WO2013109130A1 - Colpoestereoscopio de diagnóstico fotodinámico (pdd) para enfermedades del tracto genital femenino y detección temprana de lesiones neoplásicas - Google Patents

Colpoestereoscopio de diagnóstico fotodinámico (pdd) para enfermedades del tracto genital femenino y detección temprana de lesiones neoplásicas Download PDF

Info

Publication number
WO2013109130A1
WO2013109130A1 PCT/MX2012/000006 MX2012000006W WO2013109130A1 WO 2013109130 A1 WO2013109130 A1 WO 2013109130A1 MX 2012000006 W MX2012000006 W MX 2012000006W WO 2013109130 A1 WO2013109130 A1 WO 2013109130A1
Authority
WO
WIPO (PCT)
Prior art keywords
genital tract
light
diseases
pdd
female genital
Prior art date
Application number
PCT/MX2012/000006
Other languages
English (en)
French (fr)
Inventor
Joel Gerardo Diaz Sanchez
Jose Gerardo Zertuche Zuani
Original Assignee
Joel Gerardo Diaz Sanchez
Jose Gerardo Zertuche Zuani
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Joel Gerardo Diaz Sanchez, Jose Gerardo Zertuche Zuani filed Critical Joel Gerardo Diaz Sanchez
Priority to PCT/MX2012/000006 priority Critical patent/WO2013109130A1/es
Priority to EP12865692.3A priority patent/EP2805667A4/en
Priority to US14/372,470 priority patent/US20140357950A1/en
Priority to MX2013014272A priority patent/MX2013014272A/es
Publication of WO2013109130A1 publication Critical patent/WO2013109130A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/303Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the vagina, i.e. vaginoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00186Optical arrangements with imaging filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00193Optical arrangements adapted for stereoscopic vision
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/05Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0646Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements with illumination filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0071Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by measuring fluorescence emission
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0084Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters

Definitions

  • Photodynamic diagnostic colposteroscope for diseases of the female genital tract and early detection of neoplastic lesions
  • I. - Medical sector a) .- Medical Imaging, b) .- Photodynamic Diagnosis (PDD).
  • Colposcopy One method that, as it were, is economical for the diagnosis of sexually transmitted diseases, has been Colposcopy since this is a direct visualization method that allows us to quickly observe the signs of diseases, and especially the neoplasms produced by the human papillomavirus.
  • colposcope The instrument used to perform a Colposcopy in the gynecological examination of the genital tract is commonly called a colposcope, it increases the size of the image, that is, a stereoscopic microscope that takes advantage of the vision with both eyes that give three-dimensional images through two separate eyepieces, forming an angle similar to that formed between the visual axes of the eyes (between 7 to 12 degrees) which gives two different images, one for each eye, and the perception in three dimensions, this is essential to perform various manual maneuvers instrumented in the genital tract. Therefore, the correct name of the commonly called colposcope is: "Colpostereoscope" as in the present case. The colpostereoscope was invented in Germany in 1925 by Dr. Hans
  • the Colpostereoscopes are currently used in the routine of gynecological examination in order to establish a diagnosis, however there is none of these colposteroscopes that can have the functions of photodynamic diagnosis.
  • the new colposcope claimed in this document "Photodynamic Diagnostic Colposteroscope (PDD)” not only further improves the sensitivity and specificity in the diagnosis of sexually transmitted diseases, since it also combines the diagnosis of the current colposcopic technique with the use of a different amount of fluorescent dyes or photosensitizers used in the photodynamic diagnosis (PDD) and at the same time, by means of optical and electronic devices, it could be used for the application as a next step in the clinic of effective treatment, which allows us to successfully treat various diseases of the genital tract in time, being also highly effective in the preventive diagnosis applied to low-income populations in precursor neoplasms of cervical-uterine cancer.
  • STDs sexually transmitted diseases
  • pathogenic microorganisms that produce them, these can be: fungi that produce mycosis, bacteria, protozoa and viruses. In a large part of the infected cases, we found the combination of multiple pathogens. Vaginosis and cervicitis continue to be the most common female genital tract disorder in women of reproductive age, having a high economic impact worldwide. The human papillomavirus within these diseases requires special attention because it is the cause of neoplasms, which are the precursor lesions of uterine cervical cancer.
  • the viral genus Papilloma is too extensive, they are DNA viruses that infect many species of animals, including Man. There are more than 100 types of these known as Human Papillomavirus (HPV). Interest in these viruses has gradually increased since 1970, when they were first attributed a role in the etiology of uterine cervical cancer.
  • Uterine cervical cancer is a common class of cancer in women, it is a change of the cells of the epithelial tissue of the cervix, as well as of the vaginal and vulvar walls. These cells are initially normal and gradually become precancerous. Before cancer cells are found in the cervix, your tissues undergo changes and abnormal cells called coil cells begin to appear, this process is known as dysplasia or cervical intraepithelial neoplasia (CIN).
  • CIN cervical intraepithelial neoplasia
  • HPV HPV 16 Asian-American variety in about 50% of cases.
  • Cervical cancer is one of the most common cancers in women. The number of more than 500,000 cases per year is estimated worldwide. Nearly 80% of these occur in developing countries. The high incidence of cases reflects the poverty of the programs in the early detection of the disease, as well as the lack of new medical devices for the diagnosis and treatment of the disease.
  • Fluorescence is the physical phenomenon that by irradiating light or photonic energy it is achieved that the irradiated compound emits energy in different wavelengths to which it is being exposed, this is the principle of the Stokes-Adams optics law, which applied in an optical system with excitation and suppression filters allows us to locate this compound within a living tissue in high contrasts superimposed on a black background.
  • the chemical compounds that serve this purpose are called fluorescent or fluorochromic dyes such as Fluorescein Isothiocyanate (FITC), Acridine Orange, Toluidine Blue, Bengal Rose, Green Fluorescent Proteins and many more harmless for live study. of the animal tissues and same with which we have tested.
  • hematoporphyrins began to be used in cancer research, calling all these compounds, dyes and fluorochromes: photosensitizers. Many attempts at that time had failures due to the impurities that these photosensitizing agents had.
  • the photodynamic diagnosis is considered a modality in the fluorescence optical systems that is based on the photooxidation of biological materials induced by incubating a precursor for a photosensitizing agent, which is selectively deposited inside of the target cells or white cells, in order to selectively fluoresce damaged or altered cells in their nuclear structure, as in the case of neoplasms.
  • HPD hematoporphyrin derivatives
  • the most commonly used photosensitizing agents are 5- aminolevulinic acid (ALA), methyl aminolevulinate (MAL) and hexaminolevulinate (HAL).
  • the ALA is considered as the first step in the metabolic process of the formation of the heme group, so we cannot really consider it as a photosensitizing agent itself, however, its structure is decisive as a precursor to protoporphyrin IX (pPIX) that it is a photosensitizing agent and that under normal conditions the ALA is firmly controlled by a direct feedback mechanism through the Ala-synthetase present in the heme cell nuclei.
  • pPIX protoporphyrin IX
  • ALA When ALA is activated intracellularly, the production of pPIX is increased, which is converted into heme through a ferrokelatase that adds iron ions to pPIX.
  • These photosensitizing agents can be administered enterally, parenterally and topically.
  • the method we use for the application and transport of light energy in the photodynamic diagnosis is by means of Kohler Illumination, by means of lenses and mirrors directly or by the use of optical fibers.
  • An optical fiber is a tube through which light is transmitted through its ends, the physical phenomenon that allows this is called refraction.
  • the new Colpostereoscope also works as a common colposteroscope. Detailed description of the device
  • the invention described and detailed in this document as well as its systems basically comprise a colpostereoscope consisting of: A head lighting system that has a variable linear type excitation filter system in order to be able to choose any range of light frequency for to send a light beam to any fluorescent compound that we place in the female genital tract, these compounds may be: fluorochromes, fluorescent proteins for "live” use of any color, or dyes Fluorescence chemicals This filter covers a range from 400 nanometers to 1080 nanometers, being able to choose the light ray band every 20 nanometers.
  • 2 suppressor filters or barriers In order to analyze the emitted frequency of the fluorescent compounds and eliminate the wavelengths produced by the excitation light, 2 suppressor filters or barriers, one for each optical observation axis, have been placed in the head of the colpostereoscope. These filters are also of variable linearity in order to adjust exactly the emission rays emanating from the compound to react the dyed female genital tract. These filters cover a light spectrum of 400 to 700 nanometers, which is the visible light spectrum, and the frequencies can be staggered every 20 nanometers.
  • the three-dimensional observation in this novel Colpostereoscope can be by direct observation through the eye lenses as is regularly done in these devices or in the novel way of having two high resolution video cameras placed on the head, each camera is placed on each axis visual.
  • the most common three-dimensional video vision system today is: DLP (Digital light processing) HDTV (High definition television) with the use of three-dimensional active lenses.
  • the lighting system that is located in the head also has an additional light box for the use of optical fiber.
  • this light or lighting box there is a focusable optical system and directed to a medical-type optical fiber or to the innovative low-cost and high-quality resin fiber (FEP) with ethylene and propylene fluorinate.
  • FEP innovative low-cost and high-quality resin fiber
  • the head is a variable linearity filter in order to also be able to choose any range of light frequency to be able to send a luminous ray through the optical fiber to any compound or dye for the Application of photodynamic diagnosis in the female genital tract, this filter covers a range from 400 nanometers to 700 nanometers, being able to choose the band of the light ray every 20 nanometers which practically makes a universal application of the equipment to any compound or dye for diagnosis by the phenomenon of fluorescence.
  • the new Colposteroscope is composed of several parts that structure its systems. To understand we have: mechanical, optical, and electronic parts, structuring 3 sets.
  • This set is the structure or skeleton, which contains and supports the optical and mechanical parts of the equipment:
  • Base and support which is constituted by a balanced steel disc, which provides stability to the equipment, four or six independent rotating wheels with a brake mechanism for the location of the equipment, a vertical stainless steel tube and a horizontal support With a swivel joint for the assembly and maneuvering of the arm and head, on the horizontal support and above the base disk are the electronic parts of the light boxes and the power supply that feeds the system.
  • Arm It is a balanced mechanism which allows movements in three axes. Such movements allow the exact location of the head at different heights and working positions, giving the possibility to maneuver the equipment with ease at the time of the gynecological procedure.
  • a pair of metal halide bulbs which has detectors for the control and regulation of the internal temperature, connected to printed circuits that control their temperature and regulate the number of revolutions of the ailerons of the fans emitting a sound of alarm at the moment that despite the cooling system is working to the maximum by an oversight the device has been left on.
  • the basic electronic components of the fiber optic light box are basically: a high voltage transformer, a ballast, a low voltage transformer 6/12 volts high amperage 5/10 ampers., Two bulbs (one of use and one of spare) of Xenon, two bulbs (one of use and one of replacement) of metal halides (Halogen), regulated mini motor for displacement of the variable linearity filter. Potentiometers, integrated circuits and voltage regulators.
  • the assembly that is in the head consists of two bulbs (one of use and one of replacement) of metal halides (halogen light) positioned in a vertical direction parallel to the collector lens, with a focus positioning mechanism which allows to adjust the distance in two axes until obtaining the point of greatest light intensity, which meets the characteristics of the so-called illumination in microscopy of Kohler.
  • the light emitted by the focus filament passes through the collector lens, concentrating the light beam, which is reflected at 90 degrees by a mirror arranged for this purpose, at 45 degrees on the axis of the light path.
  • this invention consists of an episcopic illumination, which is based on the norms of illumination that are adherent in optics and microscopy, these include the Kohler illumination: which allows the use of light energy with less expense and less heat emission
  • the light is emitted by a light source focused on infinity, it passes through a Convergent or positive lens, it deflects the light rays and concentrates these in a focal plane that gives us an inverted image of smaller diameter.
  • the image of the filament of the light source passes without being seen in the focal plane of focus, which in this case is the uterine cervix, that is: to understand, the image of the focus is a spiral filament, this image of the filament passes without being seen .
  • the filament is not seen, but its energy can be used optimally, because its rays in the second focal plane cross parallel to the opposite of the projected image of the first converging lens. This is the Kohler principle.
  • the image of the first lens is projected on the surface of the focal plane in this case is the uterine cervix. Even and colorless as well as glass, this is seen as a uniform field of light. For this reason, this lighting system was chosen in our Colpostereoscope. To understand our next step, which is:
  • Colpostereoscope a variable linearity filter itself has been chosen that can be adjusted to the frequency of work light chosen to excite the desired compound, which is called the head exciter filter, similarly in the fiber light box another exciter filter has been placed which is called the exciter filter of the fiber optic housing.
  • fluorochrome fluorescent protein
  • marker for photodynamic diagnosis or fluorescent dye in our system.
  • fluorochrome fluorescent protein
  • marker for photodynamic diagnosis or fluorescent dye in our system.
  • the chosen beam of light affects the compound in the cellular tissue, this light energy is absorbed by it in the tissues, and then emits light at different wavelengths of the light with which it was irradiated.
  • the physical phenomenon of fluorescence occurs: What we are looking for in fluorescent tissue.
  • the energy of the light radiated by the excitation filter is absorbed by atoms of the compound, exciting its electrons, changing spins, causing the emission of photons.
  • the photon is produced in the change of the electron in its spin, with this photons in a wavelength which is different than the wavelength with which tissues and cells were originally irradiated (Stokes-Adams principle).
  • the light and image emitted by the compound that has been irradiated is collected by the front lens and in parallel (a beam for each eye) is transmitted to the suppressor filters of variable linearity where the frequency of light emanating from the compound is chosen, modulating and contrasting at the same time with the contrast and depth of field diaphragms located within the optical system of the head.
  • the parallel image goes to a set mounted lenses (first eye lenses) in the Galileo drum to choose the desired magnification and which send the image to the Porro prisms that invert the image to be analyzed by vision or eyepieces.
  • the three-dimensional stereoscopic system works in this colpostereoscope at an angle between the two visual axes arranged between 7 to 12 degrees of aperture. Description of the figures
  • Figure 1 schematically and simply shows the optical system used in the head of the Colpostereoscope.
  • Figure 2 shows the placement of the excitation variable linearity suppressor filter used in the fiber optic lighting box.
  • the number 1 indicates the output of the image where the video cameras are placed or the eyes of the observer
  • the numbers 2 and 3 refer to the same ocular lens that is constituted by the upper lens and the image receiving lens
  • the number 4 indicates the inverting prisms of the image in order to see the images in their correct position (these prisms are called Porro).
  • the number 5 indicates where the barrier filter or suppressor of variable linearity is placed and that it is exactly in the crossing of the light rays, which as stated in the description is to choose the desired light spectrum that is emitted by the compound to be studied. , this filter must slide through its axial axis, thus choosing the desired frequency.
  • the number 6 shows the interchangeable lens for choosing the desired magnification.
  • the number 7 indicates the place of the contrast and depth of field diaphragm.
  • the numbers 8 and 9 are the lenses of the objective, front lens and second objective lens successively, in the Colpostereoscope these lenses are also used as a condenser of the illuminating light of the object.
  • the number 10 is the excitation filter of variable linearity itself that is located where the rays of light that come from the illuminator converge, to choose the wavelength required to excite the compound that will emit the luminescence, it is enough just to cross it in its longitudinal axis until the desired frequency is chosen, in the same way the photodynamic diagnosis will be applied using any compound intended for this purpose.
  • the number 11 is a mirror to give the required focal length for the light emanating from the illuminator itself that is projected by the collector lens of the condenser marked with the number 12.
  • the number 13 is a selector prism to choose the required lighting path, this can be the one emitted by the halogen bulbs driven in the head number 14 or the one that comes from the fiber optic box by means of the distal part of it marked with the number 15. Description of figure 2: When it is Once the function of the fiber optic light box has been chosen, the excitation filter that is mounted on the head must be left out of the axis of the light rays in order to manipulate the light frequencies from the box.
  • the fiber optic marked with the number 15 in its proximal part of the box is mounted on a special connector cylinder for this, immediately afterwards there is the same variable linearity exciter filter that also slides for the choice of the working exciter frequency in the photodynamic diagnosis, this filter in the drawing is indicated by the number 16, the converging lenses of the high power light source are indicated by the number 17.
  • the number 18 indicates the xenon or high power lamp that radiates the light .
  • Behind it is a concave mirror marked with the number 19 to concentrate the light emitted by the lamp on its back condensing it and sending it to the front to take full advantage of the emitted energy.
  • Example 1 Diagnosis for neoplasms or lesions of the human papillomavirus using a fluorochrome: Fluorescein Clinical Method
  • Fluorescent Fluorochrome Isothiocyanate (FITC) for several reasons:
  • vaginal pH (acidity or alkalinity): It is common that HPV infection coexists with other bacterial or parasitic diseases so that the pH is alkalized.
  • FITC fluorescein isothiocyanate
  • the image of the lesion will be bright red on a black background, if the patient is negative, the black background will simply be seen without a red image.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Optics & Photonics (AREA)
  • Gynecology & Obstetrics (AREA)
  • Reproductive Health (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

