WO2013108949A1 - Method for preparing human embryonic stem cell-derived perivascular progenitor cells, and composition for cell therapy containing same - Google Patents

Method for preparing human embryonic stem cell-derived perivascular progenitor cells, and composition for cell therapy containing same Download PDF

Info

Publication number
WO2013108949A1
WO2013108949A1 PCT/KR2012/000769 KR2012000769W WO2013108949A1 WO 2013108949 A1 WO2013108949 A1 WO 2013108949A1 KR 2012000769 W KR2012000769 W KR 2012000769W WO 2013108949 A1 WO2013108949 A1 WO 2013108949A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
progenitor cells
perivascular
cell
disease
Prior art date
Application number
PCT/KR2012/000769
Other languages
French (fr)
Korean (ko)
Inventor
김정모
송원경
정형민
Original Assignee
(주)차바이오앤디오스텍
차의과학대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)차바이오앤디오스텍, 차의과학대학교 산학협력단 filed Critical (주)차바이오앤디오스텍
Publication of WO2013108949A1 publication Critical patent/WO2013108949A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/069Vascular Endothelial cells
    • C12N5/0692Stem cells; Progenitor cells; Precursor cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0068General culture methods using substrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6424Serine endopeptidases (3.4.21)
    • C12N9/6427Chymotrypsins (3.4.21.1; 3.4.21.2); Trypsin (3.4.21.4)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/105Insulin-like growth factors [IGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/155Bone morphogenic proteins [BMP]; Osteogenins; Osteogenic factor; Bone inducing factor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/165Vascular endothelial growth factor [VEGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/02Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from embryonic cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/50Proteins
    • C12N2533/52Fibronectin; Laminin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/50Proteins
    • C12N2533/54Collagen; Gelatin

