WO2013108717A1 - Gear transmission device - Google Patents

Gear transmission device Download PDF

Info

Publication number
WO2013108717A1
WO2013108717A1 PCT/JP2013/050431 JP2013050431W WO2013108717A1 WO 2013108717 A1 WO2013108717 A1 WO 2013108717A1 JP 2013050431 W JP2013050431 W JP 2013050431W WO 2013108717 A1 WO2013108717 A1 WO 2013108717A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear transmission
bearings
gear
carrier
bearing
Prior art date
Application number
PCT/JP2013/050431
Other languages
French (fr)
Japanese (ja)
Inventor
真哉 廣瀬
善和 堤
Original Assignee
ナブテスコ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナブテスコ株式会社 filed Critical ナブテスコ株式会社
Publication of WO2013108717A1 publication Critical patent/WO2013108717A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/06Ball or roller bearings
    • F16C23/08Ball or roller bearings self-adjusting
    • F16C23/082Ball or roller bearings self-adjusting by means of at least one substantially spherical surface
    • F16C23/086Ball or roller bearings self-adjusting by means of at least one substantially spherical surface forming a track for rolling elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • F16H2001/323Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear comprising eccentric crankshafts driving or driven by a gearing

Definitions

  • Patent Document 1 Japanese Patent Application Laid-Open No. 2010-156430 is referred to as Patent Document 1
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2010-159774 is referred to as Patent Document 2.
  • the internal gear is formed on the inner periphery of the case, and the external gear is supported by the carrier.
  • the carrier is supported by the case.
  • the crankshaft is supported by the carrier.
  • the crankshaft is provided with an eccentric body.
  • the external gear engages with the eccentric body of the crankshaft and rotates eccentrically.
  • the number of teeth of the external gear is different from the number of teeth of the internal gear. Therefore, when the external gear rotates eccentrically while meshing with the internal gear, the carrier rotates with respect to the case.
  • the carrier is supported by the case via an angular ball bearing.
  • the carrier is supported by the case via the angular roller bearing.
  • Patent Documents 1 and 2 are often used in fields where a large output torque is required. Therefore, a large force acts on the bearing disposed between the carrier and the case.
  • the rolling element of the bearing is a ball. Therefore, the contact area between the rolling elements and the race is small.
  • the bearing of Patent Document 1 cannot withstand a large force.
  • the rolling element of the bearing is a cylindrical roller. Further, the rolling elements are arranged obliquely with respect to the axis of the gear transmission. Therefore, in the axial direction of the rolling element, the diameter of the race is different for each position. Specifically, in the axial direction of the rolling elements, the diameter of the race increases toward the outside of the gear transmission.
  • the rolling distance of the rolling element varies from position to position, so that slip occurs between the rolling element and the race. Due to this slip, the rotating shaft of the rolling element may be tilted from the original axial direction. As a result, a force for moving the rolling element in the axial direction of the rolling element is generated.
  • the gear transmission disclosed in this specification includes a case, a pair of bearings, a carrier, a crankshaft, and an external gear.
  • An internal gear is formed on the inner periphery of the case.
  • the carrier is supported by the case via a pair of bearings.
  • the carrier is coaxial with the internal gear.
  • the crankshaft is supported by the carrier.
  • the crankshaft is provided with an eccentric body.
  • the external gear engages with the eccentric body of the crankshaft and rotates eccentrically while meshing with the internal gear.
  • each of the pair of bearings is disposed outside the internal gear in the axial direction of the internal gear.
  • Each of the pair of bearings includes an outer race in which an arc-shaped depression is formed on the inner circumferential surface, an inner race in which an arc-shaped depression is formed on the outer circumferential surface, and an outer race It is comprised by the some spherical roller arrange
  • the pair of bearings is configured such that the extension line of the rotating shaft of the spherical roller of one bearing and the extension line of the rotating shaft of the spherical roller of the other bearing intersect each other. Is arranged.
  • “Arc-shaped depressions are formed in a circle” means that an arc appears on the inner peripheral surface (outer peripheral surface) when the outer (inner) race is observed in any cross section along the bearing central axis. Means that.
  • the bearing central axis is equal to the axis of the internal gear.
  • the “spherical roller” means a shape in which a shape in which both ends of the rolling element are connected with an arc appears when a cross section along the rotation axis of the rolling element is observed. In other words, when a cross section perpendicular to the rotation axis of the rolling element is observed, all the cross sections become circles, and the diameter of the circle increases toward the center in the rotation axis direction of the rolling element.
  • “Spherical rollers” are sometimes called “convex rollers”. In the present specification, the bearing disposed between the case and the carrier may be referred to as a “main bearing”.
  • the contact area between the rolling element (spherical roller) and the race can be increased as compared with a gear transmission using an angular ball bearing. Therefore, the gear transmission described above can withstand a large force acting between the carrier and the case.
  • an arc is formed on the inner circumferential surface (outer circumferential surface) of the outer (inner) race, even if a force is applied to move the rolling element to the outside of the gear transmission along the axial direction of the rolling element, The movement of the rolling elements in the axial direction is restricted.
  • the pair of bearings has an extension line of the rotating shaft of the spherical roller of one bearing and an extension line of the rotating shaft of the spherical roller of the other bearing. It is arranged to cross between. Therefore, the relative movement of the carrier and the case is restricted both in the axial direction and in the radial direction. Said gear transmission can improve durability with a simple structure rather than the conventional gear transmission.
  • Sectional drawing of the gear transmission of 1st Example is shown. About the gear transmission of 1st Example, the expanded sectional view of a main bearing is shown. Sectional drawing of the gear transmission of 2nd Example is shown.
  • the contact angle between the spherical roller and the inner race may be 30 degrees or more and 60 degrees or less. If it is this range, both an axial load and a radial load can be borne in good balance.
  • the “contact angle between the spherical roller and the inner race” means an angle formed by a surface orthogonal to the bearing center axis and a straight line indicating the direction of the force applied from the spherical roller to the inner race.
  • the relative rotation speed of the case and the carrier may be 100 rpm or less. Since the temperature rise of the main bearing is suppressed, a large preload can be applied to the main bearing.
  • the center of the circular arc of the spherical roller may be located outside the spherical roller. Since the size of the main bearing is reduced, a small gear transmission can be realized.
  • FIG. 1 shows a cross-sectional view of the gear transmission 100.
  • the gear transmission 100 is a type of reduction device that rotates eccentrically while the external gear 24 meshes with the internal gear 28.
  • the gear transmission 100 uses the difference in the number of teeth between the external gear 24 and the internal gear 28 to increase the torque transmitted to the crankshaft 14 (decelerate the rotation) from the carrier 8. Output.
  • the carrier 8 is rotated with respect to the case 38 using the difference in the number of teeth between the external gear 24 and the internal gear 28.
  • the basic structure of the gear transmission 100 will be briefly described.
  • the gear transmission 100 includes a case 38, a carrier 8, a crankshaft 14, and an external gear 24.
  • the internal gear 28 includes a case 38 and a plurality of internal teeth pins 26 arranged on the inner periphery of the case 38.
  • a pair of main bearings 2 (2X, 2Y) is disposed between the case 38 and the carrier 8.
  • the carrier 8 is supported by the case 38 via the pair of main bearings 2.
  • the carrier 8 is coaxial with the internal gear 28.
  • the axis 36 is the axis of the carrier 8 and the internal gear 28.
  • the pair of main bearings 2 are disposed outside the internal gear 28 in the direction of the axis 36. In other words, the internal gear 28 is disposed between the pair of main bearings 2 in the direction of the axis 36.
  • the bearing central axis of the main bearing 2 is equal to the axis 36. Details of the main bearing 2 will be described later.
  • a flange 38 a extending in the radial direction is formed on the inner peripheral surface of the case 38.
  • “radial direction” means a direction perpendicular to the axis 36.
  • the carrier 8 includes a first plate 8a and a second plate 8c.
  • a columnar portion 8b extends from the first plate 8a toward the second plate 8c, and the columnar portion 8b and the second plate 8c are fixed.
  • a first flange 8d extending in the radial direction is formed at the end of the first plate 8a.
  • a second flange 8e extending in the radial direction is formed at the end of the second plate 8c.
  • the oil seal 4 is disposed between the first plate 8a and the case 38. The oil seal 4 prevents the lubricant or the like injected into the gear transmission 100 from leaking out of the gear transmission 100.
  • the carrier 8 supports the crankshaft 14 and the external gear 24.
  • the crankshaft 14 is supported on the carrier 8 by a pair of bearings 12.
  • the pair of bearings 12 are tapered roller bearings.
  • the axis 34 of the crankshaft 14 is parallel to the axis 36. That is, the crankshaft 14 extends parallel to the axis 36 at a position offset from the axis 36.
  • the crankshaft 14 includes an eccentric body 18 and an input gear 32.
  • the eccentric body 18 is engaged with the external gear 24 via the cylindrical roller bearing 22.
  • the external gear 24 is supported by the carrier 8 via the crankshaft 14.
  • the columnar portion 8 b of the carrier 8 passes through the through hole 24 a of the external gear 24. A gap is secured between the inner wall of the through hole 24a and the columnar portion 8b.
  • the crankshaft 14 rotates.
  • the eccentric body 18 rotates eccentrically with respect to the axis 34 as the crankshaft 14 rotates.
  • the external gear 24 rotates eccentrically while meshing with the internal gear 28.
  • the number of teeth of the external gear 24 and the number of teeth of the internal gear 28 are different.
  • the external gear 24 is supported by the carrier 8, and the internal gear 28 is formed on the inner peripheral surface of the case 38. Therefore, when the external gear 24 rotates eccentrically, the carrier 8 rotates relative to the case 38 according to the difference in the number of teeth between the external gear 24 and the internal gear 28.
  • the relative rotational speed of the carrier 8 and the case 38 is adjusted to 100 rpm or less.
  • the extension line of the rotary shaft 40X of the spherical roller of the main bearing 2X and the extension line of the rotary shaft 40Y of the spherical roller of the main bearing 2Y intersect between the main bearing 2X and the main bearing 2Y. More specifically, the extension line of the rotary shaft 40X and the extension line of the rotary shaft 40Y intersect at the midpoint of the main bearing 2X and the main bearing 2Y in the direction of the axis 36.
  • the intersection of the rotary shaft 40X and the rotary shaft 40Y is located on the radially inner side of the main bearing 2 when observed from the direction of the axis 36.
  • the main bearings 2X and 2Y may be arranged so that the intersection of the rotating shaft 40X and the rotating shaft 40Y is located on the radially outer side of the main bearing 2.
  • FIG. 2 shows the main bearing 2 ⁇ / b> X disposed between the first plate 8 a and the case 38.
  • the structure of the main bearing 2Y (see FIG. 1) is the same as the structure of the main bearing 2X. In the following description, only the main bearing 2X will be described, and description of the main bearing 2Y will be omitted.
  • the main bearing 2 includes an outer race 56, an inner race 50, a spherical roller 54, and a retainer 52.
  • a plurality of spherical rollers 54 are disposed between the outer race 56 and the inner race 50.
  • the retainer 52 prevents the spherical rollers 54 from contacting each other.
  • the retainer 52 is not in contact with the case 38 and the carrier 8. In other words, clearances are secured between the retainer 52 and the case 38 and between the retainer 52 and the carrier 8. The retainer 52 does not contact the case 38 and the carrier 8 even while the gear transmission 100 is driven.
  • a circular arc-shaped depression is formed on the inner peripheral surface 56a of the outer race 56.
  • An outer peripheral surface 56 b of the outer race 56 is fitted in the case 38.
  • An end surface 56c of the outer race 56 in the direction of the bearing center axis 36 (see FIG. 1) is in contact with the flange 38a.
  • On the outer peripheral surface 50b of the inner race 50 an arc-shaped depression is formed in a circle.
  • An inner peripheral surface 50 a of the inner race 50 is fitted to the first plate 8 a of the carrier 8.
  • An end surface 50c of the inner race 50 in the direction of the bearing center axis 36 is in contact with the first flange 8d of the first plate 8a.
  • the curvatures of the rolling surface 54a of the spherical roller 54, the inner peripheral surface 56a of the outer race 56, and the outer peripheral surface 50b of the inner race 50 are substantially equal.
  • the end surface of the inner race 50 in the bearing central axis 36 direction is in contact with the second flange 8e of the second plate 8c (see FIG. 1).
  • a preload of 10 to 50% of the radial capacity (Cr) is applied to the main bearing 2.
  • a preload of about 3 to 5% of the radial capacity (Cr) is applied to the bearing. That is, in the gear transmission 100, a large preload is applied as compared with a general method of using a bearing.
  • the gear transmission 100 can apply a large preload to the main bearing, and can obtain high rigidity.
  • a spacer may be disposed between the end face 50 c of the inner race 50 and the first flange 8 d of the carrier 8 to adjust the preload of the main bearing 2.
  • the main bearing 2 includes the outer race 56 in which an arc-shaped depression is formed on the inner peripheral surface 56a, the inner race 50 in which an arc-shaped depression is formed on the outer peripheral surface 50b, and the spherical roller 54. It has. Therefore, in the case of the main bearing 2, the contact area between the rolling elements (spherical rollers) and the races (outer race and inner race) is wider than that of a conventional ball bearing (for example, an angular ball bearing). By using the main bearing 2, the durability of the gear transmission can be improved.
  • a force that moves the spherical roller 54 to the outside of the gear transmission 100 along the rotation axis 40X (40Y) of the spherical roller 54 acts.
  • the gear transmission 100 does not require a structure that restricts the movement of the rolling elements, unlike a conventional roller bearing (for example, an angular roller bearing).
  • a conventional roller bearing for example, an angular roller bearing.
  • the retainer 52 does not contact the case 38 and the carrier 8, the rotation of the spherical roller 54 is not hindered.
  • the gear transmission 100 can achieve high durability with a simple structure as compared with the conventional gear transmission.
  • the gear transmission 100 shows a broken line 6a indicating a surface orthogonal to the bearing center axis 36 and a broken line 6b indicating the direction of force applied from the spherical roller 54 to the inner race 50 (see also FIG. 2).
  • the angle between the broken lines 6a and 6b that is, the contact angle Th between the spherical roller 54 and the inner race 50 is approximately 40 degrees.
  • the contact angle Th between the spherical roller 54 and the inner race 50 is simply referred to as a contact angle Th.
  • the contact angle Th is preferably adjusted between 30 degrees and 60 degrees.
  • the contact angle Th is less than 30 degrees, the force applied in the axial direction cannot be sufficiently resisted, and the durability of the gear transmission decreases. Further, when the contact angle Th exceeds 60 degrees, the force applied in the radial direction cannot be sufficiently resisted, and the durability of the gear transmission decreases. When the contact angle Th is in the range of 30 degrees or more and 60 degrees or less, a gear transmission with excellent durability can be realized.
  • the center 58 of the circular arc of the spherical roller 54 is located outside the spherical roller 54.
  • the width of the spherical roller (the length in the direction perpendicular to the rotation axis) can be shortened.
  • the small gear transmission 100 can be realized while maintaining the contact area between the spherical roller 52 and the race (the outer race 56 and the inner race 50).
  • FIG. 3 shows a cross-sectional view of the gear transmission 200.
  • the gear transmission 200 is a modification of the gear transmission 100, and the same components as the gear transmission 100 may be denoted by the same reference numerals or the same two lower digits, and the description thereof may be omitted.
  • the crankshaft 214 is disposed coaxially with the internal gear 228. That is, the axis 234 of the crankshaft 214 coincides with the axis 236 of the internal gear 228.
  • the crankshaft 214 is supported on the carrier 208 by a pair of bearings 212.
  • the bearing 212 is a deep groove ball bearing.
  • the eccentric body 218 of the crankshaft 214 is engaged with the external gear 224 via the cylindrical roller bearing 222.
  • the columnar portion 208b of the carrier 208 passes through the through hole 224a of the external gear 224.
  • the columnar portion 208b has a cylindrical shape.
  • a cylindrical torque pin 230 is attached to the columnar portion 208b and is in contact with the inner wall of the through hole 224a.
  • the columnar portion 208 b passes through the inside of the torque pin 230. Torque is transmitted from the external gear 224 to the carrier 208 at a contact point between the torque pin 230 and the inner wall of the through hole 224a.
  • an arc-shaped depression 250 is formed around the carrier 208 in a round.
  • the recess 250 of the carrier 208 also serves as an inner race of the main bearing 202. Therefore, the number of parts constituting the main bearing 202 is smaller than that of the gear transmission 100.
  • This technique can also be applied to the gear transmission 100. That is, also in the gear transmission 100, the carrier 8 may be formed as a circular arc recess on the outer periphery of the carrier 8, and the carrier may be used as an inner race.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Retarders (AREA)
  • Support Of The Bearing (AREA)

Abstract

A carrier is supported in a case with a pair of bearings interposed therebetween. The pair of bearings is arranged on the outer side relative to the internal gear in the axial direction of the internal gear. Each of the bearings comprises an outer race, an inner race, and a plurality of spherical rollers. An arc-shaped recess is formed along the entire circumference of the inner peripheral surface of the outer race. An arc-shaped recess is formed along the entire circumference of the outer peripheral surface of the inner race. The pair of bearings is arranged so that, in a cross-section that includes the center axes of the bearings, an extension of the rotation axis of the spherical rollers of one of the bearings and an extension of the rotation axis of the spherical rollers of the other bearing intersect between the two bearings.

Description

歯車伝動装置Gear transmission
 本出願は、2012年1月19日に出願された日本国特許出願第2012-009055号に基づく優先権を主張する。その出願の全ての内容は、この明細書中に参照により援用されている。本明細書は歯車伝動装置に関する技術を開示する。 This application claims priority based on Japanese Patent Application No. 2012-009055 filed on January 19, 2012. The entire contents of that application are incorporated herein by reference. This specification discloses the technique regarding a gear transmission.
 外歯歯車が内歯歯車と噛み合いながら偏心回転する歯車伝動装置が知られている。そのようなタイプの歯車伝動装置が、特開2010-156430号公報及び特開2010-159774号公報に開示されている。以下の説明では、特開2010-156430号公報を特許文献1と称し、特開2010-159774号公報を特許文献2と称する。 A gear transmission in which an external gear rotates eccentrically while meshing with an internal gear is known. Such type of gear transmission is disclosed in Japanese Patent Application Laid-Open Nos. 2010-156430 and 2010-159774. In the following description, Japanese Patent Application Laid-Open No. 2010-156430 is referred to as Patent Document 1, and Japanese Patent Application Laid-Open No. 2010-159774 is referred to as Patent Document 2.
 特許文献1及び2の歯車伝動装置では、内歯歯車がケースの内周に形成されており、外歯歯車がキャリアに支持されている。キャリアは、ケースに支持されている。また、クランクシャフトが、キャリアに支持されている。クランクシャフトには、偏心体が設けられている。外歯歯車は、クランクシャフトの偏心体に係合して偏心回転する。外歯歯車の歯数は、内歯歯車の歯数と相違している。そのため、外歯歯車が内歯歯車と噛み合いながら偏心回転すると、キャリアがケースに対して回転する。特許文献1の歯車伝動装置では、キャリアは、アンギュラ玉軸受を介してケースに支持されている。また、特許文献2の歯車伝動装置では、キャリアは、アンギュラころ軸受を介してケースに支持されている。 In the gear transmissions of Patent Documents 1 and 2, the internal gear is formed on the inner periphery of the case, and the external gear is supported by the carrier. The carrier is supported by the case. The crankshaft is supported by the carrier. The crankshaft is provided with an eccentric body. The external gear engages with the eccentric body of the crankshaft and rotates eccentrically. The number of teeth of the external gear is different from the number of teeth of the internal gear. Therefore, when the external gear rotates eccentrically while meshing with the internal gear, the carrier rotates with respect to the case. In the gear transmission of Patent Document 1, the carrier is supported by the case via an angular ball bearing. Moreover, in the gear transmission of patent document 2, the carrier is supported by the case via the angular roller bearing.
 特許文献1及び2の歯車伝動装置は、大きな出力トルクが要求される分野で使用されることが多い。そのため、キャリアとケースの間に配置される軸受には、大きな力が作用する。特許文献1の歯車伝動装置の場合、上記軸受の転動体が玉である。そのため、転動体とレースの接触面積が小さい。特許文献1の軸受は、大きな力に耐えることができない。 The gear transmissions of Patent Documents 1 and 2 are often used in fields where a large output torque is required. Therefore, a large force acts on the bearing disposed between the carrier and the case. In the case of the gear transmission of Patent Document 1, the rolling element of the bearing is a ball. Therefore, the contact area between the rolling elements and the race is small. The bearing of Patent Document 1 cannot withstand a large force.
 特許文献2の歯車伝動装置の場合、上記軸受の転動体は、円筒状のころである。また、転動体は、歯車伝動装置の軸線に対して斜めに配置されている。そのため、転動体の軸方向において、レースの直径が位置毎に異なる。具体的には、転動体の軸方向において、レースの直径が、歯車伝動装置の外側に向かうに従って大きくなる。転動体がレースを転がるときに、転動体の転走距離が位置毎に異なるので、転動体とレースの間にすべりが発生する。このすべりによって、転動体の回転軸が、本来の軸方向から傾くことがある。その結果、転動体を転動体の軸方向に移動させる力が発生する。この現象により、キャリアとケースが相対回転すると、転動体の軸方向に沿って、転動体を歯車伝動装置の外側へ移動させる力が作用する。特許文献2の歯車伝動装置の場合、転動体が軸方向へ移動することを規制する部品が必要である。その結果、歯車伝動装置の構造が複雑になる。本明細書は、簡単な構造で、耐久性に優れた歯車伝動装置を提供する。 In the case of the gear transmission of Patent Document 2, the rolling element of the bearing is a cylindrical roller. Further, the rolling elements are arranged obliquely with respect to the axis of the gear transmission. Therefore, in the axial direction of the rolling element, the diameter of the race is different for each position. Specifically, in the axial direction of the rolling elements, the diameter of the race increases toward the outside of the gear transmission. When the rolling element rolls in the race, the rolling distance of the rolling element varies from position to position, so that slip occurs between the rolling element and the race. Due to this slip, the rotating shaft of the rolling element may be tilted from the original axial direction. As a result, a force for moving the rolling element in the axial direction of the rolling element is generated. Due to this phenomenon, when the carrier and the case rotate relative to each other, a force for moving the rolling element to the outside of the gear transmission acts along the axial direction of the rolling element. In the case of the gear transmission of Patent Document 2, a part that restricts the rolling element from moving in the axial direction is required. As a result, the structure of the gear transmission is complicated. The present specification provides a gear transmission having a simple structure and excellent durability.
 本明細書が開示する歯車伝動装置は、ケースと、一対の軸受と、キャリアと、クランクシャフトと、外歯歯車を備えている。ケースの内周には、内歯歯車が形成されている。キャリアは、一対の軸受を介してケースに支持されている。キャリアは、内歯歯車と同軸である。クランクシャフトは、キャリアに支持されている。また、クランクシャフトには、偏心体が設けられている。外歯歯車は、クランクシャフトの偏心体に係合しており、内歯歯車と噛み合いながら偏心回転する。この歯車伝動装置では、上記一対の軸受の夫々が、内歯歯車の軸線方向において、内歯歯車の外側に配置されている。また、上記一対の軸受の夫々は、内周面に円弧状の窪みが一巡して形成されているアウターレースと、外周面に円弧状の窪みが一巡して形成されているインナーレースと、アウターレースとインナーレースの間に配置されている複数の球面ころによって構成されている。上記一対の軸受は、軸受中心軸を含む断面において、一方の軸受の球面ころの回転軸の延長線と他方の軸受の球面ころの回転軸の延長線とが、一対の軸受の間で交わるように配置されている。 The gear transmission disclosed in this specification includes a case, a pair of bearings, a carrier, a crankshaft, and an external gear. An internal gear is formed on the inner periphery of the case. The carrier is supported by the case via a pair of bearings. The carrier is coaxial with the internal gear. The crankshaft is supported by the carrier. The crankshaft is provided with an eccentric body. The external gear engages with the eccentric body of the crankshaft and rotates eccentrically while meshing with the internal gear. In this gear transmission, each of the pair of bearings is disposed outside the internal gear in the axial direction of the internal gear. Each of the pair of bearings includes an outer race in which an arc-shaped depression is formed on the inner circumferential surface, an inner race in which an arc-shaped depression is formed on the outer circumferential surface, and an outer race It is comprised by the some spherical roller arrange | positioned between a race and an inner race. In the cross section including the bearing central axis, the pair of bearings is configured such that the extension line of the rotating shaft of the spherical roller of one bearing and the extension line of the rotating shaft of the spherical roller of the other bearing intersect each other. Is arranged.
 本明細書で用いる用語について説明する。「円弧状の窪みが一巡して形成されている」とは、アウター(インナー)レースを軸受中心軸に沿ったいずれの断面で観察しても、内周面(外周面)に円弧が現れる形態のことを意味する。軸受中心軸は、内歯歯車の軸線に等しい。また、「球面ころ」とは、転動体の回転軸に沿った断面を観察したときに、転動体の両端を円弧でつないだ形状が現れるものを意味する。別言すると、転動体の回転軸に直交する断面を観察したときに、いずれの断面も円となり、転動体の回転軸方向の中心に向かうに従って、円の直径が大きくなる形態を意味する。「球面ころ」は、「凸面ころ」と呼ばれることもある。なお、本明細書では、ケースとキャリアの間に配置されている軸受を「主軸受」と称することがある。 The terms used in this specification will be explained. “Arc-shaped depressions are formed in a circle” means that an arc appears on the inner peripheral surface (outer peripheral surface) when the outer (inner) race is observed in any cross section along the bearing central axis. Means that. The bearing central axis is equal to the axis of the internal gear. The “spherical roller” means a shape in which a shape in which both ends of the rolling element are connected with an arc appears when a cross section along the rotation axis of the rolling element is observed. In other words, when a cross section perpendicular to the rotation axis of the rolling element is observed, all the cross sections become circles, and the diameter of the circle increases toward the center in the rotation axis direction of the rolling element. “Spherical rollers” are sometimes called “convex rollers”. In the present specification, the bearing disposed between the case and the carrier may be referred to as a “main bearing”.
 上記の歯車伝動装置によると、アンギュラ玉軸受を用いた歯車伝動装置と比較して、転動体(球面ころ)とレースの接触面積を増大することができる。そのため、上記の歯車伝動装置は、キャリアとケースの間に作用する大きな力に耐えることができる。また、アウター(インナー)レースの内周面(外周面)に円弧が形成されているので、転動体の軸方向に沿って転動体を歯車伝動装置の外側に移動させる力が作用しても、転動体の軸方向への移動が規制される。なお、上記したように、一対の軸受は、軸受中心軸を含む断面において、一方の軸受の球面ころの回転軸の延長線と他方の軸受の球面ころの回転軸の延長線が、一対の軸受の間で交わるように配置されている。そのため、アキシャル方向とラジアル方向の双方において、キャリアとケースの相対移動が規制される。上記の歯車伝動装置は、従来の歯車伝動装置よりも、簡単な構造で耐久性を向上させることができる。 According to the above gear transmission, the contact area between the rolling element (spherical roller) and the race can be increased as compared with a gear transmission using an angular ball bearing. Therefore, the gear transmission described above can withstand a large force acting between the carrier and the case. In addition, since an arc is formed on the inner circumferential surface (outer circumferential surface) of the outer (inner) race, even if a force is applied to move the rolling element to the outside of the gear transmission along the axial direction of the rolling element, The movement of the rolling elements in the axial direction is restricted. As described above, in the cross section including the bearing central axis, the pair of bearings has an extension line of the rotating shaft of the spherical roller of one bearing and an extension line of the rotating shaft of the spherical roller of the other bearing. It is arranged to cross between. Therefore, the relative movement of the carrier and the case is restricted both in the axial direction and in the radial direction. Said gear transmission can improve durability with a simple structure rather than the conventional gear transmission.
第1実施例の歯車伝動装置の断面図を示す。Sectional drawing of the gear transmission of 1st Example is shown. 第1実施例の歯車伝動装置について、主軸受の拡大断面図を示す。About the gear transmission of 1st Example, the expanded sectional view of a main bearing is shown. 第2実施例の歯車伝動装置の断面図を示す。Sectional drawing of the gear transmission of 2nd Example is shown.
 以下、本明細書で開示する実施例の技術的特徴の幾つかを記す。なお、以下に記す事項は、各々単独で技術的な有用性を有している。 Hereinafter, some of the technical features of the embodiments disclosed in this specification will be described. The items described below have technical usefulness independently.
 球面ころとインナーレースの接触角が、30度以上で60度以下であってもよい。この範囲であれば、アキシャル荷重とラジアル荷重の両方を、バランスよく負担することができる。なお、「球面ころとインナーレースの接触角」とは、軸受中心軸に直交する面と、球面ころからインナーレースに加えられる力の向きを示す直線によって形成される角度のことを意味する。 The contact angle between the spherical roller and the inner race may be 30 degrees or more and 60 degrees or less. If it is this range, both an axial load and a radial load can be borne in good balance. The “contact angle between the spherical roller and the inner race” means an angle formed by a surface orthogonal to the bearing center axis and a straight line indicating the direction of the force applied from the spherical roller to the inner race.
 ケースとキャリアの相対的な回転速度が100rpm以下であってもよい。主軸受の温度上昇が抑制されるので、主軸受に大きな予圧を加えることができる。 The relative rotation speed of the case and the carrier may be 100 rpm or less. Since the temperature rise of the main bearing is suppressed, a large preload can be applied to the main bearing.
 球面ころの回転軸に沿った断面を観察したときに、球面ころの円弧の中心が、球面ころの外側に位置していてもよい。主軸受のサイズが小さくなるので、小型の歯車伝動装置を実現することができる。 When the cross section along the rotation axis of the spherical roller is observed, the center of the circular arc of the spherical roller may be located outside the spherical roller. Since the size of the main bearing is reduced, a small gear transmission can be realized.
(第1実施例)
 図1は、歯車伝動装置100の断面図を示す。歯車伝動装置100は、外歯歯車24が内歯歯車28と噛み合いながら偏心回転するタイプの減速装置である。具体的には、歯車伝動装置100は、外歯歯車24と内歯歯車28の歯数差を利用し、クランクシャフト14に伝達されたトルクを増大して(回転を減速して)キャリア8から出力する。別言すると、外歯歯車24と内歯歯車28の歯数差を利用し、キャリア8をケース38に対して回転させる。以下、歯車伝動装置100の基本構造について簡単に説明する。
(First embodiment)
FIG. 1 shows a cross-sectional view of the gear transmission 100. The gear transmission 100 is a type of reduction device that rotates eccentrically while the external gear 24 meshes with the internal gear 28. Specifically, the gear transmission 100 uses the difference in the number of teeth between the external gear 24 and the internal gear 28 to increase the torque transmitted to the crankshaft 14 (decelerate the rotation) from the carrier 8. Output. In other words, the carrier 8 is rotated with respect to the case 38 using the difference in the number of teeth between the external gear 24 and the internal gear 28. Hereinafter, the basic structure of the gear transmission 100 will be briefly described.
 歯車伝動装置100は、ケース38とキャリア8とクランクシャフト14と外歯歯車24を備えている。内歯歯車28は、ケース38と、ケース38の内周に配置されている複数の内歯ピン26で構成されている。ケース38とキャリア8の間に一対の主軸受2(2X,2Y)が配置されている。キャリア8は、一対の主軸受2を介して、ケース38に支持されている。キャリア8は、内歯歯車28と同軸である。軸線36が、キャリア8及び内歯歯車28の軸線である。一対の主軸受2は、軸線36方向において、内歯歯車28の外側に配置されている。別言すると、軸線36方向において、内歯歯車28が、一対の主軸受2の間に配置されている。なお、主軸受2の軸受中心軸は、軸線36に等しい。主軸受2の詳細については後述する。 The gear transmission 100 includes a case 38, a carrier 8, a crankshaft 14, and an external gear 24. The internal gear 28 includes a case 38 and a plurality of internal teeth pins 26 arranged on the inner periphery of the case 38. A pair of main bearings 2 (2X, 2Y) is disposed between the case 38 and the carrier 8. The carrier 8 is supported by the case 38 via the pair of main bearings 2. The carrier 8 is coaxial with the internal gear 28. The axis 36 is the axis of the carrier 8 and the internal gear 28. The pair of main bearings 2 are disposed outside the internal gear 28 in the direction of the axis 36. In other words, the internal gear 28 is disposed between the pair of main bearings 2 in the direction of the axis 36. Note that the bearing central axis of the main bearing 2 is equal to the axis 36. Details of the main bearing 2 will be described later.
 ケース38の内周面には、径方向に延びるフランジ38aが形成されている。本明細書でいう「径方向」とは、軸線36に直交する方向を意味する。キャリア8は、第1プレート8aと第2プレート8cで構成されている。第1プレート8aから第2プレート8cに向けて柱状部8bが延びており、柱状部8bと第2プレート8cが固定されている。第1プレート8aの端部には、径方向に延びる第1フランジ8dが形成されている。また、第2プレート8cの端部には、径方向に延びる第2フランジ8eが形成されている。オイルシール4が、第1プレート8aとケース38の間に配置されている。オイルシール4は、歯車伝動装置100の内部に注入された潤滑剤等が歯車伝動装置100の外部に漏れることを防止している。 A flange 38 a extending in the radial direction is formed on the inner peripheral surface of the case 38. As used herein, “radial direction” means a direction perpendicular to the axis 36. The carrier 8 includes a first plate 8a and a second plate 8c. A columnar portion 8b extends from the first plate 8a toward the second plate 8c, and the columnar portion 8b and the second plate 8c are fixed. A first flange 8d extending in the radial direction is formed at the end of the first plate 8a. A second flange 8e extending in the radial direction is formed at the end of the second plate 8c. The oil seal 4 is disposed between the first plate 8a and the case 38. The oil seal 4 prevents the lubricant or the like injected into the gear transmission 100 from leaking out of the gear transmission 100.
 キャリア8は、クランクシャフト14と外歯歯車24を支持している。クランクシャフト14は、一対の軸受12によって、キャリア8に支持されている。一対の軸受12は、円錐ころ軸受である。クランクシャフト14の軸線34は、軸線36に平行である。すなわち、クランクシャフト14は、軸線36からオフセットした位置で、軸線36に平行に延びている。クランクシャフト14は、偏心体18と入力歯車32を備えている。偏心体18は、円筒ころ軸受22を介して、外歯歯車24に係合している。外歯歯車24は、クランクシャフト14を介してキャリア8に支持されている。なお、キャリア8の柱状部8bが、外歯歯車24の貫通孔24aを通過している。貫通孔24aの内壁と柱状部8bの間には、隙間が確保されている。 The carrier 8 supports the crankshaft 14 and the external gear 24. The crankshaft 14 is supported on the carrier 8 by a pair of bearings 12. The pair of bearings 12 are tapered roller bearings. The axis 34 of the crankshaft 14 is parallel to the axis 36. That is, the crankshaft 14 extends parallel to the axis 36 at a position offset from the axis 36. The crankshaft 14 includes an eccentric body 18 and an input gear 32. The eccentric body 18 is engaged with the external gear 24 via the cylindrical roller bearing 22. The external gear 24 is supported by the carrier 8 via the crankshaft 14. Note that the columnar portion 8 b of the carrier 8 passes through the through hole 24 a of the external gear 24. A gap is secured between the inner wall of the through hole 24a and the columnar portion 8b.
 モータ(図示省略)のトルクが入力歯車32に伝達されると、クランクシャフト14が回転する。偏心体18は、クランクシャフト14の回転に伴って、軸線34に対して偏心回転する。外歯歯車24は、偏心体18の偏心回転に伴って、内歯歯車28と噛み合いながら偏心回転する。外歯歯車24の歯数と内歯歯車28の歯数(内歯ピン26の数)は異なる。上記したように、外歯歯車24はキャリア8に支持されており、内歯歯車28はケース38の内周面に形成されている。そのため、外歯歯車24が偏心回転すると、外歯歯車24と内歯歯車28の歯数差に応じて、キャリア8がケース38に対して回転する。歯車伝動装置100では、キャリア8とケース38の相対的な回転速度が、100rpm以下に調整されている。 When the torque of the motor (not shown) is transmitted to the input gear 32, the crankshaft 14 rotates. The eccentric body 18 rotates eccentrically with respect to the axis 34 as the crankshaft 14 rotates. As the eccentric body 18 rotates eccentrically, the external gear 24 rotates eccentrically while meshing with the internal gear 28. The number of teeth of the external gear 24 and the number of teeth of the internal gear 28 (number of internal pins 26) are different. As described above, the external gear 24 is supported by the carrier 8, and the internal gear 28 is formed on the inner peripheral surface of the case 38. Therefore, when the external gear 24 rotates eccentrically, the carrier 8 rotates relative to the case 38 according to the difference in the number of teeth between the external gear 24 and the internal gear 28. In the gear transmission 100, the relative rotational speed of the carrier 8 and the case 38 is adjusted to 100 rpm or less.
 主軸受2Xの球面ころの回転軸40Xの延長線と、主軸受2Yの球面ころの回転軸40Yの延長線とが、主軸受2Xと主軸受2Yの間で交わっている。より具体的には、回転軸40Xの延長線と回転軸40Yの延長線とが、軸線36方向において、主軸受2Xと主軸受2Yの中点で交わっている。このように主軸受2を配置することにより、アキシャル方向及びラジアル方向において、キャリア8とケース38の相対移動を規制することができる。すなわち、主軸受2は、アキシャル荷重及びラジアル荷重の双方を負担することができる。なお、歯車伝動装置100では、軸線36方向から観察したときに、回転軸40Xと回転軸40Yの交点が、主軸受2の径方向内側に位置している。回転軸40Xと回転軸40Yの交点が主軸受2の径方向外側に位置するように、主軸受2X,2Yを配置してもよい。 The extension line of the rotary shaft 40X of the spherical roller of the main bearing 2X and the extension line of the rotary shaft 40Y of the spherical roller of the main bearing 2Y intersect between the main bearing 2X and the main bearing 2Y. More specifically, the extension line of the rotary shaft 40X and the extension line of the rotary shaft 40Y intersect at the midpoint of the main bearing 2X and the main bearing 2Y in the direction of the axis 36. By disposing the main bearing 2 in this manner, the relative movement between the carrier 8 and the case 38 can be restricted in the axial direction and the radial direction. That is, the main bearing 2 can bear both an axial load and a radial load. In the gear transmission 100, the intersection of the rotary shaft 40X and the rotary shaft 40Y is located on the radially inner side of the main bearing 2 when observed from the direction of the axis 36. The main bearings 2X and 2Y may be arranged so that the intersection of the rotating shaft 40X and the rotating shaft 40Y is located on the radially outer side of the main bearing 2.
 図2を参照し、主軸受2について詳細に説明する。図2は、第1プレート8aとケース38の間に配置されている主軸受2Xを示す。なお、主軸受2Y(図1を参照)の構造は、主軸受2Xの構造と同一である。以下の説明では、主軸受2Xについてのみ説明し、主軸受2Yの説明は省略する。 The main bearing 2 will be described in detail with reference to FIG. FIG. 2 shows the main bearing 2 </ b> X disposed between the first plate 8 a and the case 38. The structure of the main bearing 2Y (see FIG. 1) is the same as the structure of the main bearing 2X. In the following description, only the main bearing 2X will be described, and description of the main bearing 2Y will be omitted.
 主軸受2は、アウターレース56と、インナーレース50と、球面ころ54と、リテーナ52を備えている。複数の球面ころ54が、アウターレース56とインナーレース50の間に配置されている。リテーナ52は、球面ころ54同士が接触することを防止している。なお、リテーナ52は、ケース38及びキャリア8に接触していない。別言すると、リテーナ52とケース38の間、及び、リテーナ52とキャリア8の間には隙間が確保されている。歯車伝動装置100の駆動中も、リテーナ52は、ケース38及びキャリア8に接触しない。 The main bearing 2 includes an outer race 56, an inner race 50, a spherical roller 54, and a retainer 52. A plurality of spherical rollers 54 are disposed between the outer race 56 and the inner race 50. The retainer 52 prevents the spherical rollers 54 from contacting each other. The retainer 52 is not in contact with the case 38 and the carrier 8. In other words, clearances are secured between the retainer 52 and the case 38 and between the retainer 52 and the carrier 8. The retainer 52 does not contact the case 38 and the carrier 8 even while the gear transmission 100 is driven.
 アウターレース56の内周面56aには、円弧状の窪みが一巡して形成されている。アウターレース56の外周面56bは、ケース38に嵌合している。アウターレース56の軸受中心軸36方向(図1を参照)の端面56cは、フランジ38aに接している。インナーレース50の外周面50bには、円弧状の窪みが一巡して形成されている。インナーレース50の内周面50aは、キャリア8の第1プレート8aに嵌合している。インナーレース50の軸受中心軸36方向の端面50cは、第1プレート8aの第1フランジ8dに接している。球面ころ54の転動面54a、アウターレース56の内周面56a及びインナーレース50の外周面50bの曲率は、ほぼ等しい。なお、主軸受2Yでは、インナーレース50の軸受中心軸36方向の端面が、第2プレート8cの第2フランジ8eに接している(図1を参照)。 On the inner peripheral surface 56a of the outer race 56, a circular arc-shaped depression is formed. An outer peripheral surface 56 b of the outer race 56 is fitted in the case 38. An end surface 56c of the outer race 56 in the direction of the bearing center axis 36 (see FIG. 1) is in contact with the flange 38a. On the outer peripheral surface 50b of the inner race 50, an arc-shaped depression is formed in a circle. An inner peripheral surface 50 a of the inner race 50 is fitted to the first plate 8 a of the carrier 8. An end surface 50c of the inner race 50 in the direction of the bearing center axis 36 is in contact with the first flange 8d of the first plate 8a. The curvatures of the rolling surface 54a of the spherical roller 54, the inner peripheral surface 56a of the outer race 56, and the outer peripheral surface 50b of the inner race 50 are substantially equal. In the main bearing 2Y, the end surface of the inner race 50 in the bearing central axis 36 direction is in contact with the second flange 8e of the second plate 8c (see FIG. 1).
 歯車伝動装置100では、主軸受2に対して、ラジアル容量(Cr)の10~50%の予圧を加える。一般的な機械に使用される軸受の場合、軸受に対して、ラジアル容量(Cr)の3~5%程度の予圧を加える。すなわち、歯車伝動装置100では、一般的な軸受の使用方法に比べ、大きな予圧を加える。上記したように、キャリア8とケース38の相対的な回転速度が100rpm以下に調整されているので、歯車伝動装置100が駆動しているときに、主軸受2の発熱が抑制される。そのため、歯車伝動装置100は、大きな予圧を主軸受に加えることができ、高い剛性を得ることができる。なお、インナーレース50の端面50cとキャリア8の第1フランジ8dとの間にスペーサを配置し、主軸受2の予圧を調整してもよい。 In the gear transmission 100, a preload of 10 to 50% of the radial capacity (Cr) is applied to the main bearing 2. In the case of a bearing used in a general machine, a preload of about 3 to 5% of the radial capacity (Cr) is applied to the bearing. That is, in the gear transmission 100, a large preload is applied as compared with a general method of using a bearing. As described above, since the relative rotation speed of the carrier 8 and the case 38 is adjusted to 100 rpm or less, the heat generation of the main bearing 2 is suppressed when the gear transmission 100 is driven. Therefore, the gear transmission 100 can apply a large preload to the main bearing, and can obtain high rigidity. Note that a spacer may be disposed between the end face 50 c of the inner race 50 and the first flange 8 d of the carrier 8 to adjust the preload of the main bearing 2.
 主軸受2の利点を説明する。上記したように、主軸受2は、内周面56aに円弧状の窪みが形成されているアウターレース56と、外周面50bに円弧状の窪みが形成されているインナーレース50と、球面ころ54を備えている。そのため、主軸受2の場合、転動体(球面ころ)とレース(アウターレース及びインナーレース)の接触面積が、従来の玉軸受(例えばアンギュラ玉軸受)よりも広い。主軸受2を使用することにより、歯車伝動装置の耐久性を向上させることができる。 The advantages of the main bearing 2 will be described. As described above, the main bearing 2 includes the outer race 56 in which an arc-shaped depression is formed on the inner peripheral surface 56a, the inner race 50 in which an arc-shaped depression is formed on the outer peripheral surface 50b, and the spherical roller 54. It has. Therefore, in the case of the main bearing 2, the contact area between the rolling elements (spherical rollers) and the races (outer race and inner race) is wider than that of a conventional ball bearing (for example, an angular ball bearing). By using the main bearing 2, the durability of the gear transmission can be improved.
 また、歯車伝動装置100の駆動中は、球面ころ54に、球面ころ54の回転軸40X(40Y)に沿って歯車伝動装置100の外側へ移動させる力が作用する。しかしながら、円弧状の窪みがアウターレース56及びインナーレース50に形成されているので、球面ころ54の移動が規制される。歯車伝動装置100は、従来のころ軸受(例えばアンギュラころ軸受)のように、転動体の移動を規制する構造を必要としない。また、上記したように、リテーナ52がケース38及びキャリア8に接触しないので、球面ころ54の回転が妨げられることがない。歯車伝動装置100は、従来の歯車伝動装置と比較して、簡単な構造で、高い耐久性を実現することができる。 Further, during the driving of the gear transmission 100, a force that moves the spherical roller 54 to the outside of the gear transmission 100 along the rotation axis 40X (40Y) of the spherical roller 54 acts. However, since the arc-shaped depressions are formed in the outer race 56 and the inner race 50, the movement of the spherical rollers 54 is restricted. The gear transmission 100 does not require a structure that restricts the movement of the rolling elements, unlike a conventional roller bearing (for example, an angular roller bearing). Further, as described above, since the retainer 52 does not contact the case 38 and the carrier 8, the rotation of the spherical roller 54 is not hindered. The gear transmission 100 can achieve high durability with a simple structure as compared with the conventional gear transmission.
 図1に軸受中心軸36に直交する面を示す破線6aと、球面ころ54からインナーレース50(図2も参照)に加えられる力の向きを示す破線6bを示している。歯車伝動装置100では、破線6a,6bの間の角度、すなわち、球面ころ54とインナーレース50の接触角Thがおよそ40度である。以下、球面ころ54とインナーレース50の接触角Thを、単に接触角Thと呼ぶ。歯車伝動装置100の場合、接触角Thは、30度~60度の間に調整されていることが好ましい。接触角Thが30度未満の場合、アキシャル方向に加わる力に充分に耐えることができず、歯車伝動装置の耐久性が低下する。また、接触角Thが60度を超える場合、ラジアル方向に加わる力に充分に耐えることができず、歯車伝動装置の耐久性が低下する。接触角Thが30度以上で60度以下の範囲であれば、耐久性に優れた歯車伝動装置を実現することができる。 1 shows a broken line 6a indicating a surface orthogonal to the bearing center axis 36 and a broken line 6b indicating the direction of force applied from the spherical roller 54 to the inner race 50 (see also FIG. 2). In the gear transmission 100, the angle between the broken lines 6a and 6b, that is, the contact angle Th between the spherical roller 54 and the inner race 50 is approximately 40 degrees. Hereinafter, the contact angle Th between the spherical roller 54 and the inner race 50 is simply referred to as a contact angle Th. In the case of the gear transmission 100, the contact angle Th is preferably adjusted between 30 degrees and 60 degrees. When the contact angle Th is less than 30 degrees, the force applied in the axial direction cannot be sufficiently resisted, and the durability of the gear transmission decreases. Further, when the contact angle Th exceeds 60 degrees, the force applied in the radial direction cannot be sufficiently resisted, and the durability of the gear transmission decreases. When the contact angle Th is in the range of 30 degrees or more and 60 degrees or less, a gear transmission with excellent durability can be realized.
 図2に示すように、球面ころ54の円弧の中心58が、球面ころ54の外側に位置している。このような球面ころ54を使用することにより、球面ころの幅(回転軸に直交する方向の長さ)を短くすることができる。球面ころ52とレース(アウターレース56及びインナーレース50)との接触面積を維持したまま、小型の歯車伝動装置100を実現することができる。 As shown in FIG. 2, the center 58 of the circular arc of the spherical roller 54 is located outside the spherical roller 54. By using such a spherical roller 54, the width of the spherical roller (the length in the direction perpendicular to the rotation axis) can be shortened. The small gear transmission 100 can be realized while maintaining the contact area between the spherical roller 52 and the race (the outer race 56 and the inner race 50).
(第2実施例)
 歯車伝動装置200について説明する。図3に、歯車伝動装置200の断面図を示す。歯車伝動装置200は歯車伝動装置100の変形例であり、歯車伝動装置100と同じ部品には、同じ符号又は下二桁が同じ符号を付すことにより説明を省略することがある。
(Second embodiment)
The gear transmission 200 will be described. FIG. 3 shows a cross-sectional view of the gear transmission 200. The gear transmission 200 is a modification of the gear transmission 100, and the same components as the gear transmission 100 may be denoted by the same reference numerals or the same two lower digits, and the description thereof may be omitted.
 歯車伝動装置200では、クランクシャフト214が、内歯歯車228と同軸に配置されている。すなわち、クランクシャフト214の軸線234が、内歯歯車228の軸線236に一致している。クランクシャフト214は、一対の軸受212によって、キャリア208に支持されている。軸受212は、深溝玉軸受である。クランクシャフト214の偏心体218は、円筒ころ軸受222を介して、外歯歯車224に係合している。 In the gear transmission 200, the crankshaft 214 is disposed coaxially with the internal gear 228. That is, the axis 234 of the crankshaft 214 coincides with the axis 236 of the internal gear 228. The crankshaft 214 is supported on the carrier 208 by a pair of bearings 212. The bearing 212 is a deep groove ball bearing. The eccentric body 218 of the crankshaft 214 is engaged with the external gear 224 via the cylindrical roller bearing 222.
 キャリア208の柱状部208bが、外歯歯車224の貫通孔224aを通過している。柱状部208bは、円柱状である。円筒状のトルクピン230が、柱状部208bに取り付けられているとともに、貫通孔224aの内壁に接している。柱状部208bは、トルクピン230の内部を通過している。トルクは、トルクピン230と貫通孔224aの内壁の接点で、外歯歯車224からキャリア208に伝達される。 The columnar portion 208b of the carrier 208 passes through the through hole 224a of the external gear 224. The columnar portion 208b has a cylindrical shape. A cylindrical torque pin 230 is attached to the columnar portion 208b and is in contact with the inner wall of the through hole 224a. The columnar portion 208 b passes through the inside of the torque pin 230. Torque is transmitted from the external gear 224 to the carrier 208 at a contact point between the torque pin 230 and the inner wall of the through hole 224a.
 歯車伝動装置200では、キャリア208の外周に、円弧状の窪み250が一巡して形成されている。キャリア208の窪み250が、主軸受202のインナーレースを兼ねている。そのため、主軸受202を構成する部品が、歯車伝動装置100よりも少ない。なお、この技術は、歯車伝動装置100に適用することもできる。すなわち、歯車伝動装置100においても、キャリア8の外周に円弧状の窪みを一巡して形成し、キャリアをインナーレースとして使用してもよい。 In the gear transmission 200, an arc-shaped depression 250 is formed around the carrier 208 in a round. The recess 250 of the carrier 208 also serves as an inner race of the main bearing 202. Therefore, the number of parts constituting the main bearing 202 is smaller than that of the gear transmission 100. This technique can also be applied to the gear transmission 100. That is, also in the gear transmission 100, the carrier 8 may be formed as a circular arc recess on the outer periphery of the carrier 8, and the carrier may be used as an inner race.
 以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。本明細書または図面に説明した技術要素は、単独であるいは各種の組み合わせによって技術的有用性を発揮するものであり、出願時の請求項に記載の組み合わせに限定されるものではない。また、本明細書または図面に例示した技術は複数の目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。 Specific examples of the present invention have been described in detail above, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above. The technical elements described in this specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the technology exemplified in this specification or the drawings achieves a plurality of objects at the same time, and has technical utility by achieving one of the objects.

Claims (3)

  1.  内周に内歯歯車が形成されているケースと、
     一対の軸受と、
     前記一対の軸受を介して内歯歯車と同軸にケースに支持されているキャリアと、
     キャリアに支持されているとともに、偏心体が設けられているクランクシャフトと、
     偏心体に係合しており、内歯歯車と噛み合いながら偏心回転する外歯歯車と、を備えており、
     前記一対の軸受の夫々は、
      内歯歯車の軸線方向において、内歯歯車の外側に配置されており、
      内周面に円弧状の窪みが一巡して形成されているアウターレースと、外周面に円弧状の窪みが一巡して形成されているインナーレースと、アウターレースとインナーレースの間に配置されている複数の球面ころによって構成されており、
      軸受中心軸を含む断面において、一方の軸受の球面ころの回転軸の延長線と他方の軸受の球面ころの回転軸の延長線が、一対の軸受の間で交わるように配置されていることを特徴とする歯車伝動装置。
    A case in which an internal gear is formed on the inner periphery;
    A pair of bearings;
    A carrier supported on the case coaxially with the internal gear via the pair of bearings;
    A crankshaft supported by a carrier and provided with an eccentric body;
    An external gear that engages with an eccentric body and rotates eccentrically while meshing with the internal gear,
    Each of the pair of bearings is
    In the axial direction of the internal gear, it is arranged outside the internal gear,
    An outer race in which an arc-shaped depression is formed on the inner peripheral surface, an inner race in which an arc-shaped depression is formed on the outer peripheral surface, and an outer race and the inner race are disposed between the outer race and the inner race. Composed of a plurality of spherical rollers,
    In the cross section including the bearing center axis, the extension line of the rotary shaft of the spherical roller of one bearing and the extension line of the rotary shaft of the spherical roller of the other bearing are arranged so as to intersect between a pair of bearings. The gear transmission characterized.
  2.  球面ころとインナーレースの接触角が、30度以上で60度以下であることを特徴とする請求項1に記載の歯車伝動装置。 2. The gear transmission according to claim 1, wherein a contact angle between the spherical roller and the inner race is 30 degrees or more and 60 degrees or less.
  3.  球面ころの回転軸に沿った断面を観察したときに、球面ころの円弧の中心が、球面ころの外側に位置していることを特徴とする請求項1又は2に記載の歯車伝動装置。
     
    The gear transmission according to claim 1 or 2, wherein the center of the arc of the spherical roller is located outside the spherical roller when a cross section along the rotation axis of the spherical roller is observed.
PCT/JP2013/050431 2012-01-19 2013-01-11 Gear transmission device WO2013108717A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-009055 2012-01-19
JP2012009055A JP5875876B2 (en) 2012-01-19 2012-01-19 Gear transmission

Publications (1)

Publication Number Publication Date
WO2013108717A1 true WO2013108717A1 (en) 2013-07-25

Family

ID=48799143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050431 WO2013108717A1 (en) 2012-01-19 2013-01-11 Gear transmission device

Country Status (3)

Country Link
JP (1) JP5875876B2 (en)
TW (1) TWI560379B (en)
WO (1) WO2013108717A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107559388A (en) * 2016-06-30 2018-01-09 兄弟工业株式会社 Decelerator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6662999B2 (en) * 2016-03-30 2020-03-11 株式会社ハーモニック・ドライブ・システムズ Combined cylindrical roller bearing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003148478A (en) * 2001-11-13 2003-05-21 Nsk Ltd Rolling bearing
JP2010519473A (en) * 2007-02-23 2010-06-03 ヤコブ、ヴェルナー Roller bearing
JP2010159774A (en) * 2009-01-06 2010-07-22 Sumitomo Heavy Ind Ltd Speed reducer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002339985A (en) * 2001-05-11 2002-11-27 Nsk Ltd Roller bearing
JP2007333048A (en) * 2006-06-14 2007-12-27 Nsk Ltd Bearing device
JP2009257481A (en) * 2008-04-17 2009-11-05 Nsk Ltd Bearing unit for wheel support

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003148478A (en) * 2001-11-13 2003-05-21 Nsk Ltd Rolling bearing
JP2010519473A (en) * 2007-02-23 2010-06-03 ヤコブ、ヴェルナー Roller bearing
JP2010159774A (en) * 2009-01-06 2010-07-22 Sumitomo Heavy Ind Ltd Speed reducer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107559388A (en) * 2016-06-30 2018-01-09 兄弟工业株式会社 Decelerator

Also Published As

Publication number Publication date
JP2013148161A (en) 2013-08-01
TW201333345A (en) 2013-08-16
TWI560379B (en) 2016-12-01
JP5875876B2 (en) 2016-03-02

Similar Documents

Publication Publication Date Title
US10161480B2 (en) Eccentric oscillating speed reducer
US8814737B2 (en) Wheel driving device
WO2012128003A1 (en) Cycloid decelerator and in-wheel motor drive device
JP6194241B2 (en) Gear transmission
WO2012165395A1 (en) Friction drive-type wave transmission
JP5552359B2 (en) Reduction gear
WO2013108717A1 (en) Gear transmission device
EP2730805B1 (en) Reduction gear
TW201636521A (en) Deceleration machine
JP6535447B2 (en) Gear transmission
JP5109515B2 (en) Sliding tripod type constant velocity joint
JP5970990B2 (en) Planetary roller type power transmission device
JP6744244B2 (en) Differential reducer
JPWO2006112378A1 (en) Cylindrical roller bearing
JP2021001648A (en) Multi-stage planetary roller type power transmission device
JP2012013207A (en) Tripod type constant velocity joint
TWI820817B (en) Conjugate cam reducer
JP5761445B2 (en) Continuously variable transmission
JP2011058521A (en) Toroidal type continuously variable transmission
JP6561554B2 (en) Toroidal continuously variable transmission
JP2016200218A (en) Planetary roller type power transmission device
JP6390187B2 (en) Toroidal continuously variable transmission
JP6163119B2 (en) Driving force transmission device for vehicle
JP6132750B2 (en) Power transmission device
JP6015253B2 (en) Toroidal continuously variable transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13738401

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13738401

Country of ref document: EP

Kind code of ref document: A1