WO2013108551A1 - Water-cooling apparatus for engine - Google Patents

Water-cooling apparatus for engine Download PDF

Info

Publication number
WO2013108551A1
WO2013108551A1 PCT/JP2012/083441 JP2012083441W WO2013108551A1 WO 2013108551 A1 WO2013108551 A1 WO 2013108551A1 JP 2012083441 W JP2012083441 W JP 2012083441W WO 2013108551 A1 WO2013108551 A1 WO 2013108551A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling water
flow path
engine
temperature
radiator
Prior art date
Application number
PCT/JP2012/083441
Other languages
French (fr)
Japanese (ja)
Inventor
岩崎 充
Original Assignee
カルソニックカンセイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カルソニックカンセイ株式会社 filed Critical カルソニックカンセイ株式会社
Priority to US14/371,650 priority Critical patent/US20150053777A1/en
Publication of WO2013108551A1 publication Critical patent/WO2013108551A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/146Controlling of coolant flow the coolant being liquid using valves

Definitions

  • the present invention relates to an engine water cooling device [a [water-cooling apparatus for engine], and more particularly to an engine water cooling device that controls cooling water by a pump and a regulating valve.
  • An engine water cooling system that drives an engine-driven pump (engine-driven pump) according to the rotational speed (revolving speed) of an internal combustion engine (hereinafter simply referred to as the engine) to circulate cooling water to the cylinder head and cylinder block is well known. It has been.
  • a water cooling device In order to cool the engine according to the engine load, a water cooling device is also proposed in which a bypass flow path that bypasses the radiator and a dedicated pump for cooling the combustion cylinder are provided (see Patent Document 1).
  • an object of the present invention is to provide an engine water cooling device having a simple cooling water circulation channel and capable of performing suitable cooling by adjusting the flow rate of the cooling water flowing through the circulation channel. is there.
  • a feature of the present invention is an engine water cooling device that cools an internal combustion engine with cooling water, the radiator cooling the cooling water by heat exchange between the cooling water and air, and the cooling water flowing into the engine
  • a third flow path that flows into the first flow path downstream from a branch point from the path; an adjustment valve that is disposed on the first flow path and that controls the flow rate of the cooling water that flows through the radiator;
  • a pump that circulates the cooling water to the engine and / or the radiator, and the adjustment valve causes the cooling water from the radiator to flow into the first flow path when opened. It is configured to provide an engine water cooler.
  • FIG. 1 It is a schematic block diagram of the engine water cooling apparatus which concerns on 1st Embodiment. It is a schematic side view which shows arrangement
  • (A) is a graph which shows the relationship between the cooling water temperature at the time of high load of the said engine, and combustion efficiency
  • (b) is a graph which shows the relationship between the cooling water temperature at the time of low load, and combustion efficiency.
  • It is the schematic which shows the flow of the cooling water in the said warm-up control.
  • (A) is a schematic perspective view which shows the natural convection of the cooling water in the said water cooling engine
  • (b) is a schematic side view.
  • the engine water cooling device 1 a As shown in FIG. 1, the engine water cooling device 1 a according to the first embodiment is configured to convert a water-cooled internal combustion engine (hereinafter simply referred to as an engine) 2 into cooling water (cooling liquid [ cool]).
  • the water cooling device 1 a includes a radiator 3, a first flow path 31, a second flow path 30, a third flow path 32, a regulating valve 11, and a pump 10. Yes.
  • the radiator 3 heat exchange is performed between the cooling water of the engine 2 and the air, and the cooling water is cooled.
  • the first flow path 31 is located on the upstream side of the engine 2 on the cooling water circulation path, and allows the cooling water to flow into the engine 2.
  • the second flow path 30 is located on the upstream side of the radiator 3 on the circulation path, and allows cooling water to flow into the radiator 3.
  • the third flow path 32 is located on the downstream side of the radiator 3 on the circulation path, and allows cooling water to flow into the first flow path 31 from the radiator 3.
  • the adjusting valve 11 is disposed on the first flow path 31 and adjusts the flow rate of the cooling water flowing through the engine 2 and / or the radiator 3.
  • the pump 10 is also disposed on the first flow path 31 (on the downstream side of the adjustment valve 11), and circulates the cooling water along the circulation path.
  • the upstream end of the second flow path 30 is connected to the first flow path 31 (regulation valve 11), and the downstream end is connected to the radiator 3.
  • the upstream end of the third flow path 32 is connected to the radiator 3, and the downstream end is connected to the first flow path 31.
  • the engine 2 is disposed so as to be inclined so that the exhaust side faces downward. Since the exhaust side of the engine 2 is on the bottom, when the pump 10 is stopped, as a result of the rise of the exhaust side cooling water temperature, the cooling water flows to the intake side (upward) by natural convection. Therefore, even if the pump 10 is stopped, the cooling water temperature around the cylinder head of the engine 2 can be made uniform by natural convection, and the cooling water can be circulated through the radiator 3.
  • the engine 2 is cooled by the cooling water from the first flow path 31, and the cooling water flows out to the fourth flow path 20.
  • a temperature sensor (not shown) is disposed in the fourth flow path 20. The temperature sensor detects the coolant temperature flowing out of the engine 2 (that is, in the engine 2). The detection data of the temperature sensor is output to a controller (not shown).
  • the combustion efficiency depending on the cooling water temperature of the engine 2 will be described with reference to the graphs of FIGS. 3 (a) and 3 (b).
  • the load of the engine 2 here, the indicated mean effective pressure [Indicated Mean Effective Pressure]: indicating the load by IMEP
  • low load: 300 kPa low load: 300 kPa
  • the fuel efficiency here, the combustion efficiency is indicated by the indicated thermal efficiency
  • the fuel efficiency is better at the cooling water temperature of 80 ° C. (first temperature).
  • the radiator 3 is a device that dissipates the heat of the engine 2 through cooling water, and has a structure in which many tubes having fins made of aluminum alloy or the like are arranged.
  • the inflow side of the radiator 3 is connected to the downstream end of the second flow path 30, and the outflow side is connected to the upstream end of the third flow path 32.
  • the heater core 4 is disposed on the downstream side of the fourth flow path 20 on the cooling water circulation path, and the outflow side is connected to the pump 10 by the fifth flow path 22.
  • An electromagnetic valve 25 that adjusts the flow rate of the cooling water is disposed on the fourth flow path 20 on the upstream side of the heater core 4.
  • the flow rate of the cooling water flowing through the heater core 4 is adjusted by adjusting the valve opening degree of the electromagnetic valve 25, and the heat radiation amount in the heater core 4 is adjusted.
  • the cooling water temperature is also adjusted.
  • the heater core 4 heats the air by heat exchange between the cooling water heated by the engine 2 and the air. The heated air is used for air conditioning and the like.
  • a sixth flow path 24 that bypasses the heater core 4 is also provided.
  • the upstream end of the sixth flow path 24 is connected to the fourth flow path 20 on the upstream side of the electromagnetic valve 25, and the downstream end is connected to the fifth flow path 22.
  • the electromagnetic valve 25 When the electromagnetic valve 25 is closed, the cooling water bypasses the heater core 4 and flows through the sixth flow path 24.
  • the pump 10 of the present embodiment is an electric pump P 1 that can be operated independently of the operation of the engine 2.
  • the pump 10 (electric pump P 1 ) controls the flow rate of the cooling water based on a signal from a controller (not shown).
  • the adjustment valve 11 is disposed on the downstream side of the pump 10 on the first flow path 31.
  • a second flow path 30 is branched from the adjustment valve 11.
  • the adjustment valve 11 is a three-way valve that allows cooling water from the pump 10 to flow to the engine 2 and / or the second flow path 30.
  • the adjustment valve 11 is an electronically controlled thermostat, and controls the flow rate of the cooling water flowing to the engine 2 and / or the radiator 3 with respect to the cooling water from the pump 10 based on a signal from a controller (not shown).
  • the adjustment valve 11 of the present embodiment controls the flow rate of the cooling water that flows to the radiator 3 upstream of the radiator 3.
  • step S10 it is determined whether or not the cooling water temperature detected by the temperature sensor is equal to or lower than a first temperature (80 ° C.) as an index for completion of warm-up (step S10).
  • a first temperature 80 ° C.
  • the control shifts to normal control after warm-up (step S30), and the warm-up control ends. The normal control will be described in detail later.
  • the cooling water temperature is equal to or lower than the first temperature (80 ° C.) (YES in step S10), it is determined whether or not the air conditioning heater switch is on (step S11).
  • step S11 the controller sends control signals to the pump 10, the adjustment valve 11 and the electromagnetic valve 25 so that the cooling water temperature becomes higher than the first temperature (80 ° C.) earlier. Send.
  • the solenoid valve 25 on the upstream side of the heater core 4 is closed based on the control signal from the controller (step S12).
  • the second flow path 30 is also closed by the adjustment valve 11 (step S ⁇ b> 14 described later), and the cooling water is not allowed to flow to the radiator 3.
  • heat is not dissipated in the radiator 3 and the heater core 4, and the cooling water is made higher than the first temperature (80 ° C.) earlier.
  • step S12 the pump 10 (electric pump P 1 ) is stopped based on a control signal from the controller, and stops the supply of cooling water to the engine 2 (step S13). Since the engine 2 is inclined as shown in FIGS. 6A and 6B, the cooling water flows by natural convection even when the pump 10 is stopped. Therefore, even if the cooling water is not forced to circulate by the pump 10, the cooling water circulates in the water cooling device 1a by natural convection. However, as a result, the coolant temperature in the engine 2 is quickly increased to a temperature with good thermal efficiency by absorbing the heat of the engine 2.
  • step S13 the adjustment valve 11 closes the second flow path 30 (at its upstream end) based on a control signal from the controller (step S14). Since the second flow path 30 is closed, heat is not radiated by the radiator 3, and a decrease in the coolant temperature during the warm-up control can be prevented.
  • step S14 the process flow returns to step S10.
  • the cooling water temperature becomes higher than the first temperature (80 ° C.) (NO in step S10), the process proceeds to normal control (step S30).
  • step S11 when the heater switch is on in step S11 (YES in step S11), the solenoid valve 25 on the upstream side of the heater core 4 is controlled so that the cooling water flows through the heater core 4 for heating.
  • the electromagnetic valve 25 is set to a valve opening degree at which the cooling water flows through the heater core 4 at 10 L / min based on a control signal from the controller (step S20).
  • step S20 the discharge amount of the pump 10 is also controlled based on the control signal from the controller so that the cooling water flow rate to the heater core 4 is 10 L / min (step S21).
  • the cooling water amount of 10 L / min to the heater core 4 is realized by the valve opening degree of the electromagnetic valve 25 and the discharge amount of the pump 10.
  • step S21 the adjustment valve 11 closes the second flow path 30 based on the control signal from the controller (step S22). Since the second flow path 30 is closed, heat is not radiated by the radiator 3, and a decrease in the coolant temperature during the warm-up control can be prevented. Although heat is dissipated in the heater core 4 for heating, heat is not dissipated in the radiator 3, and the cooling water becomes higher than the first temperature (80 ° C.) earlier. After step S22, the process flow returns to step S10. When the cooling water temperature becomes higher than the first temperature (80 ° C.) (NO in step S10), the process proceeds to normal control (step S30).
  • step S110 it is determined whether or not the engine 2 is idling (step S110). If the engine is not idling (NO in step S110), it is determined whether or not the change in the throttle opening is small in order to determine the operating state of the engine 2 (step S111).
  • the throttle opening is a valve opening of a throttle valve that is disposed on the intake passage of the engine 2 and adjusts the intake air amount (in an engine having an intake air amount control mechanism of a type in which no throttle valve is provided).
  • the change in throttle opening means the change in intake air amount control parameter).
  • the case where the change in throttle opening is small is a steady state such as traveling at a constant speed and the case where the engine 2 is operated at a low load.
  • the case where the throttle opening change is large is a transient state such as acceleration or climbing, and is a case where the engine 2 is operated at a high load.
  • the cooling water temperature becomes the second temperature (100 ° C.).
  • the controller transmits control signals to the pump 10, the regulating valve 11, and the electromagnetic valve 25.
  • the cooling water temperature is set to the second temperature (100 ° C.).
  • step S112 the electromagnetic valve 25 is opened based on the control signal from the controller in order to circulate the cooling water through the heater core 4 (step S112).
  • the air conditioner can use the heat of the heater core 4 at any time. If idling is being performed in step S110 (YES in step S110), the control flow proceeds to step S112 without performing the determination in step S111 because the throttle load is not changed.
  • step S112 based on the control signal from the controller, the pump 10 (electric pump P 1 ) circulates the cooling water, but the flow rate is controlled to be small (step S113).
  • the flow rate is controlled to be small.
  • step S113 the valve opening of the adjustment valve 11 is adjusted based on a control signal from the controller, and the flow rate of the cooling water flowing through the radiator 3 is adjusted at the upstream end of the second flow path 30 (step S114). .
  • the flow rates to the second flow path 30, the radiator 3 and the third flow path 32 are relatively reduced (FIG. 8). reference).
  • the adjustment valve 11 also flows the cooling water from the pump 10 to the engine 2.
  • step S111 when the throttle opening change is large (larger than the predetermined opening change) in step S111, that is, when the engine 2 is in a high load state (NO in step S111), the cooling water temperature is the first temperature (80 ° C.).
  • the controller transmits control signals to the pump 10, the regulating valve 11 and the electromagnetic valve 25.
  • the cooling water temperature is set to the first temperature (80 ° C.).
  • the electromagnetic valve 25 is opened based on the control signal from the controller in order to circulate the cooling water through the heater core 4 as in step S112 described above (step S112).
  • step S120 based on the control signal from the controller, the pump 10 (electric pump P 1 ) circulates the cooling water, but the flow rate is controlled to a high level (step S121). Increasing the flow rate promotes heat dissipation in the radiator 3, and the cooling water temperature is kept at the first temperature (80 ° C.) by suppressing the rise (the next step for the cooling water flow to the radiator 3 This will be described in S122).
  • step S121 the valve opening of the adjusting valve 11 is adjusted based on a control signal from the controller, the flow path to the first flow path 31 connected to the engine 2 is closed, and the second flow path 30
  • the valve opening degree of the upstream end is fully opened (step S122), and the cooling water is allowed to flow only in the second flow path 30, the radiator 3, and the third flow path 32 (see FIG. 9).
  • the flow rates to the second flow path 30, the radiator 3 and the third flow path 32 are increased.
  • the cooling water flows to the engine 2 after flowing through the second flow path 30, the radiator 3, and the third flow path 32. As a result, heat dissipation in the radiator 3 is promoted, and the cooling water temperature is lowered to the first temperature (80 ° C.).
  • the cooling water flow path 32 for flowing the cooling water flowing out from the radiator 3 to the engine 2 is provided, the cooling water flow path is not increased without increasing the number of parts.
  • the cooling water temperature control and flow rate adjustment can be easily performed without complicating the flow rate.
  • the third flow path 32 at the time of low load is filled with cooling water of about 60 ° C. cooled by the radiator 3.
  • the cooling water is pushed into the radiator 3 through the second flow path 30 by the adjustment valve 11, the water in the third flow path 32 is cooled by the cooling in the first flow path 31 because water is an incompressible fluid. After joining with water, it flows into the engine 2. Therefore, when the flow rate to the second flow path 30 is increased by the adjustment valve 11 when shifting from a low load state to a high load such as sudden acceleration (FIG. 8 ⁇ FIG. 9), the temperature in the third flow path 32 is 60 ° C. A certain amount of cooling water flows into the engine 2 after joining with the cooling water in the first flow path 31.
  • the cooling water temperature can be instantaneously changed from the second temperature at low load (100 ° C.) to the first temperature at high load (80 ° C.).
  • the fuel consumption can be improved by about 3% by setting the coolant temperature to the second temperature (100 ° C.) with good combustion efficiency.
  • knocking can also be prevented by rapidly lowering the cooling water temperature to the first temperature (80 ° C.) during high load (acceleration).
  • the engine water cooling device 1a ′ according to the modification of the first embodiment differs from the water cooling device 1a according to the first embodiment (see FIG. 1) in the position of the adjustment valve 11. Since the other structure of water cooling device 1a 'of this modification is the same as the water cooling device 1a of 1st Embodiment, those overlapping description is abbreviate
  • the adjustment valve 11 of this modification is also a three-way valve arranged downstream of the pump 10 on the first flow path 31.
  • the adjustment valve 11 of the first embodiment is disposed at the branch point of the second flow path 30 on the first flow path 31, whereas the adjustment valve 11 of the present modification example has the first flow path 31. It is arranged at the junction with the upper third flow path 32.
  • the adjustment valve 11 is an electronically controlled thermostat, and controls the mixing ratio of the cooling water from the pump 10 and the cooling water from the third flow path 32 based on a signal from a controller (not shown) to 2 and / or the flow rate of the cooling water flowing to the radiator 3 is controlled.
  • the adjustment valve 11 of the present modification controls the flow rate of the cooling water that flows to the radiator 3 downstream of the radiator 3.
  • the warm-up control of the engine 2 by the water cooling device 1a ' is different from the warm-up control in the first embodiment in the processes of steps S14 and S22 (see FIG. 4) related to the adjustment valve 11. Also in this modified example, since the whole warm-up control is performed according to the flowchart shown in FIG. 4, only different steps S14 and S22 will be described below.
  • step S14 the cooling water temperature is equal to or lower than the first temperature (80 ° C.) (YES in step S10), and the heater switch is off (NO in step S11). Therefore, heat is not radiated from the radiator 3 and the heater core 4, and the cooling water is made higher than the first temperature (80 ° C.) earlier. That is, as shown in FIG. 11, the electromagnetic valve 25 is closed (step S12) and the pump 10 is stopped (step S13). Furthermore, the adjusting valve 11 closes the third flow path 32 (at its downstream end) based on the control signal from the controller (step S14).
  • step S22 the cooling water temperature is equal to or lower than the first temperature (80 ° C.) (YES in step S10), and the heater switch is on (YES in step S11). Therefore, heat is not dissipated in the radiator 3 and the cooling water is made higher than the first temperature (80 ° C.) earlier. That is, the electromagnetic valve 25 is opened (step S20: heat is dissipated by the heater core 4 because the heater switch is on), and the pump 10 is operated (step S21). Furthermore, the adjusting valve 11 closes the third flow path 32 (at its downstream end) based on the control signal from the controller (step S22).
  • step S114 the engine 2 is in a low load state during idling (YES in step S110) or because the change in throttle opening is small (YES in step S111).
  • the pump 10 controls the flow rate of the cooling water to be small (step S113), suppresses heat radiation in the heater core 4 and the radiator 3, and raises the cooling water temperature to the second temperature (100 ° C.).
  • the valve opening of the adjustment valve 11 is adjusted based on a control signal from the controller, and the flow rate of the cooling water flowing through the radiator 3 is adjusted at the downstream end of the third flow path 32 (step S114).
  • the flow rates to the second flow path 30, the radiator 3 and the third flow path 32 are relatively reduced (FIG. 12). reference).
  • the adjusting valve 11 also allows cooling water from the pump 10 to flow into the engine 2.
  • step S122 the change in throttle opening is large (NO in step S111), and the engine 2 is in a high load state.
  • the pump 10 controls the circulating flow of the cooling water to a large extent (step S121), promotes heat radiation in the heater core 4 and the radiator 3, and sets the cooling water temperature to the first temperature (80 ° C.). That is, the valve opening of the adjustment valve 11 is adjusted based on the control signal from the controller, the flow path from the first flow path 31 is closed, and the valve opening at the downstream end of the third flow path 32 is fully opened. (Step S122), the cooling water flows only through the second flow path 30, the radiator 3, and the third flow path 32 (see FIG. 13).
  • step S10 it is determined whether or not the cooling water temperature detected by the temperature sensor is equal to or lower than a first temperature (80 ° C.) as an index for completion of warm-up (step S10).
  • a first temperature 80 ° C.
  • the control shifts to normal control after warm-up (step S30), and the warm-up control ends. The normal control will be described in detail later.
  • the cooling water temperature is equal to or lower than the first temperature (80 ° C.) (YES in step S10), it is determined whether or not the air conditioning heater switch is on (step S11).
  • the controller transmits a control signal to the adjustment valve 11 and the electromagnetic valve 25 so that the coolant temperature becomes higher than the first temperature (80 ° C.) earlier.
