WO2013110152A1 - Pharmaceutical compositions containing angiotensin-converting enzyme 2/angiotensin-(1-7)/mas receptor axis activators for the treatment of ocular pathological conditions - Google Patents

Pharmaceutical compositions containing angiotensin-converting enzyme 2/angiotensin-(1-7)/mas receptor axis activators for the treatment of ocular pathological conditions Download PDF

Info

Publication number
WO2013110152A1
WO2013110152A1 PCT/BR2013/000029 BR2013000029W WO2013110152A1 WO 2013110152 A1 WO2013110152 A1 WO 2013110152A1 BR 2013000029 W BR2013000029 W BR 2013000029W WO 2013110152 A1 WO2013110152 A1 WO 2013110152A1
Authority
WO
WIPO (PCT)
Prior art keywords
treatment
pharmaceutical compositions
eca2
activator
glaucoma
Prior art date
Application number
PCT/BR2013/000029
Other languages
French (fr)
Portuguese (pt)
Inventor
Anderson José FERREIRA
Giselle FOUREAUX DE FARIA
José Carlos NOGUEIRA
Bárbara SILVA NOGUEIRA
Gustavo DE OLIVEIRA FULGÊNCIO
Juçara RIBEIRO FRANCA
André Augusto GOMES FARACO
Robson Augusto Souza Dos Santos
Danielle CARVALHO DE OLIVEIRA COUTINHO
Mohan K RAIZADA
Original Assignee
Universidade Federal De Minas Gerais - Ufmg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidade Federal De Minas Gerais - Ufmg filed Critical Universidade Federal De Minas Gerais - Ufmg
Publication of WO2013110152A1 publication Critical patent/WO2013110152A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/155Amidines (), e.g. guanidine (H2N—C(=NH)—NH2), isourea (N=C(OH)—NH2), isothiourea (—N=C(SH)—NH2)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/655Azo (—N=N—), diazo (=N2), azoxy (>N—O—N< or N(=O)—N<), azido (—N3) or diazoamino (—N=N—N<) compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • A61K9/0024Solid, semi-solid or solidifying implants, which are implanted or injected in body tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0048Eye, e.g. artificial tears
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0087Galenical forms not covered by A61K9/02 - A61K9/7023
    • A61K9/0095Drinks; Beverages; Syrups; Compositions for reconstitution thereof, e.g. powders or tablets to be dispersed in a glass of water; Veterinary drenches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • A61P27/06Antiglaucoma agents or miotics

Definitions

  • the present invention describes pharmaceutical compositions containing Angiotensin 2 (ECA2) / Angiotensin- (1-7) [Ang- (1-7)] / Receptor Axis Enzyme Axis Activators and their use in the treatment of related eye conditions. with increased intraocular pressure (IOP) and / or retinal and / or optic nerve degeneration such as glaucoma and retinopathy, preferably diabetic retinopathy.
  • Such pharmaceutical compositions may be administered by any drug administration route, preferably oral, topical, intraocular, periocular, conjunctival or intravenous routes, among others.
  • the pharmaceutical forms used are preferably solution, suspension, emulsion, capsule (hard or gelatinous), tablet, gel, cream, lotion, film, microcapsule, nanocapsule, nanosphere, microsphere, nanoemulsion, microemulsion and / or liposomes.
  • Glaucoma is a neurodegenerative disease characterized by progressive death of retinal ganglion cells and degeneration of the optic nerve. It is estimated that the disease affects more than 67 million people worldwide, being the third leading cause of partial vision loss and the second leading cause of blindness (Johnson TV, Tomarev SI. Rodent models of glaucoma. Brain Res. Buli. , v. 81, pp. 349-58, 2010; Cronemberger S, Lourenco LFS, Silva LC, Calixto, Pires MC Prognosis of glaucoma in relation to blindness at a university hospital Arq. Bras Oftalmol., v.72, n.2, pp. 199-204, 2009; Who. World Health Organization.
  • IOP intraocular pressure
  • glaucoma may be congenital, primary or secondary to other pathologies.
  • the most common manifestation of the disease is primary glaucoma.
  • GPAF angle-closure
  • GPAA angle-closure
  • retinopathies Another group of conditions that can lead to impaired vision through retinal cell degeneration are retinopathies.
  • One of the main retinopathies is diabetic.
  • DM diabetes mellitus
  • Bosco A Lerário AC, Soriano D, Santos RF, Massote P, Galv ⁇ o D, Franco AC, Purisch S, Ferreira AR. Retinopathy Endocrinol Metab., V.49, No. 2, pp. 217-227, 2005.
  • DM is considered one of the major public health problems, being among the top 10 causes of mortality (Malerbi DA, Franco LJ.
  • Diabetic retinopathy is one of the most common complications of DM and can be present in both type 1 and type 2 DM patients, becoming the most frequent cause of acquired blindness (Bosco A, Lerário AC, Soriano D, Santos RF). , Massote P, Galvao D, Franco AC, Purisch S, Ferreira AR Diabetic Retinopathy Arq Bras Endocrinol Metab, v.49, no 2, pp 217-227, 2005; Ferris III FL Diabetic retinopathy Diabetes Care, v. 16, pp.
  • Angiotensin II (Ang II), a well-known blood pressure control molecule, is also present in various retinal layers (ganglion cells, photoreceptor layer, endothelial cells and Muller cells) (Savaskan E, Loffler KU, Meier F, Muller S, Flammer J, Meyer P. Immunohistochemical localization of angiotensin II and AT1 receptor in human ocular tissues. Ophthalmic, v. 36, p. 312-320, 2004). With respect to Muller cells, Ang II appears to be involved in regulating vascular permeability and blood flow, and in forming and maintaining the blood-retinal barrier.
  • the Muller cell is a very specialized cell and is the main retinal glial cell, spanning the full depth of this structure. As a result of this arrangement, these cells intersect between the vessels and neurons, playing an important role in glucose uptake from the circulation and energy transfer to the neurons (Park SH, Park JW, Park SJ, et al. Apoptotic death of photoreceptors in the streptozotocin-induced diabetic rat retina Diabetologia, v. 46, pp. 1 260-1268, 2003; Senanayake P, Drazba J, Shadrach K, Milsted A, Rungger-Brandle E, Nisbiyama K, Miura S, Karnik S, Sears JE, Hollyfield J. Angiotensin II and its receptor subtypes in the human retin Invest Invest Ophthalmol Vis Sci, v. 48, no 7, pp 3301-331, 2007).
  • ECA2 Angiotensin-Converting Enzyme 2
  • ACE Angiotensin-Converting Enzyme 2
  • the main activity of ECA2 is the conversion of Ang II, which has vasoconstrictor and hypertensive activity, to the peptide Angiotensin- (1 - 7) [Ang- (1 -7)], which in turn has vasodilatory and antiproliferative activity (Chappell MC, Ferrario CM Angiotensin (1-7) in hypertension Curr Opin Opin Nephrol Hypertens, v.
  • Drugs used to lower systemic blood pressure have also shown activity in reducing IOP (Hashimoto M, Silva MRBM, Neto, FJT. Effect of drugs used in treatment of systemic arterial hypertension on intraocular pressure: experimental study in dogs. Arq. Bras. Ophthalmol., V.65, p. 229-33, 2002; Mohamed R, Al-Sereiti, Turner, P. Effect of Captopril (an Angiotensin-Converting Enzyme Inhibitor) on Intraocular Pressure in Healthy Human Volunteers. J. Ocul. Pharmacol. Ther., V. 5, no. 1, p. 1-5, 1989).
  • Ang II has been associated with the risk of developing both diabetic retinopathy and glaucoma (Sramek SJ, Wallow IH, Tewksbury DA, Brandt CR, Poulsen GL. An ocular renin-angiotensin system. Immunohistochemistry of angiotensinogen. Invest. Ophthalmol Vis. Sci., V. 33, pp. 1627-1632, 1992; Nadal JA, Scicli GM, Carbini LA, Nussbaum JJ, Scicli AG, Angiontensin II and retinal perieytes migration; Fong DS, Aiello LP, Ferris FL , Klein R. Diabetic retinopathy Diabetes Care, v.
  • drugs capable of modulating the SARS in addition to acting as potent antihypertensive drugs, may also act as hypotensive and antiproliferative drugs.
  • ECA2 / Ang- (1-7) / Receptor axis may play an important role in ocular pathologies involving increased IOP and degeneration of retinal and / or optic nerve cells such as the glaucoma and retinopathies.
  • ECA2 activators have been developed as potential antihypertensive agents and from virtual scanning, xanthenone, 1 - [(2-dimethylamino) ethylamino] -4- (hydroxymethyl) -7 - [(4-methylphenyl) sulfonyloxy] - 9xanthen-9-one (XNT) and resorcinolnaphthalein have been identified as ECA2 activating agents.
  • XNT exhibits in vivo activity in lowering blood pressure (Hernandez Prada JA, AJ Ferreira, Katovich MJ, Shenoy V, Qi Y, Santos RAS, Castellano RK, AJ Lampkins, Gubala V, Ostrov Mida.
  • Diminazene (DIZE) has also recently been identified as an ECA2 activator and potential precursor of new antihypertensive agents (Dasgupta, C, Zhang L. Angiotensin II receptors and drug discovery in cardiovascular disease. Drug Discov. Today, v. 16, n Gjymishka A, Kulemina LV, Shenoy V, Katovich MJ, Ostrov DA, Rooted MK Decreased Aceturate is an ACE2 activator and a novel antihypertensive drug FASEB J., v. 24, p. 1,033, 2010).
  • DIZE is an aromatic diamidine used as a veterinary antiparasitic that has demonstrated significant trypanocidal activity (except for Trypanosoma cruzi) and leishmanicide (Jean-Moreno, Rojas R., Goyeneche D., Coombs GH and Walker J, Leishmania donovani: differential activities of classical topoisomerase inhibitors and antileishmanials against parasite and host cells at the level of DNA topoisomerase I and in cytotoxicity assays. Exp. Parasite /. , v. 1112, p.
  • the drug has been used to control trypanosomiasis in animals for over 40 years and, although never approved for human use, has been widely used in Africa to treat diseases caused by Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense (Akpa PO, Ezeokonkwo).
  • RC Eze CA, Anene BM Comparative efficacy assessment of pentamidine isethionate and diminazene aceturate in the chemotherapy of Trypanosoma brucei brucei infection in dogs Parasito Vet., V. 2-4, pp. 39-49, 2008; Combination chemotherapy of CNS trypanosomiasis, Acta Tropica, v.
  • DIZE has also been associated with silver and has high antitumor activity and lipid nanoparticles containing the drug for potential brain release of the drug in the treatment of sleep sickness (Olbrich C, Gessner A, Schroder W, Kayser O, Muller RH, Olbrich C, Gessner A, Schroder W, Kayser O, MUIIer RH Lipid-drug conjugate nanoparticles of the hydrophilic drug diminishing cytotoxicity testing and mouse serum adsorption J. Control, Release, v.96, p.425-35 , 2004).
  • RU20081 50401 describes a formulation containing DIZE for the treatment of babesiosis.
  • WO9428162 describes the use of DIZE in the treatment of chronic trypanosomiasis in humans and other animals.
  • WO2008066770 describes pharmaceutical compositions containing DIZE for treating cardiovascular and cardiopulmonary diseases, preferably hypertension and pulmonary injuries.
  • controlled release systems for drug delivery is an important alternative among known treatment strategies.
  • Demand for controlled release systems for drug delivery has been widely reported in the literature. These systems have the advantage of allowing continuous, constant and prolonged release of the drug, maintaining a stable level of the drug in the patient's body and avoiding adverse effects that could occur compared to conventional administration.
  • new solid, semi-solid and liquid dosage forms have been developed to meet this need. Examples include liposomes, micro and nanospheres, micro and nanocapsules, coated tablets, transdermal patches and implants, among others.
  • the use of these systems in the treatment of chronic diseases, such as glaucoma and diabetic retinopathy is even more interesting given that prolonged treatment and the need for frequent use of the drug limit the patient's adherence to treatment. can culminate in the blindness of the individual.
  • the present technology describes controlled or uncontrolled release pharmaceutical compositions containing ECA2 / Ang- (1-7) / Receptor axis activators and their use for the treatment of eye diseases involving increased IOP and / or degeneration of retinal cells and / or optic nerve.
  • compositions were administered by different routes, evaluating them for the treatment of diseases such as glaucoma and retinopathy, preferably diabetic retinopathy.
  • the results show the potent activity of ECA2 / Ang- (1 -7) / Receptor Mas axis activators in reducing IOP and protecting retinal and optic nerve cells.
  • angiotensin II and ACE antagonists in the treatment of retinopathy and glaucoma (CN 1 01690816, CN 1 01658675, CY2567, US7906501, PI001 0084-6, BRPI0409293), but no document found reports the use of activators. of ECA2.
  • Figure 1 Hydration potential of white implants and implants containing the ACE2 activator (DIZE).
  • FIG. 2 Infrared absorption spectrum of a model of ECA2 activator (DIZE) (A), white implants (B) and implants containing ECA2 activator (DIZE) (C).
  • DIZE ECA2 activator
  • FIG. 3 Differential exploratory calorimetry curves for a model of ECA2 activator (DIZE), white implants and implants containing ECA2 activator (DIZE) (a, first run; b, second run).
  • DIZE ECA2 activator
  • DIZE white implants and implants containing ECA2 activator
  • FIG. 4 Side scan electron micrographs of white implants (a) and implants containing ACE2 activator (DIZE) (b).
  • FIG. 5 In vitro release profile for implants containing ECA2 activator (DIZE).
  • Figure 6 Comparison of IOP values between control group (normal animals) and glaucoma group (animals with induced glaucoma), both subdivided into untreated and ECA2 activator-treated (DIZE) treated animals as oral solution (gavage). Study period: 4 weeks. Initiation of treatment: after first induction. End of treatment: after 4 weeks. * p ⁇ 0.05 vs. Untreated control. #p ⁇ 0.05 vs. Untreated Glaucoma
  • Figure 7 Comparison of mean blood pressure values between control group (normal animals) and glaucoma group (animals with induced glaucoma), both subdivided into untreated animals and ECA2 activator-treated (DIZE) treated animals. oral (gavage). Study period: 4 weeks. Initiation of treatment: after first induction. End of treatment: after 4 weeks.
  • FIG 8 Comparison between retinal ganglion cell (Cg) morphometric data of control group (normal animals) and glaucoma group (animals with induced glaucoma), both subdivided into untreated animals and animals activated with ECA2 (SAYS) in the form of oral solution (gavage). Study period: 4 weeks. Initiation of treatment: after first induction. End of treatment: after 4 weeks.
  • Cg retinal ganglion cell
  • Figure 9 IOP of normal animals (control group) and with induced glaucoma (glaucoma group) when treated with ECA2 activator (DIZE) in the form of eye drops (instillation), compared with normal animals (control group) and with induced glaucoma ( glaucoma group) untreated.
  • Study period 4 weeks. Initiation of treatment: after first induction. End of treatment: after 4 weeks * p ⁇ 0.001 vs. Untreated control. #p ⁇ 0.001 vs. untreated glaucoma.
  • Figure 10 Systemic blood pressure of normal animals (control group) and induced glaucoma (glaucoma group) when treated with ECA2 activator (DIZE) as eye drops (instillation) compared to normal animals (control group) and glaucoma. induced (glaucoma group) untreated. Study period: 4 weeks. Initiation of treatment: after first induction. End of treatment: after 4 weeks.
