protective film derived from crude oil ( also referred to as “oil coat”) (protective film), local corrosion of the bowl-shaped is caused at the point where the film is peeled off. Exposed to the resulting environment. For example, Patent Document 1 proposes a corrosion-resistant steel using the anti-corrosion mechanism of “improvement of corrosion resistance by suppressing pH decrease” and “improvement of local corrosion resistance by fine dispersion of sulfide”.
 また、バラストタンクは積荷がない時には、海水を注入して船舶の安定航行(stable navigation)を可能にする役目を担うものであり、極めて厳しい腐食環境下(severe corrosive environment)におかれている。バラストタンクの上甲板の裏側は、海水に浸からず、海水の飛沫を浴びる状態におかれないため、電気防食(cathodic protection)が機能せず、さらに、この部位は、太陽光(sunshine)によって鋼材の温度が上昇するため、厳しい腐食環境となり、激しい腐食を受ける。また、バラストタンクの側壁面や底面は、海水に完全に浸漬されている部分で、腐食環境ではあるが、電気防食作用が機能する。 In addition, the ballast tank plays a role of enabling stable navigation of the ship by injecting seawater when there is no cargo, and is placed in a very severe corrosive environment (severe corrosive environment). The back side of the upper deck of the ballast tank is not immersed in seawater and is not in a state where it is splashed with seawater, so cathodic protection does not function, and this part is caused by sunlight. Since the temperature of the steel material rises, it becomes a severe corrosive environment and receives severe corrosion. Moreover, although the side wall surface and the bottom surface of the ballast tank are completely immersed in seawater and are in a corrosive environment, the anticorrosive action functions.
 しかし、積荷が無く運行する場合には、バラストタンクに海水が注入されておらず、バラストタンク全体で、電気防食が全く働かないため、乾湿繰り返し環境と残留付着塩分の作用によって、激しい腐食を受ける。例えば、特許文献2では、錆を緻密化することにより、Clの透過を抑制することが、特許文献3では、WO 2−により、電気化学的にClの透過を抑制する防食メカニズムを利用した耐食鋼が提案されている。 However, when operating without cargo, seawater is not injected into the ballast tank, and since the entire ballast tank does not have anti-corrosion protection, it is subject to severe corrosion due to repeated wet and dry environments and residual adhered salt. . For example, in Patent Document 2, it is possible to suppress the passage of Cl by densifying rust, and in Patent Document 3, a corrosion prevention mechanism that electrochemically suppresses the transmission of Cl by WO 4 2−. Corrosion-resistant steel has been proposed.
 前述したように、石炭船および石炭・鉱石兼用船においては、乾湿繰り返しで硫酸の濃縮が起こる低pH環境の場合、水素発生反応の抑制およびSO 2−の錆−地鉄界面への透過を抑制しなければならない。このように、石炭船および石炭・鉱石兼用船のホールドとバラストタンクおよびオイルタンクにおいては、腐食環境や防食メカニズムが異なるためバラストタンク用およびオイルタンク用の耐食鋼をそのまま転用することは出来ない。このため、石炭船または石炭・鉱石兼用船ホールド用の鋼としては、独自の材料設計や特性評価が必要とされる。 As described above, in a coal ship and a coal / ore combined ship, in a low pH environment where sulfuric acid is concentrated by repeated drying and wetting, suppression of hydrogen generation reaction and permeation of SO 4 2− to the rust-steel interface are prevented. Must be suppressed. As described above, in the hold of the coal ship and the coal / ore combined ship and the ballast tank and the oil tank, the corrosion environment and the anticorrosion mechanism are different, so that the corrosion resistant steel for the ballast tank and the oil tank cannot be diverted as it is. For this reason, as a steel for a coal ship or a coal / ore combined ship holding, an original material design and characteristic evaluation are required.
 また、石炭船または石炭・鉱石兼用船ホールド用途に言及した従来技術としては、特許文献1、4および5がある。石炭船および石炭・鉱石兼用船のホールド使用環境下での造船用耐食鋼の化学成分組成として、特許文献1にはCuおよびMgを必須成分組成とした鋼材が、特許文献4にはCu、NiおよびSnを必須成分組成とした鋼材が、そして、特許文献5にはさらにコスト面の改善を目的としたCuおよびSnを必須成分組成とした鋼材が、それぞれ開示されている。 Further, Patent Documents 1, 4 and 5 are known as conventional techniques referring to a coal ship or a coal / ore combined ship holding application. As chemical composition compositions of corrosion-resistant steel for shipbuilding under the use environment of coal ships and coal / ore combined ships, Patent Document 1 discloses steel materials containing Cu and Mg as essential component compositions, and Patent Document 4 discloses Cu and Ni. Steel materials having Sn and Sn as essential components, and Patent Document 5 disclose steel materials having Cu and Sn as essential components for the purpose of further improving cost.
特開2000−17381号公報Japanese Patent Laid-Open No. 2000-17371 特開2008−144204号公報JP 2008-144204 A 特開2007−46148号公報JP 2007-46148 A 特開2007−262555号公報JP 2007-262555 A 特開2008−174768号公報JP 2008-174768 A
 しかしながら、特許文献1に示された鋼材は、船舶外板、バラストタンク、カーゴオイルタンク、鉱石船カーゴホールド等の共通的な使用環境での優れた鋼材を対象としているため、鋼材の耐食性の評価方法として、カーゴオイルタンクとバラストタンクの腐食試験の結果が良好であることを挙げているが、石炭船および石炭・鉱石兼用船のホールド使用環境下を考慮した試験結果は示されていない。 However, since the steel materials disclosed in Patent Document 1 are intended for excellent steel materials in common use environments such as ship outer plates, ballast tanks, cargo oil tanks, ore ship cargo holds, etc., the corrosion resistance of steel materials is evaluated. As a method, the results of corrosion tests of cargo oil tanks and ballast tanks are cited as good, but no test results have been shown that take into account the hold use environment of coal ships and coal / ore combined ships.
 また、特許文献4と5では、石炭船や石炭・鉱石兼用船の環境を模擬した塗膜下における耐食性を評価しているものの、ホールド使用環境下では不可避といえる石炭や鉄鉱石によるメカニカルダメージで剥離しやすい状況を想定した評価試験および鋼板の切替基準となる最大孔食深さの評価を行っていない。 In Patent Documents 4 and 5, although corrosion resistance under a coating film simulating the environment of a coal ship or coal / ore combined ship is evaluated, mechanical damage caused by coal or iron ore is inevitable in a hold use environment. The evaluation test assuming the situation where peeling easily occurs and the evaluation of the maximum pitting corrosion depth which is the standard for switching the steel sheet are not performed.
 以上、石炭船または石炭・鉱石兼用船ホールドに用いられる耐食性に優れた鋼材の開発には、石炭船または石炭・鉱石兼用船ホールド特有の腐食環境を考慮すると同時に、塗膜が剥離して塗膜がない状態での鋼材の腐食の評価が重要であるにもかかわらず、従来技術においては、この観点は考慮されていなかった。 As described above, in the development of steel materials with excellent corrosion resistance for use in coal ships or coal / ore combined ships, the corrosion environment unique to coal ships or coal / ore combined ships is taken into account, and at the same time, the coated film is peeled off. Despite the importance of evaluating the corrosion of steel in the absence of this, this viewpoint has not been considered in the prior art.
 そこで、本発明の目的は、乾湿繰返しかつ低pH環境下において、塗膜剥離後の腐食を抑制することができる石炭船または石炭・鉱石兼用船ホールド用の耐食鋼を提供することにある。 Therefore, an object of the present invention is to provide a corrosion-resistant steel for holding a coal ship or a coal / ore combined ship that can suppress corrosion after peeling of a coating film in a dry and wet repeated and low pH environment.
 一般に、船舶は、厚鋼板(steel plate)や薄鋼板(steel sheet)、形鋼(shaped steel)、棒鋼(steel bar)等の鋼材を溶接して建造されており、その鋼材の表面には防食塗膜が施されて使用される。しかし、石炭船、石炭・鉱石兼用船ホールド環境では、石炭・鉱石のメカニカルダメージで塗装は剥がれやすい状況にあり、鋼材が乾湿繰返し(cyclic wet and dry environment)かつ低pH環境下に曝される。ここでは、鋼材の表面の防食塗膜の剥離後も耐食性の発揮できる鋼材の開発を行った。 Generally, a ship is constructed by welding steel materials such as steel plate, steel plate, shaped steel, steel bar, etc., and the surface of the steel material is anticorrosive. Used with a coating applied. However, in a coal ship or coal / ore combined ship hold environment, the coating is easily peeled off due to mechanical damage of the coal / ore, and the steel material is exposed to cyclic wet and dry environment and a low pH environment. Here, the steel material which developed corrosion resistance even after peeling of the anticorrosion coating film on the surface of the steel material was developed.