Definitions

  • the present invention is a method for producing perivascular progenitor cells from stem cells derived embryonic body, perivascular progenitor cells prepared by the above method, cardiovascular disease comprising the same as an active ingredient Or it relates to a cell therapy composition for the prevention or treatment of retinal disease, and a method for preventing or treating cardiovascular disease or retinal disease using the composition. More specifically, the stem cell-derived embryonic bodies are treated with BMP4 growth factors to induce differentiation into mesodermal cells, and after separating the embryoid bodies containing the differentiated mesodermal cells into single cells, the substrate is coated.
  • perivascular progenitor cells from stem cells that naturally grow only cells attached and cultured in a culture dish, perivascular progenitor cells prepared by the above method, prevention or treatment of cardiovascular disease or retinal disease comprising the same as an active ingredient And a method for treating cardiovascular disease or retinal disease using the composition.
  • BM microvascular basement membrane
  • vascular endothelial cells In the vascular system, various types of cells come into contact with the microvascular basement membrane (BM), and these cells interact with vascular endothelial cells to participate in maintaining and determining the characteristics of the microvascular vessels.
  • the cells that interact and specifically distribute between vascular endothelial cells and BM are perivascular progenitor cells.
  • Perivascular progenitor cells are a kind of mesenchymal stem cells and are known to exist in capillaries, precapillaries, posterior capillaries, or collecting ducts of various human tissues such as the placenta, bone marrow, and adipose tissue.
  • perivascular progenitor cells are similar to vascular smooth muscle cells, they are distinguished by markers, shape, and location in contact with the vascular endothelium. In the aorta or vein, vascular smooth muscle cells have a special structure and can be distinguished from perivascular cells because they are separated from BM where extracellular matrix is present. Perivascular progenitor cells, on the other hand, are present in the vascular endothelial basement membrane.
  • Perivascular progenitor cells are known to surround the outer portion of the vascular endothelial by about 10 to 50%. These differences indicate that the degree of enveloping blood vessels varies according to the type and proportion of perivascular progenitor cells and endothelial cells. In skeletal muscle, their ratio is about 1: 100 (perivascular progenitor cells: vascular endothelial cells) and in the retina, the ratio is 1: 1. Perivascular progenitor cells surround the blood vessels most often in the central nervous system microvascular. The reason why the distribution of perivascular progenitor cells in the central nervous system is higher than in other organs is not yet clear, but it is likely that it contributes to the formation and maintenance of the blood-brain barrier.
  • perivascular progenitor cells show morphological diversity depending on the organs present. In the central nervous system, the shape of perivascular progenitor cells is flat or elongated. It appears in a variety of forms, from radioactive perivascular cells that are in contact with the outside of blood vessels to rounded or glomerular mesial cells, or to localized contact with BM.
  • Perivascular progenitor cells can differentiate into vascular smooth muscle cells during vascular growth or remodeling during development, whereas vascular smooth muscle cells can also differentiate into perivascular progenitor cells.
  • Perivascular progenitor cells are also characterized by mesenchymal stem cells with the ability to differentiate into fibroblasts, osteoblasts, chondrocytes and adipocytes. Recently, it has been reported that perivascular progenitor cells identified in the human body have differentiation ability into cardiomyocytes.
  • perivascular progenitor cells Although the existence and role of perivascular progenitor cells have been underestimated for a long time, the perivascular progenitor cells have recently attracted attention as essential elements for the formation of microvascular system by acting as progenitor cells through various differentiation ability. , A key regulator in stabilization, maturation and remodeling. It is also considered an important target in understanding vascular physiology and studying the causes and treatment of vascular diseases. Peripheral progenitor cell studies recently identified in human tissues have identified their new function and emphasize the fact that perivascular progenitor cells have great biological significance. The demand for mass supply of perivascular progenitor cells is increasing. However, there is a lack of typical markers for perivascular progenitor cells, and it is practically impossible to identify enough cells to meet demand in human tissue. In addition, the amount of perivascular progenitor cells in limited tissues does not meet the demand for perivascular progenitor cells.
  • the present inventors have made diligent efforts to find a method for mass production of perivascular progenitor cells. As a result, the present inventors have developed a differentiation technique for obtaining perivascular progenitor cells by applying coating substrate-dependent single cell attachment technology from embryonic bodies derived from human embryonic stem cells. It was. In this process, it was found that high-purity perivascular progenitor cells can be isolated and obtained, thus completing the present invention.
  • An object of the present invention is to treat a BMP4 growth factor in an embryoid body derived from stem cells to differentiate into mesodermal cells, separating the differentiated mesodermal cells into single cells, and coating the substrate thereon. It is to provide a method for producing perivascular progenitor cells from stem cells, comprising the step of culturing in a cultured plate attached only to the cells attached naturally.
  • Another object of the present invention to provide a perivascular progenitor cell prepared by the above method.
  • Another object of the present invention is to provide a method for differentiating the perivascular progenitor cells into perivascular cells, smooth muscle cells, muscle cells, adipocytes or bone cells.
  • Another object of the present invention to provide a pharmaceutical composition for the prevention or treatment of cardiovascular diseases comprising the perivascular progenitor cells as an active ingredient.
  • Another object of the present invention to provide a pharmaceutical composition for the prevention or treatment of retinal diseases, including the perivascular progenitor cells as an active ingredient.
  • perivascular progenitor cells derived from stem cells characterized by natural selection by substrate-specific adhesion culture of the present invention are purely separated without additional processes such as flow cytometry or magnetic cell sorting. It was confirmed that it can be grown by. In addition, it was confirmed that it has a characteristic multipotent ability of perivascular progenitor cells. Therefore, stem cell-derived perivascular progenitor cells prepared by the method of the present invention can be usefully used as a cell therapy composition for the treatment or prevention of cardiovascular diseases or retinal diseases.
  • FIG. 1 is a diagram showing mesoderm specific induced differentiation of BMP4.
  • A shows the induced differentiation of H9 hESC embryoid bodies by BMP4 added from the start of culture (EB day 0) to EB day 8.
  • B shows the percentage of viable cells positive for KDR and PDGFR ⁇ determined by flow cytometry on EB day 6. Bars represent standard error for the mean of three independent experiments compared to the NT group; ** p ⁇ 0.01, *** p ⁇ 0.001.
  • FIG. 2 is a diagram showing substrate dependent adhesion of single cells derived from BMP4-EB.
  • A single cells from undifferentiated H9 hESCs dispensed into cell culture dishes
  • B single cells from EB on day 6 of BMP4 induced differentiation dispensed into uncoated plastic Petri dishes
  • C, D coated with collagen Single cells from naturally-differentiated EBs dispensed into the dish
  • E, F single cells from EBs on day 6 of BMP4 induced differentiation dispensed into collagen coated dishes.
  • Black scale bar 20 ⁇ .
  • Figure 3 is a diagram showing substrate dependent natural selection of PDGFR ⁇ -positive cell populations in BMP4-EB.
  • A shows each cell dispensed in collagen coated dishes after separation of distinct PDGFR ⁇ -positive and negative populations using FACS sorter
  • B shows single cell collagen matrix derived from BMP4-EB without separation
  • Figure shows dependent attachment.
  • Black scale bar 20 ⁇ .
  • Figure 4 is a diagram showing the flow cytometry results of hESC-PVPC.
  • A shows flow cytometry and
  • B shows the overlap of each histogram for 8 independent hESC-PVPCs.
  • Figure 5 shows the generalized perivascular potential of hESC-PVPC.
  • A, B are the results of microscopic analysis of long-term cultured H9 hESC-PVPC and human placenta-induced perivascular cells. Positive for blue DAPI, green NG2, negative for red SMA.
  • E Introduce DiO-labeled hESC-PVPCs to the ablumenal surface of DiI-labeled HUVECs cell lines in vascular induction tunnels using EC-perivascular tube coassembly in three-dimensional collagen matrix.
  • F Bilayer ellipsoid formation of DiO-labeled HUVECs (internal) and DiI-labeled hESC-PVPCs (outer). White scale bar, 20 mm.
  • FIG. 6 is a diagram showing the characteristics of smooth muscle derived from hESC-PVPC.
  • A RT-PCR analysis of ⁇ SMA expression in hESC, hESC-PVPC, PVPC-induced day 2-4 SMLC and mature SMLC
  • Immunocytochemistry shows the expression of ⁇ SMA in hESC (C), SMLC (D) and contractile SMLC (E and F).
  • ⁇ SMA red
  • DAPI blue
  • SM-MHC green, E
  • calponin green, F.
  • Scale bar is 100 ⁇ m.
  • FIG. 7 is a diagram showing the characteristics of myocytes derived from hESC-PVPC. Morphological changes in hESC-PVPC under myocyte differentiation conditions.
  • A, D is hESC-PVPC
  • B, E is myocyte differentiation medium
  • C, D is typical cell morphology in myocyte growth medium, respectively.
  • Black scale bars in (A-C) show 20 ⁇ m (D-F) immunocytochemistry showing myocyte specific Desmin expression. Desmine is red and DAPI is blue.
  • FIG. 9 is a diagram showing the pigment transfer analysis between hESC-PVPC and other vascular systems.
  • DiI-labeled hESC-PVPC top panel: red
  • calcine-labeled HUVEC center panel, left: green
  • UASMC center panel, center: green
  • cardiomyocytes center panel, right: green
  • Calcine's green-fluorescence was detected in hESC-PVPC (bottom panel) with red-fluorescence of DiI (bottom panel: red green, asterisk).
  • FIG. 10 is a diagram showing the improvement of ischemic limb rescue / blood flow in ischemic Fuji after hESC-PVPC transplantation.
  • A shows image analysis showing a series of lower limb recovery on days 0 and 28 after treatment
  • B shows blood perfusion rate of ischemic limbs measured by series of laser Doppler images on days 0 and 28 after treatment. Indicates.
  • FIG. 11 shows capillary density in ischemic myocardium increased by hESC-PVPC transplantation.
  • a to C are representative photographs of the Masson tricolor-stained heart cross-section, (A) sham group injected with medium, (B) group injected with hESC-PVPC and (C) injected CB-EPC Photo for a group.
  • D represents the fibrosis area of the infarct myocardium
  • E the scar length of the infarct myocardium
  • F the capillary density in the infarct myocardium
  • G the infarct wall thickness of the infarct myocardium.
  • H, I represents GS-lectin (green) staining capillaries of the cardiomyopathy region.
  • FIG. 12 shows engraftment in the perivascular region of damaged blood vessels of hESC-PVPC transplanted in diabetic retinal disease model.
  • DiI red
  • STZ streptozotocin
  • Labeled hESC-PVPC was injected into the retina to confirm engraftment after 4 weeks.
  • the animal models used were mice with blood glucose levels of 250 mg / dl or more after the first 5 injections of diabetes (once a day), and were used after 8 weeks of diabetes in consideration of the time required to induce retinopathy. .
  • FITC-labeled dextran FITC-labeled dextran (dextran-FITC, green) was injected into the tail blood vessel before retinal extraction. It was confirmed that the transplanted hESC-PVPC is located in the retina, especially around the vessels of the damaged blood vessels.
  • Figure 13 is a diagram showing the transplantation of hESC-PVPC, human bone marrow-derived mesenchymal stem cells (BM-MSC) and human placenta-derived mesenchymal stem cells (placenta-MSC) in diabetic retinal disease model, and confirmed the engraftment for one month after transplantation to be.
  • BM-MSC human bone marrow-derived mesenchymal stem cells
  • placenta-MSC human placenta-derived mesenchymal stem cells
  • hESC-PVPC is engrafted in the perivascular area and does not cause additional retinal vascular damage.
  • the transplanted cells do not engraft and retinal detachment and lens-retinal stenosis are induced. It was confirmed to lead to death.
  • the present invention comprises the first step of differentiating into mesodermal cells by treating BMP4 growth factor in the stem cell-derived embryonic body (embryoid body); Separating a embryoid body comprising differentiated mesodermal cells into single cells; And a third step of culturing the isolated single cells in a substrate coated with a substrate, thereby proliferating only the attached cells by natural selection.
  • the first step is a step of differentiating mesodermal cells by treating BMP 4 growth factors in embryoid bodies derived from stem cells.
  • the embryoid bodies derived from stem cells differentiated into mesodermal cells are cultured under appropriate differentiation conditions, thereby increasing the cell population in which the expression of mesodermal markers is increased by at least one or more.
  • the expression of mesodermal markers can be detected by biochemical or immunochemical methods, and methods capable of detecting mesodermal markers can be used without limitation.
  • specific polyclonal antibodies or monoclonal antibodies that bind to mesodermal markers can be used.
  • Antibodies targeting individual specific markers can be used commercially and without limitation, those prepared by known methods.
  • Representative mesodermal markers include, but are not limited to, KDR, PDGFR ⁇ / ⁇ CD29, CD31, CD34, CD73, CD90, and CD105.
  • the first step may be performed for 6 to 8 days, preferably for 6 days.
  • KDR and PDGFR ⁇ expression of mesodermal cell markers increased more than 30% and 50%, respectively, in the embryoid body (FIG. 1B).
  • stem cell refers to a pluripotency capable of differentiating into cells derived from endoderm, mesoderm, and ectoderm of an animal, or a cell closely related to tissue or function. It means a cell having a multipotency that can be differentiated into. Means cells that have the ability to self-replicate and differentiate into two or more new cells, and include totipotent stem cells, pluripotent stem cells, and pluripotent stem cells ( multipotent stem cells).
  • embryonic stem cell refers to an embryo that is capable of differentiating into all cells of an animal by extracting an inner cell mass from an blastocyst embryo immediately before implantation into an uterus of a mother. Means a cell having a pluripotency, but is not limited thereto, such as an embryonic body derived from embryonic stem cells or induced pluripotent stem cells (iPS cells) Similar stem cells are also included.
  • iPS cells induced pluripotent stem cells
  • adult stem cell refers to a cell having a multipotency by separating stem cells existing in each tissue and culturing in vitro, and including bone marrow stem cells, retinal stem cells, and M. glial cells in the retina. Cells, neural stem cells, and the like.
  • the stem cells may be derived from mammals including humans and primates, as well as domestic animals such as cattle, pigs, sheep, horses, dogs, mice, rats, and cats, preferably humans.
  • Stem cells of the present invention may be human embryonic stem cells (embryonic stem cells), induced pluripotent stem cells (iPSC) and somatic cell nuclear transfer cells (SCNT), preferably May be an embryonic stem cell, more preferably a human embryonic stem cell.
  • the stem cells may be derived from mammals including humans, and most preferably may be human derived cells.
  • BMP4 refers to a growth factor as a protein encoded by the BMP4 gene in humans.
  • Bond morphogenetic protein (BMP) is a signaling protein belonging to the transforming growth factor- ⁇ (TGF- ⁇ ) superfamily that regulates early fetal differentiation, fetal tissue formation, and maintenance of adult tissue homeostasis.
  • TGF- ⁇ transforming growth factor- ⁇
  • the extracellular secreted BMP binds to type I and type II serine / threonine kinase receptors on the cell membrane to initiate BMP signaling.
  • the type 2 receptor phosphorylates the type 1 receptor, and the phosphorylated type 1 receptor phosphorylates the Smad protein, a substrate in the cell, for intracellular signaling.
  • Smad proteins regulated by receptors are called receptor regulated Smads (R-Smads), and Smad-1, 2, 3, 5 and 8 belong to R-Smad. They bind to Smad-4, a common partner Smad (Co-Smad) in the cell, move into the cell nucleus and bind to transcription factors to regulate transcription of target genes (Yamamoto & Oelgeschlager, Naturwissenschaften, 91: 519-34, 2004 ).
  • embryoid body refers to cell aggregates derived from embryonic stem cells.
  • Cell aggregation occurs by drop culture, untreated cell culture dish culture or stirred culture, which prevents cells from adhering to the surface to form typical colony proliferation.
  • Differentiation begins with aggregation, and cells begin to repeat a limited degree of embryogenicity.
  • the goblet is derived from pluripotent cells and thus can consist of a wide variety of differentiated cell types.
  • differentiation in embryoid bodies despite occurring in a three-dimensional manner, is not very systematic compared to the case of carefully organized normal embryology. Embryos, however, are still good model systems for studying cellular and molecular interactions in the early stages of development, which are still difficult to study. Therefore, in the present invention, the differentiation was induced by treating BMP4 growth factor from the first day of the formation of embryoid bodies to differentiate them into mesodermal cells.
  • meodermal cell refers to cells capable of differentiating into muscle cells, bone cells, chondrocytes, adipocytes, reticular cells or other connective tissue cells, including blood cells, vascular endothelial cells, smooth muscle and myocardium, and the like. it means.
  • the second step is the step of separating the embryoid body containing the differentiated mesodermal cells into single cells, in the present invention, the enzyme was treated for single cell formation of the embryoid body.
  • the enzyme may be used without limitation as long as it can inhibit intercellular binding by degrading cell surface proteins involved in intercellular binding.
  • trypsin, trypsin-EDTA, collagenase, etc. may be used, but is not limited thereto.
  • it may be a hypoallergenic enzyme, more preferably TrypLE (Invitrogen).
  • the isolated single cells are cultured in a substrate coated with a substrate, and only the attached cells are propagated by natural selection.
  • natural selection of the present invention does not use flow cell sorting or magnetic cell sorting techniques, which are used in the art to isolate highly differentiated specific cells. It means to separate naturally by using the inherent characteristics of the cell.
  • flow cytometry or magnetic cell sorting technology there is an advantage in that purity can be confirmed through cell-specific markers.
  • the cost is increased by the use of a variety of reagents, machines, and the like.
  • the method of the present invention does not require a machine or the like, and has the advantage of differentiating without the problem of cell deformation or high cost by using simple natural selection.
  • the natural selection technique of the present invention focuses on the functional characteristics of the cells that can be distinguished, rather than focusing on cell specific markers. Examples are selective cultures due to media suitability or specific surface adhesion.
  • the "substrate" of the present invention can be used without limitation so long as it can help the selective attachment of cells to the culture dish, for example collagen or laminin may be used, preferably collagen may be used.
  • the third step may be performed for 16 to 24 hours, preferably 18 hours.
  • the naturally selected high purity perivascular progenitor cells can continue to proliferate, differentiate into various tissue cells, or be recovered and cryopreserved.
  • 5 mg / ml collagen was coated on a culture plate as a specific substrate.
  • the BMP4 growth factor-induced mesodermal cell embryoid body was subjected to enzymatic treatment and single cell culture, followed by incubation for 18 hours in a collagen-coated culture dish. Thereafter, only the cells specifically attached to collagen were naturally selected through medium exchange.
  • PDGFR ⁇ platelet-derived growth factor receptor ⁇
  • PDGFR ⁇ is a protein that is encoded by the PDGFRB gene in humans.
  • the gene encodes a cell surface tyrosine kinase receptor belonging to the PDGF family.
  • the growth factor is one of specific markers of mesodermal cells as a proliferation agent for mesenchymal-derived cells.
  • the cells before and after the culture by the natural selection technology it is confirmed that the cells proliferated after the culture by the natural selection technology are cultured and grown in high purity only the cells positive for PDGFR ⁇ . This showed similar levels of purity as the selective culture of only cells positive for PDGFR ⁇ by flow cytometry (FIG. 3).
  • the present invention provides a perivascular progenitor cell prepared by the above method.
  • Peripheral progenitor cells prepared by the present invention showed positive expression patterns in the progenitor cell-specific PDGFR, CD44, CD146 and NG2 and mesenchymal stem cell-specific markers CD73 and CD90, etc.
  • the markers CD31 and CD144 and the hematopoietic cell specific markers CD34 and CD45 and the like are not expressed (FIG. 4).
  • the perivascular progenitor cells have differentiation ability into mesenchymal cell-derived differentiated bodies such as cartilage, osteoblasts and adipocytes, smooth muscle cells and myocytes (FIGS. 5 to 8), and are lost when applied as a cell therapy composition in a cardiovascular disease model. Has the potential to recover (FIGS. 10 and 11).
  • progenitor cell refers to a cell capable of asymmetric division and is called a precursor, and because of asymmetric division, even if each cell has the same number of passages, Some are differentiated and some are multiplied, and may differ in age and nature.
  • the perivascular progenitor cells produced by the above method is angiogenic growth factors (angiogenic growth factors), fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF), IGF (insulin-like)
  • angiogenic growth factors angiogenic growth factors
  • FGF fibroblast growth factor
  • VEGF vascular endothelial growth factor
  • IGF insulin-like
  • fetal bovine serum 10 ng / ml angiogenic growth factor, 10 ng / ml FGF, 20 ng / ml VEGF, 10 ng / ml IGF, 10 ng / in EGM-2MV medium. It may be cultured in perivascular cell differentiation medium containing ml EGF, ascorbic acid, GA-1000, but is not limited thereto.
  • pericyte refers to vascular wall cells buried in the basement membrane of the microvascular system, which forms a specific local contact with the vascular endothelium.
  • Connective tissue cells that form around small vessels also called Rouget cells, adventitial cells, or wall cells, are known to surround about 10-50% of the outer area of vascular endothelium. It is a long, narrow contractile cell that surrounds the precarotid artery outside the basement membrane. It is a relatively undifferentiated multipotent cell and functions to support blood vessels. If necessary, they can also be differentiated into fibroblasts, smooth muscle or macrophages. In addition to angiogenesis, it plays an important role in the stability of the blood-brain barrier.
  • Adhesion to cells in the blood vessels has emerged as a blood flow regulator in the microvascular system, and in fact it is possible to regulate blood flow at the capillary level. Therefore, the study of perivascular cells is considered to be an important target for understanding vascular physiology and studying the causes and treatment of vascular diseases.
  • the perivascular progenitor cells produced by the above method is a minimum essential medium non-essential amino acids (NEAA, Invitrogen), penicillin / streptomycin (penicillin / streptomycin; PS, Invitrogen), ⁇ -mercaptoethanol (Invitrogen) provides a method for differentiating perivascular progenitor cells into smooth muscle cells, characterized in that the culture medium.
  • NEAA Invitrogen
  • penicillin / streptomycin penicillin / streptomycin
  • PS Invitrogen
  • ⁇ -mercaptoethanol provides a method for differentiating perivascular progenitor cells into smooth muscle cells, characterized in that the culture medium.
  • it may be cultured in a smooth muscle cell differentiation medium containing 5% FBS, 1% NEAA, 1% PS, 0.1 mM ⁇ -mercaptoethanol in DMEM (Dulbecco's modified eagle medium) medium, but is not limited thereto.
  • smooth muscle cell refers to a muscle without a horizontal pattern in muscle, and all internal organs other than the heart muscle of a vertebrate are smooth muscle. Although contraction rate is slow, it is involuntary muscle that does not feel fatigue easily. It is long and fusiform, rarely multinucleus, but usually has one elliptical nucleus in the center. It is found in various parts of the body, such as the walls of blood vessels and walls of hollow organs such as the stomach, intestines, and uterus. Because it plays a pivotal role in the regulation of various human functions, a number of human diseases are associated with the dysfunction of smooth muscle.
  • the perivascular progenitor cells prepared by the above method is prepared by horse serum (HS, Invitrogen), chicken embryo extract (CEE, Sera Lab, Wales, UK), PS It provides a method for differentiating perivascular progenitor cells into myocytes, characterized in that it is cultured in a culture medium comprising.
  • the medium may be cultured in myocyte differentiation medium containing 10% FBS, 10% HS, 1% CEE, 1% PS in DMEM high glucose (DMEM) medium, but is not limited thereto.
  • myocyte also known as muscle cells (muscle cells) arise from myoblasts (myoblast). Each myocyte contains a long myofibril, a long chain of sarcomere, and a contraction unit of the cell. Myocytes have a variety of differentiated forms of varying properties, including heart, skeleton, or smooth muscle cells.
  • the perivascular progenitor cells prepared by the above method is insulin (Sigma-Aldrich), dexamethasone (Sigma-Aldrich), isobutylmethylxanthine (Sigma-Aldrich), India It provides a method for differentiating perivascular progenitor cells into adipocytes, which is characterized by culturing in a culture medium containing metasin (indomethacin, Sigma-Aldrich).
  • DMEM medium Preferably in low glucose DMEM medium can be cultured in adipocyte differentiation medium containing 10% FBS, 5 ⁇ g / ml insulin, 1 ⁇ M dexamethasone, 0.5 mM isobutylmethyl xanthine, 60 ⁇ M indomethacin, but is not limited thereto. no.
  • adipocyte refers to the major cells that make up adipose tissue that stores energy in the form of fat. It exists in two forms: white fat cells, which contain large fat droplets surrounded by a cytoplasmic layer, and polygonal brown fat cells, which contain a significant amount of cytoplasm, evenly dispersed fat droplets. White adipocytes secrete proteins that act as adipokine, such as resistin, adiponectin and leptin.
  • the perivascular progenitor cells produced by the above method is cultured in a culture medium containing dexamethasone, ⁇ -glycerophosphate, ascorbic acid-2-phosphate It provides a method for differentiating into bone cells.
  • the present invention may be cultured in low concentration glucose DMEM medium in osteoblast differentiation medium containing 10% FBS, 1 ⁇ M dexamethasone, 10 mM ⁇ -glycerophosphate, 60 ⁇ M ascorbic acid-2-phosphate, but not limited thereto. .
  • osteocyte of the present invention is a star-shaped cell that is most abundant in dense bone tissue and includes a thin ring of nucleus and cytoplasm. Osteoblasts are trapped in the secreted matrix and form bone cells. Bone cells connect to each other through long cytoplasmic kidneys that fill small ducts called microtubules that are used to exchange nutrients and waste through gap junctions. On the other hand, osteocytes are reduced in their ability to synthesize, do not mitosis, are produced in the mesenchyme, and hydroxyapatite, calcium carbonate, and calcium phosphate accumulate around the cells.
  • the present invention provides a pharmaceutical composition for the prevention or treatment of cardiovascular diseases comprising the prepared perivascular progenitor cells as an active ingredient.
  • prevention of the present invention means any action that inhibits or delays the onset of cardiovascular disease by the administration of the pharmaceutical composition according to the present invention
  • treatment refers to cardiovascular disease by the administration of the pharmaceutical composition It means any action that improves or beneficially changes the symptoms caused by it.
  • the composition of the present invention can be used without limitation in the prevention or treatment of cardiovascular diseases.
  • cardiovascular disease of the present invention includes heart disease and vascular disease, and refers to a disease that occurs in the arteries and veins including the heart and affects the heart and blood vessels. Risk factors such as hyperlipidemia, diabetes and smoking are all causes of blood vessel damage and can lead to cardiovascular disease. However, there are usually no clear symptoms, usually called silent disease. Most of the conditions are already severe when symptoms begin to develop asymptomatically and worsen without awareness. Many of these cardiovascular diseases are also associated with adult diseases.
  • Examples include hyperlipidemia, in which blood cholesterol and fat components are accumulated in blood vessels due to poor blood circulation, arteriosclerosis, which hardens as the arteries age, and high blood pressure caused by high pressure during the contraction and relaxation of the heart.
  • Representatives include hypotension, angina caused by pericardial coronary artery disease, and myocardial infarction caused by heart muscle abnormalities.
  • cardiovascular diseases treatable by the present invention include, for example, heart failure, hypertensive heart disease, arrhythmia, heart valve disease, ventricular septal defect, congenital heart disease, cardiomyopathy, pericardial disease, stroke, peripheral vascular disease, aneurysm, arteriosclerosis, Coronary artery disease or high blood pressure may be included, but is not limited thereto.
  • the perivascular progenitor cells of the present invention implanted in the mouse has an effect of improving ischemic limb relief / blood flow in ischemic Fuji (FIG. 10). It was also confirmed that there is an effect of increasing the capillary density in the ischemic myocardium (FIG. 11). Therefore, it was confirmed that perivascular progenitor cells derived from stem cells of the present invention have the potential to treat cardiovascular diseases as cell therapy compositions.
  • composition of the present invention may be used interchangeably with "cell therapy composition”, which is a cell and tissue prepared through isolation, culture and special manipulation from humans, which is used for the purpose of treatment, diagnosis and prophylaxis.
  • cell therapy composition which is a cell and tissue prepared through isolation, culture and special manipulation from humans, which is used for the purpose of treatment, diagnosis and prophylaxis.
  • U.S. FDA Regulations treats, diagnoses, and treats live, autologous, or heterologous cells in vitro or otherwise alters the biological properties of cells to restore the function of cells or tissues. Means a drug used for the purpose of prevention.
  • the cell therapy composition of the present invention may further comprise a pharmaceutically acceptable carrier.
  • “Pharmaceutically acceptable” means that the cells or humans exposed to the composition are not toxic.
  • the carrier can be used without limitation so long as it is known in the art such as buffers, preservatives, analgesics, solubilizers, isotonic agents, stabilizers, bases, excipients, lubricants, preservatives and the like.
  • the pharmaceutical compositions of the present invention can be prepared according to techniques commonly used in the form of various formulations.
  • the cell therapy agent of the composition of the present invention can be administered by any route as long as it can induce migration to the disease site. In some cases, one may consider loading the vehicle with a means for directing stem cells to the lesion.
  • compositions of the present invention may be used topically (including buccal, sublingual, skin and intraocular administration), parenteral (including subcutaneous, intradermal, intramuscular, instillation, intravenous, intraarterial, intraarticular and cerebrospinal fluid) or transdermal administration. It can be administered through several routes, including parenteral, most preferably directly to the affected area.
  • the stem cells can be administered to a subject by suspending it in a suitable diluent at a concentration of about 1 ⁇ 10 3 to 5 ⁇ 10 6 cells / ml, which dilution protects and maintains the cells and upon injection into the desired tissue. Used for ease of use.
  • the diluent may include a saline solution, a phosphate buffer solution, a buffer solution such as HBSS, plasma, cerebrospinal fluid, or a blood component.
  • the pharmaceutical composition can be administered by any device such that the active substance can migrate to the target cell. Preferred modes of administration and preparations are injections.
  • Injections include aqueous solvents such as physiological saline solution, ring gel solution, Hank's solution or sterilized aqueous solution, vegetable oils such as olive oil, higher fatty acid esters such as ethyl oleic acid, and non-aqueous solvents such as ethanol, benzyl alcohol, propylene glycol, polyethylene glycol or glycerin
  • aqueous solvents such as physiological saline solution, ring gel solution, Hank's solution or sterilized aqueous solution
  • vegetable oils such as olive oil
  • higher fatty acid esters such as ethyl oleic acid
  • non-aqueous solvents such as ethanol, benzyl alcohol, propylene glycol, polyethylene glycol or glycerin
  • non-invasive agents known in the art, suitable for the barrier to pass through, for mucosal permeation, and ascorbic acid, sodium hydrogen sulfite, BHA, tocopherol, EDTA as
  • an emulsifier a buffer for pH adjustment, phenyl mercury nitrate, chimerosal, benzalkonium chloride, phenol, cresol, benzyl alcohol, and the like, and a pharmaceutical carrier such as a preservative for preventing the growth of microorganisms.
  • the present invention provides a pharmaceutical composition for the prevention or treatment of retinal diseases, including the prepared perivascular progenitor cells as an active ingredient.
  • prevention of the present invention means any action that inhibits or delays the onset of retinal disease by the administration of the pharmaceutical composition according to the present invention
  • treatment refers to retinal disease by the administration of the pharmaceutical composition It means any action that improves or beneficially changes the symptoms caused by it.
  • the composition of the present invention can be used for the prevention or treatment of retinal diseases.
  • retinal disease refers to a disease caused by abnormal regeneration of vascular endothelial cells due to impaired pericyte or retinal degeneration due to leakage of blood or body fluids. Thus, it can be treated by implanting perivascular or differentiateable cells into the retina.
  • retinal diseases treatable by the present invention include wet age related macular degeneration (neovascular or exudative AMD), glaucoma, diabetic retinopathy, wet age related retinopathy, Retinopathy of prematurity, but is not limited thereto.
  • the perivascular progenitor cells derived from the stem cells of the present invention transplanted into the retina of the diabetic retinal disease mouse model have an effect of engulfing the perivascular vessels of the damaged blood vessels to alleviate the damage.
  • FIG. 12 when compared with the transplantation of adult-derived stem cells, the transplanted adult-derived stem cells did not engraft in the desired location, it was confirmed that causing retinal detachment, lens-retinal stenosis excessive inflammatory reactions leading to death (Fig. 13). ). Therefore, it was confirmed that the perivascular progenitor cells derived from the stem cells of the present invention have the potential to treat retinal diseases as cell therapy compositions.
  • the present invention provides a method for preventing or treating a cardiovascular disease of a subject, comprising administering the pharmaceutical composition for preventing or treating the cardiovascular disease to a subject in need thereof.
  • the term "individual" of the present invention means any animal including a human having or may develop a cardiovascular disease as described above, and can effectively prevent or treat the diseases by administering the pharmaceutical composition of the present invention to an individual.
  • the pharmaceutical composition of the present invention can be administered in parallel with existing therapeutic agents.
  • administration means introducing a predetermined substance into a patient in an appropriate manner, and the route of administration of the composition may be administered via any general route as long as it can reach the target tissue.
  • Intraperitoneal administration intravenous administration, intramuscular administration, subcutaneous administration, intradermal administration, oral administration, topical administration, nasal administration, pulmonary administration, rectal administration, but is not limited thereto.
  • compositions of the present invention may be administered by any device in which the active substance may migrate to target cells.
  • Preferred modes of administration and preparations are intravenous, subcutaneous, intradermal, intramuscular, injectable and the like.
  • Injections include non-aqueous solvents such as aqueous solvents such as physiological saline solution and ring gel solution, vegetable oils, higher fatty acid esters (e.g., oleic acid, etc.), and alcohols (e.g., ethanol, benzyl alcohol, propylene glycol, glycerin, etc.).
  • Stabilizers e.g.
  • Preservatives eg, mercury nitrate, chimerosal, benzalkonium chloride, phenol, cresol, benzyl alcohol, etc. may be included.
  • the present invention provides a method for preventing or treating a cardiovascular disease of an individual, comprising administering the pharmaceutical composition for preventing or treating the retinal disease to an individual in need thereof.
  • the present invention provides a use of the stem cell-derived perivascular progenitor cells for the prevention or treatment of cardiovascular diseases.
  • the present invention provides a use for the preparation of a cardiovascular disease therapeutic agent of the stem cell-derived perivascular progenitor cells.
  • the present invention provides a use for the prevention or treatment of retinal disease of the stem cell-derived perivascular progenitor cells.
  • the present invention provides a use for the manufacture of a therapeutic agent for retinal disease of the stem cell-derived perivascular progenitor cells.
  • a culture dish (Nunc, Roskide, Denmark) coated with undifferentiated human embryonic stem cells (H9, CHA11-hESC) with 0.1% gelatin, mitomycin C (Sigma, St. Louis, MO, USA) was cocultured with mouse embryonic fibroblasts (MEFs) prepared by treatment at a concentration of 10 ⁇ g / ml for 90 minutes as support cells.
  • H9 human embryonic stem cells
  • CHA11-hESC undifferentiated human embryonic stem cells
  • mitomycin C Sigma, St. Louis, MO, USA
  • hESC is DMEM / F12 (50:50, Invitrogen, Carlsbad, CA, USA), 20% (v / v) serum replacement (SR), 1% non-essential amino acid (Invitrogen), 1% penicillin strepto A culture consisting of mycin (Invitrogen), 0.1% beta-mercaptoethanol (Invitrogen), 4 ng / ml bFGF (basix fibroblast growth factor; Invitrogen) was used. The culture was replaced every day, subcultured to new support cells every 5-7 days, cell culture was incubated while maintaining 37 °C, 5% carbon dioxide, 95% humidity.
  • human embryonic stem cells were separated from support cells with dispase, transferred to a new culture dish (Falcon / BD Biosciences, San Jose, CA, USA), washed once, and washed with DMEM / Aggregation was induced by suspension for 45 minutes in a culture medium in which 2% (v / v) serum replacement (SR; Invitrogen) was added to F12 (50:50, Invitrogen).
  • SR v / v
  • F12 50:50, Invitrogen
  • Aggregated embryoid bodies were 10% (v / v) SR, 1 mM L-glutamine (Invitrogen), 1% nonessential amino acid (NEAA; Invitrogen), 1% penicillin streptomycin (Invitrogen), 0.1% beta Transfer to culture medium composed of mercaptoethanol (Invitrogen) was suspended in culture. Cultures were replaced every other day and maintained for 5-6 days.
  • Example 3 Increase of Mesodermal Cell Population in Embryos by BMP4 Growth Factor Treatment
  • DMEM DMEM with 1 mM L-glutamine, 1% non-essential amino acid, 0.1% beta-mercaptoethanol and 10% SR added on the first day of embryoid formation to differentiate embryoid bodies prepared by the above method into mesodermal cells
  • the / F12 culture was treated with 20 ng / ml BMP4 growth factor (Peprotech Inc., Rocky Hill, NJ, USA), and was replaced with the cultured BMP4 growth factor once every two days from the next day.
  • Example 4 Single Cellization of Mesodermal Embryos by Hypoallergenic Enzyme Treatment
  • the average number of embryoid bodies obtained from human embryonic stem cells maintained in one 60 mm culture dish is 80 to 100, and one embryonic body is composed of 2,500 cells on average. Therefore, in one step of the present invention, embryonic bodies obtained from human embryonic stem cells of six 60 mm culture dishes on average are 500 to 600, and single cells obtained from them are 1.5 to 2 ⁇ 10 6 .
  • FIG. 2A shows undifferentiated H9 hESC single cells dispensed in a cell culture dish
  • FIG. 2B shows spontaneous differentiation of single cells from EB on day 6 of BMP4 induction dispensed in an uncoated plastic Petri dish
  • 2C and 2D in collagen coated dishes
  • Single cells from EBs, and 2E and 2F are micrographs of single cells from EB on day 6 of BMP4 induction dispensed into collagen coated dishes.
  • 2C and 2D show a non-uniform cell population in which epithelial cells and fibrous cells are observed together
  • FIGS. 2E and 2F show a uniform cell population.
  • Single cells prepared in Example 4 were incubated overnight in a cell culture apparatus at 37 ° C., 5% carbon dioxide conditions with EGM2-MV (Lonza) medium in a pre-prepared collagen coated culture dish.
  • Single cells cultured in the above process is divided into floating and adherent population, the floating population was removed by natural selection through phosphate buffer solution and medium exchange process.
  • cells attached through natural selection were set to passage 0. It is passaged every 2 to 3 days and propagates from passage 0 to passage 3 within 10 days of culture.
  • 1.5 to 2 ⁇ 10 6 single cells are attached to 50 to 80% in a 35 mm collagen-coated culture dish, and in passage 3 to 3 to 5 ⁇ 10 7 in five T-75 flasks. Multiplies.
  • Collagen used in the coating was a distilled water dilution solution of a collagen solution (Stem Cell Tech.) Of 3 mg / ml concentration.
  • the collagen coating for passage 0 used a 5-fold diluted collagen solution, and subsequent passages used a 20-fold diluted collagen solution.
  • the coating was performed by exposing the culture dish to the collagen solution of the corresponding concentration for at least 1 hour at a sterile work table at room temperature.
  • FIG. 3A flow cytometry is shown in FIG. 3A for the types of cells cultured by categorizing positive and negative cell populations according to the expression level of PDGFR ⁇ with a flow cytometer.
  • FIG. 3B cells cultured according to the natural selection method of the present invention is shown in Figure 3B. From the flow cytometry results after several days of culture, substrate specific natural selection, which is a characteristic step of the culturing method of the present invention, is capable of pure separation of perivascular progenitor cells without additional processes such as flow cytometry or magnetic cell sorting. Confirmed.
  • Example 6 Search for marker markers of perivascular progenitor cells
  • Cells prepared through the procedure of Examples 1 to 5 were analyzed by a flow cytometer (FACSCalibur flow cytometer; BD Bioscience, San Jose, CA, USA) using the markers of perivascular progenitor cells.
  • Cells cultured in passage 3 were suspended using Tryp-LE, a hypoallergenic enzyme, transferred to an Eppendorf tube, washed with phosphate buffer solution and filtered using a 35 ⁇ m nylon mesh cell filter to 2% fetal bovine serum.
  • Flow cytometry was performed after floating with phosphate buffer solution containing (Terracell, Webtec Inc., Charltte, NC, USA).
  • Control markers include IgG isotype (PE, APC; BD Biosciences), other PDGFR ⁇ (PE; R & D systems), PDGFR ⁇ (PE; R & D systems), CD44 (PE, APC; R & D systems), KDR (PE; R & D systems) ), Tie-2 (PE; R & D systems), Flt-1 (PE; R & D systems), VE-CAD (PE; R & D systems), CD31 (PE; R & D systems), CD146 (PE; R & D systems), NG2 ( PE; R & D systems), CD34 (PE; R & D systems), CD45 (PE; R & D systems), CD105 (PE; R & D systems), CD90 (PE; R & D systems), CXCR4 (PE; R & D systems), SSEA4 (PE; R & D systems) and CD133 (APC; Miltenyi Biotec Inc.) were used.
  • FIG. 4a The flow cytometry results are shown in FIG. 4.
  • the perivascular progenitor cells of the present invention are positive for PDGFR ⁇ , PDGFR ⁇ , CD44, CD73, CD90, CD105, CD146, NG2, KDR, Tie2 and Flt1, and CD31, CD34, CD45, CD133, CD144 , CXCR4 and c-kit showed a negative immune phenotype.
  • Peripheral progenitor cells identified by the method of Example 6 were continuously treated with 5% FBS, 10 ng / ml angiogenic growth factors, 10 ng / ml FGF, 20 ng / ml VEGF, 10 ng / ml IGF, 10 ng / ml
  • EGM-2MV SingleQuots, Cambrex Bio Science
  • FIG. 5A H9 hESC-PVPC
  • FIG. 5B human placenta-induced perivascular cells
  • FIG. 5C and FIG. 5D NG2 (Green, a specific marker of perivascular cells).
  • SMA adult tissue specific marker SMA
  • Peripheral vascular progenitor cells formed by co-culture of vascular endothelial cells and human embryonic stem cell-derived vascular endothelial progenitor cells in the three-dimensional collagen gel of FIG. 5E and the low adhesion culture dish of FIG. 5F (FIG. In 5E, the vascular morphology and in FIG. 5F were located outside of the elliptic inner cell mass, that is, in the perivascular region.
  • Perivascular progenitor cells identified by the method of Example 6 were differentiated in DMEM medium containing smooth muscle cell differentiation medium, that is, 5% FBS, 1% NEAA, 1% PS, 0.1 mM ⁇ -mercaptoethanol, It was shown that the perivascular progenitor cells of the invention are capable of differentiating into smooth muscle cells.
  • the expression of ⁇ SMA, a smooth muscle cell specific marker, was confirmed by RT-PCR, real-time PCR and immunocytochemistry by comparing with mature SMLC.
  • FIGS. 6A and 6B show that the smooth muscle differentiation medium gradually increases with the days of induction of differentiation.
  • Immunofluorescence staining in perivascular progenitor cells prior to differentiation ⁇ SMA was not expressed, but was expressed as it was differentiated into smooth muscle cells (FIGS. 6C and 6D).
  • 6E and 6F showed that the mature smooth muscle cell specific markers SM-MHC (FIG. 6E, green) and calponin (FIG. 6F, green) were simultaneously expressed with ⁇ SMA.
  • Peripheral progenitor cells identified by the method of Example 6 were cultured in high glucose DMEM medium containing 10% FBS, 10% HS, 1% CEE and 1% PS to differentiate into myocytes.
  • 7A and 7D show the perivascular progenitor cells prior to differentiation
  • FIGS. 7B and 7E show the cells that differentiate into myocytes in the myogenic differentiation medium
  • FIGS. 7C and 7F finally show the morphology of muscle fibers under muscle growth medium.
  • myocyte-specific marker desmine (red) was used.
  • Peripheral progenitor cells identified by the method of Example 6 were 10% FBS, 5 ⁇ g / ml insulin, 1 ⁇ M dexamethasone, 0.5 mM isobutylmethylxanthine, and 60 ⁇ M indomethacin and 10% of low glucose DMEM medium.
  • Adipocytes generated by differentiation under the above conditions were identified by oil red staining, and bone cells by alizarin red staining, which are shown in FIG. 8.
  • hESC-PVPC human embryonic stem cell-derived vascular periphery progenitor cells
  • Calcine is a fluorescence that is only transferred through gap-junction, which is part of cellular interactions. Thus, intercellular gap-junction formation is necessary for the transfer of calcine labeled in other cardiovascular cells to hESC-PVPC.
  • DiI-labeled hESC-PVPC (FIG. 9, top panel, red) was calcine-labeled HUVEC (FIG. 9, middle panel left, green), UASMC (FIG. 9, middle panel center, green) or cardiomyocytes (FIG. 9, center).
  • HESC-PVPC Human embryonic stem cell-derived perivascular progenitor cells
  • FIG. 11 shows increased capillary density in ischemic myocardium with hESC-PVPC transplantation.
  • Heart sections of the Siamese group injected with media FIG. 11A
  • the experimental group implanted with hESC-PVPC FIG. 11B
  • the comparative group injected with CB-EPC FIG. 11C
  • 11D-11G show a decrease in infarct myocardial fibrosis area and infarct myocardial scar length and increase in capillary density and infarct wall thickness in infarct myocardium due to hESC-PVPC transplantation.
  • 11H and 11I show staining of cardiomyopathy site capillary with GS-lectin (green). From the series of results, it was confirmed that the recovery effect of ischemic myocardial infarction through capillary regeneration in the hESC-PVPC transplantation experimental group.
  • perivascular progenitor cells of the present invention can treat cardiovascular disease.
  • hESC-PVPC was transplanted into mice induced with diabetic retinopathy to confirm the therapeutic effect.
  • streptozotocin streptozotocin, STZ
  • STZ streptozotocin
  • Diabetes-induced model was used to measure the blood glucose level after the first five times (once a day) STZ was used to select mice with a value of 250 mg / dl or more, in consideration of the time required to induce retinopathy Those after 8 weeks were used.
  • hESC-PVPC labeled with DiI red
  • engraftment was confirmed 4 weeks after injection into the retina.
  • FITC-labeled dextran (dextran-FITC, green) was injected into the tail blood vessel before retinal extraction.
  • the transplanted hESC-PVPC was engrafted into the retina, and was found to be located particularly around the vessel of the damaged blood vessel.
  • BM-MSCs Human bone marrow-derived mesenchymal stem cells
  • placenta-derived mesenchymal stem cells placenta-derived mesenchymal stem cells
  • hESC-PVPC is engrafted in the perivascular area and does not cause additional retinal vascular damage.
  • the transplanted cells do not engraft and retinal detachment and lens-retinal stenosis are induced. It was confirmed to lead to death. This is shown in FIG. 13.
  • the red label in the adult-derived mesenchymal stem cell transplant group in the figure is due to the autofluorescence of immune cells by inflammatory responses, not by DiI. It is clearly green-green luminescence that exists inside the retinal vessels regardless of cell transplantation pathway.
  • perivascular progenitor cells of the present invention have excellent engraftment ability in the retina, and thus can treat retinal diseases that are not regenerated after perivascular cells are damaged.