  • the solenoid valve 25 on the upstream side of the heater core 4 is closed based on the control signal from the controller (step S12).
  • the second flow path 30 is also closed by the adjustment valve 11 (step S ⁇ b> 14 described later), and the cooling water is not allowed to flow to the radiator 3.
  • heat is not dissipated in the radiator 3 and the heater core 4, and the cooling water is made higher than the first temperature (80 ° C.) earlier.
  • step S12 the adjusting valve 11 closes the second flow path 30 (at its upstream end) based on a control signal from the controller (step S14). Since the second flow path 30 is closed, heat is not radiated by the radiator 3, and a decrease in the coolant temperature during the warm-up control can be prevented.
  • step S14 the process flow returns to step S10.
  • the cooling water temperature becomes higher than the first temperature (80 ° C.) (NO in step S10), the process proceeds to normal control (step S30).
  • step S11 when the heater switch is on in step S11 (YES in step S11), the solenoid valve 25 on the upstream side of the heater core 4 is controlled so that the cooling water flows through the heater core 4 for heating.
  • the electromagnetic valve 25 is set to a valve opening degree at which the cooling water flows through the heater core 4 at 10 L / min based on a control signal from the controller (step S20).
  • step S20 the adjustment valve 11 closes the second flow path 30 based on the control signal from the controller (step S22). Since the second flow path 30 is closed, heat is not radiated by the radiator 3, and a decrease in the coolant temperature during the warm-up control can be prevented. Although heat is dissipated in the heater core 4 for heating, heat is not dissipated in the radiator 3, and the cooling water becomes higher than the first temperature (80 ° C.) earlier. After step S22, the process flow returns to step S10. When the cooling water temperature becomes higher than the first temperature (80 ° C.) (NO in step S10), the process proceeds to normal control (step S30).
  • step S110 it is determined whether or not the engine 2 is idling. If the engine is not idling (NO in step S110), it is determined whether or not the change in throttle opening is small in order to determine the operating state of the engine 2 (step S111).
  • the controller controls the adjusting valve 11 and the electromagnetic valve 25 so that the cooling water temperature becomes the second temperature (100 ° C.).
  • a control signal is transmitted to.
  • the cooling water temperature is set to the second temperature (100 ° C.).
  • step S112 the electromagnetic valve 25 is opened based on the control signal from the controller in order to circulate the cooling water through the heater core 4 (step S112).
  • the air conditioner can use the heat of the heater core 4 at any time. If idling is being performed in step S110 (YES in step S110), the control flow proceeds to step S112 without performing the determination in step S111 because the throttle load is not changed.
  • step S112 the degree of solution of the adjustment valve 11 is adjusted based on the control signal from the controller, and the flow rate of the cooling water flowing through the radiator 3 is adjusted at the upstream end of the second flow path 30 (step S114).
  • the flow rates to the second flow path 30, the radiator 3 and the third flow path 32 are relatively reduced (FIG. 18). reference).
  • the adjustment valve 11 also flows the cooling water from the pump 12 to the engine 2.
  • step S111 if the change in throttle opening is large in step S111, that is, if the engine 2 is in a high load state (NO in step S111), the controller adjusts the adjustment valve so that the cooling water temperature becomes the first temperature (80 ° C.). 11 and the electromagnetic valve 25 are transmitted with control signals.
  • the cooling water temperature is set to the first temperature (80 ° C.).
  • the electromagnetic valve 25 is opened based on the control signal from the controller in order to circulate the cooling water through the heater core 4 as in step S112 described above (step S112). S120). Subsequent to step 120, the valve opening of the adjustment valve 11 is adjusted based on a control signal from the controller, the flow path to the first flow path 31 connected to the engine 2 is closed, and the second flow path 30. Is opened fully (step S122), and cooling water flows only through the second flow path 30 (similar to FIG. 9; however, pump 12 instead of pump 10).
  • the flow rates to the second flow path 30, the radiator 3 and the third flow path 32 are increased.
  • the cooling water flows to the engine 2 after flowing through the second flow path 30, the radiator 3, and the third flow path 32.
  • heat dissipation in the radiator 3 is promoted, and the cooling water temperature is lowered to the first temperature (80 ° C.).
  • the engine water cooling device 1 b ′ according to the modification of the second embodiment is different from the water cooling device 1 b (see FIG. 14) according to the second embodiment in the position of the adjustment valve 11.
  • the other configuration of the water cooling device 1b ′ of the present modification is the same as that of the water cooling device 1b of the second embodiment, and thus redundant description thereof is omitted.
  • the adjustment valve 11 of this modification is also a three-way valve arranged downstream of the pump 12 on the first flow path 31.
  • the adjustment valve 11 of the second embodiment is disposed at the branching point of the second flow path 30 on the first flow path 31, whereas the adjustment valve 11 of the present modification example has the first flow path 31. It is arranged at the junction with the upper third flow path 32.
  • the adjustment valve 11 is an electronically controlled thermostat, and controls the mixing ratio of the cooling water from the pump 12 and the cooling water from the third flow path 32 based on a signal from a controller (not shown) to 2 and / or the flow rate of the cooling water flowing to the radiator 3 is controlled.
  • the adjustment valve 11 of the present modification controls the flow rate of the cooling water that flows to the radiator 3 downstream of the radiator 3.
  • the warm-up control of the engine 2 by the water cooling device 1b ' is different from the warm-up control in the second embodiment in steps S14 and S22 (see FIG. 15) regarding the adjustment valve 11. Also in this modified example, since the whole warm-up control is performed according to the flowchart shown in FIG. 15, only different steps S14 and S22 will be described below.
  • step S14 the cooling water temperature is equal to or lower than the first temperature (80 ° C.) (YES in step S10), and the heater switch is off (NO in step S11). Therefore, heat is not radiated from the radiator 3 and the heater core 4, and the cooling water is made higher than the first temperature (80 ° C.) earlier. That is, as shown in FIG. 20, the electromagnetic valve 25 is closed (step S12), and the adjustment valve 11 closes the third flow path 32 (at its downstream end) based on the control signal from the controller ( Step S14).
  • step S22 the cooling water temperature is equal to or lower than the first temperature (80 ° C.) (YES in step S10), and the heater switch is on (YES in step S11). Therefore, heat is not dissipated in the radiator 3 and the cooling water is made higher than the first temperature (80 ° C.) earlier. That is, the electromagnetic valve 25 is opened (step S20: the heater switch is turned on to dissipate heat in the heater core 4), and the adjustment valve 11 opens the third flow path 32 (on the downstream end thereof) based on the control signal from the controller. (Step S22).
  • the normal control (after warming up) by the water cooling device 1b ' is different from the normal control in the second embodiment in the processes of steps S114 and S122 (see FIG. 17) related to the adjustment valve 11. Also in this modification example, the entire normal control is performed according to the flowchart shown in FIG. 17, and therefore only different steps S114 and S122 will be described below.
  • step S114 the engine 2 is in a low load state during idling (YES in step S110) or because the change in throttle opening is small (YES in step S111).
  • the adjustment valve 11 controls the flow rate of the cooling water to the radiator 3 to be small, suppresses the heat radiation at the radiator 3, and raises the cooling water temperature to the second temperature (100 ° C.). That is, the valve opening of the adjustment valve 11 is adjusted based on the control signal from the controller, and the flow rate of the cooling water flowing through the radiator 3 is adjusted at the downstream end of the third flow path 32 (step S114).
  • the flow rates to the second flow path 30, the radiator 3 and the third flow path 32 are relatively reduced (FIG. 21). reference).
  • the adjustment valve 11 also allows cooling water from the pump 12 to flow into the engine 2.
  • step S122 the change in throttle opening is large (NO in step S111), and the engine 2 is in a high load state.
  • the adjustment valve 11 controls the flow rate of the cooling water to the radiator 3 to increase the heat dissipation in the radiator 3 and sets the cooling water temperature to the first temperature (80 ° C.). That is, the valve opening of the adjustment valve 11 is adjusted based on the control signal from the controller, the flow path from the first flow path 31 is closed, and the valve opening at the downstream end of the third flow path 32 is fully opened. (Step S122), the cooling water flows only through the second flow path 30, the radiator 3, and the third flow path 32 (similar to FIG. 13; however, the pump 12 instead of the pump 10).
  • the engine water cooling device 1 c has a configuration in which an on / off valve 13 is added to the water cooling device 1 b (see FIG. 14) of the second embodiment.
  • One side (outflow side) of the on / off valve 13 is connected to the fifth flow path 22 (upstream side of the pump 12), and the other side (inflow side) is the first flow path 31 (downstream side of the pump 12 and adjustment). It is connected to the upstream side of the valve 11.
  • the on / off valve 13 adjusts the flow rate of the cooling water to the adjustment valve 11 (that is, the engine 2). Since the other structure of the water cooling device 1c of this embodiment is the same as the water cooling device 1b of 2nd Embodiment, those overlapping description is abbreviate
  • step S10 it is determined whether or not the cooling water temperature detected by the temperature sensor is equal to or lower than a first temperature (80 ° C.) as an index for completion of warm-up (step S10).
  • a first temperature 80 ° C.
  • the control shifts to normal control after warm-up (step S30), and the warm-up control ends. The normal control will be described in detail later.
  • the cooling water temperature is equal to or lower than the first temperature (80 ° C.) (YES in step S10), it is determined whether or not the air conditioning heater switch is on (step S11).
  • the controller sends control signals to the adjustment valve 11, the electromagnetic valve 25, and the on / off valve 13 so that the cooling water temperature becomes higher than the first temperature (80 ° C.) earlier. Send.
  • the solenoid valve 25 on the upstream side of the heater core 4 is closed based on the control signal from the controller (step S12).
  • the second flow path 30 is also closed by the adjustment valve 11 (step S ⁇ b> 16 described later), and the cooling water is not allowed to flow to the radiator 3. As a result, heat is not dissipated in the radiator 3 and the heater core 4, and the cooling water is made higher than the first temperature (80 ° C.) earlier.
  • the on / off valve 13 is opened based on the control signal from the controller (step S15).
  • the cooling water is recirculated from the downstream side (high pressure side) of the pump 12 to the upstream side (low pressure side), and is supplied to the regulating valve 11 (ie, the engine 2).
  • the flow rate of the cooling water is reduced.
  • the cooling water temperature in the engine 2 absorbs the heat of the engine 2 and quickly rises to a temperature with good thermal efficiency.
  • step S15 the adjustment valve 11 closes the second flow path 30 (at its upstream end) based on the control signal from the controller (step S16). Since the second flow path 30 is closed, heat is not radiated by the radiator 3, and a decrease in the coolant temperature during the warm-up control can be prevented.
  • step S16 the process flow returns to step S10.
  • the cooling water temperature becomes higher than the first temperature (80 ° C.) (NO in step S10), the process proceeds to normal control (step S30).
  • step S11 when the heater switch is on in step S11 (YES in step S11), the solenoid valve 25 on the upstream side of the heater core 4 is controlled so that the cooling water flows through the heater core 4 for heating.
  • the electromagnetic valve 25 is set to a valve opening degree at which the cooling water flows through the heater core 4 at 10 L / min based on a control signal from the controller (step S20).
  • step S20 the on / off valve 13 is closed based on the control signal from the controller (step S23).
  • the on / off valve 13 is closed, the cooling water is not recirculated, and the flow rate of the cooling water to the regulating valve 11 (that is, the engine 2) is not reduced.
  • step S24 the adjustment valve 11 closes the second flow path 30 based on the control signal from the controller (step S24). Since the second flow path 30 is closed, heat is not radiated by the radiator 3, and a decrease in the coolant temperature during the warm-up control can be prevented. Although heat is dissipated in the heater core 4 for heating, heat is not dissipated in the radiator 3, and the cooling water becomes higher than the first temperature (80 ° C.) earlier.
  • step S24 the process flow returns to step S10. When the coolant temperature becomes higher than the first temperature (80 ° C.) (NO in step S10), the process proceeds to normal control (step S30).
  • step S110 it is determined whether or not the engine 2 is idling. If the engine is not idling (NO in step S110), it is determined whether or not the change in throttle opening is small in order to determine the operating state of the engine 2 (step S111).
  • the controller controls the adjusting valve 11 and the electromagnetic valve 25 so that the cooling water temperature becomes the second temperature (100 ° C.).
  • the control signal is transmitted to the on / off valve 13.
  • the cooling water temperature is the second temperature (100 ° C.) higher than the first temperature (80 ° C.).
  • the cooling water temperature is set to the second temperature (100 ° C.).
  • step S112 the electromagnetic valve 25 is opened based on the control signal from the controller in order to circulate the cooling water through the heater core 4 (step S112).
  • the air conditioner can use the heat of the heater core 4 at any time. If idling is being performed in step S110 (YES in step S110), the control flow proceeds to step S112 without performing the determination in step S111 because the throttle load is not changed.
  • step S112 the on / off valve 13 is closed based on the control signal from the controller (step S115).
  • the on / off valve 13 is closed, the cooling water is not recirculated, and the flow rate of the cooling water to the regulating valve 11 (that is, the engine 2) is not reduced.
  • step S115 the valve opening of the adjustment valve 11 is adjusted based on a control signal from the controller, and the flow rate of the cooling water flowing through the radiator 3 is adjusted at the upstream end of the second flow path 30 (step S116). ).
  • the flow rates to the second flow path 30, the radiator 3 and the third flow path 32 are relatively reduced (FIG. 26). reference).
  • the adjustment valve 11 also flows the cooling water from the pump 12 to the engine 2.
  • step S111 if the change in throttle opening is large in step S111, that is, if the engine 2 is in a high load state (NO in step S111), the controller adjusts the adjustment valve so that the cooling water temperature becomes the first temperature (80 ° C.). 11. Control signals are transmitted to the electromagnetic valve 25 and the on / off valve 13. As shown in FIG. 3B, when the engine 2 is in a high load state, the fuel efficiency is better when the cooling water temperature is the first temperature (80 ° C.) lower than the second temperature (100 ° C.). The cooling water temperature is set to the first temperature (80 ° C.).
  • the electromagnetic valve 25 is opened based on the control signal from the controller in order to circulate the cooling water through the heater core 4 as in step S112 described above (step S112). S120).
  • the on / off valve 13 is closed based on a control signal from the controller (step S123).
  • the cooling water is not recirculated, and the flow rate of the cooling water to the regulating valve 11 (that is, the engine 2) is not reduced. Since the flow rate of the cooling water to the regulating valve 11 (that is, the engine 2) is not reduced, the flow rate of the cooling water circulating in the cooling device 1c is controlled to be large.
  • step S123 the valve opening of the adjusting valve 11 is adjusted based on a control signal from the controller, the flow path to the first flow path 31 connected to the engine 2 is closed, and the second flow path 30 The valve opening at the upstream end is fully opened (step S124), and the cooling water flows only through the second flow path 30, the radiator 3, and the third flow path 32.
  • the flow rates to the second flow path 30, the radiator 3 and the third flow path 32 are increased.
  • the cooling water flows to the engine 2 after flowing through the second flow path 30, the radiator 3, and the third flow path 32. As a result, heat dissipation in the radiator 3 is promoted, and the cooling water temperature is lowered to the first temperature (80 ° C.).
  • the same effect as the water cooling device 1b of the second embodiment, that is, the same effect as the water cooling device 1a of the first embodiment can be realized. .
  • the engine water cooling device 1c ′ according to the modification of the third embodiment differs from the engine water cooling device 1c according to the third embodiment (see FIG. 22) in the position of the adjustment valve 11. Since the other structure of water cooling device 1c 'of this modification is the same as the water cooling device 1c of 3rd Embodiment, those overlapping description is abbreviate
  • the adjustment valve 11 of this modification is also a three-way valve arranged downstream of the pump 12 on the first flow path 31.
  • the adjustment valve 11 of the third embodiment is disposed at the branching point of the second flow path 30 on the first flow path 31, whereas the adjustment valve 11 of the present modification example has the first flow path 31. It is arranged at the junction with the upper third flow path 32.
  • the adjustment valve 11 is an electronically controlled thermostat, and controls the mixing ratio of the cooling water from the pump 12 and the cooling water from the third flow path 32 based on a signal from a controller (not shown) to 2 and / or the flow rate of the cooling water flowing to the radiator 3 is controlled.
  • the adjustment valve 11 of the present modification controls the flow rate of the cooling water that flows to the radiator 3 downstream of the radiator 3.
  • the warm-up control of the engine 2 by the water cooling device 1c ' is different from the warm-up control in the third embodiment in steps S16 and S24 (see FIG. 23) regarding the adjustment valve 11. Also in this modified example, since the whole warm-up control is performed according to the flowchart shown in FIG. 23, only different steps S16 and S24 will be described below.
  • step S16 the cooling water temperature is equal to or lower than the first temperature (80 ° C.) (YES in step S10), and the heater switch is off (NO in step S11). Therefore, heat is not radiated from the radiator 3 and the heater core 4, and the cooling water is made higher than the first temperature (80 ° C.) earlier. That is, as shown in FIG. 28, the electromagnetic valve 25 is closed (step S12) and the on / off valve 13 is opened (step S15). Furthermore, the regulating valve 11 closes the third flow path 32 (at its downstream end) based on the control signal from the controller (step S16).
  • step S26 the cooling water temperature is equal to or lower than the first temperature (80 ° C.) (YES in step S10), and the heater switch is on (YES in step S11). Therefore, heat is not dissipated in the radiator 3 and the cooling water is made higher than the first temperature (80 ° C.) earlier. That is, the electromagnetic valve 25 is opened (step S20: heat is dissipated by the heater core 4 because the heater switch is on), and the on / off valve 13 is closed (step S23). Furthermore, the adjusting valve 11 closes the third flow path 32 (at its downstream end) based on the control signal from the controller (step S26).
  • the normal control (after warming up) by the water cooling device 1c ' is different from the normal control in the third embodiment in steps S116 and S124 (see FIG. 25) related to the adjustment valve 11. Also in this modified example, since the entire normal control is performed according to the flowchart shown in FIG. 25, only different steps S116 and S124 will be described below.
  • step S116 the engine 2 is in a low load state during idling (YES in step S110) or because the change in throttle opening is small (YES in step S111).
  • the adjustment valve 11 controls the flow rate of the cooling water to the radiator 3 to be small, suppresses the heat radiation at the radiator 3, and raises the cooling water temperature to the second temperature (100 ° C.). That is, the valve opening of the adjustment valve 11 is adjusted based on a control signal from the controller, and the flow rate of the cooling water flowing through the radiator 3 is adjusted at the downstream end of the third flow path 32 (step S116).
  • the flow rates to the second flow path 30, the radiator 3 and the third flow path 32 are relatively reduced (FIG. 29). reference).
  • the adjustment valve 11 also allows cooling water from the pump 12 to flow into the engine 2.
  • step S124 the throttle opening change is large (NO in step S111), and the engine 2 is in a high load state.
  • the adjustment valve 11 controls the circulating flow rate of the cooling water to the radiator 3 to increase the heat dissipation in the radiator 3 and brings the cooling water temperature to the first temperature (80 ° C.). That is, the valve opening of the adjustment valve 11 is adjusted based on the control signal from the controller, the flow path from the first flow path 31 is closed, and the valve opening at the downstream end of the third flow path 32 is fully opened. (Step S124), the cooling water flows only through the second flow path 30, the radiator 3, and the third flow path 32.
  • the present invention is not limited to the embodiment described above.
  • the operating state (low load state or high load state) of the engine 2 is determined based on the change in the throttle opening.
  • the operating state of the engine 2 may be determined based on the vehicle speed, the throttle opening acceleration, or a combination thereof. Specifically, if the throttle opening acceleration is large, it is determined that the load is high, and if the acceleration is small, it is determined that the load is low.
  • the first temperature is 80 ° C. and the second temperature is 100 ° C., but the first temperature may be 70 ° C., and similarly, the second temperature is 90 ° C. There may be.
  • the first temperature may be any temperature that is lower than the second temperature and that provides optimum combustion efficiency when the engine 2 is in a high load state.
  • the second temperature may be any temperature that is higher than the first temperature and that provides optimum combustion efficiency when the engine 2 is in a low load state.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

A water-cooling apparatus for an engine, that cools an internal combustion engine using cooling water, and comprises: a radiator that cools the cooling water; a first flow path that causes the cooling water to flow into the engine; a second flow path that branches from the first flow path, and causes the cooling water to flow into the radiator; a third flow path that causes the cooling water from the radiator to flow into the first flow path, further downstream from the branching point of the second flow path from the first flow path; an adjustment valve arranged upon the first flow path and which controls the flow volume of the cooling water that flows through the radiator; and a pump arranged upon the first flow path, that circulates the cooling water through the engine and/or the radiator. The adjustment value is configured such that, when the adjustment valve is open, the cooling water from the radiator is caused to flow into the first flow path. This water-cooling apparatus is capable of performing suitable cooling by having a simple circulation flow path for cooling water, and adjusting the flow volume of the cooling water that flows through the circulation flow path.

Description

エンジン水冷装置Engine water cooling device
 本発明は、エンジン水冷装置[a water-cooling apparatus for an engine]に関し、特に、ポンプ及び調整バルブによって冷却水を制御するエンジン水冷装置に関する。 The present invention relates to an engine water cooling device [a [water-cooling apparatus for engine], and more particularly to an engine water cooling device that controls cooling water by a pump and a regulating valve.
 内燃エンジン(以下、単にエンジンという)の回転数[revolving speed]に応じてエンジン駆動ポンプ[engine-driven pump]を駆動させて、冷却水をシリンダヘッド及びシリンダブロックに循環させるエンジン水冷装置がよく知られている。 An engine water cooling system that drives an engine-driven pump (engine-driven pump) according to the rotational speed (revolving speed) of an internal combustion engine (hereinafter simply referred to as the engine) to circulate cooling water to the cylinder head and cylinder block is well known. It has been.
 このような水冷装置では、冷却水の流量[flow volume]がエンジンの回転数に比例するので、回転数が高くなる寒冷状況下や高速走行時に冷却水の流量が多くなり過ぎることがある。このため、冷却水の余分な放熱によって暖機が遅れ、動力損失[power loss]が大きくなることがある。また、冷却水の流量がエンジンの回転数に比例するので、急加速などでエンジン負荷が急に高くなった場合に、冷却遅れによるノッキングが発生することがある。 In such a water cooling device, since the flow rate of the cooling water [flow volume] is proportional to the engine speed, the cooling water flow rate may become excessive under cold conditions where the rotation speed is high or during high speed driving. For this reason, warm-up may be delayed due to excessive heat dissipation of the cooling water, resulting in a large power loss. Further, since the flow rate of the cooling water is proportional to the engine speed, knocking due to a cooling delay may occur when the engine load suddenly increases due to sudden acceleration or the like.
 エンジン負荷に応じてエンジンを冷却するために、ラジエータをバイパスするバイパス流路や燃焼シリンダの冷却のための専用ポンプを設ける水冷装置も提案されている(特許文献1参照)。 In order to cool the engine according to the engine load, a water cooling device is also proposed in which a bypass flow path that bypasses the radiator and a dedicated pump for cooling the combustion cylinder are provided (see Patent Document 1).
日本国特開2006-161606号公報Japanese Unexamined Patent Publication No. 2006-161606
 しかしながら、このような水冷装置では、部品点数が増加し、冷却水の流路が複雑になってしまう。従って、本発明の目的は、単純な冷却水の循環流路を有すると共に、循環流路を流れる冷却水の流量を調整することで好適な冷却を行うことのできるエンジン水冷装置を提供することにある。 However, such a water cooling device increases the number of parts and complicates the flow path of the cooling water. Accordingly, an object of the present invention is to provide an engine water cooling device having a simple cooling water circulation channel and capable of performing suitable cooling by adjusting the flow rate of the cooling water flowing through the circulation channel. is there.
 本願発明の特徴は、内燃エンジンを冷却水で冷却するエンジン水冷装置であって、前記冷却水と空気との間の熱交換によって前記冷却水を冷却するラジエータと、前記冷却水を前記エンジンに流入させる第1流路と、前記第1流路から分岐され、前記冷却水を前記ラジエータに流入させる第2流路と、前記ラジエータからの前記冷却水を、前記第2流路の前記第1流路からの分岐点よりも下流で前記第1流路に流入させる第3流路と、前記第1流路上に配置され、前記ラジエータを流れる前記冷却水の流量を制御する調整バルブと、前記第1流路上に配置され、前記エンジン及び/又は前記ラジエータに前記冷却水を循環させるポンプとを備え、前記調整バルブが、開放時に前記ラジエータからの前記冷却水を前記第1流路に流入させるように構成されている、エンジン水冷装置を提供する。 A feature of the present invention is an engine water cooling device that cools an internal combustion engine with cooling water, the radiator cooling the cooling water by heat exchange between the cooling water and air, and the cooling water flowing into the engine A first flow path, a second flow path branched from the first flow path and allowing the cooling water to flow into the radiator, and the cooling water from the radiator is passed through the first flow of the second flow path. A third flow path that flows into the first flow path downstream from a branch point from the path; an adjustment valve that is disposed on the first flow path and that controls the flow rate of the cooling water that flows through the radiator; And a pump that circulates the cooling water to the engine and / or the radiator, and the adjustment valve causes the cooling water from the radiator to flow into the first flow path when opened. It is configured to provide an engine water cooler.
第1実施形態に係るエンジン水冷装置の概略構成図である。It is a schematic block diagram of the engine water cooling apparatus which concerns on 1st Embodiment. 上記エンジンの配置を示す概略側面図である。It is a schematic side view which shows arrangement | positioning of the said engine. (a)は、上記エンジンの高負荷時における冷却水温と燃焼効率との関係を示すグラフであり、(b)は、低負荷時における冷却水温と燃焼効率との関係を示すグラフである。(A) is a graph which shows the relationship between the cooling water temperature at the time of high load of the said engine, and combustion efficiency, (b) is a graph which shows the relationship between the cooling water temperature at the time of low load, and combustion efficiency. 上記水冷装置の暖機制御を示すフローチャートである。It is a flowchart which shows the warming-up control of the said water cooling apparatus. 上記暖機制御での冷却水の流れを示す概略図である。It is the schematic which shows the flow of the cooling water in the said warm-up control. (a)は、上記水冷エンジンにおける冷却水の自然対流を示す概略斜視図であり、(b)は、概略側面図である。(A) is a schematic perspective view which shows the natural convection of the cooling water in the said water cooling engine, (b) is a schematic side view. 上記水冷装置の通常制御を示すフローチャートである。It is a flowchart which shows the normal control of the said water cooling apparatus. 上記通常制御(低負荷状態)での冷却水の流れを示す概略図である。It is the schematic which shows the flow of the cooling water in the said normal control (low load state). 上記通常制御(高負荷状態)での冷却水の流れを示す概略図(2)である。It is the schematic (2) which shows the flow of the cooling water in the said normal control (high load state). 第1実施形態の変形例に係るエンジン水冷装置の概略構成図である。It is a schematic block diagram of the engine water cooling apparatus which concerns on the modification of 1st Embodiment. 上記水冷装置の暖機制御での冷却水の流れを示す概略図である。It is the schematic which shows the flow of the cooling water in the warming-up control of the said water cooling apparatus. 上記水冷装置の通常制御(低負荷状態)での冷却水の流れを示す概略図である。It is the schematic which shows the flow of the cooling water in the normal control (low load state) of the said water cooling apparatus. 上記水冷装置の通常制御(高負荷状態)での冷却水の流れを示す概略図である。It is the schematic which shows the flow of the cooling water in the normal control (high load state) of the said water cooling apparatus. 第2実施形態に係るエンジン水冷装置の概略構成図である。It is a schematic block diagram of the engine water cooling apparatus which concerns on 2nd Embodiment. 上記水冷装置の暖機制御を示すフローチャートである。It is a flowchart which shows the warming-up control of the said water cooling apparatus. 上記暖機制御での冷却水の流れを示す概略図である。It is the schematic which shows the flow of the cooling water in the said warm-up control. 上記水冷装置の通常制御を示すフローチャートである。It is a flowchart which shows the normal control of the said water cooling apparatus. 上記通常制御(低負荷状態)での冷却水の流れを示す概略図である。It is the schematic which shows the flow of the cooling water in the said normal control (low load state). 第2実施形態の変形例に係るエンジン水冷装置の概略構成図である。It is a schematic block diagram of the engine water cooling apparatus which concerns on the modification of 2nd Embodiment. 上記水冷装置の暖機制御での冷却水の流れを示す概略図である。It is the schematic which shows the flow of the cooling water in the warming-up control of the said water cooling apparatus. 上記水冷装置の通常制御(低負荷状態)での冷却水の流れを示す概略図である。It is the schematic which shows the flow of the cooling water in the normal control (low load state) of the said water cooling apparatus. 第3実施形態に係るエンジン水冷装置の概略構成図である。It is a schematic block diagram of the engine water cooling apparatus which concerns on 3rd Embodiment. 上記水冷装置の暖機制御を示すフローチャートである。It is a flowchart which shows the warming-up control of the said water cooling apparatus. 上記暖機制御での冷却水の流れを示す概略図である。It is the schematic which shows the flow of the cooling water in the said warm-up control. 上記水冷装置の通常制御を示すフローチャートである。It is a flowchart which shows the normal control of the said water cooling apparatus. 上記通常制御(低負荷状態)での冷却水の流れを示す概略図である。It is the schematic which shows the flow of the cooling water in the said normal control (low load state). 第3実施形態の変形例に係るエンジン水冷装置の概略構成図である。It is a schematic block diagram of the engine water cooling apparatus which concerns on the modification of 3rd Embodiment. 上記水冷装置の暖機制御での冷却水の流れを示す概略図である。It is the schematic which shows the flow of the cooling water in the warming-up control of the said water cooling apparatus. 上記水冷装置の通常制御(低負荷状態)での冷却水の流れを示す概略図である。It is the schematic which shows the flow of the cooling water in the normal control (low load state) of the said water cooling apparatus.
 以下、図面を参照しつつ実施形態を説明する。図面において、同一又は同等の構成部分には同一の符号が付されている。なお、図面は模式的に示されており、図中の各部の寸法や比率等は実際のそれらを正確に示しておらず、実際の各部の寸法や比率等は以下の説明を考慮して判断されるべきである。また、図面間においても、各部の寸法や比率等が異なって示される場合がある。 Hereinafter, embodiments will be described with reference to the drawings. In the drawings, the same or equivalent components are denoted by the same reference numerals. Note that the drawings are schematically shown, and the dimensions and ratios of each part in the figure do not accurately show the actual dimensions, and the actual dimensions and ratios of each part are determined in consideration of the following explanation. It should be. Also, the dimensions, ratios, and the like of each part may be shown differently between the drawings.
(第1実施形態)
 第1実施形態に係るエンジン水冷装置1aは、図1に示されるように、水冷内燃エンジン[water-cooled internal combustion engine](以下、単にエンジンという)2を冷却水[cooling water](冷却液[coolant])を用いて冷却する。水冷装置1aは、ラジエータ3と、第1流路[first flow passage]31と、第2流路30と、第3流路32と、調整バルブ[regulating valve]11と、ポンプ10とを備えている。ラジエータ3では、エンジン2の冷却水と空気との間で熱交換が行われ、冷却水が冷却される。第1流路31は、冷却水の循環経路上のエンジン2の上流側に位置し、冷却水をエンジン2に流入させる。第2流路30は、上記循環経路上のラジエータ3の上流側に位置し、冷却水をラジエータ3に流入させる。第3流路32は、上記循環経路上のラジエータ3の下流側に位置し、冷却水をラジエータ3から第1流路31に流入させる。
(First embodiment)
As shown in FIG. 1, the engine water cooling device 1 a according to the first embodiment is configured to convert a water-cooled internal combustion engine (hereinafter simply referred to as an engine) 2 into cooling water (cooling liquid [ cool]). The water cooling device 1 a includes a radiator 3, a first flow path 31, a second flow path 30, a third flow path 32, a regulating valve 11, and a pump 10. Yes. In the radiator 3, heat exchange is performed between the cooling water of the engine 2 and the air, and the cooling water is cooled. The first flow path 31 is located on the upstream side of the engine 2 on the cooling water circulation path, and allows the cooling water to flow into the engine 2. The second flow path 30 is located on the upstream side of the radiator 3 on the circulation path, and allows cooling water to flow into the radiator 3. The third flow path 32 is located on the downstream side of the radiator 3 on the circulation path, and allows cooling water to flow into the first flow path 31 from the radiator 3.
 調整バルブ11は、第1流路31上に配置されており、エンジン2及び/又はラジエータ3を流れる冷却水の流量を調整する。ポンプ10も、第1流路31上に配置されており(調整バルブ11の下流側)、冷却水を循環経路に沿って循環させる。第2流路30の上流端は第1流路31(調整バルブ11)に接続され、下流端はラジエータ3に接続されている。第3流路32の上流端はラジエータ3に接続され、下流端は第1流路31に接続されている。調整バルブ11が開放されると、冷却水は、第2流路30、ラジエータ3及び第3流路32を通って第1流路31に流入する。 The adjusting valve 11 is disposed on the first flow path 31 and adjusts the flow rate of the cooling water flowing through the engine 2 and / or the radiator 3. The pump 10 is also disposed on the first flow path 31 (on the downstream side of the adjustment valve 11), and circulates the cooling water along the circulation path. The upstream end of the second flow path 30 is connected to the first flow path 31 (regulation valve 11), and the downstream end is connected to the radiator 3. The upstream end of the third flow path 32 is connected to the radiator 3, and the downstream end is connected to the first flow path 31. When the adjustment valve 11 is opened, the cooling water flows into the first flow path 31 through the second flow path 30, the radiator 3 and the third flow path 32.
 エンジン2は、図2に示されるように、排気側が下になるように傾けて配置されている。エンジン2の排気側が下になるので、ポンプ10の停止時には、排気側冷却水温の上昇の結果、冷却水は自然対流によって吸気側(上方)に流れる。従って、ポンプ10が停止しても、自然対流によって、エンジン2のシリンダヘッド周辺の冷却水温を均一にでき、かつ、ラジエータ3に冷却水を循環させることもできる。エンジン2の傾きα(°)は、冷却水の自然対流を考慮すると、20°程度であることが好ましい。なお、エンジン2の燃焼シリンダ中心軸の水平に対する傾きをβ(°)とすると、α=90°-βである。 As shown in FIG. 2, the engine 2 is disposed so as to be inclined so that the exhaust side faces downward. Since the exhaust side of the engine 2 is on the bottom, when the pump 10 is stopped, as a result of the rise of the exhaust side cooling water temperature, the cooling water flows to the intake side (upward) by natural convection. Therefore, even if the pump 10 is stopped, the cooling water temperature around the cylinder head of the engine 2 can be made uniform by natural convection, and the cooling water can be circulated through the radiator 3. The inclination α (°) of the engine 2 is preferably about 20 ° in consideration of natural convection of the cooling water. If the inclination of the combustion cylinder central axis of the engine 2 with respect to the horizontal is β (°), α = 90 ° −β.
 エンジン2は第1流路31からの冷却水によって冷却され、冷却水は第4流路20に流出する。第4流路20には、温度センサ(図示せず)が配置されている。温度センサは、エンジン2から流出する(即ち、エンジン2内の)冷却水温を検出する。温度センサの検出データは、コントローラ(図示せず)に出力される。 The engine 2 is cooled by the cooling water from the first flow path 31, and the cooling water flows out to the fourth flow path 20. A temperature sensor (not shown) is disposed in the fourth flow path 20. The temperature sensor detects the coolant temperature flowing out of the engine 2 (that is, in the engine 2). The detection data of the temperature sensor is output to a controller (not shown).
 エンジン2の冷却水温に依存する燃焼効率を、図3(a)及び(b)のグラフを参照しつつ説明する。エンジン2の負荷(ここでは、図示平均有効圧力[Indicated Mean Effective Pressure]:IMEPによって負荷を示す)が低い(低負荷:300kPa)場合には、図3(a)に示されように、冷却水温度が高温の100℃(第2温度)の方が燃料効率(ここでは、図示熱効率[indicated thermal efficiency]によって燃焼効率を示す)が良い。一方、負荷が高い(高負荷:900kPa)場合には、図3(b)に示されるように、冷却水温が低温の80℃(第1温度)の方が燃料効率が良い。 The combustion efficiency depending on the cooling water temperature of the engine 2 will be described with reference to the graphs of FIGS. 3 (a) and 3 (b). When the load of the engine 2 (here, the indicated mean effective pressure [Indicated Mean Effective Pressure]: indicating the load by IMEP) is low (low load: 300 kPa), as shown in FIG. The fuel efficiency (here, the combustion efficiency is indicated by the indicated thermal efficiency) is higher at a high temperature of 100 ° C. (second temperature). On the other hand, when the load is high (high load: 900 kPa), as shown in FIG. 3B, the fuel efficiency is better at the cooling water temperature of 80 ° C. (first temperature).
 ラジエータ3は、エンジン2の熱を冷却水を介して放熱する機器であり、アルミニウム合金製等のフィンを有するチューブを多数並べた構造を有している。ラジエータ3の流入側は第2流路30の下流端と接続され、流出側は第3流路32の上流端と接続されている。 The radiator 3 is a device that dissipates the heat of the engine 2 through cooling water, and has a structure in which many tubes having fins made of aluminum alloy or the like are arranged. The inflow side of the radiator 3 is connected to the downstream end of the second flow path 30, and the outflow side is connected to the upstream end of the third flow path 32.
 ヒータコア4は、冷却水の循環経路上の第4流路20の下流側に配設されており、その流出側は第5流路22によってポンプ10に接続されている。ヒータコア4の上流側の第4流路20上には、冷却水の流量を調整する電磁弁25が配設されている。電磁弁25の弁開度調整によってヒータコア4を流れる冷却水の流量が調整されてヒータコア4での放熱量が調整される。その結果、冷却水温も調整される。ヒータコア4は、エンジン2で熱せられた冷却水と空気と間の熱交換によって空気を加熱する。加熱された空気は、空調などに利用される。 The heater core 4 is disposed on the downstream side of the fourth flow path 20 on the cooling water circulation path, and the outflow side is connected to the pump 10 by the fifth flow path 22. An electromagnetic valve 25 that adjusts the flow rate of the cooling water is disposed on the fourth flow path 20 on the upstream side of the heater core 4. The flow rate of the cooling water flowing through the heater core 4 is adjusted by adjusting the valve opening degree of the electromagnetic valve 25, and the heat radiation amount in the heater core 4 is adjusted. As a result, the cooling water temperature is also adjusted. The heater core 4 heats the air by heat exchange between the cooling water heated by the engine 2 and the air. The heated air is used for air conditioning and the like.
 さらに、ヒータコア4をバイパスする第6流路24も設けられている。第6流路24の上流端は電磁弁25の上流側で第4流路20に接続されており、下流端は第5流路22に接続されている。電磁弁25が閉じられると、冷却水はヒータコア4をパイパスして、第6流路24を流れる。 Furthermore, a sixth flow path 24 that bypasses the heater core 4 is also provided. The upstream end of the sixth flow path 24 is connected to the fourth flow path 20 on the upstream side of the electromagnetic valve 25, and the downstream end is connected to the fifth flow path 22. When the electromagnetic valve 25 is closed, the cooling water bypasses the heater core 4 and flows through the sixth flow path 24.
 本実施形態のポンプ10は、エンジン2の運転とは独立して作動可能な電動ポンプPである。ポンプ10(電動ポンプP)は、コントローラ(図示せず)からの信号に基づいて冷却水の流量を制御する。 The pump 10 of the present embodiment is an electric pump P 1 that can be operated independently of the operation of the engine 2. The pump 10 (electric pump P 1 ) controls the flow rate of the cooling water based on a signal from a controller (not shown).
 調整バルブ11は、第1流路31上のポンプ10の下流側に配設されている。調整バルブ11からは、第2流路30が分岐されている。調整バルブ11は、ポンプ10からの冷却水をエンジン2及び/又は第2流路30に流す三方バルブである。調整バルブ11は、電子制御サーモスタットであり、コントローラ(図示せず)からの信号に基づいて、ポンプ10からの冷却水に関して、エンジン2及び/又はラジエータ3に流す冷却水の流量を制御する。本実施形態の調整バルブ11は、ラジエータ3に流す冷却水の流量をラジエータ3の上流で制御する。 The adjustment valve 11 is disposed on the downstream side of the pump 10 on the first flow path 31. A second flow path 30 is branched from the adjustment valve 11. The adjustment valve 11 is a three-way valve that allows cooling water from the pump 10 to flow to the engine 2 and / or the second flow path 30. The adjustment valve 11 is an electronically controlled thermostat, and controls the flow rate of the cooling water flowing to the engine 2 and / or the radiator 3 with respect to the cooling water from the pump 10 based on a signal from a controller (not shown). The adjustment valve 11 of the present embodiment controls the flow rate of the cooling water that flows to the radiator 3 upstream of the radiator 3.
 以下、水冷装置1aによるエンジン2の暖機制御を図4に示されるフローチャートを参照しつつ説明する。 Hereinafter, warm-up control of the engine 2 by the water cooling device 1a will be described with reference to the flowchart shown in FIG.
 まず、温度センサによって検出される冷却水温が暖機完了の指標としての第1温度(80℃)以下か否かが判定される(ステップS10)。冷却水温が第1温度(80℃)より高い場合(ステップS10でNO)には暖機後の通常制御に移行して(ステップS30)、暖機制御は終了する。通常制御については追って詳しく説明する。一方、冷却水温が第1温度(80℃)以下である場合(ステップS10でYES)には、空調のヒータスイッチがオンであるか否かが判定される(ステップS11)。 First, it is determined whether or not the cooling water temperature detected by the temperature sensor is equal to or lower than a first temperature (80 ° C.) as an index for completion of warm-up (step S10). When the cooling water temperature is higher than the first temperature (80 ° C.) (NO in step S10), the control shifts to normal control after warm-up (step S30), and the warm-up control ends. The normal control will be described in detail later. On the other hand, when the cooling water temperature is equal to or lower than the first temperature (80 ° C.) (YES in step S10), it is determined whether or not the air conditioning heater switch is on (step S11).
 ヒータスイッチがオンでない場合(ステップS11でNO)には、冷却水温がより早期に第1温度(80℃)より高くなるように、コントローラがポンプ10、調整バルブ11及び電磁弁25に制御信号を送信する。ここではヒータスイッチはオフであるので、ヒータコア4に冷却水を流す必要がない。従って、ヒータコア4上流側の電磁弁25は、コントローラからの制御信号に基づいて閉じられる(ステップS12)。さらに、図5に示されるように、調整バルブ11によって第2流路30も閉じられ(後述するステップS14)、冷却水はラジエータ3にも流されない。この結果、ラジエータ3及びヒータコア4での放熱は行われず、冷却水はより早期に第1温度(80℃)より高くされる。 If the heater switch is not on (NO in step S11), the controller sends control signals to the pump 10, the adjustment valve 11 and the electromagnetic valve 25 so that the cooling water temperature becomes higher than the first temperature (80 ° C.) earlier. Send. Here, since the heater switch is off, there is no need to flow cooling water through the heater core 4. Therefore, the solenoid valve 25 on the upstream side of the heater core 4 is closed based on the control signal from the controller (step S12). Further, as shown in FIG. 5, the second flow path 30 is also closed by the adjustment valve 11 (step S <b> 14 described later), and the cooling water is not allowed to flow to the radiator 3. As a result, heat is not dissipated in the radiator 3 and the heater core 4, and the cooling water is made higher than the first temperature (80 ° C.) earlier.
 ステップS12に続いて、ポンプ10(電動ポンプP)は、コントローラからの制御信号に基づいて停止され、エンジン2への冷却水の供給を停止する(ステップS13)。エンジン2は、図6(a)及び(b)に示されるように傾けられているので、ポンプ10が停止されても冷却水は自然対流によって流れる。従って、ポンプ10によって冷却水を強制的に循環させなくても、冷却水は自然対流によって水冷装置1a内を循環する。ただし、これにより、エンジン2内の冷却水温度は、エンジン2の熱を吸収して熱効率の良い温度まで早期に上昇される。 Subsequent to step S12, the pump 10 (electric pump P 1 ) is stopped based on a control signal from the controller, and stops the supply of cooling water to the engine 2 (step S13). Since the engine 2 is inclined as shown in FIGS. 6A and 6B, the cooling water flows by natural convection even when the pump 10 is stopped. Therefore, even if the cooling water is not forced to circulate by the pump 10, the cooling water circulates in the water cooling device 1a by natural convection. However, as a result, the coolant temperature in the engine 2 is quickly increased to a temperature with good thermal efficiency by absorbing the heat of the engine 2.
 ステップS13に続いて、調整バルブ11は、コントローラからの制御信号に基づいて、第2流路30を(その上流端で)閉じる(ステップS14)。第2流路30が閉じられることでラジエータ3で放熱されず、暖機制御中の冷却水温の低下を防止できる。ステップS14の後、処理流れはステップS10に戻り、冷却水温が第1温度(80℃)より高くなったら(ステップS10でNO)、通常制御に移行する(ステップS30)。 Subsequent to step S13, the adjustment valve 11 closes the second flow path 30 (at its upstream end) based on a control signal from the controller (step S14). Since the second flow path 30 is closed, heat is not radiated by the radiator 3, and a decrease in the coolant temperature during the warm-up control can be prevented. After step S14, the process flow returns to step S10. When the cooling water temperature becomes higher than the first temperature (80 ° C.) (NO in step S10), the process proceeds to normal control (step S30).
 一方、ステップS11でヒータスイッチがオンの場合(ステップS11でYES)には、暖房のためにヒータコア4に冷却水を流すようにヒータコア4上流側の電磁弁25が制御される。具体的には、電磁弁25は、コントローラからの制御信号に基づいて、冷却水をヒータコア4に10L/minで流す弁開度に設定される(ステップS20)。 On the other hand, when the heater switch is on in step S11 (YES in step S11), the solenoid valve 25 on the upstream side of the heater core 4 is controlled so that the cooling water flows through the heater core 4 for heating. Specifically, the electromagnetic valve 25 is set to a valve opening degree at which the cooling water flows through the heater core 4 at 10 L / min based on a control signal from the controller (step S20).
 ステップS20に続いて、ヒータコア4への冷却水流量が10L/minとなるように、ポンプ10も、コントローラからの制御信号に基づいて、その吐出量が制御される(ステップS21)。ここで、エンジン2の図6(a)及び(b)に示される傾きによって自然対流も生じるので、ポンプ10の駆動エネルギーを低減できる。即ち、電磁弁25の弁開度とポンプ10の吐出量とによって、ヒータコア4への冷却水量10L/minが実現される。 Subsequent to step S20, the discharge amount of the pump 10 is also controlled based on the control signal from the controller so that the cooling water flow rate to the heater core 4 is 10 L / min (step S21). Here, natural convection also occurs due to the inclination of the engine 2 shown in FIGS. 6A and 6B, so that the driving energy of the pump 10 can be reduced. That is, the cooling water amount of 10 L / min to the heater core 4 is realized by the valve opening degree of the electromagnetic valve 25 and the discharge amount of the pump 10.
 ステップS21に続いて、調整バルブ11は、コントローラからの制御信号に基づいて第2流路30を閉じる(ステップS22)。第2流路30が閉じられることでラジエータ3で放熱されず、暖機制御中の冷却水温の低下を防止できる。暖房のためにヒータコア4での放熱は行われるが、ラジエータ3での放熱は行われず、冷却水はより早期に第1温度(80℃)より高くなる。ステップS22の後、処理流れはステップS10に戻り、冷却水温が第1温度(80℃)より高くなったら(ステップS10でNO)、通常制御に移行する(ステップS30)。 Following step S21, the adjustment valve 11 closes the second flow path 30 based on the control signal from the controller (step S22). Since the second flow path 30 is closed, heat is not radiated by the radiator 3, and a decrease in the coolant temperature during the warm-up control can be prevented. Although heat is dissipated in the heater core 4 for heating, heat is not dissipated in the radiator 3, and the cooling water becomes higher than the first temperature (80 ° C.) earlier. After step S22, the process flow returns to step S10. When the cooling water temperature becomes higher than the first temperature (80 ° C.) (NO in step S10), the process proceeds to normal control (step S30).
 次に、水冷装置1aによるエンジン2の(暖機後の)通常制御を図7に示されるフローチャートを参照しつつ説明する。 Next, normal control (after warming up) of the engine 2 by the water cooling device 1a will be described with reference to the flowchart shown in FIG.
 まず、エンジン2がアイドリング中であるか否かが判定される(ステップS110)。アイドリング中でない場合(ステップS110でNO)には、エンジン2の運転状態を判定すべく、スロットル開度変化が小さい否か判定される(ステップS111)。スロットル開度とは、エンジン2の吸気通路上に配設され、吸気量を調節するたスロットルバルブの弁開度である(なお、スロットルバルブが設けられない形式の吸気量制御機構を有するエンジンにおいては、スロットル開度変化とは吸気量制御パラメータの変化を意味する)。スロットル開度変化が小さい場合とは、一定速度走行などの定常状態時であり、エンジン2が低負荷で運転されている場合である。一方、スロットル開度変化が大きい場合とは、加速時や登坂時などの過渡状態時であり、エンジン2が高負荷で運転されている場合である。 First, it is determined whether or not the engine 2 is idling (step S110). If the engine is not idling (NO in step S110), it is determined whether or not the change in the throttle opening is small in order to determine the operating state of the engine 2 (step S111). The throttle opening is a valve opening of a throttle valve that is disposed on the intake passage of the engine 2 and adjusts the intake air amount (in an engine having an intake air amount control mechanism of a type in which no throttle valve is provided). (The change in throttle opening means the change in intake air amount control parameter). The case where the change in throttle opening is small is a steady state such as traveling at a constant speed and the case where the engine 2 is operated at a low load. On the other hand, the case where the throttle opening change is large is a transient state such as acceleration or climbing, and is a case where the engine 2 is operated at a high load.
 スロットル開度変化が小さい(所定の開度変化より小さい)、即ち、エンジン2が低負荷状態の場合(ステップS111でYES)には、冷却水温が第2温度(100℃)となるように、コントローラがポンプ10、調整バルブ11及び電磁弁25に制御信号を送信する。図3(a)に示されるように、エンジン2が低負荷状態の場合には、冷却水温が第1温度(80℃)より高い第2温度(100℃)である方が燃料効率が良いので、冷却水温を第2温度(100℃)にする。 When the throttle opening change is small (smaller than the predetermined opening change), that is, when the engine 2 is in a low load state (YES in step S111), the cooling water temperature becomes the second temperature (100 ° C.). The controller transmits control signals to the pump 10, the regulating valve 11, and the electromagnetic valve 25. As shown in FIG. 3A, when the engine 2 is in a low load state, the fuel efficiency is better when the cooling water temperature is the second temperature (100 ° C.) higher than the first temperature (80 ° C.). The cooling water temperature is set to the second temperature (100 ° C.).
 具体的には、暖機は完了しているので、ヒータコア4に冷却水を循環させるために、電磁弁25は、コントローラからの制御信号に基づいて開かれる(ステップS112)。これにより、空調機はいつでもヒータコア4の熱を利用できる。なお、ステップS110でアイドリング中である場合(ステップS110でYES)には、スロットル開度変化のない低負荷状態であるので、制御流れはステップS111の判定を行うことなくステップS112に進む。 Specifically, since the warm-up has been completed, the electromagnetic valve 25 is opened based on the control signal from the controller in order to circulate the cooling water through the heater core 4 (step S112). Thereby, the air conditioner can use the heat of the heater core 4 at any time. If idling is being performed in step S110 (YES in step S110), the control flow proceeds to step S112 without performing the determination in step S111 because the throttle load is not changed.
 ステップS112に続いて、コントローラからの制御信号に基づいて、ポンプ10(電動ポンプP)は冷却水を循環させるが、その流量は少なく制御される(ステップS113)。流量が少なくされることでヒータコア4及びラジエータ3での放熱が抑制され、冷却水温が上昇して第2温度(100℃)になる(ラジエータ3への冷却水の流れについては次のステップS114で説明する)。 Subsequent to step S112, based on the control signal from the controller, the pump 10 (electric pump P 1 ) circulates the cooling water, but the flow rate is controlled to be small (step S113). By reducing the flow rate, heat dissipation in the heater core 4 and the radiator 3 is suppressed, and the cooling water temperature rises to the second temperature (100 ° C.) (the flow of cooling water to the radiator 3 is the next step S114) explain).
 ステップS113に続いて、調整バルブ11の弁開度がコントローラからの制御信号に基づいて調整され、ラジエータ3を流れる冷却水の流量が第2流路30の上流端で調整される(ステップS114)。ラジエータ3での放熱を抑制して冷却水温を第2温度(100℃)にするために、第2流路30、ラジエータ3及び第3流路32への流量は比較的少なくされる(図8参照)。なお、調整バルブ11は、ポンプ10からの冷却水をエンジン2にも流している。 Subsequent to step S113, the valve opening of the adjustment valve 11 is adjusted based on a control signal from the controller, and the flow rate of the cooling water flowing through the radiator 3 is adjusted at the upstream end of the second flow path 30 (step S114). . In order to suppress the heat radiation in the radiator 3 and set the cooling water temperature to the second temperature (100 ° C.), the flow rates to the second flow path 30, the radiator 3 and the third flow path 32 are relatively reduced (FIG. 8). reference). The adjustment valve 11 also flows the cooling water from the pump 10 to the engine 2.
 一方、ステップS111でスロットル開度変化が大きい(所定の開度変化より大きい)、即ち、エンジン2が高負荷状態の場合(ステップS111でNO)には、冷却水温が第1温度(80℃)となるように、コントローラがポンプ10、調整バルブ11及び電磁弁25に制御信号を送信する。図3(b)に示されるように、エンジン2が高負荷状態の場合には、冷却水温が第2温度(100℃)より低い第1温度(80℃)である方が燃料効率が良いので、冷却水温を第1温度(80℃)にする。 On the other hand, when the throttle opening change is large (larger than the predetermined opening change) in step S111, that is, when the engine 2 is in a high load state (NO in step S111), the cooling water temperature is the first temperature (80 ° C.). The controller transmits control signals to the pump 10, the regulating valve 11 and the electromagnetic valve 25. As shown in FIG. 3B, when the engine 2 is in a high load state, the fuel efficiency is better when the cooling water temperature is the first temperature (80 ° C.) lower than the second temperature (100 ° C.). The cooling water temperature is set to the first temperature (80 ° C.).
 具体的には、暖機は完了しているので、上述したステップS112と同様に、ヒータコア4に冷却水を循環させるために、電磁弁25は、コントローラからの制御信号に基づいて開かれる(ステップS120)。ステップ120に続いて、コントローラからの制御信号に基づいて、ポンプ10(電動ポンプP)は冷却水を循環させるが、その流量は多く制御される(ステップS121)。流量が多くされることでラジエータ3での放熱が促進され、冷却水温は、上昇が抑制されて第1温度(80℃)に維持される(ラジエータ3への冷却水の流れについては次のステップS122で説明する)。 Specifically, since the warm-up has been completed, the electromagnetic valve 25 is opened based on the control signal from the controller in order to circulate the cooling water through the heater core 4 as in step S112 described above (step S112). S120). Subsequent to step 120, based on the control signal from the controller, the pump 10 (electric pump P 1 ) circulates the cooling water, but the flow rate is controlled to a high level (step S121). Increasing the flow rate promotes heat dissipation in the radiator 3, and the cooling water temperature is kept at the first temperature (80 ° C.) by suppressing the rise (the next step for the cooling water flow to the radiator 3 This will be described in S122).
 ステップS121に続いて、調整バルブ11の弁開度がコントローラからの制御信号に基づいて調整され、エンジン2に繋がる第1流路31への流路が閉じられ、かつ、第2流路30の上流端の弁開度が全開にされて(ステップS122)、第2流路30、ラジエータ3及び第3流路32にのみ冷却水が流される(図9参照)。ラジエータ3での放熱を促進して冷却水温を第1温度(80℃)にするために、第2流路30、ラジエータ3及び第3流路32への流量は多くされる。冷却水は、第2流路30、ラジエータ3及び第3流路32を流れた後に、エンジン2へと流れる。この結果、ラジエータ3での放熱が促進され、冷却水温は低下されて第1温度(80℃)になる。 Subsequent to step S121, the valve opening of the adjusting valve 11 is adjusted based on a control signal from the controller, the flow path to the first flow path 31 connected to the engine 2 is closed, and the second flow path 30 The valve opening degree of the upstream end is fully opened (step S122), and the cooling water is allowed to flow only in the second flow path 30, the radiator 3, and the third flow path 32 (see FIG. 9). In order to promote heat dissipation in the radiator 3 and set the cooling water temperature to the first temperature (80 ° C.), the flow rates to the second flow path 30, the radiator 3 and the third flow path 32 are increased. The cooling water flows to the engine 2 after flowing through the second flow path 30, the radiator 3, and the third flow path 32. As a result, heat dissipation in the radiator 3 is promoted, and the cooling water temperature is lowered to the first temperature (80 ° C.).
 本実施形態の水冷装置1aによれば、ラジエータ3から流出した冷却水をエンジン2に流す第3流路32が設けられているので、部品点数を増加させることなく、また、冷却水の流路を複雑にすることもなく、冷却水温制御及び流量調整を容易に行うことができる。 According to the water cooling device 1a of the present embodiment, since the third flow path 32 for flowing the cooling water flowing out from the radiator 3 to the engine 2 is provided, the cooling water flow path is not increased without increasing the number of parts. The cooling water temperature control and flow rate adjustment can be easily performed without complicating the flow rate.
 さらに、低負荷時(図8参照)の第3流路32は、ラジエータ3で冷却された60℃程度の冷却水で満たされる。ここで、調整バルブ11によって第2流路30を介してラジエータ3に冷却水を押し込むと、水は非圧縮性流体なので第3流路32内の冷却水は、第1流路31内の冷却水と合流した後にエンジン2に流入する。したがって、低負荷状態から急加速などの高負荷時に移行する際に(図8→図9)調整バルブ11によって第2流路30への流量を増加させると、第3流路32内の60℃程度の冷却水が、第1流路31内の冷却水と合流した後にエンジン2に流入する。この結果、冷却水温を低負荷時の第2温度(100℃)から高負荷時の第1温度(80℃)に瞬時に変化させることができる。低負荷時には、冷却水温を燃焼効率の良い第2温度(100℃)として燃費を3%程度改善できる。さらに、高負荷時(加速時)に冷却水温を素早く第1温度(80℃)に低下させてノッキングを防止することもできる。 Furthermore, the third flow path 32 at the time of low load (see FIG. 8) is filled with cooling water of about 60 ° C. cooled by the radiator 3. Here, when the cooling water is pushed into the radiator 3 through the second flow path 30 by the adjustment valve 11, the water in the third flow path 32 is cooled by the cooling in the first flow path 31 because water is an incompressible fluid. After joining with water, it flows into the engine 2. Therefore, when the flow rate to the second flow path 30 is increased by the adjustment valve 11 when shifting from a low load state to a high load such as sudden acceleration (FIG. 8 → FIG. 9), the temperature in the third flow path 32 is 60 ° C. A certain amount of cooling water flows into the engine 2 after joining with the cooling water in the first flow path 31. As a result, the cooling water temperature can be instantaneously changed from the second temperature at low load (100 ° C.) to the first temperature at high load (80 ° C.). When the load is low, the fuel consumption can be improved by about 3% by setting the coolant temperature to the second temperature (100 ° C.) with good combustion efficiency. Furthermore, knocking can also be prevented by rapidly lowering the cooling water temperature to the first temperature (80 ° C.) during high load (acceleration).
(第1実施形態の変形例)
 図10に示されるように、第1実施形態の変形例に係るエンジン水冷装置1a’は、第1実施形態に係る水冷装置1a(図1参照)とは、調整バルブ11の位置が異なる。本変形例の水冷装置1a’のその他の構成は、第1実施形態の水冷装置1aと同じであるので、それらの重複する説明は省略する。
(Modification of the first embodiment)
As shown in FIG. 10, the engine water cooling device 1a ′ according to the modification of the first embodiment differs from the water cooling device 1a according to the first embodiment (see FIG. 1) in the position of the adjustment valve 11. Since the other structure of water cooling device 1a 'of this modification is the same as the water cooling device 1a of 1st Embodiment, those overlapping description is abbreviate | omitted.
 本変形例の調整バルブ11も、第1流路31上のポンプ10の下流に配置された三方バルブである。しかし、第1実施形態の調整バルブ11が第1流路31上の第2流路30の分岐点に配設されているのに対して、本変形例の調整バルブ11は第1流路31上の第3流路32との合流点に配設されている。調整バルブ11は、電子制御サーモスタットであり、コントローラ(図示せず)からの信号に基づいて、ポンプ10からの冷却水と第3流路32からの冷却水との混合率を制御して、エンジン2及び/又はラジエータ3に流す冷却水の流量を制御する。本変形例の調整バルブ11は、ラジエータ3に流す冷却水の流量をラジエータ3の下流で制御する。 The adjustment valve 11 of this modification is also a three-way valve arranged downstream of the pump 10 on the first flow path 31. However, the adjustment valve 11 of the first embodiment is disposed at the branch point of the second flow path 30 on the first flow path 31, whereas the adjustment valve 11 of the present modification example has the first flow path 31. It is arranged at the junction with the upper third flow path 32. The adjustment valve 11 is an electronically controlled thermostat, and controls the mixing ratio of the cooling water from the pump 10 and the cooling water from the third flow path 32 based on a signal from a controller (not shown) to 2 and / or the flow rate of the cooling water flowing to the radiator 3 is controlled. The adjustment valve 11 of the present modification controls the flow rate of the cooling water that flows to the radiator 3 downstream of the radiator 3.
 水冷装置1a’によるエンジン2の暖機制御は、第1実施形態における暖機制御とは調整バルブ11に関するステップS14及びS22(図4参照)の処理が異なる。本変形例でも、暖機制御全体は図4に示されたフローチャートに沿って行われるので、異なるステップS14及びS22についてのみ以下に説明する。 The warm-up control of the engine 2 by the water cooling device 1a 'is different from the warm-up control in the first embodiment in the processes of steps S14 and S22 (see FIG. 4) related to the adjustment valve 11. Also in this modified example, since the whole warm-up control is performed according to the flowchart shown in FIG. 4, only different steps S14 and S22 will be described below.
 ステップS14では、冷却水温が第1温度(80℃)以下で(ステップS10でYES)、かつ、ヒータスイッチはオフである(ステップS11でNO)。従って、ラジエータ3及びヒータコア4での放熱は行われず、冷却水はより早期に第1温度(80℃)より高くされる。即ち、図11に示されるように、電磁弁25が閉じられる(ステップS12)と共に、ポンプ10が停止される(ステップS13)。さらに、調整バルブ11は、コントローラからの制御信号に基づいて、第3流路32を(その下流端で)閉じる(ステップS14)。 In step S14, the cooling water temperature is equal to or lower than the first temperature (80 ° C.) (YES in step S10), and the heater switch is off (NO in step S11). Therefore, heat is not radiated from the radiator 3 and the heater core 4, and the cooling water is made higher than the first temperature (80 ° C.) earlier. That is, as shown in FIG. 11, the electromagnetic valve 25 is closed (step S12) and the pump 10 is stopped (step S13). Furthermore, the adjusting valve 11 closes the third flow path 32 (at its downstream end) based on the control signal from the controller (step S14).
 一方、ステップS22では、冷却水温が第1温度(80℃)以下で(ステップS10でYES)、かつ、ヒータスイッチはオンである(ステップS11でYES)。従って、ラジエータ3での放熱は行われず、冷却水はより早期に第1温度(80℃)より高くされる。即ち、電磁弁25が開かれる(ステップS20:ヒータスイッチがオンのためヒータコア4で放熱させる)と共に、ポンプ10が作動される(ステップS21)。さらに、調整バルブ11は、コントローラからの制御信号に基づいて、第3流路32を(その下流端で)閉じる(ステップS22)。 On the other hand, in step S22, the cooling water temperature is equal to or lower than the first temperature (80 ° C.) (YES in step S10), and the heater switch is on (YES in step S11). Therefore, heat is not dissipated in the radiator 3 and the cooling water is made higher than the first temperature (80 ° C.) earlier. That is, the electromagnetic valve 25 is opened (step S20: heat is dissipated by the heater core 4 because the heater switch is on), and the pump 10 is operated (step S21). Furthermore, the adjusting valve 11 closes the third flow path 32 (at its downstream end) based on the control signal from the controller (step S22).
 また、水冷装置1a’による(暖機後の)通常制御は、第1実施形態における通常制御とは調整バルブ11に関するステップS114及びS122(図7参照)の処理が異なる。本変形例でも、通常制御全体は図7に示されたフローチャートに沿って行われるので、異なるステップS114及びS122についてのみ以下に説明する。 Further, the normal control (after warming up) by the water cooling device 1a 'differs from the normal control in the first embodiment in the processes of steps S114 and S122 (see FIG. 7) related to the adjustment valve 11. Also in this modification, the entire normal control is performed according to the flowchart shown in FIG. 7, and therefore only different steps S114 and S122 will be described below.
 ステップS114では、アイドリング中(ステップS110でYES)又はスロットル開度変化が小さい(ステップS111でYES)ので、エンジン2は低負荷状態である。このため、ポンプ10は冷却水の流量を少なく制御して(ステップS113)、ヒータコア4及びラジエータ3での放熱を抑制し、冷却水温を第2温度(100℃)に上昇させる。また、調整バルブ11の弁開度がコントローラからの制御信号に基づいて調整され、ラジエータ3を流れる冷却水の流量が第3流路32の下流端で調整される(ステップS114)。ラジエータ3での放熱を抑制して冷却水温を第2温度(100℃)にするために、第2流路30、ラジエータ3及び第3流路32への流量は比較的少なくされる(図12参照)。なお、調整バルブ11は、ポンプ10からの冷却水もエンジン2に流している。 In step S114, the engine 2 is in a low load state during idling (YES in step S110) or because the change in throttle opening is small (YES in step S111). For this reason, the pump 10 controls the flow rate of the cooling water to be small (step S113), suppresses heat radiation in the heater core 4 and the radiator 3, and raises the cooling water temperature to the second temperature (100 ° C.). Further, the valve opening of the adjustment valve 11 is adjusted based on a control signal from the controller, and the flow rate of the cooling water flowing through the radiator 3 is adjusted at the downstream end of the third flow path 32 (step S114). In order to suppress the heat radiation in the radiator 3 and set the cooling water temperature to the second temperature (100 ° C.), the flow rates to the second flow path 30, the radiator 3 and the third flow path 32 are relatively reduced (FIG. 12). reference). The adjusting valve 11 also allows cooling water from the pump 10 to flow into the engine 2.
 一方、ステップS122では、スロットル開度変化が大きく(ステップS111でNO)、エンジン2は高負荷状態である。このため、ポンプ10は冷却水の循環流量を多く制御して(ステップS121)、ヒータコア4及びラジエータ3での放熱を促進し、冷却水温を第1温度(80℃)にする。即ち、調整バルブ11の弁開度がコントローラからの制御信号に基づいて調整され、第1流路31からの流路が閉じられ、かつ、第3流路32の下流端の弁開度が全開にされて(ステップS122)、第2流路30、ラジエータ3及び第3流路32にのみ冷却水が流される(図13参照)。 On the other hand, in step S122, the change in throttle opening is large (NO in step S111), and the engine 2 is in a high load state. For this reason, the pump 10 controls the circulating flow of the cooling water to a large extent (step S121), promotes heat radiation in the heater core 4 and the radiator 3, and sets the cooling water temperature to the first temperature (80 ° C.). That is, the valve opening of the adjustment valve 11 is adjusted based on the control signal from the controller, the flow path from the first flow path 31 is closed, and the valve opening at the downstream end of the third flow path 32 is fully opened. (Step S122), the cooling water flows only through the second flow path 30, the radiator 3, and the third flow path 32 (see FIG. 13).
 上述したように構成された本変形例の水冷装置1a’によっても、第1実施形態の水冷装置1aと同様の効果を実現できる。 The same effect as that of the water cooling device 1a of the first embodiment can also be realized by the water cooling device 1a 'of the present modification configured as described above.
(第2実施形態)
 第2実施形態に係るエンジン水冷装置1bは、図14に示されるように、第1実施形態の水冷装置1a(図1参照)におけるポンプ10(電動水ポンプP)がエンジン2によって駆動されるポンプ12(エンジン駆動ポンプP)に置き換えられた構成を有している。従って、本実施形態のポンプ12によれば、エンジンの回転数に応じて冷却水の流量が変化する。本実施形態の水冷装置1bのその他の構成は、第1実施形態の水冷装置1aと同じであるので、それらの重複する説明は省略する。
(Second Embodiment)
As shown in FIG. 14, in the engine water cooling device 1 b according to the second embodiment, the pump 10 (electric water pump P 1 ) in the water cooling device 1 a (see FIG. 1) of the first embodiment is driven by the engine 2. The pump 12 is replaced with an engine drive pump P 2 . Therefore, according to the pump 12 of the present embodiment, the flow rate of the cooling water changes according to the engine speed. Since the other structure of the water cooling device 1b of this embodiment is the same as the water cooling device 1a of 1st Embodiment, those overlapping description is abbreviate | omitted.
 以下、水冷装置1bによるエンジン2の暖機制御を図15に示されるフローチャートを参照しつつ説明する。 Hereinafter, warm-up control of the engine 2 by the water cooling device 1b will be described with reference to the flowchart shown in FIG.
 まず、温度センサによって検出される冷却水温が暖機完了の指標としての第1温度(80℃)以下か否かが判定される(ステップS10)。冷却水温が第1温度(80℃)より高い場合(ステップS10でNO)には暖機後の通常制御に移行して(ステップS30)、暖機制御は終了する。通常制御については追って詳しく説明する。一方、冷却水温が第1温度(80℃)以下である場合(ステップS10でYES)には、空調のヒータスイッチがオンであるか否かが判定される(ステップS11)。 First, it is determined whether or not the cooling water temperature detected by the temperature sensor is equal to or lower than a first temperature (80 ° C.) as an index for completion of warm-up (step S10). When the cooling water temperature is higher than the first temperature (80 ° C.) (NO in step S10), the control shifts to normal control after warm-up (step S30), and the warm-up control ends. The normal control will be described in detail later. On the other hand, when the cooling water temperature is equal to or lower than the first temperature (80 ° C.) (YES in step S10), it is determined whether or not the air conditioning heater switch is on (step S11).
 ヒータスイッチがオンでない場合(ステップS11でNO)には、冷却水温がより早期に第1温度(80℃)より高くなるように、コントローラが調整バルブ11及び電磁弁25に制御信号を送信する。ここではヒータスイッチはオフであるので、ヒータコア4に冷却水を流す必要がない。従って、ヒータコア4上流側の電磁弁25は、コントローラからの制御信号に基づいて閉じられる(ステップS12)。さらに、図16に示されるように、調整バルブ11によって第2流路30も閉じられ(後述するステップS14)、冷却水はラジエータ3にも流されない。この結果、ラジエータ3及びヒータコア4での放熱は行われず、冷却水はより早期に第1温度(80℃)より高くされる。 If the heater switch is not on (NO in step S11), the controller transmits a control signal to the adjustment valve 11 and the electromagnetic valve 25 so that the coolant temperature becomes higher than the first temperature (80 ° C.) earlier. Here, since the heater switch is off, there is no need to flow cooling water through the heater core 4. Therefore, the solenoid valve 25 on the upstream side of the heater core 4 is closed based on the control signal from the controller (step S12). Further, as shown in FIG. 16, the second flow path 30 is also closed by the adjustment valve 11 (step S <b> 14 described later), and the cooling water is not allowed to flow to the radiator 3. As a result, heat is not dissipated in the radiator 3 and the heater core 4, and the cooling water is made higher than the first temperature (80 ° C.) earlier.
 ステップS12に続いて、調整バルブ11は、コントローラからの制御信号に基づいて、第2流路30を(その上流端で)閉じる(ステップS14)。第2流路30が閉じられることでラジエータ3で放熱されず、暖機制御中の冷却水温の低下を防止できる。ステップS14の後、処理流れはステップS10に戻り、冷却水温が第1温度(80℃)より高くなったら(ステップS10でNO)、通常制御に移行する(ステップS30)。 Subsequent to step S12, the adjusting valve 11 closes the second flow path 30 (at its upstream end) based on a control signal from the controller (step S14). Since the second flow path 30 is closed, heat is not radiated by the radiator 3, and a decrease in the coolant temperature during the warm-up control can be prevented. After step S14, the process flow returns to step S10. When the cooling water temperature becomes higher than the first temperature (80 ° C.) (NO in step S10), the process proceeds to normal control (step S30).
 一方、ステップS11でヒータスイッチがオンの場合(ステップS11でYES)には、暖房のためにヒータコア4に冷却水を流すようにヒータコア4上流側の電磁弁25が制御される。具体的には、電磁弁25は、コントローラからの制御信号に基づいて、冷却水をヒータコア4に10L/minで流す弁開度に設定される(ステップS20)。 On the other hand, when the heater switch is on in step S11 (YES in step S11), the solenoid valve 25 on the upstream side of the heater core 4 is controlled so that the cooling water flows through the heater core 4 for heating. Specifically, the electromagnetic valve 25 is set to a valve opening degree at which the cooling water flows through the heater core 4 at 10 L / min based on a control signal from the controller (step S20).
 ステップS20に続いて、調整バルブ11は、コントローラからの制御信号に基づいて第2流路30を閉じる(ステップS22)。第2流路30が閉じられることでラジエータ3で放熱されず、暖機制御中の冷却水温の低下を防止できる。暖房のためにヒータコア4での放熱は行われるが、ラジエータ3での放熱は行われず、冷却水はより早期に第1温度(80℃)より高くなる。ステップS22の後、処理流れはステップS10に戻り、冷却水温が第1温度(80℃)より高くなったら(ステップS10でNO)、通常制御に移行する(ステップS30)。 Following step S20, the adjustment valve 11 closes the second flow path 30 based on the control signal from the controller (step S22). Since the second flow path 30 is closed, heat is not radiated by the radiator 3, and a decrease in the coolant temperature during the warm-up control can be prevented. Although heat is dissipated in the heater core 4 for heating, heat is not dissipated in the radiator 3, and the cooling water becomes higher than the first temperature (80 ° C.) earlier. After step S22, the process flow returns to step S10. When the cooling water temperature becomes higher than the first temperature (80 ° C.) (NO in step S10), the process proceeds to normal control (step S30).
 次に、水冷装置1bによるエンジン2の(暖機後の)通常制御を図17に示されるフローチャートを参照しつつ説明する。 Next, normal control (after warming up) of the engine 2 by the water cooling device 1b will be described with reference to the flowchart shown in FIG.
 まず、エンジン2がアイドリング中であるか否かが判定される(ステップS110)。アイドリング中でない場合(ステップS110でNO)には、エンジン2の運転状態を判定すべく、スロットル開度変化が小さい否か判定される(ステップS111)。 First, it is determined whether or not the engine 2 is idling (step S110). If the engine is not idling (NO in step S110), it is determined whether or not the change in throttle opening is small in order to determine the operating state of the engine 2 (step S111).
 スロットル開度変化が小さい、即ち、エンジン2が低負荷状態の場合(ステップS111でYES)には、冷却水温が第2温度(100℃)となるように、コントローラが調整バルブ11及び電磁弁25に制御信号を送信する。図3(a)に示されるように、エンジン2が低負荷状態の場合には、冷却水温度が第1温度(80℃)より高い第2温度(100℃)である方が燃料効率が良いので、冷却水温を第2温度(100℃)にする。 When the change in throttle opening is small, that is, when the engine 2 is in a low load state (YES in step S111), the controller controls the adjusting valve 11 and the electromagnetic valve 25 so that the cooling water temperature becomes the second temperature (100 ° C.). A control signal is transmitted to. As shown in FIG. 3A, when the engine 2 is in a low load state, the fuel efficiency is better when the coolant temperature is the second temperature (100 ° C.) higher than the first temperature (80 ° C.). Therefore, the cooling water temperature is set to the second temperature (100 ° C.).
 具体的には、暖機は完了しているので、ヒータコア4に冷却水を循環させるために、電磁弁25は、コントローラからの制御信号に基づいて開かれる(ステップS112)。これにより、空調機はいつでもヒータコア4の熱を利用できる。なお、ステップS110でアイドリング中である場合(ステップS110でYES)には、スロットル開度変化のない低負荷状態であるので、制御流れはステップS111の判定を行うことなくステップS112に進む。 Specifically, since the warm-up has been completed, the electromagnetic valve 25 is opened based on the control signal from the controller in order to circulate the cooling water through the heater core 4 (step S112). Thereby, the air conditioner can use the heat of the heater core 4 at any time. If idling is being performed in step S110 (YES in step S110), the control flow proceeds to step S112 without performing the determination in step S111 because the throttle load is not changed.
 ステップS112に続いて、調整バルブ11の弁解度がコントローラからの制御信号に基づいて調整され、ラジエータ3を流れる冷却水の流量が第2流路30の上流端で調整される(ステップS114)。ラジエータ3での放熱を抑制して冷却水温を第2温度(100℃)にするために、第2流路30、ラジエータ3及び第3流路32への流量は比較的少なくされる(図18参照)。なお、調整バルブ11は、ポンプ12からの冷却水をエンジン2にも流している。 Subsequent to step S112, the degree of solution of the adjustment valve 11 is adjusted based on the control signal from the controller, and the flow rate of the cooling water flowing through the radiator 3 is adjusted at the upstream end of the second flow path 30 (step S114). In order to suppress the heat radiation in the radiator 3 and set the cooling water temperature to the second temperature (100 ° C.), the flow rates to the second flow path 30, the radiator 3 and the third flow path 32 are relatively reduced (FIG. 18). reference). The adjustment valve 11 also flows the cooling water from the pump 12 to the engine 2.
 一方、ステップS111でスロットル開度変化が大きい、即ち、エンジン2が高負荷状態の場合(ステップS111でNO)には、冷却水温が第1温度(80℃)となるように、コントローラが調整バルブ11及び電磁弁25に制御信号を送信する。図3(b)に示されるように、エンジン2が高負荷状態の場合には、冷却水温が第2温度(100℃)より低い第1温度(80℃)である方が燃料効率が良いので、冷却水温を第1温度(80℃)にする。 On the other hand, if the change in throttle opening is large in step S111, that is, if the engine 2 is in a high load state (NO in step S111), the controller adjusts the adjustment valve so that the cooling water temperature becomes the first temperature (80 ° C.). 11 and the electromagnetic valve 25 are transmitted with control signals. As shown in FIG. 3B, when the engine 2 is in a high load state, the fuel efficiency is better when the cooling water temperature is the first temperature (80 ° C.) lower than the second temperature (100 ° C.). The cooling water temperature is set to the first temperature (80 ° C.).
 具体的には、暖機は完了しているので、上述したステップS112と同様に、ヒータコア4に冷却水を循環させるために、電磁弁25は、コントローラからの制御信号に基づいて開かれる(ステップS120)。ステップ120に続いて、調整バルブ11の弁開度は、コントローラからの制御信号に基づいて調整され、エンジン2に繋がる第1流路31への流路が閉じられ、かつ、第2流路30の上流端の弁開度が全開にされて(ステップS122)、第2流路30にのみ冷却水が流される(図9と同様:ただし、ポンプ10ではなくポンプ12)。ラジエータ3での放熱を抑制して冷却水温度を第2温度(100℃)にするために、第2流路30、ラジエータ3及び第3流路32への流量は多くされる。冷却水は、第2流路30、ラジエータ3及び第3流路32を流れた後に、エンジン2へと流れる。この結果、ラジエータ3での放熱が促進され、冷却水温は低下されて第1温度(80℃)になる。 Specifically, since the warm-up has been completed, the electromagnetic valve 25 is opened based on the control signal from the controller in order to circulate the cooling water through the heater core 4 as in step S112 described above (step S112). S120). Subsequent to step 120, the valve opening of the adjustment valve 11 is adjusted based on a control signal from the controller, the flow path to the first flow path 31 connected to the engine 2 is closed, and the second flow path 30. Is opened fully (step S122), and cooling water flows only through the second flow path 30 (similar to FIG. 9; however, pump 12 instead of pump 10). In order to suppress the heat radiation in the radiator 3 and set the cooling water temperature to the second temperature (100 ° C.), the flow rates to the second flow path 30, the radiator 3 and the third flow path 32 are increased. The cooling water flows to the engine 2 after flowing through the second flow path 30, the radiator 3, and the third flow path 32. As a result, heat dissipation in the radiator 3 is promoted, and the cooling water temperature is lowered to the first temperature (80 ° C.).
 上述したように構成された本実施形態の水冷装置1bによっても、第1実施形態の水冷装置1aと同様の効果を実現することができる。 The same effect as that of the water cooling device 1a of the first embodiment can be realized by the water cooling device 1b of the present embodiment configured as described above.
(第2実施形態の変形例)
 図19に示されるように、第2実施形態の変形例に係るエンジン水冷装置1b’は、第2実施形態に係る水冷装置1b(図14参照)とは、調整バルブ11の位置が異なる。本変形例の水冷装置1b’のその他の構成は、第2実施形態の水冷装置1bと同じであるので、それらの重複する説明は省略する。
(Modification of the second embodiment)
As shown in FIG. 19, the engine water cooling device 1 b ′ according to the modification of the second embodiment is different from the water cooling device 1 b (see FIG. 14) according to the second embodiment in the position of the adjustment valve 11. The other configuration of the water cooling device 1b ′ of the present modification is the same as that of the water cooling device 1b of the second embodiment, and thus redundant description thereof is omitted.
 本変形例の調整バルブ11も、第1流路31上のポンプ12の下流に配置された三方バルブである。しかし、第2実施形態の調整バルブ11が第1流路31上の第2流路30の分岐点に配設されているのに対して、本変形例の調整バルブ11は第1流路31上の第3流路32との合流点に配設されている。調整バルブ11は、電子制御サーモスタットであり、コントローラ(図示せず)からの信号に基づいて、ポンプ12からの冷却水と第3流路32からの冷却水との混合率を制御して、エンジン2及び/又はラジエータ3に流す冷却水の流量を制御する。本変形例の調整バルブ11は、ラジエータ3に流す冷却水の流量をラジエータ3の下流で制御する。 The adjustment valve 11 of this modification is also a three-way valve arranged downstream of the pump 12 on the first flow path 31. However, the adjustment valve 11 of the second embodiment is disposed at the branching point of the second flow path 30 on the first flow path 31, whereas the adjustment valve 11 of the present modification example has the first flow path 31. It is arranged at the junction with the upper third flow path 32. The adjustment valve 11 is an electronically controlled thermostat, and controls the mixing ratio of the cooling water from the pump 12 and the cooling water from the third flow path 32 based on a signal from a controller (not shown) to 2 and / or the flow rate of the cooling water flowing to the radiator 3 is controlled. The adjustment valve 11 of the present modification controls the flow rate of the cooling water that flows to the radiator 3 downstream of the radiator 3.
 水冷装置1b’によるエンジン2の暖機制御は、第2実施形態における暖機制御とは調整バルブ11に関するステップS14及びS22(図15参照)の処理が異なる。本変形例でも、暖機制御全体は図15に示されたフローチャートに沿って行われるので、異なるステップS14及びS22についてのみ以下に説明する。 The warm-up control of the engine 2 by the water cooling device 1b 'is different from the warm-up control in the second embodiment in steps S14 and S22 (see FIG. 15) regarding the adjustment valve 11. Also in this modified example, since the whole warm-up control is performed according to the flowchart shown in FIG. 15, only different steps S14 and S22 will be described below.
 ステップS14では、冷却水温が第1温度(80℃)以下で(ステップS10でYES)、かつ、ヒータスイッチはオフである(ステップS11でNO)。従って、ラジエータ3及びヒータコア4での放熱は行われず、冷却水はより早期に第1温度(80℃)より高くされる。即ち、図20に示されるように、電磁弁25が閉じられる(ステップS12)と共に、調整バルブ11は、コントローラからの制御信号に基づいて、第3流路32を(その下流端で)閉じる(ステップS14)。 In step S14, the cooling water temperature is equal to or lower than the first temperature (80 ° C.) (YES in step S10), and the heater switch is off (NO in step S11). Therefore, heat is not radiated from the radiator 3 and the heater core 4, and the cooling water is made higher than the first temperature (80 ° C.) earlier. That is, as shown in FIG. 20, the electromagnetic valve 25 is closed (step S12), and the adjustment valve 11 closes the third flow path 32 (at its downstream end) based on the control signal from the controller ( Step S14).
 一方、ステップS22では、冷却水温が第1温度(80℃)以下で(ステップS10でYES)、かつ、ヒータスイッチはオンである(ステップS11でYES)。従って、ラジエータ3での放熱は行われず、冷却水はより早期に第1温度(80℃)より高くされる。即ち、電磁弁25が開かれる(ステップS20:ヒータスイッチがオンのためヒータコア4で放熱させる)と共に、調整バルブ11は、コントローラからの制御信号に基づいて、第3流路32を(その下流端で)閉じる(ステップS22)。 On the other hand, in step S22, the cooling water temperature is equal to or lower than the first temperature (80 ° C.) (YES in step S10), and the heater switch is on (YES in step S11). Therefore, heat is not dissipated in the radiator 3 and the cooling water is made higher than the first temperature (80 ° C.) earlier. That is, the electromagnetic valve 25 is opened (step S20: the heater switch is turned on to dissipate heat in the heater core 4), and the adjustment valve 11 opens the third flow path 32 (on the downstream end thereof) based on the control signal from the controller. (Step S22).
 また、水冷装置1b’による(暖機後の)通常制御は、第2実施形態における通常制御とは調整バルブ11に関するステップS114及びS122(図17参照)の処理が異なる。本変形例でも、通常制御全体は図17に示されたフローチャートに沿って行われるので、異なるステップS114及びS122についてのみ以下に説明する。 Further, the normal control (after warming up) by the water cooling device 1b 'is different from the normal control in the second embodiment in the processes of steps S114 and S122 (see FIG. 17) related to the adjustment valve 11. Also in this modification example, the entire normal control is performed according to the flowchart shown in FIG. 17, and therefore only different steps S114 and S122 will be described below.
 ステップS114では、アイドリング中(ステップS110でYES)又はスロットル開度変化が小さい(ステップS111でYES)ので、エンジン2は低負荷状態である。このため、調整バルブ11はラジエータ3への冷却水の流量を少なく制御して、ラジエータ3での放熱を抑制し、冷却水温を第2温度(100℃)に上昇させる。即ち、調整バルブ11の弁開度がコントローラからの制御信号に基づいて調整され、ラジエータ3を流れる冷却水の流量が第3流路32の下流端で調整される(ステップS114)。ラジエータ3での放熱を抑制して冷却水温を第2温度(100℃)にするために、第2流路30、ラジエータ3及び第3流路32への流量は比較的少なくされる(図21参照)。なお、調整バルブ11は、ポンプ12からの冷却水もエンジン2に流している。 In step S114, the engine 2 is in a low load state during idling (YES in step S110) or because the change in throttle opening is small (YES in step S111). For this reason, the adjustment valve 11 controls the flow rate of the cooling water to the radiator 3 to be small, suppresses the heat radiation at the radiator 3, and raises the cooling water temperature to the second temperature (100 ° C.). That is, the valve opening of the adjustment valve 11 is adjusted based on the control signal from the controller, and the flow rate of the cooling water flowing through the radiator 3 is adjusted at the downstream end of the third flow path 32 (step S114). In order to suppress the heat radiation in the radiator 3 and set the cooling water temperature to the second temperature (100 ° C.), the flow rates to the second flow path 30, the radiator 3 and the third flow path 32 are relatively reduced (FIG. 21). reference). The adjustment valve 11 also allows cooling water from the pump 12 to flow into the engine 2.
 一方、ステップS122では、スロットル開度変化が大きく(ステップS111でNO)、エンジン2は高負荷状態である。このため、調整バルブ11はラジエータ3への冷却水の流量を多く制御して、ラジエータ3での放熱を促進し、冷却水温を第1温度(80℃)にする。即ち、調整バルブ11の弁開度がコントローラからの制御信号に基づいて調整され、第1流路31からの流路が閉じられ、かつ、第3流路32の下流端の弁開度が全開にされて(ステップS122)、第2流路30、ラジエータ3及び第3流路32にのみ冷却水が流される(図13と同様:ただし、ポンプ10ではなくポンプ12)。 On the other hand, in step S122, the change in throttle opening is large (NO in step S111), and the engine 2 is in a high load state. For this reason, the adjustment valve 11 controls the flow rate of the cooling water to the radiator 3 to increase the heat dissipation in the radiator 3 and sets the cooling water temperature to the first temperature (80 ° C.). That is, the valve opening of the adjustment valve 11 is adjusted based on the control signal from the controller, the flow path from the first flow path 31 is closed, and the valve opening at the downstream end of the third flow path 32 is fully opened. (Step S122), the cooling water flows only through the second flow path 30, the radiator 3, and the third flow path 32 (similar to FIG. 13; however, the pump 12 instead of the pump 10).
 上述したように構成された本変形例の水冷装置1b’によっても、第2実施形態の水冷装置1bと同様の効果、即ち、第1実施形態の水冷装置1aと同様の効果を実現することができる。 Even with the water cooling device 1b ′ of the present modification configured as described above, it is possible to achieve the same effect as the water cooling device 1b of the second embodiment, that is, the same effect as the water cooling device 1a of the first embodiment. it can.
(第3実施形態)
 第3実施形態に係るエンジン水冷装置1cは、図22に示されるように、第2実施形態の水冷装置1b(図14参照)にオンオフバルブ13が追加された構成を備えている。オンオフバルブ13の一側(流出側)は第5流路22(ポンプ12の上流側)に接続され、他側(流入側)は第1流路31(ポンプ12の下流側で、かつ、調整バルブ11の上流側)に接続されている。オンオフバルブ13は、調整バルブ11(即ち、エンジン2)への冷却水の流量を調整する。本実施形態の水冷装置1cのその他の構成は、第2実施形態の水冷装置1bと同じであるので、それらの重複する説明は省略する。
(Third embodiment)
As shown in FIG. 22, the engine water cooling device 1 c according to the third embodiment has a configuration in which an on / off valve 13 is added to the water cooling device 1 b (see FIG. 14) of the second embodiment. One side (outflow side) of the on / off valve 13 is connected to the fifth flow path 22 (upstream side of the pump 12), and the other side (inflow side) is the first flow path 31 (downstream side of the pump 12 and adjustment). It is connected to the upstream side of the valve 11. The on / off valve 13 adjusts the flow rate of the cooling water to the adjustment valve 11 (that is, the engine 2). Since the other structure of the water cooling device 1c of this embodiment is the same as the water cooling device 1b of 2nd Embodiment, those overlapping description is abbreviate | omitted.
 以下、水冷装置1cによるエンジン2の暖機制御を図23に示されるフローチャートを参照しつつ説明する。 Hereinafter, warm-up control of the engine 2 by the water cooling device 1c will be described with reference to a flowchart shown in FIG.
 まず、温度センサによって検出される冷却水温が暖機完了の指標としての第1温度(80℃)以下か否かが判定される(ステップS10)。冷却水温が第1温度(80℃)より高い場合(ステップS10でNO)には暖機後の通常制御に移行して(ステップS30)、暖機制御は終了する。通常制御については追って詳しく説明する。一方、冷却水温が第1温度(80℃)以下である場合(ステップS10でYES)には、空調のヒータスイッチがオンであるか否かが判定される(ステップS11)。 First, it is determined whether or not the cooling water temperature detected by the temperature sensor is equal to or lower than a first temperature (80 ° C.) as an index for completion of warm-up (step S10). When the cooling water temperature is higher than the first temperature (80 ° C.) (NO in step S10), the control shifts to normal control after warm-up (step S30), and the warm-up control ends. The normal control will be described in detail later. On the other hand, when the cooling water temperature is equal to or lower than the first temperature (80 ° C.) (YES in step S10), it is determined whether or not the air conditioning heater switch is on (step S11).
 ヒータスイッチがオンでない場合(ステップS11でNO)には、冷却水温がより早期に第1温度(80℃)より高くなるように、コントローラが調整バルブ11、電磁弁25及びオンオフバルブ13に制御信号を送信する。ここではヒータスイッチはオフであるので、ヒータコア4に冷却水を流す必要がない。従って、ヒータコア4上流側の電磁弁25は、コントローラからの制御信号に基づいて閉じられる(ステップS12)。さらに、図24に示されるように、調整バルブ11によって第2流路30も閉じられ(後述するステップS16)、冷却水はラジエータ3にも流されない。この結果、ラジエータ3及びヒータコア4での放熱は行われず、冷却水はより早期に第1温度(80℃)より高くされる。 If the heater switch is not on (NO in step S11), the controller sends control signals to the adjustment valve 11, the electromagnetic valve 25, and the on / off valve 13 so that the cooling water temperature becomes higher than the first temperature (80 ° C.) earlier. Send. Here, since the heater switch is off, there is no need to flow cooling water through the heater core 4. Therefore, the solenoid valve 25 on the upstream side of the heater core 4 is closed based on the control signal from the controller (step S12). Furthermore, as shown in FIG. 24, the second flow path 30 is also closed by the adjustment valve 11 (step S <b> 16 described later), and the cooling water is not allowed to flow to the radiator 3. As a result, heat is not dissipated in the radiator 3 and the heater core 4, and the cooling water is made higher than the first temperature (80 ° C.) earlier.
 ステップS12に続いて、オンオフバルブ13は、コントローラからの制御信号に基づいて開かれる(ステップS15)。オンオフバルブ13が開かれると、図24に示されるように、ポンプ12の下流側(高圧側)から上流側(低圧側)に冷却水が還流され、調整バルブ11(即ち、エンジン2)への冷却水の流量が低減される。エンジン2への流量が低減されることで、エンジン2内の冷却水温度は、エンジン2の熱を吸収して熱効率の良い温度まで早期に上昇される。 Following step S12, the on / off valve 13 is opened based on the control signal from the controller (step S15). When the on / off valve 13 is opened, as shown in FIG. 24, the cooling water is recirculated from the downstream side (high pressure side) of the pump 12 to the upstream side (low pressure side), and is supplied to the regulating valve 11 (ie, the engine 2). The flow rate of the cooling water is reduced. By reducing the flow rate to the engine 2, the cooling water temperature in the engine 2 absorbs the heat of the engine 2 and quickly rises to a temperature with good thermal efficiency.
 ステップS15に続いて、調整バルブ11は、コントローラからの制御信号に基づいて、第2流路30を(その上流端で)閉じる(ステップS16)。第2流路30が閉じられることでラジエータ3で放熱されず、暖機制御中の冷却水温の低下を防止できる。ステップS16の後、処理流れはステップS10に戻り、冷却水温が第1温度(80℃)より高くなったら(ステップS10でNO)、通常制御に移行する(ステップS30)。 Subsequent to step S15, the adjustment valve 11 closes the second flow path 30 (at its upstream end) based on the control signal from the controller (step S16). Since the second flow path 30 is closed, heat is not radiated by the radiator 3, and a decrease in the coolant temperature during the warm-up control can be prevented. After step S16, the process flow returns to step S10. When the cooling water temperature becomes higher than the first temperature (80 ° C.) (NO in step S10), the process proceeds to normal control (step S30).
 一方、ステップS11でヒータスイッチがオンの場合(ステップS11でYES)には、暖房のためにヒータコア4に冷却水を流すようにヒータコア4上流側の電磁弁25が制御される。具体的には、電磁弁25は、コントローラからの制御信号に基づいて、冷却水をヒータコア4に10L/minで流す弁開度に設定される(ステップS20)。 On the other hand, when the heater switch is on in step S11 (YES in step S11), the solenoid valve 25 on the upstream side of the heater core 4 is controlled so that the cooling water flows through the heater core 4 for heating. Specifically, the electromagnetic valve 25 is set to a valve opening degree at which the cooling water flows through the heater core 4 at 10 L / min based on a control signal from the controller (step S20).
 ステップS20に続いて、オンオフバルブ13は、コントローラからの制御信号に基づいて閉じられる(ステップS23)。オンオフバルブ13が閉じられると、冷却水は還流されることはなく、調整バルブ11(即ち、エンジン2)への冷却水の流量は低減されない。 Following step S20, the on / off valve 13 is closed based on the control signal from the controller (step S23). When the on / off valve 13 is closed, the cooling water is not recirculated, and the flow rate of the cooling water to the regulating valve 11 (that is, the engine 2) is not reduced.
 ステップS23に続いて、調整バルブ11は、コントローラからの制御信号に基づいて第2流路30を閉じる(ステップS24)。第2流路30が閉じられることでラジエータ3で放熱されず、暖機制御中の冷却水温の低下を防止できる。暖房のためにヒータコア4での放熱は行われるが、ラジエータ3での放熱は行われず、冷却水はより早期に第1温度(80℃)より高くなる。ステップS24の後、処理流れはステップS10に戻り、冷却水温が第1温度(80℃)より高くなったら(ステップS10でNO)、通常制御に移行する(ステップS30)。 Following step S23, the adjustment valve 11 closes the second flow path 30 based on the control signal from the controller (step S24). Since the second flow path 30 is closed, heat is not radiated by the radiator 3, and a decrease in the coolant temperature during the warm-up control can be prevented. Although heat is dissipated in the heater core 4 for heating, heat is not dissipated in the radiator 3, and the cooling water becomes higher than the first temperature (80 ° C.) earlier. After step S24, the process flow returns to step S10. When the coolant temperature becomes higher than the first temperature (80 ° C.) (NO in step S10), the process proceeds to normal control (step S30).
 次に、水冷装置1cによるエンジン2の(暖機後の)通常制御を図25に示されるフローチャートを参照しつつ説明する。 Next, normal control (after warming up) of the engine 2 by the water cooling device 1c will be described with reference to the flowchart shown in FIG.
 まず、エンジン2がアイドリング中であるか否かが判定される(ステップS110)。アイドリング中でない場合(ステップS110でNO)には、エンジン2の運転状態を判定すべく、スロットル開度変化が小さい否か判定される(ステップS111)。 First, it is determined whether or not the engine 2 is idling (step S110). If the engine is not idling (NO in step S110), it is determined whether or not the change in throttle opening is small in order to determine the operating state of the engine 2 (step S111).
 スロットル開度変化が小さい、即ち、エンジン2が低負荷状態の場合(ステップS111でYES)には、冷却水温が第2温度(100℃)となるように、コントローラが調整バルブ11、電磁弁25及びオンオフバルブ13に制御信号を送信する。図3(a)に示されるように、エンジン2が低負荷状態の場合には、冷却水温が第1温度(80℃)より高い第2温度(100℃)である方が燃料効率が良いので、冷却水温を第2温度(100℃)にする。 When the change in throttle opening is small, that is, when the engine 2 is in a low load state (YES in step S111), the controller controls the adjusting valve 11 and the electromagnetic valve 25 so that the cooling water temperature becomes the second temperature (100 ° C.). The control signal is transmitted to the on / off valve 13. As shown in FIG. 3A, when the engine 2 is in a low load state, the fuel efficiency is better when the cooling water temperature is the second temperature (100 ° C.) higher than the first temperature (80 ° C.). The cooling water temperature is set to the second temperature (100 ° C.).
 具体的には、暖機は完了しているので、ヒータコア4に冷却水を循環させるために、電磁弁25は、コントローラからの制御信号に基づいて開かれる(ステップS112)。これにより、空調機はいつでもヒータコア4の熱を利用できる。なお、ステップS110でアイドリング中である場合(ステップS110でYES)には、スロットル開度変化のない低負荷状態であるので、制御流れはステップS111の判定を行うことなくステップS112に進む。 Specifically, since the warm-up has been completed, the electromagnetic valve 25 is opened based on the control signal from the controller in order to circulate the cooling water through the heater core 4 (step S112). Thereby, the air conditioner can use the heat of the heater core 4 at any time. If idling is being performed in step S110 (YES in step S110), the control flow proceeds to step S112 without performing the determination in step S111 because the throttle load is not changed.
 ステップS112に続いて、オンオフバルブ13は、コントローラからの制御信号に基づいて閉じられる(ステップS115)。オンオフバルブ13が閉じられると、冷却水は還流されることはなく、調整バルブ11(即ち、エンジン2)への冷却水の流量は低減されない。 Following step S112, the on / off valve 13 is closed based on the control signal from the controller (step S115). When the on / off valve 13 is closed, the cooling water is not recirculated, and the flow rate of the cooling water to the regulating valve 11 (that is, the engine 2) is not reduced.
 ステップS115に続いて、調整バルブ11の弁開度が、コントローラからの制御信号に基づいて調整され、ラジエータ3を流れる冷却水の流量が第2流路30の上流端で調整される(ステップS116)。ラジエータ3での放熱を抑制して冷却水温を第2温度(100℃)にするために、第2流路30、ラジエータ3及び第3流路32への流量は比較的少なくされる(図26参照)。なお、調整バルブ11は、ポンプ12からの冷却水をエンジン2にも流している。 Subsequent to step S115, the valve opening of the adjustment valve 11 is adjusted based on a control signal from the controller, and the flow rate of the cooling water flowing through the radiator 3 is adjusted at the upstream end of the second flow path 30 (step S116). ). In order to suppress the heat radiation in the radiator 3 and set the cooling water temperature to the second temperature (100 ° C.), the flow rates to the second flow path 30, the radiator 3 and the third flow path 32 are relatively reduced (FIG. 26). reference). The adjustment valve 11 also flows the cooling water from the pump 12 to the engine 2.
 一方、ステップS111でスロットル開度変化が大きい、即ち、エンジン2が高負荷状態の場合(ステップS111でNO)には、冷却水温が第1温度(80℃)となるように、コントローラが調整バルブ11、電磁弁25及びオンオフバルブ13に制御信号を送信する。図3(b)に示されるように、エンジン2が高負荷状態の場合には、冷却水温が第2温度(100℃)より低い第1温度(80℃)である方が燃料効率が良いので、冷却水温を第1温度(80℃)にする。 On the other hand, if the change in throttle opening is large in step S111, that is, if the engine 2 is in a high load state (NO in step S111), the controller adjusts the adjustment valve so that the cooling water temperature becomes the first temperature (80 ° C.). 11. Control signals are transmitted to the electromagnetic valve 25 and the on / off valve 13. As shown in FIG. 3B, when the engine 2 is in a high load state, the fuel efficiency is better when the cooling water temperature is the first temperature (80 ° C.) lower than the second temperature (100 ° C.). The cooling water temperature is set to the first temperature (80 ° C.).
 具体的には、暖機は完了しているので、上述したステップS112と同様に、ヒータコア4に冷却水を循環させるために、電磁弁25は、コントローラからの制御信号に基づいて開かれる(ステップS120)。ステップ120に続いて、オンオフバルブ13は、コントローラからの制御信号に基づいて閉じられる(ステップS123)。オンオフバルブ13が閉じられると、冷却水は還流されることはなく、調整バルブ11(即ち、エンジン2)への冷却水の流量は低減されない。調整バルブ11(即ち、エンジン2)への冷却水の流量は低減されないので、冷却装置1c内を循環する冷却水の流量は多く制御される。流量が多くされることでラジエータ3での放熱が促進され、冷却水温は、上昇が抑制されて第1温度(80℃)に維持される(ラジエータ3への冷却水の流れについては次のステップS124で説明する)。 Specifically, since the warm-up has been completed, the electromagnetic valve 25 is opened based on the control signal from the controller in order to circulate the cooling water through the heater core 4 as in step S112 described above (step S112). S120). Subsequent to step 120, the on / off valve 13 is closed based on a control signal from the controller (step S123). When the on / off valve 13 is closed, the cooling water is not recirculated, and the flow rate of the cooling water to the regulating valve 11 (that is, the engine 2) is not reduced. Since the flow rate of the cooling water to the regulating valve 11 (that is, the engine 2) is not reduced, the flow rate of the cooling water circulating in the cooling device 1c is controlled to be large. Increasing the flow rate promotes heat dissipation in the radiator 3, and the cooling water temperature is kept at the first temperature (80 ° C.) by suppressing the rise (the next step for the flow of cooling water to the radiator 3 (It will be described in S124).
 ステップS123に続いて、調整バルブ11の弁開度がコントローラからの制御信号に基づいて調整され、エンジン2に繋がる第1流路31への流路が閉じられ、かつ、第2流路30の上流端の弁開度が全開にされて(ステップS124)、第2流路30、ラジエータ3及び第3流路32にのみ冷却水が流される。ラジエータ3での放熱を促進して冷却水温を第1温度(80℃)にするために、第2流路30、ラジエータ3及び第3流路32への流量は多くされる。冷却水は、第2流路30、ラジエータ3及び第3流路32を流れた後に、エンジン2へと流れる。この結果、ラジエータ3での放熱が促進され、冷却水温は低下されて第1温度(80℃)になる。 Subsequent to step S123, the valve opening of the adjusting valve 11 is adjusted based on a control signal from the controller, the flow path to the first flow path 31 connected to the engine 2 is closed, and the second flow path 30 The valve opening at the upstream end is fully opened (step S124), and the cooling water flows only through the second flow path 30, the radiator 3, and the third flow path 32. In order to promote heat dissipation in the radiator 3 and set the cooling water temperature to the first temperature (80 ° C.), the flow rates to the second flow path 30, the radiator 3 and the third flow path 32 are increased. The cooling water flows to the engine 2 after flowing through the second flow path 30, the radiator 3, and the third flow path 32. As a result, heat dissipation in the radiator 3 is promoted, and the cooling water temperature is lowered to the first temperature (80 ° C.).
 上述したように構成された本実施形態の水冷装置1cによっても、第2実施形態の水冷装置1bと同様の効果、即ち、第1実施形態の水冷装置1aと同様の効果を実現することができる。 Also by the water cooling device 1c of this embodiment configured as described above, the same effect as the water cooling device 1b of the second embodiment, that is, the same effect as the water cooling device 1a of the first embodiment can be realized. .
(第3実施形態の変形例)
 図27に示されるように、第3実施形態の変形例に係るエンジン水冷装置1c’は、第3実施形態に係るエンジン水冷装置1c(図22参照)とは、調整バルブ11の位置が異なる。本変形例の水冷装置1c’のその他の構成は、第3実施形態の水冷装置1cと同じであるので、それらの重複する説明は省略する。
(Modification of the third embodiment)
As shown in FIG. 27, the engine water cooling device 1c ′ according to the modification of the third embodiment differs from the engine water cooling device 1c according to the third embodiment (see FIG. 22) in the position of the adjustment valve 11. Since the other structure of water cooling device 1c 'of this modification is the same as the water cooling device 1c of 3rd Embodiment, those overlapping description is abbreviate | omitted.
 本変形例の調整バルブ11も、第1流路31上のポンプ12の下流に配置された三方バルブである。しかし、第3実施形態の調整バルブ11が第1流路31上の第2流路30の分岐点に配設されているのに対して、本変形例の調整バルブ11は第1流路31上の第3流路32との合流点に配設されている。調整バルブ11は、電子制御サーモスタットであり、コントローラ(図示せず)からの信号に基づいて、ポンプ12からの冷却水と第3流路32からの冷却水との混合率を制御して、エンジン2及び/又はラジエータ3に流す冷却水の流量を制御する。本変形例の調整バルブ11は、ラジエータ3に流す冷却水の流量をラジエータ3の下流で制御する。 The adjustment valve 11 of this modification is also a three-way valve arranged downstream of the pump 12 on the first flow path 31. However, the adjustment valve 11 of the third embodiment is disposed at the branching point of the second flow path 30 on the first flow path 31, whereas the adjustment valve 11 of the present modification example has the first flow path 31. It is arranged at the junction with the upper third flow path 32. The adjustment valve 11 is an electronically controlled thermostat, and controls the mixing ratio of the cooling water from the pump 12 and the cooling water from the third flow path 32 based on a signal from a controller (not shown) to 2 and / or the flow rate of the cooling water flowing to the radiator 3 is controlled. The adjustment valve 11 of the present modification controls the flow rate of the cooling water that flows to the radiator 3 downstream of the radiator 3.
 水冷装置1c’によるエンジン2の暖機制御は、第3実施形態における暖機制御とは調整バルブ11に関するステップS16及びS24(図23参照)の処理が異なる。本変形例でも、暖機制御全体は図23に示されたフローチャートに沿って行われるので、異なるステップS16及びS24についてのみ以下に説明する。 The warm-up control of the engine 2 by the water cooling device 1c 'is different from the warm-up control in the third embodiment in steps S16 and S24 (see FIG. 23) regarding the adjustment valve 11. Also in this modified example, since the whole warm-up control is performed according to the flowchart shown in FIG. 23, only different steps S16 and S24 will be described below.
 ステップS16では、冷却水温が第1温度(80℃)以下で(ステップS10でYES)、かつ、ヒータスイッチはオフである(ステップS11でNO)。従って、ラジエータ3及びヒータコア4での放熱は行われず、冷却水はより早期に第1温度(80℃)より高くされる。即ち、図28に示されるように、電磁弁25が閉じられる(ステップS12)と共に、オンオフバルブ13が開かれる(ステップS15)。さらに、調整バルブ11は、コントローラからの制御信号に基づいて、第3流路32を(その下流端で)閉じる(ステップS16)。 In step S16, the cooling water temperature is equal to or lower than the first temperature (80 ° C.) (YES in step S10), and the heater switch is off (NO in step S11). Therefore, heat is not radiated from the radiator 3 and the heater core 4, and the cooling water is made higher than the first temperature (80 ° C.) earlier. That is, as shown in FIG. 28, the electromagnetic valve 25 is closed (step S12) and the on / off valve 13 is opened (step S15). Furthermore, the regulating valve 11 closes the third flow path 32 (at its downstream end) based on the control signal from the controller (step S16).
 一方、ステップS26では、冷却水温が第1温度(80℃)以下で(ステップS10でYES)、かつ、ヒータスイッチはオンである(ステップS11でYES)。従って、ラジエータ3での放熱は行われず、冷却水はより早期に第1温度(80℃)より高くされる。即ち、電磁弁25が開かれる(ステップS20:ヒータスイッチがオンのためヒータコア4で放熱させる)と共に、オンオフバルブ13が閉じられる(ステップS23)。さらに、調整バルブ11は、コントローラからの制御信号に基づいて、第3流路32を(その下流端で)閉じる(ステップS26)。 On the other hand, in step S26, the cooling water temperature is equal to or lower than the first temperature (80 ° C.) (YES in step S10), and the heater switch is on (YES in step S11). Therefore, heat is not dissipated in the radiator 3 and the cooling water is made higher than the first temperature (80 ° C.) earlier. That is, the electromagnetic valve 25 is opened (step S20: heat is dissipated by the heater core 4 because the heater switch is on), and the on / off valve 13 is closed (step S23). Furthermore, the adjusting valve 11 closes the third flow path 32 (at its downstream end) based on the control signal from the controller (step S26).
 また、水冷装置1c’による(暖機後の)通常制御は、第3実施形態における通常制御とは調整バルブ11に関するステップS116及びS124(図25参照)の処理が異なる。本変形例でも、通常制御全体は図25に示されたフローチャートに沿って行われるので、異なるステップS116及びS124についてのみ以下に説明する。 Further, the normal control (after warming up) by the water cooling device 1c 'is different from the normal control in the third embodiment in steps S116 and S124 (see FIG. 25) related to the adjustment valve 11. Also in this modified example, since the entire normal control is performed according to the flowchart shown in FIG. 25, only different steps S116 and S124 will be described below.
 ステップS116では、アイドリング中(ステップS110でYES)又はスロットル開度変化が小さい(ステップS111でYES)ので、エンジン2は低負荷状態である。このため、調整バルブ11はラジエータ3への冷却水の流量を少なく制御して、ラジエータ3での放熱を抑制し、冷却水温を第2温度(100℃)に上昇させる。即ち、調整バルブ11の弁開度がコントローラからの制御信号に基づいて調整され、ラジエータ3を流れる冷却水の流量が第3流路32の下流端で調整される(ステップS116)。ラジエータ3での放熱を抑制して冷却水温を第2温度(100℃)にするために、第2流路30、ラジエータ3及び第3流路32への流量は比較的少なくされる(図29参照)。なお、調整バルブ11は、ポンプ12からの冷却水もエンジン2に流している。 In step S116, the engine 2 is in a low load state during idling (YES in step S110) or because the change in throttle opening is small (YES in step S111). For this reason, the adjustment valve 11 controls the flow rate of the cooling water to the radiator 3 to be small, suppresses the heat radiation at the radiator 3, and raises the cooling water temperature to the second temperature (100 ° C.). That is, the valve opening of the adjustment valve 11 is adjusted based on a control signal from the controller, and the flow rate of the cooling water flowing through the radiator 3 is adjusted at the downstream end of the third flow path 32 (step S116). In order to suppress the heat radiation in the radiator 3 and set the cooling water temperature to the second temperature (100 ° C.), the flow rates to the second flow path 30, the radiator 3 and the third flow path 32 are relatively reduced (FIG. 29). reference). The adjustment valve 11 also allows cooling water from the pump 12 to flow into the engine 2.
 一方、ステップS124では、スロットル開度変化が大きく(ステップS111でNO)、エンジン2は高負荷状態である。このため、調整バルブ11はラジエータ3への冷却水の循環流量を多く制御して、ラジエータ3での放熱を促進し、冷却水温を第1温度(80℃)にする。即ち、調整バルブ11の弁開度がコントローラからの制御信号に基づいて調整され、第1流路31からの流路が閉じられ、かつ、第3流路32の下流端の弁開度が全開にされて(ステップS124)、第2流路30、ラジエータ3及び第3流路32にのみ冷却水が流される。 On the other hand, in step S124, the throttle opening change is large (NO in step S111), and the engine 2 is in a high load state. For this reason, the adjustment valve 11 controls the circulating flow rate of the cooling water to the radiator 3 to increase the heat dissipation in the radiator 3 and brings the cooling water temperature to the first temperature (80 ° C.). That is, the valve opening of the adjustment valve 11 is adjusted based on the control signal from the controller, the flow path from the first flow path 31 is closed, and the valve opening at the downstream end of the third flow path 32 is fully opened. (Step S124), the cooling water flows only through the second flow path 30, the radiator 3, and the third flow path 32.
 上述したように構成された本実施形態の水冷装置1c’によっても、第3実施形態の水冷装置1cと同様の効果、即ち、第1実施形態の水冷装置1aや第2実施形態の水冷装置1bと同様の効果を実現することができる。 Even with the water cooling device 1c ′ of the present embodiment configured as described above, the same effects as the water cooling device 1c of the third embodiment, that is, the water cooling device 1a of the first embodiment and the water cooling device 1b of the second embodiment. The same effect can be realized.
(その他の実施形態)
 本発明は、上述した実施形態に限定されない。例えば、上述した通常制御では、スロットル開度の変化に基づいてエンジン2の運転状態(低負荷状態又は高負荷状態)が判断された。しかし、車速や、スロットル開度加速度や、これらの組み合わせに基づいてエンジン2の運転状態が判断されてもよい。具体的には、スロットル開度加速度が大きければ高負荷時であると判断し、加速度が小さければ低負荷時と判断して制御を行う。
(Other embodiments)
The present invention is not limited to the embodiment described above. For example, in the normal control described above, the operating state (low load state or high load state) of the engine 2 is determined based on the change in the throttle opening. However, the operating state of the engine 2 may be determined based on the vehicle speed, the throttle opening acceleration, or a combination thereof. Specifically, if the throttle opening acceleration is large, it is determined that the load is high, and if the acceleration is small, it is determined that the load is low.
 また、上記実施形態では、第1温度は80℃とされ第2温度は100℃とされたが、第1温度は70℃等であってもよく、同様に、第2温度は90℃等であってもよい。第1温度は、第2温度より低く、エンジン2の高負荷状態時に最適燃焼効率をもたらす温度であればよい。第2温度は、第1温度より高く、エンジン2の低負荷状態時に最適燃焼効率をもたらす温度であればよい。 In the above embodiment, the first temperature is 80 ° C. and the second temperature is 100 ° C., but the first temperature may be 70 ° C., and similarly, the second temperature is 90 ° C. There may be. The first temperature may be any temperature that is lower than the second temperature and that provides optimum combustion efficiency when the engine 2 is in a high load state. The second temperature may be any temperature that is higher than the first temperature and that provides optimum combustion efficiency when the engine 2 is in a low load state.
 本発明は様々な変形を包含していることは理解されるべきであり、本発明は上記開示から妥当な特許請求の範囲の発明特定事項によってのみ限定される。 It should be understood that the present invention includes various modifications, and the present invention is limited only by the invention specifying matters in the scope of claims reasonable from the above disclosure.

Claims (6)

  1.  内燃エンジンを冷却水で冷却するエンジン水冷装置であって、
     前記冷却水と空気との間の熱交換によって前記冷却水を冷却するラジエータと、
     前記冷却水を前記エンジンに流入させる第1流路と、
     前記第1流路から分岐され、前記冷却水を前記ラジエータに流入させる第2流路と、
     前記ラジエータからの前記冷却水を、前記第2流路の前記第1流路からの分岐点よりも下流で前記第1流路に流入させる第3流路と、
     前記第1流路上に配置され、前記ラジエータを流れる前記冷却水の流量を制御する調整バルブと、
     前記第1流路上に配置され、前記エンジン及び/又は前記ラジエータに前記冷却水を循環させるポンプとを備え、
     前記調整バルブが、開放時に前記ラジエータからの前記冷却水を前記第1流路に流入させるように構成されている。
    An engine water cooling device for cooling an internal combustion engine with cooling water,
    A radiator that cools the cooling water by heat exchange between the cooling water and air;
    A first flow path for allowing the cooling water to flow into the engine;
    A second flow path branched from the first flow path and allowing the cooling water to flow into the radiator;
    A third flow path for allowing the cooling water from the radiator to flow into the first flow path downstream of a branch point from the first flow path of the second flow path;
    An adjustment valve disposed on the first flow path for controlling the flow rate of the cooling water flowing through the radiator;
    A pump disposed on the first flow path and circulating the cooling water to the engine and / or the radiator;
    The adjustment valve is configured to allow the cooling water from the radiator to flow into the first flow path when opened.
  2.  請求項1に記載のエンジン水冷装置であって、
     前記エンジンの高負荷状態時に最適燃焼効率をもたらす前記冷却水の温度を第1温度とすると、
     前記調整バルブは、前記エンジン内の前記冷却水の温度が前記第1温度以下である場合、前記第2流路、前記ラジエータ及び前記第3流路を通る流路を閉じる。
    The engine water cooling device according to claim 1,
    When the temperature of the cooling water that provides optimum combustion efficiency when the engine is in a high load state is the first temperature,
    The adjustment valve closes a flow path passing through the second flow path, the radiator, and the third flow path when the temperature of the cooling water in the engine is equal to or lower than the first temperature.
  3.  請求項1又は2に記載のエンジン水冷装置であって、
     前記ポンプが、前記エンジンの運転とは独立して作動可能な電動ポンプである。
    The engine water cooling device according to claim 1 or 2,
    The pump is an electric pump that can be operated independently of the operation of the engine.
  4.  請求項1~3の何れか一項に記載のエンジン水冷装置であって、
     前記エンジンの高負荷状態時に最適燃焼効率をもたらす前記冷却水の温度を第1温度とし、前記エンジンの低負荷状態時に最適燃焼効率をもたらす前記冷却水の温度を前記第1温度より高い第2温度とすると、
     前記調整バルブは、前記エンジン内の前記冷却水の温度が前記第1温度よりも高く、かつ、前記エンジンへの吸気量を調整するスロットル開度の変化が小さい場合、前記冷却水の前記水温が前記第2温度となるように、前記第2流路、前記ラジエータ及び前記第3流路を通る流路への前記冷却水の流量を調整する。
    The engine water cooling device according to any one of claims 1 to 3,
    The temperature of the cooling water that provides optimal combustion efficiency when the engine is in a high load state is a first temperature, and the temperature of the cooling water that provides optimal combustion efficiency when the engine is in a low load state is a second temperature that is higher than the first temperature. Then,
    When the temperature of the cooling water in the engine is higher than the first temperature and the change in the throttle opening that adjusts the intake air amount to the engine is small, the adjustment valve adjusts the water temperature of the cooling water. The flow rate of the cooling water to the flow path passing through the second flow path, the radiator, and the third flow path is adjusted so as to be the second temperature.
  5.  請求項1~4の何れか一項に記載のエンジン水冷装置であって、
     前記エンジンの高負荷状態時に最適燃焼効率をもたらす前記冷却水の温度を第1温度とすると、
     前記エンジン内の前記冷却水の温度が前記第1温度より高く、かつ、前記エンジンへの吸気量を調整するスロットル開度の変化が大きい場合、
     前記調整バルブは、前記冷却水の前記温度が第1温度となるように、前記第2流路、前記ラジエータ及び前記第3流路を通る流路への前記冷却水の流量を増やす。
    The engine water cooling device according to any one of claims 1 to 4,
    When the temperature of the cooling water that provides optimum combustion efficiency when the engine is in a high load state is the first temperature,
    When the temperature of the cooling water in the engine is higher than the first temperature and the change in the throttle opening for adjusting the intake air amount to the engine is large,
    The adjustment valve increases the flow rate of the cooling water to the flow path passing through the second flow path, the radiator, and the third flow path so that the temperature of the cooling water becomes the first temperature.
  6.  請求項1~5のいずれか1項に記載のエンジン水冷装置であって、
     前記水冷エンジンが、排気側が下になるように傾けて配置されている。
    The engine water cooling device according to any one of claims 1 to 5,
    The water-cooled engine is disposed so as to be inclined so that the exhaust side faces downward.
PCT/JP2012/083441 2012-01-17 2012-12-25 Water-cooling apparatus for engine WO2013108551A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/371,650 US20150053777A1 (en) 2012-01-17 2012-12-25 Water-cooling apparatus for engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-007010 2012-01-17
JP2012007010A JP6023430B2 (en) 2012-01-17 2012-01-17 Water-cooled engine cooling system

Publications (1)

Publication Number Publication Date
WO2013108551A1 true WO2013108551A1 (en) 2013-07-25

Family

ID=48798987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083441 WO2013108551A1 (en) 2012-01-17 2012-12-25 Water-cooling apparatus for engine

Country Status (3)

Country Link
US (1) US20150053777A1 (en)
JP (1) JP6023430B2 (en)
WO (1) WO2013108551A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9957875B2 (en) 2014-08-13 2018-05-01 GM Global Technology Operations LLC Coolant pump control systems and methods for backpressure compensation
US9540987B2 (en) 2014-08-13 2017-01-10 GM Global Technology Operations LLC System and method for diagnosing a fault in a partitioned coolant valve
US10480391B2 (en) 2014-08-13 2019-11-19 GM Global Technology Operations LLC Coolant control systems and methods to prevent coolant boiling
US9599011B2 (en) * 2014-08-13 2017-03-21 GM Global Technology Operations LLC Electric coolant pump diagnostic systems and methods
JP6481668B2 (en) * 2015-12-10 2019-03-13 株式会社デンソー Refrigeration cycle equipment
DE102017200878A1 (en) * 2016-11-14 2018-05-17 Mahle International Gmbh motor vehicle

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0783052A (en) * 1992-12-15 1995-03-28 Nippon Soken Inc Cooling device for internal combustion engine
JP2002106347A (en) * 2000-09-29 2002-04-10 Denso Corp Cooling water temperature control device of internal combustion engine
JP2002188443A (en) * 2000-12-21 2002-07-05 Aisin Seiki Co Ltd Cooling device for internal combustion engine
JP2007131258A (en) * 2005-11-14 2007-05-31 Suzuki Motor Corp Intake device for engine
JP2008240686A (en) * 2007-03-28 2008-10-09 Aisin Seiki Co Ltd Cooling system for heat source
JP2008260472A (en) * 2007-04-13 2008-10-30 Mazda Motor Corp Front structure of vehicle
JP2008291690A (en) * 2007-05-23 2008-12-04 Toyota Motor Corp Cooling system
JP2010174663A (en) * 2009-01-27 2010-08-12 Nissan Motor Co Ltd Cooling system for engine

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2277113A (en) * 1939-02-28 1942-03-24 Joseph G Kimmel Internal combustion engine
JPS5934472A (en) * 1982-08-20 1984-02-24 Toyota Motor Corp Interlock controller for suction path wall heating and cabin warming
DE4133013C2 (en) * 1991-10-04 1995-11-30 Mannesmann Ag Non-track-bound vehicle with an electrodynamic converter
JP3119281B2 (en) * 1991-10-14 2000-12-18 株式会社デンソー Vehicle air conditioner
US5404842A (en) * 1992-12-15 1995-04-11 Nippon Soken, Inc. Internal combustion engine cooling apparatus
US5785030A (en) * 1996-12-17 1998-07-28 Dry Systems Technologies Exhaust gas recirculation in internal combustion engines
US6178928B1 (en) * 1998-06-17 2001-01-30 Siemens Canada Limited Internal combustion engine total cooling control system
US6055947A (en) * 1999-01-14 2000-05-02 Tosok Corporation Engine cooling water control system
DE10048792B4 (en) * 2000-10-02 2016-02-18 Mahle International Gmbh thermostatic valve
JP3645827B2 (en) * 2001-04-24 2005-05-11 本田技研工業株式会社 Thermostat failure determination device for internal combustion engine
JP2002371848A (en) * 2001-06-13 2002-12-26 Aisan Ind Co Ltd Engine cooling device
FR2827359B1 (en) * 2001-07-11 2004-11-05 Valeo Thermique Moteur Sa CONTROL VALVE FOR A COOLING CIRCUIT OF A MOTOR VEHICLE HEAT ENGINE
JP3809349B2 (en) * 2001-07-25 2006-08-16 トヨタ自動車株式会社 Cooling device for internal combustion engine
US6668764B1 (en) * 2002-07-29 2003-12-30 Visteon Global Techologies, Inc. Cooling system for a diesel engine
DE10337412A1 (en) * 2003-08-14 2005-03-10 Daimler Chrysler Ag Method for controlling a thermostat
JP2006029113A (en) * 2004-07-12 2006-02-02 Denso Corp Cooling water flow control valve
US7237511B2 (en) * 2005-03-25 2007-07-03 Mazda Motor Corporation Cooling device of engine
EP1948917B1 (en) * 2005-11-10 2012-08-08 Behr GmbH & Co. KG Circulation system, mixing element
DE102007060670B4 (en) * 2007-12-17 2009-11-19 Mtu Friedrichshafen Gmbh Method for controlling an internal combustion engine
US8109242B2 (en) * 2008-10-17 2012-02-07 Caterpillar Inc. Multi-thermostat engine cooling system
US8430071B2 (en) * 2009-07-10 2013-04-30 GM Global Technology Operations LLC Engine cooling system for a vehicle
US8303465B2 (en) * 2009-10-30 2012-11-06 Ford Global Technologies, Llc Method for controlling engine temperature of an engine
JP5526982B2 (en) * 2010-04-27 2014-06-18 株式会社デンソー Internal combustion engine cooling device
JP2012111299A (en) * 2010-11-23 2012-06-14 Denso Corp Cooling system for vehicle
CN103415680B (en) * 2011-03-03 2016-08-24 丰田自动车株式会社 The warming-up of internal combustion engine promotes device
CN102812219B (en) * 2011-03-18 2014-12-10 丰田自动车株式会社 Engine cooling system
KR101241223B1 (en) * 2011-03-23 2013-03-25 기아자동차주식회사 Heat pump system for vehicle
US8960562B2 (en) * 2011-08-19 2015-02-24 GM Global Technology Operations LLC Valve configured for regulating the flow of fluid from a transmission to a fluid cooler
CN103890326B (en) * 2011-09-30 2015-08-26 日产自动车株式会社 Engine waste heat utilized device
DE102011084632B4 (en) * 2011-10-17 2015-03-05 Ford Global Technologies, Llc Method for heating an internal combustion engine and internal combustion engine for carrying out such a method
JP5962534B2 (en) * 2013-02-15 2016-08-03 トヨタ自動車株式会社 Intercooler temperature controller
US9682685B2 (en) * 2013-08-13 2017-06-20 Ford Global Technologies, Llc Methods and systems for condensation control
JP6011495B2 (en) * 2013-09-09 2016-10-19 トヨタ自動車株式会社 Cooling water control device
JP6160646B2 (en) * 2015-03-27 2017-07-12 トヨタ自動車株式会社 Engine cooling system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0783052A (en) * 1992-12-15 1995-03-28 Nippon Soken Inc Cooling device for internal combustion engine
JP2002106347A (en) * 2000-09-29 2002-04-10 Denso Corp Cooling water temperature control device of internal combustion engine
JP2002188443A (en) * 2000-12-21 2002-07-05 Aisin Seiki Co Ltd Cooling device for internal combustion engine
JP2007131258A (en) * 2005-11-14 2007-05-31 Suzuki Motor Corp Intake device for engine
JP2008240686A (en) * 2007-03-28 2008-10-09 Aisin Seiki Co Ltd Cooling system for heat source
JP2008260472A (en) * 2007-04-13 2008-10-30 Mazda Motor Corp Front structure of vehicle
JP2008291690A (en) * 2007-05-23 2008-12-04 Toyota Motor Corp Cooling system
JP2010174663A (en) * 2009-01-27 2010-08-12 Nissan Motor Co Ltd Cooling system for engine

Also Published As

Publication number Publication date
JP6023430B2 (en) 2016-11-09
JP2013147942A (en) 2013-08-01
US20150053777A1 (en) 2015-02-26

Similar Documents

Publication Publication Date Title
KR101394051B1 (en) Engine cooling system for vehicle and control method in the same
US10371041B2 (en) Cooling device for internal combustion engine of vehicle and control method thereof
WO2013108551A1 (en) Water-cooling apparatus for engine
JP6378055B2 (en) Cooling control device for internal combustion engine
JP5068371B2 (en) Cooling device for oil in gear box for vehicle
KR101592428B1 (en) Integrated flow control valve apparatus
WO2015125260A1 (en) Cooling system control device and cooling system control method
KR101637779B1 (en) Exhaust heat recovery system of vehicle and method thereof
RU2013114269A (en) METHOD, METHOD FOR ENGINE COOLING SYSTEM AND VEHICLE SYSTEM
JP5623474B2 (en) Cooling water control device
US20180266304A1 (en) Cooling device for internal combustion engine of vehicle and control method thereof
JPH11264318A (en) Temperature adjusting device for transmission oil
JP2015502497A (en) Apparatus and method for cooling coolant of vehicle cooling system
JP2016164404A (en) Cooling device for vehicular internal combustion engine, and control method
JP2011099400A (en) Cooling device for vehicle
US9010118B2 (en) Output controller for stirling engine
JP2010209736A (en) Engine warm-up control device
JP2005083225A (en) Oil temperature controller for transmission
JP2018053720A (en) Cooling system for internal combustion engine
JP2016211482A (en) Engine cooling device
JP2016210298A (en) Cooling device of internal combustion engine
JP2016165915A (en) Cooling system
CA2987374A1 (en) Vehicle air-conditioning system
JP2001271644A (en) Method and device for adjusting engine oil temperature
JP2013124546A (en) Cooling device of vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12865562

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14371650

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12865562

Country of ref document: EP

Kind code of ref document: A1