 そこで、本発明者らは、石炭船または石炭・鉱石兼用船ホールド内の環境を模擬した試験法を開発し、その試験法を用いて各合金元素の影響を検討した結果、Sbの添加、あるいはさらにCu、Niの添加により、石炭船または石炭・鉱石兼用船ホールドの塗膜剥離後の鋼材の耐食性が向上することを見出し、本発明を完成させた。なお、石炭・鉱石兼用船ホールド内の環境を模擬した試験法は実施例にて後述する。
1.鋼材の成分組成が、C:0.010~0.200mass%、Si:0.05~0.50mass%、Mn:0.10~2.0mass%、P:0.0250mass%以下、S:0.010mass%以下、Al:0.0050~0.10mass%、Sb:0.010~0.50mass%、N:0.0010~0.0080mass%を含有し、さらに残部がFeおよび不可避的不純物からなることを特徴とする石炭船または石炭・鉱石兼用船ホールド用の耐食鋼。
2.前記鋼材に加えて、さらに、Cu:0.010~1.0mass%、Ni:0.010~1.0mass%のうちから選ばれる1種以上を含有することを特徴とする1に記載の石炭船または石炭・鉱石兼用船ホールド用の耐食鋼。
3.前記鋼材において、Cr:0.050mass%以下であることを特徴とする1または2に記載の石炭船または石炭・鉱石兼用船ホールド用の耐食鋼。
4.前記鋼材に加えて、さらに、W:0.005~0.5mass%およびMo:0.005~0.5mass%のうちから選ばれる1種以上を含有することを特徴とする1~3のいずれか一つに記載の石炭船または石炭・鉱石兼用船ホールド用の耐食鋼。
5.前記鋼材に加えて、Ti:0.0010~0.030mass%、Nb:0.0010~0.030mass%、Zr:0.0010~0.030mass%およびV:0.0020~0.20mass%のうちから選ばれる1種以上を含有することを特徴とする1~4のいずれか一つに記載の石炭船または石炭・鉱石兼用船ホールド用の耐食鋼。
6.前記鋼材に加えて、さらに、Ca:0.0005~0.0040mass%を含有することを特徴とする1~5のいずれか一つに記載の石炭船または石炭・鉱石兼用船ホールド用の耐食鋼。
7.前記鋼材に加えて、REM:0.0001~0.0150mass%およびY:0.0001~0.10mass%のうちから選ばれる1種以上を含有することを特徴とする1~6のいずれか一つに記載の石炭船または石炭・鉱石兼用船ホールド用の耐食鋼。
8.前記鋼材に加えて、Se:0.0005~0.50mass%、Te:0.0005~0.50mass%およびCo:0.010~0.50mass%のうちから選ばれる1種以上を含有することを特徴とする1~7のいずれか一つに記載の石炭船および石炭・鉱石兼用船ホールド用の耐食鋼。
Therefore, the present inventors have developed a test method simulating the environment in a coal ship or a coal / ore combined-use ship hold and examined the influence of each alloy element using the test method. As a result, Further, the addition of Cu and Ni has been found to improve the corrosion resistance of the steel material after peeling of the coating film of the coal ship or coal / ore combined-use ship hold, and the present invention has been completed. A test method simulating the environment in the coal / ore combined ship hold will be described later in Examples.
1. The component composition of the steel material is C: 0.010 to 0.200 mass%, Si: 0.05 to 0.50 mass%, Mn: 0.10 to 2.0 mass%, P: 0.0250 mass% or less, S: 0 0.010 mass% or less, Al: 0.0050 to 0.10 mass%, Sb: 0.010 to 0.50 mass%, N: 0.0010 to 0.0080 mass%, and the balance from Fe and inevitable impurities Corrosion resistant steel for holding a coal ship or a combined coal / ore ship.
2. 2. Coal according to 1, further comprising at least one selected from Cu: 0.010 to 1.0 mass% and Ni: 0.010 to 1.0 mass% in addition to the steel material Corrosion resistant steel for holding ships or coal / ore combined ships.
3. Corrosion-resistant steel for holding a coal ship or a coal / ore combined ship according to 1 or 2, wherein the steel material is Cr: 0.050 mass% or less.
4). In addition to the steel material, any one of 1-3, further comprising at least one selected from W: 0.005-0.5 mass% and Mo: 0.005-0.5 mass% Corrosion-resistant steel for holding a coal ship or coal / ore combined ship according to any one of the above.
5. In addition to the steel materials, Ti: 0.0010 to 0.030 mass%, Nb: 0.0010 to 0.030 mass%, Zr: 0.0010 to 0.030 mass%, and V: 0.0020 to 0.20 mass%. The corrosion-resistant steel for holding a coal ship or a coal / ore combined ship according to any one of 1 to 4, characterized by containing at least one selected from among them.
6). Corrosion-resistant steel for holding a coal ship or a coal / ore combined ship according to any one of 1 to 5, further comprising Ca: 0.0005 to 0.0040 mass% in addition to the steel material .
7). In addition to the steel material, one or more selected from REM: 0.0001 to 0.0150 mass% and Y: 0.0001 to 0.10 mass% are contained. Corrosion resistant steel for holding coal ships or coal / ore combined ships.
8). In addition to the steel material, it contains at least one selected from Se: 0.0005 to 0.50 mass%, Te: 0.0005 to 0.50 mass%, and Co: 0.010 to 0.50 mass%. The corrosion-resistant steel for holding a coal ship and a coal / ore combined ship according to any one of 1 to 7,
 本発明によれば、石炭船、石炭・鉱石兼用船ホールド内の乾湿繰返しかつ低pH環境下において、塗膜剥離後の腐食を抑制することができる石炭船または石炭・鉱石兼用船ホールド用の耐食鋼を得ることができる。 ADVANTAGE OF THE INVENTION According to this invention, the corrosion resistance for the coal ship which can suppress the corrosion after peeling of a coating film in a coal ship, a coal and ore combined ship hold | maintenance, and a low pH environment, and a coal and ore combined ship hold Steel can be obtained.
石炭腐食試験の温湿度サイクルの一例を示す図。The figure which shows an example of the temperature-humidity cycle of a coal corrosion test. 石炭船または石炭・鉱石兼用船ホールド鋼材の25年後の最大板厚減を推定する図。The figure which estimates the maximum sheet thickness reduction of coal ship or coal and ore combined use hold steel material 25 years later. 電子線マイクロアナライザーによる本発明例と比較例の石炭腐食試験後のSのマッピング結果を示す図。The figure which shows the mapping result of S after the coal corrosion test of the example of this invention and a comparative example by an electron beam microanalyzer.
 以下に、本発明を実施するための形態について説明する。まず、本発明において、鋼材の成分組成を前記の範囲に限定した理由について説明する。 Hereinafter, modes for carrying out the present invention will be described. First, the reason why the component composition of the steel material is limited to the above range in the present invention will be described.
 C:0.010~0.200mass%
Cは、鋼の強度を上昇させるのに有効な元素であり、本発明では強度を確保するために0.010mass%以上の含有を必要とする。一方、0.200mass%を超える含有は、溶接性および溶接熱影響部の靭性を低下させる。よって、Cは0.010~0.200mass%の範囲とする。さらに、好ましくは、0.050~0.150mass%の範囲である。
C: 0.010-0.200 mass%
C is an element effective for increasing the strength of steel, and in the present invention, it is necessary to contain 0.010 mass% or more in order to ensure the strength. On the other hand, the content exceeding 0.200 mass% decreases the weldability and the toughness of the weld heat affected zone. Therefore, C is set to a range of 0.010 to 0.200 mass%. Furthermore, it is preferably in the range of 0.050 to 0.150 mass%.
 Si:0.05~0.50mass%
Siは脱酸剤として添加され、また鋼の強度を高める元素であり、本発明では0.05mass%以上を含有させる。しかしながら、0.50mass%を超える含有は、鋼の靱性を劣化させるので、Siの上限は0.50mass%とする。加えてSiは酸性環境下で、防食皮膜を形成して耐食性を向上させる。この効果を得るには、好ましくは0.20~0.40mass%の範囲である。
Si: 0.05 to 0.50 mass%
Si is added as a deoxidizer and is an element that enhances the strength of steel. In the present invention, it contains 0.05 mass% or more. However, since the content exceeding 0.50 mass% deteriorates the toughness of steel, the upper limit of Si is set to 0.50 mass%. In addition, Si improves the corrosion resistance by forming an anticorrosion film in an acidic environment. In order to obtain this effect, the range is preferably 0.20 to 0.40 mass%.
 Mn:0.10~2.0mass%
Mnは低コストで鋼の強度を上げることができ、さらに熱間脆性を防止できる元素であるので、0.10mass%以上含有させる。しかしながら、2.0mass%を超える含有は、鋼の靱性および溶接性を低下させるため、Mnは2.0mass%以下とする。なお、強度の確保と介在物抑制の観点から、好ましくは0.80~1.4mass%の範囲である。
Mn: 0.10 to 2.0 mass%
Mn is an element that can increase the strength of the steel at a low cost and can prevent hot brittleness, so it is contained in an amount of 0.10 mass% or more. However, if the content exceeds 2.0 mass%, the toughness and weldability of the steel are reduced, so Mn is set to 2.0 mass% or less. From the viewpoint of securing strength and suppressing inclusions, the range is preferably 0.80 to 1.4 mass%.