Abstract

The present invention relates to a method for preparing perivascular progenitor cells from stem cell embryoid bodies, a cell therapy composition for preventing or treating cardiovascular diseases or retinal diseases containing the same as an active ingredient, and a method for treating cardiovascular diseases or retinal diseases using the composition, and more specifically, to a method for preparing perivascular progenitor cells from stem cells comprising the steps of: treating stem cell embryoid bodies with the BMP4 growth factor to induce the differentiation thereof into mesodermal cells; separating embryoid bodies containing the differentiated mesodermal cells into single cells; and culturing the same in a substrate-coated culture dish to proliferate only the adhered cells by natural selection, and to perivascular progenitor cells prepared by the method, a cell therapy composition for preventing or treating cardiovascular diseases or retinal diseases containing the same as an active ingredient, and a method for treating cardiovascular diseases or retinal diseases using the composition.

Description

인간 배아줄기세포 유래 혈관주위 전구세포의 제조방법 및 이를 포함하는 세포치료 조성물Method for preparing human embryonic stem cell-derived perivascular progenitor cells and cell therapy composition comprising the same
본 발명은 줄기세포 유래의 배상체로부터 혈관주위 전구세포를 제조하는 방법, 상기 방법으로 제조된 혈관주위 전구세포, 이를 유효성분으로 포함하는 심혈관 질환 또는 망막질환의 예방 또는 치료용 세포치료 조성물, 및 상기 조성물을 이용하여 심혈관 질환 또는 망막질환을 예방 또는 치료하는 방법에 관한 것이다. 보다 구체적으로, 줄기세포 유래의 배상체에 BMP4 성장인자를 처리하여 중배엽성 세포로의 분화를 유도하고, 상기 분화된 중배엽성 세포를 포함하는 배상체를 단일세포로 분리한 후, 기질이 코팅된 배양접시에 배양하여 부착된 세포만을 자연선택으로 증식시키는 줄기세포로부터의 혈관주위 전구세포 제조방법, 상기 방법으로 제조된 혈관주위 전구세포, 이를 유효성분으로 포함하는 심혈관 질환 또는 망막질환의 예방 또는 치료용 세포치료 조성물, 및 상기 조성물을 이용하여 심혈관 질환 또는 망막질환을 치료하는 방법에 관한 것이다.The present invention is a method for producing perivascular progenitor cells from stem cells derived embryonic body, perivascular progenitor cells prepared by the above method, cardiovascular disease comprising the same as an active ingredient Or it relates to a cell therapy composition for the prevention or treatment of retinal disease, and a method for preventing or treating cardiovascular disease or retinal disease using the composition. More specifically, the stem cell-derived embryonic bodies are treated with BMP4 growth factors to induce differentiation into mesodermal cells, and after separating the embryoid bodies containing the differentiated mesodermal cells into single cells, the substrate is coated. Method for producing perivascular progenitor cells from stem cells that naturally grow only cells attached and cultured in a culture dish, perivascular progenitor cells prepared by the above method, prevention or treatment of cardiovascular disease or retinal disease comprising the same as an active ingredient And a method for treating cardiovascular disease or retinal disease using the composition.
혈관계에는 다양한 종류의 세포들이 미세혈관(microvascular) 기저막(basement membrane; BM)과 닿아 있으며, 이러한 세포들은 혈관내피세포들과 상호작용하여 미세혈관들의 특징을 유지하고 결정하는데 관여하게 된다. 이런 세포들 중 혈관내피세포와 BM 사이에서 상호작용하며 특이하게 분포하는 세포가 바로 혈관주위 전구세포(perivascular progenitor cell)이다. 혈관주위 전구세포는 중간엽 줄기세포의 일종으로 태반, 골수 및 지방조직 등 여러 인체 조직의 모세혈관, 전모세관동맥, 후모세관동맥 또는 집합관에 존재하는 것으로 알려져 있다. 비록 혈관주위 전구세포는 혈관 평활근세포와 유사한 면이 있지만, 마커, 모양 그리고 혈관내피와 접촉하고 있는 위치 등을 통하여 구분된다. 대동맥 혹은 정맥에서 혈관 평활근세포는 특별한 구조를 이루며, 세포 외 기질이 존재하는 BM과 분리되어있어 혈관주위세포와 구별될 수 있다. 반면, 혈관주위 전구세포는 혈관내피 기저막 내에 존재한다.In the vascular system, various types of cells come into contact with the microvascular basement membrane (BM), and these cells interact with vascular endothelial cells to participate in maintaining and determining the characteristics of the microvascular vessels. Among these cells, the cells that interact and specifically distribute between vascular endothelial cells and BM are perivascular progenitor cells. Perivascular progenitor cells are a kind of mesenchymal stem cells and are known to exist in capillaries, precapillaries, posterior capillaries, or collecting ducts of various human tissues such as the placenta, bone marrow, and adipose tissue. Although perivascular progenitor cells are similar to vascular smooth muscle cells, they are distinguished by markers, shape, and location in contact with the vascular endothelium. In the aorta or vein, vascular smooth muscle cells have a special structure and can be distinguished from perivascular cells because they are separated from BM where extracellular matrix is present. Perivascular progenitor cells, on the other hand, are present in the vascular endothelial basement membrane.
혈관주위 전구세포는 혈관내피의 바깥쪽 부위를 10 내지 50% 가량 둘러싸고 있는 것으로 알려져 있다. 이러한 차이는 혈관주위 전구세포와 혈관내피세포의 형태와 비율에 따라 혈관을 둘러싸고 있는 정도가 다르다는 것을 보여준다. 골격근에서 이들의 비율은 1:100(혈관주위 전구세포:혈관내피세포) 정도이며 망막에서는 그 비율이 1:1에 달한다. 혈관주위 전구세포가 혈관을 가장 많이 둘러싸고 있는 곳은 중추신경계에 존재하는 미세혈관이다. 다른 기관보다 중추신경계에 혈관주위 전구세포의 분포가 높은 이유는 아직 분명하지 않지만, 아마도 뇌혈관장벽(blood-brain barrier)의 형성과 유지에 기여할 것이라는 가능성이 있다. 또한, 혈관주위 전구세포는 존재하는 기관에 따라 형태적인 다양성이 나타난다. 중추신경계에서 혈관주위 전구세포의 형태는 평평하거나 길쭉한 모양이다. 그리고 혈관 바깥쪽 부위에 접촉하고 있는 방사성 형태를 가진 혈관주위세포에서부터 사구체의 사구체 관막세포(mesangial cell)처럼 둥글거나, BM에 국지적인 접촉을 하고 있는 형태까지 다양하게 나타난다.Perivascular progenitor cells are known to surround the outer portion of the vascular endothelial by about 10 to 50%. These differences indicate that the degree of enveloping blood vessels varies according to the type and proportion of perivascular progenitor cells and endothelial cells. In skeletal muscle, their ratio is about 1: 100 (perivascular progenitor cells: vascular endothelial cells) and in the retina, the ratio is 1: 1. Perivascular progenitor cells surround the blood vessels most often in the central nervous system microvascular. The reason why the distribution of perivascular progenitor cells in the central nervous system is higher than in other organs is not yet clear, but it is likely that it contributes to the formation and maintenance of the blood-brain barrier. In addition, perivascular progenitor cells show morphological diversity depending on the organs present. In the central nervous system, the shape of perivascular progenitor cells is flat or elongated. It appears in a variety of forms, from radioactive perivascular cells that are in contact with the outside of blood vessels to rounded or glomerular mesial cells, or to localized contact with BM.
혈관주위 전구세포는 발달 과정 중에 혈관이 성장하거나 리모델링이 되는 과정에서 혈관 평활근세포로 분화가 가능하며, 반대로 혈관 평활근세포 역시 혈관주위 전구세포로 분화가 가능하다. 또한 혈관주위 전구세포는 섬유아세포, 조골세포, 연골세포 그리고 지방세포 등으로 분화될 수 있는 능력을 가진 중간엽 줄기세포의 특성도 지닌다. 최근에는 인체에서 동정된 혈관주위 전구세포가 심근세포로의 분화능을 가지는 것으로 보고되었다.Perivascular progenitor cells can differentiate into vascular smooth muscle cells during vascular growth or remodeling during development, whereas vascular smooth muscle cells can also differentiate into perivascular progenitor cells. Perivascular progenitor cells are also characterized by mesenchymal stem cells with the ability to differentiate into fibroblasts, osteoblasts, chondrocytes and adipocytes. Recently, it has been reported that perivascular progenitor cells identified in the human body have differentiation ability into cardiomyocytes.
오랜 기간 동안 혈관주위 전구세포의 존재와 역할이 과소평가 되었지만, 최근 혈관주위 전구세포는 다양한 분화능력을 통해 전구세포로써 역할을 수행함으로써 미세혈관계의 형성에 꼭 필요한 요소로서 주목받고 있으며, 혈관의 발생, 안정화, 성숙 및 리모델링에 중요한 조절자로 인식되고 있다. 또한 이는 혈관생리학을 이해하고, 혈관질환의 원인과 치료법을 연구하는데 있어 중요한 타깃으로 여겨지고 있다. 최근 인체조직에서 동정된 혈관주위 전구세포 연구들은 이들의 새로운 기능을 규명하고 있으며, 혈관주위 전구세포가 생물학적으로 큰 의미를 갖는다는 사실을 강조하고 있다. 이에 혈관주위 전구세포의 대량 공급에 대한 요구가 증가하고 있다. 하지만, 혈관주위 전구세포에 대한 전형적인 마커들이 부족하고, 인체 조직에서 수요에 맞는 충분한 세포를 동정하는 것은 현실적으로 불가능하다. 아울러, 한정적인 조직 내의 혈관주위 전구세포의 양은 혈관주위 전구세포에 대한 요구에 미치지 못하고 있다.Although the existence and role of perivascular progenitor cells have been underestimated for a long time, the perivascular progenitor cells have recently attracted attention as essential elements for the formation of microvascular system by acting as progenitor cells through various differentiation ability. , A key regulator in stabilization, maturation and remodeling. It is also considered an important target in understanding vascular physiology and studying the causes and treatment of vascular diseases. Peripheral progenitor cell studies recently identified in human tissues have identified their new function and emphasize the fact that perivascular progenitor cells have great biological significance. The demand for mass supply of perivascular progenitor cells is increasing. However, there is a lack of typical markers for perivascular progenitor cells, and it is practically impossible to identify enough cells to meet demand in human tissue. In addition, the amount of perivascular progenitor cells in limited tissues does not meet the demand for perivascular progenitor cells.
본 발명자들은 혈관주위 전구세포의 대량 제조 방법을 찾기 위해 예의 노력한 결과, 인간 배아줄기세포로부터 유래된 배상체로부터 코팅기질 의존 단일세포 부착기술을 적용하여 혈관주위 전구세포를 얻을 수 있는 분화기술을 개발하였다. 이 과정에서 고수율로 순도 높은 혈관주위 전구세포를 분리, 획득할 수 있음을 발견하고, 이에 본 발명을 완성하였다.The present inventors have made diligent efforts to find a method for mass production of perivascular progenitor cells. As a result, the present inventors have developed a differentiation technique for obtaining perivascular progenitor cells by applying coating substrate-dependent single cell attachment technology from embryonic bodies derived from human embryonic stem cells. It was. In this process, it was found that high-purity perivascular progenitor cells can be isolated and obtained, thus completing the present invention.
본 발명의 목적은 줄기세포 유래의 배상체(embryoid body)에 BMP4 성장인자를 처리하여 중배엽성 세포로의 분화시키는 단계, 상기 분화된 중배엽성 세포를 단일세포로 분리하는 단계, 및 이를 기질이 코팅된 배양접시에서 배양하여 부착된 세포만 자연선택으로 증식시키는 단계를 포함하는, 줄기세포로부터 혈관주위 전구세포를 제조하는 방법을 제공하는 것이다.An object of the present invention is to treat a BMP4 growth factor in an embryoid body derived from stem cells to differentiate into mesodermal cells, separating the differentiated mesodermal cells into single cells, and coating the substrate thereon. It is to provide a method for producing perivascular progenitor cells from stem cells, comprising the step of culturing in a cultured plate attached only to the cells attached naturally.
본 발명의 다른 목적은 상기 방법으로 제조된 혈관주위 전구세포를 제공하는 것이다.Another object of the present invention to provide a perivascular progenitor cell prepared by the above method.
본 발명의 또 다른 목적은 상기 혈관주위 전구세포를 혈관주위세포, 평활근세포, 근세포, 지방세포 또는 골세포로 분화시키는 방법을 제공하는 것이다.Another object of the present invention is to provide a method for differentiating the perivascular progenitor cells into perivascular cells, smooth muscle cells, muscle cells, adipocytes or bone cells.
본 발명의 또 다른 목적은 상기 혈관주위 전구세포를 유효성분으로 포함하는 심혈관 질환의 예방 또는 치료용 약학적 조성물을 제공하는 것이다.Another object of the present invention to provide a pharmaceutical composition for the prevention or treatment of cardiovascular diseases comprising the perivascular progenitor cells as an active ingredient.
본 발명의 또 다른 목적은 상기 혈관주위 전구세포를 유효성분으로 포함하는 망막질환의 예방 또는 치료용 약학적 조성물을 제공하는 것이다.Another object of the present invention to provide a pharmaceutical composition for the prevention or treatment of retinal diseases, including the perivascular progenitor cells as an active ingredient.
본 발명의 또 다른 목적은 상기 조성물을 개체에게 투여하는 단계를 포함하는 심혈관 질환을 예방 또는 치료하는 방법을 제공하는 것이다.It is another object of the present invention to provide a method for preventing or treating cardiovascular disease comprising administering the composition to an individual.
본 발명의 또 다른 목적은 상기 조성물을 개체에게 투여하는 단계를 포함하는 망막질환을 예방 또는 치료하는 방법을 제공하는 것이다.It is another object of the present invention to provide a method for preventing or treating a retinal disease comprising administering the composition to an individual.
본 발명의 기질 특이적 부착배양에 의한 자연선택을 특징으로 하는 줄기세포로부터 유도된 혈관주위 전구세포의 제조방법에 의해 유세포 분류 또는 자성 세포 분류 등의 추가적인 과정없이, 혈관주위 전구세포를 순수하게 분리하여 증식시킬 수 있음을 확인하였다. 또한 혈관주위 전구세포의 특징적 다분화능을 가짐을 확인하였다. 따라서, 본 발명의 방법으로 제조된 줄기세포 유래 혈관주위 전구세포는 심혈관 질환 또는 망막질환의 치료 또는 예방을 위한 세포치료 조성물로 유용하게 사용될 수 있다.By the method of producing perivascular progenitor cells derived from stem cells characterized by natural selection by substrate-specific adhesion culture of the present invention, the perivascular progenitor cells are purely separated without additional processes such as flow cytometry or magnetic cell sorting. It was confirmed that it can be grown by. In addition, it was confirmed that it has a characteristic multipotent ability of perivascular progenitor cells. Therefore, stem cell-derived perivascular progenitor cells prepared by the method of the present invention can be usefully used as a cell therapy composition for the treatment or prevention of cardiovascular diseases or retinal diseases.
도 1은 BMP4의 중배엽 특이적 유도 분화를 나타내는 도이다. (A)는 배양 시작일(EB day 0)로부터 EB day 8까지 첨가된 BMP4에 의한 H9 hESC 배상체의 유도 분화를 나타낸다. (B)는 EB day 6에 유세포 분석에 의해 결정한 KDR 및 PDGFRβ에 대해 양성인 살아있는 세포의 백분율을 나타낸다. 바는 NT 그룹과 비교한 3회의 독립적인 실험의 평균에 대한 표준 오차를 나타낸다; **p<0.01, ***p<0.001.1 is a diagram showing mesoderm specific induced differentiation of BMP4. (A) shows the induced differentiation of H9 hESC embryoid bodies by BMP4 added from the start of culture (EB day 0) to EB day 8. (B) shows the percentage of viable cells positive for KDR and PDGFRβ determined by flow cytometry on EB day 6. Bars represent standard error for the mean of three independent experiments compared to the NT group; ** p <0.01, *** p <0.001.
도 2는 BMP4-EB로부터 유도된 단일 세포의 기질 의존적 부착성을 나타내는 도이다. (A)는 세포 배양 접시에 분주된 미분화 H9 hESC의 단일세포, (B)는 코팅되지 않은 플라스틱 페트리접시에 분주된 BMP4 유도 분화 6일째 EB로부터의 단일 세포, (C, D)는 콜라겐 코팅된 접시에 분주된 자연분화된 EB로부터의 단일 세포, (E, F) 콜라겐 코팅된 접시에 분주된 BMP4 유도 분화 6일째 EB로부터의 단일 세포를 나타낸다. 검은 스케일 바, 20 μm.2 is a diagram showing substrate dependent adhesion of single cells derived from BMP4-EB. (A) single cells from undifferentiated H9 hESCs dispensed into cell culture dishes, (B) single cells from EB on day 6 of BMP4 induced differentiation dispensed into uncoated plastic Petri dishes, (C, D) coated with collagen Single cells from naturally-differentiated EBs dispensed into the dish, (E, F) single cells from EBs on day 6 of BMP4 induced differentiation dispensed into collagen coated dishes. Black scale bar, 20 μιη.
도 3은 BMP4-EB에서 PDGFRβ-양성 세포 군집의 기질 의존적 자연 선택을 나타내는 도이다. (A)는 FACS sorter를 이용한 구별된 PDGFRβ-양성 및 음성 군집의 분리 후, 콜라겐 코팅된 접시에 분주된 각각의 세포를 나타내며, (B)는 분리 없이 BMP4-EB로부터 유도된 단일 세포의 콜라겐 기질 의존적 부착을 나타낸 도이다. 검은 스케일 바, 20 μm.Figure 3 is a diagram showing substrate dependent natural selection of PDGFRβ-positive cell populations in BMP4-EB. (A) shows each cell dispensed in collagen coated dishes after separation of distinct PDGFRβ-positive and negative populations using FACS sorter, (B) shows single cell collagen matrix derived from BMP4-EB without separation Figure shows dependent attachment. Black scale bar, 20 μιη.
도 4는 hESC-PVPC의 유세포 분석결과를 나타낸 도이다. (A)는 유세포 분석결과, (B)는 8개 독립적인 hESC-PVPC에 대한 각각의 히스토그램의 겹침을 나타낸다.Figure 4 is a diagram showing the flow cytometry results of hESC-PVPC. (A) shows flow cytometry and (B) shows the overlap of each histogram for 8 independent hESC-PVPCs.
도 5는 hESC-PVPC의 일반화된 혈관주위세포 가능성을 나타낸 도이다. (A, B)는 각각 장기 배양한 H9 hESC-PVPC와 인간 태반 유도 혈관주위세포의 현미경분석 결과이고, (C, D)는 hESC-PVPC와 혈관주위세포의 공초점 이미지 분석 결과이다. 청색인 DAPI, 녹색인 NG2의 발현에 대해 양성이고 적색인 SMA에 대해서는 음성을 나타낸다. (E) 3차원 콜라겐 기질에서 EC-혈관주위세포 튜브 공조립(coassembly)을 사용하여 혈관 유도 터널 내에서 DiI-표지 HUVECs 세포주의 ablumenal 표면에 DiO-표지 hESC-PVPCs 도입을 나타낸다. (F) DiO-표지 HUVECs (내부) 및 DiI-표지 hESC-PVPCs (외부)의 이중층 타원체 형성을 나타낸다. 흰색 스케일 바, 20 mm.Figure 5 shows the generalized perivascular potential of hESC-PVPC. (A, B) are the results of microscopic analysis of long-term cultured H9 hESC-PVPC and human placenta-induced perivascular cells. Positive for blue DAPI, green NG2, negative for red SMA. (E) Introduce DiO-labeled hESC-PVPCs to the ablumenal surface of DiI-labeled HUVECs cell lines in vascular induction tunnels using EC-perivascular tube coassembly in three-dimensional collagen matrix. (F) Bilayer ellipsoid formation of DiO-labeled HUVECs (internal) and DiI-labeled hESC-PVPCs (outer). White scale bar, 20 mm.
도 6은 hESC-PVPC로부터 유도된 평활근의 특성을 나타내는 도이다. (A)는 hESC, hESC-PVPC, PVPC-유도 day 2 내지 4 SMLC 및 성숙 SMLC에서 αSMA 발현에 대한 RT-PCR 분석, (B)는 실시간 PCR 분석결과이다(n=3). 유의도는 *p<0.05, ***p<0.0001 수준이다. 면역세포화학은 hESC (C), SMLC (D) 및 수축 SMLC (E 및 F)에서 αSMA의 발현을 나타낸다. αSMA(적색), DAPI(청색), SM-MHC(녹색, E) 및 칼포닌(녹색, F). 스케일 막대는 100 μm.6 is a diagram showing the characteristics of smooth muscle derived from hESC-PVPC. (A) RT-PCR analysis of αSMA expression in hESC, hESC-PVPC, PVPC-induced day 2-4 SMLC and mature SMLC, (B) is the real-time PCR analysis (n = 3). The significance level is * p <0.05, *** p <0.0001. Immunocytochemistry shows the expression of αSMA in hESC (C), SMLC (D) and contractile SMLC (E and F). αSMA (red), DAPI (blue), SM-MHC (green, E) and calponin (green, F). Scale bar is 100 μm.
도 7은 hESC-PVPC로부터 유도된 근세포의 특성을 나타내는 도이다. 근세포 분화 조건하에서 hESC-PVPC의 형태 변화를 나타낸다. (A, D)는 hESC-PVPC, (B, E)는 근세포 분화 배지, (C, D)는 각각 근세포 성장 배지에서의 전형적인 세포형태이다. (A 내지 C)의 검은 스케일 바는 20 μm (D 내지 F) 면역세포화학은 근세포 특이적 데스민(Desmin) 발현을 나타낸다. 데스민은 적색, DAPI는 청색이다.7 is a diagram showing the characteristics of myocytes derived from hESC-PVPC. Morphological changes in hESC-PVPC under myocyte differentiation conditions. (A, D) is hESC-PVPC, (B, E) is myocyte differentiation medium and (C, D) is typical cell morphology in myocyte growth medium, respectively. Black scale bars in (A-C) show 20 μm (D-F) immunocytochemistry showing myocyte specific Desmin expression. Desmine is red and DAPI is blue.
도 8은 hESC-PVPC의 골격형성 분화 가능성을 나타내는 도이다. (A)와 (B)에 지방생성 조건에서 분화 후 현미경분석과 오일 레드 염색으로 지방생성을 확인하였고, (C)와 (D)에 골형성 조건에서 분화에 따른 현미경분석 및 알리자린 레드 염색으로 골형성을 확인하였다.8 shows the possibility of skeletal differentiation of hESC-PVPC. (A) and (B) confirmed the lipogenesis by microscopic analysis and oil red staining after differentiation under lipogenic conditions, and by (C) and (D) microscopic analysis and differentiation of alizarin red staining under bone formation conditions under (C) and (D) Formation was confirmed.
도 9는 hESC-PVPC와 다른 혈관계 간의 색소 전이 분석을 나타낸 도이다. DiI-표지 hESC-PVPC(상부 패널: 적색)를 칼신(calcein)-표지 HUVEC(중앙 패널, 좌측: 녹색), UASMC(중앙 패널, 중앙: 녹색) 또는 심근세포(중앙 패널, 우측: 녹색)와 5% CO2의 37℃ 항온배양기에서 1시간 동안 공배양하였다. 칼신의 녹색-형광은 hESC-PVPC(하부 패널)에서 DiI의 적색-형광과 함께 검출되었다(하부 패널: 적녹색, 별표).9 is a diagram showing the pigment transfer analysis between hESC-PVPC and other vascular systems. DiI-labeled hESC-PVPC (top panel: red) with calcine-labeled HUVEC (center panel, left: green), UASMC (center panel, center: green) or cardiomyocytes (center panel, right: green) Co-cultured for 1 hour in a 37 ° C. incubator of 5% CO 2. Calcine's green-fluorescence was detected in hESC-PVPC (bottom panel) with red-fluorescence of DiI (bottom panel: red green, asterisk).
도 10은 hESC-PVPC 이식 후 허혈성 후지에서 허혈 사지 구제/혈류의 개선을 나타낸 도이다. (A)는 처치 후 0일 및 28일에서 일련의 하지 회복정도를 나타낸 이미지 분석을 나타내고, (B)는 처치 후 0일 및 28일에서 일련의 레이져 도플러 이미지로 측정한 허혈 사지의 혈액 관류율을 나타낸다.10 is a diagram showing the improvement of ischemic limb rescue / blood flow in ischemic Fuji after hESC-PVPC transplantation. (A) shows image analysis showing a series of lower limb recovery on days 0 and 28 after treatment, and (B) shows blood perfusion rate of ischemic limbs measured by series of laser Doppler images on days 0 and 28 after treatment. Indicates.
도 11은 hESC-PVPC 이식에 의해 증가된 허혈 심근 내 모세혈관 밀도를 나타낸 도이다. (A 내지 C)는 마송 삼색-염색된 심장 단면의 대표적 사진들로 (A)는 배지를 주입한 샴그룹, (B)는 hESC-PVPC를 주입한 그룹 및 (C)는 CB-EPC를 주입한 그룹에 대한 사진이다. (D)는 경색증 심근의 섬유화 면적, (E)는 경색증 심근의 상흔 길이, (F)는 경색증 심근에서 모세혈관 밀도 및 (G)는 경색증 심근의 경색증 벽두께를 나타낸다. (H, I)는 심근증 부위 모세혈관을 염색한 GS-렉틴(녹색)을 나타낸다.FIG. 11 shows capillary density in ischemic myocardium increased by hESC-PVPC transplantation. (A to C) are representative photographs of the Masson tricolor-stained heart cross-section, (A) sham group injected with medium, (B) group injected with hESC-PVPC and (C) injected CB-EPC Photo for a group. (D) represents the fibrosis area of the infarct myocardium, (E) the scar length of the infarct myocardium, (F) the capillary density in the infarct myocardium, and (G) the infarct wall thickness of the infarct myocardium. (H, I) represents GS-lectin (green) staining capillaries of the cardiomyopathy region.
도 12는 당뇨성 망막질환모델에서 이식한 hESC-PVPC의 손상된 혈관의 혈관주위 영역에서의 생착을 나타낸 도이다.스트렙토조토신(streptozotocin, STZ)에 의해 당뇨가 유발된 쥐에 DiI(적색)를 표지한 hESC-PVPC를 망막 내 주입하여 4주 후 생착여부를 확인하였다. 사용한 동물모델은 당뇨 유발 최초 5회(1일 1회)의 STZ 주입 후 혈당수치가 250 mg/dl 이상인 마우스를 사용하였으며, 망막병증 유발에 소요되는 기간을 감안하여 당뇨 유발 8주 이후에 사용하였다. 망막혈관 표지를 위해 망막추출 전 꼬리혈관에 FITC가 표지된 덱스트란(dextran-FITC, 녹색)을 주입하였다. 이로부터 이식된 hESC-PVPC는 망막 내에, 특히 손상된 혈관의 혈관주위에 위치함을 확인하였다.12 shows engraftment in the perivascular region of damaged blood vessels of hESC-PVPC transplanted in diabetic retinal disease model. DiI (red) was applied to the diabetic rats induced by streptozotocin (STZ). Labeled hESC-PVPC was injected into the retina to confirm engraftment after 4 weeks. The animal models used were mice with blood glucose levels of 250 mg / dl or more after the first 5 injections of diabetes (once a day), and were used after 8 weeks of diabetes in consideration of the time required to induce retinopathy. . For retinal blood vessel labeling, FITC-labeled dextran (dextran-FITC, green) was injected into the tail blood vessel before retinal extraction. It was confirmed that the transplanted hESC-PVPC is located in the retina, especially around the vessels of the damaged blood vessels.
도 13은 당뇨성 망막질환모델에서 hESC-PVPC, 인간골수유래 중간엽 줄기세포(BM-MSC) 및 인간태반유래 중간엽 줄기세포(placenta-MSC)를 이식하고, 이식 후 한달간 생착여부를 확인한 도이다. STZ에 의한 당뇨 유발 8주 후 마우스의 망막에 DiI를 표지한 각각의 세포를 이식하여 1, 2, 4주 후 각각의 망막을 추출하여 생착여부를 확인하였다. hESC-PVPC의 경우 혈관주위 영역에 생착되어 추가적인 망막혈관 형태 손상을 일으키지 않는 반면, 성체유래 중간엽 줄기세포 이식군에서는 이식된 세포가 생착되지 못하고 망막박리, 렌즈-망막협착 과도한 염증반응을 유발하여 사망에 이르게 하는 것을 확인하였다.Figure 13 is a diagram showing the transplantation of hESC-PVPC, human bone marrow-derived mesenchymal stem cells (BM-MSC) and human placenta-derived mesenchymal stem cells (placenta-MSC) in diabetic retinal disease model, and confirmed the engraftment for one month after transplantation to be. After 8 weeks of diabetes induced STZ, each cell labeled with DiI was transplanted into the retina of the mouse, and after 1, 2 and 4 weeks, the respective retinas were extracted and checked for engraftment. hESC-PVPC is engrafted in the perivascular area and does not cause additional retinal vascular damage.In the adult-derived mesenchymal stem cell transplant group, the transplanted cells do not engraft and retinal detachment and lens-retinal stenosis are induced. It was confirmed to lead to death.