  • Figure 11 IOP of normal (control group) and induced glaucoma (glaucoma group) animals when treated with the eye receptor activator But in the form of eye drops (instillation), compared to animals with untreated induced glaucoma (glaucoma group).
  • Study period 1 week. Beginning of treatment: after first induction. End of treatment: 1 week. * p ⁇ 0.05 vs. Control. #p ⁇ 0.05 vs. Untreated glaucoma.
  • Figure 12 IOP of normal animals (control group) and induced glaucoma (glaucoma group) when treated with ECA2 activator (DIZE) in the form of eye drops (instillation), compared to normal animals (control group) and induced glaucoma ( glaucoma group) untreated. Study period: 5 weeks. Beginning of treatment (first arrow on graph): after second induction. End of treatment (second arrow on graph): before fourth induction. * p ⁇ 0.001 vs. untreated control. #p ⁇ 0.001 vs. untreated glaucoma.
  • DIZE ECA2 activator
  • Figure 13 Systemic blood pressure of normal (control group) and induced glaucoma (glaucoma group) animals when treated with eye drop activator (DIZE) in the form of eye drops (instillation) compared to normal animals (control group) and glaucoma induced (glaucoma group) untreated. Study period: 5 weeks. Beginning of treatment: after the second induction. End of treatment: before the fourth induction.
  • DIZE eye drop activator
  • FIG 14 IOP of normal (C) and induced glaucoma (G) animals when treated with ECA2 activator (DIZE) in the form of eye drops (instillation) with or without Mas A-779 receptor blocker compared to normal animals (control group) and with induced glaucoma (glaucoma group) not treated or treated with Mas receptor only.
  • Study period 3 weeks.
  • FIG 15 IOP of normal animals (control group) and with induced glaucoma (glaucoma group) when treated with implant-activated ECA2 activator (DIZE) compared to normal animals (control group) and induced glaucoma (glaucoma group) not treated. Study period: 5 weeks. Initiation of treatment: after the second induction. End of treatment: before the fourth induction. * p ⁇ 0.001 vs. untreated control. #p ⁇ 0.001 vs. untreated glaucoma.
  • DIZE implant-activated ECA2 activator
  • Figure 16 Systemic arterial blood pressure of normal animals (control group) and induced glaucoma (glaucoma group) when treated with an ACE2 activator (DIZE) as an implant compared to normal animals (control group) and induced glaucoma (group untreated glaucoma). Study period: 5 weeks. Initiation of treatment: after the second induction. End of treatment: before the fourth induction.
  • DIZE ACE2 activator
  • FIG 17 IOP of normal animals (graph B) and animals with induced glaucoma (graph A) when treated with the ECA2 activator (DIZE) in the form of eye drops (instillation) and in the implant form, compared to untreated and non-treated animals. with animals treated with white implants. Study period: 5 weeks. Initiation of treatment: after the second induction. End of treatment: before the fourth induction.
  • DIZE ECA2 activator
  • FIG. 18 Retinal ganglion cell (Cg) morphometry in diabetic animals treated with ECA2 activator (XNT) as oral solution (gavage) compared to untreated diabetic animals. Study period: 7 weeks. Initiation of treatment: after the second week. End of treatment: seventh week.
  • the present invention describes different pharmaceutical compositions containing ECA2 / Ang- (1-7) / Mas receptor activators, preferably ECA2 activators, for example DIZE and XNT, and Mas receptor activators such as HP CD / Ang. - (1-7). It also describes their use in the treatment of eye disorders related to increased IOP and / or retinal and / or optic nerve degeneration, such as glaucoma and retinopathies, preferably diabetic retinopathy.
  • the mentioned ECA2 / Ang- (1-7) / Receptor axis activators have been administered in conventional and extended release pharmaceutical compositions in the treatment of experimental hyauronic acid-induced glaucoma in rats and in the treatment of diabetic retinopathy. These activators caused potent IOP reduction in animals with induced glaucoma. In addition, activation of this axis reduced retinal cell degeneration in rats with retinopathy due to induced DM.
  • compositions which may be used for the delivery of ECA2 / Ang- (1-7) / Receptor Shaft Activators include, but are not limited to, conventional pharmaceutical compositions such as solutions, suspensions, tablets, gels, creams, capsules ( hard or gelatinous), emulsions, lotions, among others, and unconventional pharmaceutical compositions such as implants, micro or nanocapsules, micro or nanospheres, micro or nanoemulsions, liposomes, among others, whether they consist of any raw materials (for example, (lipid or mixed), with or without controlled release of ECA2 / Ang- (1-7) /
  • Such pharmaceutical compositions may be administered orally, topically, intraocularly, intraocularly, periocularly, conjunctivally or intravenously, among others.
  • the invention may be better understood without limitation from the following examples.
  • XNT and DIZE were used as the ECA2 activator model
  • HPpCD / Ang- (1-7) was used as the Mas Receiver activator model
  • the A-779 was used as the Mas Receiver blocker model.
  • Example 1 Obtaining and Characterization of Pharmaceutical Compositions Containing ECA2 Activators and Mas Receptor Activators
  • formulations for delivery of ECA2 activators conventional pharmaceutical forms have been developed. (oral solutions and eye drops) and implants for controlled drug release.
  • Oral solutions were obtained by diluting the ECA2 activators and the Receptor Mas activator in distilled water or another pharmacologically acceptable excipient.
  • Adjuvants such as preservatives, antioxidants, solubilizers, colorants, flavors, flavorings, sugars, viscous, sweeteners, chelators, pH correctors, among others, may be used.
  • Other oral dosage forms such as tablets, capsules, suspensions and syrups may also be used.
  • the oral solutions were clear and had a pH between 5.0 and 10.0, preferably between 6.0 and 9.0.
  • the eye drops were prepared by diluting the ECA2 activator or Mas receptor activator in pharmacologically acceptable excipient.
  • Isotonizers eg NaCl, Glycerol, Glucose
  • buffering agents eg phosphorus and sulfate salts
  • pH correctors eg HCl, NaOH
  • viscous antioxidant, chelating and preservative, among others.
  • Eye drops were sterilized and isotonia and pH were adjusted before use. The pH was between 5.0 and 10, preferably between 6.0 and 9.0.
  • Other pharmaceutical forms such as suspensions, ophthalmic ointments, gels, hydrogels and emulsions may also be used for topical drug delivery.
  • polymeric implants were developed. To obtain the implants, the polymer was dispersed in an aqueous solution containing ECA2 activator (when necessary, acid was used to promote polymer dispersion). The obtained dispersion was stirred to obtain a gel. This gel was spread on a smooth metallic, polymeric, glassy or ceramic surface, preferably polymeric, such as silicone plates, and allowed to dry to obtain the implants. Drying can be performed at room temperature or under heating. Multilayer implants can also be obtained by repeating the same procedure. After drying the first layer, solutions previously prepared as described for the first layer are spread over it and dried. This process can be repeated several times (between one and ten times, on average 3 times) to obtain the multilayer implants.
  • ECA2 activator-containing layers of the multilayer devices may or may not be layered without layers (white).
  • the number of white layers in the device ranges from 0 to n-1, where n is the number of device layers.
  • the order of distribution of layers is variable. Any distribution combination can be accepted. Distributions that allow ECA2 activator layers to be in the center and layers without ECA2 activator to be at the ends of implants are preferred.
  • inorganic acid preferably HCl, H3PO4, H2SO4, or organic acid, preferably acetic acid
  • the polymer concentration may range from 0.5 to 20% of the gel, preferably from 1 to 5%.
  • the final concentration of the ECA2 activator may range from 0.01 to 99% of the dry device weight, preferably from 0.1 to 30%.
  • the acid concentration may range from 0.5 to 50%.
  • the agitation time of the gel may vary from seconds to one week, preferably one or two days.
  • the stirrer used may be of any type. Drying can be done up to 40 ° C.
  • the polymer employed to obtain the implants may be natural, preferably selected from the group comprising celluloses, gums, exudates, gelatin, keratin, alginates, galactomannans, chitosans or their derivatives methyl, hydroxypropyl, acetophthalate, acetate, methoxy, hydropropoxy, acetophthalyl, carboxy carboxymethyl, thio, whether or not hydrolyzed, or their salts of Li, Na, K, Ca, Mg, Al, Zn, Fe, Cu, Ni, alone, or in combination or in the form of copolymers; or synthetic, preferably selected from the group comprising acrylic acid derivatives, preferably polyacrylate, polymethyl methacrylate, polyethylacrylate or polyethyl methacrylate, acid derivatives glycolic acid derivatives, hydrophilic or hydrophobic caprolactone derivatives, biodegradable or non-biodegradable.
  • Table 1 shows an example of gel formulation used to obtain the implants.
  • Table 1 Gel Composition for Obtaining ECA2 Activator Implants
  • Table 2 shows an example of gel composition for implants without ECA2 activator.
  • the implants obtained after drying of the formulations were further characterized.
  • the in vitro release profile of the implant was evaluated by dipping the devices in PBS buffer. After predetermined stirring times at a controlled temperature, all medium was removed and a new volume of medium was added to the implants.
  • the ECA2 activator present in the removed medium was dosed by a validated quantitation method (ultraviolet or visible absorption spectrophotometry, detector-coupled high performance liquid chromatography or mass spectrometer, gas-coupled gas chromatography). mass spectrometer, titration, or other suitable method, defined in accordance with ECA2 activator used). About 70% release of the implant ECA2 activator can be observed within the first two hours of the experiment. The remainder was not released even after 8 hours of study, suggesting an implant potential for controlled drug release (Figure 5).
  • micro and nanospheres such as micro and nanospheres, micro and nanocapsules, micro and nano emulsions and liposomes may be developed.
  • ECA2 activators and Mas receptor activators for the treatment of eye disorders has yet to be performed by other routes such as intravenous, intravitreal, periocular, intraocular, subconjunctival, intramuscular and subcutaneous.
  • routes such as intravenous, intravitreal, periocular, intraocular, subconjunctival, intramuscular and subcutaneous.
  • other controlled or uncontrolled release formulations such as injectable solutions, suspensions and emulsions may be produced, provided that pharmaceutically acceptable excipients are used.
  • Unilateral glaucoma was induced in the right eye of rats by injecting 30 ⁇ _ of hyaluronic acid (10mg / ml_) in the anterior chamber near the horny scleral limb once a week for 1 to 6 weeks, preferably 3 to 5 weeks. , always on the same day and time, following the protocol of Moreno et al., 2005 (Moreno MC, Marcos BHJA, Croxatto CJO, Sandea PH, Campanellia J, Jaliffaa CO, Benozzia J, Rosensteina RE. A new experimental model of glaucoma in rats through intracameral injections of hyaluronic acid (Experimental Eye Research, v. 81, pp.
  • the animals were anesthetized with general anesthetic (eg ketamine (70 mg / kg) exilazine 10 mg / kg) intraperitoneally and local anesthetic (eg 0.4% benoxinate in the cornea. No procedure was performed in left eye, which was used as a control group.
  • general anesthetic eg ketamine (70 mg / kg) exilazine 10 mg / kg
  • local anesthetic eg 0.4% benoxinate in the cornea.
  • IOP insulin-phosphate-semiconductor Activator
  • a tonometer eg TonoPen XL (Mentor, Norwell, MA)
  • TonoPen XL TonoPen XL (Mentor, Norwell, MA)
  • the measurement was performed on non-sedated animals contained gently with a small towel.
  • three IOP readings were obtained in each eye, and the mean of these three measurements was considered to be the corresponding IOP value for that day.
  • Example 3 Activity of the pharmaceutical composition containing orally administered ECA2 activators.
  • the IOP of the treated glaucoma (GT) group was significantly lower than that of the untreated glaucoma (GNT) group during the four weeks of ECA2 activator administration (Figure 6).
  • GT group was not statistically different from the untreated control group (CNT) at all 4 weeks.
  • CNT untreated control group
  • MAP mean arterial pressure
  • Example 5 Activity of conventional pharmaceutical composition containing topical ECA2 activators applied after the second induction of glaucoma.
  • the evaluation of the activity of conventional formulations containing ACE2 activators in the treatment of glaucoma was performed by induction of unilateral glaucoma once a week for 5 weeks. IOP measurements were also performed weekly for 5 weeks on the day before next induction. The location and daily treatment with eye drops containing ACE2 activator started after the second induction, that is, after confirming the elevated IOP. The treatment lasted for 15 days. After this period, the animals continued to undergo weekly induction for a further 2 weeks, but did not receive treatment.
  • Example 6 Blocking the activity of the conventional formulation containing ECA2 activators in reducing IOP by inhibiting the Mas receptor.
  • Example 7 Activity of controlled release pharmaceutical composition containing topical ECA2 activators in reducing IOP.
  • the activity of the extended release pharmaceutical compositions containing ECA2 activator described in Example 1 was evaluated by induction of unilateral glaucoma once a week for 5 weeks. IOP measurement was also performed weekly for 5 weeks on the day before the next induction.
  • the animals received a polymeric implant for controlled release of ACE2 activator, which was implanted into the conjunctival sac of animals after the confirmation of elevated IOP (2 after induction). The animals remained with the implant until the end of treatment.
  • the white implants also implanted immediately after the second induction
  • treatment by instillation of a solution containing ACE2 activator was considered. Treatment with the solution was also started immediately after the second induction and maintained daily for fifteen days.
  • ECA2 is expressed in the following retinal layers: pigmented epithelium (Ep), photoreceptors, external and internal plexiform cells and ganglion cells (Cg). ECA2 activator treatment increased ECA2 expression in these layers in both normal and diabetic rats.
  • Ep pigmented epithelium
  • Cg ganglion cells