 P:0.0250mass%以下
Pは粒界に偏析することで、鋼の母材靱性のみならず、溶接性および溶接部靱性を劣化させる有害な元素であるので、できるだけ低減することが望ましい。特に、Pの含有量が0.0250mass%を超えると、母材靱性および溶接部靱性の低下が大きくなる。よって、Pは0.0250mass%以下とする。好ましくは、0.0150mass%以下とする。
P: 0.0250 mass% or less P is a harmful element that deteriorates not only the base metal toughness of steel but also the weldability and weld toughness by segregating at the grain boundaries, so it is desirable to reduce it as much as possible. In particular, when the P content exceeds 0.0250 mass%, the deterioration of the base metal toughness and weld zone toughness increases. Therefore, P is set to 0.0250 mass% or less. Preferably, it is 0.0150 mass% or less.
 S:0.010mass%以下
Sは局部腐食の起点となるMnSを形成し、耐局部腐食性を低下させる。さらに、鋼の靱性および溶接性を劣化させる有害な元素であるので、極力低減することが望ましく、本発明では0.010mass%以下に制限した。好ましくは0.007mass%以下であり、さらに好ましくは0.005mass%以下である。
S: 0.010 mass% or less S forms MnS which is a starting point of local corrosion, and reduces local corrosion resistance. Furthermore, since it is a harmful element that deteriorates the toughness and weldability of steel, it is desirable to reduce it as much as possible. In the present invention, it is limited to 0.010 mass% or less. Preferably it is 0.007 mass% or less, More preferably, it is 0.005 mass% or less.
 Al:0.0050~0.10mass%
Alは脱酸剤として添加される。このためには0.0050mass%以上の含有を必要とするが、0.10mass%を超える含有は、溶接した場合に、溶接金属部の靱性を低下させる。よって、Alは0.0050~0.10mass%の範囲に制限した。好ましくは、0.010~0.050mass%とする。
Al: 0.0050 to 0.10 mass%
Al is added as a deoxidizer. For this purpose, the content of 0.0050 mass% or more is required, but the content exceeding 0.10 mass% lowers the toughness of the weld metal part when welding. Therefore, Al is limited to the range of 0.0050 to 0.10 mass%. Preferably, it is 0.010 to 0.050 mass%.
 Sb:0.010~0.50mass%
Sbは鋼材に合金元素として0.010mass%以上を含有させると、低pH環境において地鉄近傍に濃縮する。Sbは大きな水素過電圧を持つため、Sbが析出した部分では水素発生反応が抑制され、耐食性が向上する。さらに、腐食生成物を緻密にし、地鉄へのHO、O、SO 2−、Clの拡散を抑制する。
Sb: 0.010 to 0.50 mass%
When Sb contains 0.010 mass% or more as an alloy element in the steel material, it is concentrated near the ground iron in a low pH environment. Since Sb has a large hydrogen overvoltage, the hydrogen generation reaction is suppressed at the portion where Sb is deposited, and the corrosion resistance is improved. Furthermore, the corrosion product is made dense, and diffusion of H 2 O, O 2 , SO 4 2− , and Cl into the ground iron is suppressed.
 一方、Sbは0.50mass%を超えて添加すると靭性を低下させる。よって、Sbは0.010~0.50mass%の範囲に制限した。好ましくは、0.010~0.30mass%の範囲であり、さらに好ましくは0.010~0.20mass%の範囲である。 On the other hand, when Sb is added exceeding 0.50 mass%, the toughness is lowered. Therefore, Sb was limited to a range of 0.010 to 0.50 mass%. Preferably, it is in the range of 0.010 to 0.30 mass%, and more preferably in the range of 0.010 to 0.20 mass%.
 N:0.0010~0.0080mass%
Nは靱性を低下させる元素であり、できるだけ低減することが望ましい。しかしながら、工業的には0.0010mass%未満に低減するのは難しい。一方、0.0080mass%を超えて含有させると靱性の著しい劣化を招く。よって本発明では、Nは0.0010~0.0080mass%の範囲に制限した。好ましくは、0.0010~0.0050mass%とする。
N: 0.0010 to 0.0080 mass%
N is an element that lowers toughness, and is desirably reduced as much as possible. However, it is difficult to reduce it to less than 0.0010 mass% industrially. On the other hand, when it contains exceeding 0.0080 mass%, the remarkable toughness deterioration will be caused. Therefore, in the present invention, N is limited to the range of 0.0010 to 0.0080 mass%. Preferably, the content is 0.0010 to 0.0050 mass%.
 さらに、本発明の鋼材は、上記必須成分に加えて、CuおよびNiから選ばれる1種以上を下記の範囲で含有することができる。 Furthermore, in addition to the above essential components, the steel material of the present invention can contain one or more selected from Cu and Ni in the following range.
 Cu:0.010~1.0mass%
Cuは腐食生成物を緻密にし、地鉄へのHO、O、SO 2−、Clの拡散を抑制する。これにより、鋼の耐食性が向上する。この効果は、0.010mass%以上の含有で発現するが、添加量が多くなると溶接性や母材の靭性が低下する。そのため、Cuを含有する場合には0.010~1.0mass%の範囲であることが好ましい。さらに好ましくは0.010~0.50mass%の範囲である。いっそう好ましくは0.010~0.35mass%の範囲である。また、Cuは、Sb共存下で金属間化合物であるCuSbを形成することで、耐食性が向上する効果もある。
Cu: 0.010 to 1.0 mass%
Cu densifies corrosion products and suppresses the diffusion of H 2 O, O 2 , SO 4 2− , and Cl into the ground iron. Thereby, the corrosion resistance of steel improves. This effect is manifested with a content of 0.010 mass% or more, but as the amount added increases, the weldability and the toughness of the base material decrease. Therefore, when Cu is contained, it is preferably in the range of 0.010 to 1.0 mass%. More preferably, it is in the range of 0.010 to 0.50 mass%. More preferably, it is in the range of 0.010 to 0.35 mass%. Cu also has the effect of improving the corrosion resistance by forming Cu 2 Sb, which is an intermetallic compound in the presence of Sb.
 Ni:0.010~1.0mass%
NiはCuと同様に腐食生成物を緻密にし、地鉄へのHO、O、SO 2−、Clの拡散を抑制する。これにより、鋼の耐食性が向上する。この効果は、0.010mass%以上の含有で発現するが、1.0mass%を超えると効果が飽和すると共にコストも上昇するため、Niを含有する場合には0.010~1.0mass%の範囲であることが好ましい。さらに好ましくは0.010~0.50mass%の範囲である。
Ni: 0.010 to 1.0 mass%
Ni, like Cu, densifies the corrosion products and suppresses diffusion of H 2 O, O 2 , SO 4 2− , and Cl into the ground iron. Thereby, the corrosion resistance of steel improves. This effect is manifested when the content is 0.010 mass% or more. However, if the content exceeds 1.0 mass%, the effect is saturated and the cost is increased, so when Ni is contained, 0.010 to 1.0 mass%. A range is preferable. More preferably, it is in the range of 0.010 to 0.50 mass%.
 本発明の鋼材は、上記成分に加えて、さらにCrを下記の範囲で含有させることができる。 The steel material of the present invention can further contain Cr in the following range in addition to the above components.
 Cr:0.050mass%以下
Crは、低pH環境で加水分解を起こすため、耐食性を低下させる元素であるので無添加でよい。強度調整のため添加することができるが、特にその含有量が0.050mass%を超えると耐食性の低下が著しくなるため、Crを含有させる場合、その含有量は0.050mass%以下とすることが好ましい。さらに好ましくは、0.030mass%以下とする。
Cr: 0.050 mass% or less Cr is an element that lowers the corrosion resistance because it causes hydrolysis in a low pH environment, so it may be added without addition. Although it can be added for strength adjustment, particularly when its content exceeds 0.050 mass%, the corrosion resistance is significantly reduced. Therefore, when Cr is contained, its content should be 0.050 mass% or less. preferable. More preferably, it is 0.030 mass% or less.
 W:0.005~0.5mass%およびMo:0.005~0.5mass%
WおよびMoは母材から溶出した際に酸素酸を形成し、これらがアニオンを電気的に反発させ、アニオンが地鉄表面まで侵入することを防ぎ、耐食性を向上させる。さらにはMoおよびWはFeMoOやFeWOといった難溶性の腐食性物質を形成することで耐食性を向上させる。これらの効果を得るためには、いずれも0.005mass%以上を含有させることが好ましい。しかし、0.5mass%を超えて添加しても効果が飽和するだけでなく、コストが嵩むため、含有させる場合には、0.5mass%以下とすることが好ましい。さらに好ましくは、0.010~0.3mass%とする。
W: 0.005 to 0.5 mass% and Mo: 0.005 to 0.5 mass%
When W and Mo are eluted from the base material, they form oxygen acid, which electrically repels the anion, prevents the anion from penetrating to the surface of the ground iron, and improves the corrosion resistance. Furthermore, Mo and W improve corrosion resistance by forming a hardly soluble corrosive substance such as FeMoO 4 or FeWO 4 . In order to acquire these effects, it is preferable to contain 0.005 mass% or more of all. However, even if added over 0.5 mass%, the effect is not only saturated, but also the cost increases. Therefore, when it is contained, the content is preferably set to 0.5 mass% or less. More preferably, it is 0.010 to 0.3 mass%.