상기 목적을 달성하기 위한 하나의 양태로서, 본 발명은 줄기세포 유래의 배상체(embryoid body)에 BMP4 성장인자를 처리하여 중배엽성 세포로 분화시키는 제1단계; 분화된 중배엽성 세포를 포함하는 배상체를 단일세포로 분리하는 제2단계; 및 분리된 단일세포를 기질이 코팅된 배양접시에서 배양하여 부착된 세포만을 자연선택(natural selection)으로 증식시키는 제3단계를 포함하는, 줄기세포로부터 혈관주위 전구세포를 제조하는 방법을 제공한다.As one aspect for achieving the above object, the present invention comprises the first step of differentiating into mesodermal cells by treating BMP4 growth factor in the stem cell-derived embryonic body (embryoid body); Separating a embryoid body comprising differentiated mesodermal cells into single cells; And a third step of culturing the isolated single cells in a substrate coated with a substrate, thereby proliferating only the attached cells by natural selection.
상기 제1단계는 줄기세포로부터 유래한 배상체에 BMP 4 성장인자를 처리하여 중배엽성 세포로 분화시키는 단계이다. 중배엽성 세포로 분화된 줄기세포로부터 유래한 배상체를 적정 분화조건에서 배양하여 중배엽성 표지인자들의 발현이 적어도 하나 이상 증가한 세포군집이 증가함을 의미한다. 이때, 중배엽성 표지인자의 발현은 생화학적 또는 면역화학적 방법으로 검출할 수 있으며, 중배엽성 표지인자를 검출할 수 있는 방법을 제한없이 사용할 수 있다. 이를 위해 중배엽성 표지인자에 결합하는 특이적인 다클론성 항체 또는 단일 클론 항체를 사용할 수 있다. 개개의 특이적 마커를 표적으로 하는 항체는 시판용이나 공지의 방법에 의해 제조된 것을 제한없이 사용할 수 있다. 대표적인 중배엽성 표지인자로는 KDR, PDGFRα/β CD29, CD31, CD34, CD73, CD90 및 CD105 등을 들 수 있으나 이에 제한되지 않는다. 상기 제1단계는 6 내지 8일간 수행할 수 있으며, 바람직하게는 6일간 수행할 수 있다.The first step is a step of differentiating mesodermal cells by treating BMP 4 growth factors in embryoid bodies derived from stem cells. The embryoid bodies derived from stem cells differentiated into mesodermal cells are cultured under appropriate differentiation conditions, thereby increasing the cell population in which the expression of mesodermal markers is increased by at least one or more. At this time, the expression of mesodermal markers can be detected by biochemical or immunochemical methods, and methods capable of detecting mesodermal markers can be used without limitation. For this purpose, specific polyclonal antibodies or monoclonal antibodies that bind to mesodermal markers can be used. Antibodies targeting individual specific markers can be used commercially and without limitation, those prepared by known methods. Representative mesodermal markers include, but are not limited to, KDR, PDGFRα / β CD29, CD31, CD34, CD73, CD90, and CD105. The first step may be performed for 6 to 8 days, preferably for 6 days.
본 발명의 일 실시예에 따르면, 당업계에 공지된 방법에 따라 자가-응집(self-aggregation)에 의해 형성된 배상체를 BMP4 성장인자가 포함된 10% SR을 함유한 DMEM/F12배지에 6일간 배양한 경우 배상체 내에서 중배엽성 세포 표지인자인 KDR과 PDGFRβ 발현이 각각 30%와 50% 이상 증가하는 것을 유세포 분석기를 통해 확인하였다(도 1B).According to one embodiment of the invention, the embryoid body formed by self-aggregation according to a method known in the art for 6 days in DMEM / F12 medium containing 10% SR containing BMP4 growth factor When cultured, it was confirmed by flow cytometry that KDR and PDGFRβ expression of mesodermal cell markers increased more than 30% and 50%, respectively, in the embryoid body (FIG. 1B).
본 발명의 용어 "줄기세포"란, 동물의 내배엽(endoderm), 중배엽(mesoderm) 및 외배엽(ectoderm) 유래의 세포로 분화할 수 있는 전분화능(pluripotency), 또는 조직 또는 기능에 있어 밀접하게 관련된 세포로 분화할 수 있는 다분화능(multipotency)을 가지는 세포를 의미한다. 자기 복제 능력을 가지면서 두 개 이상의 새로운 세포로 분화하는 능력을 갖는 세포를 의미하며, 만능 줄기세포(totipotent stem cells), 전분화능 줄기세포(pluripotent stem cells), 다분화능(다능성) 줄기세포(multipotent stem cells)로 분류할 수 있다.As used herein, the term "stem cell" refers to a pluripotency capable of differentiating into cells derived from endoderm, mesoderm, and ectoderm of an animal, or a cell closely related to tissue or function. It means a cell having a multipotency that can be differentiated into. Means cells that have the ability to self-replicate and differentiate into two or more new cells, and include totipotent stem cells, pluripotent stem cells, and pluripotent stem cells ( multipotent stem cells).
본 발명에서 용어, "배아줄기세포"란 동물 수정란이 모체의 자궁에 착상하기 직전인 포배기 배아에서 내세포괴(inner cell mass)를 추출하여 체외에서 배양한 것으로 동물의 모든 세포로 분화할 수 있는 전분화능(pluripotency)을 가진 세포를 의미하며, 이에 제한되는 것은 아니나, 넓은 의미로는 배아줄기세포로부터 유래한 배아체(embryoid body) 또는 유도 전분화능 줄기세포(induced pluripotent stem cell; iPS cell)와 같은 유사 줄기세포들도 포함한다.As used herein, the term "embryonic stem cell" refers to an embryo that is capable of differentiating into all cells of an animal by extracting an inner cell mass from an blastocyst embryo immediately before implantation into an uterus of a mother. Means a cell having a pluripotency, but is not limited thereto, such as an embryonic body derived from embryonic stem cells or induced pluripotent stem cells (iPS cells) Similar stem cells are also included.
본 발명에서 용어, "성체줄기세포"란 각 조직 내 존재하는 줄기세포를 분리해 체외에서 배양한 것으로 다분화능(multipotency)을 가지는 세포를 의미하며, 골수줄기세포, 망막줄기세포, 망막 내 뮐러아교세포, 신경줄기세포 등이 있다. 상기 줄기세포는 인간 및 영장류뿐만 아니라, 소, 돼지, 양, 말, 개, 쥐, 랫트 및 고양이 등의 가축을 포함하는 포유 동물 유래일 수 있으며, 바람직하게는 인간 유래이다.As used herein, the term "adult stem cell" refers to a cell having a multipotency by separating stem cells existing in each tissue and culturing in vitro, and including bone marrow stem cells, retinal stem cells, and M. glial cells in the retina. Cells, neural stem cells, and the like. The stem cells may be derived from mammals including humans and primates, as well as domestic animals such as cattle, pigs, sheep, horses, dogs, mice, rats, and cats, preferably humans.
본 발명의 줄기세포는 인간 배아줄기세포(embryonic stem cell), 유도 전분화능 줄기세포(induced pluripotent stem cell; iPSC) 및 체세포 핵치환 줄기세포(somatic cell nuclear transfer cell, SCNT)일 수 있으며, 바람직하게는 배아줄기세포일 수 있고, 보다 바람직하게는 인간 배아줄기세포일 수 있다. 상기 줄기세포는 인간을 포함한 포유동물 유래일 수 있으며, 가장 바람직하게는 인간 유래 세포일 수 있다.Stem cells of the present invention may be human embryonic stem cells (embryonic stem cells), induced pluripotent stem cells (iPSC) and somatic cell nuclear transfer cells (SCNT), preferably May be an embryonic stem cell, more preferably a human embryonic stem cell. The stem cells may be derived from mammals including humans, and most preferably may be human derived cells.
본 발명의 용어 "BMP4"란 인간에서 BMP4 유전자에 의해 인코딩되는 단백질로서 성장인자를 의미한다. BMP(bond morphogenetic protein)는 TGF-β(transforming growth factor-β) 슈퍼 패밀리에 속하는 신호전달계 단백질로서 초기 태생기 분화, 태생기 조직형성 및 성인 조직의 항상성 유지 등을 조절한다. 특히, 초기 태생기에서 BMP의 농도 차이는 배아의 등배 형성과정에서 축 형성에 결정적 작용을 한다. 세포 외로 분비된 BMP는 세포막의 제1형과 제2형 세린/트레오닌 키나제(type I and type II serine/threonine kinase) 수용체들에 결합하여 BMP 신호전달을 시작한다. 제2형 수용체는 제1형 수용체를 인산화시키고, 인산화된 제1형 수용체는 세포내의 기질인 Smad 단백질을 인산화시켜 세포 내의 신호전달이 이루어진다. 수용체에 의해 조절되는 Smad 단백질을 R-Smad(receptor regulated Smad)라고 하며, Smad-1, 2, 3, 5 및 8이 R-Smad에 속한다. 이들은 세포 내의 파트너인 Co-Smad(common partner Smad)인 Smad-4와 결합하여 세포핵 내로 이동하여 전사인자와 결합하여 목표 유전자들의 전사를 조절한다(Yamamoto & Oelgeschlager, Naturwissenschaften, 91: 519-34, 2004). As used herein, the term "BMP4" refers to a growth factor as a protein encoded by the BMP4 gene in humans. Bond morphogenetic protein (BMP) is a signaling protein belonging to the transforming growth factor-β (TGF-β) superfamily that regulates early fetal differentiation, fetal tissue formation, and maintenance of adult tissue homeostasis. In particular, the difference in the concentration of BMP in the early gestational stage plays a decisive role in the formation of the axis during embryonic embryo formation. The extracellular secreted BMP binds to type I and type II serine / threonine kinase receptors on the cell membrane to initiate BMP signaling. The type 2 receptor phosphorylates the type 1 receptor, and the phosphorylated type 1 receptor phosphorylates the Smad protein, a substrate in the cell, for intracellular signaling. Smad proteins regulated by receptors are called receptor regulated Smads (R-Smads), and Smad-1, 2, 3, 5 and 8 belong to R-Smad. They bind to Smad-4, a common partner Smad (Co-Smad) in the cell, move into the cell nucleus and bind to transcription factors to regulate transcription of target genes (Yamamoto & Oelgeschlager, Naturwissenschaften, 91: 519-34, 2004 ).
본 발명의 용어 "배상체(embryoid body)"란 배아줄기세포로부터 유래된 세포 응집체를 의미한다. 세포 응집은 전형적인 집락 증식을 형성하기 위해 표면에 세포가 부착하는 것을 방지하는 방울 배양, 비처리 세포 배양 접시 배양 또는 교반 배양에 의해 발생한다. 응집과 함께 분화가 시작되고, 세포는 제한된 정도의 배발생을 반복하기 시작한다. 상기 배상체는 다분화능 세포로부터 유도되고 따라서 매우 다양한 분화된 세포형으로 구성될 수 있다. 그러나 배상체 내에서의 분화는, 3차원적 방식으로 발생함에도 불구하고, 신중히 조직된 정상 배발생의 경우에 비해 매우 체계적이지 못하다. 하지만 배상체는 여전히 연구가 어려운 발생 초기단계에서의 세포 및 분자 상호작용을 연구하기 위한, 특히 인간에서, 좋은 모델 시스템이다. 따라서, 본 발명에서는 배상체를 중배엽성 세포로 분화시키기 위해 배상체를 형성한 첫날부터 BMP4 성장인자를 처리하여 배양하여 분화를 유도하였다.The term "embryoid body" of the present invention refers to cell aggregates derived from embryonic stem cells. Cell aggregation occurs by drop culture, untreated cell culture dish culture or stirred culture, which prevents cells from adhering to the surface to form typical colony proliferation. Differentiation begins with aggregation, and cells begin to repeat a limited degree of embryogenicity. The goblet is derived from pluripotent cells and thus can consist of a wide variety of differentiated cell types. However, differentiation in embryoid bodies, despite occurring in a three-dimensional manner, is not very systematic compared to the case of carefully organized normal embryology. Embryos, however, are still good model systems for studying cellular and molecular interactions in the early stages of development, which are still difficult to study. Therefore, in the present invention, the differentiation was induced by treating BMP4 growth factor from the first day of the formation of embryoid bodies to differentiate them into mesodermal cells.
본 발명의 용어 "중배엽성 세포"는 혈액세포, 혈관내피세포, 평활근 및 심근 등을 포함하는 근육세포, 골세포, 연골세포, 지방세포, 망상세포 또는 기타 결합조직세포로 분화할 수 있는 세포를 의미한다.The term "mesodermal cell" of the present invention refers to cells capable of differentiating into muscle cells, bone cells, chondrocytes, adipocytes, reticular cells or other connective tissue cells, including blood cells, vascular endothelial cells, smooth muscle and myocardium, and the like. it means.
상기 제2단계는 상기 분화된 중배엽성 세포를 포함하는 배상체를 단일세포로 분리시키는 단계로, 본 발명에서는 배상체의 단일세포화를 위하여 효소를 처리하였다. 상기 효소는 세포간 결합에 관여하는 세포 표면 단백질을 분해하여 세포간 결합을 저해할 수 있는 것이면 제한없이 사용될 수 있다. 그 예로 트립신, 트립신-EDTA, 콜라게네이즈(collagenase) 등이 사용될 수 있으나 이에 제한되지 않는다. 바람직하게는 저자극성 효소일 수 있으며, 보다 바람직하게는 TrypLE(Invitrogen)일 수 있다.The second step is the step of separating the embryoid body containing the differentiated mesodermal cells into single cells, in the present invention, the enzyme was treated for single cell formation of the embryoid body. The enzyme may be used without limitation as long as it can inhibit intercellular binding by degrading cell surface proteins involved in intercellular binding. For example, trypsin, trypsin-EDTA, collagenase, etc. may be used, but is not limited thereto. Preferably it may be a hypoallergenic enzyme, more preferably TrypLE (Invitrogen).
상기 제3단계는 분리된 단일세포를 기질이 코팅된 배양접시에서 배양하여 부착된 세포만을 자연선택으로 증식시키는 단계이다. In the third step, the isolated single cells are cultured in a substrate coated with a substrate, and only the attached cells are propagated by natural selection.
본 발명의 용어 "자연선택(natural selection)"이란, 당업계에서 분화된 특정세포를 고순도로 분리하기 위해 사용하는 유세포 분류(flow cell sorting) 또는 자성 세포 분류(magnetic cell sorting) 기술을 이용하지 않고 세포 고유의 특성을 이용하여 자연스럽게 분리하는 것을 의미한다. 상기 유세포 분류 또는 자성 세포 분류 기술의 경우 세포특이적 표지인자를 통해 순도를 확인할 수 있는 장점이 있는 반면, 그 이유를 충분히 설명할 수 없는 변형을 줄 수 있다는 단점이 있다. 아울러, 다양한 시약, 기계 등의 사용으로 비용이 증가하는 문제점이 있다. 그러나, 본 발명의 방법은 기계 등이 필요없으며, 단순한 자연선택을 이용하여 세포의 변형이나 고비용의 문제점이 없이 분화시키는 장점이 있다. 즉, 본 발명의 자연선택 기술은 세포 특이적 표지인자에 초점을 두는 것이 아니라, 구별될 수 있는 세포의 기능적 특성에 집중하고 있다. 배지 적합성 또는 특이적 표면 부착성에 기인한 선택적 배양이 그 예이다. 본 발명의 "기질"은 배양접시에 대한 세포의 선택적 부착을 도울 수 있는 것이면 제한없이 사용될 수 있으며, 그 예로 콜라겐 또는 라미닌이 사용될 수 있으며, 바람직하게는 콜라겐이 사용될 수 있다. 상기 제3단계는 16 내지 24시간 동안 수행할 수 있으며, 바람직하게는 18시간 동안 수행할 수 있다. 이와 같이 자연선택된 고순도의 혈관주위 전구세포는 계속하여 증식시키거나, 다양한 조직세포로 분화시키거나, 회수하여 냉동보관할 수 있다.The term "natural selection" of the present invention does not use flow cell sorting or magnetic cell sorting techniques, which are used in the art to isolate highly differentiated specific cells. It means to separate naturally by using the inherent characteristics of the cell. In the case of the flow cytometry or magnetic cell sorting technology, there is an advantage in that purity can be confirmed through cell-specific markers. In addition, there is a problem in that the cost is increased by the use of a variety of reagents, machines, and the like. However, the method of the present invention does not require a machine or the like, and has the advantage of differentiating without the problem of cell deformation or high cost by using simple natural selection. In other words, the natural selection technique of the present invention focuses on the functional characteristics of the cells that can be distinguished, rather than focusing on cell specific markers. Examples are selective cultures due to media suitability or specific surface adhesion. The "substrate" of the present invention can be used without limitation so long as it can help the selective attachment of cells to the culture dish, for example collagen or laminin may be used, preferably collagen may be used. The third step may be performed for 16 to 24 hours, preferably 18 hours. The naturally selected high purity perivascular progenitor cells can continue to proliferate, differentiate into various tissue cells, or be recovered and cryopreserved.
본 발명의 구체적인 실시예에서는 특이 기질로서 5 mg/ml 콜라겐을 배양접시에 코팅하여 사용하였다. 상기 BMP4 성장인자 유도 중배엽성 세포 배상체를 효소 처리하여 단일세포화 한 후, 콜라겐이 코팅된 배양접시에 18시간 동안 배양하였다. 이후 배지교환을 통해 콜라겐 특이적으로 부착된 세포만을 자연선택하였다.In a specific example of the present invention, 5 mg / ml collagen was coated on a culture plate as a specific substrate. The BMP4 growth factor-induced mesodermal cell embryoid body was subjected to enzymatic treatment and single cell culture, followed by incubation for 18 hours in a collagen-coated culture dish. Thereafter, only the cells specifically attached to collagen were naturally selected through medium exchange.
상기 제3단계에서 자연선택된 혈관주위 전구세포는 PDGFRβ(platelet-derived growth factor receptor β)에 대하여 양성의 발현을 나타낸다. PDGFRβ는 인간에서 PDGFRB 유전자에 의해 인코딩되는 단백질이다. 상기 유전자는 PDGF 패밀리에 속하는 세포 표면 타이로신 키나아제 수용체를 인코딩한다. 상기 성장인자는 중간엽 유래 세포에 대한 분열촉진물질로 중배엽성 세포의 특이적 표지인자 중 하나이다.Peripheral progenitor cells naturally selected in the third step show positive expression for platelet-derived growth factor receptor β (PDGFRβ). PDGFRβ is a protein that is encoded by the PDGFRB gene in humans. The gene encodes a cell surface tyrosine kinase receptor belonging to the PDGF family. The growth factor is one of specific markers of mesodermal cells as a proliferation agent for mesenchymal-derived cells.
본 발명의 구체적인 실시예에 따르면, 자연선택 기술에 의한 배양 전과 후 세포에 대하여 유세포 분석으로 확인한 결과 자연선택 기술에 의한 배양 후 증식되는 세포는 PDGFRβ 대해 양성인 세포들만이 고순도로 배양 증식되고 있음을 확인할 수 있었고 이는 유세포 분류에 의해 PDGFRβ 대해 양성인 세포들만을 선택 배양한 것과 유사한 수준의 순도를 보여주었다(도 3).According to a specific embodiment of the present invention, as a result of confirming by flow cytometry the cells before and after the culture by the natural selection technology, it is confirmed that the cells proliferated after the culture by the natural selection technology are cultured and grown in high purity only the cells positive for PDGFRβ. This showed similar levels of purity as the selective culture of only cells positive for PDGFRβ by flow cytometry (FIG. 3).
또 하나의 양태로서, 본 발명은 상기 방법으로 제조된 혈관주위 전구세포를 제공한다.As another aspect, the present invention provides a perivascular progenitor cell prepared by the above method.
본 발명에 의해 제조된 혈관주위 전구세포는혈관주의 전구세포 특이적인 PDGFR , CD44, CD146 및 NG2와 중간엽 줄기세포 특이적 마커인 CD73 및 CD90 등에 양성의 발현 패턴을 보이는 한편, 혈관내피세포 특이적 마커인 CD31 및 CD144와 조혈세포 특이적 마커인 CD34 및 CD45 등은 발현하지 않는다(도 4). 더불어 상기 혈관주위 전구세포는 연골, 조골 및 지방세포와 같은 중간엽세포 유래 분화체, 평활근세포 및 근세포로의 분화능을 가지며(도 5 내지 8), 심혈관 질환 모델에서 세포치료 조성물로 적용시 상실된 기능을 회복시킬 수 있는 가능성을 가진다(도 10 및 11).Peripheral progenitor cells prepared by the present invention showed positive expression patterns in the progenitor cell-specific PDGFR, CD44, CD146 and NG2 and mesenchymal stem cell-specific markers CD73 and CD90, etc. The markers CD31 and CD144 and the hematopoietic cell specific markers CD34 and CD45 and the like are not expressed (FIG. 4). In addition, the perivascular progenitor cells have differentiation ability into mesenchymal cell-derived differentiated bodies such as cartilage, osteoblasts and adipocytes, smooth muscle cells and myocytes (FIGS. 5 to 8), and are lost when applied as a cell therapy composition in a cardiovascular disease model. Has the potential to recover (FIGS. 10 and 11).
본 발명의 용어 "전구세포(progenitor cell)"란 비대칭적 분열(asymmetric division)을 할 수 있는 세포를 의미하는 것으로 전구체(precursor)라도고 불리며, 비대칭적 분열로 인해 각 세포마다 계대수가 같더라도, 분화되는 부분도 있고, 증식되는 부분도 있어, 나이 및 성질이 다를 수 있다.The term "progenitor cell" of the present invention refers to a cell capable of asymmetric division and is called a precursor, and because of asymmetric division, even if each cell has the same number of passages, Some are differentiated and some are multiplied, and may differ in age and nature.
또 하나의 양태로서 본 발명은, 상기 방법에 의해 제조된 혈관주위 전구세포를 혈관형성 성장인자(angiogenic growth factors), FGF(fibroblast growth factor), VEGF(vascular endothelial growth factor), IGF(insulin-like growth factor), EGF(epidermal growth factor), 아스코르브산, GA-1000을 포함하는 EGM-2MV(SingleQuots, Cambrex Bio Science) 배지에 배양하는 것을 특징으로 하는 혈관주위 전구세포를 혈관주위 세포로 분화시키는 방법을 제공한다. 바람직하게는 EGM-2MV 배지에 5% 소태아혈청(fetal bovine serum; FBS), 10 ng/ml angiogenic growth factor, 10 ng/ml FGF, 20 ng/ml VEGF, 10 ng/ml IGF, 10 ng/ml EGF, 아스코르브산, GA-1000을 포함하는 혈관주위 세포화 분화 배지에 배양할 수 있으나 이에 제한되는 것은 아니다.In another aspect, the present invention, the perivascular progenitor cells produced by the above method is angiogenic growth factors (angiogenic growth factors), fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF), IGF (insulin-like) A method of differentiating perivascular progenitor cells into perivascular cells, which is characterized by culturing in EGM-2MV (SingleQuots, Cambrex Bio Science) medium containing growth factor (EGF), epidermal growth factor (EGF), ascorbic acid, and GA-1000. To provide. Preferably, 5% fetal bovine serum (FBS), 10 ng / ml angiogenic growth factor, 10 ng / ml FGF, 20 ng / ml VEGF, 10 ng / ml IGF, 10 ng / in EGM-2MV medium. It may be cultured in perivascular cell differentiation medium containing ml EGF, ascorbic acid, GA-1000, but is not limited thereto.
본 발명의 용어 "혈관주위 세포(pericyte)"란, 혈관내피와 특이한 국소접촉을 형성하는, 미세혈관계의 기저막 내에 묻혀있는 혈관 벽세포를 말한다. Rouget 세포, 외막세포(adventitial cell) 또는 벽세포(mural cell)로도 불리는 소혈관 주위에 생기는 결합조직 세포로, 혈관내피의 바깥쪽 부위를 10 내지 50% 가량 둘러싸고 있는 것으로 알려져 있다. 가늘고 긴 수축성 세포이며 기저막 밖에서 모세혈관이전세동맥 주위를 싸고 있다. 상대적으로 미분화된 다분화능 세포이며 혈관을 지지하는 기능을 한다. 필요에 따라서는 섬유아세포, 평활근 또는 대식세포로도 분화할 수 있다. 혈관 신생 뿐 아니라 혈-뇌 장벽 안정성에 중요한 역할을 한다. 혈관 내 세포에 대한 접착력으로 미세혈관계에서 혈류 조절인자로 대두되고 있으며, 사실상 모세혈관 수준에서 혈류조절이 가능하다. 따라서 이러한 혈관주위세포에 대한 연구는 혈관생리학을 이해하고, 혈관질환의 원인과 치료법을 연구하는 중요한 타겟으로 여겨지고 있다.The term "pericyte" of the present invention refers to vascular wall cells buried in the basement membrane of the microvascular system, which forms a specific local contact with the vascular endothelium. Connective tissue cells that form around small vessels, also called Rouget cells, adventitial cells, or wall cells, are known to surround about 10-50% of the outer area of vascular endothelium. It is a long, narrow contractile cell that surrounds the precarotid artery outside the basement membrane. It is a relatively undifferentiated multipotent cell and functions to support blood vessels. If necessary, they can also be differentiated into fibroblasts, smooth muscle or macrophages. In addition to angiogenesis, it plays an important role in the stability of the blood-brain barrier. Adhesion to cells in the blood vessels has emerged as a blood flow regulator in the microvascular system, and in fact it is possible to regulate blood flow at the capillary level. Therefore, the study of perivascular cells is considered to be an important target for understanding vascular physiology and studying the causes and treatment of vascular diseases.
또 하나의 양태로서 본 발명은, 상기 방법에 의해 제조된 혈관주위 전구세포를 최소 필수 배지 비필수 아미노산(minimum essential medium non-essential amino acids; NEAA, Invitrogen), 페니실린/스트렙토마이신(penicillin/streptomycin; PS, Invitrogen), β-머캅토에탄올(Invitrogen)을 포함하는 배양 배지에 배양하는 것을 특징으로 하는 혈관주위 전구세포를 평활근 세포로 분화시키는 방법을 제공한다. 바람직하게는 DMEM(Dulbecco's modified eagle medium) 배지에 5% FBS, 1% NEAA, 1% PS, 0.1 mM β-머캅토에탄올을 포함하는 평활근 세포화 분화 배지에 배양할 수 있으나 이에 제한되는 것은 아니다.As another aspect, the present invention, the perivascular progenitor cells produced by the above method is a minimum essential medium non-essential amino acids (NEAA, Invitrogen), penicillin / streptomycin (penicillin / streptomycin; PS, Invitrogen), β-mercaptoethanol (Invitrogen) provides a method for differentiating perivascular progenitor cells into smooth muscle cells, characterized in that the culture medium. Preferably, it may be cultured in a smooth muscle cell differentiation medium containing 5% FBS, 1% NEAA, 1% PS, 0.1 mM β-mercaptoethanol in DMEM (Dulbecco's modified eagle medium) medium, but is not limited thereto.
본 발명의 용어 "평활근 세포(smooth muscle cell)"란, 근육 중에서 가로무늬가 없는 근으로 척추동물의 심장근 이외의 내장근은 모두 민무늬 근이다. 수축속도는 느리지만, 쉽게 피로를 느끼지 않는 불수의 근이다. 가늘고 긴 방추형이며, 드물게는 다핵인 것도 있으나 보통 중앙부에 하나의 타원형의 핵을 가진다. 혈관벽과 위, 장, 자궁과 같은 속이 빈 장기의 벽 등, 신체의 각 부위에 존재한다. 각종 인체기능의 조절에 중추적인 역할을 하므로 상당수의 인체 질환이 평활근의 기능이상과 관련이 있다.The term " smooth muscle cell " of the present invention refers to a muscle without a horizontal pattern in muscle, and all internal organs other than the heart muscle of a vertebrate are smooth muscle. Although contraction rate is slow, it is involuntary muscle that does not feel fatigue easily. It is long and fusiform, rarely multinucleus, but usually has one elliptical nucleus in the center. It is found in various parts of the body, such as the walls of blood vessels and walls of hollow organs such as the stomach, intestines, and uterus. Because it plays a pivotal role in the regulation of various human functions, a number of human diseases are associated with the dysfunction of smooth muscle.
또 하나의 양태로서 본 발명은, 상기 방법에 의해 제조된 혈관주위 전구세포를 말혈청(horse serum; HS, Invitrogen), 계배추출물(chicken embryo extract; CEE, Sera Lab, Sussex, UK), PS를 포함하는 배양 배지에 배양하는 것을 특징으로 하는 혈관주위 전구세포를 근세포로 분화시키는 방법을 제공한다. 바람직하게는 고농도 글루코스 DMEM(DMEM high glucose) 배지에 10% FBS, 10% HS, 1% CEE, 1% PS를 포함하는 근세포화 분화 배지에 배양할 수 있으나 이에 제한되는 것은 아니다.As another aspect, the present invention, the perivascular progenitor cells prepared by the above method is prepared by horse serum (HS, Invitrogen), chicken embryo extract (CEE, Sera Lab, Sussex, UK), PS It provides a method for differentiating perivascular progenitor cells into myocytes, characterized in that it is cultured in a culture medium comprising. Preferably, the medium may be cultured in myocyte differentiation medium containing 10% FBS, 10% HS, 1% CEE, 1% PS in DMEM high glucose (DMEM) medium, but is not limited thereto.