Abstract

The present invention describes pharmaceutical compositions containing angiotensin-converting enzyme 2(ACE2)/angotensin-(1-7)[ANg-(1-7)]/Mas receptor axis and the use thereof for the treatment of ocular pathological conditions linked with an increase in intraocular pressure (IOP) and/or with degeneration of the retina and/or of the optic nerve, such as, for example, glaucoma and retinopathy, preferentially diabetic retinopathy. Such pharmaceutical compositions may be administered by any drug-administration route, preferentially via the oral, topical ocular, intraocular, periocular, conjunctival or intravenous routes, amongst others. The pharmaceutical forms used are, preferentially, solution, suspension, emulsion, capsule (hard or gelatin), tablet, gel, cream, lotion, film, microcapsule, nanocapsule, nanosphere, microsphere, nanoemulsion, microemulsion and/or liposomes.

Description

COMPOSIÇÕES FARMACÊUTICAS CONTENDO ATIVADORES DO EIXO ENZIMA CONVERSORA DE ANGIOTENSINA 2/ANGIOTENSINA- (1 -7)/RECEPTOR MAS PARA TRATAMENTO DE PATOLOGIAS  PHARMACEUTICAL COMPOSITIONS CONTAINING ANGIOTENSIN 2 / ANGIOTENSIN- (1-7) / MAS RECEIVER CONVERTER AXIS ENGINE DRIVERS
OCULARES A presente invenção descreve composições farmacêuticas contendo ativadores do eixo Enzima Conversora de Angiotensina 2 (ECA2)/Angiotensina-(1 -7) [Ang-(1 -7)]/Receptor Mas e o uso das mesmas no tratamento de patologias oculares relacionadas com o aumento da pressão intraocular (PIO) e/ou com a degeneração da retina e/ou do nervo ótico como, por exemplo, o glaucoma e a retinopatia, preferencialmente a retinopatia diabética. Tais composições farmacêuticas podem ser administradas por qualquer via de administração de fármacos, preferencialmente as vias oral, ocular tópica, intraocular, periocular, conjuntival ou endovenosa, dentre outras. As formas farmacêuticas utilizadas são, preferencialmente, solução, suspensão, emulsão, cápsula (dura ou gelatinosa), comprimido, gel, creme, loção, filme, microcápsula, nanocápsula, nanoesfera, microesfera, nanoemulsão, microemulsão e/ou lipossomas.  The present invention describes pharmaceutical compositions containing Angiotensin 2 (ECA2) / Angiotensin- (1-7) [Ang- (1-7)] / Receptor Axis Enzyme Axis Activators and their use in the treatment of related eye conditions. with increased intraocular pressure (IOP) and / or retinal and / or optic nerve degeneration such as glaucoma and retinopathy, preferably diabetic retinopathy. Such pharmaceutical compositions may be administered by any drug administration route, preferably oral, topical, intraocular, periocular, conjunctival or intravenous routes, among others. The pharmaceutical forms used are preferably solution, suspension, emulsion, capsule (hard or gelatinous), tablet, gel, cream, lotion, film, microcapsule, nanocapsule, nanosphere, microsphere, nanoemulsion, microemulsion and / or liposomes.
O glaucoma é uma doença neurodegenerativa que se caracteriza pela morte progressiva das células ganglionares retinianas e degeneração do nervo óptico. Estima-se que a doença afete mais de 67 milhões de pessoas no mundo, sendo a terceira maior causa de perda parcial de visão e a segunda maior causa de cegueira (Johnson TV, Tomarev SI. Rodent models of glaucoma. Brain Res. Buli., v. 81 , p. 349-58, 2010; Cronemberger S, Lourenço LFS, Silva LC, Calixto, Pires MC. Prognosis of glaucoma in relation to blindness at a university hospital. Arq. Bras. Oftalmol., v.72, n.2, p. 199-204, 2009; Who. World Health Organization. WHO releases the new global estimates on visual impairment. 2010. Disponível em: <http://www.who.int/blindness/en/> Acesso em 2. Mar. 2011). A perda de visão causada pelo glaucoma é irreversível e, em 2002, a doença foi responsável por 12,3% dos casos de perda de visão no mundo (Weinreb RN, Khaw PT. Primary open-angle glaucoma. Lancet, v. 363, p.1711-1720, 2004; Resnikoff S, Pascolini D, Etya'ale D, Kocur I, Pararajasegaram R, Pokharel GP. Global data on visual impairment in the year 2002. Buli. World. Health. Organ., v. 82, n.11 , p. 844-51 , 2004). Glaucoma is a neurodegenerative disease characterized by progressive death of retinal ganglion cells and degeneration of the optic nerve. It is estimated that the disease affects more than 67 million people worldwide, being the third leading cause of partial vision loss and the second leading cause of blindness (Johnson TV, Tomarev SI. Rodent models of glaucoma. Brain Res. Buli. , v. 81, pp. 349-58, 2010; Cronemberger S, Lourenco LFS, Silva LC, Calixto, Pires MC Prognosis of glaucoma in relation to blindness at a university hospital Arq. Bras Oftalmol., v.72, n.2, pp. 199-204, 2009; Who. World Health Organization. WHO releases the new global estimates on visual impairment. 2010. Available at: <http://www.who.int/blindness/en/> Access on 2. Mar. 2011). Vision loss caused by glaucoma is irreversible, and in 2002 the disease accounted for 12.3% of the world's vision loss cases (Weinreb RN, Khaw PT. Primary open-angle glaucoma. Lancet, v. 363, p.1711-1720, 2004; Resnikoff S, Pascolini D, Etya'ale D, Kocur I, Pararajasegaram R, Pokharel GP. Global data on visual impairment in the year 2002. Buli. World. Health Organ., V. 82, no. 11, p. 844-51, 2004).
Embora vários fatores de risco estejam associados ao desenvolvimento do glaucoma, tais como, idade, etnia, miopia, história familiar e espessura da área central da córnea, a pressão intraocular (PIO) elevada é considerada o principal fator de risco para o desenvolvimento e progressão da doença (Pang LH, Clark AF. Rodent odels for Glaucoma Retinopathy and Optic Neuropathy. J. Glaucoma, v.16, p. 483-505, 2007). A PIO elevada torna-se incompatível com o funcionamento normal do nervo óptico e este, ao degenerar, provoca alterações progressivas no campo visual, o que pode levar à cegueira (Weinreb RN, Khaw PT. Primary open-angle glaucoma. Lancet, v. 363, p.1711-1720, 2004). Quanto à sua origem, o glaucoma pode ser congénito, primário ou secundário a outras patologias. A forma de manifestação mais comum da doença é o glaucoma primário. Existem dois tipos principais de glaucoma primário: o de ângulo fechado (GPAF) e o de ângulo aberto (GPAA). No primeiro, ocorre uma redução no ângulo da câmara anterior do olho gerando obstrução à passagem do humor aquoso da câmara posterior para a anterior, através da pupila, geralmente devido a uma dilatação da íris (Lewis TL. Care of the Patient with open-angle glaucoma. 2nd ed. St. Louis: American Optometric Association, 2002; Katzung BG. Basic & clinicai pharmacology, 9th ed. New York: Lange Medicai Books/McGraw Hill, p. 216, 2004). Já no GPAA, ocorre um impedimento da drenagem do humor aquoso pelos canais de Schlemm. Trata-se de um distúrbio crónico e mais de 75% dos casos de cegueira são devidos ao GPAA. O tratamento desse tipo de glaucoma é majoritariamente farmacológico e convencionalmente realizado pela aplicação de medicação tópica para redução da PIO. Os fármacos mais comumente utilizados incluem os β-bloqueadores, os análogos de prostaglandinas, os inibidores de anidrase carbónica, os agonistas a-2 seletivos e os agentes colinérgicos (Lewis TL. Care of the Patient with open-angle glaucoma. 2nd ed. St. Louis: American Optometric Association, 2002; Mckinnon SJ, Goldberg LD, Peeples P, Walt JG, Bramley TJ. Current management of glaucoma and the need for complete therapy. Am. J. Manag. Care, v. 14, n. 1 , p. S20-S27, 2008; Royai College of Ophthalmologists Guidelines for the management of open angle glaucoma and ocular hypertension. Londres, 2004. Disponível em: <http://www.rcophth.ac.uk/page.asp7sectionM51 &sectionTitle=Clinical+Guidelines>. Acesso em 2 mar. 201 1 ; Weinreb e Khaw, 2004). Desde 2008, os análogos de prostaglandinas têm sido considerados um dos medicamentos mais eficazes e seguros para o tratamento do glaucoma. No entanto, seu alto custo é um fator limitante em muitos casos (Parikh RS, Parikh SR, Navin S, Arun E, Thomas R. Practical approach to medicai management of glaucoma. Indian J. Ophthalmol., v. 56, n. 3, p. 223-230, 2008). Although several risk factors are associated with the development of glaucoma, such as age, ethnicity, myopia, family history, and central corneal thickness, elevated intraocular pressure (IOP) is considered to be the major risk factor for development and progression. of the disease (Pang LH, Clark AF. Rodent odels for Glaucoma Retinopathy and Optic Neuropathy. J. Glaucoma, v.16, p. 483-505, 2007). Elevated IOP becomes incompatible with normal optic nerve function and the optic nerve, when degenerating, causes progressive changes in the visual field, which can lead to blindness (Weinreb RN, Khaw PT. Primary open-angle glaucoma. Lancet, v. 363, p.1711-1720, 2004). Regarding its origin, glaucoma may be congenital, primary or secondary to other pathologies. The most common manifestation of the disease is primary glaucoma. There are two main types of primary glaucoma: angle-closure (GPAF) and angle-closure (GPAA). In the first, there is a reduction in the angle of the anterior chamber of the eye causing obstruction of the passage of aqueous humor from the posterior to the anterior chamber through the pupil, usually due to an iris dilation (Lewis TL. Care of the Patient with open-angle . glaucoma 2nd ed St. Louis.. American Optometric Association, 2002; Katzung BG Basic & Clinical pharmacology, 9 th ed New York: Lange Medical Books / McGraw Hill, p 216, 2004)... In GPAA, there is an impediment to drainage of aqueous humor through Schlemm's canals. It is a chronic disorder and over 75% of blindness is due to GPAA. The treatment of this type of glaucoma is mainly pharmacological and conventionally performed by the application of topical medication to reduce IOP. The most commonly used drugs include β-blockers, prostaglandin analogs, carbonic anhydrase inhibitors, selective α-2 agonists and cholinergic agents (Lewis TL. Care of the Patient with open-angle glaucoma. 2 nd ed. St. Louis: American Optometric Association, 2002; Mckinnon SJ, Goldberg LD, Peeples P, Walt JG, Bramley T. Current management of glaucoma and the need for complete therapy Am J. Manag Care, v. 14, no. 1, pp. S20-S27, 2008; Royai College of Ophthalmologists Guidelines for the management of open angle glaucoma and ocular hypertension. London, 2004. Available at: <http://www.rcophth.ac.uk/page.asp7sectionM51 & sectionTitle = Clinical + Guidelines>. Access on 2 mar. 201 1; Weinreb and Khaw, 2004). Since 2008, prostaglandin analogues have been considered one of the most effective and safe drugs for treating glaucoma. However, its high cost is a limiting factor in many cases (Parikh RS, Parikh SR, Navin S, Arun E, Thomas R. Practical approach to medical management of glaucoma. Indian J. Ophthalmol., V. 56, no. 3 , pp. 223-230, 2008).
Outro grupo de patologias que pode levar ao comprometimento da visão por degeneração das células retinianas são as retinopatias. Uma das principais retinopatias é a diabética. Atualmente, estima-se que 7 a 8% da população mundial seja portadora de diabetes mellitus (DM) (Bosco A, Lerário AC, Soriano D, Santos RF, Massote P, Galvão D, Franco AC, Purisch S, Ferreira AR. Retinopatia Diabética Arq. Bras. Endocrinol. Metab., v.49, n. 2, p. 217-227, 2005). No Brasil, o DM é considerado um dos maiores problemas de saúde pública, situando-se entre as 1 0 maiores causas de mortalidade (Malerbi DA, Franco LJ. Multicenter study of the prevalence of diabetes mellitus and impaired glucose tolerance in the Urban Brazilian population aged 30-69 yr. Diabetes Care, v. 15, p. 1509-15, 1992). A retinopatia diabética é uma das complicações mais comuns do DM e pode estar presente tanto nos pacientes com DM do tipo 1 quanto do tipo 2, tornando-se a causa mais frequente de cegueira adquirida (Bosco A, Lerário AC, Soriano D, Santos RF, Massote P, Galvão D, Franco AC, Purisch S, Ferreira AR. Retinopatia Diabética. Arq. Bras. Endocrinol. Metab., v.49, n. 2, p. 217-227, 2005; Ferris III FL. Diabetic retinopathy. Diabetes Care, v. 16, p. 322-5, 1993; Klein R, Klein BEK, Moss SE, Cruickshanks KJ. The Wisconsin epidemiological study of diabetic retinopathy. Arch. Ophthamol. v. 1 12, p. 1217-28, 1994; Park SH, Park JW, Park SJ, et al. Apoptotic death of photoreceptors in the streptozotocin-induced diabetic rat retina. Diabetologia, v. 46, p. 1260-1268, 2003). Aproximadamente 40.000 pessoas em todo mundo tornam-se cegas a cada ano em consequência da retinopatia diabética. Além disso, praticamente todos os indivíduos com DM tipo 1 irão progredir para alguma forma de retinopatia após 1 5 anos de doença, sendo que destes, aproximadamente 60% irão desenvolver a forma mais grave, que é a proliferativa, cujas características envolvem a perda irreversível da acuidade visual, principalmente pelo descolamento tradicional da retina (Bosco A, Lerário AC, Soriano D, Santos RF, Massote P, Galvão D, Franco AC, Purisch S, Ferreira AR. Retinopatia Diabética. Arq. Bras. Endocrinol. Metab., v.49, n. 2, p. 217-227, 2005; Fong DS, Aiello LP, Ferris FL, Klein R. Diabetic retinopathy. Diabetes Care, v. 27, p. 2540-53, 2004). Another group of conditions that can lead to impaired vision through retinal cell degeneration are retinopathies. One of the main retinopathies is diabetic. Currently, it is estimated that 7 to 8% of the world's population has diabetes mellitus (DM) (Bosco A, Lerário AC, Soriano D, Santos RF, Massote P, Galvão D, Franco AC, Purisch S, Ferreira AR. Retinopathy Endocrinol Metab., V.49, No. 2, pp. 217-227, 2005). In Brazil, DM is considered one of the major public health problems, being among the top 10 causes of mortality (Malerbi DA, Franco LJ. Multicenter study of the prevalence of diabetes mellitus and impaired glucose tolerance in the Urban Brazilian population. aged 30-69 (Diabetes Care, v. 15, pp. 1509-15, 1992). Diabetic retinopathy is one of the most common complications of DM and can be present in both type 1 and type 2 DM patients, becoming the most frequent cause of acquired blindness (Bosco A, Lerário AC, Soriano D, Santos RF). , Massote P, Galvao D, Franco AC, Purisch S, Ferreira AR Diabetic Retinopathy Arq Bras Endocrinol Metab, v.49, no 2, pp 217-227, 2005; Ferris III FL Diabetic retinopathy Diabetes Care, v. 16, pp. 322-5, 1993; Klein R, Klein BEK, Moss SE, Cruickshanks K. The Wisconsin Epidemiological Study of Diabetic Retinopathy Arch.Ophthamol, v. 12, pp 1217-28 Park SH, Park JW, Park SJ, et al., Apoptotic death of photoreceptors in the streptozotocin-induced retinal diabetic rat (Diabetologia, v. 46, pp. 1260-1268, 2003). Approximately 40,000 people worldwide become blind each year as a result of diabetic retinopathy. In addition, virtually all individuals with type 1 DM will progress to some form of retinopathy after 15 years of illness, of which approximately 60% will develop the most severe form, proliferative, whose characteristics involve irreversible loss of visual acuity, especially by traditional retinal detachment ( Bosco A, Lerário AC, Soriano D, Santos RF, Massote P, Galvao D, Franco AC, Purisch S, Ferreira AR Diabetic Retinopathy Arq. Bras Endocrinol Metab., V.49, n.2, p. 217 -227, 2005; Fong DS, Aiello LP, Ferris FL, Klein R. Diabetic retinopathy, Diabetes Care, v. 27, pp. 2540-53, 2004).
A despeito da visão tradicional relacionada à fisiopatologia da retinopatia diabética envolver danos na microcirculação decorrentes do longo tempo da doença, estudos recentes indicam que as lesões nas células neuronais e gliais podem aparecer no início da doença (Mizutani M, Gerhardinger C, Lorenzi M. Muller cell changes in human diabetic retinopathy. Diabetes, v. 47, p. 445-449, 1998; Lorenzi M, Gerhardinger C. Early cellular and molecular changes induced by diabetes in the retina. Diabetologia, v. 44, p. 791- 804, 2001 ; Park SH, Park JW, Park SJ, et al. Apoptotic death of photoreceptors in the streptozotocin-induced diabetic rat retina. Diabetologia, v. 46, p. 1260-1268, 2003; Senanayake P, Drazba J, Shadrach K, Milsted A, Rungger-Brandle E, Nisbiyama K, Miura S, Karnik S, Sears JE, Hollyfield JG. Angiotensin II and its receptor subtypes in the human retin. Invest. Ophthalmol. Vis. Sei., v. 48, n. 7, p. 3301-331 1 , 2007). Sabendo- se que a retina é parte integrante do sistema nervoso central e, sendo assim, utiliza a glicose como única fonte de energia para a captação de imagem e processamento visual, estados de hipoinsulinemia com consequente hiperglicemia podem alterar a função visual antes de a lesão vascular ser clinicamente diagnosticada.  Despite the traditional view related to the pathophysiology of diabetic retinopathy involving long-term microcirculatory damage, recent studies indicate that neuronal and glial cell damage may appear early in the disease (Mizutani M, Gerhardinger C, Lorenzi M. Muller). Diabetes, v. 47, pp. 445-449, 1998; Lorenzi M, Gerhardinger C. Early cellular and molecular changes induced by diabetes in the retina Diabetologia, v. 44, pp. 791-804 Park SH, Park JW, Park SJ, et al Apoptotic death of photoreceptors in the streptozotocin-induced diabetic rat retina Diabetologia, v. 46, pp. 1260-1268, 2003; Senanayake P, Drazba J, Shadrach K , Milsted A, Rungger-Brandle E, Nisbiyama K, Miura S, Karnik S, Sears JE, Hollyfield J. Angiotensin II and its receptor subtypes in the human retin Invest Invest Ophthalmol Vis Sei, v. 48, n. 7, pp. 3301-331, 2007). Since the retina is an integral part of the central nervous system and therefore uses glucose as the sole energy source for imaging and visual processing, hypoinsulinemia states with consequent hyperglycemia may alter visual function before injury. be clinically diagnosed.
Trabalhos recentes demonstram que a Angiotensina I I (Ang I I), molécula com atividade no controle da pressão arterial largamente conhecida, está também presente em várias camadas da retina (células ganglionares, camada dos fotorreceptores, células endoteliais e células de Muller) (Savaskan E, Loffler KU, Méier F, Muller S, Flammer J, Meyer P. Immunohistochemical localization of angiotensin II and AT1 receptor in human ocular tissues. Ophthalmic, v. 36, p. 312-320, 2004). Em relação às células de Muller, a Ang I I parece estar envolvida na regulação da permeabilidade vascular e do fluxo sanguíneo e na formação e manutenção da barreira hemato-retiniana. A célula de Muller é uma célula muito especializada e é a principal célula da glia na retina, abrangendo toda a profundidade desta estrutura. Em consequência desse arranjo, estas células se intercalam entre os vasos e neurónios, desempenhando um importante papel na captação de glicose da circulação e transferência de energia para os neurónios (Park SH , Park JW, Park SJ , et al. Apoptotic death of photoreceptors in the streptozotocin-induced diabetic rat retina. Diabetologia, v. 46, p. 1 260- 1268, 2003; Senanayake P, Drazba J, Shadrach K, Milsted A, Rungger- Brandle E, Nisbiyama K, Miura S, Karnik S, Sears JE, Hollyfield JG. Angiotensin II and its receptor subtypes in the human retin. Invest. Ophthalmol. Vis. Sei., v. 48, n. 7, p. 3301 -331 1 , 2007). Recent work has shown that Angiotensin II (Ang II), a well-known blood pressure control molecule, is also present in various retinal layers (ganglion cells, photoreceptor layer, endothelial cells and Muller cells) (Savaskan E, Loffler KU, Meier F, Muller S, Flammer J, Meyer P. Immunohistochemical localization of angiotensin II and AT1 receptor in human ocular tissues. Ophthalmic, v. 36, p. 312-320, 2004). With respect to Muller cells, Ang II appears to be involved in regulating vascular permeability and blood flow, and in forming and maintaining the blood-retinal barrier. The Muller cell is a very specialized cell and is the main retinal glial cell, spanning the full depth of this structure. As a result of this arrangement, these cells intersect between the vessels and neurons, playing an important role in glucose uptake from the circulation and energy transfer to the neurons (Park SH, Park JW, Park SJ, et al. Apoptotic death of photoreceptors in the streptozotocin-induced diabetic rat retina Diabetologia, v. 46, pp. 1 260-1268, 2003; Senanayake P, Drazba J, Shadrach K, Milsted A, Rungger-Brandle E, Nisbiyama K, Miura S, Karnik S, Sears JE, Hollyfield J. Angiotensin II and its receptor subtypes in the human retin Invest Invest Ophthalmol Vis Sci, v. 48, no 7, pp 3301-331, 2007).