 本発明の鋼材は、上記成分に加えてさらに、強度向上を目的として、Ti、Nb、ZrおよびVから選ばれる1種以上を下記の範囲で含有させることができる。 In addition to the above components, the steel material of the present invention may further contain one or more selected from Ti, Nb, Zr and V in the following range for the purpose of improving the strength.
 Ti:0.0010~0.030mass%、Nb:0.0010~0.030mass%、Zr:0.0010~0.030mass%、V:0.0020~0.20mass%のうちから1種以上
 Ti、Nb、ZrおよびVはいずれも、鋼の強度を高める元素であり、必要とする強度に応じて選択して含有させることができる。このような効果を得るためには、Ti、NbおよびZrは0.0010mass%以上、Vは0.0020mass%以上含有させることが好ましい。しかしながら、Ti、NbおよびZrはいずれも0.030mass%、また、Vは0.20mass%を超えて含有させるとそれぞれ靱性が低下するため、Ti、Nb、ZrおよびVを含有させる場合には、それぞれ、上記の範囲で含有させることが好ましい。さらに好ましくは、Ti:0.0050~0.020mass%、Nb:0.0050~0.020mass%、Zr:0.0050~0.020mass%、V:0.0050~0.10mass%とする。
Ti: 0.0010 to 0.030 mass%, Nb: 0.0010 to 0.030 mass%, Zr: 0.0010 to 0.030 mass%, V: 0.0020 to 0.20 mass%, one or more types Ti , Nb, Zr and V are all elements that increase the strength of the steel, and can be selected and contained according to the required strength. In order to obtain such an effect, it is preferable to contain Ti, Nb, and Zr in an amount of 0.0010 mass% or more, and V in an amount of 0.0020 mass% or more. However, Ti, Nb, and Zr are all 0.030 mass%, and if V is contained in excess of 0.20 mass%, the toughness decreases, so when Ti, Nb, Zr, and V are contained, Each of them is preferably contained in the above range. More preferably, Ti: 0.0050 to 0.020 mass%, Nb: 0.0050 to 0.020 mass%, Zr: 0.0050 to 0.020 mass%, and V: 0.0050 to 0.10 mass%.
 本発明の鋼材は、上記成分に加えてさらに、Caを下記の範囲で含有させることができる。
Ca:0.0005~0.0040mass%
Caは、介在物の形態を制御して鋼の延性および靱性を高める元素である。このような効果を発揮させるためには、少なくとも0.0005mass%含有することが好ましい。しかし過度に含有させると、粗大な介在物を形成し母材の靱性を劣化させるので、含有する場合には上限を0.0040mass%とすることが好ましい。さらに好ましくは、0.0010~0.0030mass%とする。
In addition to the above components, the steel material of the present invention can further contain Ca in the following range.
Ca: 0.0005 to 0.0040 mass%
Ca is an element that increases the ductility and toughness of steel by controlling the form of inclusions. In order to exhibit such an effect, it is preferable to contain at least 0.0005 mass%. However, if it is contained excessively, coarse inclusions are formed and the toughness of the base material is deteriorated. Therefore, when it is contained, the upper limit is preferably made 0.0040 mass%. More preferably, it is 0.0010 to 0.0030 mass%.
 本発明の鋼材は、上記成分に加えてさらに、靱性向上を目的として、REMおよびYから選ばれる1種以上を下記の範囲で添加することができる。 In addition to the above components, one or more selected from REM and Y can be added to the steel material of the present invention in the following range for the purpose of improving toughness.
 REM:0.0001~0.0150mass%、Y:0.0001~0.10mass%
REM(希土類金属)およびYはいずれも溶接熱影響部の靱性を高める元素であり、必要に応じて含有させることができる。この効果は、REMおよびYのいずれも0.0001mass%以上の含有で得られる。しかし、REMは0.0150mass%、Yは0.10mass%を超えて含有すると、靱性の低下を招くので、REM、Yを含有させる場合には、それぞれ、上記の範囲とすることが好ましい。
REM: 0.0001 to 0.0150 mass%, Y: 0.0001 to 0.10 mass%
REM (rare earth metal) and Y are both elements that increase the toughness of the weld heat affected zone, and can be contained as necessary. This effect is obtained when both REM and Y are contained in an amount of 0.0001 mass% or more. However, when REM contains 0.0150 mass% and Y exceeds 0.10 mass%, the toughness is deteriorated. Therefore, when REM and Y are contained, it is preferable to set the above ranges.
 本発明の鋼材は、上記成分に加えてさらに、強度向上を目的として、Se、Te、Coから選ばれる1種以上を下記の範囲で含有させることができる。 In addition to the above components, the steel material of the present invention may further contain one or more selected from Se, Te, and Co in the following range for the purpose of improving the strength.
 Se:0.0005~0.50mass%、Te:0.0005~0.50mass%、Co:0.010~0.50mass%のうちから1種以上
Se、TeおよびCoは、鋼の強度を高める元素であり、必要に応じて含有させることができる。この効果を得るためには、Se、Teは0.0005mass%以上、Coは0.010mass%以上含有させることが好ましいが、Se、Te、Coのいずれも、0.50mass%を超えて含有させると靱性や溶接性が低下するため、含有する場合には上記の範囲とすることが好ましい。
One or more of Se: 0.0005 to 0.50 mass%, Te: 0.0005 to 0.50 mass%, and Co: 0.010 to 0.50 mass% increase the strength of the steel. It is an element and can be contained as required. In order to obtain this effect, Se and Te are preferably contained in an amount of 0.0005 mass% or more, and Co is preferably contained in an amount of 0.010 mass% or more. However, any of Se, Te, and Co is contained in an amount exceeding 0.50 mass%. When it contains, it is preferable to set it as said range.
 本発明における化学成分のうち、上記以外の成分はFeおよび不可避的不純物である。ただし、本発明の効果をなくさない範囲内であれば、上記以外の成分の含有を拒むものではない。たとえば、靱性向上を目的としてMg:0.0001~0.010mass%を含有することができる。 Of the chemical components in the present invention, components other than those described above are Fe and inevitable impurities. However, as long as the effects of the present invention are not lost, the inclusion of components other than those described above is not rejected. For example, Mg: 0.0001 to 0.010 mass% can be contained for the purpose of improving toughness.
 一方、後に実施例で示すように、Sbの代わりにSnを含有させても腐食減量および最大孔食深さを抑制する効果はない。さらに、Snは、Cuと共存するとCuの融点を下げ、さらに鉄への固溶度も下げるため、Cuが鋼材表面の粒界に析出し、熱間割れを引き起こす。そのため、Snの添加は行わないが、その含有量が0.005mass%未満であれば、熱間割れを生じさせることはないので、不純物として許容できる。 On the other hand, as will be shown later in Examples, even if Sn is contained instead of Sb, there is no effect of suppressing the corrosion weight loss and the maximum pitting corrosion depth. Furthermore, Sn coexists with Cu lowers the melting point of Cu and further lowers the solid solubility in iron, so that Cu precipitates at grain boundaries on the surface of the steel material and causes hot cracking. Therefore, Sn is not added, but if its content is less than 0.005 mass%, it does not cause hot cracking and is acceptable as an impurity.
 次に、本発明に係る耐食鋼材の好適製造方法について説明するが、本発明を適用できる製造方法はこれに限られない。 Next, although the suitable manufacturing method of the corrosion-resistant steel material which concerns on this invention is demonstrated, the manufacturing method which can apply this invention is not restricted to this.
 連続鋳造などにより得られた鋼材をそのまま、あるいは冷却後に再加熱して、熱間圧延を行なう。耐食性を発揮させる為の熱処理条件は問わないが、機械的特性(mechanical property)の観点からは適切な圧下率を確保することが好ましい。熱間圧延の仕上温度が750℃未満となると変形抵抗(deformation resistance)が大きくなり、形状不良(defective shape)が起きるため、仕上温度は、750℃以上とすることが好ましい。 The steel material obtained by continuous casting or the like is hot-rolled as it is or after re-cooling after cooling. The heat treatment conditions for exerting the corrosion resistance are not limited, but it is preferable to ensure an appropriate reduction ratio from the viewpoint of mechanical properties. When the finishing temperature of hot rolling is less than 750 ° C., deformation resistance increases and defective shape occurs. Therefore, the finishing temperature is preferably 750 ° C. or higher.
 例えば、仕上温度を750℃以上、その後150℃/min以上の冷却速度で600℃以下まで冷却速度(cooling rate)を制御することで、引張強さ490MPa級以上の鋼材を製造することができる。 For example, a steel material having a tensile strength of 490 MPa or higher can be manufactured by controlling the cooling rate to 600 ° C. or lower at a finishing temperature of 750 ° C. or higher and then a cooling rate of 150 ° C./min or higher.