본 발명의 용어 "근세포(myocyte)"란, 일명 근육세포(muscle cell)로 근모세포(myoblast)로부터 발생한다. 각각의 근세포는 긴 근원섬유(myofibril), 근섬유분절(sarcomere)의 긴 사슬, 세포의 수축단위를 포함한다. 근세포는 심장, 골격, 또는 평활근 세포를 포함하는 다양한 성질의 다양한 분화된 형태를 갖는다.The term "myocyte" of the present invention, also known as muscle cells (muscle cells) arise from myoblasts (myoblast). Each myocyte contains a long myofibril, a long chain of sarcomere, and a contraction unit of the cell. Myocytes have a variety of differentiated forms of varying properties, including heart, skeleton, or smooth muscle cells.
또 하나의 양태로서 본 발명은, 상기 방법에 의해 제조된 혈관주위 전구세포를 인슐린(Sigma-Aldrich), 덱사메타손(dexamethasone, Sigma-Aldrich), 이소부틸메틸크산틴(isobutylmethylxanthine, Sigma-Aldrich), 인도메타신(indomethacin, Sigma-Aldrich)을 포함하는 배양 배지에 배양하는 것을 특징으로 하는 혈관주위 전구세포를 지방세포로 분화시키는 방법을 제공한다. 바람직하게는 저농도 글루코스 DMEM 배지에 10% FBS, 5 μg/ml 인슐린, 1 μM 덱사메타손, 0.5 mM 이소부틸메틸크산틴, 60 μM 인도메타신을 포함하는 지방세포화 분화 배지에 배양할 수 있으나 이에 제한되는 것은 아니다.As another aspect, the present invention, the perivascular progenitor cells prepared by the above method is insulin (Sigma-Aldrich), dexamethasone (Sigma-Aldrich), isobutylmethylxanthine (Sigma-Aldrich), India It provides a method for differentiating perivascular progenitor cells into adipocytes, which is characterized by culturing in a culture medium containing metasin (indomethacin, Sigma-Aldrich). Preferably in low glucose DMEM medium can be cultured in adipocyte differentiation medium containing 10% FBS, 5 μg / ml insulin, 1 μM dexamethasone, 0.5 mM isobutylmethyl xanthine, 60 μM indomethacin, but is not limited thereto. no.
본 발명의 용어 "지방세포(adipocyte)"란 지방의 형태로 에너지를 저장하는 지방 조직을 구성하는 주된 세포이다. 이는 세포질 층으로 둘러싸인 커다란 지방 방울을 포함하는 백색지방세포와 지방 방울이 고루 흩어져있는 상당량의 세포질을 포함하는 다각형의 갈색지방세포의 두가지 형태로 존재한다. 백색지방세포는 레지스틴, 아디포넥틴 및 렙틴과 같은 아디포카인(adipokine)으로 작용하는 단백질을 분비한다.The term "adipocyte" of the present invention refers to the major cells that make up adipose tissue that stores energy in the form of fat. It exists in two forms: white fat cells, which contain large fat droplets surrounded by a cytoplasmic layer, and polygonal brown fat cells, which contain a significant amount of cytoplasm, evenly dispersed fat droplets. White adipocytes secrete proteins that act as adipokine, such as resistin, adiponectin and leptin.
또 하나의 양태로서 본 발명은, 상기 방법에 의해 제조된 혈관주위 전구세포를 덱사메타손, β-글리세로포스페이트, 아스코르브산-2-인산을 포함하는 배양 배지에 배양하는 것을 특징으로 하는 혈관주위 전구세포를 골세포로 분화시키는 방법을 제공한다. 바람직하게는 저농도 글루코스 DMEM 배지에 10% FBS, 1 μM 덱사메타손, 10 mM β-글리세로포스페이트, 60 μM 아스코르브산-2-인산을 포함하는 골세포화 분화 배지에 배양할 수 있으나 이에 제한되는 것은 아니다.As another aspect, the present invention, the perivascular progenitor cells produced by the above method is cultured in a culture medium containing dexamethasone, β-glycerophosphate, ascorbic acid-2-phosphate It provides a method for differentiating into bone cells. Preferably, the present invention may be cultured in low concentration glucose DMEM medium in osteoblast differentiation medium containing 10% FBS, 1 μM dexamethasone, 10 mM β-glycerophosphate, 60 μM ascorbic acid-2-phosphate, but not limited thereto. .
본 발명의 용어 "골세포(osteocyte)"란 촘촘한 골조직에 가장 풍부한 별모양의 세포로 핵과 세포질의 얇은 고리를 포함한다. 골모세포가 스스로 분비한 기질에 갇혀 골세포를 형성한다. 골세포는 간극결합을 통해 영양분과 폐기물을 교환하는데 사용되는 소관계라 불리는 작은 관을 채우는 긴 세포질 신장을 통해 서로 연결된다. 한편, 골세포는 합성 능력이 감소되어 유사분열하지 않으며 중간엽에서 생성되고, 수산화인회석, 탄산칼슘, 및 인산칼슘이 세포 주위에 축적된다.The term "osteocyte" of the present invention is a star-shaped cell that is most abundant in dense bone tissue and includes a thin ring of nucleus and cytoplasm. Osteoblasts are trapped in the secreted matrix and form bone cells. Bone cells connect to each other through long cytoplasmic kidneys that fill small ducts called microtubules that are used to exchange nutrients and waste through gap junctions. On the other hand, osteocytes are reduced in their ability to synthesize, do not mitosis, are produced in the mesenchyme, and hydroxyapatite, calcium carbonate, and calcium phosphate accumulate around the cells.
또 하나의 양태로서, 본 발명은 상기 제조된 혈관주위 전구세포를 유효성분으로 포함하는 심혈관 질환의 예방 또는 치료용 약학적 조성물을 제공한다.In another aspect, the present invention provides a pharmaceutical composition for the prevention or treatment of cardiovascular diseases comprising the prepared perivascular progenitor cells as an active ingredient.
본 발명의 용어 "예방"이란 본 발명에 따른 약학적 조성물의 투여에 의해 심혈관 질환을 억제시키거나 발병을 지연시키는 모든 행위를 의미하고, "치료"란 상기 약학적 조성물의 투여에 의해 심혈관 질환에 의한 증세가 호전되거나 이롭게 변경하는 모든 행위를 의미한다.The term "prevention" of the present invention means any action that inhibits or delays the onset of cardiovascular disease by the administration of the pharmaceutical composition according to the present invention, "treatment" refers to cardiovascular disease by the administration of the pharmaceutical composition It means any action that improves or beneficially changes the symptoms caused by it.
본 발명의 조성물은 심혈관 질환의 예방 또는 치료에 제한없이 사용될 수 있다. 본 발명의 용어 "심혈관 질환"이란, 심장질환과 혈관질환을 포함하는 것으로, 심장을 비롯한 동맥, 정맥에 발생하여 심장 및 혈관에 영향을 미치는 질병을 의미한다. 고지혈증, 당뇨병 및 흡연 등의 위험인자는 모두 혈관을 손상시키는 원인이며, 심혈관질환을 발병시킬 수 있다. 그러나 보통 뚜렷한 증상이 없어 보통 침묵의 질환이라고 한다. 무증상으로 시작하고 자각하지 못하는 사이에 악화되어 증상이 나타났을 때는 이미 질환이 심각해진 상태가 대부분이다. 또한 이들 심혈관 질환의 다수가 성인병과 관계된다. 그 예로는, 혈액순환이 안되어 혈관 속에 노폐물인 콜레스테롤과 지방성분이 많이 축적되어 나타나는 고지혈증, 동맥이 노쇠하여 굳어가는 동맥경화증, 심장이 수축과 이완을 하는 과정에서 압력이 높아져 생기는 고혈압, 낮아서 생기느 저혈압, 심장주위 관상동맥의 이상으로 생기는 협심증, 심장 근육의 이상에 의해 생기는 심근경색증 등이 대표적이다.The composition of the present invention can be used without limitation in the prevention or treatment of cardiovascular diseases. The term "cardiovascular disease" of the present invention includes heart disease and vascular disease, and refers to a disease that occurs in the arteries and veins including the heart and affects the heart and blood vessels. Risk factors such as hyperlipidemia, diabetes and smoking are all causes of blood vessel damage and can lead to cardiovascular disease. However, there are usually no clear symptoms, usually called silent disease. Most of the conditions are already severe when symptoms begin to develop asymptomatically and worsen without awareness. Many of these cardiovascular diseases are also associated with adult diseases. Examples include hyperlipidemia, in which blood cholesterol and fat components are accumulated in blood vessels due to poor blood circulation, arteriosclerosis, which hardens as the arteries age, and high blood pressure caused by high pressure during the contraction and relaxation of the heart. Representatives include hypotension, angina caused by pericardial coronary artery disease, and myocardial infarction caused by heart muscle abnormalities.
따라서, 본 발명에 의해 치료 가능한 심혈관 질환은 그 예로, 심부전, 고혈압성 심장질환, 부정맥, 심장판막증, 심실중격결손, 선천성 심장질환, 심근증, 심낭질환, 뇌졸중, 말초혈관질환, 동맥류, 동맥경화증, 관상동맥질환 또는 고혈압 등이 포함될 수 있으나 이들로 한정되는 것은 아니다.Thus, the cardiovascular diseases treatable by the present invention include, for example, heart failure, hypertensive heart disease, arrhythmia, heart valve disease, ventricular septal defect, congenital heart disease, cardiomyopathy, pericardial disease, stroke, peripheral vascular disease, aneurysm, arteriosclerosis, Coronary artery disease or high blood pressure may be included, but is not limited thereto.
본 발명의 구체적인 실시예에 따르면, 마우스에 이식시킨 본 발명의 혈관주위 전구세포가 허혈성 후지에서 허혈 사지 구제/혈류의 개선의 효과가 있음을 확인하였다(도 10). 또한 허혈성 심근에서 모세혈관 밀도를 증가시키는 효과가 있음을 확인하였다(도 11). 따라서, 본 발명의 줄기세포로부터 유래된 혈관주위 전구세포는 세포치료 조성물로서 심혈관 질환을 치료할 가능성이 있음을 확인하였다.According to a specific embodiment of the present invention, it was confirmed that the perivascular progenitor cells of the present invention implanted in the mouse has an effect of improving ischemic limb relief / blood flow in ischemic Fuji (FIG. 10). It was also confirmed that there is an effect of increasing the capillary density in the ischemic myocardium (FIG. 11). Therefore, it was confirmed that perivascular progenitor cells derived from stem cells of the present invention have the potential to treat cardiovascular diseases as cell therapy compositions.
본 발명의 용어 "약학적 조성물"은 "세포치료 조성물"과 혼용될 수 있으며, 이는 사람으로부터 분리, 배양 및 특수한 조작을 통해 제조된 세포 및 조직으로 치료, 진단 및 예방의 목적으로 사용되는 의약품(미국 FDA규정)으로서, 세포 혹은 조직의 기능을 복원시키기 위하여 살아있는 자가, 동종, 또는 이종세포를 체외에서 증식 선별하거나 다른 방법으로 세포의 생물학적 특성을 변화시키는 등의 일련의 행위를 통하여 치료, 진단 및 예방의 목적으로 사용되는 의약품을 의미한다.The term "pharmaceutical composition" of the present invention may be used interchangeably with "cell therapy composition", which is a cell and tissue prepared through isolation, culture and special manipulation from humans, which is used for the purpose of treatment, diagnosis and prophylaxis. U.S. FDA Regulations) treats, diagnoses, and treats live, autologous, or heterologous cells in vitro or otherwise alters the biological properties of cells to restore the function of cells or tissues. Means a drug used for the purpose of prevention.
상기 본 발명의 세포치료 조성물은 약학적으로 허용되는 담체를 추가로 포함할 수도 있다. 상기 "약학적으로 허용되는" 이란 상기 조성물에 노출되는 세포나 인간에게 독성이 없는 것을 말한다. 상기 담체는 완충제, 보존제, 무통화제, 가용화제, 등장제, 안정화제, 기제, 부형제, 윤활제, 보존제 등 당업계에 공지된 것이라면 제한없이 사용할 수 있다. 본 발명의 약학적 조성물은 각종 제형의 형태로 통용되는 기법에 따라 제조될 수 있다. 본 발명의 조성물인 세포치료제는 질병부위로 이동을 유도할 수 있다면 어떠한 경로를 통해서든지 투여 가능하다. 경우에 따라서는 줄기세포를 병변으로 향하게 하는 수단을 구비한 비히클에 로딩하는 방안을 고려할 수도 있다. 따라서 본 발명의 조성물은 국소 (협측, 설하, 피부 및 안내 투여를 포함), 비경구 (피하, 피내, 근육내, 점적, 정맥 내, 동맥 내, 관절 내 및 뇌척수액 내를 포함) 또는 경피성 투여를 포함한 여러 경로를 통해 투여할 수 있으며, 바람직하게는 비경구로, 가장 바람직하게는 발병부위에 직접 투여한다. 일 양태로서 줄기세포는 적합한 희석제에 약 1×103 내지 5×106 세포/ml의 농도로 현탁시켜 개체에 투여할 수 있는데, 이 희석제는 세포를 보호 및 유지하고, 목적하는 조직에 주입시 사용에 용이하도록 하는 용도로 사용된다. 상기 희석제로는 생리식염수, 인산완충용액, HBSS 등의 완충용액, 혈장, 뇌척수액, 또는 혈액성분 등이 있을 수 있다. 또한, 제약 조성물은 활성 물질이 표적 세포로 이동할 수 있도록 임의의 장치에 의해 투여될 수 있다. 바람직한 투여방식 및 제제는 주사제이다. 주사제는 생리식염액, 링겔액, Hank 용액 또는 멸균된 수용액 등의 수성용제, 올리브 오일 등의 식물유, 에틸올레인산 등의 고급 지방산 에스테르 및 에탄올, 벤질알코올, 프로필렌글리콜, 폴리에틸렌글리콜 또는 글리세린 등의 비수성용제 등을 이용하여 제조할 수 있고, 점막 투과를 위해, 통과할 배리어에 적합한 당업계에 공지된 비침투성제가 사용될 수 있으며, 변질방지를 위한 안정화제로 아스코르빈산, 아황산수소나트륨, BHA, 토코페롤, EDTA 등과, 유화제, pH 조절을 위한 완충제, 질산페닐수은, 치메로살, 염화벤잘코늄, 페놀, 크레솔, 벤질알코올 등의 미생물 발육을 저지하기 위한 보존제 등의 약학적 담체를 추가적으로 포함할 수 있다.The cell therapy composition of the present invention may further comprise a pharmaceutically acceptable carrier. "Pharmaceutically acceptable" means that the cells or humans exposed to the composition are not toxic. The carrier can be used without limitation so long as it is known in the art such as buffers, preservatives, analgesics, solubilizers, isotonic agents, stabilizers, bases, excipients, lubricants, preservatives and the like. The pharmaceutical compositions of the present invention can be prepared according to techniques commonly used in the form of various formulations. The cell therapy agent of the composition of the present invention can be administered by any route as long as it can induce migration to the disease site. In some cases, one may consider loading the vehicle with a means for directing stem cells to the lesion. Thus, the compositions of the present invention may be used topically (including buccal, sublingual, skin and intraocular administration), parenteral (including subcutaneous, intradermal, intramuscular, instillation, intravenous, intraarterial, intraarticular and cerebrospinal fluid) or transdermal administration. It can be administered through several routes, including parenteral, most preferably directly to the affected area. In one embodiment, the stem cells can be administered to a subject by suspending it in a suitable diluent at a concentration of about 1 × 10 3 to 5 × 10 6 cells / ml, which dilution protects and maintains the cells and upon injection into the desired tissue. Used for ease of use. The diluent may include a saline solution, a phosphate buffer solution, a buffer solution such as HBSS, plasma, cerebrospinal fluid, or a blood component. In addition, the pharmaceutical composition can be administered by any device such that the active substance can migrate to the target cell. Preferred modes of administration and preparations are injections. Injections include aqueous solvents such as physiological saline solution, ring gel solution, Hank's solution or sterilized aqueous solution, vegetable oils such as olive oil, higher fatty acid esters such as ethyl oleic acid, and non-aqueous solvents such as ethanol, benzyl alcohol, propylene glycol, polyethylene glycol or glycerin And non-invasive agents known in the art, suitable for the barrier to pass through, for mucosal permeation, and ascorbic acid, sodium hydrogen sulfite, BHA, tocopherol, EDTA as stabilizers for prevention of alteration. And the like, an emulsifier, a buffer for pH adjustment, phenyl mercury nitrate, chimerosal, benzalkonium chloride, phenol, cresol, benzyl alcohol, and the like, and a pharmaceutical carrier such as a preservative for preventing the growth of microorganisms.
또 하나의 양태로서, 본 발명은 상기 제조된 혈관주위 전구세포를 유효성분으로 포함하는 망막질환의 예방 또는 치료용 약학적 조성물을 제공한다.As another aspect, the present invention provides a pharmaceutical composition for the prevention or treatment of retinal diseases, including the prepared perivascular progenitor cells as an active ingredient.
본 발명의 용어 "예방"이란 본 발명에 따른 약학적 조성물의 투여에 의해 망막질환을 억제시키거나 발병을 지연시키는 모든 행위를 의미하고, "치료"란 상기 약학적 조성물의 투여에 의해 망막질환에 의한 증세가 호전되거나 이롭게 변경하는 모든 행위를 의미한다.The term "prevention" of the present invention means any action that inhibits or delays the onset of retinal disease by the administration of the pharmaceutical composition according to the present invention, "treatment" refers to retinal disease by the administration of the pharmaceutical composition It means any action that improves or beneficially changes the symptoms caused by it.
또한 본 발명의 조성물은 망막질환의 예방 또는 치료에 사용될 수 있다. 본 발명의 용어 "망막질환"이란, 시혈관 주위세포(pericyte)가 손상된 후 재생되지 않아 혈관내피세포의 비정상적인 증식을 수반하거나 혈액 또는 체액이 누출되어 망막변성을 일으킴으로 발생하는 질환을 의미한다. 따라서, 망막에 혈관주위세포 또는 이로 분화가능한 세포를 이식함으로 치료될 수 있다. 본 발명에 의해 치료 가능한 망막질환의 예로는 습성 황반변성(wet age related macular degeneration, neovascular or exudative AMD), 녹내장(glaucoma), 당뇨병성 망막증(diabetic retinopathy), 습성 망막병증(wet age related retinopathy), 미숙아 망막변증(retinopathy of prematurity) 등이 있으나, 이에 제한되지 않는다.In addition, the composition of the present invention can be used for the prevention or treatment of retinal diseases. As used herein, the term "retinal disease" refers to a disease caused by abnormal regeneration of vascular endothelial cells due to impaired pericyte or retinal degeneration due to leakage of blood or body fluids. Thus, it can be treated by implanting perivascular or differentiateable cells into the retina. Examples of retinal diseases treatable by the present invention include wet age related macular degeneration (neovascular or exudative AMD), glaucoma, diabetic retinopathy, wet age related retinopathy, Retinopathy of prematurity, but is not limited thereto.
본 발명의 구체적인 실시예에 따르면, 당뇨성 망막질환 마우스모델의 망막에 이식시킨 본 발명의 줄기세포로부터 유래된 혈관주위 전구세포가 손상된 혈관의 혈관주위에 생착하여 손상을 완화시키는 효과가 있음을 확인하였다(도 12). 또한 성체유래 줄기세포를 이식한 경우와 비교하였을 때, 이식된 성체유래 줄기세포는 원하는 위치에 생착되지 못하고 망막박리, 렌즈-망막협착 과도한 염증반응을 유발하여 사망에 이르게 하는 것을 확인하였다(도 13). 따라서, 본 발명의 줄기세포로부터 유래된 혈관주위 전구세포는 세포치료 조성물로서 망막질환을 치료할 가능성이 있음을 확인하였다.According to a specific embodiment of the present invention, it is confirmed that the perivascular progenitor cells derived from the stem cells of the present invention transplanted into the retina of the diabetic retinal disease mouse model have an effect of engulfing the perivascular vessels of the damaged blood vessels to alleviate the damage. (FIG. 12). In addition, when compared with the transplantation of adult-derived stem cells, the transplanted adult-derived stem cells did not engraft in the desired location, it was confirmed that causing retinal detachment, lens-retinal stenosis excessive inflammatory reactions leading to death (Fig. 13). ). Therefore, it was confirmed that the perivascular progenitor cells derived from the stem cells of the present invention have the potential to treat retinal diseases as cell therapy compositions.
또 하나의 양태로서, 본 발명은 상기 심혈관 질환의 예방 또는 치료용 약학적 조성물을 이를 필요로 하는 개체에 투여하는 단계를 포함하는, 개체의 심혈관 질환을 예방 또는 치료하는 방법을 제공한다.As another aspect, the present invention provides a method for preventing or treating a cardiovascular disease of a subject, comprising administering the pharmaceutical composition for preventing or treating the cardiovascular disease to a subject in need thereof.
본 발명의 용어 "개체"란 위와 같은 심혈관 질환이 발병하였거나 발병할 수 있는 인간을 포함한 모든 동물을 의미하고, 본 발명의 약학적 조성물을 개체에게 투여함으로써 상기 질환들을 효과적으로 예방 또는 치료할 수 있다. 본 발명의 약학적 조성물은 기존의 치료제와 병행하여 투여될 수 있다.The term "individual" of the present invention means any animal including a human having or may develop a cardiovascular disease as described above, and can effectively prevent or treat the diseases by administering the pharmaceutical composition of the present invention to an individual. The pharmaceutical composition of the present invention can be administered in parallel with existing therapeutic agents.
본 발명의 용어 "투여"란, 적절한 방법으로 환자에게 소정의 물질을 도입하는 것을 의미하며 상기 조성물의 투여 경로는 목적 조직에 도달할 수 있는 한 어떠한 일반적인 경로를 통하여 투여될 수 있다. 복강내 투여, 정맥내 투여, 근육내 투여, 피하 투여, 피내 투여, 경구 투여, 국소 투여, 비내 투여, 폐내 투여, 직장내 투여될 수 있으나, 이에 제한되지는 않는다.The term "administration" of the present invention means introducing a predetermined substance into a patient in an appropriate manner, and the route of administration of the composition may be administered via any general route as long as it can reach the target tissue. Intraperitoneal administration, intravenous administration, intramuscular administration, subcutaneous administration, intradermal administration, oral administration, topical administration, nasal administration, pulmonary administration, rectal administration, but is not limited thereto.
또한, 본 발명의 약학적 조성물은 활성 물질이 표적 세포로 이동할 수 있는 임의의 장치에 의해 투여될 수도 있다. 바람직한 투여방식 및 제제는 정맥 주사제, 피하 주사제, 피내 주사제, 근육 주사제, 점적 주사제 등이다. 주사제는 생리식염액, 링겔액 등의 수성 용제, 식물유, 고급 지방산 에스테르(예, 올레인산에칠 등), 알코올 류(예, 에탄올, 벤질알코올, 프로필렌글리콜, 글리세린 등) 등의 비수성 용제 등을 이용하여 제조할 수 있고, 변질 방지를 위한 안정화제(예, 아스코르빈산, 아황산수소나트륨, 피로아황산나트륨, BHA, 토코페롤, EDTA 등), 유화제, pH 조절을 위한 완충제, 미생물 발육을 저지하기 위한 보존제(예, 질산페닐수은, 치메로살, 염화벤잘코늄, 페놀, 크레솔, 벤질알코올 등) 등의 약학적 담체를 포함할 수 있다.In addition, the pharmaceutical compositions of the present invention may be administered by any device in which the active substance may migrate to target cells. Preferred modes of administration and preparations are intravenous, subcutaneous, intradermal, intramuscular, injectable and the like. Injections include non-aqueous solvents such as aqueous solvents such as physiological saline solution and ring gel solution, vegetable oils, higher fatty acid esters (e.g., oleic acid, etc.), and alcohols (e.g., ethanol, benzyl alcohol, propylene glycol, glycerin, etc.). Stabilizers (e.g. ascorbic acid, sodium bisulfite, sodium pyrosulfite, BHA, tocopherol, EDTA, etc.), emulsifiers, buffers for pH adjustment, to prevent microbial growth Preservatives (eg, mercury nitrate, chimerosal, benzalkonium chloride, phenol, cresol, benzyl alcohol, etc.) may be included.
또 하나의 양태로서, 본 발명은 상기 망막질환의 예방 또는 치료용 약학적 조성물을 이를 필요로 하는 개체에 투여하는 단계를 포함하는, 개체의 심혈관 질환을 예방 또는 치료하는 방법을 제공한다.As another aspect, the present invention provides a method for preventing or treating a cardiovascular disease of an individual, comprising administering the pharmaceutical composition for preventing or treating the retinal disease to an individual in need thereof.
본 발명의 용어 "개체" 및 "투여"는 상기 본문에 정의된 바와 동일하다.The terms "individual" and "administration" of the present invention are the same as defined in the above text.
또 하나의 양태로서, 본 발명은 상기 줄기세포유래 혈관주위 전구세포의 심혈관 질환의 예방 또는 치료용 용도를 제공한다.As another aspect, the present invention provides a use of the stem cell-derived perivascular progenitor cells for the prevention or treatment of cardiovascular diseases.
또 하나의 양태로서, 본 발명은 상기 줄기세포유래 혈관주위 전구세포의 심혈관 질환 치료제의 제조를 위한 용도를 제공한다.As another aspect, the present invention provides a use for the preparation of a cardiovascular disease therapeutic agent of the stem cell-derived perivascular progenitor cells.
또 하나의 양태로서, 본 발명은 상기 줄기세포유래 혈관주위 전구세포의 망막질환의 예방 또는 치료용 용도를 제공한다.As another aspect, the present invention provides a use for the prevention or treatment of retinal disease of the stem cell-derived perivascular progenitor cells.
또 하나의 양태로서, 본 발명은 상기 줄기세포유래 혈관주위 전구세포의 망막질환 치료제의 제조를 위한 용도를 제공한다.As another aspect, the present invention provides a use for the manufacture of a therapeutic agent for retinal disease of the stem cell-derived perivascular progenitor cells.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention more specifically, but the scope of the present invention is not limited by these examples.
실시예 1: 인간 배아줄기세포(human embryonic stem cell; hESC)의 배양Example 1 Culture of Human Embryonic Stem Cells (hESCs)
미분화 상태의 인간 배아줄기세포(H9, CHA11-hESC)를 0.1% 젤라틴으로 코팅한 배양접시(Nunc, Roskide, Denmark)에서, 세포 성장 억제물질인 미토마이신 C(mitomycin C; Sigma, St. Louis, MO, USA)를 10 μg/ml의 농도로 90분간 처리하여 준비한 마우스 배아 섬유아세포(mouse embryonic fibroblast; MEF)를 지지세포로 하여 공배양하였다. 이때, hESC는 DMEM/F12(50:50, Invitrogen, Carlsbad, CA, USA), 20%(v/v) 혈청 대체물(serum replacement; SR), 1% 비필수 아미노산(Invitrogen), 1% 페니실린 스트렙토마이신(Invitrogen), 0.1% 베타-머캅토에탄올(Invitrogen), 4 ng/ml bFGF(basix fibroblast growth factor; Invitrogen)로 구성된 배양액을 사용하였다. 배양액은 매일 교체해주고, 5일 내지 7일 간격으로 새로운 지지세포에 계대배양하였으며, 세포배양은 37℃, 5% 이산화탄소, 95% 습도를 유지하면서 배양하였다.In a culture dish (Nunc, Roskide, Denmark) coated with undifferentiated human embryonic stem cells (H9, CHA11-hESC) with 0.1% gelatin, mitomycin C (Sigma, St. Louis, MO, USA) was cocultured with mouse embryonic fibroblasts (MEFs) prepared by treatment at a concentration of 10 μg / ml for 90 minutes as support cells. At this time, hESC is DMEM / F12 (50:50, Invitrogen, Carlsbad, CA, USA), 20% (v / v) serum replacement (SR), 1% non-essential amino acid (Invitrogen), 1% penicillin strepto A culture consisting of mycin (Invitrogen), 0.1% beta-mercaptoethanol (Invitrogen), 4 ng / ml bFGF (basix fibroblast growth factor; Invitrogen) was used. The culture was replaced every day, subcultured to new support cells every 5-7 days, cell culture was incubated while maintaining 37 ℃, 5% carbon dioxide, 95% humidity.
실시예 2: 배상체(embryoid body)의 형성Example 2 Formation of Embryoid Body
분화 유도를 위한 배상체를 형성하기 위하여 인간 배아줄기세포를 디스파아제로 지지세포와 분리시킨 후 새로운 배양접시(Falcon/BD Biosciences, San Jose, CA, USA)에 옮겨, 한번 세척하고, DMEM/F12(50:50, Invitrogen)에 2%(v/v) 혈청 대체물(serum replacement; SR; Invitrogen)가 첨가된 배양액에 45분 동안 부유배양하면서 응집을 유도하였다. 응집된 배상체는 10%(v/v) SR, 1 mM L-글루타민(Invitrogen), 1% 비필수 아미노산(nonessential amino acid; NEAA; Invitrogen), 1% 페니실린 스트렙토마이신(Invitrogen), 0.1% 베타-머캅토에탄올(Invitrogen)로 조성된 배양액으로 옮겨 부유배양하였다. 배양액은 이틀에 한번씩 교체하였고, 5 내지 6일 동안 유지배양하였다.To form embryoid bodies for differentiation induction, human embryonic stem cells were separated from support cells with dispase, transferred to a new culture dish (Falcon / BD Biosciences, San Jose, CA, USA), washed once, and washed with DMEM / Aggregation was induced by suspension for 45 minutes in a culture medium in which 2% (v / v) serum replacement (SR; Invitrogen) was added to F12 (50:50, Invitrogen). Aggregated embryoid bodies were 10% (v / v) SR, 1 mM L-glutamine (Invitrogen), 1% nonessential amino acid (NEAA; Invitrogen), 1% penicillin streptomycin (Invitrogen), 0.1% beta Transfer to culture medium composed of mercaptoethanol (Invitrogen) was suspended in culture. Cultures were replaced every other day and maintained for 5-6 days.