La invención Colpoestereoscopio de diagnóstico fotodinámico (PDD) para enfermedades del tracto genital femenino y detección temprana de lesiones neoplásicas funciona además como un Colpoestereoscopio común, usando la técnica de la colposcopía actual, pero además tiene la capacidad de realizar observaciones mediante el fenómeno de la fluorescencia debido a que tiene sistemas de filtros de linealidad variable tanto en el paso de excitación como en el paso de supresión por lo que se puede usar de manera universal con cualquier compuesto o medicamento fluorescente como es el caso del diagnóstico fotodinámico (PDD). La observación en el monitor es tridimensional debido al uso de dos cámaras de video con el sistema DLP (Digital Light Processing) y HDTV (High Defínition Televisión) con el uso de lentes activos. Este equipo brinda beneficios en salud a la mujer debido a que en tan sólo una consulta se puede realizar diversas acciones contra las enfermedades de trasmisión sexual a bajo costo económico así como la prevención temprana del cáncer cervical.

Description

Colpoestereoscopio de diagnóstico fotodinámico (PDD) para enfermedades del tracto genital femenino y detección temprana de lesiones neoplásicas
Sector de la técnica
I. - Sector médico: a).- Imagenología Médica, b).- Diagnóstico Fotodinámico (PDD).
II. - Sector tecnológico: a).- Microscopios quirúrgicos, b).- Estereomicroscopios, c).- Óptica aplicada a la medicina, d).- Instrumentación y equipos médicos. Estado de la técnica
A partir de la segunda mitad del siglo XIX, las tecnologías de la fotónica y de la electrónica han dado lugar a una plétora de desarrollos científicos y tecnológicos para los diagnósticos médicos, dando como resultado nuevos dispositivos, con los que se ha podido investigar y comprender más la interacción de la instrumentación médica, óptica y electrónica con los tejidos biológicos pertenecientes al campo de la inmuno-histoquímica y patología, así, teniendo como blanco, como en nuestro caso, el estudio y diagnóstico del tracto genital femenino. Dado que las enfermedades de trasmisión sexual actualmente se consideran emergentes, como consecuencia ha habido una creciente demanda para resolver las enfermedades del tracto genital de la mujer, dando lugar al desarrollo en los últimos veinte años de nuevos dispositivos médicos enfocados para el diagnóstico médico, sin embargo estos nuevos métodos tienen diferentes desventajas, entre ellos el alto costo económico que implica su uso, mismo que en países en vías de desarrollo es casi imposible estar al nivel tecnológico requerido.
Como ejemplo de estos métodos de alta tecnología para diagnóstico podemos mencionar: La espectroscopia de fluorescencia y la tomografía por coherencia óptica entre muchos otros.
Un método que por decir así es económico para el diagnóstico de las enfermedades de trasmisión sexual, ha sido la Colposcopía ya que éste es un método de visualización directa que nos permite observar de una manera rápida los signos de las enfermedades, y especialmente las neoplasias producidas por el virus del papiloma humano.
El instrumento que se utiliza para realizar una Colposcopía en la exploración ginecológica del tracto genital se llama comúnmente colposcopio, éste aumenta el tamaño de la imagen, es decir es un microscopio estereoscópico que aprovecha la ventaja de la visión con ambos ojos que dan imágenes tridimensionales mediante dos lentes oculares separadas, formando un ángulo similar al que se forma entre los ejes visuales de los ojos (entre 7 a 12 grados) lo que da dos imágenes diferentes, una para cada ojo, y la percepción en tres dimensiones, indispensable esto para realizar diversas maniobras manuales instrumentadas en el tracto genital. Por lo dicho anteriormente es que el nombre correcto del comúnmente llamado colposcopio es: "Colpoestereoscopio" como en el presente caso. El colpoestereoscopio fue inventado en Alemania en 1925 por el Dr. Hans
Hinselmann que insatisfecho con los medios de exploración de aquel entonces empleados y tratando de descubrir las formas iniciales de las enfermedades del tracto genital femenino, combinó una poderosa fuente luminosa con un sistema de aumento estereoscópico para la observación. Prácticamente el colpoestereoscopio ha permanecido sin cambios relevantes desde 1925 en que fue inventado.
Los autores de este documento inventaron previamente el "Colposcopio de luz actínica" con el número de publicación internacional de la OMPI: WO 2005/039403 Al, para el diagnóstico oportuno de las lesiones producidas por el virus del papiloma humano, conocidas como neoplasias siendo éstas precursoras del cáncer cérvico-uterino.
Los Colpoestereoscopios actualmente son empleados en la rutina de la exploración ginecológica con la finalidad de establecer un diagnóstico, sin embargo no existe ninguno de estos colpoestereoscopios que pueda tener las funciones de diagnóstico fotodinámico. El nuevo colposcopio reclamado en este documento "Colpoestereoscopio de diagnóstico fotodinámico (PDD)", no solamente mejora aún más la sensibilidad y especificidad en el diagnóstico de las enfermedades de trasmisión sexual, ya que además combina el diagnóstico de la técnica colposcópica actual con el uso de una diversa cantidad de colorantes fluorescentes o fotosensibilizadores empleados en el diagnostico fotodinámico (PDD) y a la vez, mediante dispositivos ópticos y electrónicos pudiera servir para la aplicación como siguiente paso en la clínica del tratamiento eficaz, mismo que nos permite tratar exitosamente a tiempo diversas enfermedades del tracto genital, siendo además altamente eficaz en el diagnóstico preventivo aplicado a las poblaciones de escasos recursos económicos en las neoplasias precursoras del cáncer cérvico-uterino.
Antecedentes de la invención
Con la finalidad de la cabal comprensión del funcionamiento y los beneficios de este nuevo aparato, se describen primeramente los conceptos requeridos para ello, así como la problemática.
Las enfermedades de trasmisión sexual (STD) son aquellas que se trasmiten durante el intercurso sexual, éstas por lo general son asintomáticas y cualquier persona sexualmente activa está en riesgo de adquirirlas.
Existen diversos tipos de microorganismos patógenos que las producen, éstos pueden ser: hongos productores de micosis, bacterias, protozoarios y virus. En una gran parte de los casos infectados, encontramos la combinación de múltiples patógenos. Las vaginosis y cervicitis continúan siendo el trastorno del tracto genital femenino más frecuente en las mujeres en edad reproductiva, teniendo a escala mundial un alto impacto económico. El virus del papiloma humano dentro de estas enfermedades requiere una especial atención debido a que éste es causante de las neoplasias, mismas que son las lesiones precursoras del cáncer cérvico uterino.
El género viral Papilloma es demasiado extenso, son virus de DNA que infectan muchas especies de animales, incluyendo al Hombre. Existen más de 100 tipos de estos conocidos como Virus del Papiloma Humano (VPH). El interés por estos virus ha ido en aumento gradualmente a partir de 1970, cuando por primera vez se les atribuyó una función en la etiología del cáncer cérvico uterino. El cáncer cérvico uterino es una clase común de cáncer en la mujer, es un cambio de las células del tejido epitelial del cérvix, así como de las paredes vaginales y vulva. Estas células son inicialmente normales y gradualmente se convierten precancerosas. Antes de que se encuentren células cancerosas en el cérvix, sus tejidos experimentan cambios y empiezan a aparecer células anormales llamadas coilocitos, éste proceso es conocido como displasia o neoplasia intraepitelial cervical (NIC).
Existen más de 30 tipos virales del VPH, que tienen la habilidad de infectar el tracto genital femenino, de estos tipos hay virus benignos llamados de "bajo riesgo", y otros oncogénicos llamados de "alto riesgo". El tipo viral de alto riesgo en América ha sido el VPH 16 variedad Asiática- Americana en cerca del 50% de los casos.
El cáncer cérvico uterino es uno de los más comunes cánceres en la mujer. Se estima la cifra de más de 500,000 casos por año a escala mundial. Cerca del 80% de estos se presentan en los países en vías de desarrollo. La alta incidencia de casos refleja la pobreza de los programas en la detección temprana de la enfermedad, así como la falta de nuevos dispositivos médicos para el diagnóstico y tratamiento de éste.