 表1に示す成分となる鋼を、真空溶解炉で溶製または転炉溶製後、連続鋳造によりスラブとした。ついで、スラブを加熱炉に装入して1200℃に加熱し、仕上圧延終了温度800℃の熱間圧延により25mm厚の鋼板とした。 The steel shown in Table 1 was made into a slab by continuous casting after melting in a vacuum melting furnace or melting in a converter. Next, the slab was charged into a heating furnace and heated to 1200 ° C., and a steel plate having a thickness of 25 mm was formed by hot rolling at a finish rolling finishing temperature of 800 ° C.
 本発明者らは、石炭船および石炭・鉱石兼用船のホールド内の腐食でもっとも船舶の破壊に影響を与える孔食発生のメカニズムを調査した結果、以下のようであった。ばら積み貨物船の側壁部は、シングルハルとなっていて、積荷と海水とは鋼材1枚隔てているだけである。そのため、海水と船倉内の温度差により、船倉側壁部には結露水が生じ、鋼材及び石炭表面が濡れ、石炭表面に吸着しているHSO由来の物質が水膜に滲出する。メニスカス(meniscus)を形成する石炭下で孔食が進展し、メニスカス部分では、鋼材の腐食にHが消費されていくため、H濃度が減少していく。一方、石炭表面にはHが多く存在するため、石炭表面とメニスカス部分でH濃度の差が生まれる。その化学ポテンシャル(chemical potential)の差を駆動力(driving force)とし、メニスカス部分に石炭表面からHが供給されると考えられる。そして、乾燥過程で未反応のHは再び石炭表面に固着し、次の結露過程で腐食反応に使用され、この過程が長期的なサイクルで起こり、メニスカス部分で腐食がより進行し、孔食が形成されていく。本メカニズムを基に、石炭船および石炭・鉱石兼用船のホールド内の孔食を実験室的に模擬すべく以下の条件とした。 As a result of investigating the mechanism of pitting corrosion that most affects the destruction of the ship due to the corrosion in the hold of the coal ship and the coal / ore combined ship, the present inventors have found the following. The side wall of the bulk carrier is a single hull, and the cargo and seawater are separated from each other only by one piece of steel. Therefore, due to the temperature difference between the seawater and the hold, dew condensation water is generated on the side wall of the hold, the steel material and the surface of the coal are wet, and the H 2 SO 4 -derived substance adsorbed on the surface of the coal oozes into the water film. Pitting corrosion progresses under the coal forming the meniscus, and H + is consumed in the meniscus portion due to the corrosion of the steel material, so the H + concentration decreases. On the other hand, since a large amount of H + exists on the coal surface, a difference in H + concentration is produced between the coal surface and the meniscus portion. It is considered that the difference in chemical potential is the driving force (driving force), and H + is supplied to the meniscus portion from the coal surface. Unreacted H + adheres to the coal surface again during the drying process, and is used for the corrosion reaction in the next dew condensation process. This process takes place in a long-term cycle, causing more corrosion in the meniscus area and pitting corrosion. Will be formed. Based on this mechanism, the following conditions were used to simulate pitting corrosion in the hold of coal ships and coal / ore combined ships.
 (実施例1)
 まず、表1に示す鋼板を用いて最大孔食深さの測定をするために以下の手順により実施例を得た(本試験方法は、腐食試験aとする)。
表1に示す成分の鋼板から、5mm×50mm×75mmの試験片を採取し、その試験片の表面をショットブラスト(shot blasting)して、表面のスケール(scale)や油分(oil content)を除去した。この面を試験面とすることにより、塗膜剥離後の鋼材の耐食性を評価した。裏面と端面をシリコン系シール(silicon base adhesive tape)でコーティングした後、アクリル製の治具(acrylic cell)に嵌め込み、その上に石炭5gを敷き詰め、低温恒温恒湿器(temperature and humidity chamber)により、図1に示す雰囲気A(温度60℃、湿度95%、20時間) ⇔ 雰囲気B(温度30℃、湿度95%、3時間) 遷移時間0.5時間の温湿度サイクルを28日間与えた。ここで、記号「 ⇔ 」は繰り返しという意味で使用している(以下同様)。なお、石炭は5gを秤量し、常温で100mlの蒸留水に2時間浸漬したのち、ろ過を行ない200mlに希釈した石炭浸出液のpHが3.0になるものを用いた。本実施例は、こうした条件で試験を行うことにより、石炭船および石炭・鉱石兼用船のホールド内の腐食に大きな影響を及ぼす温湿度環境、結露状況を模擬している。試験後、錆剥離液を用い、各試験片の錆を剥離し、鋼材の重量減少量を測定し腐食量とした。また、生じた最大孔食深さデプスメーターを用いて測定を行った。その結果を表2に示す。
(Example 1)
First, in order to measure the maximum pitting corrosion depth using the steel sheet shown in Table 1, an example was obtained by the following procedure (this test method is referred to as corrosion test a).
A test piece of 5 mm t × 50 mm W × 75 mm L was collected from the steel plate having the components shown in Table 1, and the surface of the test piece was shot blasted to provide a scale or oil content. ) Was removed. By using this surface as a test surface, the corrosion resistance of the steel material after coating film peeling was evaluated. After the back and end surfaces are coated with a silicon base adhesive tape, they are fitted into an acrylic cell, and 5 g of coal is laid on the acrylic cell, and a temperature and humidity chamber is used. 1 and atmosphere A (temperature 60 ° C., humidity 95%, 20 hours), and atmosphere B (temperature 30 ° C., humidity 95%, 3 hours). A temperature and humidity cycle with a transition time of 0.5 hours was given for 28 days. Here, the symbol “⇔” is used in the sense of repetition (the same applies hereinafter). In addition, 5 g of coal was weighed, immersed in 100 ml of distilled water at room temperature for 2 hours, filtered, and the coal leachate diluted to 200 ml having a pH of 3.0 was used. In this example, the test is conducted under such conditions, thereby simulating a temperature / humidity environment and a dew condensation state that greatly affect the corrosion in the hold of the coal ship and the coal / ore combined ship. After the test, using a rust remover, the rust of each test piece was peeled off, and the weight loss of the steel material was measured to obtain the amount of corrosion. Moreover, it measured using the generated maximum pitting depth depth meter. The results are shown in Table 2.
 表2から、本発明例の試験番号No.1−a~27−a(試験番号の数字部分と鋼板番号は一致している。以下同様)、No.33−a~40−aのいずれにおいても、比較材に比べて重量減、最大孔食深さともに良好であり、重量減は2.5g以下、最大孔食深さは0.30mm以下に抑えられていることがわかる。一方、比較材である、試験番号No.28−aおよびNo.29−aはCrを0.050mass%を超えて含有するため、また、試験番号No.30−aおよびNo.32−aはSbを含有せずにSnを含有するため、いずれも、重量減は2.7g以上、最大孔食深さは0.35mm以上であった。なお、試験番号No.31−aはSbを含有しないため、それ以外の元素の量が本発明範囲内にあるにもかかわらず、重量減が2.71g、最大孔食深さは0.34mmと、本発明例に比べて耐食性が劣っていた。
(実施例2)
次に、25年後の最大板厚減を推定するための実施例を示す。実施例1と同様に、表1に示す鋼板から、5mm×50mm×75mmの試験片を採取した。その試験片の表面をショットブラストして、表面のスケールや油分を除去し、この面を試験面とすることにより、塗膜剥離後の鋼材の耐食性を評価した。裏面と端面をシリコン系シールでコーティングした後、アクリル製の治具に嵌め込み、その上に石炭5gを敷き詰め、低温恒温恒湿器により、図1に示す雰囲気A(温度60℃、湿度95%、20時間) ⇔ 雰囲気B(温度30℃、湿度95%、3時間) 遷移時間0.5時間の温湿度サイクルを28、56、84、168、336日間与えた(本試験方法は、腐食試験bとする)。
From Table 2, the test number No. 1-a to 27-a (the numerical part of the test number is the same as the steel plate number; the same applies hereinafter), In any of 33-a to 40-a, the weight loss and the maximum pitting depth are good compared to the comparative material, the weight loss is 2.5 g or less, and the maximum pitting depth is suppressed to 0.30 mm or less. You can see that On the other hand, test number No. which is a comparative material. 28-a and no. 29-a contains Cr in excess of 0.050 mass%. 30-a and no. Since 32-a does not contain Sb but contains Sn, the weight loss was 2.7 g or more, and the maximum pitting depth was 0.35 mm or more. Test No. Since 31-a does not contain Sb, the weight loss is 2.71 g and the maximum pitting corrosion depth is 0.34 mm, although the amount of other elements is within the scope of the present invention. Corrosion resistance was inferior compared.
(Example 2)
Next, an example for estimating the maximum thickness reduction after 25 years is shown. In the same manner as in Example 1, test pieces of 5 mm t × 50 mm W × 75 mm L were collected from the steel plates shown in Table 1. The surface of the test piece was shot blasted to remove scale and oil on the surface, and this surface was used as a test surface to evaluate the corrosion resistance of the steel material after peeling the coating film. After coating the back and end faces with a silicone seal, it is fitted into an acrylic jig, and 5 g of coal is laid on it, and the atmosphere A (temperature 60 ° C., humidity 95%, 20 hours) ⇔ Atmosphere B (temperature 30 ° C., humidity 95%, 3 hours) A temperature and humidity cycle with a transition time of 0.5 hours was applied for 28, 56, 84, 168, and 336 days. And).