실시예 3: BMP4 성장인자 처리에 의한 배상체 내 중배엽성 세포군집의 증가Example 3: Increase of Mesodermal Cell Population in Embryos by BMP4 Growth Factor Treatment
상기 방법으로 제조된 배상체를 중배엽성 세포로 분화시키기 위해, 배상체를 형성한 첫 날 1 mM L-글루타민, 1% 비필수 아미노산, 0.1% 베타-머캅토에탄올 및 10% SR을 첨가한 DMEM/F12 배양액에 20 ng/ml BMP4 성장인자(Peprotech Inc., Rocky Hill, NJ, USA)를 처리하였으며, 다음 날부터 이틀에 한 번씩 BMP4 성장인자를 처리한 배양액으로 교체해 주었다.DMEM with 1 mM L-glutamine, 1% non-essential amino acid, 0.1% beta-mercaptoethanol and 10% SR added on the first day of embryoid formation to differentiate embryoid bodies prepared by the above method into mesodermal cells The / F12 culture was treated with 20 ng / ml BMP4 growth factor (Peprotech Inc., Rocky Hill, NJ, USA), and was replaced with the cultured BMP4 growth factor once every two days from the next day.
그 결과, BMP4 성장인자를 처리한 배양일 수가 증가함에 따라 중배엽성 세포의 마커인 KDR과 PDGFRβ 대해 양성을 나타내는 세포의 비율이 증가하는 것을 확인하였다(도 1A 및 1B). 또한 BMP4를 처리하지 않은 대조군(NT)과 배양 6일째에 상기 두가지 마커 KDR과 PDGFRβ 발현을 유세포 분석을 통해 비교한 결과, 특히 KDR의 발현 비율이 BMP4를 처리한 실험군에서 대조군에 비해 크게 향상된 것을 확인하였다(도 1B).As a result, it was confirmed that as the number of culture days treated with the BMP4 growth factor increased, the ratio of KDR and PDGFRβ, which are markers of mesodermal cells, increased in proportion to cells (FIGS. 1A and 1B). In addition, comparing the two markers KDR and PDGFRβ expression on the 6th day of culture with the control group (NT) not treated with BMP4 through flow cytometry, in particular, the expression rate of KDR was significantly improved compared to the control group in the experimental group treated with BMP4. (FIG. 1B).
실시예 4: 저자극 효소처리에 의한 중배엽성 배상체의 단일세포화Example 4: Single Cellization of Mesodermal Embryos by Hypoallergenic Enzyme Treatment
BMP4 성장인자 처리에 의한 중배엽 세포군집 유도 배상체를 인산완충용액(Invitrogen 1X)으로 1 내지 2회 세척하고, 35 mm 배양 접시에 상기 배상체를 두고천연물질 유래 저자극 효소인 Tryp-LE(Invitrogen)를 처리하여 배상체의 세포간 결합이 풀어지는 것을 현미경으로 관찰하여 확인하였다. 상기 결합이 풀어진 세포들을 에펜도르프 튜브에 옮겨 인산완충용액으로 세척하고 35 μm 나일론 그물 세포 여과기(35 μm nylon mesh cell strainer)를 이용하여 여과하여 단일세포를 제조하였다.Mesoderm cell population-induced embryoid bodies treated with BMP4 growth factor were washed 1-2 times with phosphate buffer solution (Invitrogen 1X), and the embryonic bodies were placed in a 35 mm culture dish, Tryp-LE (Invitrogen) ) Was observed by observing with a microscope the release of intercellular binding of the embryoid body. The unbound cells were transferred to an Eppendorf tube, washed with phosphate buffer solution, and filtered using a 35 μm nylon mesh cell strainer to prepare single cells.
이때, 하나의 60 mm 배양접시에 유지배양된 인간 배아줄기세포로부터 얻어지는 배상체는 평균 80 내지 100개이며, 하나의 배상체는 평균 2,500개의 세포로 이루어진다. 따라서 본 발명의 1회 공정에 있어, 6개의 60 mm 배양접시의 인간 배아줄기세포로부터 얻어지는 배상체는 평균적으로 500 내지 600개이며, 이들로부터 얻어지는 단일세포는 1.5 내지 2×106개이다.At this time, the average number of embryoid bodies obtained from human embryonic stem cells maintained in one 60 mm culture dish is 80 to 100, and one embryonic body is composed of 2,500 cells on average. Therefore, in one step of the present invention, embryonic bodies obtained from human embryonic stem cells of six 60 mm culture dishes on average are 500 to 600, and single cells obtained from them are 1.5 to 2 × 10 6 .
그 결과를 도 2에 나타내었다. 도 2A는 세포배양접시에 분주한 미분화 H9 hESC 단일세포, 도 2B는 코팅되지 않은 플라스틱 페트리접시에 분주한 BMP4 유도 6일째 EB로부터의 단일세포, 2C 및 2D는 콜라겐 코팅된 접시에 분주한 자연분화된 EB로부터의 단일세포, 및 2E 및 2F는 콜라겐 코팅된 접시에 분주한 BMP4 유도 6일째 EB로부터의 단일세포의 현미경 사진이다. 도 2C 및 2D는 상피세포와 섬유세포 등이 함께 관찰되는 균일하지 않은 세포 군집을 보이는 반면, 도 2E 및 2F는 균일한 세포군집을 보인다.The results are shown in FIG. FIG. 2A shows undifferentiated H9 hESC single cells dispensed in a cell culture dish, FIG. 2B shows spontaneous differentiation of single cells from EB on day 6 of BMP4 induction dispensed in an uncoated plastic Petri dish, 2C and 2D in collagen coated dishes Single cells from EBs, and 2E and 2F, are micrographs of single cells from EB on day 6 of BMP4 induction dispensed into collagen coated dishes. 2C and 2D show a non-uniform cell population in which epithelial cells and fibrous cells are observed together, while FIGS. 2E and 2F show a uniform cell population.
실시예 5: 코팅 기질 특이적인 부착배양을 통한 혈관주위 전구세포의 자연선택(Natural selection)Example 5: Natural Selection of Perivascular Progenitor Cells through Coating Substrate Specific Adhesion Culture
상기 실시예 4에서 제조된 단일세포를 미리 준비한 콜라겐 코팅 배양접시에 EGM2-MV(Lonza) 배지와 함께 37℃, 5% 이산화탄소 조건의 세포배양기에서 밤새도록 배양하였다. 상기 과정에서 배양된 단일세포는 부유군집과 부착군집으로 나누어지고, 부유군집은 인산완충용액 세척과 배지교환 과정을 통해 자연선택에 의해 제거되었다. 상기 과정에서 자연선택을 통해 부착된 세포를 계대 0으로 정하였다. 2 내지 3일 마다 계대배양하고, 계대 0으로부터 배양 10일 이내에 계대 3까지 증식된다. 본 발명의 1회 공정에 있어 1.5 내지 2×106개의 단일세포는 35 mm 콜라겐 코팅 배양접시에 50 내지 80%가 부착되고, 계대 3에서는 5개의 T-75 플라스크에 3 내지 5×107개로 증식된다.Single cells prepared in Example 4 were incubated overnight in a cell culture apparatus at 37 ° C., 5% carbon dioxide conditions with EGM2-MV (Lonza) medium in a pre-prepared collagen coated culture dish. Single cells cultured in the above process is divided into floating and adherent population, the floating population was removed by natural selection through phosphate buffer solution and medium exchange process. In the process, cells attached through natural selection were set to passage 0. It is passaged every 2 to 3 days and propagates from passage 0 to passage 3 within 10 days of culture. In one process of the present invention, 1.5 to 2 × 10 6 single cells are attached to 50 to 80% in a 35 mm collagen-coated culture dish, and in passage 3 to 3 to 5 × 10 7 in five T-75 flasks. Multiplies.
코팅에 사용된 콜라겐은 3 mg/ml 농도의 콜라겐 용액(Stem Cell Tech.)의 3차 증류수 희석용액을 사용하였다. 계대 0을 위한 콜라겐 코팅은 5배 희석된 콜라겐 용액을 사용하였고, 이후의 계대배양에는 20배 희석된 콜라겐 용액을 사용하였다. 코팅은 상온의 무균작업대에서 배양접시를 해당 농도의 콜라겐 용액에 1시간 이상 노출시켜 수행하였다.Collagen used in the coating was a distilled water dilution solution of a collagen solution (Stem Cell Tech.) Of 3 mg / ml concentration. The collagen coating for passage 0 used a 5-fold diluted collagen solution, and subsequent passages used a 20-fold diluted collagen solution. The coating was performed by exposing the culture dish to the collagen solution of the corresponding concentration for at least 1 hour at a sterile work table at room temperature.
그 결과를 도 3에 나타내었다. 먼저 유세포 분석기로 PDGFRβ의 발현정도에 따라 각각 양성과 음성의 세포 군집을 분류하여 배양한 세포의 형태 및 각각에 대한 유세포 분석 결과를 도 3A에 나타내었다. 더불어 본 발명의 자연선택 방법에 따라 배양된 세포를 도 3B에 나타내었다. 수일의 배양 후 유세포 분석 결과로부터 본 발명의 배양 방법의 특징적인 단계인 기질 특이적 자연선택에 의해, 유세포 분류 또는 자성 세포 분류 등의 추가적인 과정없이, 혈관주위 전구세포를 순수하게 분리할 수 있음을 확인하였다.The results are shown in FIG. First, flow cytometry is shown in FIG. 3A for the types of cells cultured by categorizing positive and negative cell populations according to the expression level of PDGFRβ with a flow cytometer. In addition, cells cultured according to the natural selection method of the present invention is shown in Figure 3B. From the flow cytometry results after several days of culture, substrate specific natural selection, which is a characteristic step of the culturing method of the present invention, is capable of pure separation of perivascular progenitor cells without additional processes such as flow cytometry or magnetic cell sorting. Confirmed.
실시예 6: 혈관주위 전구세포의 표지마커 검색Example 6: Search for marker markers of perivascular progenitor cells
상기 실시예 1 내지 5의 과정을 통해 제조된 세포를 혈관주위 전구세포의 표지마커를 이용하여 유세포 분석기(FACSCalibur flow cytometer; BD Bioscience, San Jose, CA, USA)로 분석하였다. 계대 3에서 배양된 세포를 저자극 효소인 Tryp-LE를 이용하여 부유시키고, 상기 세포들을 에펜도르프 튜브에 옮겨 인산완충용액으로 세척하고 35 μm 나일론 그물 세포 여과기를 이용하여 여과하여 2% 소태아혈청(Terracell, Webtec Inc., Charltte, NC, USA)이 함유된 인산완충용액으로 부유시킨 후 유세포 분석을 실시하였다. 대조군 마커로는 IgGisotype(PE, APC; BD Biosciences)를, 그 외에 PDGFRα(PE; R&D systems), PDGFRβ(PE; R&D systems), CD44(PE, APC; R&D systems), KDR(PE; R&D systems), Tie-2(PE; R&D systems), Flt-1(PE; R&D systems), VE-CAD(PE; R&D systems), CD31(PE; R&D systems), CD146(PE; R&D systems), NG2(PE; R&D systems), CD34(PE; R&D systems), CD45(PE; R&D systems), CD105(PE; R&D systems), CD90(PE; R&D systems), CXCR4(PE; R&D systems), SSEA4(PE; R&D systems) 및 CD133(APC; MiltenyiBiotec Inc.) 등을 사용하였다.Cells prepared through the procedure of Examples 1 to 5 were analyzed by a flow cytometer (FACSCalibur flow cytometer; BD Bioscience, San Jose, CA, USA) using the markers of perivascular progenitor cells. Cells cultured in passage 3 were suspended using Tryp-LE, a hypoallergenic enzyme, transferred to an Eppendorf tube, washed with phosphate buffer solution and filtered using a 35 μm nylon mesh cell filter to 2% fetal bovine serum. Flow cytometry was performed after floating with phosphate buffer solution containing (Terracell, Webtec Inc., Charltte, NC, USA). Control markers include IgG isotype (PE, APC; BD Biosciences), other PDGFRα (PE; R & D systems), PDGFRβ (PE; R & D systems), CD44 (PE, APC; R & D systems), KDR (PE; R & D systems) ), Tie-2 (PE; R & D systems), Flt-1 (PE; R & D systems), VE-CAD (PE; R & D systems), CD31 (PE; R & D systems), CD146 (PE; R & D systems), NG2 ( PE; R & D systems), CD34 (PE; R & D systems), CD45 (PE; R & D systems), CD105 (PE; R & D systems), CD90 (PE; R & D systems), CXCR4 (PE; R & D systems), SSEA4 (PE; R & D systems) and CD133 (APC; Miltenyi Biotec Inc.) were used.
상기 유세포 분석 결과를 도 4에 나타내었다. 그 결과, 도 4a로부터, 본 발명의 혈관주위 전구세포는 PDGFRα, PDGFRβ, CD44, CD73, CD90, CD105, CD146, NG2, KDR, Tie2 및 Flt1에 대해 양성이며, CD31, CD34, CD45, CD133, CD144, CXCR4 및 c-kit에 대해서는 음성인 면역 표현형을 나타내었다.The flow cytometry results are shown in FIG. 4. As a result, from Fig. 4a, the perivascular progenitor cells of the present invention are positive for PDGFRα, PDGFRβ, CD44, CD73, CD90, CD105, CD146, NG2, KDR, Tie2 and Flt1, and CD31, CD34, CD45, CD133, CD144 , CXCR4 and c-kit showed a negative immune phenotype.
실시예 7: 혈관주위 전구세포의 분화능Example 7: Differentiation of Perivascular Progenitor Cells
상기 실시예 6의 방법으로 확인된 혈관주위 전구세포를 지속적으로 5% FBS, 10 ng/ml angiogenic growth factors, 10 ng/ml FGF, 20 ng/ml VEGF, 10 ng/ml IGF, 10 ng/ml EGF, 아스코르브산 및 GA-1000을 포함하는 EGM-2MV(SingleQuots, Cambrex Bio Science) 배지에서 배양 시 성체 유래의 혈관주위세포와 유사한 특성을 나타내었다. 이를 인간 태반 유도 혈관주위세포와 비교하여 도 5에 나타내었다.Peripheral progenitor cells identified by the method of Example 6 were continuously treated with 5% FBS, 10 ng / ml angiogenic growth factors, 10 ng / ml FGF, 20 ng / ml VEGF, 10 ng / ml IGF, 10 ng / ml When cultured in EGM-2MV (SingleQuots, Cambrex Bio Science) medium containing EGF, ascorbic acid and GA-1000, it showed similar characteristics to the perivascular cells derived from adults. This is shown in Figure 5 compared with human placental induced perivascular cells.
그 결과, 도 5A(H9 hESC-PVPC) 및 도 5B(인간 태반 유도 혈관주위세포)에서 세포형태상의 유사성을 관찰할 수 있었으며, 도 5C 및 도 5D에서 혈관주위세포의 특이적 마커인 NG2(Green)의 발현을 확인할 수 있었으나, 성체조직 특이적 마커인 SMA(red)의 발현은 관찰되지 않았다. 도 5E의 3차원 콜라겐 젤 및 도 5F의 저부착 배양접시에서 혈관내피세포와 인간 배아줄기세포 유래 혈관내피 전구세포의 공동배양을 통해 분화된 혈관주위 전구세포가 혈관내피세포에 의해 형성된 구조(도 5E에서는 유사혈관형태, 도 5F에서는 타원형 내부세포괴)의 외부, 즉 혈관주위영역에 위치함을 확인하였다.As a result, the similarity in cell morphology was observed in FIG. 5A (H9 hESC-PVPC) and FIG. 5B (human placenta-induced perivascular cells), and in FIG. 5C and FIG. 5D, NG2 (Green, a specific marker of perivascular cells). ), But the expression of adult tissue specific marker SMA (red) was not observed. Peripheral vascular progenitor cells formed by co-culture of vascular endothelial cells and human embryonic stem cell-derived vascular endothelial progenitor cells in the three-dimensional collagen gel of FIG. 5E and the low adhesion culture dish of FIG. 5F (FIG. In 5E, the vascular morphology and in FIG. 5F were located outside of the elliptic inner cell mass, that is, in the perivascular region.
상기 실시예 6의 방법으로 확인된 혈관주위 전구세포를 평활근 세포화 분화배지 즉, 5% FBS, 1% NEAA, 1% PS, 0.1 mM β-머캅토에탄올을 포함하는 DMEM 배지에서 분화시켜, 본 발명의 혈관주위 전구세포가 평활근세포로 분화가능함을 보였다. 이를 평활근세포 특이적 마커인 αSMA의 발현을 성숙 SMLC와 비교하여 RT-PCR, 실시간 PCR 및 면역세포화학으로 확인하였다.Perivascular progenitor cells identified by the method of Example 6 were differentiated in DMEM medium containing smooth muscle cell differentiation medium, that is, 5% FBS, 1% NEAA, 1% PS, 0.1 mM β-mercaptoethanol, It was shown that the perivascular progenitor cells of the invention are capable of differentiating into smooth muscle cells. The expression of αSMA, a smooth muscle cell specific marker, was confirmed by RT-PCR, real-time PCR and immunocytochemistry by comparing with mature SMLC.
그 결과, 도 6A 및 도 6B는 평활근 분화배지로 분화 유도 경과일에 따라 점진적으로 증가함을 나타내었다. 면역형광염색은 분화 전 혈관주위 전구세포에서는 αSMA(red)가 발현하지 않고, 평활근세포로 분화됨에 따라 발현됨을 나타내었다(도 6C 및 도 6D). 도 6E 및 도 6F는 성숙한 평활근세포 특이적 마커인 SM-MHC(도 6E, green) 및 칼포닌(calponin; 도 6F, green)이 αSMA와 동시에 발현됨을 보였다.As a result, FIGS. 6A and 6B show that the smooth muscle differentiation medium gradually increases with the days of induction of differentiation. Immunofluorescence staining in perivascular progenitor cells prior to differentiation αSMA (red) was not expressed, but was expressed as it was differentiated into smooth muscle cells (FIGS. 6C and 6D). 6E and 6F showed that the mature smooth muscle cell specific markers SM-MHC (FIG. 6E, green) and calponin (FIG. 6F, green) were simultaneously expressed with αSMA.
상기 실시예 6의 방법으로 확인된 혈관주위 전구세포를 10% FBS, 10% HS, 1% CEE 및 1% PS를 포함하는 고농도 글루코스 DMEM 배지에 배양하여 근세포로 분화시켰다. 도 7A 및 7D는 분화 전 혈관주위 전구세포를, 도 7B 및 도 7E는 상기 근분화배지에서 근세포로 분화하는 세포를, 도 7C 및 도 7F는 최종적으로 근성장배지하에서 근섬유의 형태를 나타낸다. 이를 확인하기 위하여 근세포 특이적 마커인 데스민(red)을 사용하였다.Peripheral progenitor cells identified by the method of Example 6 were cultured in high glucose DMEM medium containing 10% FBS, 10% HS, 1% CEE and 1% PS to differentiate into myocytes. 7A and 7D show the perivascular progenitor cells prior to differentiation, FIGS. 7B and 7E show the cells that differentiate into myocytes in the myogenic differentiation medium, and FIGS. 7C and 7F finally show the morphology of muscle fibers under muscle growth medium. In order to confirm this, myocyte-specific marker desmine (red) was used.
상기 실시예 6의 방법으로 확인된 혈관주위 전구세포를 10% FBS, 5 μg/ml 인슐린, 1 μM 덱사메타손, 0.5 mM 이소부틸메틸크산틴 및 60 μM 인도메타신을 포함하는 저농도 글루코스 DMEM 배지와 10% FBS, 1 μM 덱사메타손, 10 mM β-글리세로포스페이트 및 60 μM 아스코르브산-2-인산을 포함하는 저농도 글루코스 DMEM 배지로 배양하여 각각 지방세포와 골세포로 분화시켜 골격형성 분화 가능성을 확인하였다. 상기 조건하에서 분화하여 생성된 지방세포를 오일 레드 염색으로, 골세포를 알리자린 레드 염색으로 확인하였고 이를 도 8에 나타내었다.Peripheral progenitor cells identified by the method of Example 6 were 10% FBS, 5 μg / ml insulin, 1 μM dexamethasone, 0.5 mM isobutylmethylxanthine, and 60 μM indomethacin and 10% of low glucose DMEM medium. Cultured in low glucose DMEM medium containing FBS, 1 μM dexamethasone, 10 mM β-glycerophosphate, and 60 μM ascorbic acid-2-phosphate to differentiate into adipocytes and osteoblasts, respectively, to determine the possibility of skeletal differentiation. Adipocytes generated by differentiation under the above conditions were identified by oil red staining, and bone cells by alizarin red staining, which are shown in FIG. 8.
실시예 8: 혈관주위 전구세포의 심혈관 세포와의 상호물질 교환성Example 8: Intermaterial Exchange of Perivascular Progenitor Cells with Cardiovascular Cells
본 발명의 인간 배아줄기세포 유래 혈관주위 전구세포(hESC-PVPC)와 다른 심혈관계 세포간의 색소 전이 분석을 통해 상호물질 교환성을 확인하였다. 칼신(calcein)은 세포 상호작용의 일환인 갭-정션(gap-junction)을 통해서만 이동되는 형광물질이다. 따라서, 다른 심혈관세포에 표지된 칼신이 hESC-PVPC로 전이되기 위해서는 세포간 갭-정션 형성이 필수적이다. DiI-표지 hESC-PVPC(도 9, 상부 패널, red)를 칼신-표지 HUVEC(도 9, 중앙 패널 좌측, green), UASMC(도 9, 중앙패널 중앙, green) 또는 심근세포(도 9, 중앙 패널 우측, green)와 5% 이산화탄소의 37℃ 항온배양기에서 1시간 동안 공배양하였다. 칼신의 녹색 형광은 hESC-PVPC(도 9, 하부 패널)에서 DiI의 적색 형광과 함께 검출되었다(도 9, 하부 패널, 적녹색, 별표). 이로부터 hESC-PVPC가 다른 심혈관계 세포와 갭-정션을 형성함으로 물질이동 등의 상호작용이 가능함을 확인하였다.Interchangeability was confirmed through analysis of pigment transfer between human embryonic stem cell-derived vascular periphery progenitor cells (hESC-PVPC) and other cardiovascular cells of the present invention. Calcine is a fluorescence that is only transferred through gap-junction, which is part of cellular interactions. Thus, intercellular gap-junction formation is necessary for the transfer of calcine labeled in other cardiovascular cells to hESC-PVPC. DiI-labeled hESC-PVPC (FIG. 9, top panel, red) was calcine-labeled HUVEC (FIG. 9, middle panel left, green), UASMC (FIG. 9, middle panel center, green) or cardiomyocytes (FIG. 9, center). Right panel, green) and 5% CO 2 was incubated for 1 hour in a 37 ℃ incubator. Green fluorescence of calcine was detected with red fluorescence of DiI in hESC-PVPC (FIG. 9, bottom panel) (FIG. 9, bottom panel, red green, asterisk). From this, it was confirmed that hESC-PVPC forms a gap-junction with other cardiovascular cells, thereby allowing interactions such as mass transfer.
실시예 9: 혈관주위 전구세포의 허혈성 심혈관 질환 모델에서의 치료효과Example 9 Therapeutic Effect of Perivascular Progenitor Cells in an Ischemic Cardiovascular Disease Model
본 발명의 인간 배아줄기세포 유래 혈관주위 전구세포(hESC-PVPC)를 허혈성 질환 동물 모델에 이식하여 세포치료제로서의 응용가능성을 확인하였다. 허혈성 심혈관 질환 마우스 모델에 hESC-PVPC를 이식하고 이식 전과 이식 후 치료효과를 관찰하였다. 도 10은 hESC-PVPC 이식 후 허혈성 후지에서의 허혈 사지 구제/혈류 개선을 나타낸 도이다. 이식 직후와 28일에 일련의 하지 회복정도를 구분하고 이미지를 관찰하여 분석하고 레이져 도플러 이미지로 허혈사지의 혈액 관류율 회복을 측정하였다. 도 11은 hESC-PVPC 이식으로 증가된 허혈 심근 내 모세혈관 밀도를 나타낸다. 배지를 주입한 샴그룹(도 11A), hESC-PVPC를 이식한 실험군(도 11B) 및 CB-EPC를 주입한 비교군(도 11C)의 심장 단면을 마송 삼색 염색하여 비교하였다. 도 11D 내지 도 11G는 hESC-PVPC 이식으로 인한 경색증 심근 섬유화 면적 및 경색증 심근 상흔 길이 감소와 경색증 심근에서의 모세혈관 밀도 및 경색증 벽두께의 증가를 나타낸다. 도 11H 및 도 11I는 심근증 부위 모세혈관을 GS-렉틴(green)으로 염색한 것이다. 상기 일련의 결과로부터 hESC-PVPC 이식 실험군에서 모세혈관 재생을 통한 허혈성 심근경색의 회복효과가 나타남을 확인하였다.Human embryonic stem cell-derived perivascular progenitor cells (hESC-PVPC) of the present invention were transplanted into an ischemic disease animal model to confirm its applicability as a cell therapy. HESC-PVPC was transplanted into a mouse model of ischemic cardiovascular disease and the treatment effect was observed before and after transplantation. 10 shows ischemic limb rescue / blood flow improvement in ischemic Fuji after hESC-PVPC transplantation. Immediately after transplantation and at 28 days, a series of lower limb recovery was divided, and the images were analyzed and analyzed. The laser Doppler image was used to measure the recovery of blood perfusion of the ischemic limb. 11 shows increased capillary density in ischemic myocardium with hESC-PVPC transplantation. Heart sections of the Siamese group injected with media (FIG. 11A), the experimental group implanted with hESC-PVPC (FIG. 11B), and the comparative group injected with CB-EPC (FIG. 11C) were compared by Masson tricolor staining. 11D-11G show a decrease in infarct myocardial fibrosis area and infarct myocardial scar length and increase in capillary density and infarct wall thickness in infarct myocardium due to hESC-PVPC transplantation. 11H and 11I show staining of cardiomyopathy site capillary with GS-lectin (green). From the series of results, it was confirmed that the recovery effect of ischemic myocardial infarction through capillary regeneration in the hESC-PVPC transplantation experimental group.
이와 같은 결과는 본 발명의 혈관주위 전구세포가 심혈관 질환을 치료할 수 있음을 시사하는 것이다.These results suggest that the perivascular progenitor cells of the present invention can treat cardiovascular disease.
실시예 10: 혈관주위 전구세포의 당뇨성 망막병증 질환모델에서의 치료효과Example 10 Therapeutic Effect of Perivascular Progenitor Cells in Diabetic Retinopathy Disease Model.
동물모델로서 당뇨성 망막질환을 유도한 마우스에 hESC-PVPC를 이식하여 치료효과를 확인하였다. 우선 스트렙토조토신(streptozotocin, STZ)을 마우스에 투여하여 당뇨를 유발하였다. 당뇨 유발 모델로는 최초 5회(1일 1회)의 STZ 투여 후 혈당수치를 측정하여 250 mg/dl 이상의 수치를 나타내는 마우스를 선별하여 사용하였으며, 망막병증 유발에 소요되는 시간을 감안하여 당뇨 유발 8주 이후의 것을 사용하였다. 시각화를 위하여 DiI(적색)을 표지한 hESC-PVPC를 사용하였고, 망막 내 주입 4주 후 생착여부를 확인하였다. 망막혈관 표지를 위해서는 망막추출 전 꼬리혈관에 FITC 표지된 덱스트란(dextran-FITC, 녹색)을 주입하였다. 도 12에 나타난 바와 같이, 이식된 hESC-PVPC는 망막 내로 생착되었고, 특히 손상된 혈관의 혈관주위에 위치함을 확인하였다.As an animal model, hESC-PVPC was transplanted into mice induced with diabetic retinopathy to confirm the therapeutic effect. First, streptozotocin (streptozotocin, STZ) was administered to mice to induce diabetes. Diabetes-induced model was used to measure the blood glucose level after the first five times (once a day) STZ was used to select mice with a value of 250 mg / dl or more, in consideration of the time required to induce retinopathy Those after 8 weeks were used. For visualization, hESC-PVPC labeled with DiI (red) was used, and engraftment was confirmed 4 weeks after injection into the retina. For retinal blood vessel labeling, FITC-labeled dextran (dextran-FITC, green) was injected into the tail blood vessel before retinal extraction. As shown in FIG. 12, the transplanted hESC-PVPC was engrafted into the retina, and was found to be located particularly around the vessel of the damaged blood vessel.
아울러, 성체유래 중간엽 줄기세포를 이식하여 그 결과를 비교하였다. 인간골수유래 중간엽 줄기세포(BM-MSC)와 인간태반유래 중간엽 줄기세포(placenta-MSC)를 동일한 방법으로 이식하고 이후 한 달 동안 생착여부를 확인하여 그 결과를 상기 hESC-PVPC의 이식결과와 비교하였다. 상기 hESC-PVPC와 동일하게 각각의 세포는 DiI로 표지하여 STZ로 당뇨 유발 8주된 마우스의 망막에 이식하였고 1, 2, 4주 후 각각의 망막을 추출하여 생착여부를 확인하였다. hESC-PVPC의 경우 혈관주위 영역에 생착되어 추가적인 망막혈관 형태 손상을 일으키지 않는 반면, 성체유래 중간엽 줄기세포 이식군에서는 이식된 세포가 생착되지 못하고 망막박리, 렌즈-망막협착 과도한 염증반응을 유발하여 사망에 이르게 하는 것을 확인하였다. 이를 도 13에 나타내었다. 도면의 성체유래 중간엽 줄기세포 이식군에서 나타나는 적색의 표지는 DiI에 의한 것인 아닌 염증반응에 의한 면역세포들의 자가형광발색에 기인한다. 이는 세포의 이식 경로와는 무관하게 망막혈관 내부에 존재하는 것으로 명확히는 녹적색의 발광이다.In addition, adult-derived mesenchymal stem cells were transplanted and the results were compared. Human bone marrow-derived mesenchymal stem cells (BM-MSCs) and human placenta-derived mesenchymal stem cells (placenta-MSCs) were transplanted in the same manner and transplanted for one month thereafter. Compared with. In the same manner as the hESC-PVPC, each cell was labeled with DiI and transplanted into the retina of STZ-induced diabetic 8-week-old mouse. hESC-PVPC is engrafted in the perivascular area and does not cause additional retinal vascular damage.In the adult-derived mesenchymal stem cell transplant group, the transplanted cells do not engraft and retinal detachment and lens-retinal stenosis are induced. It was confirmed to lead to death. This is shown in FIG. 13. The red label in the adult-derived mesenchymal stem cell transplant group in the figure is due to the autofluorescence of immune cells by inflammatory responses, not by DiI. It is clearly green-green luminescence that exists inside the retinal vessels regardless of cell transplantation pathway.
이와 같은 결과는 본 발명의 혈관주위 전구세포가 망막 내 생착능이 우수하여, 시혈관 주위세포가 손상된 후 재생되지 않는 망막질환을 치료할 수 있음을 시사하는 것이다.These results suggest that the perivascular progenitor cells of the present invention have excellent engraftment ability in the retina, and thus can treat retinal diseases that are not regenerated after perivascular cells are damaged.