No ano 2000, foi descoberta uma nova enzima do Sistema Renina-Angiotensina (SRA), a Enzima Conversora de Angiotensina 2 (ECA2), que é homóloga à Enzima Conversora de Angiotensina (ECA). A principal atividade da ECA2 é a conversão de Ang I I , que tem atividade vasoconstritora e hipertensora, no peptídeo Angiotensina-(1 - 7) [Ang-(1 -7)], que por sua vez, apresenta atividade vasodilatadora e antiproliferativa (Chappell MC, Ferrario CM . Angiotensin-( 1 -7) in hypertension. Curr. Opin. Nephrol. Hypertens. , v. 8, n.2, p. 231 -235, 1 999; Fyhrquist F, Saijonmaa O. Renin-angiotensin system revisited . J. Intern. Med. , v. 264, p. 224-236, 2008; Imai Y, Kuba K, Ohto T, Penninger JM. Angiotensin-Converting Enzyme 2 (ACE2) in Disease Pathogenesis. Circ. J. , v. 74, p. 405-410, 201 0). Para exercer as suas funções, a Ang-(1 -7) se liga ao receptor de membrana Mas.  In 2000, a new enzyme from the Renin-Angiotensin System (SARS) was discovered, the Angiotensin-Converting Enzyme 2 (ECA2), which is homologous to the Angiotensin-Converting Enzyme (ACE). The main activity of ECA2 is the conversion of Ang II, which has vasoconstrictor and hypertensive activity, to the peptide Angiotensin- (1 - 7) [Ang- (1 -7)], which in turn has vasodilatory and antiproliferative activity (Chappell MC, Ferrario CM Angiotensin (1-7) in hypertension Curr Opin Opin Nephrol Hypertens, v. 8, no.2, pp 231-235,1999; Fyhrquist F, Saijonmaa O. Renin-angiotensin J. Intern. Med., v. 264, pp. 224-236, 2008; Imai Y, Kuba K, Ohto T., Penninger J. Angiotensin-Converting Enzyme 2 (ACE2) in Disease Pathogenesis. , v. 74, pp. 405-410, 201). To perform its functions, Ang- (1-7) binds to the membrane receptor Mas.
Fármacos utilizados para redução da pressão arterial sistémica, como os inibidores da ECA, também tem mostrado atividade na redução da PIO (Hashimoto M, Silva MRBM, Neto, FJT. Efeito de drogas utilizadas no tratamento de hipertensão arterial sistémica sobre a pressão intra-ocular: estudo experimental no cão. Arq. Bras. Oftalmol., v.65, p. 229-33, 2002; Mohamed R, Al-Sereiti, Turner, P. Effect of Captopril (an Angiotensin-Converting Enzyme Inhibitor) on Intraocular Pressure in Healthy Human Volunteers. J. Ocul. Pharmacol. Ther., v. 5, n.1 , p. 1-5, 1989). Além disso, a Ang I I tem sido associada ao risco de desenvolvimento tanto da retinopatia diabética, quanto do glaucoma (Sramek SJ , Wallow I H , Tewksbury DA, Brandt CR, Poulsen GL. An ocular renin-angiotensin system. Immunohistochemistry of angiotensinogen. Invest. Ophthalmol. Vis. Sei., v. 33, p. 1627-1632, 1 992; Nadal JA, Scicli GM, Carbini LA, Nussbaum JJ, Scicli AG. Angiontensin II and retinal perieytes migration; Fong DS, Aiello LP, Ferris FL, Klein R. Diabetic retinopathy. Diabetes Care, v. 27, p. 2540-53, 2004; Hashizume K, Mashima Y, Fumayama T, Ohtake Y, Kimura I , Yoshida K, Ishikawa K, Yasuda N , Fujimaki T, Asaoka R, Koga T, Kanamoto T, Fukuchi T, Miyaki K. Genetic polymorphisms in the angiotensin I I receptor gene and their association with open-angle glaucoma in a Japanese population. Invest. Ophthalmol. Vis. Sei., v. 46, p. 1 993-2001 , 2003). Assim, drogas capazes de modular o SRA, além de atuarem como potentes anti-hipertensivos, podem agir também como óculo- hipotensivos e antiproliferativos. Além do mais, a ativação do eixo ECA2/Ang-(1 -7)/Receptor Mas pode desempenhar um importante papel em patologias oculares que envolvam o aumento da PIO e a degeneração de células da retina e/ou do nervo óptico, como o glaucoma e a retinopatias. Drugs used to lower systemic blood pressure, such as ACE inhibitors, have also shown activity in reducing IOP (Hashimoto M, Silva MRBM, Neto, FJT. Effect of drugs used in treatment of systemic arterial hypertension on intraocular pressure: experimental study in dogs. Arq. Bras. Ophthalmol., V.65, p. 229-33, 2002; Mohamed R, Al-Sereiti, Turner, P. Effect of Captopril (an Angiotensin-Converting Enzyme Inhibitor) on Intraocular Pressure in Healthy Human Volunteers. J. Ocul. Pharmacol. Ther., V. 5, no. 1, p. 1-5, 1989). In addition, Ang II has been associated with the risk of developing both diabetic retinopathy and glaucoma (Sramek SJ, Wallow IH, Tewksbury DA, Brandt CR, Poulsen GL. An ocular renin-angiotensin system. Immunohistochemistry of angiotensinogen. Invest. Ophthalmol Vis. Sci., V. 33, pp. 1627-1632, 1992; Nadal JA, Scicli GM, Carbini LA, Nussbaum JJ, Scicli AG, Angiontensin II and retinal perieytes migration; Fong DS, Aiello LP, Ferris FL , Klein R. Diabetic retinopathy Diabetes Care, v. 27, pp. 2540-53, 2004; Hashizume K, Mashima Y, Fumayama T, Ohtake Y, Kimura I, Yoshida K, Yasuda N, Fujimaki T, Asaoka R, Koga T, Kanamoto T, Fukuchi T, Miyaki K. Genetic polymorphisms in the angiotensin II receptor gene and their association with open-angle glaucoma in a Japanese population Invest Ophthalmol Vis. Sci., V. 46, p. 1 993-2001, 2003). Thus, drugs capable of modulating the SARS, in addition to acting as potent antihypertensive drugs, may also act as hypotensive and antiproliferative drugs. Furthermore, activation of the ECA2 / Ang- (1-7) / Receptor axis may play an important role in ocular pathologies involving increased IOP and degeneration of retinal and / or optic nerve cells such as the glaucoma and retinopathies.
Desde a descrição do eixo ECA2/Ang-(1 -7)/Receptor Mas, moléculas que atuam na sua modulação, seja via ativação da ECA2, seja via ativação direta dos receptores Mas [análogos da Ang-(1 -7)] vem sendo estudadas. O primeiro análogo não peptídico da Ang-(1-7) descrito (AVE 0991) foi descoberto em 2002 e apresentou significativos efeitos em vasos, rins e no coração, indicando seu possível efeito no tratamento da hipertensão e de doenças cardiovasculares (Santos RAS, Ferreira AJ. Pharmacological effects of AVE 0991 , a nonpeptide angiotensin-(1-7) receptor agonist. Cardiovasc. Drug Rev., v. 24, p. 239-246, 2006). Outros análogos identificados foram o peptídeo CGEN-856S e a Ang-(1-7) ligado por pontes de tioéter [Ang-(1-7) cíclica] (Savergnini SQ , Beiman M , Lautner RQ, de Paula-Carvalho V , Allahdadi K, Pessoa DC, Costa-Fraga FP, Fraga-Silva RA, Cojocaru G , Cohen Y, Bader M, de Almeida AP, Rotman G , Santos RAS. Vascular Relaxation, Antihypertensive Effect, and Cardioprotection of a Novel Peptide Agonist of the Mas Receptor. Hypertension, v. 56, p. 112-U174, 2010; KluskensLD, Nelemans AS, Rink R, de Vries L, Meter-Arkema A, Wang Y, Walther T, Kuipers A, Moll GN, Haas M. Angiotensin-(1-7) with Thioether Bridge: An Angiotensin-Converting Enzyme- Resistant, Potent Angiotensin-(1-7) Analog. J. Pharmacol. Exp. Ther., v. 328, p. 849-854, 2009). From the description of the ECA2 / Ang- (1-7) / Receptor Mas axis, molecules that act on its modulation, either via ECA2 activation or direct activation of the Mas receptors [Ang- (1-7) analogues] come from. being studied. The first non-peptide Ang- (1-7) analogue described (AVE 0991) was discovered in 2002 and had significant effects on vessels, kidneys and the heart, indicating its possible effect on the treatment of hypertension and cardiovascular disease (Santos RAS, Ferreira AJ, Pharmacological effects of AVE 0991, the nonpeptide angiotensin- (1-7) agonist receptor Cardiovasc. Rev., v. 24, p. 239-246, 2006). Other analogues identified were the CGEN-856S peptide and the thioether bridged-linked Ang- (1-7) cyclic [Ang- (1-7)] (Savergnini SQ, Beiman M, Lautner RQ, Paula-Carvalho V, Allahdadi K, DC Person, Costa-Fraga FP, Fraga-Silva RA, Cojocaru G, Cohen Y, Bader M., Almeida AP, Rotman G, Santos RAS Vascular Relaxation, Antihypertensive Effect, and Cardioprotection of a Novel Peptide Agonist of the Mas Hypertension, v. 56, pp. 112-U174, 2010; KluskensLD, Nelemans AS, Rink R, of Vries L, Meter-Arkema A, Wang Y, Walther T, Kuipers A, Moll GN, Haas M. Angiotensin (1-7) with Thioether Bridge: An Angiotensin-Converting Enzyme-Resistant, Potent Angiotensin- (1-7) Analog J. Pharmacol Exp Ther, v. 328, pp 849-854, 2009).
Ativadores da ECA2 vêm sendo desenvolvidos como potenciais agentes anti-hipertensivos e a partir de varredura virtual, a xantenona, 1 -[(2- dimetilamino) etilamino]-4-(hidroximetil)-7-[(4-metilfenil) sulfoniloxi]- 9xanten-9-ona (XNT) e o resorcinolnaftaleína foram identificadas como agentes ativadores da ECA2. O XNT apresenta atividade in vivo na redução da pressão arterial (Hernandez Prada JA, Ferreira AJ, Katovich MJ, Shenoy V, Qi Y, Santos RAS, Castellano RK, Lampkins AJ, Gubala V, Ostrov D A, Raizada MK. Structure- based Identification of small-molecule angiotensin-converting enzyme 2 activators as novel antihypertensive agents. Hypertension, v. 51 , p. 1312-1317, 2008). O diminazeno (DIZE) também foi recentemente identificado como ativador da ECA2 e potencial precursor de novos agentes anti-hipertensivos (Dasgupta, C, Zhang L. Angiotensin I I receptors and drug discovery in cardiovascular disease. Drug Discov. Today, v. 16, n. 1 /2, 201 1 ; Gjymishka A, Kulemina LV, Shenoy V, Katovich MJ , Ostrov DA, Raizada MK. Diminazene Aceturate is an ACE2 activator and a novel antihypertensive drug. FASEB J. , v. 24, p. 1032-1 033, 2010).  ECA2 activators have been developed as potential antihypertensive agents and from virtual scanning, xanthenone, 1 - [(2-dimethylamino) ethylamino] -4- (hydroxymethyl) -7 - [(4-methylphenyl) sulfonyloxy] - 9xanthen-9-one (XNT) and resorcinolnaphthalein have been identified as ECA2 activating agents. XNT exhibits in vivo activity in lowering blood pressure (Hernandez Prada JA, AJ Ferreira, Katovich MJ, Shenoy V, Qi Y, Santos RAS, Castellano RK, AJ Lampkins, Gubala V, Ostrov Mida. Structure-based Identification of small-molecule angiotensin-converting enzyme 2 activators as novel antihypertensive agents (Hypertension, v. 51, pp. 1312-1317, 2008). Diminazene (DIZE) has also recently been identified as an ECA2 activator and potential precursor of new antihypertensive agents (Dasgupta, C, Zhang L. Angiotensin II receptors and drug discovery in cardiovascular disease. Drug Discov. Today, v. 16, n Gjymishka A, Kulemina LV, Shenoy V, Katovich MJ, Ostrov DA, Rooted MK Decreased Aceturate is an ACE2 activator and a novel antihypertensive drug FASEB J., v. 24, p. 1,033, 2010).
O DIZE é uma diamidina aromática utilizada como antiparasitário veterinário que tem demonstrando significativa atividade tripanocida (exceto para Trypanosoma cruzi) e leishmanicida (Jean-Moreno, Rojas R. , Goyeneche D. , Coombs GH e Walker J , Leishmania donovani: differential activities of classical topoisomerase inhibitors and antileishmanials against parasite and host cells at the levei of DNA topoisomerase I and in cytotoxicity assays. Exp. Parasito/. , v. 1 12, p. 21 -30, 2006; Kroubi M, Daulouede S, Karembe H , Jallouli Y, Howsam M, Mossalayi D, Vincendeau P, Betbeder D Development of a nanoparticulate formulation of diminazene to treat African trypanosomiasis. Nanotechnology, v. 21 , 2010; Wéry M Drug used in the treatment of sleeping sickness (human African trypanosomiasis: HAT). Int. J. Antimicrob. Agents, v.3, p.227-38, 1 994). O fármaco tem sido usado no controle da tripanosomíase em animais por mais de 40 anos e, embora nunca tenha sido aprovada para uso humano, foi muito utilizado na África no tratamento de doenças causadas por Trypanosoma brucei rhodesiense e Trypanosoma brucei gambiense (Akpa PO, Ezeokonkwo RC, Eze CA, Anene BM. Comparative efficacy assessment of pentamidine isethionate and diminazene aceturate in the chemotherapy of Trypanosoma brucei brucei infection in dogs. Vet. Parasito/. , v. 2-4, p. 39-49, 2008; Jennings FW. Combination chemotherapy of CNS trypanosomiasis, Acta Trópica, v. 54, p. 205-21 3, 1 993; Wéry M. Drug used in the treatment of sleeping sickness (human African trypanosomiasis: HAT). Int. J. Antimicrob. Agents, v.3, p.227- 38, 1994). Alguns testes com o fármaco foram realizados em humanos para prevenção de encefalopatia em pacientes com doença do sono (tripanossomíase humana Africana) tratados com melarsoprol e o fármaco mostrou ser rapidamente absorvido quando administrado por via oral, além de não ter demonstrado irritação ou efeitos adversos significativos, mesmo após exposição prolongada (Bailey N M . Oral Berenil in the treatment and prophylaxis of human trypanosomiasis. Trans. R. Soe. Trop. Med. Hyg. , v. 62, p. 1 22, 1 968) . Contrariamente, outros estudos indicam que o uso dessa substância é limitado pela sua baixa estabilidade e pelos efeitos tóxicos que podem ser desenvolvidos em tecidos não alvo (Kroubi M, Daulouede S, Karembe H , Jallouli Y, Howsam M, Mossalayi D, Vincendeau P, Betbeder D. Development of a nanoparticulate formulation of diminazene to treat African trypanosomiasis. Nanotechnology. V. 21 , p. 55-1 02, 201 0). Além d isso, ela é rapidamente excretada, tendo um tempo de meia vida de apenas duas horas (Jennings FW. Combination chemotherapy of CNS trypanosomiasis. Acta Trópica, v. 54, p. 205-21 3, 1 993) . Os principais efeitos tóxicos da droga são nervosos e digestivos (Wéry M . Drug used in the treatment of sleeping sickness (human African trypanosomiasis: HAT). Int. J. Antimicrob. Agents, v.3, p.227-38, 1994). Além disso, o DIZE também já foi associado à prata e apresentou atividade antitumoral elevada e foram desenvolvidas nanopartículas lipídicas contendo o fármaco para potencial liberação cerebral da droga no tratamento da doença do sono (Olbrich C, Gessner A, Schrõder W, Kayser O, Muller RH , Olbrich C, Gessner A, Schrõder W, Kayser O, MUIIer RH . Lipid-drug conjugate nanoparticles of the hydrophilic drug diminazene-cytotoxicity testing and mouse serum adsorption . J. Control. Release, v.96, p.425-35, 2004). DIZE is an aromatic diamidine used as a veterinary antiparasitic that has demonstrated significant trypanocidal activity (except for Trypanosoma cruzi) and leishmanicide (Jean-Moreno, Rojas R., Goyeneche D., Coombs GH and Walker J, Leishmania donovani: differential activities of classical topoisomerase inhibitors and antileishmanials against parasite and host cells at the level of DNA topoisomerase I and in cytotoxicity assays. Exp. Parasite /. , v. 1112, p. 21-30, 2006; Kroubi M, Daulouede S, Karembe H, Jallouli Y, Howsam M, Mossalayi D, Vincendeau P, Betbeder D Development of a nanoparticle formulation to treat African trypanosomiasis. Nanotechnology, v. 21, 2010; Wéry M Drug used in the treatment of sleeping sickness (human African trypanosomiasis: HAT). Int. J. Antimicrob. Agents, v.3, p.227-38, 1994). The drug has been used to control trypanosomiasis in animals for over 40 years and, although never approved for human use, has been widely used in Africa to treat diseases caused by Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense (Akpa PO, Ezeokonkwo). RC, Eze CA, Anene BM Comparative efficacy assessment of pentamidine isethionate and diminazene aceturate in the chemotherapy of Trypanosoma brucei brucei infection in dogs Parasito Vet., V. 2-4, pp. 39-49, 2008; Combination chemotherapy of CNS trypanosomiasis, Acta Tropica, v. 54, pp 205-21 3, 1993; Wery M. Drug used in the treatment of sleeping sickness (human African trypanosomiasis: HAT) Int. J. Antimicrob. , v.3, p.227-38, 1994). Some tests with the drug have been performed in humans to prevent encephalopathy in patients with melarsoprol-treated sleeping sickness (African human trypanosomiasis), and the drug has been shown to be rapidly absorbed when given orally and has not shown significant irritation or adverse effects. , even after prolonged exposure (Bailey NM. Oral Berenil in the treatment and prophylaxis of human trypanosomiasis. Trans. R. Soc. Trop. Med. Hyg., v. 62, p. 22, 1968). In contrast, other studies indicate that the use of this substance is limited by its low stability and the toxic effects that may be developed on non-target tissues (Kroubi M, Daulouede S, Karembe H, Jallouli Y, Howsam M, Vinceneau P, Betbeder D. Development of a nanoparticulate formulation of diminazene to treat African trypanosomiasis. Nanotechnology. V. 21, p. 55-120, 201.0). In addition, it is rapidly excreted, having a half-life of only two hours (Jennings FW. Combination chemotherapy of CNS trypanosomiasis. Acta Tropica, v. 54, p. 205-21 3, 1 993). The main toxic effects of the drug are nervous and digestive (Wéry M. Drug used in the treatment of sleeping sickness (human African trypanosomiasis: HAT). Int. J. Antimicrob. Agents, v.3, p.227-38, 1994) . In addition, DIZE has also been associated with silver and has high antitumor activity and lipid nanoparticles containing the drug for potential brain release of the drug in the treatment of sleep sickness (Olbrich C, Gessner A, Schroder W, Kayser O, Muller RH, Olbrich C, Gessner A, Schroder W, Kayser O, MUIIer RH Lipid-drug conjugate nanoparticles of the hydrophilic drug diminishing cytotoxicity testing and mouse serum adsorption J. Control, Release, v.96, p.425-35 , 2004).
Encontram-se, no estado da técnica, documentos de patente que descrevem o uso do DIZE para tratamento de doenças cardiovascular, cardiopulmonar, assim como no tratamento de doenças parasitárias. Porém, nenhum documento trata de sua utilização no tratamento de doenças oculares. Referente à xantenona, nada foi encontrado.  State of the art patent documents describing the use of DIZE for the treatment of cardiovascular and cardiopulmonary diseases, as well as for the treatment of parasitic diseases are available. However, no document deals with its use in the treatment of eye diseases. Regarding xanthenone, nothing was found.
Por exemplo, o documento RU20081 50401 descreve uma formulação contendo DIZE para o tratamento de babesiose.  For example, RU20081 50401 describes a formulation containing DIZE for the treatment of babesiosis.
O documento WO9428162 descreve o uso do DIZE no tratamento de tripanossomíases crónicas em humanos e outros animais.  WO9428162 describes the use of DIZE in the treatment of chronic trypanosomiasis in humans and other animals.
O documento WO2008066770 descreve composições farmacêuticas contendo o DIZE para tratar doenças cardiovasculares e cardiopulmonares, preferencialmente hipertensão e injúrias pulmonares.  WO2008066770 describes pharmaceutical compositions containing DIZE for treating cardiovascular and cardiopulmonary diseases, preferably hypertension and pulmonary injuries.
A utilização de sistemas de liberação controlada para administração de fármacos é uma importante alternativa entre as estratégias de tratamento já conhecidas. A procura por sistemas de liberação controlada para administração de fármacos tem sido amplamente divulgada na literatura. Esses sistemas têm a vantagem de permitir uma liberação contínua, constante e prolongada do medicamento, mantendo um nível estável do fármaco no organismo do paciente e evitando efeitos adversos que poderiam ocorrer quando comparados com a administração convencional. Diante disso, novas formas farmacêuticas sólidas, semissólidas e líquidas vêm sendo desenvolvidas para atender a essa necessidade. Como exemplos, têm- se: lipossomas, micro e nanoesferas, micro e nanocápsulas, comprimidos revestidos, adesivos transdérmicos e implantes, dentre outras. A utilização desses sistemas no tratamento de doenças crónicas, como o glaucoma e a retinopatia diabética, é ainda mais interessante tendo em vista que o tratamento prolongado e a necessidade de utilização frequente do medicamento são fatores que limitam a adesão do paciente ao tratamento, o que pode culminar na cegueira do indivíduo. The use of controlled release systems for drug delivery is an important alternative among known treatment strategies. Demand for controlled release systems for drug delivery has been widely reported in the literature. These systems have the advantage of allowing continuous, constant and prolonged release of the drug, maintaining a stable level of the drug in the patient's body and avoiding adverse effects that could occur compared to conventional administration. Given this, new solid, semi-solid and liquid dosage forms have been developed to meet this need. Examples include liposomes, micro and nanospheres, micro and nanocapsules, coated tablets, transdermal patches and implants, among others. The use of these systems in the treatment of chronic diseases, such as glaucoma and diabetic retinopathy, is even more interesting given that prolonged treatment and the need for frequent use of the drug limit the patient's adherence to treatment. can culminate in the blindness of the individual.
Tendo em vista que não foram encontrados trabalhos na literatura que comprovem a atividade dos ativadores do eixo ECA2/Ang-(1 -7)/Receptor Mas nas doenças oculares e considerando a importância dos sistemas de liberação controlada para o tratamento de doenças crónicas, como o glaucoma, as retinopatias e outras degenerações retinianas, a presente tecnologia descreve composições farmacêuticas, de liberação controlada ou não, contendo ativadores do eixo ECA2/Ang-(1 -7)/Receptor Mas e o uso das mesmas para o tratamento de doenças oculares que envolvam o aumento da PIO e/ou a degeneração das células retinianas e/ou do nervo óptico .  Considering that no studies were found in the literature that prove the activity of activators of the ECA2 / Ang- (1-7) / Receptor Mas axis in eye diseases and considering the importance of controlled release systems for the treatment of chronic diseases, such as glaucoma, retinopathies and other retinal degenerations, the present technology describes controlled or uncontrolled release pharmaceutical compositions containing ECA2 / Ang- (1-7) / Receptor axis activators and their use for the treatment of eye diseases involving increased IOP and / or degeneration of retinal cells and / or optic nerve.
Essas composições farmacêuticas foram administradas por diferentes vias, avaliando-as para o tratamento de doenças como o glaucoma e a retinopatia, preferencialmente, a retinopatia diabética. Os resultados mostram a potente atividade dos ativadores do eixo ECA2/Ang-(1 -7)/Receptor Mas na redução da PIO e na proteção das células da retina e do nervo óptico. Diversas patentes descrevem o uso de antagonistas da angiotensina I I e ECA, no tratamento da retinopatia e de glaucoma (CN 1 01690816, CN 1 01658675, CY2567, US7906501 , PI001 0084-6, BRPI0409293), mas nenhum documento encontrado relata o uso de ativadores de ECA2. These pharmaceutical compositions were administered by different routes, evaluating them for the treatment of diseases such as glaucoma and retinopathy, preferably diabetic retinopathy. The results show the potent activity of ECA2 / Ang- (1 -7) / Receptor Mas axis activators in reducing IOP and protecting retinal and optic nerve cells. Several patents describe the use of angiotensin II and ACE antagonists in the treatment of retinopathy and glaucoma (CN 1 01690816, CN 1 01658675, CY2567, US7906501, PI001 0084-6, BRPI0409293), but no document found reports the use of activators. of ECA2.
Breve Descrição das Figuras Brief Description of the Figures
Figura 1 - Potencial de hidratação de implantes brancos e dos implantes contendo o ativador da ECA2 (DIZE).  Figure 1 - Hydration potential of white implants and implants containing the ACE2 activator (DIZE).
Figura 2 - Espectro de absorção na região do infravermelho de um modelo de ativador de ECA2 (DIZE) (A), de implantes brancos (B) e de implantes contendo ativador de ECA2 (DIZE) (C).  Figure 2 - Infrared absorption spectrum of a model of ECA2 activator (DIZE) (A), white implants (B) and implants containing ECA2 activator (DIZE) (C).
Figura 3 - Curvas de calorimetria exploratória diferencial para um modelo de ativador de ECA2 (DIZE), de implantes brancos e de implantes contendo ativador de ECA2 (DIZE) (a, primeira corrida; b, segunda corrida).  Figure 3 - Differential exploratory calorimetry curves for a model of ECA2 activator (DIZE), white implants and implants containing ECA2 activator (DIZE) (a, first run; b, second run).
Nas curvas de Calorimetria Exploratória Diferencial (DSC) obtidas para os implantes, os eventos térmicos observados e característicos do polímero foram a perda de água em 64,2°C (Figura 3A) e a sua decomposição em 314°C (Figura 3B). Para o ativador de ECA2, os eventos térmicos de desidratação (92°C) e decomposição (214°C) foram observados. Para os implantes (Figura 3), foi possível perceber uma pequena diferença entre as  In the Differential Exploratory Calorimetry (DSC) curves obtained for the implants, the observed and characteristic thermal events of the polymer were water loss at 64.2 ° C (Figure 3A) and its decomposition at 314 ° C (Figure 3B). For the ECA2 activator, the thermal events of dehydration (92 ° C) and decomposition (214 ° C) were observed. For implants (Figure 3), it was possible to notice a small difference between the
Figura 4 - Micrografias eletrônicas de varredura da lateral de implantes brancos (a) e implantes contendo ativador da ECA2 (DIZE) (b). Figure 4 - Side scan electron micrographs of white implants (a) and implants containing ACE2 activator (DIZE) (b).
Figura 5 - Perfil de liberação in vitro para os implantes contendo ativador da ECA2 (DIZE). Figure 5 - In vitro release profile for implants containing ECA2 activator (DIZE).
Figura 6 - Comparação dos valores de PIO entre grupo controle (animais normais) e grupo glaucoma (animais com glaucoma ind uzido), ambos subdivididos em grupo de animais não tratados e de animais tratados com ativador da ECA2 (DIZE) na forma de solução oral (gavagem). Período de estudo: 4 semanas. Início do tratamento: após a primeira indução. Final do tratamento: após 4 semanas. *p<0,05 vs. Controle não tratado. #p<0,05 vs. Glaucoma não tratado Figura 7 - Comparação dos valores de pressão arterial média entre grupo controle (animais normais) e grupo glaucoma (animais com glaucoma induzido), ambos subdivididos em grupo de animais não tratados e de animais tratados com ativador da ECA2 (DIZE) na forma de solução oral (gavagem). Período de estudo: 4 semanas. Início do tratamento: após a primeira indução. Final do tratamento: após 4 semanas. Figure 6 - Comparison of IOP values between control group (normal animals) and glaucoma group (animals with induced glaucoma), both subdivided into untreated and ECA2 activator-treated (DIZE) treated animals as oral solution (gavage). Study period: 4 weeks. Initiation of treatment: after first induction. End of treatment: after 4 weeks. * p <0.05 vs. Untreated control. #p <0.05 vs. Untreated Glaucoma Figure 7 - Comparison of mean blood pressure values between control group (normal animals) and glaucoma group (animals with induced glaucoma), both subdivided into untreated animals and ECA2 activator-treated (DIZE) treated animals. oral (gavage). Study period: 4 weeks. Initiation of treatment: after first induction. End of treatment: after 4 weeks.
Figura 8 - Comparação entre dados morfométricos das células ganglionares (Cg) da retina de animais do grupo controle (animais normais) e do grupo glaucoma (animais com glaucoma induzido), ambos subdivididos em grupo de animais não tratados e de animais tratados com ativador da ECA2 (DIZE) na forma de solução oral (gavagem). Período de estudo: 4 semanas. Início do tratamento: após a primeira indução. Final do tratamento: após 4 semanas.  Figure 8 - Comparison between retinal ganglion cell (Cg) morphometric data of control group (normal animals) and glaucoma group (animals with induced glaucoma), both subdivided into untreated animals and animals activated with ECA2 (SAYS) in the form of oral solution (gavage). Study period: 4 weeks. Initiation of treatment: after first induction. End of treatment: after 4 weeks.
Figura 9 - PIO de animais normais (grupo controle) e com glaucoma induzido (grupo glaucoma) quando tratados com ativador da ECA2 (DIZE) na forma de colírio (instilação), comparados com os animais normais (grupo controle) e com glaucoma induzido (grupo glaucoma) não tratados. Período de estudo: 4 semanas. Início do tratamento: após a primeira indução. Final do tratamento: após 4 semanas *p<0,001 vs. Controle não tratado. #p< 0,001 vs. glaucoma não tratado. Figure 9 - IOP of normal animals (control group) and with induced glaucoma (glaucoma group) when treated with ECA2 activator (DIZE) in the form of eye drops (instillation), compared with normal animals (control group) and with induced glaucoma ( glaucoma group) untreated. Study period: 4 weeks. Initiation of treatment: after first induction. End of treatment: after 4 weeks * p <0.001 vs. Untreated control. #p <0.001 vs. untreated glaucoma.
Figura 10 - Pressão arterial sistémica de animais normais (grupo controle) e com glaucoma induzido (grupo glaucoma) quando tratados com ativador da ECA2 (DIZE) na forma de colírio (instilação), comparados com os animais normais (grupo controle) e com glaucoma induzido (grupo glaucoma) não tratados. Período de estudo: 4 semanas. Início do tratamento: após a primeira indução. Final do tratamento: após 4 semanas. Figure 10 - Systemic blood pressure of normal animals (control group) and induced glaucoma (glaucoma group) when treated with ECA2 activator (DIZE) as eye drops (instillation) compared to normal animals (control group) and glaucoma. induced (glaucoma group) untreated. Study period: 4 weeks. Initiation of treatment: after first induction. End of treatment: after 4 weeks.
Figura 11 - PIO de animais normais (grupo controle) e com glaucoma induzido (grupo glaucoma) quando tratados com ativador da receptor Mas na forma de colírio (instilação), comparados com os animais com glaucoma induzido (grupo glaucoma) não tratado. Período de estudo: 1 semana. I nício do tratamento: após a primeira indução. Final do tratamento: 1 semana. *p<0,05 vs. Controle. #p<0,05 vs. Glaucoma não tratado. Figure 11 - IOP of normal (control group) and induced glaucoma (glaucoma group) animals when treated with the eye receptor activator But in the form of eye drops (instillation), compared to animals with untreated induced glaucoma (glaucoma group). Study period: 1 week. Beginning of treatment: after first induction. End of treatment: 1 week. * p <0.05 vs. Control. #p <0.05 vs. Untreated glaucoma.
Figura 12 - PIO de animais normais (grupo controle) e com glaucoma induzido (grupo glaucoma) quando tratados com ativador da ECA2 (DIZE) na forma de colírio (instilação), comparados com os animais normais (grupo controle) e com glaucoma induzido (grupo glaucoma) não tratados. Período de estudo: 5 semanas. I nício do tratamento (primeira seta no gráfico): após a segunda indução. Final do tratamento (segunda seta no gráfico): antes da quarta indução. *p<0,001 vs. controle não tratado. #p< 0,001 vs. glaucoma não tratado.  Figure 12 - IOP of normal animals (control group) and induced glaucoma (glaucoma group) when treated with ECA2 activator (DIZE) in the form of eye drops (instillation), compared to normal animals (control group) and induced glaucoma ( glaucoma group) untreated. Study period: 5 weeks. Beginning of treatment (first arrow on graph): after second induction. End of treatment (second arrow on graph): before fourth induction. * p <0.001 vs. untreated control. #p <0.001 vs. untreated glaucoma.
Figura 13 - Pressão arterial sistémica de animais normais (grupo controle) e com glaucoma induzido (grupo glaucoma) quando tratados com ativador da ECA2 (DIZE) na forma de colírio (instilação), comparados com os animais normais (grupo controle) e com glaucoma induzido (grupo glaucoma) não tratados. Período de estudo: 5 semanas. I nício do tratamento: após a segunda indução. Final do tratamento: antes da quarta indução. Figure 13 - Systemic blood pressure of normal (control group) and induced glaucoma (glaucoma group) animals when treated with eye drop activator (DIZE) in the form of eye drops (instillation) compared to normal animals (control group) and glaucoma induced (glaucoma group) untreated. Study period: 5 weeks. Beginning of treatment: after the second induction. End of treatment: before the fourth induction.
Figura 14 - PIO de animais normais (C) e com glaucoma induzido (G) quando tratados com ativador da ECA2 (DIZE) na forma de colírio (instilação) acompanhado ou não do bloqueador do Receptor Mas A- 779, comparados com os animais normais (grupo controle) e com glaucoma induzido (grupo glaucoma) não tratados ou tratados somente com bloqueador de Receptor Mas. Período de estudo: 3 semanas. Início do tratamento com ativador de ECA2 e/ou com bloqueador de Receptor Mas (seta preta): após a primeira indução. Final do tratamento: 3 semanas. *p<0,001 vs. controle não tratado. #p<0,001 vs. glaucoma tratado + A-779.  Figure 14 - IOP of normal (C) and induced glaucoma (G) animals when treated with ECA2 activator (DIZE) in the form of eye drops (instillation) with or without Mas A-779 receptor blocker compared to normal animals (control group) and with induced glaucoma (glaucoma group) not treated or treated with Mas receptor only. Study period: 3 weeks. Initiation of treatment with ECA2 activator and / or Mas receptor blocker (black arrow): after first induction. End of treatment: 3 weeks. * p <0.001 vs. untreated control. #p <0.001 vs. treated glaucoma + A-779.
Figura 15 - PIO de animais normais (grupo controle) e com glaucoma induzido (grupo glaucoma) quando tratados com ativador da ECA2 (DIZE) na forma de implante, comparados com os animais normais (grupo controle) e com glaucoma induzido (grupo glaucoma) não tratados. Período de estudo: 5 semanas. Início do tratamento: após a segunda indução. Final do tratamento: antes da quarta indução. *p<0,001 vs. controle não tratado. #p<0,001 vs. glaucoma não tratado. Figura 16 - Pressão arterial sistémica dos animais normais (grupo controle) e com glaucoma induzido (grupo glaucoma) quando tratados com ativador da ECA2 (DIZE) na forma de implante, comparados com os animais normais (grupo controle) e com glaucoma induzido (grupo glaucoma) não tratados. Período de estudo: 5 semanas. Início do tratamento: após a segunda indução. Final do tratamento: antes da quarta indução. Figure 15 - IOP of normal animals (control group) and with induced glaucoma (glaucoma group) when treated with implant-activated ECA2 activator (DIZE) compared to normal animals (control group) and induced glaucoma (glaucoma group) not treated. Study period: 5 weeks. Initiation of treatment: after the second induction. End of treatment: before the fourth induction. * p <0.001 vs. untreated control. #p <0.001 vs. untreated glaucoma. Figure 16 - Systemic arterial blood pressure of normal animals (control group) and induced glaucoma (glaucoma group) when treated with an ACE2 activator (DIZE) as an implant compared to normal animals (control group) and induced glaucoma (group untreated glaucoma). Study period: 5 weeks. Initiation of treatment: after the second induction. End of treatment: before the fourth induction.
Figura 17 - PIO de animais normais (gráfico B) e animais com glaucoma induzido (gráfico A) quando tratados com o ativador de ECA2 (DIZE) na forma de colírio (instilação) e na forma de implante, comparados com os animais não tratados e com os animais tratados com implante branco. Período de estudo: 5 semanas. Início do tratamento: após a segunda indução. Final do tratamento: antes da quarta indução.  Figure 17 - IOP of normal animals (graph B) and animals with induced glaucoma (graph A) when treated with the ECA2 activator (DIZE) in the form of eye drops (instillation) and in the implant form, compared to untreated and non-treated animals. with animals treated with white implants. Study period: 5 weeks. Initiation of treatment: after the second induction. End of treatment: before the fourth induction.
Figura 18 - Morfometria das células ganglinares (Cg) da retina nos animais diabéticos tratados com ativador da ECA2 (XNT) na forma de solução oral (gavagem), comparados com animais diabéticos não tratados. Período de estudo: 7 semanas. Início do tratamento: após a segunda semana. Final do tratamento: sétima semana.  Figure 18 - Retinal ganglion cell (Cg) morphometry in diabetic animals treated with ECA2 activator (XNT) as oral solution (gavage) compared to untreated diabetic animals. Study period: 7 weeks. Initiation of treatment: after the second week. End of treatment: seventh week.
Descrição Detalhada da Tecnologia Detailed Description of Technology
A presente invenção descreve diferentes composições farmacêuticas contendo ativadores do eixo ECA2/Ang-(1 -7)/Receptor Mas, preferencialmente ativadores da ECA2, por exemplo, o DIZE e o XNT, e ativadores do Receptor Mas, como o HP CD/Ang-(1 -7). Também descreve o uso das mesmas no tratamento de patologias oculares relacionadas ao aumento da PIO e/ou à degeneração das células da retina e/ou do nervo óptico, como o glaucoma e as retinopatias, preferencialmente a retinopatia diabética. Os ativadores do eixo ECA2/Ang-(1 -7)/Receptor Mas mencionados foram administrados em composições farmacêuticas convencionais e de liberação prolongada no tratamento do glaucoma experimental em ratos, o qual foi induzido por ácido hialurônico, e no tratamento de retinopatia diabética. Esses ativadores causaram potente redução da PIO nos animais com glaucoma induzido. Além disso, a ativação desse eixo reduziu a degeneração das células retinianas em ratos com retinopatia decorrente de DM induzida. The present invention describes different pharmaceutical compositions containing ECA2 / Ang- (1-7) / Mas receptor activators, preferably ECA2 activators, for example DIZE and XNT, and Mas receptor activators such as HP CD / Ang. - (1-7). It also describes their use in the treatment of eye disorders related to increased IOP and / or retinal and / or optic nerve degeneration, such as glaucoma and retinopathies, preferably diabetic retinopathy. The mentioned ECA2 / Ang- (1-7) / Receptor axis activators have been administered in conventional and extended release pharmaceutical compositions in the treatment of experimental hyauronic acid-induced glaucoma in rats and in the treatment of diabetic retinopathy. These activators caused potent IOP reduction in animals with induced glaucoma. In addition, activation of this axis reduced retinal cell degeneration in rats with retinopathy due to induced DM.
As composições farmacêuticas que podem ser utilizadas para veiculação dos ativadores do eixo ECA2/Ang-(1 -7)/Receptor Mas incluem , mas não se limitam a, composições farmacêuticas convencionais, como soluções, suspensões, comprimidos, géis, cremes, cápsulas (duras ou gelatinosas), emulsões, loções, dentre outras, e composições farmacêuticas não convencionais, como implantes, micro ou nanocápsulas, micro ou nanoesferas, micro ou nanoemulsões, lipossomas, dentre outros, sejam eles constituídos de quaisquer matérias-primas (por exemplo, poliméricos, lipídicos ou mistos), com capacidade de liberação controlada ou não dos ativadores do eixo ECA2/Ang-(1-7)/Receptor Mas. Tais composições farmacêuticas podem ser administradas por via oral, ocular tópica, intraocular, periocular, conjuntival ou endovenosa, dentre outras.  Pharmaceutical compositions which may be used for the delivery of ECA2 / Ang- (1-7) / Receptor Shaft Activators include, but are not limited to, conventional pharmaceutical compositions such as solutions, suspensions, tablets, gels, creams, capsules ( hard or gelatinous), emulsions, lotions, among others, and unconventional pharmaceutical compositions such as implants, micro or nanocapsules, micro or nanospheres, micro or nanoemulsions, liposomes, among others, whether they consist of any raw materials (for example, (lipid or mixed), with or without controlled release of ECA2 / Ang- (1-7) / Such pharmaceutical compositions may be administered orally, topically, intraocularly, intraocularly, periocularly, conjunctivally or intravenously, among others.
A invenção poderá ser melhor compreendida, de forma não limitante, a partir dos exemplos que se seguem. Nesses exemplos, o XNT e o DIZE foram usados como modelo de ativador de ECA2, o HPpCD/Ang-(1-7) foi usado como modelo de ativador do Receptor Mas e o A-779 foi usado como modelo de bloqueador do Receptor Mas.  The invention may be better understood without limitation from the following examples. In these examples, XNT and DIZE were used as the ECA2 activator model, HPpCD / Ang- (1-7) was used as the Mas Receiver activator model, and the A-779 was used as the Mas Receiver blocker model. .
Exemplo 1 - Obtenção e caracterização das composições farmacêuticas contendo ativadores de ECA2 e ativadores do Receptor Mas Example 1 - Obtaining and Characterization of Pharmaceutical Compositions Containing ECA2 Activators and Mas Receptor Activators
Como exemplos de formulações para veiculação dos ativadores de ECA2, foram desenvolvidas formas farmacêuticas convencionais (soluções orais e colírios) e implantes para liberação controlada dos fármacos. As examples of formulations for delivery of ECA2 activators, conventional pharmaceutical forms have been developed. (oral solutions and eye drops) and implants for controlled drug release.
As soluções orais foram obtidas pela diluição dos ativadores de ECA2 e do ativador de Receptor Mas em água destilada ou outro excipiente farmacologicamente aceitável. Adjuvantes como conservantes, antioxidantes, solubilizantes, corantes, flavorizantes, aromatizantes, açúcares, viscosantes, edulcorantes, quelantes, corretivos de pH, dentre outros, podem ser utilizados. Outras formas farmacêuticas de uso oral (como comprimidos, cápsulas, suspensões e xaropes) também podem ser utilizadas. As soluções orais apresentaram-se límpidas e com pH entre 5,0 e 10,0, preferencialmente entre 6,0 e 9,0.  Oral solutions were obtained by diluting the ECA2 activators and the Receptor Mas activator in distilled water or another pharmacologically acceptable excipient. Adjuvants such as preservatives, antioxidants, solubilizers, colorants, flavors, flavorings, sugars, viscous, sweeteners, chelators, pH correctors, among others, may be used. Other oral dosage forms (such as tablets, capsules, suspensions and syrups) may also be used. The oral solutions were clear and had a pH between 5.0 and 10.0, preferably between 6.0 and 9.0.
Os colírios foram preparados pela diluição do ativador de ECA2 ou do ativador de Receptor Mas em excipiente farmacologicamente aceitável. Isotonizantes (por exemplo, NaCI, Glicerol, Glicose), agentes tamponantes (por exemplo, sais de fósforo e de sulfato), corretivos de pH (por exemplo, HCI, NaOH), viscosantes, antioxidantes, quelantes e conservantes, dentre outros, podem ser também utilizados. Os colírios foram esterilizados e a isotonia e o pH foram ajustados antes do uso. O pH ficou entre 5,0 e 10, preferencialmente entre 6,0 e 9,0. Outras formas farmacêuticas, como suspensões, pomadas oftálmicas, géis, hidrogéis e emulsões, também podem ser usadas para veiculação tópica dos fármacos.  The eye drops were prepared by diluting the ECA2 activator or Mas receptor activator in pharmacologically acceptable excipient. Isotonizers (eg NaCl, Glycerol, Glucose), buffering agents (eg phosphorus and sulfate salts), pH correctors (eg HCl, NaOH), viscous, antioxidant, chelating and preservative, among others, may also be used. Eye drops were sterilized and isotonia and pH were adjusted before use. The pH was between 5.0 and 10, preferably between 6.0 and 9.0. Other pharmaceutical forms such as suspensions, ophthalmic ointments, gels, hydrogels and emulsions may also be used for topical drug delivery.
Como exemplos da utilização do ativador de ECA2 em sistemas de liberação controlada, foram desenvolvidos implantes poliméricos. Para a obtenção dos implantes, o polímero foi disperso em uma solução aquosa contendo ativador de ECA2 (quando necessário, utilizou-se ácido para promover a dispersão do polímero). A dispersão obtida foi agitada para a obtenção de um gel. Esse gel foi espalhado em uma superfície lisa metálica, polimérica, vítrea ou cerâmica, preferencialmente polimérica, como placas de silicone, e deixado secar para a obtenção dos implantes. A secagem pode ser realizada à temperatura ambiente ou sob aquecimento. Implantes multicamada também podem ser obtidos pela repetição do mesmo procedimento. Após a secagem da primeira camada, soluções previamente preparadas como descrito para a primeira camada são espalhadas sobre ela e secadas. Esse processo pode ser repetido diversas vezes (entre uma e dez vezes, em média 3 vezes) para a obtenção dos implantes multicamadas. As camadas contendo ativador de ECA2 dos dispositivos multicamada podem ou não ser intercaladas por camadas sem o mesmo (brancas). O número de camadas brancas no dispositivo varia de 0 a n- 1 , onde n é o número de camadas do dispositivo. A ordem de distribuição das camadas é variável. Qualquer combinação de distribuição pode ser aceita. As distribuições que permitam que camadas com ativador de ECA2 estejam no centro e camadas sem ativador de ECA2 estejam nas extremidades dos implantes são preferidas. As examples of the use of the ECA2 activator in controlled release systems, polymeric implants were developed. To obtain the implants, the polymer was dispersed in an aqueous solution containing ECA2 activator (when necessary, acid was used to promote polymer dispersion). The obtained dispersion was stirred to obtain a gel. This gel was spread on a smooth metallic, polymeric, glassy or ceramic surface, preferably polymeric, such as silicone plates, and allowed to dry to obtain the implants. Drying can be performed at room temperature or under heating. Multilayer implants can also be obtained by repeating the same procedure. After drying the first layer, solutions previously prepared as described for the first layer are spread over it and dried. This process can be repeated several times (between one and ten times, on average 3 times) to obtain the multilayer implants. ECA2 activator-containing layers of the multilayer devices may or may not be layered without layers (white). The number of white layers in the device ranges from 0 to n-1, where n is the number of device layers. The order of distribution of layers is variable. Any distribution combination can be accepted. Distributions that allow ECA2 activator layers to be in the center and layers without ECA2 activator to be at the ends of implants are preferred.
Para a obtenção dos dispositivos, quando é necessária a adição de ácido para solubilização do polímero, pode-se utilizar ácido inorgânico, preferencialmente HCI, H3PO4, H2SO4, ou ácido orgânico, preferencialmente ácido acético. A concentração do polímero pode variar entre 0,5 e 20% do gel, preferencialmente, de 1 a 5%. A concentração final do ativador de ECA2 pode variar entre 0,01 a 99% do peso do dispositivo seco, preferencialmente de 0,1 a 30%. A concentração de ácido pode variar de 0,5 a 50%. O tempo de agitação do gel pode variar de segundos até uma semana, preferencialmente, um ou dois dias. O agitador utilizado pode ser de qualquer tipo. A secagem pode ser feita a até 40°C.  To obtain the devices, when acid addition is required for polymer solubilization, inorganic acid, preferably HCl, H3PO4, H2SO4, or organic acid, preferably acetic acid, may be used. The polymer concentration may range from 0.5 to 20% of the gel, preferably from 1 to 5%. The final concentration of the ECA2 activator may range from 0.01 to 99% of the dry device weight, preferably from 0.1 to 30%. The acid concentration may range from 0.5 to 50%. The agitation time of the gel may vary from seconds to one week, preferably one or two days. The stirrer used may be of any type. Drying can be done up to 40 ° C.
O polímero empregado para a obtenção dos implantes pode ser natural, preferencialmente selecionado do grupo compreendendo celuloses, gomas, exudatos, gelatina, queratina, alginatos, galactomananas, quitosanas ou seus derivados metil, hidroxipropil, acetoftalato, acetado, metoxi, hidropropoxi, acetoftalil, carboxi, carboximetil, tio, hidrolisados ou não, ou seus sais de Li, Na, K, Ca, Mg, Al, Zn, Fe, Cu, Ni, isolados, ou em associação ou na forma de copolímeros; ou sintético, preferencialmente selecionado do grupo compreendendo derivados do ácido acrílico, preferencialmente poliacrilato, poli- metilmetaacrilato, poli-etilacrilato ou poli-etilmetacrilato, derivados do ácido lático, derivados do ácido glicólico, derivados da caprolactona, hidrofílico ou hidrofóbico, biodegradável ou não biodegradável. The polymer employed to obtain the implants may be natural, preferably selected from the group comprising celluloses, gums, exudates, gelatin, keratin, alginates, galactomannans, chitosans or their derivatives methyl, hydroxypropyl, acetophthalate, acetate, methoxy, hydropropoxy, acetophthalyl, carboxy carboxymethyl, thio, whether or not hydrolyzed, or their salts of Li, Na, K, Ca, Mg, Al, Zn, Fe, Cu, Ni, alone, or in combination or in the form of copolymers; or synthetic, preferably selected from the group comprising acrylic acid derivatives, preferably polyacrylate, polymethyl methacrylate, polyethylacrylate or polyethyl methacrylate, acid derivatives glycolic acid derivatives, hydrophilic or hydrophobic caprolactone derivatives, biodegradable or non-biodegradable.
A Tabela 1 demonstra um exemplo de formulação de gel utilizado para a obtenção dos implantes. Tabela 1 : Composição de gel para obtenção de implantes de ativador de ECA2  Table 1 shows an example of gel formulation used to obtain the implants. Table 1: Gel Composition for Obtaining ECA2 Activator Implants
Figure imgf000020_0001
Figure imgf000020_0001
A tabela 2 mostra um exemplo de composição de gel para os implantes sem ativador de ECA2.  Table 2 shows an example of gel composition for implants without ECA2 activator.
Tabela 2: Composição de gel para obtenção de camadas sem ativador deTable 2: Gel composition for obtaining layers without activator of
ECA2 (brancas). ECA2 (white).
Figure imgf000020_0002
Figure imgf000020_0002
Os implantes obtidos após a secagem das formulações foram posteriormente caracterizados.  The implants obtained after drying of the formulations were further characterized.
Nas análises de potencial de hidratação foi observado um aumento no potencial de hidratação dos implantes em função da adição do ativador de In the hydration potential analyzes, an increase in the hydration potential of the implants was observed due to the addition of the
ECA2, sugerindo que essa substância é capaz de desorganizar a matriz polimérica formada, de modo a aumentar a captação de água pelo implanteECA2, suggesting that this substance is able to disrupt the formed polymeric matrix, in order to increase the water uptake by the implant.
(Figura 1). (Figure 1).
Nos espectros de absorção na região do infravermelho (Figura 2), as bandas de absorção características do polímero (3256 cm"1, 1633 cm"1, 1539 cm"1, 1064 cm"1, 1022cm"1, 896 cm"1) foram preservadas nos implantes contendo o ativador de ECA2, sem deslocamento significativo de posição, sugerindo que não houve reação do polímero com o ativador de ECA2. Por outro lado, bandas características do ativador de ECA2 (como a banda em 1263 cm"1) também foram identificadas no implante contendo o mesmo, sugerindo que essa substância foi eficientemente incorporada no implante. In the absorption spectra in the infrared region (Figure 2), the band characteristics of the polymer absorption (3256 cm "1, 1633 cm" 1, 1539 cm "1, 1064 cm" 1, 1022cm "1, 896 cm" 1) were preserved in implants containing the ACE2 activator without significant position displacement, suggesting that there was no reaction of the polymer with the ECA2 activator. On the other hand, characteristic bands of the ECA2 activator (such as the 1263 cm- 1 band) were also identified in the implant containing it, suggesting that this substance was efficiently incorporated into the implant.
Nas curvas de Calorimetria Exploratória Diferencial (DSC) obtidas para os implantes, os eventos térmicos observados e característicos do polímero foram a perda de água em 64,2°C (Figura 3A) e a sua decomposição em 314°C (Figura 3B). Para o ativador de ECA2, os eventos térmicos de desidratação (92°C) e decomposição (214°C) foram observados. Para os implantes (Figura 3), foi possível perceber uma pequena diferença entre as temperaturas de decomposição sem ativador de ECA2 (brancos) e com ativador de ECA2 (de 314 para 297,5 °C), o que poderia indicar uma perturbação na estrutura do polímero associada à presença do ativador de ECA2, corroborando com o resultado obtido no teste de hidratação. O pico associado à degradação do ativador de ECA2, por outro lado, não pode ser evidenciado na curva de DSC do implante contendo o mesmo, sugerindo que o ativador de ECA2 se encontrava num estado amorfo, molecularmente disperso ou na forma de uma solução sólida no implante.  In the Differential Exploratory Calorimetry (DSC) curves obtained for the implants, the observed and characteristic thermal events of the polymer were water loss at 64.2 ° C (Figure 3A) and its decomposition at 314 ° C (Figure 3B). For the ECA2 activator, the thermal events of dehydration (92 ° C) and decomposition (214 ° C) were observed. For implants (Figure 3), it was possible to notice a slight difference between decomposition temperatures without ECA2 activator (white) and with ECA2 activator (from 314 to 297.5 ° C), which could indicate a disturbance in the structure. of the polymer associated with the presence of the activator of ECA2, corroborating the results obtained in the hydration test. The peak associated with the degradation of the ECA2 activator, on the other hand, cannot be evidenced on the implant-bearing DSC curve, suggesting that the ECA2 activator was in an amorphous, molecularly dispersed state or as a solid solution in the implant. implantation.
Por meio das micrografias eletrônicas de varredura (Figura 4), foi possível observar que os implantes têm tamanho uniforme e não apresentam partículas granulares no interior, o que sugere que o ativador de ECA2 interagiu com a matriz polimérica e se encontra disperso na matriz, confirmando os resultados obtidos na análise de DSC.  By scanning electron micrographs (Figure 4), it was observed that the implants are uniform in size and do not have granular particles inside, suggesting that the ECA2 activator interacted with the polymer matrix and is dispersed in the matrix, confirming the results obtained in the DSC analysis.
O perfil de liberação in vitro do implante foi avaliado mergulhando os dispositivos em tampão PBS. Após tempos pré-determinados de agitação a uma temperatura controlada, todo o meio era removido e um novo volume de meio era adicionado aos implantes. O ativador de ECA2 presente no meio removido era dosado por método validado de quantificação (espectrofotometria de absorção na região do ultravioleta ou do visível, cromatografia líquida de alta eficiência acoplada a detector na região do ultravioleta/visível ou espectrômetro de massas, cromatografia gasosa acoplada a espectrômetro de massas, titulação, ou outro método adequado, definido de acordo com o ativador de ECA2 utilizado). Pode-se observar uma liberação de cerca de 70% do ativador de ECA2 do implante nas primeiras duas horas de experimento. Já o restante, não foi liberado mesmo após 8 horas de estudo, sugerindo um potencial do implante para liberação controlada do fármaco (Figura 5). The in vitro release profile of the implant was evaluated by dipping the devices in PBS buffer. After predetermined stirring times at a controlled temperature, all medium was removed and a new volume of medium was added to the implants. The ECA2 activator present in the removed medium was dosed by a validated quantitation method (ultraviolet or visible absorption spectrophotometry, detector-coupled high performance liquid chromatography or mass spectrometer, gas-coupled gas chromatography). mass spectrometer, titration, or other suitable method, defined in accordance with ECA2 activator used). About 70% release of the implant ECA2 activator can be observed within the first two hours of the experiment. The remainder was not released even after 8 hours of study, suggesting an implant potential for controlled drug release (Figure 5).
Outras formas farmacêuticas de liberação prolongada, como micro e nanoesferas, micro e nanocápsulas, micro e nano emulsões e liposssomas podem ser desenvolvidas.  Other extended release pharmaceutical forms such as micro and nanospheres, micro and nanocapsules, micro and nano emulsions and liposomes may be developed.
A administração dos ativadores de ECA2 e dos ativadores do receptor Mas para tratamento de patologias oculares ainda por ser realizada por outras vias, como a endovenosa, intravítrea, periocular, intraocular, subconjuntival, intramuscular e subcutânea. Assim, outras formulações de liberação controlada ou não, como as soluções, suspensões e emulsões injetáveis podem ser produzidas, desde que sejam usados excipientes farmaceuticamente aceitáveis. Exemplo 2 - indução do Glaucoma e Mensuração da PIO  The administration of ECA2 activators and Mas receptor activators for the treatment of eye disorders has yet to be performed by other routes such as intravenous, intravitreal, periocular, intraocular, subconjunctival, intramuscular and subcutaneous. Thus, other controlled or uncontrolled release formulations, such as injectable solutions, suspensions and emulsions may be produced, provided that pharmaceutically acceptable excipients are used. Example 2 - Glaucoma Induction and IOP Measurement
O glaucoma unilateral foi induzido no olho direito de ratos por injeção de 30μΙ_ de ácido hialurônico (10mg/ml_), na câmara anterior, próximo ao limbo córneo-escleral, uma vez por semana, durante 1 a 6 semanas, preferencialmente 3 a 5 semanas, sempre no mesmo dia e horário, seguindo o protocolo de Moreno et al., 2005 (Moreno MC, Marcos BHJA, Croxatto CJO, Sandea PH, Campanellia J, Jaliffaa CO, Benozzia J, Rosensteina RE. A new experimental model of glaucoma in rats through intracameral injections of hyaluronic acid. Experimental Eye Research, v. 81 , p. 71-80, 2005). Para isso, os animais foram anestesiados com anestésico geral [por exemplo, quetamina (70 mg/kg) exilazina 10 mg/kg), intraperitonealmente, e anestésico local (por exemplo, benoxinato 0,4% na córnea. Nenhum procedimento foi realizado no olho esquerdo, que foi utilizado como grupo controle.  Unilateral glaucoma was induced in the right eye of rats by injecting 30μΙ_ of hyaluronic acid (10mg / ml_) in the anterior chamber near the horny scleral limb once a week for 1 to 6 weeks, preferably 3 to 5 weeks. , always on the same day and time, following the protocol of Moreno et al., 2005 (Moreno MC, Marcos BHJA, Croxatto CJO, Sandea PH, Campanellia J, Jaliffaa CO, Benozzia J, Rosensteina RE. A new experimental model of glaucoma in rats through intracameral injections of hyaluronic acid (Experimental Eye Research, v. 81, pp. 71-80, 2005). For this, the animals were anesthetized with general anesthetic (eg ketamine (70 mg / kg) exilazine 10 mg / kg) intraperitoneally and local anesthetic (eg 0.4% benoxinate in the cornea. No procedure was performed in left eye, which was used as a control group.
Durante a indução e o tratamento do glaucoma, ou com o ativador de ECA2, ou com o ativador do receptor Mas, ou com o inibidor do receptor Mas a PIO foi mensurada semanalmente, sempre no dia que antecedeu a próxima indução. Para isso foi utilizado tônometro [por exemplo, TonoPen XL (Mentor, Norwell, MA)]. A medida foi realizada em animais, não sedados, contidos delicadamente com uma pequena toalha. Em cada mensuração, três leituras da PIO (com erro padrão menor que 10%) foram obtidas em cada olho, sendo que a média dessas três medidas foi considerada o valor correspondente da PIO para aquele dia. Exemplo 3 - Atividade da composição farmacêutica contendo ativadores de ECA2 administrada por via oral. During induction and treatment of glaucoma, either with the ACE2 activator, or Mas receptor activator, or Mas receptor inhibitor, IOP was measured weekly, always the day before the next induction. For this we used a tonometer [eg TonoPen XL (Mentor, Norwell, MA)]. The measurement was performed on non-sedated animals contained gently with a small towel. At each measurement, three IOP readings (with a standard error of less than 10%) were obtained in each eye, and the mean of these three measurements was considered to be the corresponding IOP value for that day. Example 3 - Activity of the pharmaceutical composition containing orally administered ECA2 activators.
Para a avaliação da atividade de composições farmacêuticas contendo ativadores de ECA2 utilizadas por via oral na prevenção do desenvolvimento de lesões nas células da retina e no nervo óptico e na PIO, os animais foram submetidos à cirurgia de indução do glaucoma unilateral uma vez por semana, por 4 semanas. A mensuração da PIO também foi realizada semanalmente, por 4 semanas, no dia anterior à indução seguinte. Os animais foram tratados diariamente com solução oral contendo ativador de ECA2 através de gavagem. O tratamento iniciou-se imediatamente após a 1a indução e perdurou por 4 semanas. To evaluate the activity of pharmaceutical compositions containing ECA2 activators used orally to prevent the development of retinal and optic nerve cell and IOP lesions, the animals underwent unilateral glaucoma induction surgery once a week, for 4 weeks. IOP measurements were also performed weekly for 4 weeks on the day before the next induction. Animals were treated daily with oral solution containing ECA2 activator by gavage. The treatment began immediately after the first induction and lasted for 4 weeks.
A PIO do grupo glaucoma tratado (GT) foi significativamente menor que a do grupo glaucoma não tratado (GNT) durante as quatro semanas de administração do ativador de ECA2 (Figura 6). Além disso, observou-se que o grupo GT não foi estatisticamente diferente do grupo controle não-tratado (CNT) em todas as 4 semanas. Os resultados indicam que o ativador de ECA2 é um potente óculo-hipotensivo, verificando sua capacidade de impedir o aumento da PIO e, consequentemente, sua atuação de forma preventiva no glaucoma.  The IOP of the treated glaucoma (GT) group was significantly lower than that of the untreated glaucoma (GNT) group during the four weeks of ECA2 activator administration (Figure 6). In addition, it was observed that the GT group was not statistically different from the untreated control group (CNT) at all 4 weeks. The results indicate that the ACE2 activator is a potent oculus-hypotensive, verifying its ability to prevent IOP increase and, consequently, its preventive action in glaucoma.
Quanto à pressão arterial média (PAM) destes animais, não foi encontrada diferença significativa entre os animais tratados e não tratados com ativador de ECA2 durante todo o período experimental, indicando que esse grupo de substâncias é capaz de reduzir a PIO sem interferir na PAM (Figura 7). A análise morfométrica (Figura 8) sugere que o tratamento com ativador de ECA2 atenua também as complicações do glaucoma, uma vez que o número de células ganglionares (Cg) do grupo GNT foi significativamente menor que o grupo GT, o que é um indicativo de morte celular mais acentuada no grupo GNT. Exemplo 4 - Atividade da composição farmacêutica convencional contendo ativadores de ECA2 ou ativadores do Receptor Mas por via tópica aplicada a partir da primeira indução de glaucoma.. Regarding the mean arterial pressure (MAP) of these animals, no significant difference was found between animals treated and not treated with ACE2 activator during the entire experimental period, indicating that this group of substances is capable of reducing IOP without interfering with MAP ( Figure 7). Morphometric analysis (Figure 8) suggests that treatment with ACE2 activator also attenuates glaucoma complications, since the number of ganglion cells (Cg) in the GNT group was significantly lower than the GT group, which is indicative of more pronounced cell death in the GNT group. Example 4 - Activity of the conventional pharmaceutical composition containing ECA2 activators or topically Mas receptor activators applied from the first induction of glaucoma.
Atividade de composições farmacêuticas convencionais contendo ativadores de ECA2 utilizadas por via tópica na prevenção do desenvolvimento de lesões nas células da retina e no nervo óptico e na PIO, foi avaliada pelo uso de colírios contendo ativador de ECA2 ou ativador de receptor Mas no tratamento de animais com glaucoma unilateral induzido uma vez por semana, por 4 semanas. A mensuração da PIO também foi realizada semanalmente, por 4 semanas, no dia anterior à indução seguinte. Os animais foram tratados através de instilação. O tratamento iniciou-se imediatamente após a 1a indução e perdurou por 4 semanas. Activity of conventional pharmaceutical compositions containing ECA2 activators used topically to prevent the development of retinal and optic nerve cell and IOP lesions was evaluated by using eye drops containing ECA2 activator or Mas receptor activator in the treatment of animals. with unilateral glaucoma induced once a week for 4 weeks. IOP measurements were also performed weekly for 4 weeks on the day before the next induction. The animals were treated by instillation. The treatment began immediately after the first induction and lasted for 4 weeks.
De forma similar aos resultados obtidos com o tratamento por via oral (sistémico), também se observou no tratamento local (Figura 9), que a instilação do ativador de ECA2 impediu o aumento da PIO do grupo GT, sendo que os valores foram significativamente menores que o grupo GNT em todas as 4 semanas de indução e instilação simultânea do ativador de ECA2. Não houve diferença significativa na PAM entre os animais tratados e não tradados com ativador de ECA2, demonstrando, novamente, que o ativador de ECA2 não alterou a pressão arterial sistémica (Figura 10).  Similar to the results obtained with oral (systemic) treatment, it was also observed in the local treatment (Figure 9) that the instillation of the ACE2 activator prevented the increase of the IOP of the GT group, and the values were significantly lower. than the GNT group in all 4 weeks of simultaneous induction and instillation of the ECA2 activator. There was no significant difference in MAP between animals treated and not translated with ACE2 activator, again demonstrating that ACE2 activator did not alter systemic blood pressure (Figure 10).
Resultado similar foi obtido pra o uso de colírio contendo ativador de receptor Mas: a PIO do grupo GT foi significativamente menor que a do grupo GNT após a administração do ativador do receptor Mas (Figura 11). Os resultados indicam que os ativadores do eixo ECA2/Ang-(1 -7)/Receptor Mas são potentes agentes óculo-hipotensivo e antiglaucomatoso.  Similar results were obtained for the use of Mas receptor activator eye drops: the IOP of the GT group was significantly lower than that of the GNT group after administration of the Mas receptor activator (Figure 11). The results indicate that the ECA2 / Ang- (1-7) / Receptor Mas axis activators are potent oculhohypertensive and antiglaucoma agents.
Exemplo 5 - Atividade de composição farmacêutica convencional contendo ativadores de ECA2 por via tópica aplicada após a segunda indução de glaucoma. Example 5 - Activity of conventional pharmaceutical composition containing topical ECA2 activators applied after the second induction of glaucoma.
A avaliação da atividade de formulações convencionais contendo ativadores de ECA2 no tratamento do glaucoma foi realizada pela indução do glaucoma unilateral uma vez por semana, por 5 semanas. A mensuração da PIO também foi realizada semanalmente, por 5 semanas, no dia anterior à indução seguinte. O tratamento local e diário com colírio contendo ativador de ECA2 teve início após a 2a indução, ou seja, depois de confirmada a PIO elevada. O tratamento perdurou por 15 dias. Após este período, os animais continuaram a ser submetidos à indução semanal, por mais 2 semanas, porém, não receberam o tratamento. The evaluation of the activity of conventional formulations containing ACE2 activators in the treatment of glaucoma was performed by induction of unilateral glaucoma once a week for 5 weeks. IOP measurements were also performed weekly for 5 weeks on the day before next induction. The location and daily treatment with eye drops containing ACE2 activator started after the second induction, that is, after confirming the elevated IOP. The treatment lasted for 15 days. After this period, the animals continued to undergo weekly induction for a further 2 weeks, but did not receive treatment.
Verificou-se que o ativador de ECA2 foi capaz de reduzir a PIO do grupo GT, cujos valores voltaram aos níveis basais. Além disso, a interrupção do tratamento culminou no aumento da PIO do grupo GT que, a partir deste momento, passou a não ser diferente do GNT (GT - 5a semana: 31 ± 2,0 mmHg vs. GNT - 5a semana: 26,4 ± 2,1 mmHg) (Figura 12). Quanto à PAM, também não foi observada diferença entre os animais tratados e não tratados com ativador de ECA2 (Figura 13). It was found that the ACE2 activator was able to reduce the IOP of the GT group, whose values returned to baseline levels. Furthermore, the interruption treatment resulted in increased IOP group GT which, from this moment, spent not be different from NTG (GT - week 5 31 ± 2.0 mmHg vs. GNT - 5 week: 26.4 ± 2.1 mmHg) (Figure 12). Regarding MAP, no difference was observed between animals treated and not treated with ACE2 activator (Figure 13).
Exemplo 6 - Bloqueio da atividade da formulação convencional contendo ativadores de ECA2 na redução da PIO por inibição do receptor Mas Example 6 - Blocking the activity of the conventional formulation containing ECA2 activators in reducing IOP by inhibiting the Mas receptor.
A importância do eixo ECA2/Ang-(1-7)/receptor Mas na redução da PIO foi verificada pelo tratamento dos animais com glaucoma com bloqueador de receptor Mas. Para isso, glaucoma unilateral foi induzido uma vez por semana, por 3 semanas. A mensuração da PIO também foi realizada semanalmente, por 3 semanas, no dia anterior à indução seguinte. Os animais foram tratados com colírio contendo ativador de ECA2. O tratamento iniciou-se imediatamente após a 2a indução e perdurou por 2 semanas. Concomitantemente, após a 2a indução, foram implantadas bombas osmóticas de forma subcutânea contendo um bloqueador do receptor Mas. The importance of the ECA2 / Ang- (1-7) / receptor Mas axis in reducing IOP was verified by treating animals with Mas receptor blocker glaucoma. For this, unilateral glaucoma was induced once a week for 3 weeks. IOP measurements were also performed weekly for 3 weeks on the day before the next induction. The animals were treated with eye drops containing ECA2 activator. The treatment began immediately after the second induction and lasted for 2 weeks. Concurrently, after the second induction were implanted osmotic pumps subcutaneously containing But receptor blocker.
Ao utilizar o bloqueador do receptor Mas, verificou-se que a ação do ativador de ECA2 foi totalmente bloqueada, sendo que o grupo GT + bloqueador não foi estatisticamente diferente do grupo GNT. Além disso, a PIO do grupo GT + bloqueador do receptor Mas foi significativamente diferente do grupo GT sem bloqueio (Figura 14).  When using the Mas receptor blocker, it was found that the action of the ECA2 activator was totally blocked, and the GT + blocker group was not statistically different from the GNT group. In addition, the IOP of the GT + receptor blocker group But was significantly different from the unblocked GT group (Figure 14).
Esse resultado indica que a ação dos ativadores de ECA2 e dos ativadores de receptor Mas no tratamento do glaucoma está relacionada com a ativação do eixo ECA2/Ang-(1-7)/receptor Mas e não com outras características físico-químicas ou farmacológicas dos protótipos utilizados. This result indicates that the action of ECA2 activators and Mas receptor activators in the treatment of glaucoma is related to ECA2 / Ang- (1-7) / receptor axis activation But not with other physicochemical or pharmacological characteristics of the prototypes used.
Exemplo 7 - Atividade de composição farmacêutica de liberação controlada contendo ativadores de ECA2 por via tópica na redução da PIO. Example 7 - Activity of controlled release pharmaceutical composition containing topical ECA2 activators in reducing IOP.
A atividade das composições farmacêuticas de liberação prolongada contendo ativador de ECA2, descritas no Exemplo 1 , foi avaliada pela indução do glaucoma unilateral uma vez por semana, por 5 semanas. A mensuração da PIO também foi realizada semanalmente, por 5 semanas, no dia anterior à indução seguinte. Os animais receberam um implante polimérico para liberação controlada do ativador de ECA2, que foi implantado no saco conjuntival dos animais posteriormente à confirmação da PIO elevada (após a 2a indução). Os animais permaneceram com o implante até o final do tratamento. Como controle negativo desse experimento, foram avaliados os implantes brancos (também implantados imediatamente após a segunda indução). Como controle positivo, foi considerado o tratamento por instilação de uma solução contendo ativador de ECA2. O tratamento com a solução também foi iniciado imediatamente após a segunda indução e mantido diariamente por quinze dias. The activity of the extended release pharmaceutical compositions containing ECA2 activator described in Example 1 was evaluated by induction of unilateral glaucoma once a week for 5 weeks. IOP measurement was also performed weekly for 5 weeks on the day before the next induction. The animals received a polymeric implant for controlled release of ACE2 activator, which was implanted into the conjunctival sac of animals after the confirmation of elevated IOP (2 after induction). The animals remained with the implant until the end of treatment. As negative control of this experiment, the white implants (also implanted immediately after the second induction) were evaluated. As a positive control, treatment by instillation of a solution containing ACE2 activator was considered. Treatment with the solution was also started immediately after the second induction and maintained daily for fifteen days.
Os resultados demonstraram que, após a confirmação da PIO elevada por uma semana (28,8 ± 4,3 mmHg), o implante colocado no saco conjuntival, com concentração equivalente à dose usada na instilação de um único dia nos protocolos de prevenção e tratamento local, foi capaz de reduzir a PIO por 1 mês (5a semana: 10,4 ± 0,9 mmHg) (Figura 15). A PAM dos animais deste protocolo, tratados e não tratados com ativador de ECA2, mais uma vez não foi significativamente diferente (Figura 16). Results showed that after confirmation of elevated IOP for one week (28.8 ± 4.3 mmHg), the implant placed in the conjunctival sac at a concentration equivalent to the dose used for single-day instillation in prevention and treatment protocols. site, was able to reduce IOP for 1 month (week 5: 10.4 ± 0.9 mmHg) (Figure 15). The MAP of the animals of this protocol treated and untreated with ECA2 activator once again was not significantly different (Figure 16).
Como pode ser visto na Figura 17, enquanto a PIO em todos os grupos manteve-se elevada após a primeira indução, observou-se uma redução significativa da PIO nos grupos tratados com implante do ativador de ECA2 ou com o ativador de ECA2 na forma de colírio. Para os animais tratados com o colírio, foi observado um aumento da pressão após o término da instilação, enquanto que a PIO se manteve baixa nas quatro semanas após o tratamento com o implante, indicando que os dispositivos são capazes de liberar controladamente o ativador de ECA2, de modo a manter a PIO controlada por pelo menos um mês. Por outro lado, os implantes brancos não foram capazes de reduzir a PIO, o que corrobora com a atividade de redução da PIO associada ao ativador de ECA2. Exemplo 8 - Atividade de composição farmacêutica convencional contendo ativadores de ECA2 na retinopatia diabética As can be seen in Figure 17, while IOP in all groups remained elevated after the first induction, a significant reduction in IOP was observed in the groups treated with either the ECA2 activator implant or the ECA2 activator implant. eye drops. For animals treated with the eye drops, an increase in pressure was observed after the end of instillation, while IOP remained low at four weeks after implant treatment, indicating that the devices are capable of releasing ECA2 activator to keep the IOP under control for at least one month. On the other hand, white implants were not able to reduce IOP, which corroborates the IOP-lowering activity associated with the ACE2 activator. Example 8 - Activity of conventional pharmaceutical composition containing ECA2 activators in diabetic retinopathy
O diabetes foi induzido através da injeção de estreptozotocina (50mg/kg) na veia peniana de ratos em jejum. Após a confirmação do diabetes no décimo dia, os ratos foram tratados via oral (gavagem) com o ativador da ECA2 por 30 dias. A seguir, os olhos foram enucleados, fixados em Bouin 4% e processados para embebição e inclusão em Paraplast. As análises foram realizadas através da morfometria em cortes histológicos corados com H&E e imunohistoquímica. Os resultados mostraram que a ECA2 está expressa nas seguintes camadas da retina: epitélio pigmentado (Ep), fotorreceptores, plexiformes externa e interna e células ganglionares (Cg). O tratamento com ativador de ECA2 aumentou a expressão da ECA2 nestas camadas tanto em ratos normais quanto naqueles diabéticos. Além disso, o tratamento de ratos diabéticos com o ativador de ECA2 amenizou a redução do número de Cg na retina quando comparado com os animais diabéticos não tratados (575±16 vs. 477±54 células). Tais achados sugerem que a ECA2 tem um papel importante nas fases iniciais da retinopatia diabética e que o tratamento com ativadores do eixo ECA2/Ang-(1-7)/Receptor Mas pode ser uma importante estratégia terapêutica no manejo da retinopatia diabética (Figura 18).  Diabetes was induced by injecting streptozotocin (50mg / kg) into the penile vein of fasting rats. After confirmation of diabetes on the tenth day, the rats were treated orally (gavage) with the ACE2 activator for 30 days. Next, the eyes were enucleated, fixed in 4% Bouin and processed for imbibition and inclusion in Paraplast. Analyzes were performed by morphometry in histological sections stained with H&E and immunohistochemistry. The results showed that ECA2 is expressed in the following retinal layers: pigmented epithelium (Ep), photoreceptors, external and internal plexiform cells and ganglion cells (Cg). ECA2 activator treatment increased ECA2 expression in these layers in both normal and diabetic rats. In addition, treatment of diabetic rats with the ACE2 activator mitigated the reduction in retinal Cg number compared to untreated diabetic animals (575 ± 16 vs. 477 ± 54 cells). These findings suggest that ACE2 plays an important role in the early stages of diabetic retinopathy and that treatment with ACE2 / Ang- (1-7) / Receptor axis activators may be an important therapeutic strategy in the management of diabetic retinopathy (Figure 18 ).

Claims

REIVINDICAÇÕES
1 - COMPOSIÇÕES FARMACÊUTICAS PARA TRATAMENTO DE PATOLOGIAS OCULARES caracterizadas por compreenderem ativadores do eixo ECA2/Ang-(1 -7)/receptor Mas e excipientes farmacologicamente aceitáveis.  PHARMACEUTICAL COMPOSITIONS FOR TREATMENT OF EYE PATHOLOGIES characterized by comprising ECA2 / Ang- (1-7) / receptor Mas activators and pharmacologically acceptable excipients.
2- COMPOSIÇÕES FARMACÊUTICAS PARA TRATAMENTO DE PATOLOGIAS OCULARES, de acordo com a reivindicação 1 , caracterizadas pelo ativador do eixo ECA2/Ang-(1 -7)/receptor Mas ser um ativador da ECA2.  2. PHARMACEUTICAL COMPOSITIONS FOR TREATMENT OF EYE PATHOLOGIES according to claim 1, characterized by the axis activator ECA2 / Ang- (1-7) / receptor But being an activator of ECA2.
3- COMPOSIÇÕES FARMACÊUTICAS PARA TRATAMENTO 3- PHARMACEUTICAL COMPOSITIONS FOR TREATMENT
DE PATOLOGIAS OCULARES, de acordo com as reivindicações 1 e 2, caracterizadas pelo ativador da ECA2 ser o diminazeno (na forma de base livre ou sal, preferencialmente o aceturato) e seus análogos, ou o XNT (1 -[(2-dimetilamino) etilamino]-4-(hidroximetil)-7-[(4-metilfenil) sulfonil oxi]-9 xanten-9-ona) e seus análogos, ou a resorcinoinaftaleína e seus análogos. EYE PATHOLOGIES according to claims 1 and 2, characterized in that the ECA2 activator is diminazene (in free base or salt form, preferably aceturate) and its analogs, or XNT (1 - [(2-dimethylamino) ethylamino] -4- (hydroxymethyl) -7 - [(4-methylphenyl) sulfonyloxy] -9 xanthen-9-one) and its analogs, or resorcinoinaphthaline and its analogs.
4- COMPOSIÇÕES FARMACÊUTICAS PARA TRATAMENTO DE PATOLOGIAS OCULARES de acordo com a reivindicação 1 caracterizadas pelo ativador do eixo ECA2/Ang-(1 -7)/receptor Mas ser um ativador do receptor Mas.  PHARMACEUTICAL COMPOSITIONS FOR TREATMENT OF EYE PATHOLOGIES according to claim 1, characterized in that the ECA2 / Ang- (1-7) / receptor axis activator Mas is a Mas receptor activator.
5- COMPOSIÇÕES FARMACÊUTICAS PARA TRATAMENTO DE PATOLOGIAS OCULARES, de acordo com as reivindicações 1 e 4, caracterizadas pelo ativador do receptor Mas ser o H PpCD/Ang-(1 -7) e seus análogos.  PHARMACEUTICAL COMPOSITIONS FOR TREATMENT OF EYE PATHOLOGIES according to claims 1 and 4, characterized in that the receptor activator Mas is H PpCD / Ang- (1-7) and its analogues.
6- COMPOSIÇÕES FARMACÊUTICAS PARA TRATAMENTO 6- PHARMACEUTICAL COMPOSITIONS FOR TREATMENT
DE PATOLOGIAS OCULARES de acordo com as reivindicações 1 -5, caracterizadas por serem na forma de solução, suspensão, emulsão, cápsula (dura ou gelatinosa) , comprimido, gel, creme, loção, implante, microcápsula, nanocápsula, nanoesfera, microesfera, nanoemulsão, microemulsão e/ou lipossomas. EYE PATHOLOGIES according to claims 1 - 5, characterized in that they are in the form of solution, suspension, emulsion, capsule (hard or gelatinous), tablet, gel, cream, lotion, implant, microcapsule, nanocapsule, nanosphere, microsphere, nanoemulsion. , microemulsion and / or liposomes.
7- COMPOSIÇÕES FARMACÊUTICAS PARA TRATAMENTO DE PATOLOGIAS OCULARES, de acordo com as reivindicações 1 -6, caracterizadas por serem administradas pelas vias oral, ocular tópica, intraocular, periocular, conjuntival ou endovenosa. PHARMACEUTICAL COMPOSITIONS FOR TREATMENT OF EYE PATHOLOGIES according to claims 1-6, characterized by oral, topical, intraocular, periocular, conjunctival or intravenous administration.
8- COMPOSIÇÕES FARMACÊUTICAS PARA TRATAMENTO DE PATOLOGIAS OCULARES, de acordo com as reivindicações 1 -7, caracterizadas pela liberação do ativador do eixo ECA2/Ang-( 1 - 7)/receptor Mas ser convencional ou prolongada  PHARMACEUTICAL COMPOSITIONS FOR TREATMENT OF EYE PATHOLOGIES according to claims 1-7, characterized in that the ECA2 / Ang- (1 - 7) / receptor axis activator release is conventional or prolonged.
9- COMPOSIÇÕES FARMACÊUTICAS PARA TRATAMENTO DE PATOLOGIAS OCULARES, de acordo com as reivindicações 1 -8, caracterizadas pela forma farmacêutica convencional ser uma solução oral ou um colírio.  PHARMACEUTICAL COMPOSITIONS FOR TREATING EYE PATHOLOGIES according to claims 1-8, characterized in that the conventional pharmaceutical form is an oral solution or an eye drop.
10- COMPOSIÇÕES FARMACÊUTICAS PARA TRATAMENTO DE PATOLOGIAS OCULARES de acordo com as reivindicações 1 -8 caracterizadas pela forma farmacêutica de liberação prolongada ser um implante polimérico.  PHARMACEUTICAL COMPOSITIONS FOR TREATMENT OF EYE PATHOLOGIES according to claims 1-8, characterized in that the extended release dosage form is a polymeric implant.
1 1 - COMPOSIÇÕES FARMACÊUTICAS PARA TRATAMENTO 1 1 - PHARMACEUTICAL COMPOSITIONS FOR TREATMENT
DE PATOLOGIAS OCULARES de acordo com a reivindicação 10, caracterizadas pelos polímeros serem naturais ou sintéticos. EYE PATHOLOGIES according to claim 10, characterized in that the polymers are natural or synthetic.
12- COMPOSIÇÕES FARMACÊUTICAS PARA TRATAMENTO DE PATOLOGIAS OCULARES, de acordo com as reivind icações 1 0 e 1 1 , caracterizadas pelos polímeros naturais serem selecionados do grupo compreendendo celuloses, gomas, exudatos, gelatina, queratina, alginatos, galactomananas, quitosanas ou seus derivados metil, hidroxipropil, acetoftalato, acetado, metoxi, hidropropoxi, acetoftalil, hidrolisados ou não ou seus sais de Li, Na, K, Ca, Mg, Al, Zn , Fe, Cu , Ni, isolados, ou em associação ou na forma de copolímeros.  Pharmaceutical compositions for the treatment of eye diseases according to claims 10 and 11, characterized in that the natural polymers are selected from the group comprising celluloses, gums, exudates, gelatin, keratin, alginates, galactomannans, chitosans or their methyl derivatives. hydroxypropyl, acetophthalate, acetate, methoxy, hydropropoxy, acetophthalyl, whether or not hydrolyzed or their salts of Li, Na, K, Ca, Mg, Al, Zn, Fe, Cu, Ni, isolated, in combination or as copolymers .
13- COMPOSIÇÕES FARMACÊUTICAS PARA TRATAMENTO DE PATOLOGIAS OCULARES, de acordo com as reivindicações 10 e 1 1 , caracterizadas pelos polímeros sintéticos serem derivados do ácido acrílico, derivados do ácido lático, derivados do ácido glicólico e/ou derivados da caprolactona.  PHARMACEUTICAL COMPOSITIONS FOR TREATING EYE PATHOLOGIES according to claims 10 and 11, characterized in that the synthetic polymers are acrylic acid derivatives, lactic acid derivatives, glycolic acid derivatives and / or caprolactone derivatives.
14- COMPOSIÇÕES FARMACÊUTICAS PARA TRATAMENTO DE PATOLOGIAS OCULARES, de acordo com as reivindicações 10, 1 1 e 13, caracterizadas pelos polímeros sintéticos derivados do ácido acrílico ser preferencialmente poliacrilato, poli-metilmetaacrilato, poli-etilacrilato e/ou poli- etilmetacrilato. PHARMACEUTICAL COMPOSITIONS FOR TREATMENT OF EYE PATHOLOGIES according to claims 10, 11 and 13, characterized in that the synthetic polymers derived from acrylic acid are preferably polyacrylate, polymethyl methacrylate, polyethylacrylate and / or polyethyl methacrylate.
15- COMPOSIÇÕES FARMACÊUTICAS PARA TRATAMENTO DE PATOLOGIAS OCULARES de acordo com as reivindicações de 1 0- PHARMACEUTICAL COMPOSITIONS FOR TREATMENT OF EYE PATHOLOGIES according to claims 10
14, caracterizadas pela concentração do polímero ser entre 0,5 a 20%, preferencialmente de 1 a 5%. 14, characterized in that the polymer concentration is from 0.5 to 20%, preferably from 1 to 5%.
16- COMPOSIÇÕES FARMACÊUTICAS PARA TRATAMENTO DE PATOLOGIAS OCULARES de acordo com as reivindicações de 1 a 15, caracterizadas pelo ativador do eixo ECA2/Ang-(1-7) /receptor Mas estar presente na concentração entre 0,01 a 50% do dispositivo, preferencialmente, de 0, 1 a 30%.  PHARMACEUTICAL COMPOSITIONS FOR TREATMENT OF EYE PATHOLOGIES according to claims 1 to 15, characterized by the axis activator ECA2 / Ang- (1-7) / receptor. But being present at a concentration between 0.01 to 50% of the device, preferably from 0.1 to 30%.
17- USO DAS COMPOSIÇÕES FARMACÊUTICAS PARA TRATAMENTO DE PATOLOGIAS OCULARES de acordo com as reivindicações de 1 a 16, caracterizado por ser no tratamento de patologias relacionadas ao aumento da PIO e/ou à degeneração da retina e/ou do nervo óptico.  Use of pharmaceutical compositions for treating ocular pathologies according to claims 1 to 16, characterized in that they are in the treatment of conditions related to increased IOP and / or retinal and / or optic nerve degeneration.
18- USO DAS COMPOSIÇÕES FARMACÊUTICAS PARA TRATAMENTO DE PATOLOGIAS OCULARES de acordo com a reivindicação 17, caracterizado por ser preferencialmente no tratamento de glaucoma e retinopatias.  Use of the pharmaceutical compositions for treating ocular pathologies according to claim 17, characterized in that they are preferably for the treatment of glaucoma and retinopathies.
19- USO DAS COMPOSIÇÕES FARMACÊUTICAS PARA TRATAMENTO DE PATOLOGIAS OCULARES de acordo com a reivindicação 17, caracterizado por a retinopatia ser preferencialmente a retinopatia diabética  Use of pharmaceutical compositions for treating ocular pathologies according to claim 17, characterized in that retinopathy is preferably diabetic retinopathy.
PCT/BR2013/000029 2012-01-27 2013-01-25 Pharmaceutical compositions containing angiotensin-converting enzyme 2/angiotensin-(1-7)/mas receptor axis activators for the treatment of ocular pathological conditions WO2013110152A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BR102012001875-6A BR102012001875A2 (en) 2012-01-27 2012-01-27 Pharmaceutical compositions containing angiotensin-2 / angiotensin- (1-7) -converting enzyme receptor activators but for treatment of eye disorders
BRBR1020120018756 2012-01-27

Publications (1)

Publication Number Publication Date
WO2013110152A1 true WO2013110152A1 (en) 2013-08-01

Family

ID=48872846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2013/000029 WO2013110152A1 (en) 2012-01-27 2013-01-25 Pharmaceutical compositions containing angiotensin-converting enzyme 2/angiotensin-(1-7)/mas receptor axis activators for the treatment of ocular pathological conditions

Country Status (2)

Country Link
BR (1) BR102012001875A2 (en)
WO (1) WO2013110152A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190328828A1 (en) * 2017-01-06 2019-10-31 Uniao Quimica Farmaceutica Nacional S/A Pharmaceutical composition, process for producing the same, use of a peptide, use of a pharmaceutical composition and method for treating diseases associated with intraocular hypertension or glaucoma

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006014484A2 (en) * 2004-07-02 2006-02-09 Surmodics, Inc. Methods and devices for the treatment of ocular conditions
WO2007041593A2 (en) * 2005-10-03 2007-04-12 Combinatorx, Incorporated Anti-scarring drug combinations and use thereof
WO2007126857A1 (en) * 2006-03-27 2007-11-08 Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Diamidine inhibitors of tdp1
WO2008066770A2 (en) * 2006-11-22 2008-06-05 University Of Florida Research Foundation, Inc. Ace2 activator compounds and methods of use thereof
WO2008112659A2 (en) * 2007-03-09 2008-09-18 Pathologica Llc Regulation of osteopontin
WO2011133966A2 (en) * 2010-04-23 2011-10-27 University Of Florida Research Foundation,Inc. Method and compositions for treating ace2-related disorders

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006014484A2 (en) * 2004-07-02 2006-02-09 Surmodics, Inc. Methods and devices for the treatment of ocular conditions
WO2007041593A2 (en) * 2005-10-03 2007-04-12 Combinatorx, Incorporated Anti-scarring drug combinations and use thereof
WO2007126857A1 (en) * 2006-03-27 2007-11-08 Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Diamidine inhibitors of tdp1
WO2008066770A2 (en) * 2006-11-22 2008-06-05 University Of Florida Research Foundation, Inc. Ace2 activator compounds and methods of use thereof
WO2008112659A2 (en) * 2007-03-09 2008-09-18 Pathologica Llc Regulation of osteopontin
WO2011133966A2 (en) * 2010-04-23 2011-10-27 University Of Florida Research Foundation,Inc. Method and compositions for treating ace2-related disorders

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
DEAN, R.G. ET AL.: "ACE2 and diabetic complications", CURRENT PHARMACEUTICAL DESIGN, vol. 13, 2007, pages 2730 - 2735 *
KULEMINA, L.V. ET AL.: "Prediction of off-target effects on angiotensin-converting enzyme 2", JOURNAL OF BIOMOLECULAR SCREENING, vol. 16, no. 8, 2011, pages 878 - 885, XP055078480 *
LULA ET AL.: "Study of angiotensin-(1-7) vasoactive peptide and its beta- cyclodextrin inclusion complexes: complete sequence-specific NMR assignments and structural studies.", PEPTIDES, vol. 28, 2007, pages 2199 - 2210, XP022309388 *
STECKELINGS, U.M. ET AL.: "Emerging drugs which target the renin- angiotensin-aldosterone system.", EXPERT OPIN. EMERGING DRUGS, vol. 16, no. 4, 2011, pages 619 - 630 *
VERMA, A. ET AL.: "ACE2 and Ang-(1-7) confer protection against development of diabetic retinopathy.", MOLECULAR THERAPY, vol. 20, no. 1, 1 January 2012 (2012-01-01), pages 28 - 36, XP055078477 *
WILKINSON-BERKA, J.L. ET AL.: "Angiotensin and diabetic retinopathy.", THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, vol. 38, 2006, pages 752 - 765, XP005414309 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190328828A1 (en) * 2017-01-06 2019-10-31 Uniao Quimica Farmaceutica Nacional S/A Pharmaceutical composition, process for producing the same, use of a peptide, use of a pharmaceutical composition and method for treating diseases associated with intraocular hypertension or glaucoma

Also Published As

Publication number Publication date
BR102012001875A2 (en) 2013-10-01

Similar Documents

Publication Publication Date Title
Yadav et al. Glaucoma: Current treatment and impact of advanced drug delivery systems
US20020035264A1 (en) Ophthalmic formulation of a selective cyclooxygenase-2 inhibitory drug
Bessone et al. Neuroprotective effect of melatonin loaded in ethylcellulose nanoparticles applied topically in a retinal degeneration model in rabbits
CN106455571A (en) Pharmaceutical compositions and salts of a 1,2,4-oxadiazole benzoic acid
Song et al. Novel ultrasmall nanomicelles based on rebaudioside A: A potential nanoplatform for the ocular delivery of pterostilbene
US10973758B2 (en) Methods of eye treatment using therapeutic compositions containing dipyridamole
Mhatre et al. Unmet needs in glaucoma therapy: The potential role of hydrogen sulfide and its delivery strategies
JP6820658B2 (en) Compositions for use in the treatment of eye diseases with dipyridamole
JP7436067B2 (en) Nano-low molecular weight peptide FG and its use in the preparation of therapeutic or preventive drugs for ocular fundus vascular diseases
WO2013110152A1 (en) Pharmaceutical compositions containing angiotensin-converting enzyme 2/angiotensin-(1-7)/mas receptor axis activators for the treatment of ocular pathological conditions
JP2014510115A (en) Ophthalmic formulation based on PACAP (pituitary adenylate cyclase activating polypeptide) that restores normal visual function in early glaucoma
US20220062255A1 (en) Treatment of neurodegenerative eye disease using pridopidine
Sharma et al. Recent overviews on the drug delivery aspects and applications of brinzolamide for the management of glaucoma
KR20150058159A (en) Baclofen and acamprosate based therapy of macular degeneration disorders
Khairnar et al. Moxifloxacin loaded microspheres-composed gel for controlled release and enhanced penetration in ocular tissues: In vitro, ex vivo and in vivo proof of concept
Chen et al. Medical Treatment Strategy for Glaucoma
WO2019096144A1 (en) Use of pientzhuang and preparation thereof in treatment of cerebral stroke sequelae
TWI815436B (en) Treatment of dry eye syndrome with polylysine nanoparticles
Ali et al. Novel in-situ emulgel of acetazolamide for ocular drug delivery
TWI649083B (en) Method for treating or preventing dry eye
Sahoo et al. Mucoadhesive nanopolymers for posterior segment drug delivery
Al-Tamimi et al. Review Article Ophthalmic Dosage Forms.
AU2022258754A1 (en) Ophthalmic topical composition with ceria nanoparticles for treating diseases of posterior segment of the eye
WO2022271362A1 (en) Composition and methods for treating dry eye
CN117224706A (en) Anti-nitrification NO nano-drug, preparation method and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13740925

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13740925

Country of ref document: EP

Kind code of ref document: A1