 なお、石炭は5gを秤量し、常温で100mlの蒸留水に2時間浸漬した後、ろ過を行ない200mlに希釈した石炭浸出液のpHが3.0になるものを用いた。本実施例は、こうした条件で試験を行うことにより、石炭船および石炭・鉱石兼用船のホールド内の腐食に大きな影響を及ぼす温湿度環境、結露状況を模擬している。試験後、錆剥離液を用い、各試験片の錆を剥離し、各期間の最大孔食深さデプスメーターを用いて測定した。しかしながら、最大孔食深さの値は対象とする面積が大きいほど、増加する。そこで、実船での各期間の最大孔食深さを予測するために、極値統計(extreme value statistics)を用い本試験片面積での測定値から実船ホールド相当面積の最大孔食深さを算出した。ここで、本開発鋼の適用部位であるホールド肋骨部は両面からの腐食のため、各期間の最大孔食深さを2倍し、それらの値の外挿により船舶寿命(life time of ship)である25年後の最大板厚減を推定した。その結果を表3に示す。適用部位の板厚は15~20mmであり、腐食代(corrosion allowance)は3.5~4.0mm、腐食余裕厚(voluntary thickness addition)は0.5mmであることを前提条件とし、鋼船規則CSR−B編(IACS common structure rule for bulk carriers)の鋼板切替基準から、25年後の最大板厚減のクライテリア(criteria)を4.0mmとした。 In addition, 5 g of coal was weighed and immersed in 100 ml of distilled water at room temperature for 2 hours, and then filtered, and the coal leachate diluted to 200 ml had a pH of 3.0. In this example, the test is conducted under such conditions, thereby simulating a temperature / humidity environment and a dew condensation state that greatly affect the corrosion in the hold of the coal ship and the coal / ore combined ship. After the test, the rust of each test piece was peeled off using a rust remover and measured using a maximum pitting depth depth meter for each period. However, the value of the maximum pitting depth increases as the target area increases. Therefore, in order to predict the maximum pitting depth for each period on an actual ship, the maximum pitting depth of the area corresponding to the actual ship hold from the measured value in this test piece area using extreme value statistics (extreme value statistics). Was calculated. Here, because the hold rib, which is the application site of the developed steel, is corroded from both sides, the maximum pitting depth for each period is doubled, and the life of the ship is estimated by extrapolating those values. The maximum thickness reduction after 25 years was estimated. The results are shown in Table 3. It is assumed that the plate thickness of the application site is 15 to 20 mm, the corrosion allowance is 3.5 to 4.0 mm, and the corrosion thickness is 0.5 mm. Based on the standard for steel sheet switching in the CSR-B edition (IACS common structure rule for bulk carriers), the maximum thickness reduction criteria after 25 years was set to 4.0 mm.
 また、電子線マイクロアナライザー(electron probe micro−analysis)を用い、84日試験後の本発明例No.37—bと比較例No.44—bの錆断面のSのマッピングを行った。電子線マイクロアナライザーは、島津製作所製EPMA1600を用い、加速電圧(accelerating voltage):20kV、ビーム径(beam diameter):1μm、XおよびY方向に0.4μmピッチ(pitch)で100×100μmの領域を測定した。 In addition, using an electron probe micro-analysis, the present invention example No. 37-b and Comparative Example No. S mapping of the rust cross section of 44-b was performed. The electron microanalyzer uses EPMA1600 manufactured by Shimadzu Corporation, and has an acceleration voltage of 20 kV, a beam diameter of 1 μm, and a region of 100 × 100 μm at a pitch of 0.4 μm in the X and Y directions. It was measured.
 図2には、25年後の最大板厚減を推定したグラフ(graph)を示す。ここで、最大板厚減とは船舶における図面板厚から局所的な腐食により最も板厚が減少した部分の鋼板の厚さである。本発明例No.37—bと比較例No.44—bについて記載している。図2を作成する上で用いた各期間の最大板厚減は、発明例37—bでは以下であった。28日:0.85mm、56日:1.11mm、84日:1.28mm、168日:1.36mm、336日:1.47mm。さらに、比較例44—bでは以下であった。28日:0.96mm、56日:1.39mm、84日:1.62mm、168日:1.91mm、336日:2.11mm。また、表3に示す本発明例の試験番号No.1−b~27−b、試験番号No.33−b~40−bのいずれにおいても、推定される25年後の最大板厚減がクライテリアである4.0mm以下であった。また、Sbの添加のみ本請求項から外したNo.31−bがクライテリアを満足しなかったことから、本環境での防食にSbが大きく影響していることがわかる。 Fig. 2 shows a graph that estimates the maximum thickness reduction after 25 years. Here, the maximum thickness reduction is the thickness of the steel plate where the thickness is reduced most due to local corrosion from the drawing thickness in the ship. Invention Example No. 37-b and Comparative Example No. 44-b is described. The maximum plate thickness reduction in each period used for creating FIG. 2 was as follows in Invention Example 37-b. 28 days: 0.85 mm, 56 days: 1.11 mm, 84 days: 1.28 mm, 168 days: 1.36 mm, 336 days: 1.47 mm. Furthermore, in Comparative Example 44-b, the following was true. 28 days: 0.96 mm, 56 days: 1.39 mm, 84 days: 1.62 mm, 168 days: 1.91 mm, 336 days: 2.11 mm. In addition, test numbers No. 1-b to 27-b, test no. In any of 33-b to 40-b, the estimated maximum thickness reduction after 25 years was 4.0 mm or less, which is the criterion. Further, only the addition of Sb was removed from the claims. Since 31-b did not satisfy the criteria, it can be seen that Sb greatly affects the corrosion protection in this environment.
 また、図3に腐食試験bでの84日後の錆部断面の電子線マイクロアナライザーによるSのマッピング(mapping)結果を示す。比較例であるNo.44−bでは、錆層と地鉄間にSの多い界面層が存在するのに対し、本発明例であるNo.37−bでは、Sの多い界面層はほとんど見られない。このことから、本発明例では、Sbによる錆の緻密化およびWの酸素酸によるSO 2−の電気的な反発により、錆−地鉄界面へのSO 2−の透過が抑制されていると推定される。このことから、本発明は石炭船または石炭・鉱石兼用船ホールド環境において、SO 2−の透過を抑制する錆層を形成する鋼材であることが分かる。 FIG. 3 shows a mapping result of S by an electron microanalyzer of the cross section of the rust after 84 days in the corrosion test b. No. which is a comparative example. In No. 44-b, there is an interfacial layer with a lot of S between the rust layer and the ground iron, whereas in the example of the present invention, In 37-b, the interface layer with many S is hardly seen. From this, in the present invention example, the penetration of SO 4 2− to the rust-steel interface is suppressed by the densification of rust by Sb and the electrical repulsion of SO 4 2− by the oxygen acid of W. It is estimated to be. From this, it can be seen that the present invention is a steel material that forms a rust layer that suppresses permeation of SO 4 2− in a coal ship or a coal / ore combined ship hold environment.
 以上、本発明の効果が確認された。本実施例では、石炭船または石炭・鉱石兼用船ホールド内の環境を模擬した試験法として図1に示した方法に拠ったが、実際にホールド内に設置して評価した場合と極めて整合性がある結果が得られている。また、雰囲気A、Bの条件、遷移時間、サイクル(cycle)、石炭の調整方法、石炭浸出液のpHの値等の条件は上述の例に限られるものではなく、鋼材のホールド内での使用環境に応じて、適宜変更することができる。 As described above, the effect of the present invention was confirmed. In this example, the method shown in FIG. 1 was used as a test method simulating the environment in the coal ship or coal / ore combined-use ship hold, but it was extremely consistent with the case where it was actually installed in the hold and evaluated. Some results have been obtained. Conditions such as atmosphere A and B, transition time, cycle, coal adjustment method, pH value of coal leachate, etc. are not limited to the above-mentioned examples, and the usage environment within the steel hold Depending on the situation, it can be changed appropriately.
 本発明に係る鋼材は、石炭や鉱石のメカニカルダメージにより塗膜が剥離し易く、さらに乾湿繰返しかつ低pH環境下に曝される、石炭船または石炭・鉱石兼用船ホールドの構成部材として使用することができる。 The steel material according to the present invention is used as a constituent member of a coal ship or a coal / ore combined ship hold that is easily peeled off due to mechanical damage of coal or ore and is exposed to repeated dry and wet conditions and a low pH environment. Can do.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008