Claims (18)

1) 줄기세포 유래의 배상체(embryoid body)에 BMP4(bone morphogenetic protein 4) 성장인자를 처리하여 중배엽성 세포로 분화시키는 단계;1) differentiating into mesodermal cells by treating bone morphogenetic protein 4 (BMP4) growth factor in the embryonic body derived from stem cells;
2) 상기 1)단계에서 분화된 중배엽성 세포를 포함하는 배상체를 단일세포로 분리하는 단계; 및2) separating the embryoid body comprising mesodermal cells differentiated in step 1) into single cells; And
3) 상기 2)단계의 분리된 단일세포를 기질이 코팅된 배양접시에서 배양하여 부착된 세포만을 자연선택으로 증식시키는 단계를 포함하는, 줄기세포로부터 혈관주위 전구세포를 제조하는 방법.3) culturing the separated single cells of step 2) in a substrate coated with a substrate, and naturally only propagating the attached cells, a method for producing perivascular progenitor cells from stem cells.
제1항에 있어서,The method of claim 1,
상기 1)단계의 줄기세포는 인간 배아줄기세포(embryonic stem cell), 유도 전분화능 줄기세포(induced pluripotent stem cell; iPSC) 및 체세포 핵치환 줄기세포(somatic cell nuclear transfer cell, SCNT)로 구성된 군으로부터 선택되는 어느 하나인 것인 방법.Stem cell of step 1) is from the group consisting of human embryonic stem cells (embryonic stem cells), induced pluripotent stem cells (iPSC) and somatic cell nuclear transfer cells (SCNT) Which is any one selected.
제2항에 있어서,The method of claim 2,
상기 줄기세포는 인간 유래인 것인 방법.The stem cell is a human-derived method.
제1항에 있어서,The method of claim 1,
상기 2)단계의 세포분리는 트립신 효소를 처리하여 이루어지는 방법.Cell separation of step 2) is made by treating trypsin enzyme.
제1항에 있어서,The method of claim 1,
상기 3)단계의 기질은 콜라겐 또는 라미닌인 것인 방법.The substrate of step 3) is collagen or laminin.
제1항에 있어서,The method of claim 1,
상기 단계 3)의 자연선택된 혈관주위 전구세포는 PDGFRβ(platelet-derived growth factor receptor β)에 양성인 방법.The naturally selected perivascular progenitor cells of step 3) are positive for platelet-derived growth factor receptor β (PDGFRβ).
제1항 내지 제6항 중 어느 한 항의 방법으로 제조된 혈관주위 전구세포.Peripheral progenitor cells produced by the method of any one of claims 1 to 6.
제7항의 혈관주위 전구세포를 혈관형성 성장인자(angiogenic growth factors), FGF(fibroblast growth factor), VEGF(vascular endothelial growth factor), IGF(insulin-like growth factor), EGF(epidermal growth factor), 아스코르브산, 및 GA-1000을 포함하는 EGM-2MV 배지에서 배양하는 것을 특징으로 하는 혈관주위 전구세포를 혈관주위 세포로 분화시키는 방법.Angiogenic growth factors (angiogenic growth factors), fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF), epidermal growth factor (EGF), ascorb A method of differentiating perivascular progenitor cells into perivascular cells, wherein the perivascular progenitor cells are cultured in EGM-2MV medium containing acid and GA-1000.
제7항의 혈관주위 전구세포를 NEAA(minimum essential medium non-essential amino acids), PS(penicillin/streptomycin), 및 β-머캅토에탄올을 포함하는 DMEM 배지에서 배양하는 것을 특징으로 하는 혈관주위 전구세포를 평활근세포로 분화시키는 방법.Peripheral vascular progenitor cells are cultured in DMEM medium containing minimal essential medium non-essential amino acids (NEAA), penicillin / streptomycin (PS), and β-mercaptoethanol. How to differentiate into smooth muscle cells.
제7항의 혈관주위 전구세포를 말혈청, 계배추출물, 및 PS를 포함하는 고농도 글루코스 DMEM 배지에서 배양하는 것을 특징으로 하는 혈관주위 전구세포를 근세포로 분화시키는 방법.The method of differentiating perivascular progenitor cells into myocytes, wherein the perivascular progenitor cells of claim 7 are cultured in a high concentration glucose DMEM medium containing horse serum, cactus extract, and PS.
제7항의 혈관주위 전구세포를 인슐린, 덱사메타손, 이소부틸메틸크산틴, 및 인도메타신을 포함하는 저농도 글루코스 DMEM 배지에서 배양하는 것을 특징으로 하는 혈관주위 전구세포를 지방세포로 분화시키는 방법.A method for differentiating perivascular progenitor cells into adipocytes, wherein the perivascular progenitor cells of claim 7 are cultured in a low glucose DMEM medium containing insulin, dexamethasone, isobutylmethylxanthine, and indomethacin.
제7항의 혈관주위 전구세포를 덱사메타손, β-글리세로포스페이트, 및 아스코르브산-2-인산을 포함하는 저농도 글루코스 DMEM 배지에서 배양하는 것을 특징으로 하는 혈관주위 전구세포를 골세포로 분화시키는 방법.The method of differentiating perivascular progenitor cells into bone cells, wherein the perivascular progenitor cells of claim 7 are cultured in a low concentration glucose DMEM medium containing dexamethasone, β-glycerophosphate, and ascorbic acid-2-phosphate.
제7항의 혈관주위 전구세포를 유효성분으로 포함하는 심혈관 질환의 예방 또는 치료용 약학적 조성물.The pharmaceutical composition for the prevention or treatment of cardiovascular diseases, including the perivascular progenitor cells of claim 7.
제13항에 있어서,The method of claim 13,
심혈관 질환은 심부전, 고혈압성 심장질환, 부정맥, 심장판막증, 심실중격결손, 선천성 심장질환, 심근증, 심낭질환, 뇌졸중, 말초혈관질환, 동맥류, 동맥경화증, 관상동맥질환 및 고혈압으로 구성된 군으로부터 선택되는 어느 하나인 것인 약학적 조성물.Cardiovascular disease is selected from the group consisting of heart failure, hypertensive heart disease, arrhythmia, heart valve disease, ventricular septal defect, congenital heart disease, cardiomyopathy, pericardial disease, stroke, peripheral vascular disease, aneurysm, arteriosclerosis, coronary artery disease and hypertension Any one will be a pharmaceutical composition.
제7항의 혈관주위 전구세포를 유효성분으로 포함하는 망막질환의 예방 또는 치료용 약학적 조성물.A pharmaceutical composition for preventing or treating retinal disease, comprising the perivascular progenitor cells of claim 7 as an active ingredient.
제15항에 있어서,The method of claim 15,
망막질환은 습성 황반변성, 녹내장, 당뇨병성 망막증, 습성 망막병증 및 미숙아 망막병증으로 구성된 군으로부터 선택되는 어느 하나인 것인 약학적 조성물.The retinal disease is any one selected from the group consisting of wet macular degeneration, glaucoma, diabetic retinopathy, wet retinopathy and prematurity retinopathy.
제13항에 따른 심혈관 질환의 예방 또는 치료용 약학적 조성물을 이를 필요로 하는 개체에 투여하는 단계를 포함하는, 개체의 심혈관 질환을 예방 또는 치료하는 방법.Pharmaceutical for preventing or treating cardiovascular diseases according to claim 13 A method of preventing or treating cardiovascular disease in a subject, comprising administering the composition to a subject in need thereof.
제15항에 따른 망막질환의 예방 또는 치료용 약학적 조성물을 이를 필요로 하는 개체에 투여하는 단계를 포함하는, 개체의 망막질환을 예방 또는 치료하는 방법.Pharmaceutical for preventing or treating retinal diseases according to claim 15 A method of preventing or treating retinal disease in a subject, comprising administering the composition to a subject in need thereof.
PCT/KR2012/000769 2012-01-19 2012-01-31 Method for preparing human embryonic stem cell-derived perivascular progenitor cells, and composition for cell therapy containing same WO2013108949A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120006371A KR101477016B1 (en) 2012-01-19 2012-01-19 Method for producing human embryonic stem cell-derived perivascular progenitor cell and composition for cell therapy comprising the same
KR10-2012-0006371 2012-01-19

Publications (1)

Publication Number Publication Date
WO2013108949A1 true WO2013108949A1 (en) 2013-07-25

Family

ID=48799364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/000769 WO2013108949A1 (en) 2012-01-19 2012-01-31 Method for preparing human embryonic stem cell-derived perivascular progenitor cells, and composition for cell therapy containing same

Country Status (2)

Country Link
KR (1) KR101477016B1 (en)
WO (1) WO2013108949A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11566228B2 (en) 2006-04-14 2023-01-31 Astellas Institute For Regenerative Medicine Hemangio-colony forming cells

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160002247A (en) 2014-06-30 2016-01-07 건국대학교 산학협력단 Method for producing human embryonic stem cell-derived multifunctional angiogenesis pericyte and composition for cell therapy comprising the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090089206A (en) * 2008-02-18 2009-08-21 한국과학기술원 Method for inducing the defferentiation of embryonic stem cells into hemangioblast
KR20090129230A (en) * 2008-06-12 2009-12-16 (주)차바이오앤디오스텍 Therapeutic method for wound-healing using human embryonic stem cell derived vascular angiogenic progenitor cells(hesc-vapcs)
KR20110129842A (en) * 2009-03-24 2011-12-02 한국과학기술연구원 Method for the differentiation of stem cells into vascular endothelial cells and induction of angiogenesis using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090089206A (en) * 2008-02-18 2009-08-21 한국과학기술원 Method for inducing the defferentiation of embryonic stem cells into hemangioblast
KR20090129230A (en) * 2008-06-12 2009-12-16 (주)차바이오앤디오스텍 Therapeutic method for wound-healing using human embryonic stem cell derived vascular angiogenic progenitor cells(hesc-vapcs)
KR20110129842A (en) * 2009-03-24 2011-12-02 한국과학기술연구원 Method for the differentiation of stem cells into vascular endothelial cells and induction of angiogenesis using the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DAR ET AL.: "Multipotent vasculogenic pericytes from human pluripotent stem cells promote recovery of murine ischemic limb", CIRCULATION, vol. 125, 17 November 2011 (2011-11-17), pages 87 - 99, XP055229620, DOI: doi:10.1161/CIRCULATIONAHA.111.048264 *
MANCUSO ET AL.: "Circulating perivascular progenitors: a target of PDGFR inhibition", INTERNATIONAL JOURNAL OF CANCER, vol. 129, 2 December 2010 (2010-12-02), pages 1344 - 1350 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11566228B2 (en) 2006-04-14 2023-01-31 Astellas Institute For Regenerative Medicine Hemangio-colony forming cells

Also Published As

Publication number Publication date
KR20130085308A (en) 2013-07-29
KR101477016B1 (en) 2014-12-29

Similar Documents

Publication Publication Date Title
Huang et al. Efficient generation of lung and airway epithelial cells from human pluripotent stem cells
US10570369B2 (en) Pluripotent autologous stem cells from oral mucosa and methods of use
US20210079351A1 (en) Tissue-specific differentiation matrices and uses thereof
US8192348B2 (en) Engineered blood vessels
US20180171290A1 (en) Method of producing progenitor cells from differentiated cells
JP6832049B2 (en) Cardiac neural crest cells and how to use them
US9867854B2 (en) Therapeutic method using cardiac tissue-derived pluripotent stem cells
US20190153385A1 (en) Method of producing progenitor cells from differentiated cells
JP6981751B2 (en) Methods and Compositions for Forming Epicardial Cells
Ribatti et al. Epithelial-mesenchymal interactions: a fundamental developmental biology mechanism
WO2002083864A2 (en) Methods and reagents for cell transplantation
US20120100110A1 (en) Physiological methods for isolation of high purity cell populations
JP2019510758A (en) Use of dental pulp stem cells expressing mesenchymal and neuronal markers, and compositions thereof for treating neurological diseases
US9422522B2 (en) Method of producing adipocytes from fibroblast cells
WO2012008733A2 (en) Stem cells derived from primary placenta tissue and cellular therapeutic agent containing same
AU2013287307A1 (en) Derivation and self-renewal of IsI1+ cells and uses thereof
WO2013108949A1 (en) Method for preparing human embryonic stem cell-derived perivascular progenitor cells, and composition for cell therapy containing same
Klemmt et al. Murine amniotic fluid stem cells contribute mesenchymal but not epithelial components to reconstituted mammary ducts
JP2008500821A (en) Improved differentiation into cardiomyocytes
WO2021096218A1 (en) Method of isolation of pure culture of vascular endothelial cells, medium for maintaining characteristics of vascular endothelial cells, and culture method including same
Bettiol et al. Embryonic and adult stem cell-derived cardiomyocytes: lessons from in vitro models
KR20160002247A (en) Method for producing human embryonic stem cell-derived multifunctional angiogenesis pericyte and composition for cell therapy comprising the same
WO2018101723A1 (en) Novel functionally enhanced mesenchymal progenitor cells, anti-inflammatory cell therapeutic agent composition containing same, and mesenchymal progenitor cell preparation method
D’Ippolito et al. Isolation and characterization of swine MIAMI cells: a valuable animal model for adult stem cell therapy
Shojaie Extracellular Matrix-Mediated Lung Epithelial Cell Differentiation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12866224

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12866224

Country of ref document: EP

Kind code of ref document: A1