La fluorescencia es el fenómeno físico que mediante la irradiación de energía luminosa o fotónica se consigue que el compuesto irradiado emita energía en diferente longitud de onda a la que se esté exponiendo, esto es el principio de la ley en óptica de Stokes-Adams, que aplicado en un sistema óptico con filtros de excitación y de supresión nos permite localizar este compuesto dentro de un tejido vivo en altos contrastes superpuestos a un fondo negro. Los compuestos químicos que sirven para este fin se les llama colorantes fluorescentes o fluorocromos tales como el Isotiocianato de Fluoresceína (FITC), Naranja de Acridina, Azul de Toluidina, Rosa de Bengala, Proteínas Fluorescentes Verdes y muchos otros mas inocuos para el estudio en vivo de los tejidos animales y mismos con los que hemos ensayado. También en 1914 se comenzaron a usar las hematoporfirinas en investigación del cáncer, llamándose a todos estos compuestos, colorantes y fluorocromos: fotosensibilizadores. Muchos intentos de aquel entonces tuvieron fallas debido a las impurezas que tenían estos agentes fotosensibilizadores.
Hoy podemos decir que el diagnóstico fotodinámico (PDD,) se considerada una modalidad en los sistemas ópticos de fluorescencia que está basado en la fotooxidación de materiales biológicos inducidos mediante la incubación de un precursor para un agente fotosensibilizante, el cual se deposita selectivamente en el interior de las células diana o células blanco, con el propósito de hacer fluorescer selectivamente las células dañadas o alteradas en su estructura nuclear, como en el caso de las neoplasias.
En el año de 1969, Richard Lipson y Gregorie, observaron que los derivados de las hematoporfirinas (HPD) podían ser utilizadas como agentes fotosensibilizantes sobre células tumorales, debido a que estos agentes poseen un mecanismo de especificidad mitocondrial, depositándose en el tejido neoplásico de tal modo que al ser iluminados, se logra hacer fluorescer éstos selectivamente en los tejidos adyacentes sanos, y se utiliza como método diagnóstico, actualmente conocido como diagnóstico fotodinámico (PDD), ya que mediante la fluorescencia emitida por el fotosensibilizante pueden detectarse tejidos tumorales; demarcándolos notablemente de los tejidos sanos.
Los agentes fotosensibilizantes más comúnmente usados son el Acido 5- aminolevulínico (ALA), el metil aminolevulinato (MAL) y el hexaminolevulinato (HAL). El ALA está considerado como el primer paso en el proceso metabólico de la formación del grupo hemo, por lo que en realidad no podemos considerarle como un agente fotosensibilizante propiamente dicho, sin embargo, su estructura es determinante como precursor de la protoporfirina IX (pPIX) que sí es un agente fotosensibilizante y que en condiciones normales el ALA está firmemente controlado por un mecanismo de retroalimentación directa a través de la Ala-sintetasa presente en los núcleos celulares hemo. Cuando el ALA se activa intracelularmente se incrementa la producción de pPIX, misma que se convierte en hemo a través de una ferroquelatasa que adiciona iones de hierro a la pPIX. Estos agentes fotosensibilizantes se pueden administrar por vía enteral, parenteral y tópica. El método que usamos para la aplicación y transporte de la energía luminosa en el diagnostico fotodinámico es mediante la Iluminación de Kohler, mediante lentes y espejos directamente o bien mediante el uso de fibras ópticas. Una fibra óptica es un tubo mediante el cual se trasmite la luz através de sus extremos, el fenómeno físico qüe permite esto se llama refracción. Este conocimiento no es nuevo ya que desde el siglo XIX en Inglaterra el físico John Tyndall demostró que el agua de un tanque que contenía en su interior una fuente luminosa, al salir el líquido por un orificio, el chorro de agua conducía la luz hacia el recipiente receptor. La trasmisión de imágenes mediante tubos fue efectuada por el radio experimentador Clarence Hansel y el pionero de la televisión John Logie Baird en 1920, los primeros usos de estos tubos fueron con fines de exploración médica, años mas tarde en 1956 fue dado a conocer el primer gastroscopio flexible. Hoy en día se encuentran en el mercado diferentes tipos de fibra óptica, las hay en conjuntos de fibras, o bien en mono cable, que dentro del área de la óptica, éstos son ampliamente usados con múltiples finalidades de acuerdo a sus características.
Las más recientes fibras ópticas para aplicaciones médicas, por la alta conducción del flujo luminoso, por su flexibilidad y duración contienen resinas (FEP) con fluorinato, etileno y propileno, mismas que están en experimentación en este campo en Australia.
Problemática Frecuentemente no son diagnosticadas ni tratadas de manera fácil las enfermedades de etiología infecciosa del tracto genital femenino, así como las lesiones producidas por el virus del papiloma humano (VPH), mismas que son conocidas como neoplasias intraepiteliales cervicales (NIC), por carecer en el ámbito del consultorio de un equipo y pruebas que faciliten de forma sencilla el diagnóstico de éstas, lo cual ocasiona que el ginecólogo tenga que recurrir a pruebas de laboratorio con amplio margen de error, o bien al uso de equipos sofisticados y de alto costo, por ejemplo dentro de ellos tenemos los de espectroscopia y tomografía por coherencia óptica, que requieren de un largo tiempo de entrenamiento para sus usuarios, además que estos equipos están disponibles únicamente en los países industrializados, y no al alcance tecnológico en los países en vías de desarrollo por múltiples factores. Todo esto da por resultado en las pacientes, los consecuentes tiempos en espera de los resultados, así como múltiples consultas para las pacientes antes de lograr el tratamiento adecuado a la enfermedad, en el que muchas veces ya es fuera de tiempo para prevenir la enfermedad.
Objetivo del presente invento
Con la finalidad de dar solución a la problemática mencionada, se ideó la creación de este nuevo invento: "Colpoestereoscopio de diagnóstico fotodinámico (PDD) para enfermedades del tracto genital femenino y detección temprana de lesiones neoplásicas", el cual sirve para realizar el diagnóstico temprano y enviar a la paciente a su clínica para el tratamiento oportuno en las enfermedades de etiología infecciosa del tracto genital femenino, así como en las neoplasias producidas por el virus del papiloma humano causante del cáncer cérvico-uterino, prácticamente en el mismo sitio y dia en que es explorada la paciente.
Con el nuevo Colpoestereoscopio se evita realizar estudios costosos o procesos y procedimientos de largo tiempo para tener un resultado altamente confiable en cuanto a la detección de enfermedades sexualmente trasmitidas y de neoplasias producidas por el virus del papiloma humano (VPH) mediante la aplicación del fenómeno de la fluorescencia.
El nuevo Colpoestereoscopio trabaja también como colpoestereoscopio común. Descripción detallada del aparato
La invención descrita y detallada en este documento así como sus sistemas conforman básicamente un colpoestereoscopio constituido por: Un sistema de iluminación del cabezal que tiene un sistema de filtros de excitación de tipo lineal variable con la finalidad de poder elegir cualquier rango de frecuencia de luz para poder enviar un rayo luminoso a cualquier compuesto fluorescente que coloquemos en el tracto genital femenino, estos compuestos podrán ser: fluorocromos, proteínas fluorescentes para uso "en vivo" de cualquier color, o colorantes químicos para fluorescencia. Este filtro abarca un rango desde 400 nanómetros a 1080 nanómetros, pudiéndose escoger la banda del rayo de luz cada 20 nanómetros.
Para poder analizar la frecuencia emitida de los compuestos fluorescentes y eliminar las longitudes de onda producidas por la luz de excitación, en el cabezal del colpoestereoscopio se han colocado 2 filtros supresores o barrera, uno para cada eje óptico de observación. Estos filtros también son de linealidad variable con el fin de ajustar exactamente los rayos de emisión que emanan del compuesto a reaccionar el tracto genital femenino teñido. Estos filtros abarcan un espectro luminoso de 400 a 700 nanómetros, que es el espectro luminoso visible, y las frecuencias se pueden escalonar cada 20 nanómetros.
Para poder contrastar lo que se está observando y así mismo ver la profundidad de campo, de igual manera en el cabezal se han colocado 2 diafragmas, uno en cada eje óptico con un controlador manual de apertura.
La observación tridimensional en este novedoso Colpoestereoscopio puede ser por observación directa mediante los lentes oculares como regularmente se hace en estos aparatos o bien de la novedosa manera de tener colocadas en el cabezal dos cámaras de video de alta resolución, cada cámara está colocada en cada eje visual. El sistema de visión tridimensional en video mas común hoy en dia es: DLP (Digital light processing) HDTV (High definition televisión) con el uso de lentes activos tridimensionales.
En éste Colpoestereoscopio de diagnóstico fotodinámico el sistema de iluminación que está localizado en el cabezal, descrito anteriormente, cuenta además con una caja de luz adicional para el empleo de fibra óptica.
En esta caja de luz o de iluminación se encuentra un sistema óptico enfocable y dirigido a una fibra óptica de tipo médico o a la novedosa fibra óptica de bajo costo y alta calidad de resinas (FEP) con fluorinato de etileno y propileno. Dentro de éste sistema óptico de igual manera que el cabezal se encuentra un filtro de linealidad variable con la finalidad también de poder elegir cualquier rango de frecuencia de luz para poder enviar un rayo luminoso a través de la fibra óptica a cualquier compuesto o colorante para la aplicación del diagnóstico fotodinámico en el tracto genital femenino, este filtro abarca un rango desde 400 nanómetros a 700 nanómetros, pudiéndose escoger la banda del rayo de luz cada 20 nanómetros lo que prácticamente hace una aplicación universal del equipo a cualquier compuesto o colorante para el diagnostico mediante el fenómeno de la fluorescencia.
Consideramos necesario hacer ver y recalcar que los alcances de este invento va mas allá de los conocimientos y diagnósticos actuales en la rama de la Colposcopía, siendo este equipo una fuerte herramienta para futuras innovaciones en los diagnósticos, con lo que podemos decir que abre una nueva puerta en la investigación clínica de las enfermedades del tracto genital femenino.
Conjuntos de partes en el Colpoestereoscopio de fototerapia dinámica por dos vías para diagnóstico y tratamiento de las enfermedades del tracto genital femenino El nuevo Colpoestereoscopio esta integrado por varias partes que estructuran sus sistemas. Para entender tenemos: partes mecánicas, ópticas, y electrónicas, estructurando 3 conjuntos.
I.- Conjunto Mecánico
Este conjunto es la estructura o esqueleto, que contiene y sirve de soporte a las partes ópticas y mecánicas del equipo:
Base y soporte: La cual esta constituida por un disco de acero balanceado, el cual brinda la estabilidad al equipo, cuatro o seis ruedas giratorias independientes con un mecanismo de freno para la ubicación del equipo, un tubo de acero inoxidable vertical y un soporte horizontal con una articulación giratoria para el ensamble y maniobra del brazo y cabezal, en el soporte horizontal y por encima del disco de la base se encuentran las partes electrónicas de la cajas de luz y la fuente de alimentación que alimenta al sistema.
Brazo: Es un mecanismo balanceado el cual permite movimientos en tres ejes. Tales movimientos permiten la ubicación exacta del cabezal a diferentes alturas y posiciones de trabajo, dando la posibilidad de maniobrar el equipo con facilidad en el momento del procedimiento ginecológico.
Cabezal: Es la parte central y más importante del equipo. En otras palabras: Este es verdaderamente el nuevo Colpoestereoscopio, donde se alojan los siguientes componentes: sistema de enfoque con mecanismo de movimiento fino y sistema óptico conteniendo a los 2 tipos de filtros, filtro excitador de linealidad variable del cabezal y filtros de linealidad variable supresores. Esta es la parte fundamental del colpoestereoscopio dado que allí se lleva a cabo la transmisión y modulación de energía luminosa, la cual permite la observación de las imágenes provenientes del cérvix uterino con diferentes aumentos mediante el tambor de Galileo de manera directa o mediante las dos cámaras digitales de alta resolución de televisión colocadas a los lados de este cabezal trasmitiendo la imagen al monitor en el novedoso sistema tridimensional DLP HDTV.
II.- Conjunto electrónico
Este funciona con líneas de corriente de 240-220volts (europeo), 1 10-120v (americano) y 90-100v (japonés)
Una fuente de poder para alimentar focos de halogenuros metálicos, una fuente de poder para focos de Xenón así como la balastra respectiva para el encendido de éste.
En el cabezal se encuentran un par de focos de halogenuro metálico el cual tiene detectores para el control y regulación de la temperatura interior, conectados a circuitos impresos que controlan su temperatura y que regulan el número de revoluciones de los alerones de los ventiladores emitiendo un sonido de alarma en el momento que a pesar del sistema de enfriamiento esté trabajando al máximo por un descuido se haya dejado encendido el aparato.
Para la caja de luz de la fibra óptica de igual manera se han diseñado en circuitos impresos sistemas automáticos para el control y regulación de la temperatura interior producido por los focos y componentes con sus correspondientes ventiladores de enfriamiento Los componentes electrónicos básicos de la caja de luz de la fibra óptica son básicamente: un transformador de alto voltaje, una balastra, un transformador de bajo voltaje 6/12 volts de alto amperaje 5/10 ampers., Dos focos (uno de uso y uno de repuesto) de Xenón, dos focos (uno de uso y uno de repuesto) de halogenuros metálicos (Halógeno), mini motor regulado para desplazamiento del filtro de linealidad variable. Potenciómetros, circuitos integrados y reguladores de voltaje.
ΠΙ.- Conjunto ópticos
1.- Paso de Iluminación
El conjunto que está en el cabezal consta de dos focos (uno de uso y uno de repuesto) de halogenuros metálicos (luz halógena) posicionado en dirección vertical paralela a la lente colectora, con un mecanismo de posicionamiento del foco lo cual permite ajustar la distancia en dos ejes hasta el obtener el punto de mayor intensidad luminosa, lo cual cumple con las características de la denominada iluminación en microscopía de Kohler. La luz que emite el filamento del foco pasa a través de la lente colectora, concentrando el haz de luz, el cual es reflejado a 90 grados mediante un espejo dispuesto para tal efecto, a 45 grados en el eje de la trayectoria de la luz.
Es importante enfatizar que esta invención consiste en una iluminación episcópica, la cual esta basada en las normas de iluminación que son adherentes en óptica y en microscopía, éstas incluyen la iluminación de Kohler: La cual permite el uso de energía luminosa con menor gasto y menor emisión de calor.
1. - La luz es emitida por una fuente luminosa enfocada al infinito, ésta pasa por una lente Convergente o positiva, esta desvía los rayos de luz y concentra estos en un plano focal que nos da una imagen invertida de diámetro menor.
2. - Cuando se usan dos lentes convergentes, y la segunda lente "frontal del objetivo" enfoca la imágen proyectada por la primera lente "colectora" la imágen del filamento de la fuente de luz pasa sin ser vista en el plano focal de enfoque, que en este caso es el cérvix uterino, es decir: para entender, la imágen del foco es un filamento en espiral, esta imagen del filamento pasa sin ser vista. El filamento no es visto, pero su energía puede ser usada de manera óptima, porque sus rayos en el segundo plano focal cruzan de manera paralela a lo contrario de la imagen proyectada de la primera lente convergente. Este es el principio de Kohler.
La imagen de la primera lente es proyectada en la superficie del plano focal en este caso es el cérvix uterino. Pareja e incolora así como el cristal, esto es visto como un campo de luz uniforme. Por la anterior razón se escogió este sistema de iluminación en nuestro Colpoestereoscopio. Para entender nuestro siguiente paso, que es:
2.- Paso de Excitación Para escoger tan sólo una longitud de onda, como es el caso de nuestro
Colpoestereoscopio, se ha elegido un filtro de linealidad variable mismo que se puede ajustar a la frecuencia de luz de trabajo elegida para excitar el compuesto deseado, al que se le llama filtro excitador del cabezal, de igual manera en la caja de luz de la fibra óptica se ha colocado otro filtro excitador al que se le llama filtro excitador de la caja de la fibra óptica.
Seguidamente se describe la excitación del fluorocromo, proteína fluorescente, marcador para diagnóstico fotodinámico o colorante fluorescente en nuestro sistema. Primeramente, éste es aplicado por la técnica adecuada en el cérvix, y éste es absorbido por las células de los tejidos infectados o bien en las lesiones producidas por el virus del papiloma humano. El haz de luz elegido incide en el compuesto en el tejido celular, esta energía de luz es absorbida por éste en los tejidos, y entones por si mismo emite luz en diferente longitud de onda de la luz con que fue irradiado. Se produce el fenómeno físico de fluorescencia: Lo que estamos buscando en el tejido fluoresce. La energía de la luz irradiada por el filtro de excitación, es absorbida por átomos del compuesto, excitando sus electrones, cambiando de espines, causando la emisión de fotones. El fotón es producido en el cambio del electrón en su espín, con esto fotones en una longitud de onda la cual es diferente que la longitud de onda con que fueron irradiados originalmente los tejidos y células (Principio de Stokes-Adams).
En este paso también se producen las reacciones ya descritas anteriormente en la aplicación del diagnostico fotodinámico.
3.- Paso de Supresión
La luz e imagen emitida por el compuesto que ha sido irradiada es colectada por la lente frontal y de manera paralela (un haz para cada ojo) es transmitida hacia los filtros supresores de linealidad variable donde se elige la frecuencia de luz que emana del compuesto, modulando y contrastando a la vez con los diafragmas de contraste y de profundidad de campo ubicados dentro del sistema óptico del cabezal. Posteriormente la imagen paralela pasa a un juego lentes montados (primeras lentes oculares) en el tambor de Galileo para elegir el aumento deseado y los cuales envían la imagen a los prismas de Porro que invierten la imagen para que sea analizada mediante los oculares por visión u observación directa, o bien envía esta imagen a cada una de las dos cámaras de televisión de alta definición localizadas en cada uno de los dos ejes visuales, la imagen pasa al sistema de video de visión tridimensional DLP (Digital light processing) HDTV (High definition televisión) siendo esta imagen observada en el monitor.
El sistema estereoscópico tridimensional funciona en este colpoestereoscopio a un ángulo entre los dos ejes visuales dispuestos entre 7 a 12 grados de apertura. Descripción de las figuras
La figura 1 muestra esquemáticamente y de manera simple y sencilla el sistema óptico usado en el cabezal del Colpoestereoscopio. La figura 2 muestra la colocación del filtro supresor de linealidad variable de excitación usado en la caja de iluminación de la fibra óptica.
Descripción de la figura 1 : El número 1 indica la salida de la imagen en donde se colocan las cámaras de video o bien los ojos del observador, los números 2 y 3 se refieren a la lente ocular mismo que está constituido por la lente superior y la lente receptora de la imagen, el número 4 indica los prismas inversores de la imagen con la finalidad de ver las imágenes en su correcta posición (estos prismas son llamados de Porro). El número 5 indica donde esta colocado el filtro barrera o supresor de linealidad variable y que es exactamente en el cruce de los rayos de luz, que como se dijo en la descripción es para escoger el espectro luminoso deseado que es emitido por el compuesto a estudiar, éste filtro se deberá deslizar através de su eje axial eligiendo así la frecuencia deseada. El número 6 nos muestra la lente intercambiable para la elección de los aumentos deseados. El número 7 indica el lugar del diafragma de contraste y de profundidad de campo. Los números 8 y 9 son las lentes del objetivo, lente frontal y segunda lente objetiva sucesivamente, en el Colpoestereoscopio estas lentes se usan además como condensador de la luz iluminadora del objeto. El número 10 es el filtro de excitación de linealidad variable mismo que se sitúa donde convergen los rayos de luz que provienen del iluminador, para escoger la longitud de onda requerida para poder excitar el compuesto que emitirá la luminiscencia, basta tan solo recorrer éste en su eje longitudinal hasta escoger la frecuencia deseada, de igual manera se procederá en la aplicación del diagnóstico fotodinámico haciendo uso de cualquier compuesto destinado para este fin. El número 11 es un espejo para dar la distancia focal requerida para la luz que emana el iluminador mismo que es proyectada por la lente colectora del condensador marcado con el número 12. El número 13 es un prisma selector para escoger la vía de iluminación requerida, ésta puede ser la emitida por los focos de halógeno motados en el cabezal número 14 o bien la que procede de la caja de la fibra óptica por medio de la parte distal de ésta marcada con el número 15. Descripción de la figura 2: Cuando es escogida la función de la caja de luz de la fibra óptica, previamente deberá de dejarse fuera del eje de los rayos de luz el filtro de excitación que esta montado en el cabezal para poder manipular las frecuencias de luz desde la caja. La fibra óptica marcada con el número 15 en su parte proximal de la caja esta montada en un cilindro conector especial para esto, inmediatamente después se encuentra el filtro excitador de linealidad variable mismo que también se desliza para la elección de la frecuencia excitadora de trabajo en el diagnóstico fotodinámico, este filtro en el dibujo está indicado por el número 16, las lentes convergentes colectoras de la fuente luminosa de alta potencia están indicadas por el número 17. El número 18 indica la lámpara de xenón o de alta potencia que irradia la luz. Detrás de ésta se encuentra un espejo cóncavo marcado con el número 19 para concentrar la luz emitida por la lámpara en su parte posterior condensando ésta y enviándola hacia el frente para aprovechar totalmente la energía emitida.
Ejemplos para el uso del Colpoestereoscopio de diagnóstico fotodinámico (PDD) para enfermedades del tracto genital femenino y detección temprana de lesiones neoplásicas
Los ejemplos que mostramos a continuación cuando se realizan en la práctica no son restrictivos ya que no son ejemplos limitativos en el uso del aparato, ya que como hemos mencionado anteriormente este instrumento está diseñado para múltiples aplicaciones en el presente y a futuro dentro del área médica.
Previamente a los ejemplos que presentaremos podemos decir que en el uso del Colpoestereoscopio de diagnóstico fotodinámico, éste puede usarse también de la manera habitual que se usan todos los Colpoestereoscopios, con la técnica habitual de la prueba del ácido acético y de la aplicación de solución de yodo, así como la introducción del filtro verde para la observación del lecho capilar en el tejido mucoso cérvico-vaginal
Ejemplo 1. Diagnóstico para neoplasias o lesiones del virus del papiloma humano usando un fluorocromo: Fluoresceína Método Clínico
En este caso hemos usado el fluorocromo Isotiocianato de Fluoresceína (FITC) por diversos motivos:
Este es empleado ampliamente por los oftalmólogos en las fluorangiografías (retina), y en Solución local para ver las lesiones cornéales. Ellos usan éste, con una lámpara llamada "Lámpara Actínica", la cual tiene un filtro de Cobalto y el espectro de emisión es azul. Esta lámpara usada por ellos no tiene filtros supresores, nosotros hemos elegido este fluorocromo por la razón de que éste no presenta efectos adversos o tóxicos en el hombre. Procedimiento
• Colocar cómodamente a la paciente en posición ginecológica. La duración del estudio es de 15-20 minutos.
• Introducir un espéculo vaginal de plástico, para evitar reflejos indeseables.
• Localizar el cérvix.
• Tomar pH vaginal (acidez o alcalinidad): Es frecuente que la infección por VPH convive con otras enfermedades bacterianas o parasitarias con lo que el pH se alcaliniza.
• Tomar muestras de endocérvix con el cepillo cervical.
• Tomar muestras de ectocérvix con espátula de Ayre.
• Preparar uniformemente las laminillas de las muestras para ser enviadas al laboratorio, solo para confirmar nuestro diagnóstico, en caso de ser requerido.
• Aplicar el Acido Acético al 5% en el cérvix durante un minuto. Esta solución acidificada tiene dos funciones, es un blanqueador de las células en las Neoplasias Cervicales Intraepiteliales, y segundo es un copulador para la aplicación del fluorocromo (FITC) con las células.
• Realizar la técnica colposcópica habitual.
• Introducir el filtro verde para ver los cambios vasculares.
• Hacer los registros tridimensionales video-fotográficos, para comparar.
• Aplicar uniformemente el FITC (isotiocianato de fluoresceína) en el cérvix por un minuto.
• Seleccionar la frecuencia en el filtro de excitación de linealidad variable del cabezal a un rango de 488 nanómetros (Azul).
Seleccionar la frecuencia en los filtros supresores de linealidad variable a un rango de 520 nanómetros (Amarillo).
• Hacer la observación directa o bien realizar los registros video-fotográficos con las cámaras tridimensionales montadas en el cabezal.
• En caso de ser positiva la paciente a la prueba de la fluoresceína en la detección de neoplasias, la imagen de la lesión producida por el virus del papiloma humano se verá en color verde brillante sobre un fondo negro, en caso de ser negativa la paciente sencillamente se verá el fondo negro sin imagen verde. Ejemplo 2. Diagnóstico Fotodinámico (PPD) para lesiones del virus del papiloma humano usando un agente fotosensibilizante, el Ácido 5-aminolevulínico (ALA)
Método Clínico
Procedimiento
• Colocar cómodamente a la paciente en posición ginecológica.
• Introducir un espéculo vaginal.
• Localizar el cérvix.
• Limpiar el cérvix y paredes vaginales con solución salina normal.
• Aplicar la crema con el fotosensibilizador.
• Poner en reposo a la paciente por 2 horas.
• Repetir nuevamente los tres primeros pasos.
• Seleccionar la frecuencia en el filtro de excitación de linealidad variable del cabezal a un rango de 405 nanómetros (Azul-Violeta).
• Seleccionar la frecuencia en los filtros supresores de linealidad variable a un rango de 635 nanómetros (Rojo).
• Hacer la observación directa o bien realizar los registros video-fotográficos con las cámaras tridimensionales montadas en el cabezal.
En caso de ser positiva la paciente al diagnóstico fotodinámico (PPD), la imagen de la lesión se verá en color rojo brillante sobre un fondo negro, en caso de ser negativa la paciente sencillamente se verá el fondo negro sin imagen roja.

Claims

Reivindicaciones Habiendo descrito suficientemente el Colpoestereoscopio de diagnóstico fotodinámico (PDD) para enfermedades del tracto genital femenino y detección temprana de lesiones neoplásicas y que nuestro invento consideramos que es una novedad es por lo que nosotros estamos reclamando de nuestra exclusiva propiedad, lo contenido en las siguientes cláusulas:
1.- Colpoestereoscopio de diagnóstico fotodinámico (PDD) para enfermedades del tracto genital femenino y detección temprana de lesiones neoplásicas, caracterizado por un sistema de iluminación en el cabezal que tiene un sistema de filtros de excitación de tipo lineal variable, en el cabezal se han colocado 2 filtros supresores o barrera, uno para cada eje óptico de observación. Se han colocado en el cabezal 2 diafragmas, uno en cada eje óptico con un controlador manual de apertura. La observación tridimensional en este Colpoestereoscopio puede ser por observación directa mediante los lentes oculares como regularmente se hace en estos aparatos o bien de la novedosa manera de tener colocadas en el cabezal dos cámaras de video de alta resolución, cada cámara está colocada en cada eje visual. El sistema de visión tridimensional en video es: DLP (Digital light processing) HDTV (High definition televisión) con el uso de lentes activos tridimensionales. En el Colpoestereoscopio se encuentran una caja de fuente de luz con un sistema óptico enfocable y dirigido a una fibra óptica. Se ha incorporado en esta invención una iluminación episcópica, la cual está basada en las normas de iluminación que son adherentes en óptica y en microscopía basada en iluminación de Kohler.
2.- Colpoestereoscopio de diagnóstico fotodinámico (PDD) para enfermedades del tracto genital femenino y detección temprana de lesiones neoplásicas, de acuerdo a la cláusula 1, está caracterizado por un sistema de iluminación en el cabezal que tiene un sistema de filtros de excitación de tipo lineal variable con la finalidad de poder elegir cualquier rango de frecuencia de luz para poder enviar un rayo luminoso a cualquier compuesto fluorescente que coloquemos en el tracto genital femenino, estos compuestos podrán ser: fluorocromos, fotosensibilizadores, proteínas fluorescentes para uso "en vivo" de cualquier color, o colorantes químicos para fluorescencia. Este filtro abarca un rango desde 400 nanómetros a 1080 nanómetros, pudiéndose escoger la banda del rayo de luz cada 20 nanómetros.
3. - Colpoestereoscopio de diagnóstico fotodinámico (PDD) para enfermedades del tracto genital femenino y detección temprana de lesiones neoplásicas, de acuerdo a la cláusula 1, está caracterizado por tener en el cabezal 2 filtros supresores o barrera de linealidad variable, uno para cada eje óptico de observación para poder analizar la frecuencia emitida de los compuestos fluorescentes y eliminar las longitudes de onda producidas por la luz de excitación. Estos filtros también son con el fin de ajustar exactamente los rayos de emisión que emanan del compuesto a reaccionar el tracto genital femenino teñido. Estos filtros abarcan un espectro luminoso de 400 a 700 nanómetros, que es el espectro luminoso visible, y las frecuencias se pueden escalonar cada 20 nanómetros.
4. - Colpoestereoscopio de diagnóstico fotodinámico (PDD) para enfermedades del tracto genital femenino y detección temprana de lesiones neoplásicas, de acuerdo a la cláusula 1, está caracterizado por tener en el cabezal 2 diafragmas, uno en cada eje óptico con un controlador manual de apertura para poder contrastar la imagen de lo que se está observando y así mismo ver la profundidad de campo.
5. - Colpoestereoscopio de diagnóstico fotodinámico (PDD) para enfermedades del tracto genital femenino y detección temprana de lesiones neoplásicas, de acuerdo a la cláusula 1 , está caracterizado por tener colocadas en el cabezal dos cámaras de video de alta resolución, cada cámara está colocada en cada eje visual. El sistema de visión tridimensional en video es: DLP (Digital light processing) HDTV (High definition televisión) con el uso de lentes activos tridimensionales.
6. - Colpoestereoscopio de diagnóstico fotodinámico (PDD) para enfermedades del tracto genital femenino y detección temprana de lesiones neoplásicas, de acuerdo a la cláusula 1, está caracterizado por una caja fuente de luz con sistema óptico enfocable y dirigido a una fibra óptica de tipo médico o a la novedosa fibra óptica de bajo costo y alta calidad de resinas (FEP) con fluorinato de etileno y propileno. Dentro del sistema óptico de igual manera que el cabezal se encuentra un filtro de linealidad variable con la finalidad también de poder elegir cualquier rango de frecuencia de luz para poder enviar un rayo luminoso a través de la fibra óptica a cualquier compuesto o medicamento que coloquemos en el tracto genital femenino usado en la exploración mediante el diagnóstico fotodinámico, este filtro abarca un rango desde 400 nanómetros a 700 nanómetros, pudiéndose escoger la banda del rayo de luz cada 20 nanómetros lo que prácticamente hace una aplicación universal del equipo a cualquier medicamento o compuesto destinado para la exploración ginecológica del tracto genital mediante el diagnóstico fotodinámico.
7.- Colpoestereoscopio de diagnóstico fotodinámico (PDD) para enfermedades del tracto genital femenino y detección temprana de lesiones neoplásicas, de acuerdo a la cláusula 1, está caracterizado por la incorporación de una iluminación episcópica, la cual está basada en las normas de iluminación que son adherentes en óptica y en microscopía basada en iluminación de Kohler, la cual permite el uso de energía luminosa con menor gasto y menor emisión de calor.
PCT/MX2012/000006 2012-01-18 2012-01-18 Colpoestereoscopio de diagnóstico fotodinámico (pdd) para enfermedades del tracto genital femenino y detección temprana de lesiones neoplásicas WO2013109130A1 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/MX2012/000006 WO2013109130A1 (es) 2012-01-18 2012-01-18 Colpoestereoscopio de diagnóstico fotodinámico (pdd) para enfermedades del tracto genital femenino y detección temprana de lesiones neoplásicas
EP12865692.3A EP2805667A4 (en) 2012-01-18 2012-01-18 STEREO COLPOSCOPE FOR PHOTODYNAMIC DIAGNOSIS (PDD) OF DISEASE OF THE FEMALE GENITAL TRACT AND EARLY DETECTION OF NEOPLASTIC LESIONS
US14/372,470 US20140357950A1 (en) 2012-01-18 2012-01-18 Photodynamic diagnosis stereo colposcope (pdd) for female genital tract diseases and early detection of neoplastic lesion
MX2013014272A MX2013014272A (es) 2012-01-18 2012-01-18 Colpoestereoscopio de diagnosticos fotodinamico (pdd) para enfermedades del tracto genital femenino y deteccion temprana de lesiones neoplasicas.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/MX2012/000006 WO2013109130A1 (es) 2012-01-18 2012-01-18 Colpoestereoscopio de diagnóstico fotodinámico (pdd) para enfermedades del tracto genital femenino y detección temprana de lesiones neoplásicas

Publications (1)

Publication Number Publication Date
WO2013109130A1 true WO2013109130A1 (es) 2013-07-25

Family

ID=48799490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2012/000006 WO2013109130A1 (es) 2012-01-18 2012-01-18 Colpoestereoscopio de diagnóstico fotodinámico (pdd) para enfermedades del tracto genital femenino y detección temprana de lesiones neoplásicas

Country Status (3)

Country Link
US (1) US20140357950A1 (es)
EP (1) EP2805667A4 (es)
WO (1) WO2013109130A1 (es)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005050323A1 (en) 2003-10-29 2005-06-02 Carl Zeiss Smt Ag Optical assembly for photolithography
CN108371756B (zh) * 2018-02-10 2024-01-30 中国医学科学院生物医学工程研究所 一种诊疗一体宫颈病变光动力治疗系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001072214A1 (en) * 2000-03-28 2001-10-04 Foundation For Research And Technology-Hellas Method and system for characterization and mapping of tissue lesions
WO2004004562A1 (en) * 2002-07-10 2004-01-15 Medispectra, Inc. Fluorescent fiberoptic probe for tissue health discrimination and method of use thereof
WO2005039403A1 (es) 2003-10-27 2005-05-06 Joel Gerardo Diaz Sanchez Colposcopio de luz actínica y método para la detección específica de lesiones producidas por el virus des papiloma humano en el tracto genital femenino bajo
WO2008001037A2 (en) * 2006-06-05 2008-01-03 Forth Photonics Limited Methods for characterizing tissues
US20100145416A1 (en) * 2008-12-10 2010-06-10 Uk Kang Apparatus for photodynamic therapy and photodetection

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4222653A (en) * 1978-12-04 1980-09-16 Leo Beiser Visual effects optical relay
US7236815B2 (en) * 1995-03-14 2007-06-26 The Board Of Regents Of The University Of Texas System Method for probabilistically classifying tissue in vitro and in vivo using fluorescence spectroscopy
US6739744B2 (en) * 1997-07-02 2004-05-25 Lumitex, Inc. Light delivery systems and applications thereof
DE60213993T2 (de) * 2001-05-17 2007-03-15 Xenogen Corp., Alameda Verfahren und vorrichtung zur feststellung von zieltiefe, helligkeit und grösse in einer körperregion
US20040155975A1 (en) * 2002-09-17 2004-08-12 Hart Douglas P. 3-D imaging system
US20070191675A1 (en) * 2006-02-13 2007-08-16 Joel Gerardo Diaz Sanchez Actinic light colposcope and method to detect lesions in the lower female genital tract produced by human papilloma virus using an actinic light colposcope
US20090099460A1 (en) * 2007-10-16 2009-04-16 Remicalm Llc Method and device for the optical spectroscopic identification of cervical cancer
US20090240138A1 (en) * 2008-03-18 2009-09-24 Steven Yi Diffuse Optical Tomography System and Method of Use
US20100302235A1 (en) * 2009-06-02 2010-12-02 Horizon Semiconductors Ltd. efficient composition of a stereoscopic image for a 3-D TV
WO2012141563A1 (es) * 2011-04-15 2012-10-18 Joel Gerardo Diaz Sanchez Colpoestereoscopio de fototerapia dinámica por dos vías para diagnóstico y tratamiento de las enfermedades del tracto genital femenino

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001072214A1 (en) * 2000-03-28 2001-10-04 Foundation For Research And Technology-Hellas Method and system for characterization and mapping of tissue lesions
WO2004004562A1 (en) * 2002-07-10 2004-01-15 Medispectra, Inc. Fluorescent fiberoptic probe for tissue health discrimination and method of use thereof
WO2005039403A1 (es) 2003-10-27 2005-05-06 Joel Gerardo Diaz Sanchez Colposcopio de luz actínica y método para la detección específica de lesiones producidas por el virus des papiloma humano en el tracto genital femenino bajo
WO2008001037A2 (en) * 2006-06-05 2008-01-03 Forth Photonics Limited Methods for characterizing tissues
US20100145416A1 (en) * 2008-12-10 2010-06-10 Uk Kang Apparatus for photodynamic therapy and photodetection

Also Published As

Publication number Publication date
EP2805667A1 (en) 2014-11-26
EP2805667A4 (en) 2015-09-09
US20140357950A1 (en) 2014-12-04

Similar Documents

Publication Publication Date Title
ES2464718T3 (es) Método y sistema para caracterización y cartografía de lesiones tisulares
US8553337B2 (en) Multi-path, multi-magnification, non-confocal fluorescence emission endoscopy apparatus and methods
US7662095B2 (en) Endoscope provided with a lighting system and a combined image transmission
CN105358044A (zh) 用于照明和成像的双视探头及其使用
US20100305436A1 (en) Systems, devices, and methods for photoactive assisted resection
US20160262597A1 (en) Portable endoscopic system
JP2008515573A (ja) 観察及び検査を改善するための膣鏡観察チューブに関するシステムおよび方法
JP2016154848A5 (es)
US20220104706A1 (en) Devices, systems, and methods for tumor visualization and removal
WO2012141563A1 (es) Colpoestereoscopio de fototerapia dinámica por dos vías para diagnóstico y tratamiento de las enfermedades del tracto genital femenino
WO2013109130A1 (es) Colpoestereoscopio de diagnóstico fotodinámico (pdd) para enfermedades del tracto genital femenino y detección temprana de lesiones neoplásicas
WO2009072856A1 (es) Espéculo vaginal con un sistema y método específico para el diagnóstico de lesiones producidas por el virus del papiloma humano en el tracto genital femenino
US20070191675A1 (en) Actinic light colposcope and method to detect lesions in the lower female genital tract produced by human papilloma virus using an actinic light colposcope
WO2010054510A1 (zh) 具有血管造影功能的手术显微镜系统
CN210330538U (zh) 外置式双光源阴道镜成像系统
WO2005039403A1 (es) Colposcopio de luz actínica y método para la detección específica de lesiones producidas por el virus des papiloma humano en el tracto genital femenino bajo
Mckechnie et al. An endoscopic system for the early detection of cancers of the gastrointestinal tract
CN207080829U (zh) 便携式照明器
RU2561030C1 (ru) Способ интраоперационного выявления наличия и локализации глиальных новообразований головного мозга
EP3942994B1 (en) Light source device
WO2023273013A1 (zh) 手术导航装置及系统
CN106444004A (zh) 前后视场电子内窥镜
RU168715U1 (ru) Осветительная система для видеоэндоскопа
Namikawa et al. 5-Aminolevulinic Acid Fluorescence Imaging System
RU2062134C1 (ru) Лазерный лечебно-диагностический комплекс

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12865692

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/014272

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 14372470

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012865692

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012865692

Country of ref document: EP