Claims (8)

  1.  鋼材の成分組成が、C:0.010~0.200mass%、Si:0.05~0.50mass%、Mn:0.10~2.0mass%、P:0.0250mass%以下、S:0.010mass%以下、Al:0.0050~0.10mass%、Sb:0.010~0.50mass%、N:0.0010~0.0080mass%を含有し、さらに残部がFeおよび不可避的不純物からなる石炭船または石炭・鉱石兼用船ホールド用の耐食鋼。 The component composition of the steel material is C: 0.010 to 0.200 mass%, Si: 0.05 to 0.50 mass%, Mn: 0.10 to 2.0 mass%, P: 0.0250 mass% or less, S: 0 0.010 mass% or less, Al: 0.0050 to 0.10 mass%, Sb: 0.010 to 0.50 mass%, N: 0.0010 to 0.0080 mass%, and the balance from Fe and inevitable impurities Corrosion-resistant steel for holding coal ships or coal / ore combined ships.
  2.  前記鋼材に加えて、さらに、Cu:0.010~1.0mass%、Ni:0.010~1.0mass%のうちから選ばれる1種以上を含有する請求項1に記載の石炭船または石炭・鉱石兼用船ホールド用の耐食鋼。 The coal ship or coal according to claim 1, further comprising at least one selected from Cu: 0.010 to 1.0 mass% and Ni: 0.010 to 1.0 mass% in addition to the steel material.・ Corrosion-resistant steel for holding ore combined ships.
  3.  前記鋼材において、Cr:0.050mass%以下である請求項1または2に記載の石炭船または石炭・鉱石兼用船ホールド用の耐食鋼。 The corrosion resistant steel for holding a coal ship or a coal / ore combined ship according to claim 1 or 2, wherein the steel material has Cr: 0.050 mass% or less.
  4.  前記鋼材に加えて、さらに、W:0.005~0.5mass%およびMo:0.005~0.5mass%のうちから選ばれる1種以上を含有する請求項1~3のいずれかの項に記載の石炭船または石炭・鉱石兼用船ホールド用の耐食鋼。 4. The method according to claim 1, further comprising at least one selected from W: 0.005-0.5 mass% and Mo: 0.005-0.5 mass% in addition to the steel material. Corrosion-resistant steel for holding coal ships or coal / ore combined ships as described in 1.
  5.  前記鋼材に加えて、Ti:0.0010~0.030mass%、Nb:0.0010~0.030mass%、Zr:0.0010~0.030mass%およびV:0.0020~0.20mass%のうちから選ばれる1種以上を含有する請求項1~4のいずれかの項に記載の石炭船または石炭・鉱石兼用船ホールド用の耐食鋼。 In addition to the steel materials, Ti: 0.0010 to 0.030 mass%, Nb: 0.0010 to 0.030 mass%, Zr: 0.0010 to 0.030 mass%, and V: 0.0020 to 0.20 mass%. The corrosion-resistant steel for holding a coal ship or a coal / ore combined ship according to any one of claims 1 to 4, comprising at least one selected from among them.
  6.  前記鋼材に加えて、さらに、Ca:0.0005~0.0040mass%を含有する請求項1~5のいずれかの項に記載の石炭船または石炭・鉱石兼用船ホールド用の耐食鋼。 6. The corrosion-resistant steel for holding a coal ship or a combined coal / ore ship according to any one of claims 1 to 5, further containing Ca: 0.0005 to 0.0040 mass% in addition to the steel material.
  7.  前記鋼材に加えて、REM:0.0001~0.0150mass%およびY:0.0001~0.10mass%のうちから選ばれる1種以上を含有する請求項1~6のいずれかの項に記載の石炭船または石炭・鉱石兼用船ホールド用の耐食鋼。 7. In addition to the steel material, one or more selected from REM: 0.0001 to 0.0150 mass% and Y: 0.0001 to 0.10 mass% are contained. Corrosion-resistant steel for holding coal ships or coal / ore combined ships.
  8.  前記鋼材に加えて、Se:0.0005~0.50mass%、Te:0.0005~0.50mass%およびCo:0.010~0.50mass%のうちから選ばれる1種以上を含有する請求項1~7のいずれかの項に記載の石炭船または石炭・鉱石兼用船ホールド用の耐食鋼。 In addition to the steel material, it contains at least one selected from Se: 0.0005 to 0.50 mass%, Te: 0.0005 to 0.50 mass%, and Co: 0.010 to 0.50 mass%. Item 8. A corrosion-resistant steel for holding a coal ship or a coal / ore combined ship according to any one of items 1 to 7.
PCT/JP2012/061624 2012-01-25 2012-04-25 Corrosion-resistant steel for hold of coal carrying vessel or coal/ore carrying vessel WO2013111355A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12866465.3A EP2808411B1 (en) 2012-01-25 2012-04-25 Corrosion-resistant steel for hold of coal carrying vessel or coal/ore carrying vessel
KR1020147020844A KR20140105862A (en) 2012-01-25 2012-04-25 Corrosion-resistant steel for hold of coal carrying vessel or coal/ore carrying vessel
CN201280068152.4A CN104105806A (en) 2012-01-25 2012-04-25 Corrosion-resistant steel for hold of coal carrying vessel or coal/ore carrying vessel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-012530 2012-01-25
JP2012012530A JP5862323B2 (en) 2011-01-31 2012-01-25 Corrosion resistant steel for holding coal ships or coal / ore combined ships

Publications (1)

Publication Number Publication Date
WO2013111355A1 true WO2013111355A1 (en) 2013-08-01

Family

ID=48874597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061624 WO2013111355A1 (en) 2012-01-25 2012-04-25 Corrosion-resistant steel for hold of coal carrying vessel or coal/ore carrying vessel

Country Status (5)

Country Link
EP (1) EP2808411B1 (en)
JP (1) JP5862323B2 (en)
KR (1) KR20140105862A (en)
CN (1) CN104105806A (en)
WO (1) WO2013111355A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018038196A1 (en) * 2016-08-25 2018-03-01 Jfeスチール株式会社 Sulfuric acid dew point corrosion-resistant steel
WO2018038195A1 (en) * 2016-08-25 2018-03-01 Jfeスチール株式会社 Sulfuric acid dew point corrosion-resistant steel

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6048104B2 (en) * 2011-12-26 2016-12-21 Jfeスチール株式会社 Corrosion resistant steel for holding coal ships and coal / ore combined ships
JP2013227610A (en) * 2012-04-25 2013-11-07 Jfe Steel Corp Corrosion resistant steel for hold of coal carrier or coal/ore carrier
EP2873747B1 (en) 2012-09-19 2018-06-27 JFE Steel Corporation Wear-resistant steel plate having excellent low-temperature toughness and corrosion wear resistance
CN103614639A (en) * 2013-10-24 2014-03-05 铜陵市经纬流体科技有限公司 Corrosion-resistant wear-resistant alloy steel material used for pump trucks and preparation method of the material
KR101536438B1 (en) * 2013-11-20 2015-07-24 주식회사 포스코 Steel sheet for complex corrosion resistance to sulfuric acid and hydrochloric acid and method for manufacturing the same
JP6123701B2 (en) * 2014-02-21 2017-05-10 Jfeスチール株式会社 Corrosion resistant steel for inner bottom plate of coal ship and coal / ore combined use hold
JP2015157969A (en) * 2014-02-21 2015-09-03 Jfeスチール株式会社 Corrosion resistant steel for holding coal ship and coal and ore ship
JP6065062B2 (en) * 2014-06-26 2017-01-25 Jfeスチール株式会社 Corrosion resistant steel for holding coal ships and coal / ore combined ships
JP6287791B2 (en) * 2014-12-08 2018-03-07 Jfeスチール株式会社 Corrosion resistant steel for inner bottom plate of coal ship and coal / ore combined use hold
JP6549254B2 (en) * 2015-05-28 2019-07-24 ポスコPosco Hot rolled steel sheet excellent in sulfuric acid and hydrochloric acid composite corrosion resistance and method for manufacturing the same
CN105369161A (en) * 2015-11-11 2016-03-02 江苏宇恒电气有限公司 Process for producing supports and hangers with crack resistance and corrosion resistance
JP6601258B2 (en) * 2016-02-22 2019-11-06 日本製鉄株式会社 Corrosion-resistant steel for ballast tanks
RU2630086C1 (en) * 2016-06-14 2017-09-05 Федеральное государственное бюджетное образовательное учреждение высшего образования "Калининградский государственный технический университет" Low silica shipbuilding steel
WO2018066018A1 (en) * 2016-10-06 2018-04-12 Jfeスチール株式会社 Steel for ship ballast tank and ship
KR20190060801A (en) * 2016-10-06 2019-06-03 제이에프이 스틸 가부시키가이샤 Steels and vessels for coal and coal / ore combined
JP6638678B2 (en) * 2017-03-14 2020-01-29 Jfeスチール株式会社 Steel material and method of manufacturing the same
JP6690585B2 (en) * 2017-03-14 2020-04-28 Jfeスチール株式会社 Steel material and manufacturing method thereof
CN107227428A (en) * 2017-08-09 2017-10-03 安徽省无为煤矿机械制造有限公司 A kind of coal mine machinery bearing high strength steel material
CN107653423B (en) * 2017-08-31 2019-11-05 武汉钢铁有限公司 The water of resistance to coal erosion corrosion steel plate and its manufacturing method for jimmy
WO2019146748A1 (en) * 2018-01-26 2019-08-01 日本製鉄株式会社 Steel for mooring chain, and mooring chain
KR20210005235A (en) 2018-10-31 2021-01-13 닛폰세이테츠 가부시키가이샤 Corrosion-resistant steel for docks of coal-only ships or coal-coal combined ships, and docks
KR20200065990A (en) * 2018-11-30 2020-06-09 주식회사 포스코 Corrosion resistant steel having high resistance to corrosion at sulfuric and sulfuric/hydrochloric acid condensing environment and manufacturing method the same
CN110160944A (en) * 2019-05-15 2019-08-23 南京钢铁股份有限公司 A kind of evaluation method of hot rolled steel plate surface oxidation skin corrosion resisting property
CN110863146B (en) * 2019-10-25 2021-01-08 鞍钢股份有限公司 High-strength corrosion-resistant flat-bulb steel and production method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000017382A (en) * 1998-07-03 2000-01-18 Nippon Steel Corp Steel excellent in sulfuric acid corrosion resistance
JP2000017381A (en) 1998-07-03 2000-01-18 Nippon Steel Corp Corrosion resistant steel for shipbuilding
JP2003213367A (en) * 2001-11-19 2003-07-30 Nippon Steel Corp Low alloy steel having excellent hydrochloric acid- corrosion and sulfuric acid-corrosion resistance and welded joint thereof
JP2007046148A (en) 2005-07-15 2007-02-22 Jfe Steel Kk Corrosion resistant steel for shipbuilding
JP2007262555A (en) 2006-03-30 2007-10-11 Sumitomo Metal Ind Ltd Corrosion resistant steel for hold of coal/ore carrying vessel
JP2007262558A (en) * 2006-03-30 2007-10-11 Jfe Steel Kk Sulfuric acid dew point corrosion resistant steel having excellent hydrochloric acid resistance
JP2008144204A (en) 2006-12-07 2008-06-26 Nippon Steel Corp Rust-proofing steel plate for ship's ballast tank to be protected in electric corrosion, and rust-proofing method for ship's ballast tank
JP2008174768A (en) 2007-01-16 2008-07-31 Sumitomo Metal Ind Ltd Corrosion-resistant steel for hold of coal or ore carrier

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3094856B2 (en) * 1995-08-11 2000-10-03 株式会社神戸製鋼所 High strength, high toughness case hardening steel
JPH0971837A (en) * 1995-08-31 1997-03-18 Nkk Corp Electric resistance welded tube excellent in carbon dioxide resistance and its production
JP4267367B2 (en) * 2002-06-19 2009-05-27 新日本製鐵株式会社 Crude oil tank steel and its manufacturing method, crude oil tank and its anticorrosion method
EP1990437B1 (en) * 2006-02-27 2016-08-31 JFE Steel Corporation Corrosion-resistant steel material for ship and vessel
JP4935579B2 (en) * 2007-08-22 2012-05-23 Jfeスチール株式会社 Corrosion resistant steel for ships

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000017382A (en) * 1998-07-03 2000-01-18 Nippon Steel Corp Steel excellent in sulfuric acid corrosion resistance
JP2000017381A (en) 1998-07-03 2000-01-18 Nippon Steel Corp Corrosion resistant steel for shipbuilding
JP2003213367A (en) * 2001-11-19 2003-07-30 Nippon Steel Corp Low alloy steel having excellent hydrochloric acid- corrosion and sulfuric acid-corrosion resistance and welded joint thereof
JP2007046148A (en) 2005-07-15 2007-02-22 Jfe Steel Kk Corrosion resistant steel for shipbuilding
JP2007262555A (en) 2006-03-30 2007-10-11 Sumitomo Metal Ind Ltd Corrosion resistant steel for hold of coal/ore carrying vessel
JP2007262558A (en) * 2006-03-30 2007-10-11 Jfe Steel Kk Sulfuric acid dew point corrosion resistant steel having excellent hydrochloric acid resistance
JP2008144204A (en) 2006-12-07 2008-06-26 Nippon Steel Corp Rust-proofing steel plate for ship's ballast tank to be protected in electric corrosion, and rust-proofing method for ship's ballast tank
JP2008174768A (en) 2007-01-16 2008-07-31 Sumitomo Metal Ind Ltd Corrosion-resistant steel for hold of coal or ore carrier

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AKIRA USAMI ET AL.: "New S-TEN1: an Innovative Acid Resistant Low Alloy Steel", SHINNITTETSU GIHO, no. 380, 15 June 2004 (2004-06-15), pages 86 - 90, XP055136765 *
D.P. LE ET AL.: "Effect of antimony on the corrosion behavior of low-alloy steel for flue gas desulfurization system", CORROSION SCIENCE, vol. 50, no. 4, April 2008 (2008-04-01), pages 1195 - 1204, XP003031083 *
NIPPON KAIJI KYOKAI, COMMON STRUCTURAL RULES FOR BULK CARRIERS, 2006, pages 384 - 394
YUKI KOBAYASHI ET AL.: "Corrosion and Corrosion Fatigue of a Ship Structural Steel in Dilute Sulfuric Acids Substituted for a Corrosion Environment of a Coal Cargo Hold", JOURNAL OF THE SOCIETY OF NAVAL ARCHITECTS OF JAPAN, June 1999 (1999-06-01), pages 221 - 232, XP055081739 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018038196A1 (en) * 2016-08-25 2018-03-01 Jfeスチール株式会社 Sulfuric acid dew point corrosion-resistant steel
WO2018038195A1 (en) * 2016-08-25 2018-03-01 Jfeスチール株式会社 Sulfuric acid dew point corrosion-resistant steel
JP6332576B1 (en) * 2016-08-25 2018-05-30 Jfeスチール株式会社 Sulfuric acid dew-point corrosion steel
JP6332575B1 (en) * 2016-08-25 2018-05-30 Jfeスチール株式会社 Sulfuric acid dew-point corrosion steel

Also Published As

Publication number Publication date
JP5862323B2 (en) 2016-02-16
EP2808411B1 (en) 2017-08-23
JP2012177190A (en) 2012-09-13
EP2808411A4 (en) 2015-10-21
KR20140105862A (en) 2014-09-02
EP2808411A1 (en) 2014-12-03
CN104105806A (en) 2014-10-15

Similar Documents

Publication Publication Date Title
WO2013111355A1 (en) Corrosion-resistant steel for hold of coal carrying vessel or coal/ore carrying vessel
JP5845646B2 (en) Corrosion resistant steel for holding coal ships and coal / iron ore combined ships
JP2013227610A (en) Corrosion resistant steel for hold of coal carrier or coal/ore carrier
JP4502075B1 (en) Corrosion resistant steel for crude oil tankers
EP2395120B1 (en) Corrosion resistant steel for crude oil tank, manufacturing method therefor, and crude oil tank
KR101023634B1 (en) Corroson-resistant steel material for crude oil storage tank, and crude oil storage tank
JP4525687B2 (en) Corrosion resistant steel for ships
JP5453840B2 (en) Marine steel with excellent corrosion resistance
KR101772812B1 (en) Steel material and method for producing the same
EP1990437B1 (en) Corrosion-resistant steel material for ship and vessel
JP5481980B2 (en) Marine steel with excellent film swell resistance
JP5662894B2 (en) Steel material for the upper deck of crude oil tankers with excellent corrosion resistance or cargo for bulk carriers
JP2012092404A (en) Steel for ship having excellent coating corrosion resistance
CN112272712A (en) Corrosion-resistant steel for cabin of special coal ship or mine/coal ship and cabin
JP6065062B2 (en) Corrosion resistant steel for holding coal ships and coal / ore combined ships
JP6048104B2 (en) Corrosion resistant steel for holding coal ships and coal / ore combined ships
JP6645462B2 (en) Steel material and method of manufacturing the same
JP5862464B2 (en) Corrosion resistant steel for coal ships or coal / ore combined ships
JP5949526B2 (en) Corrosion resistant steel for holding coal ships and coal / ore combined ships
JP6624129B2 (en) Steel material and method of manufacturing the same
JP7196539B2 (en) Corrosion resistant steel for hold of coal carrier or coal carrier
JP2018150603A (en) Steel and method for producing the same
JP2018150600A (en) Steel and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12866465

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012866465

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012866465

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147020844

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE