WO2013108512A1 - Converter gas recovery device and seal gas blowing operation method - Google Patents

Converter gas recovery device and seal gas blowing operation method Download PDF

Info

Publication number
WO2013108512A1
WO2013108512A1 PCT/JP2012/081882 JP2012081882W WO2013108512A1 WO 2013108512 A1 WO2013108512 A1 WO 2013108512A1 JP 2012081882 W JP2012081882 W JP 2012081882W WO 2013108512 A1 WO2013108512 A1 WO 2013108512A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
gas
blowing
seal gas
seal
Prior art date
Application number
PCT/JP2012/081882
Other languages
French (fr)
Japanese (ja)
Inventor
織田 剛
稲葉 岳志
慎哉 杉浦
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012009319A external-priority patent/JP5869891B2/en
Priority claimed from JP2012086798A external-priority patent/JP5869945B2/en
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Publication of WO2013108512A1 publication Critical patent/WO2013108512A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/38Removal of waste gases or dust
    • C21C5/40Offtakes or separating apparatus for converter waste gases or dust
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a converter gas recovery device that recovers a converter gas mainly composed of CO generated in a converter blowing process, and a method of blowing a seal gas supplied to a recovery hood of the converter gas recovery device. is there.
  • CO gas generated in large quantities in the converter blowing process has good combustibility and usually has a latent heat of about 2,000 Kcal / nm 3, so fuel gas for boilers, rolling mills, lime firing furnaces, etc. It is used as.
  • a cover part is provided so as to cover the skirt part from the surroundings, and an air supply pipe and an intake pipe for supplying seal gas to the CO gas are connected to the cover part, and the pressure near the collection hood exceeds the atmospheric pressure.
  • the inside of the cover is adjusted to less than atmospheric pressure, and when the pressure near the collection hood is less than atmospheric pressure, the CO gas is efficiently recovered while adjusting the pressure inside the cover to exceed atmospheric pressure.
  • a gas recovery method has also been proposed (see, for example, Patent Document 2).
  • JP 59-222514 A JP-A-63-317612 JP-A-56-127721
  • the seal gas required for actual blowing requires a volume flow of about 0.25 times the volume flow of the CO gas generated from the converter, the diameter of the seal gas supply pipe for that purpose is required. Therefore, the size of about 1/2 of the furnace diameter is required.
  • the vicinity of the furnace opening is also called spitting, where the liquid melt from the converter frequently scatters and falls, and the recovery hood closes as the scattered liquid melt adheres closer to the furnace throat. It becomes easy to do.
  • sealing when sealing is performed using sealing gas, in order to prevent N 2 in the outside air from being mixed into the recovered converter gas, sealing must be performed by introducing an excessive sealing gas.
  • sealing is performed with a large amount of sealing gas over a long period of time, for example, CO 2 has a higher specific gravity than air, so that the sealing gas is trapped on the work floor and ventilation is indispensable.
  • the present invention has been made in consideration of the problems in the conventional converter gas recovery apparatus as described above, and the first object is to provide a large amount of air in the open part between the converter furnace port and the recovery hood.
  • An object of the present invention is to provide a converter gas recovery apparatus that can introduce an inert gas and can reliably replace the above-described open-at-air portion with an inert gas atmosphere.
  • the second object of the present invention is to prevent a decrease in oxygen concentration in the working environment even when an excessive inert gas is blown as a seal gas or when a situation occurs in which the seal gas is not sucked into the recovery hood.
  • An object of the present invention is to provide a sealing gas blowing operation method capable of performing the above.
  • the present invention has a first mode related to the converter gas recovery device and a second mode related to the seal gas injection operation method.
  • the first aspect of the present invention is a converter gas recovery apparatus that recovers the converter gas generated in the converter blowing process through a recovery hood.
  • An inert gas is mainly supplied to the converter space between the dust collection duct arranged on the front side of the furnace when viewed from the plane and the center of the converter furnace port, toward the air flow from the front side of the furnace to the converter furnace port.
  • It is a converter gas recovery device provided with a blowing portion of a sealing gas as a component.
  • the sealing gas is blown from the blowing portion along the tilt axis of the converter as viewed from above, and the blowing target of the sealing gas is closer to the furnace front side than the converter furnace port. Preferably it is directed.
  • blowing port of the blowing section can be opened on the left and right wall surfaces that house the converter.
  • blowing port of the blowing section can be opened from the left and right wall surfaces accommodating the converter to the tip of a duct extending along the tilt axis of the converter.
  • the seal gas injection operation method of sealing the gap between the converter furnace port and the recovery hood with a seal gas Detect the change in the seal gas flow during converter gas recovery, or obtain the dust collection duct suction flow rate relative to the seal gas supply flow rate, When the flow of the seal gas changes or when the dust collection duct suction flow rate with respect to the seal gas supply flow rate falls below a predetermined value, the supply amount of the seal gas is reduced or the supply of the seal gas is stopped. This is a seal gas blowing operation method.
  • the change in the flow of the seal gas means, for example, a case where the flow direction of the seal gas flows backward from the inside to the outside with the heat insulating plate of the converter as a boundary.
  • the change in the flow of the seal gas can be detected by attaching a wind direction sensor to the internal observation window of the heat insulating plate installed on the furnace front side of the converter.
  • the change in the flow of the sealing gas can also be detected by attaching a wind direction sensor to the back side gap of the heat insulating plate installed on the front side of the converter.
  • the dust collection duct suction flow rate is obtained by converting the internal pressure of the dust collection duct into a flow rate, and when the ratio of the dust collection duct suction flow rate to the seal gas supply flow rate falls below a threshold value, the seal gas
  • the supply amount of the seal gas can be stopped by decreasing the amount of the seal gas supplied until the threshold value or more can be maintained, or by closing the shut-off valve of the seal gas supply path.
  • a timer is started when a seal gas supply start command is issued, and the seal gas supply path shut-off valve is turned off when the next seal gas supply start command is not given until the predetermined time has elapsed. It can be closed and the supply of the sealing gas can be stopped.
  • the seal gas is nitrogen gas that is by-produced when oxygen used for blowing the converter is separated from air or nitrogen that contains impurities such as oxygen slightly. Gas can be used.
  • the converter gas recovery device of the present invention a large amount of seal gas is introduced into the converter space using a large pipe, and the air-released portion between the converter furnace port and the converter gas recovery device is reliably undisturbed. It has the advantage that it can be replaced with an active gas atmosphere.
  • the sealing gas blowing operation method when excessive inert gas is blown as the sealing gas, or when a situation occurs in which the sealing gas is not sucked into the recovery hood, the sealing gas is blown. It has the advantage that it can be controlled safely and reliably.
  • (a) is an air flow diagram in the converter and converter gas recovery device according to the present invention
  • (b) is an air flow diagram in a state in which the heat insulating plate and the dust collecting duct are removed.
  • It is explanatory drawing which shows the structure of the blow-down type blowing duct in a converter gas recovery apparatus. It is the graph which showed the substitution efficiency by the blowing duct of an opposing blowing system. It is the side view which showed the example of arrangement
  • (a) is a gas flow diagram when an extended blowing duct is applied
  • (b) is an analysis image of a flow velocity contour and a flow vector in a horizontal plane
  • (c) is an analysis image of an inert gas concentration distribution.
  • (a) is a gas flow diagram in the case of applying a flush blow duct
  • (b) is an analysis image of a flow velocity contour and a flow vector in a horizontal plane
  • (c) is an analysis image of an inert gas concentration distribution.
  • (a) is a gas flow diagram when the left window is open and a plane blow-in duct is applied
  • (b) is an analysis image of the flow velocity contour and the flow vector in the horizontal plane
  • (c) is an analysis image of the inert gas concentration distribution. is there.
  • the converter equipment to which the present invention is applied includes a converter configured to be tiltable, ancillary equipment provided around the converter, for example, an oxygen gas blowing lance, a measuring sub lance, a converter tilting device, and a converter A recovery hood for recovering gas is provided, and these converter facilities are installed in a building not shown.
  • Opening and closing door-type heat shields are installed on the front side of the furnace in the building, and dust collection ducts are installed in the building on the left and right sides of the converter, on the left and right sides of the furnace, and around the recovery hood. ing.
  • a model of the main converter and converter gas recovery device is manufactured on a 1/20 scale, and numerical analysis and investigation are conducted to investigate the state of air flow in the converter space.
  • a model experiment was conducted. As a result, it was discovered that there was an air flow from the front of the furnace toward the furnace port of the converter.
  • the converter gas recovery device of the present invention a place away from the gap portion (atmosphere release portion) between the furnace port and the recovery hood in the converter gas recovery device, specifically, the furnace front side (hot metal equipment) Release the sealing gas consisting of inert gas toward the wide space on the inlet side and place the sealing gas on the flow of air from the front side of the furnace to the furnace port as described above to create an inert gas atmosphere. It is possible to replace with. Thereby, it is also possible to blow seal gas from a position where there is little spitting damage.
  • Converter gas recovery device [1.1] Seal gas Seal gas, which has a volumetric flow rate about 0.25 times the volumetric flow rate of the converter gas, separates oxygen used for converter blowing from air. Use low-purity waste nitrogen gas produced as a by-product.
  • a cryogenic air separation device is used to produce oxygen, but the generated pure nitrogen is used in large quantities at each factory in the steelworks, so there is almost no surplus. However, about 3% of oxygen and waste nitrogen gas containing moisture up to the saturation state are released into the atmosphere without being used.
  • the volume of about 230% is seen in the state of 1,300 to 1,500 ° C. from the above air separation ratio. If a normal temperature sealing gas having a volume 0.25 times larger than that is required, about 58% of the sealing gas is required.
  • waste nitrogen is produced as a by-product at a ratio of 59%. Therefore, when this waste nitrogen is used as a seal gas, it is possible to recover the converter gas at substantially no production cost. Become.
  • Air flow As described above, there is a flow of air (outside air) from the front side of the furnace toward the furnace port.
  • Fig.1 (a) shows the air flow diagram analyzed about the converter and the converter gas recovery device using the 1/20 scale converter equipment model
  • Fig.1 (b) shows the heat insulation plate from Fig.1 (a). The air flow figure in the state which removed the dust collection duct is shown.
  • the furnace port 1a of the converter 1 and the recovery hood 2 of the converter gas recovery device face each other, and a skirt portion 3 is provided around the recovery hood 2.
  • the said skirt part 3 is comprised by the four hydraulic cylinders 3a arrange
  • a heat insulating plate 4 is disposed on the furnace front side of the converter 1, and the heat insulating plate 4 is provided with two windows 4a for monitoring the blowing state.
  • reference numerals 5 and 5 denote dust collection ducts disposed on the furnace back side and the furnace right side.
  • the sealing gas can be efficiently blown if the sealing gas (in this embodiment, waste nitrogen gas) is put on the air flow F 1 that is drawn from the furnace front side and flows into the recovery hood 2.
  • a furnace duct 1a is provided by providing a blow duct 6 having a shape cut obliquely toward the front edge of the furnace opening, and blowing down the sealing gas at a low flow rate of about 4 m / s from the blow opening 6a.
  • seal gas waste nitrogen gas
  • the blowing direction of the seal gas is not directed to the center of the furnace port, but the center of the furnace port 1a like the front edge of the furnace port. It must be directed to the front side of the furnace.
  • such an arrangement of the blowing duct 6 can obtain the highest replacement efficiency, but receives the radiant heat from the charged hot metal when the converter 1 is tilted forward and the hot metal is charged. There is a problem of being exposed to high temperatures. Therefore, for practical use, it is necessary to take heat measures such as making the blow duct 6 into a heat resistant structure.
  • the blowing duct 6 functions as a sealing gas blowing section mainly composed of an inert gas.
  • the B type in which the inlet is arranged on the building wall surface between the dust collection duct in front of the furnace and the center of the furnace mouth has an inert gas (nitrogen) flow rate / involvement flow rate ratio.
  • the highest replacement efficiency is achieved with a small seal gas flow rate.
  • the A type has a seal gas blowing port arranged directly under the furnace pre-dust collection duct
  • the B type has a blow port arranged on the furnace front side between the pre-furnace dust collection duct and the furnace port center.
  • the type C and the type C are those in which the inlet is arranged at the center of the furnace port, and the type D is the one on the back side of the furnace and the inlet is arranged rearward from the center of the furnace port.
  • all the heights of the blowing inlet are set to the vicinity of the furnace opening height.
  • the B type alone can still achieve high replacement efficiency with a small seal gas flow rate.
  • (a) is a flow diagram of the gas (air / seal gas) to the recovery hood
  • (b) is an analysis image of the flow velocity contour and the flow velocity vector in the horizontal plane
  • (c) is the inert gas concentration distribution. It is an analysis image.
  • FIG. 6 shows that two windows (see windows 4a and 4a in FIG. 1) are opened and extended blowing ducts 7 and 8 (the blowing duct is extended from the building wall surface into the converter space so that the blowing ports 7a and 8a protrude 2 m.
  • the analysis results when using the above are shown.
  • Fig. 7 shows the analysis results when using a flush inlet duct with the two windows open (the inlet of the duct is flush with the wall of the building).
  • Fig. 8 shows the analysis results when only the left window is open and the flush blow duct is used.
  • the extended blowing ducts 7 and 8 and the flush blowing duct function as a sealing gas blowing portion mainly containing an inert gas.
  • the seal gas rides on the air flow from the front side of the furnace toward the furnace port and is sucked into the recovery hood 2.
  • the target for blowing out the seal gas from the extension blow ducts 7 and 8 and the flush blow duct is not aimed at the furnace opening, but from the furnace opening in anticipation of getting on the air flow from the furnace front side to the furnace opening. Also aimed at the front of the furnace.
  • each duct is provided along the tilting axis of the converter as viewed from the plane, and a pair is arranged in a state of being symmetrically opposed with the converter 1 as the center when viewed from the front.
  • the extended blowing ducts 7 and 8 can be blown without penetrating the building wall surface by arranging, for example, a crank-shaped duct in the converter space even if the building wall surface cannot be opposed to each other.
  • the ports 7a and 8a can be made to face each other, and a replacement effect equivalent to that of the flush outlet duct can be obtained.
  • the injected seal gas was sucked from the dust collecting duct in front of the furnace and did not flow toward the furnace port.
  • the position of the injection port is closest to the furnace port, and the furnace port is on the extended line in the direction of blowing out the seal gas.
  • the blown seal gas was flowed to the back of the furnace, resulting in removal of the furnace port.
  • Fig. 9 is a graph showing the relationship between the flow rate of the seal gas and the replacement efficiency in the extended blowing duct (extending the 2m duct from the wall surface) and the flush blowing duct (no duct outlet), and the horizontal axis below the graph is inactive.
  • the gas flow rate / involved flow rate ratio is shown, the horizontal axis on the graph shows the flow rate of blown inert gas (m 3 / min), and the vertical axis shows the replacement efficiency (%).
  • suction is performed by blowing a seal gas (waste nitrogen gas) at a flow rate 1.3 to 1.7 times the outside air (intake flow rate) sucked into the converter gas recovery device.
  • a seal gas waste nitrogen gas
  • the outside air normally air containing oxygen
  • 95% of the outside air can be replaced with an inert gas.
  • a large amount of seal gas can be obtained just by providing a blower for supplying an inert gas at a low pressure from the oxygen factory to the converter factory in the same manner as supplying oxygen for converter blowing. Can be led to a wide converter space via a large pipe, and the air release portion between the furnace port and the recovery hood can be effectively replaced with an inert gas atmosphere from a position away from the furnace port.
  • a seal gas (inert gas) is blown into the atmosphere opening portion between the furnace port 1 a and the recovery hood 2.
  • a tuft (blown flow for visualizing the flow direction) was attached to the gap portion of the shielding wall surrounding the converter, and the gas flow passing through the gap portion was observed.
  • FIG. 11 shows the left and right windows (see a and b in the figure) provided on the furnace front open / close door heat shield as the first measurement position.
  • FIG. 12 shows the back of the heat insulating plate (see c in the figure) and the left and right side wall inspection windows (see e in the figure) as the second measurement position.
  • FIG. 13 shows, as the third measurement position, a gap between the furnace front floor and the converter body (see d in the figure) and a gap between the furnace side floor and the converter body (see g in the figure).
  • FIG. 14 shows a furnace door window (see f in the figure) provided on the shield wall on the furnace side as the fourth measurement position.
  • Table 1 shows the test results expressed as the ratio of the dust collection flow rate to the inert gas flow rate.
  • a and b are both windows of the heat insulating plate
  • a is a case where the windows of both of the heat insulating plates are open
  • b is a case where the window of the heat insulating plate on one side is open.
  • the ratio of the minimum pre-furnace dust collection flow rate / inert gas flow rate when the tuft shows a reverse flow the ratio of the minimum pre-furnace dust collection flow rate / inert gas flow rate at the window of the heat insulating plate is 4 .B is 4.06 in the same manner as in b.
  • the ratio of the minimum pre-reactor dust collection flow rate / inert gas flow rate shown in Table 1 indicates that blowout tends to occur in order from the top of Table 1.
  • the inert gas flow rate (seal gas supply flow rate) when the wind direction changes from the converter side toward the working space outside the converter
  • the inert gas flow rate at that time is obtained. Since the ratio of the dust collection flow rate (dust collection duct suction flow rate) is almost constant regardless of the absolute value of the inert gas flow rate and the dust collection flow rate, the collection rate of a certain ratio (ratio) with respect to the inert gas flow rate is used. Ensuring the dust flow rate is the essence of safety measures.
  • 15 to 17 are graphs obtained by measuring the relationship between the ratio of the pre-furnace dust collection flow rate to the inert gas flow rate and the average oxygen concentration at the measurement position.
  • the horizontal axis represents the ratio of the pre-furnace dust collection flow rate / inert gas flow rate
  • the vertical axis represents the average oxygen concentration (%).
  • the graph of FIG. 15 is about the left and right window portions of the heat insulating plate
  • the graph of FIG. 16 is the gap portion between the right side of the heat insulating plate and the left heat insulating plate
  • the graph of FIG. 17 is the back side of the left heat insulating plate and the right heat insulating plate. The relationship between the flow rate ratio and the oxygen concentration is shown for each gap.
  • FIG. 18 shows a system schematic diagram of the converter equipment to which the seal gas blowing operation method of the present invention is applied.
  • a recovery hood 2 is provided facing the furnace port 1a of the converter 1 in an upright state, and the recovery hood 2 is connected to a dust collector 9 via a duct 2a.
  • oxygen separated from raw material air in the cryogenic air separation device 10 is passed through an oxygen compressor 11 and an oxygen tank 12 provided in order from the upstream side of the oxygen supply path L1. Then, the oxygen lance 13 is supplied.
  • waste nitrogen gas having a low purity, which is by-produced when oxygen is separated from air is taken out for sealing gas, and is upstream of the sealing gas supply path L2.
  • seal gas supplied as seal gas to the blow-in duct 18 through a seal gas compressor 14, a seal gas tank 15, a shut-off valve 16, and a gate valve 17 provided in order.
  • the blowing duct 18 is disposed in the vicinity of the furnace port 1a and the recovery hood 2, and is substituted with an inert gas atmosphere by blowing a seal gas into an air opening portion of the gap.
  • the shutoff valve 16 and the gate valve 17 are controlled to be opened and closed by a control unit 19 that performs a blowing operation, and the gate valve 17 can adjust the supply amount of the seal gas. With this, the sealing gas can be supplied or stopped.
  • Seal gas blowing operation method [2.4.1] First sealing gas blowing operation method Attaching to the window of the furnace front side openable door type heat insulating plate and the back of the furnace front side openable door type heat insulating plate An ultrasonic wind sensor is used as an anemometer.
  • Ultrasonic wind direction wind speed sensor has extremely fast follow-up to wind direction changes compared to weathercock-type anemometers, and because the inertial mass that moves when the wind direction changes in the measuring device is zero, it responds to changes in wind direction with virtually zero time constant There is an advantage that you can.
  • FIG. 19 shows a specific example of the ultrasonic wind direction wind speed sensor 20.
  • an ultrasonic wind direction sensor SE-8371UM manufactured by Senecom Co., Ltd. was used.
  • the specifications are wind speed range: 0 to 75 m / S, resolution: 0.1 m / s, wind direction range: 0 to 360 °.
  • wind direction signal information and the wind speed signal information output from the ultrasonic wind direction wind speed sensor 20 are transmitted to a control system in the cab via a cable (not shown) and processed.
  • FIG. 20 is an explanatory diagram showing the mounting position of the ultrasonic wind direction wind speed sensor 20.
  • the openable door-type heat shield 21 on the front side of the furnace is provided with a left window portion 21a and a right window portion 21b, and above the left window portion 21a and the right window portion 21b (see symbol h), respectively.
  • the ultrasonic wind direction wind speed sensor 20 having the above configuration is installed.
  • the ultrasonic wind direction wind speed sensor 20 is attached to the windows (the left window 21a and the right window 21b) of the furnace front side openable door type heat insulating plate 21 so that the wind direction is from the converter side to the outside of the converter.
  • the control unit 19 uses this as a trigger to notify an alarm and adjust the gate valve 17 (see FIG. 18) in the seal gas supply path L2 to be closed. Then, the supply amount of the seal gas is reduced. Alternatively, the shutoff valve 16 is closed to stop the supply of the seal gas itself. Thereby, the injection of the seal gas can be controlled safely and reliably.
  • the ultrasonic wind direction wind speed sensor 20 was installed in the window part of the furnace front side openable door type heat insulating plate in the above embodiment, as described above, the gap portion behind the furnace front side openable door type heat insulating plate 21 is provided. In addition, since the sign of the blowout can be detected first, the ultrasonic wind direction wind speed sensor 20 can be installed behind the furnace front side openable door type heat shield 21.
  • the flow rate of the dust collection duct can be measured with a flow meter, but in this embodiment, the differential pressure generated between the upstream and downstream of the dust collection duct arranged in the vertical direction is measured as information on the duct internal pressure that can be converted into the flow rate. The measured value is converted into a flow rate.
  • the pressure difference ⁇ P between the upstream and downstream ducts is: A: duct cross-sectional area, D: duct equivalent diameter, L: duct length, ⁇ : dust collection air density, U: dust collection air duct average flow velocity, Q: dust collection air
  • A duct cross-sectional area
  • D duct equivalent diameter
  • L duct length
  • dust collection air density
  • U dust collection air duct average flow velocity
  • Q dust collection air
  • is a proportionality constant (friction loss coefficient) determined by the roughness of the duct surface.
  • the pressure loss mechanism is not only friction but also pressure loss due to vortex generation due to duct cross section change.
  • the proportionality constant ⁇ indicates the effect of combining both pressure loss due to friction and vortex generation. Take it as a proportionality constant.
  • the flow rate ratio of the dust collection duct flow rate to the inert gas flow rate is obtained.
  • the control unit 19 notifies a warning and adjusts the seal valve in a direction to close the gate valve 17 until the threshold value can be maintained. Reduce the supply amount.
  • the shutoff valve 16 of the seal gas supply path L2 is closed to stop the supply of the seal gas. Thereby, the injection of the seal gas can be controlled safely and reliably.
  • the threshold value is determined to be “4.1” based on the graph showing the relationship between the dust collection flow rate and the oxygen concentration in the work environment shown in FIG. 15, FIG. 16, and FIG.
  • the third seal gas injection operation method is an operation method that takes into account a failure of the measuring instrument.
  • the signal information from the ultrasonic wind direction sensor 20 and the signal information from the dust collection duct flowmeter drop off from the normal measurement position with normal values due to a failure of the measuring instrument. It is assumed that it will fall into the abnormal measurement state.
  • an operator who performs operations such as starting / stopping the blowing process in the converter and adjusting the oxygen flow rate always gives instructions to start and continue the injection of seal gas at regular intervals.
  • the operation is performed so that the blowing operation worker of the converter continues the sealing gas blowing operation by pressing the sealing gas blowing button every 15 seconds, for example, unless there is an abnormality.
  • the program is organized.
  • control unit 19 that performs the blowing operation when the start of supply of the seal gas is instructed starts the timer, and the next start of supply of the seal gas is not given until the predetermined time has been counted. In this case, control is performed so that the shutoff valve 16 of the seal gas supply path L2 is closed and the supply of the seal gas is stopped.
  • a typical value of the amount of seal gas blown in 15 seconds is 400 m 3 .
  • This amount furnace front openable door type heat insulating board, the side wall of the converter horizontally, Rourakabe, 40 of the ceiling wall and the converter shield surrounded by the floor space volume 600 meters 3 - 1,000 m 3 near collection hood ⁇ 67 %. That is, it corresponds to a flow rate that can prevent leakage to the outside by filling only the inside of the converter shielding space with the sealing gas.
  • the seal gas blowing operation method has been individually described.
  • an operation method in which the seal gas blowing operation methods are combined may be employed.
  • the ratio of the dust collection duct flow rate to the inert gas flow rate in the dust collection duct is obtained, and the gate valve 17 is kept until the obtained flow rate ratio can maintain the threshold value or more.
  • the shut-off valve 16 may be controlled to close when the valve is adjusted in the closing direction and the threshold value or more cannot be maintained, or the seal gas blowing button is not pressed for more than 15 seconds even when the flow rate ratio is normal. it can.
  • the seal gas blowing operation in the seal gas blowing operation converter gas recovery can be performed most safely.
  • the present invention can be used for a converter gas recovery facility for recovering a converter gas generated in a converter blowing process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

A converter gas recovery device can reliably replace a portion open to the atmosphere between a converter throat and the converter gas recovery device with an inert gas atmosphere by introducing a large amount of inert gas into the portion open to the atmosphere, and recovers converter gas generated in a converter blowing process from a recovery hood, the converter gas recovery device being characterized in that blowing portions (7, 8) for seal gas having the inert gas as a main component are provided toward an air stream from the converter front side to the converter throat in a converter space between a dust collection duct disposed on the converter front side in plan view and a converter throat center.

Description

転炉ガス回収装置及びシールガス吹込運転方法Converter gas recovery device and seal gas injection operation method
 本発明は、転炉吹錬過程で発生するCOを主成分とする転炉ガスを回収する転炉ガス回収装置及び転炉ガス回収装置の回収フードに供給するシールガスの吹込運転方法に関するものである。 The present invention relates to a converter gas recovery device that recovers a converter gas mainly composed of CO generated in a converter blowing process, and a method of blowing a seal gas supplied to a recovery hood of the converter gas recovery device. is there.
 転炉吹錬過程で大量に発生するCOガスは燃焼性が良好であり、通常、2,000Kcal/nm3程度の潜熱を有しているため、ボイラ、圧延工場、石灰焼成炉等の燃料ガスとして利用されている。 CO gas generated in large quantities in the converter blowing process has good combustibility and usually has a latent heat of about 2,000 Kcal / nm 3, so fuel gas for boilers, rolling mills, lime firing furnaces, etc. It is used as.
 回収フードを通じてそのCOガスを回収する転炉ガス回収装置では、転炉の炉口と回収フードとの隙間をできるだけ小さくしてCOガスの漏出または外気の流入を防止する必要があるため、通常、スカート部が設けられている。そして、炉口とそのスカート部との間にはシールガス(不活性ガス)によるシール構造が形成されている(例えば特許文献1参照)。 In the converter gas recovery apparatus that recovers the CO gas through the recovery hood, it is necessary to prevent the leakage of CO gas or the inflow of outside air by reducing the gap between the furnace port of the converter and the recovery hood as much as possible. A skirt is provided. And the seal structure by seal gas (inert gas) is formed between the furnace port and the skirt part (for example, refer patent document 1).
 また、スカート部をまわりから覆うようにしてさらにカバー部を設け、COガスに対してシールガスを供給する送気管、吸気管をそのカバー部に接続し、回収フード近くの圧力が大気圧を超えるときはカバー部内を大気圧未満に調整し、また、回収フード近くの圧力が大気圧未満のときはカバー部内の圧力が大気圧を超えるように調整しながらCOガスの回収を効率良く行う転炉ガス回収方法も提案されている(例えば、特許文献2参照)。 In addition, a cover part is provided so as to cover the skirt part from the surroundings, and an air supply pipe and an intake pipe for supplying seal gas to the CO gas are connected to the cover part, and the pressure near the collection hood exceeds the atmospheric pressure. Sometimes the inside of the cover is adjusted to less than atmospheric pressure, and when the pressure near the collection hood is less than atmospheric pressure, the CO gas is efficiently recovered while adjusting the pressure inside the cover to exceed atmospheric pressure. A gas recovery method has also been proposed (see, for example, Patent Document 2).
 また、転炉の炉口と回収フードとの隙間をシールガスにてシールするに際し、シールガスとしてCOを使用し、そのシールガスを積極的に転炉ガス回収装置で吸引するシール方法も知られている(例えば特許文献3参照)。 Also known is a sealing method in which CO 2 is used as the sealing gas when the gap between the furnace port of the converter and the recovery hood is sealed with a sealing gas, and the sealing gas is actively sucked by the converter gas recovery device. (See, for example, Patent Document 3).
 上記したように、炉口と回収フードとの間を不活性ガス雰囲気にしたり、カバー部内の圧力を調整しながら転炉ガスを回収する方法が提案されているが、いずれの発明も炉口と回収フードとの間の狭い大気開放部分に窒素ガスや二酸化炭素ガス等のシールガスを吹き込むことを意図したものである。 As described above, a method for recovering the converter gas while making the atmosphere between the furnace port and the recovery hood an inert gas atmosphere or adjusting the pressure in the cover has been proposed. It is intended to blow a seal gas such as nitrogen gas or carbon dioxide gas into a narrow atmosphere opening portion between the collection hood and the air.
特開昭59-222514号公報JP 59-222514 A 特開昭63-317612号公報JP-A-63-317612 特開昭56-127721号公報JP-A-56-127721
 しかしながら、実際の吹き込みに必要とされるシールガスは、転炉から発生するCOガスの体積流量に対して約0.25倍の体積流量が必要とされるため、そのためのシールガス供給管の径としては炉口径の約1/2のサイズが必要となる。 However, since the seal gas required for actual blowing requires a volume flow of about 0.25 times the volume flow of the CO gas generated from the converter, the diameter of the seal gas supply pipe for that purpose is required. Therefore, the size of about 1/2 of the furnace diameter is required.
 このような大径の配管を、炉口と回収フードとの狭い空間に設けることは現実的に不可能である。また、油圧シリンダの操作によってスカート部を昇降させることを考慮すると、上記シールガス供給管はそのようなスカート部に取り付け可能なサイズでもなく重量でもない。 It is practically impossible to provide such a large-diameter pipe in a narrow space between the furnace port and the recovery hood. In consideration of raising and lowering the skirt portion by operating the hydraulic cylinder, the seal gas supply pipe is neither a size that can be attached to such a skirt portion nor a weight.
 また、炉口の近傍はスピッティングと呼ばれる、転炉内からの液状溶融物が頻繁に飛散し落下する場所でもあり、回収フードは、炉口に近づけるほど飛散した液状溶融物が付着して閉塞しやすくなる。 The vicinity of the furnace opening is also called spitting, where the liquid melt from the converter frequently scatters and falls, and the recovery hood closes as the scattered liquid melt adheres closer to the furnace throat. It becomes easy to do.
 さらにまた、1,300~1,500℃のCOガスの体積流量に対し、窒素にせよ二酸化炭素にせよ約0.25倍の体積流量に及ぶ常温のシールガスを製造する費用は、増加するであろう転炉ガス回収量から得られる利益よりもやはり高くつくため、以上の理由からシールガスによるシールドは実際には全く実施されていない。 Furthermore, the cost of producing a normal temperature sealing gas that is about 0.25 times the volume flow rate of nitrogen or carbon dioxide with respect to the volume flow of CO gas at 1,300 to 1,500 ° C. will increase. For the above reasons, sealing with a sealing gas is not actually performed at all because it is still more expensive than the profit obtained from the converter gas recovery amount.
 また、シールガスを用いてシールを行う場合、回収される転炉ガス中に対し外気のNが全く混入しないようにするためには、どうしても過剰のシールガスを導入してシールを行わなければならず、長期間にわたって大量のシールガスによるシールを行うと、例えばCOは空気よりも比重が重いことから作業床上にシールガスがたちこむことになり換気が不可欠となる。 In addition, when sealing is performed using sealing gas, in order to prevent N 2 in the outside air from being mixed into the recovered converter gas, sealing must be performed by introducing an excessive sealing gas. However, if sealing is performed with a large amount of sealing gas over a long period of time, for example, CO 2 has a higher specific gravity than air, so that the sealing gas is trapped on the work floor and ventilation is indispensable.
 このように、シールガスを吹き込んでシールを行う方法では、シールガスがCO、N、或いはその他のガスであれ、呼吸に適した濃度の酸素が含まれていない限り少なからず酸素欠乏の危険性が生じてくる。ところが、上記危険性を回避し得る安全なシールガス吹込運転方法についてもこれまで提案されていない。 As described above, in the method of sealing by blowing a seal gas, even if the seal gas is CO 2 , N 2 , or other gas, there is no danger of oxygen deficiency as long as it does not contain oxygen at a concentration suitable for breathing. Sex comes. However, no safe seal gas blowing operation method that can avoid the above-mentioned danger has been proposed so far.
 本発明は以上のような従来の転炉ガス回収装置における課題を考慮してなされたものであり、第一の目的は、転炉炉口と回収フードとの間の大気開放部分に、大量の不活性ガスを導入することができ、上記大気開放部分を確実に不活性ガス雰囲気に置換することができる転炉ガス回収装置を提供することにある。 The present invention has been made in consideration of the problems in the conventional converter gas recovery apparatus as described above, and the first object is to provide a large amount of air in the open part between the converter furnace port and the recovery hood. An object of the present invention is to provide a converter gas recovery apparatus that can introduce an inert gas and can reliably replace the above-described open-at-air portion with an inert gas atmosphere.
 また、本発明の第二の目的は、シールガスとして過剰な不活性ガスを吹き込んでも、また、シールガスが回収フード内に吸引されない事態が発生しても作業環境の酸素濃度低下を防止することができるシールガス吹込運転方法を提供することにある。 In addition, the second object of the present invention is to prevent a decrease in oxygen concentration in the working environment even when an excessive inert gas is blown as a seal gas or when a situation occurs in which the seal gas is not sucked into the recovery hood. An object of the present invention is to provide a sealing gas blowing operation method capable of performing the above.
 本発明は、転炉ガス回収装置に係る第一形態とシールガス吹込運転方法に係る第二形態がある。 The present invention has a first mode related to the converter gas recovery device and a second mode related to the seal gas injection operation method.
 本発明の第一形態は、転炉吹錬過程で発生する転炉ガスを、回収フードを通じて回収する転炉ガス回収装置において、
 平面から見て炉前側に配置されている集塵ダクトと転炉炉口中心との間の転炉スペースに、炉前側から上記転炉炉口へ向かう空気流に向けて、不活性ガスを主成分とするシールガスの吹込部を設けてなる転炉ガス回収装置である。
The first aspect of the present invention is a converter gas recovery apparatus that recovers the converter gas generated in the converter blowing process through a recovery hood.
An inert gas is mainly supplied to the converter space between the dust collection duct arranged on the front side of the furnace when viewed from the plane and the center of the converter furnace port, toward the air flow from the front side of the furnace to the converter furnace port. It is a converter gas recovery device provided with a blowing portion of a sealing gas as a component.
 本発明の第一形態において、平面から見て上記転炉の傾動軸に沿って上記吹込部から上記シールガスが吹き込まれるとともに、上記シールガスの吹込目標が上記転炉炉口よりも炉前側に向けられることが好ましい。 In the first embodiment of the present invention, the sealing gas is blown from the blowing portion along the tilt axis of the converter as viewed from above, and the blowing target of the sealing gas is closer to the furnace front side than the converter furnace port. Preferably it is directed.
 また、上記吹込部は、上記転炉を中心として左右対称に対向した状態で一対配置することが好ましい。 Moreover, it is preferable to arrange a pair of the blowing portions in a state of being symmetrically opposed with respect to the converter.
 また、上記吹込部の吹込口は、上記転炉を収容している左右の壁面に開口させることができる。 Also, the blowing port of the blowing section can be opened on the left and right wall surfaces that house the converter.
 また、上記吹込部の吹込口は、上記転炉を収容している左右の壁面から上記転炉の傾動軸に沿って延設されたダクトの先端に開口させることができる。 Further, the blowing port of the blowing section can be opened from the left and right wall surfaces accommodating the converter to the tip of a duct extending along the tilt axis of the converter.
 本発明の第二形態は、転炉ガスを回収フードから回収する際に、転炉炉口と上記回収フードとの空隙部をシールガスにてシールするシールガス吹込運転方法において、
 転炉ガス回収中のシールガスの流れの変化を検知するか、またはシールガス供給流量に対する集塵ダクト吸込流量を求め、
 上記シールガスの流れが変化した際、またはシールガス供給流量に対する集塵ダクト吸込流量が所定値よりも低下した際に、上記シールガスの供給量を低下させるかまたは上記シールガスの供給を停止させるシールガス吹込運転方法である。
In the second mode of the present invention, when recovering the converter gas from the recovery hood, in the seal gas injection operation method of sealing the gap between the converter furnace port and the recovery hood with a seal gas,
Detect the change in the seal gas flow during converter gas recovery, or obtain the dust collection duct suction flow rate relative to the seal gas supply flow rate,
When the flow of the seal gas changes or when the dust collection duct suction flow rate with respect to the seal gas supply flow rate falls below a predetermined value, the supply amount of the seal gas is reduced or the supply of the seal gas is stopped. This is a seal gas blowing operation method.
 上記シールガスの流れの変化とは、例えば、シールガスの流れる方向が、転炉の防熱板を境として内部から外部へと逆流した場合を意味する。 The change in the flow of the seal gas means, for example, a case where the flow direction of the seal gas flows backward from the inside to the outside with the heat insulating plate of the converter as a boundary.
 本発明の第二形態において、上記シールガスの流れの変化は、上記転炉の炉前側に設置されている防熱板の内部観察窓部に風向センサを取り付けることにより検知することができる。 In the second embodiment of the present invention, the change in the flow of the seal gas can be detected by attaching a wind direction sensor to the internal observation window of the heat insulating plate installed on the furnace front side of the converter.
 また、上記シールガスの流れの変化は、上記転炉の炉前側に設置されている防熱板の裏側隙間部に風向センサを取り付けることによっても検知することができる。 The change in the flow of the sealing gas can also be detected by attaching a wind direction sensor to the back side gap of the heat insulating plate installed on the front side of the converter.
 また、集塵ダクトの内部圧力を流量に換算することにより上記集塵ダクト吸込流量を求め、シールガス供給流量に対する上記集塵ダクト吸込流量の比がしきい値よりも低下した場合に、シールガス供給路のゲート弁を調整することによりそのしきい値以上を維持できるまでシールガス供給量を低下させるかまたはシールガス供給路の遮断弁を閉じることによりシールガスの供給を停止させることができる。 Also, the dust collection duct suction flow rate is obtained by converting the internal pressure of the dust collection duct into a flow rate, and when the ratio of the dust collection duct suction flow rate to the seal gas supply flow rate falls below a threshold value, the seal gas By adjusting the gate valve of the supply path, the supply amount of the seal gas can be stopped by decreasing the amount of the seal gas supplied until the threshold value or more can be maintained, or by closing the shut-off valve of the seal gas supply path.
 また、シールガスの供給開始が指令された際にタイマーを起動し、所定の時間を計時し終えるまでに次のシールガスの供給開始指令が与えられない場合に、シールガス供給路の遮断弁を閉じ、上記シールガスの供給を停止させることができる。 In addition, a timer is started when a seal gas supply start command is issued, and the seal gas supply path shut-off valve is turned off when the next seal gas supply start command is not given until the predetermined time has elapsed. It can be closed and the supply of the sealing gas can be stopped.
 なお、上記第一及び第二形態において、上記シールガスとしては、上記転炉の吹錬に使用する酸素を空気から分離する際に副生される窒素ガスまたは酸素等の不純物をわずかに含む窒素ガスを使用することができる。 In the first and second embodiments, the seal gas is nitrogen gas that is by-produced when oxygen used for blowing the converter is separated from air or nitrogen that contains impurities such as oxygen slightly. Gas can be used.
 本発明に係る転炉ガス回収装置によれば、大量のシールガスを大型の配管を用いて転炉スペースに導き転炉炉口と転炉ガス回収装置との間の大気開放部分を確実に不活性ガス雰囲気に置換することができるという長所を有する。 According to the converter gas recovery device of the present invention, a large amount of seal gas is introduced into the converter space using a large pipe, and the air-released portion between the converter furnace port and the converter gas recovery device is reliably undisturbed. It has the advantage that it can be replaced with an active gas atmosphere.
 また、転炉からのスピッティングによる被害をほとんど受けることがないため、メンテナンスコストを抑制することができるという利点がある。 Also, there is an advantage that the maintenance cost can be suppressed because it is hardly damaged by spitting from the converter.
 本発明に係るシールガス吹込運転方法によれば、シールガスとして過剰な不活性ガスを吹き込まれた場合、また、シールガスが回収フード内に吸引されない事態が発生した場合に、シールガスの吹き込みを安全かつ確実に制御することができるという長所を有する。 According to the sealing gas blowing operation method according to the present invention, when excessive inert gas is blown as the sealing gas, or when a situation occurs in which the sealing gas is not sucked into the recovery hood, the sealing gas is blown. It has the advantage that it can be controlled safely and reliably.
(a)は本発明に係る転炉および転炉ガス回収装置における空気流れ図、(b)は防熱板、集塵ダクトを取り外した状態での空気流れ図である。(a) is an air flow diagram in the converter and converter gas recovery device according to the present invention, and (b) is an air flow diagram in a state in which the heat insulating plate and the dust collecting duct are removed. 転炉ガス回収装置における吹き下ろし方式の吹込ダクトの構成を示す説明図である。It is explanatory drawing which shows the structure of the blow-down type blowing duct in a converter gas recovery apparatus. 対向吹込み方式の吹込ダクトによる置換効率を示したグラフである。It is the graph which showed the substitution efficiency by the blowing duct of an opposing blowing system. 吹込ダクトの配置例を示した側面図である。It is the side view which showed the example of arrangement | positioning of the blowing duct. 各種吹込ダクトを組み合わせた場合の置換効率を示したグラフである。It is the graph which showed the substitution efficiency at the time of combining various blowing ducts. (a)は延長吹込ダクトを適用した場合のガス流線図、(b)は流速コンターと水平面内流速ベクトルの解析画像、(c)は不活性ガス濃度分布の解析画像である。(a) is a gas flow diagram when an extended blowing duct is applied, (b) is an analysis image of a flow velocity contour and a flow vector in a horizontal plane, and (c) is an analysis image of an inert gas concentration distribution. (a)は面一吹込ダクトを適用した場合のガス流線図、(b)は流速コンターと水平面内流速ベクトルの解析画像、(c)は不活性ガス濃度分布の解析画像である。(a) is a gas flow diagram in the case of applying a flush blow duct, (b) is an analysis image of a flow velocity contour and a flow vector in a horizontal plane, and (c) is an analysis image of an inert gas concentration distribution. (a)は左窓開放で面一吹込ダクトを適用した場合のガス流線図、(b)は流速コンターと水平面内流速ベクトルの解析画像、(c)は不活性ガス濃度分布の解析画像である。(a) is a gas flow diagram when the left window is open and a plane blow-in duct is applied, (b) is an analysis image of the flow velocity contour and the flow vector in the horizontal plane, and (c) is an analysis image of the inert gas concentration distribution. is there. 本発明の吹込ダクトを適用した場合の吹込みガス流量と置換効率との関係を示したグラフである。It is the graph which showed the relationship between the blowing gas flow rate at the time of applying the blowing duct of this invention, and substitution efficiency. (a)は本発明に係るシールガス吹込運転方法に使用された転炉設備模型の斜視図であり、(b)はその転炉設備内の転炉および回収フードの斜視図である。(a) is a perspective view of the converter equipment model used for the sealing gas blowing operation method concerning the present invention, and (b) is a perspective view of the converter and recovery hood in the converter equipment. 図10の転炉設備模型に取り付けたタフトの第一の計測位置を示す説明図である。It is explanatory drawing which shows the 1st measurement position of the tuft attached to the converter equipment model of FIG. 図10の転炉設備模型に取り付けたタフトの第二の計測位置を示す説明図である。It is explanatory drawing which shows the 2nd measurement position of the tuft attached to the converter equipment model of FIG. 図10の転炉設備模型に取り付けたタフトの第三の計測位置を示す説明図である。It is explanatory drawing which shows the 3rd measurement position of the tuft attached to the converter equipment model of FIG. 図10の転炉設備模型に取り付けたタフトの第四の計測位置を示す説明図である。It is explanatory drawing which shows the 4th measurement position of the tuft attached to the converter equipment model of FIG. 集塵流量と作業環境における酸素濃度との関係を示す第一のグラフである。It is a 1st graph which shows the relationship between a dust collection flow volume and the oxygen concentration in a working environment. 集塵流量と作業環境における酸素濃度との関係を示す第二のグラフである。It is a 2nd graph which shows the relationship between a dust collection flow rate and the oxygen concentration in a working environment. 集塵流量と作業環境における酸素濃度との関係を示す第三のグラフである。It is a 3rd graph which shows the relationship between a dust collection flow volume and the oxygen concentration in a working environment. 本発明のシールガス吹込運転方法が適用される転炉設備の系統概略図である。It is the system | schematic schematic of the converter equipment to which the sealing gas blowing operation method of this invention is applied. 本発明のシールガス吹込運転方法に使用される超音波風向風速センサの外観図である。It is an external view of the ultrasonic wind direction wind speed sensor used for the sealing gas blowing operation method of this invention. 図19に示す超音波風向風速センサの取付位置を示す説明図である。It is explanatory drawing which shows the attachment position of the ultrasonic wind direction wind speed sensor shown in FIG.
 本発明が適用される転炉設備は、傾動可能に構成された転炉、その周囲に設けられた付帯設備、例えば、酸素ガス吹込み用ランス、計測用サブランス、転炉の傾動装置、転炉ガスを回収するための回収フード等を有しており、これらの転炉設備は図示しない建屋内に設置されている。 The converter equipment to which the present invention is applied includes a converter configured to be tiltable, ancillary equipment provided around the converter, for example, an oxygen gas blowing lance, a measuring sub lance, a converter tilting device, and a converter A recovery hood for recovering gas is provided, and these converter facilities are installed in a building not shown.
 建屋の炉前側には開閉式扉型の防熱板が設けられており、建屋内において転炉の炉前左右両側と、炉裏左右両側または回収フードの周囲にはそれぞれ集塵ダクトが配設されている。 Opening and closing door-type heat shields are installed on the front side of the furnace in the building, and dust collection ducts are installed in the building on the left and right sides of the converter, on the left and right sides of the furnace, and around the recovery hood. ing.
 本発明ではこのような転炉設備のうち、主要な転炉および転炉ガス回収装置の模型を1/20スケールで製作し、転炉スペース内での空気流の状態を調査すべく数値解析および模型実験を実施した。その結果、炉前側から転炉の炉口に向かう空気の流れが存在することを発見した。 In the present invention, among such converter facilities, a model of the main converter and converter gas recovery device is manufactured on a 1/20 scale, and numerical analysis and investigation are conducted to investigate the state of air flow in the converter space. A model experiment was conducted. As a result, it was discovered that there was an air flow from the front of the furnace toward the furnace port of the converter.
 従来は、酸素を21%含む空気の流れが転炉ガスとともに転炉ガス回収装置の回収フードから捕集されてしまうため、大気中の酸素と転炉ガスの主成分であるCOガスとの燃焼反応
    2CO+O→2CO
 によってCOへ変化し、COガスの一部が転炉ガス回収装置内で燃焼し失われていた。
Conventionally, an air flow containing 21% oxygen is collected from the recovery hood of the converter gas recovery device together with the converter gas, so that combustion of oxygen in the atmosphere and CO gas, which is the main component of the converter gas, is performed. Reaction 2CO + O 2 → 2CO 2
Was changed to CO 2, and a part of the CO gas was burned and lost in the converter gas recovery device.
 これに対し、本発明の転炉ガス回収装置では、炉口と転炉ガス回収装置における回収フードとの間の隙間部分(大気開放部分)から離れた場所、具体的には炉前側(溶銑装入側)の広い空間に向けて不活性ガスからなるシールガスを放出し、そのシールガスを上記したように炉前側から炉口に向かう空気の流れに乗せることで上記隙間部分を不活性ガス雰囲気に置換することを可能にしている。それにより、スピッティング被害の少ない位置からシールガスを吹き込むことも可能にしている。 On the other hand, in the converter gas recovery device of the present invention, a place away from the gap portion (atmosphere release portion) between the furnace port and the recovery hood in the converter gas recovery device, specifically, the furnace front side (hot metal equipment) Release the sealing gas consisting of inert gas toward the wide space on the inlet side and place the sealing gas on the flow of air from the front side of the furnace to the furnace port as described above to create an inert gas atmosphere. It is possible to replace with. Thereby, it is also possible to blow seal gas from a position where there is little spitting damage.
 以下、図面に示した実施形態に基づいて本発明に係る転炉ガス回収装置について詳細に説明する。
[1]転炉ガス回収装置
 [1.1]シールガス
 転炉ガスの体積流量に対し約0.25倍の体積流量におよぶシールガスは、転炉吹錬に使用する酸素を空気から分離する際に副生される純度の低い廃窒素ガスを使用する。
Hereinafter, a converter gas recovery apparatus according to the present invention will be described in detail based on the embodiments shown in the drawings.
[1] Converter gas recovery device [1.1] Seal gas Seal gas, which has a volumetric flow rate about 0.25 times the volumetric flow rate of the converter gas, separates oxygen used for converter blowing from air. Use low-purity waste nitrogen gas produced as a by-product.
 酸素を製造するために通常、深冷式空気分離装置を用いるが、発生する純窒素は製鉄所内の各工場で大量に使用されるために余剰がほとんど発生しない。ところが、約3%程度の酸素と飽和状態までの水分を含む廃窒素ガスについては未使用のまま大気中に放出されている。 深 Usually, a cryogenic air separation device is used to produce oxygen, but the generated pure nitrogen is used in large quantities at each factory in the steelworks, so there is almost no surplus. However, about 3% of oxygen and waste nitrogen gas containing moisture up to the saturation state are released into the atmosphere without being used.
 一般的な深冷式空気分離装置では、純酸素、純窒素、純アルゴン、廃窒素がそれぞれ20%:20%:1%:59%の比率で製造されており、20%の純酸素が転炉で吹錬に使用されると、
   2CO+O→2CO
 の反応により酸素の2倍のモル数のCOガスが転炉から発生する。
In a general cryogenic air separation device, pure oxygen, pure nitrogen, pure argon, and waste nitrogen are produced at a ratio of 20%: 20%: 1%: 59%, respectively, and 20% pure oxygen is converted. When used for blowing in a furnace,
2CO + O 2 → 2CO
As a result of this reaction, CO gas having twice the number of moles of oxygen is generated from the converter.
 したがって、上記空気分離の比率から見ると、40%程度のモル数のCOガスが発生することになる。 Therefore, when viewed from the air separation ratio, about 40% of CO gas is generated.
 常温のCOガスと1,300~1,500℃の高温のCOガスとの密度比から、1,300~1,500℃の状態では上記空気分離の比率から見ると、230%程度の体積まで膨張し、これに対し0.25倍の体積からなる常温のシールガスが必要だとすると、約58%のシールガスが必要になる。 From the density ratio of the normal temperature CO gas to the high temperature CO gas of 1,300 to 1,500 ° C., the volume of about 230% is seen in the state of 1,300 to 1,500 ° C. from the above air separation ratio. If a normal temperature sealing gas having a volume 0.25 times larger than that is required, about 58% of the sealing gas is required.
 上記空気分離の比率で説明したように59%の比率で副産物として廃窒素が製造されるため、この廃窒素をシールガスとして利用すると、実質製造コストゼロで転炉ガスを回収することが可能になる。 As explained in the above air separation ratio, waste nitrogen is produced as a by-product at a ratio of 59%. Therefore, when this waste nitrogen is used as a seal gas, it is possible to recover the converter gas at substantially no production cost. Become.
 しかも、純酸素が必要とされるのは転炉吹錬時であり、不活性ガス雰囲気のために廃窒素が必要とされるのも同じ転炉吹錬時であるため、窒素を送るブロワのみ必要となるもののそれ以外の装置を必要とせず非常に都合がよい。 Moreover, pure oxygen is required at the time of converter blowing, and waste nitrogen is also required for the inert gas atmosphere at the same time as converter blowing, so only the blower that sends nitrogen is used. Although necessary, it is very convenient without the need for other devices.
 [1.2]空気の流れ
 炉前側から炉口へ向かう空気(外気)の流れが存在することは先に述べた通りである。
[1.2] Air flow As described above, there is a flow of air (outside air) from the front side of the furnace toward the furnace port.
 図1(a)は1/20スケールの転炉設備模型を用いて転炉および転炉ガス回収装置について解析した空気流れ図を示しており、同図(b)は図1(a)から防熱板、集塵ダクトを取り外した状態での空気流れ図を示している。 Fig.1 (a) shows the air flow diagram analyzed about the converter and the converter gas recovery device using the 1/20 scale converter equipment model, and Fig.1 (b) shows the heat insulation plate from Fig.1 (a). The air flow figure in the state which removed the dust collection duct is shown.
 両図において、転炉1の炉口1aと転炉ガス回収装置の回収フード2とが対向しており、回収フード2の周囲にスカート部3が設けられている。 In both figures, the furnace port 1a of the converter 1 and the recovery hood 2 of the converter gas recovery device face each other, and a skirt portion 3 is provided around the recovery hood 2.
 なお、上記スカート部3は、円周上等間隔に配設された4本の油圧シリンダ3aによって昇降可能に構成されている。また、転炉1の炉前側には防熱板4が配置されており、この防熱板4には吹錬の状態を監視するための窓部4aが二か所設けられている。なお、図中、符号5,5は炉裏側および炉右側に配置されている集塵ダクトである。 In addition, the said skirt part 3 is comprised by the four hydraulic cylinders 3a arrange | positioned at equal intervals on the circumference so that raising / lowering is possible. Further, a heat insulating plate 4 is disposed on the furnace front side of the converter 1, and the heat insulating plate 4 is provided with two windows 4a for monitoring the blowing state. In the figure, reference numerals 5 and 5 denote dust collection ducts disposed on the furnace back side and the furnace right side.
 上記構成において、転炉1より発生する転炉ガス(LDG)を回収するにあたり、炉口1aと回収フード2との間の大気開放部分にシールガスを吹き込みつつ転炉ガスを回収する。 In the above configuration, when recovering the converter gas (LDG) generated from the converter 1, the converter gas is recovered while blowing a seal gas into the atmosphere opening portion between the furnace port 1 a and the recovery hood 2.
 回収フード2内へ巻き込まれる空気流の75%(図中、矢印F参照)は防熱板4の窓部4aを通過して転炉スペース内に流入し、空気流の残りの25%(図中、矢印F参照)は炉前側のスラグ台車軌道上の隙間や防熱板4の隙間から流入している。なお、隙間のない炉裏側から回収フード2内に巻き込まれる空気流は確認されなかった。 Recovering 75% of the entrained air flow into the hood 2 (in the figure, see the arrow F 1) flows into the converter space through the window portion 4a of the heat insulating board 4, the remaining 25% of the air flow (Fig. in, see arrow F 2) is flowed through the gap or clearance between the heat insulating plate 4 on the slag carriage orbit the furnace front. In addition, the air flow caught in the collection | recovery hood 2 from the furnace back side without a clearance gap was not confirmed.
 興味深いことは、スカート部3の全周360°に渡って回収フード2内に空気が巻き込まれることは無く、炉前方向±45°の特定の範囲から空気の巻き込みが発生し、さらにその巻き込まれる空気流の大部分は窓部4aを通過していることである。 Interestingly, air is not caught in the collection hood 2 over the entire circumference 360 ° of the skirt portion 3, and air is caught from a specific range of ± 45 ° in the front direction of the furnace, and is further caught. Most of the airflow is passing through the window 4a.
 また、図1(a)に示した2つの窓部4aが開いている場合は75%の空気流がそれらの窓部4aを通過し、右または左のいずれか一方の窓部が開いている場合は50%の空気流が通過している。 When the two windows 4a shown in FIG. 1 (a) are open, 75% of the air flow passes through the windows 4a, and either the right or left window is open. In some cases, 50% air flow is passing.
 したがって、炉前側から巻き込まれて回収フード2内へ流入する空気流Fにシールガス(本実施形態では廃窒素ガス)を乗せれば、シールガスを効率良く吹き込むことができると推測される。 Therefore, it is presumed that the sealing gas can be efficiently blown if the sealing gas (in this embodiment, waste nitrogen gas) is put on the air flow F 1 that is drawn from the furnace front side and flows into the recovery hood 2.
 [1.3]シールガス吹込部の構成
  [1.3.1]吹き下ろし方式
 以下に説明する図面においては図1と同じ構成要素については同一符号を付してその説明を省略する。
[1.3] Configuration of Seal Gas Blow Unit [1.3.1] Blow Down Method In the drawings described below, the same components as in FIG.
 図2に示すように、炉口前縁部に向けて斜めに切断した形状の吹込ダクト6を設け、その吹込口6aから4m/s程度の低い流速でシールガスを吹き下ろすことで炉口1aと回収フード2との間の隙間へ巻き込まれる空気の約94%をシールガス(廃窒素ガス)に置換することができる。 As shown in FIG. 2, a furnace duct 1a is provided by providing a blow duct 6 having a shape cut obliquely toward the front edge of the furnace opening, and blowing down the sealing gas at a low flow rate of about 4 m / s from the blow opening 6a. About 94% of the air caught in the gap between the hood and the recovery hood 2 can be replaced with seal gas (waste nitrogen gas).
 また、上記したように、炉前側から炉口へ向かう空気流が存在しているため、シールガスの吹き込み方向は炉口中心に向けるのではなく、炉口前縁のように炉口1aの中心よりも炉前側に向ける必要がある。しかしながら、このような吹込ダクト6の配置は、最高の置換効率を得ることができるものの、転炉1を前側に傾動させて溶銑を装入する際に、装入した溶銑からの放射熱を受けて高温に曝されるという問題がある。そのため、実用化するには吹込ダクト6を耐熱構造にする等の熱対策が必要になる。 Further, as described above, since there is an air flow from the front side of the furnace to the furnace port, the blowing direction of the seal gas is not directed to the center of the furnace port, but the center of the furnace port 1a like the front edge of the furnace port. It must be directed to the front side of the furnace. However, such an arrangement of the blowing duct 6 can obtain the highest replacement efficiency, but receives the radiant heat from the charged hot metal when the converter 1 is tilted forward and the hot metal is charged. There is a problem of being exposed to high temperatures. Therefore, for practical use, it is necessary to take heat measures such as making the blow duct 6 into a heat resistant structure.
 上記吹込ダクト6は、不活性ガスを主成分とするシールガスの吹込部として機能する。 The blowing duct 6 functions as a sealing gas blowing section mainly composed of an inert gas.
  [1.3.2]対向吹込み方式
 一対のシールガス吹込ダクトを建屋の両側壁面を貫通させてそれぞれ転炉スペース内に導き、吹込口を対向させる。
[1.3.2] Opposed blowing method A pair of seal gas blowing ducts are guided through the side wall surfaces of the building into the converter space, and the blowing ports are made to face each other.
 図3のグラフ及び図4に示すように、炉前集塵ダクトと炉口中心との間の建屋壁面に吹込口を配置したBタイプは、不活性ガス(窒素)流量/巻込み流量比が高く、他の位置に吹込口を配置したAタイプ、Cタイプ、Dタイプと比較して最も高い置換効率を少ないシールガス流量で実現している。 As shown in the graph of FIG. 3 and FIG. 4, the B type in which the inlet is arranged on the building wall surface between the dust collection duct in front of the furnace and the center of the furnace mouth has an inert gas (nitrogen) flow rate / involvement flow rate ratio. Compared with the A type, C type, and D type, which have high inlets at other positions, the highest replacement efficiency is achieved with a small seal gas flow rate.
 上記Aタイプは、炉前集塵ダクトの真下にシールガスの吹込口を配置したもの、Bタイプは、炉前側であって炉前集塵ダクトと炉口中心との間に吹込口を配置したもの、Cタイプは炉口中心に吹込口を配置したもの、Dタイプは炉裏側であって炉口中心から後方に吹込口を配置したものである。なお、吹込口の高さはいずれも炉口高さ付近に設定している。 The A type has a seal gas blowing port arranged directly under the furnace pre-dust collection duct, and the B type has a blow port arranged on the furnace front side between the pre-furnace dust collection duct and the furnace port center. The type C and the type C are those in which the inlet is arranged at the center of the furnace port, and the type D is the one on the back side of the furnace and the inlet is arranged rearward from the center of the furnace port. In addition, all the heights of the blowing inlet are set to the vicinity of the furnace opening height.
 図5のグラフに示されるように、たとえBタイプと他のタイプとの組み合わせを選択したとしても、やはりBタイプ単独のものの方が、高い置換効率を少ないシールガス流量で実現できている。 As shown in the graph of FIG. 5, even if the combination of the B type and another type is selected, the B type alone can still achieve high replacement efficiency with a small seal gas flow rate.
 このことは、図6~図8に示したBタイプにおける速度ベクトルと不活性ガス濃度分布の解析結果からも確認できる。なお、各図において、(a)は回収フードへのガス(空気・シールガス)流線図、(b)は流速コンターと水平面内流速ベクトルの解析画像、(c)は不活性ガス濃度分布の解析画像である。 This can also be confirmed from the analysis result of the velocity vector and the inert gas concentration distribution in the B type shown in FIGS. In each figure, (a) is a flow diagram of the gas (air / seal gas) to the recovery hood, (b) is an analysis image of the flow velocity contour and the flow velocity vector in the horizontal plane, and (c) is the inert gas concentration distribution. It is an analysis image.
 図6は2窓部(図1の窓部4a,4a参照)開放で延長吹込ダクト7、8(吹込ダクトを建屋壁面から転炉スペース内に延長させてその吹込口7a、8aを2m突出させたもの)を使用した場合の解析結果を示している。 FIG. 6 shows that two windows (see windows 4a and 4a in FIG. 1) are opened and extended blowing ducts 7 and 8 (the blowing duct is extended from the building wall surface into the converter space so that the blowing ports 7a and 8a protrude 2 m. The analysis results when using the above are shown.
 図7は2窓部開放で面一吹込ダクト(吹込ダクトの吹込口が建屋内壁面と面一)を使用した場合の解析結果を示している。 Fig. 7 shows the analysis results when using a flush inlet duct with the two windows open (the inlet of the duct is flush with the wall of the building).
 図8は左側の窓部のみ開放で面一吹込ダクトを使用した場合の解析結果を示している。 Fig. 8 shows the analysis results when only the left window is open and the flush blow duct is used.
 なお、上記延長吹込ダクト7、8および面一吹込ダクトは不活性ガスを主成分とするシールガスの吹込部として機能する。 Note that the extended blowing ducts 7 and 8 and the flush blowing duct function as a sealing gas blowing portion mainly containing an inert gas.
 図6~図8の各図に示されるように、Bタイプの場合は炉前側から炉口に向かう空気流にシールガスが乗って回収フード2内に吸引されている。 As shown in each of FIGS. 6 to 8, in the case of the B type, the seal gas rides on the air flow from the front side of the furnace toward the furnace port and is sucked into the recovery hood 2.
 このように、延長吹込ダクト7、8および面一吹込ダクトからシールガスを吹き出す目標は、炉口を狙っておらず、炉前側から炉口に向かう空気流に乗ることを期待して炉口よりも炉前側を狙っている。 In this way, the target for blowing out the seal gas from the extension blow ducts 7 and 8 and the flush blow duct is not aimed at the furnace opening, but from the furnace opening in anticipation of getting on the air flow from the furnace front side to the furnace opening. Also aimed at the front of the furnace.
 また、各ダクトとも平面から見て転炉の傾動軸に沿って設けられ、正面から見ると転炉1を中心として左右対称に対向した状態で一対配置されている。 Also, each duct is provided along the tilting axis of the converter as viewed from the plane, and a pair is arranged in a state of being symmetrically opposed with the converter 1 as the center when viewed from the front.
 また、転炉1の両側から吹き込まれたシールガスの衝突位置が炉口の直前になるようにし、左右の延長吹込ダクト7、8から吹き込むシールガスの流速を一致させるのが特に効率が良い。 Also, it is particularly efficient to make the collision position of the seal gas blown from both sides of the converter 1 immediately before the furnace port, and to match the flow velocity of the seal gas blown from the left and right extended blow ducts 7 and 8.
 なお、延長吹込ダクト7、8については、建屋壁面を貫通して対向させることができなくとも、転炉スペース内に例えばクランク状のダクトを配設することにより、建屋壁面を貫通させずとも吹込口7a、8aを対向させることができ、面一吹出ダクトと同等の置換効果を得ることができる。 Note that the extended blowing ducts 7 and 8 can be blown without penetrating the building wall surface by arranging, for example, a crank-shaped duct in the converter space even if the building wall surface cannot be opposed to each other. The ports 7a and 8a can be made to face each other, and a replacement effect equivalent to that of the flush outlet duct can be obtained.
 なお、先に図4に示したAタイプは、吹込んだシールガスが炉前集塵ダクトから吸込まれてしまい炉口方向に流れなかった。Cタイプは吹込口の位置が炉口に最も近く、しかもシールガス吹出方向の延長線上に炉口があるため、置換効率が最も高くなることが予想されたが、炉前側から炉口へ向かう空気流によって、吹き込んだシールガスが炉裏側に流されてしまい炉口を外れるという結果になった。 Incidentally, in the A type shown in FIG. 4, the injected seal gas was sucked from the dust collecting duct in front of the furnace and did not flow toward the furnace port. In the C type, the position of the injection port is closest to the furnace port, and the furnace port is on the extended line in the direction of blowing out the seal gas. As a result of the flow, the blown seal gas was flowed to the back of the furnace, resulting in removal of the furnace port.
 また、吹込口を最も炉裏側に配置したDタイプは、10%程度しか不活性ガスに置換されなかった。 In addition, the D type in which the blowing port was arranged on the most back side of the furnace was only replaced with about 10% of the inert gas.
 図9は延長吹込ダクト(壁面より2mダクトを延長)と面一吹込ダクト(ダクトなし吹出口)におけるシールガス吹込流量と置換効率の関係を表したグラフであり、グラフ下の横軸は不活性ガス流量/巻込流量比を示し、グラフ上の横軸は吹込不活性ガス流量(m/min)を示し、縦軸は置換効率(%)を示している。 Fig. 9 is a graph showing the relationship between the flow rate of the seal gas and the replacement efficiency in the extended blowing duct (extending the 2m duct from the wall surface) and the flush blowing duct (no duct outlet), and the horizontal axis below the graph is inactive. The gas flow rate / involved flow rate ratio is shown, the horizontal axis on the graph shows the flow rate of blown inert gas (m 3 / min), and the vertical axis shows the replacement efficiency (%).
 同グラフに示されるように、転炉ガス回収装置内に吸引される外気(巻込流量)に対し1.3~1.7倍の流量のシールガス(廃窒素ガス)を吹き込むことで、吸引される外気(当然、通常は酸素を含む空気)の80~90%を不活性ガスに置換することができる。また、2.0倍の流量のシールガスを吹き込めば、95%の外気を不活性ガスに置換することができる。 As shown in the graph, suction is performed by blowing a seal gas (waste nitrogen gas) at a flow rate 1.3 to 1.7 times the outside air (intake flow rate) sucked into the converter gas recovery device. 80 to 90% of the outside air (of course, normally air containing oxygen) can be replaced with an inert gas. Further, if a seal gas having a flow rate of 2.0 times is blown, 95% of the outside air can be replaced with an inert gas.
 このことから、少ないシールガス流量で高い置換効率を得るには、延長吹込ダクトを使用してシールガスの吹込口を炉口に近づける必要があり、また、シールガスの吹込み量を多くした場合には置換効率が増加するため、延長吹込ダクトを設ける必要がなく、吹込口を建屋内壁面に面一に設ければよい。 Therefore, in order to obtain high replacement efficiency with a small seal gas flow rate, it is necessary to use an extended blow duct to bring the seal gas blow port closer to the furnace port, and when the seal gas blow amount is increased. Since the replacement efficiency increases, there is no need to provide an extended blowing duct, and the blowing port may be provided flush with the wall surface of the building.
 上記構成を有する転炉ガス回収装置によれば、転炉吹錬用酸素の供給と同様に、酸素工場から転炉工場へ不活性ガスを低圧送気するブロワを設けるだけで、大量のシールガスを大型の配管を介し広い転炉スペースに導くことができ、炉口から離れた位置から炉口と回収フードとの間の大気開放部分を効果的に不活性ガス雰囲気に置換することができる。 According to the converter gas recovery apparatus having the above-described configuration, a large amount of seal gas can be obtained just by providing a blower for supplying an inert gas at a low pressure from the oxygen factory to the converter factory in the same manner as supplying oxygen for converter blowing. Can be led to a wide converter space via a large pipe, and the air release portion between the furnace port and the recovery hood can be effectively replaced with an inert gas atmosphere from a position away from the furnace port.
 しかも、スピッティングによる被害を受けることがほとんど無いため、メンテナンスコストを抑制することができるという利点がある。 Moreover, there is an advantage that maintenance costs can be suppressed because there is almost no damage caused by spitting.
 炉口と回収フードとの間の隙間が大気雰囲気の場合は、転炉で発生したCOガスの10~15%程度が、大気に含まれる酸素との燃焼反応によって失われるが、本発明の転炉ガス回収装置を適用すれば失われるCOガスを3~4%まで減少させることができる。それにより、転炉ガスの回収量と発熱量は、現状のCOガス回収量と比較して8~13%増加することになる。 When the gap between the furnace port and the recovery hood is in an atmospheric atmosphere, about 10 to 15% of the CO gas generated in the converter is lost due to the combustion reaction with oxygen contained in the atmosphere. By applying the furnace gas recovery device, the lost CO gas can be reduced to 3-4%. As a result, the converter gas recovery amount and the heat generation amount are increased by 8 to 13% compared to the current CO gas recovery amount.
[2]シールガス吹込運転方法
 次にシールガス吹込運転方法について図を参照しながら説明する。なお、下記の図において、図1と同じ構成要素については同一符号を付してその説明を省略する。
[2] Seal gas blowing operation method Next, the sealing gas blowing operation method will be described with reference to the drawings. In addition, in the following figure, about the same component as FIG. 1, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
 図10において、転炉1より発生する転炉ガスを回収することを想定し、炉口1aと回収フード2との間の大気開放部分にシールガス(不活性ガス)を吹き込むようになっている。 In FIG. 10, assuming that the converter gas generated from the converter 1 is recovered, a seal gas (inert gas) is blown into the atmosphere opening portion between the furnace port 1 a and the recovery hood 2. .
 上記転炉設備模型において、転炉を囲んでいる遮蔽壁の隙間部分にタフト(流れの方向を可視化するための吹き流し)を取り付け、上記隙間部分を通過するガスの流れを観測した。 In the converter equipment model, a tuft (blown flow for visualizing the flow direction) was attached to the gap portion of the shielding wall surrounding the converter, and the gas flow passing through the gap portion was observed.
 [2.1]タフトによる計測位置
 上記タフトによる計測位置を図11~14に示す。
[2.1] Measurement position by tuft The measurement positions by the tuft are shown in FIGS.
 図11は第一の計測位置として、炉前側開閉扉型防熱板に設けられている左右の窓部(図中、a、b参照)を示している。 FIG. 11 shows the left and right windows (see a and b in the figure) provided on the furnace front open / close door heat shield as the first measurement position.
 図12は第二の計測位置として、防熱板裏(図中c参照)および左右側壁点検窓(図中e参照)を示している。 FIG. 12 shows the back of the heat insulating plate (see c in the figure) and the left and right side wall inspection windows (see e in the figure) as the second measurement position.
 図13は第三の計測位置として、炉前側フロアと転炉胴体との隙間(図中、d参照)および炉裏側フロアと転炉胴体との隙間(図中g参照)を示している。 FIG. 13 shows, as the third measurement position, a gap between the furnace front floor and the converter body (see d in the figure) and a gap between the furnace side floor and the converter body (see g in the figure).
 図14は第四の計測位置として、炉裏側の遮蔽壁に設けられている炉裏扉窓(図中、f参照)を示している。 FIG. 14 shows a furnace door window (see f in the figure) provided on the shield wall on the furnace side as the fourth measurement position.
 第一~第四の計測位置にてタフトの動きを観察しながら、シールガスとして吹き込む不活性ガス流量(m/h)を増加させていき、転炉側(建屋内)から転炉外部(建屋外)の作業空間に向かう方向へと風向きが変化した時の不活性ガス流量(m/h)を求めた。 While observing the movement of the tufts at the first to fourth measurement positions, increase the inert gas flow rate (m 3 / h) blown as seal gas, and from the converter side (inside the building) to the outside of the converter ( The inert gas flow rate (m 3 / h) when the wind direction changed toward the working space (outside the building) was determined.
 この時の不活性ガス流量に対する集塵流量の流量比を取ると、その流量比は不活性ガス流量および集塵流量の絶対値に拘わらずほぼ一定になる。 If the flow rate ratio of the dust collection flow rate to the inert gas flow rate at this time is taken, the flow rate ratio becomes almost constant regardless of the absolute values of the inert gas flow rate and the dust collection flow rate.
 次に、転炉側から転炉外部の作業空間に向かう方向へと風向きが変化する時の状況について説明する。 Next, the situation when the wind direction changes from the converter side toward the working space outside the converter will be described.
 [2.2]観測結果
 風向きの変化は、安定して転炉側へ吸い込まれていた流れ(内向き)が、ある流量条件から急に転炉側から転炉外部の作業空間に向かう方向(外向き)へと安定して吹き出すように変化するのはなく、安定して転炉側へ吸い込まれていた流れが、ある流量条件からタフトの向きが内向きと外向きとに短い周期で交互に切り替る状態となり、さらに、不活性ガス流量を増加させると、安定して外向きに吹き出すようになる。
[2.2] Observation Results The change in the wind direction is the direction in which the flow that was stably sucked into the converter side (inward) suddenly goes from the converter side to the work space outside the converter from a certain flow rate condition ( The flow that has been stably sucked into the converter does not change so as to be stably blown out (outward), but the tuft direction alternates inward and outward in a short cycle from a certain flow rate condition. If the flow rate of the inert gas is increased, the air is stably blown outward.
 不活性ガスが逆流を開始する条件を求める今回の試験では、タフトの向きがわずかでも内向きと外向きとの間で交互に切り替る状態になった時の最小の不活性ガス流量を求めた。 In this test to determine the conditions for the inert gas to start a back flow, the minimum inert gas flow rate was obtained when the tuft was alternately switched between inward and outward, even if the direction of the tuft was slight. .
 この試験結果を、不活性ガス流量に対する集塵流量の比で表したものを表1に示す。 Table 1 shows the test results expressed as the ratio of the dust collection flow rate to the inert gas flow rate.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1中の符号a~gは、図11~14中に示した計測位置a~gと対応している。 The symbols a to g in Table 1 correspond to the measurement positions a to g shown in FIGS.
 ただし、表1において、aおよびbはともに防熱板の窓であるが、aは両方の防熱板の窓部が開いている場合とし、bは片側の防熱板の窓部が開いているものとする。 However, in Table 1, a and b are both windows of the heat insulating plate, a is a case where the windows of both of the heat insulating plates are open, and b is a case where the window of the heat insulating plate on one side is open. To do.
 また、タフトが逆流を示した時の最小炉前集塵流量/不活性ガス流量の比から分かるように、a防熱板の窓部における最小炉前集塵流量/不活性ガス流量の比は4.28であるのに対し、bでは同じく4.06であり、防熱板の窓部の片側のみ開いている場合は、両側の窓部が開いている場合に比べ、逆流が発生しにくくなる。 As can be seen from the ratio of the minimum pre-furnace dust collection flow rate / inert gas flow rate when the tuft shows a reverse flow, the ratio of the minimum pre-furnace dust collection flow rate / inert gas flow rate at the window of the heat insulating plate is 4 .B is 4.06 in the same manner as in b. When only one side of the window portion of the heat insulating plate is opened, backflow is less likely to occur than when both window portions are opened.
 このように、表1に示した最小炉前集塵流量/不活性ガス流量の比は、表1の上から順に吹き出しが発生しやすいことを表している。 Thus, the ratio of the minimum pre-reactor dust collection flow rate / inert gas flow rate shown in Table 1 indicates that blowout tends to occur in order from the top of Table 1.
 したがって、最初に不活性ガスが逆流する兆候を捉えるためには、防熱板の窓部の位置(aおよびb参照)にて常時、風向計測と吹き流しによる目視観察を行うことが最適であり、次に、防熱板裏側の隙間部(c参照)で常時、風向計測と吹き流しによる目視観察を行うことが好ましい。 Therefore, in order to capture the sign that the inert gas flows backward at the beginning, it is optimal to always perform wind direction measurement and visual observation at the position of the window portion of the heat insulating plate (see a and b). In addition, it is preferable to always perform visual observation by measuring the wind direction and blowing in the gap (see c) on the back side of the heat insulating plate.
 また、上述したように、転炉側から転炉外部の作業空間に向かう方向へと風向きが変化した時の不活性ガス流量(シールガス供給流量)を求めると、この時の不活性ガス流量に対する集塵流量(集塵ダクト吸込流量)の比は、不活性ガス流量および集塵流量の絶対値に拘わらずほぼ一定になることから、不活性ガス流量に対してある一定倍率(比率)の集塵流量を確保しておくことが安全対策の本質になる。 Further, as described above, when the inert gas flow rate (seal gas supply flow rate) when the wind direction changes from the converter side toward the working space outside the converter, the inert gas flow rate at that time is obtained. Since the ratio of the dust collection flow rate (dust collection duct suction flow rate) is almost constant regardless of the absolute value of the inert gas flow rate and the dust collection flow rate, the collection rate of a certain ratio (ratio) with respect to the inert gas flow rate is used. Ensuring the dust flow rate is the essence of safety measures.
 図15~図17は、不活性ガス流量に対する炉前集塵流量の比と、計測位置における平均酸素濃度との関係を測定したグラフである。 15 to 17 are graphs obtained by measuring the relationship between the ratio of the pre-furnace dust collection flow rate to the inert gas flow rate and the average oxygen concentration at the measurement position.
 各グラフにおいて、横軸は炉前集塵流量/不活性ガス流量の比を示し、縦軸は平均酸素濃度(%)を示している。 In each graph, the horizontal axis represents the ratio of the pre-furnace dust collection flow rate / inert gas flow rate, and the vertical axis represents the average oxygen concentration (%).
 図15のグラフは、防熱板における左右両方の窓部について、図16のグラフは防熱板右側窓部と左防熱板裏側の隙間部について、図17のグラフは左防熱板裏側および右防熱板裏側の各隙間部について流量比と酸素濃度の関係を示している。 The graph of FIG. 15 is about the left and right window portions of the heat insulating plate, the graph of FIG. 16 is the gap portion between the right side of the heat insulating plate and the left heat insulating plate, and the graph of FIG. 17 is the back side of the left heat insulating plate and the right heat insulating plate. The relationship between the flow rate ratio and the oxygen concentration is shown for each gap.
 これらのグラフから判断すると、吹き込む不活性ガス流量に対し不活性ガス吹込装置の近くにある炉前集塵ダクト流量が4.1倍以上であれば、転炉側から作業床側へ不活性ガスが吹き出す、いわゆる逆流の発生しないことが分かる。 Judging from these graphs, if the pre-reactor dust collection duct flow rate near the inert gas blowing device is 4.1 times or more than the inert gas flow rate to be blown, the inert gas flows from the converter side to the work floor side. It can be seen that no so-called backflow occurs.
 このように集塵流量を確保することがシールガス吹込運転において重要であることが分かる。したがって、集塵流量の低下を検知し集塵流量が低下した際には、不活性ガス吹込流量を低下させるか、若しくは不活性ガスの吹込みを停止することがシールガスを安全に吹き込む上で有効な手段になる。 It can be seen that securing the dust collection flow rate in this way is important in the seal gas blowing operation. Therefore, when a decrease in the dust collection flow rate is detected and the dust collection flow rate is reduced, the inert gas blowing flow rate can be lowered or the inert gas blowing can be stopped in order to blow the seal gas safely. It becomes an effective means.
 [2.3]実際の転炉設備への適用
 図18は本発明のシールガス吹込運転方法が適用される転炉設備の系統概略図を示したものである。
[2.3] Application to Actual Converter Equipment FIG. 18 shows a system schematic diagram of the converter equipment to which the seal gas blowing operation method of the present invention is applied.
 同図において、正立状態にある転炉1の炉口1aに対向して回収フード2が設けられ、この回収フード2はダクト2aを介して集塵機9に接続されている。 In the figure, a recovery hood 2 is provided facing the furnace port 1a of the converter 1 in an upright state, and the recovery hood 2 is connected to a dust collector 9 via a duct 2a.
 酸素吹錬を行う際は、深冷式空気分離装置10にて原料空気から分離された酸素を、酸素供給路L1の上流側から順番に設けられている酸素圧縮機11、酸素タンク12を介して酸素ランス13に供給するようになっている。 When performing oxygen blowing, oxygen separated from raw material air in the cryogenic air separation device 10 is passed through an oxygen compressor 11 and an oxygen tank 12 provided in order from the upstream side of the oxygen supply path L1. Then, the oxygen lance 13 is supplied.
 また、深冷式空気分離装置10からは、酸素を空気から分離する際に副生される純度の低い廃窒素ガスをシールガス用として取り出すようになっており、シールガス供給路L2の上流側から順に設けられているシールガス圧縮機14、シールガスタンク15、遮断弁16、ゲート弁17を介し、吹込みダクト18にシールガスとして供給するようになっている。 Further, from the cryogenic air separation device 10, waste nitrogen gas having a low purity, which is by-produced when oxygen is separated from air, is taken out for sealing gas, and is upstream of the sealing gas supply path L2. Are supplied as seal gas to the blow-in duct 18 through a seal gas compressor 14, a seal gas tank 15, a shut-off valve 16, and a gate valve 17 provided in order.
 上記吹込みダクト18は、上記炉口1aと回収フード2の近くに配置されており、上記隙間の大気開放部分にシールガスを吹き込んで不活性ガス雰囲気に置換するようになっている。 The blowing duct 18 is disposed in the vicinity of the furnace port 1a and the recovery hood 2, and is substituted with an inert gas atmosphere by blowing a seal gas into an air opening portion of the gap.
 上記遮断弁16およびゲート弁17は、吹込運転を行う制御部19によって開閉が制御されるようになっており、上記ゲート弁17によってシールガスの供給量を調整することができ、上記遮断弁16によってシールガスを供給または供給停止することができる。 The shutoff valve 16 and the gate valve 17 are controlled to be opened and closed by a control unit 19 that performs a blowing operation, and the gate valve 17 can adjust the supply amount of the seal gas. With this, the sealing gas can be supplied or stopped.
 [2.4]シールガス吹込運転方法
  [2.4.1]第一のシールガス吹込運転方法
 炉前側開閉式扉型防熱板の窓部と炉前側開閉式扉型防熱板の裏とに取り付ける風向計として超音波風向風速センサを使用する。
[2.4] Seal gas blowing operation method [2.4.1] First sealing gas blowing operation method Attaching to the window of the furnace front side openable door type heat insulating plate and the back of the furnace front side openable door type heat insulating plate An ultrasonic wind sensor is used as an anemometer.
 超音波風向風速センサは、風見鶏式風向計と比較して風向変化に対する追従性が極めて速く、計測装置における風向変化時に動く慣性質量がゼロであるために実質的に時定数ゼロで風向変化に対応できるという利点がある。 Ultrasonic wind direction wind speed sensor has extremely fast follow-up to wind direction changes compared to weathercock-type anemometers, and because the inertial mass that moves when the wind direction changes in the measuring device is zero, it responds to changes in wind direction with virtually zero time constant There is an advantage that you can.
 したがって、パタパタと数Hzで風がはためく状況から、数百Hzの速い変動まで十分に追従して吹き出しの兆候を捉えることができる。 Therefore, from the situation where the wind flutters in a few Hz with a fluttering pattern, it is possible to capture the signs of the balloon sufficiently following the fast fluctuation of several hundred Hz.
 図19は超音波風向風速センサ20の具体例を示したものである。 FIG. 19 shows a specific example of the ultrasonic wind direction wind speed sensor 20.
 本実施形態では株式会社セネコム製の超音波風向風速センサ 形式SE-8371UMを使用した。その仕様は、風速レンジ:0~75m/S、分解能:0.1m/s、風向レンジ:0~360°である。 In the present embodiment, an ultrasonic wind direction sensor SE-8371UM manufactured by Senecom Co., Ltd. was used. The specifications are wind speed range: 0 to 75 m / S, resolution: 0.1 m / s, wind direction range: 0 to 360 °.
 なお、超音波風向風速センサ20から出力される風向信号情報および風速信号情報は、図示しないケーブルを介して運転室の制御システムに送信され、処理されるようになっている。 Note that the wind direction signal information and the wind speed signal information output from the ultrasonic wind direction wind speed sensor 20 are transmitted to a control system in the cab via a cable (not shown) and processed.
 また、図20は超音波風向風速センサ20の取付位置を示した説明図である。 FIG. 20 is an explanatory diagram showing the mounting position of the ultrasonic wind direction wind speed sensor 20.
 同図において、炉前側の開閉式扉型防熱板21には、左側窓部21aと右側窓部21bが設けられており、左側窓部21aと右側窓部21bの上部(符号h参照)にそれぞれ上記構成を有する超音波風向風速センサ20を設置する。 In the figure, the openable door-type heat shield 21 on the front side of the furnace is provided with a left window portion 21a and a right window portion 21b, and above the left window portion 21a and the right window portion 21b (see symbol h), respectively. The ultrasonic wind direction wind speed sensor 20 having the above configuration is installed.
 上記したように、炉前側開閉式扉型防熱板21の窓部(左側窓部21aと右側窓部21b)に超音波風向風速センサ20を取り付け、風向きが転炉側から転炉外部の溶銑装入用クレーン側に吹き出す方向に変化したことを検知した際に、制御部19はこれをトリガとして警報を報知するとともに、シールガス供給路L2におけるゲート弁17(図18参照)を閉じる方向に調整し、シールガスの供給量を低下させる。または、遮断弁16を閉じてシールガスの供給そのものを停止させる。それにより、シールガスの吹き込みを安全かつ確実に制御することができる。 As described above, the ultrasonic wind direction wind speed sensor 20 is attached to the windows (the left window 21a and the right window 21b) of the furnace front side openable door type heat insulating plate 21 so that the wind direction is from the converter side to the outside of the converter. When it is detected that the direction has been changed to the direction of the incoming crane, the control unit 19 uses this as a trigger to notify an alarm and adjust the gate valve 17 (see FIG. 18) in the seal gas supply path L2 to be closed. Then, the supply amount of the seal gas is reduced. Alternatively, the shutoff valve 16 is closed to stop the supply of the seal gas itself. Thereby, the injection of the seal gas can be controlled safely and reliably.
 また、超音波風向風速センサ20は、上記実施形態では炉前側開閉式扉型防熱板の窓部に設置したが、上記したように、炉前側開閉式扉型防熱板21の裏の隙間部分についても最初に吹き出しの兆候を捉えることができるため、超音波風向風速センサ20をその炉前側開閉式扉型防熱板21の裏に設置することもできる。 Moreover, although the ultrasonic wind direction wind speed sensor 20 was installed in the window part of the furnace front side openable door type heat insulating plate in the above embodiment, as described above, the gap portion behind the furnace front side openable door type heat insulating plate 21 is provided. In addition, since the sign of the blowout can be detected first, the ultrasonic wind direction wind speed sensor 20 can be installed behind the furnace front side openable door type heat shield 21.
  [2.4.2]第二のシールガス吹込運転方法
 次に、上記超音波風向風速センサ20に代えて、集塵ダクトの流量やダクト内部圧力の変化に基づいてシールガスの供給を制御する方法について説明する。
[2.4.2] Second sealing gas blowing operation method Next, instead of the ultrasonic wind direction wind speed sensor 20, the supply of the sealing gas is controlled based on changes in the flow rate of the dust collection duct and the pressure inside the duct. A method will be described.
 集塵ダクトの流量は流量計によって計測できるが、本実施形態では流量に換算できるダクト内部圧力の情報として、鉛直方向に配置された集塵ダクトの上流と下流の間で発生する差圧を計測し、その計測値を流量に換算している。 The flow rate of the dust collection duct can be measured with a flow meter, but in this embodiment, the differential pressure generated between the upstream and downstream of the dust collection duct arranged in the vertical direction is measured as information on the duct internal pressure that can be converted into the flow rate. The measured value is converted into a flow rate.
 集塵ダクト内の流量計測としては、多点ピトー管計測、多点熱線風速計計測、オリフィス流量計計測等、多くの計測方法がある。しかし、集塵ダストが多いためにピトー管では全圧孔が閉塞してしまい、熱線風速計ではフィラメントにダストが簡単に付着して計測誤差が増加してしまい、また、オリフィス流量計ではオリフィス部にダストが堆積する可能性が高い。 There are many measurement methods such as multipoint pitot tube measurement, multipoint hot-wire anemometer measurement, orifice flowmeter measurement, etc., for measuring the flow rate in the dust collection duct. However, due to the large amount of dust collection dust, all pressure holes in the Pitot tube are blocked, dust in the hot-wire anemometer easily adheres to the filament, increasing measurement errors. There is a high possibility of dust accumulation.
 そこで、本実施形態ではダスト堆積のおそれが極めて少ない鉛直方向に流れる集塵ダクト部の上流と下流の圧力差を計測して集塵ダクトの流量に換算する手法を採用している。 Therefore, in the present embodiment, a technique is adopted in which the pressure difference between the upstream and downstream of the dust collection duct portion flowing in the vertical direction with very little risk of dust accumulation is measured and converted into the flow rate of the dust collection duct.
 ダクト上流下流管の圧力差ΔPは、A:ダクト断面積、D:ダクト相当直径、L:ダクト長さ、ρ:集塵空気密度、U:集塵空気ダクト内平均流速、Q:集塵空気堆積流量=AU を用いると、下記式(1)で表される。 The pressure difference ΔP between the upstream and downstream ducts is: A: duct cross-sectional area, D: duct equivalent diameter, L: duct length, ρ: dust collection air density, U: dust collection air duct average flow velocity, Q: dust collection air When the deposition flow rate = AU is used, it is expressed by the following formula (1).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 式(1)において、λはダクト表面の粗さによって決まる比例定数(摩擦損失係数)である。 In equation (1), λ is a proportionality constant (friction loss coefficient) determined by the roughness of the duct surface.
 実際のダクトには凹凸などがあるため、圧力損失のメカニズムは摩擦のみではなくダクト断面変化などによる渦の発生に基づく圧力損失も生じる。 ¡Since the actual duct has irregularities etc., the pressure loss mechanism is not only friction but also pressure loss due to vortex generation due to duct cross section change.
 この渦の発生の効果も式(1)と同じように流速の二乗に比例すると考えることができるため、ここでの比例定数λは、摩擦と渦発生による両方の圧力損失が合わさった効果を示す比例定数として捉えておく。 Since the effect of the vortex generation can be considered to be proportional to the square of the flow velocity as in the equation (1), the proportionality constant λ here indicates the effect of combining both pressure loss due to friction and vortex generation. Take it as a proportionality constant.
 このように、集塵ダクトの流量を計測する流量計や流量へと換算できる集塵ダクト内部圧力の情報を基に、不活性ガス流量に対する集塵ダクト流量の流量比を求め、その流量比が所定のしきい値よりも低下した場合に、制御部19(図18参照)は警報を報知させるとともに、そのしきい値以上を維持できるまでゲート弁17を閉じる方向に調整することで、シールガスの供給量を下げる。または、シールガス供給路L2の遮断弁16を閉じシールガスの供給を停止させる。それにより、シールガスの吹き込みを安全かつ確実に制御することができる。 Thus, based on the flow meter that measures the flow rate of the dust collection duct and the information on the internal pressure of the dust collection duct that can be converted into the flow rate, the flow rate ratio of the dust collection duct flow rate to the inert gas flow rate is obtained. When the pressure drops below a predetermined threshold value, the control unit 19 (see FIG. 18) notifies a warning and adjusts the seal valve in a direction to close the gate valve 17 until the threshold value can be maintained. Reduce the supply amount. Alternatively, the shutoff valve 16 of the seal gas supply path L2 is closed to stop the supply of the seal gas. Thereby, the injection of the seal gas can be controlled safely and reliably.
 なお、上記しきい値は、図15、図16、図17に示した集塵流量と作業環境における酸素濃度との関係を示すグラフに基づいて、“4.1”に決定される。 The threshold value is determined to be “4.1” based on the graph showing the relationship between the dust collection flow rate and the oxygen concentration in the work environment shown in FIG. 15, FIG. 16, and FIG.
  [2.4.3]第三のシールガス吹込運転方法
 第三のシールガス吹込運転方法は、計測器故障を考慮した運転方法である。
[2.4.3] Third Seal Gas Injection Operation Method The third seal gas injection operation method is an operation method that takes into account a failure of the measuring instrument.
 大規模災害が発生した場合、計測器の故障により超音波風向風速センサ20からの信号情報および集塵ダクト流量計からの信号情報が正常値を示したまま正規の計測位置から脱落してしまうなどの異常計測状態に陥ることが想定される。 When a large-scale disaster occurs, the signal information from the ultrasonic wind direction sensor 20 and the signal information from the dust collection duct flowmeter drop off from the normal measurement position with normal values due to a failure of the measuring instrument. It is assumed that it will fall into the abnormal measurement state.
 このような状況、あるいは想定外の事態についても安全策を講じるためには、自動的にシールガス吹込みが停止するような制御を行うことが好ましい。 In order to take safety measures even in such a situation or an unexpected situation, it is preferable to perform control so that the sealing gas blowing is automatically stopped.
 具体的には、転炉での吹錬工程の開始・停止および酸素流量の調整等の操作を行う操作作業員が、常に一定時間毎に、シールガス吹込開始および吹込継続の指令を操作盤上のボタン操作によって行わない限り、制御部19がシールガスの吹込みを停止させるという運転方法である。 Specifically, an operator who performs operations such as starting / stopping the blowing process in the converter and adjusting the oxygen flow rate always gives instructions to start and continue the injection of seal gas at regular intervals. This is an operation method in which the control unit 19 stops the injection of the seal gas unless the button operation is performed.
 シールガスの吹込停止は遮断弁16を閉じるだけでなく、シールガス圧縮機14への電力供給をも遮断してシールガスを送る能力を本質的になくすことがより好ましい。なお、シールガスの吹込みが停止しても転炉ガスの回収量が低下するだけであり安全上は全く問題がない。 It is more preferable to stop blowing the seal gas not only to close the shutoff valve 16 but also to substantially eliminate the ability to send the seal gas by shutting off the power supply to the seal gas compressor 14. Even if the injection of the seal gas is stopped, only the recovery amount of the converter gas is reduced, and there is no safety problem.
 第三のシールガス吹込運転方法では、転炉の吹錬操作作業員が、異常が無い限り、例えば15秒毎にシールガス吹込みボタンを押下することでシールガス吹込運転が継続されるよう運転のプログラムが組まれている。 In the third sealing gas blowing operation method, the operation is performed so that the blowing operation worker of the converter continues the sealing gas blowing operation by pressing the sealing gas blowing button every 15 seconds, for example, unless there is an abnormality. The program is organized.
 そのために、シールガスの供給開始が指令された際に吹込運転を行う制御部19は、タイマーを起動し、所定の時間を計時し終えるまでに次のシールガスの供給開始指令が与えられない場合には、シールガス供給路L2の遮断弁16を閉じ、上記シールガスの供給を停止させるように制御を行う。 Therefore, the control unit 19 that performs the blowing operation when the start of supply of the seal gas is instructed starts the timer, and the next start of supply of the seal gas is not given until the predetermined time has been counted. In this case, control is performed so that the shutoff valve 16 of the seal gas supply path L2 is closed and the supply of the seal gas is stopped.
 15秒間に吹き込まれるシールガス量の典型値は400mになる。この量は炉前側開閉式扉型防熱板、転炉左右の側壁、炉裏壁、回収フード周辺の天井壁およびフロアに囲まれた転炉遮蔽空間容積600m~1,000mの40~67%に相当する。すなわち、転炉遮蔽空間内部だけにシールガスを充満させて外部への漏出を抑えられる流量に相当する。 A typical value of the amount of seal gas blown in 15 seconds is 400 m 3 . This amount furnace front openable door type heat insulating board, the side wall of the converter horizontally, Rourakabe, 40 of the ceiling wall and the converter shield surrounded by the floor space volume 600 meters 3 - 1,000 m 3 near collection hood ~ 67 %. That is, it corresponds to a flow rate that can prevent leakage to the outside by filling only the inside of the converter shielding space with the sealing gas.
 なお、転炉遮蔽空間内は不活性ガス雰囲気になっているため、作業員が立ち入ることはないが、速やかに集塵装置を稼働させ、集塵ダクトを介してその不活性ガスを排出する必要がある。 In addition, because the inside of the converter shielded space is an inert gas atmosphere, workers will not enter, but it is necessary to quickly operate the dust collector and exhaust the inert gas through the dust collection duct. There is.
 また、上記本実施形態ではシールガス吹込運転方法を個別に説明したが、各シールガス吹込運転方法を組み合わせた運転方法を採用することもできる。 Further, in the present embodiment, the seal gas blowing operation method has been individually described. However, an operation method in which the seal gas blowing operation methods are combined may be employed.
 例えば、風向きが変化して警報が発せられた際に、集塵ダクトにおける不活性ガス流量に対する集塵ダクト流量の比を求め、求めた流量比がしきい値以上を維持できるまでゲート弁17を閉じる方向に調整し、しきい値以上を維持できない場合、または流量比が正常であってもシールガス吹込みボタンが15秒を超えて押下されない場合に遮断弁16を閉じるように制御することもできる。 For example, when an alarm is issued when the wind direction changes, the ratio of the dust collection duct flow rate to the inert gas flow rate in the dust collection duct is obtained, and the gate valve 17 is kept until the obtained flow rate ratio can maintain the threshold value or more. The shut-off valve 16 may be controlled to close when the valve is adjusted in the closing direction and the threshold value or more cannot be maintained, or the seal gas blowing button is not pressed for more than 15 seconds even when the flow rate ratio is normal. it can.
 このシールガス吹込運転方法によれば、シールガス吹込運転転炉ガス回収におけるシールガス吹込運転を最も安全に実施することが可能になる。 According to this seal gas blowing operation method, the seal gas blowing operation in the seal gas blowing operation converter gas recovery can be performed most safely.
 本願は、2012年1月19日に出願された日本国特許出願第2012-9319号および2012年4月5日に出願された日本国特許出願第2012-86798号に基づく優先権の利益を主張するものである。2012年1月19日に出願された日本国特許出願第2012-9319号および2012年4月5日に出願された日本国特許出願第2012-86798号の明細書の全内容が、本願に参考のため援用される。 This application claims the benefit of priority based on Japanese Patent Application No. 2012-9319 filed on January 19, 2012 and Japanese Patent Application No. 2012-86798 filed on April 5, 2012 To do. The entire contents of the specifications of Japanese Patent Application No. 2012-9319 filed on January 19, 2012 and Japanese Patent Application No. 2012-86798 filed on April 5, 2012 are hereby incorporated by reference. Incorporated for.
 本発明は、転炉吹錬工程で発生する転炉ガスを回収する転炉ガス回収設備に利用することができる。 The present invention can be used for a converter gas recovery facility for recovering a converter gas generated in a converter blowing process.
 1  転炉
 1a 炉口
 2  回収フード
 3  スカート部
 4  防熱板
 4a 窓部
 5  集塵ダクト
 6  吹込ダクト
 7,8 延長吹込ダクト
 7a,8a 吹込口
DESCRIPTION OF SYMBOLS 1 Converter 1a Furnace port 2 Collecting hood 3 Skirt part 4 Heat insulation board 4a Window part 5 Dust collection duct 6 Blowing duct 7, 8 Extension blowing duct 7a, 8a Blowing hole

Claims (11)

  1.  転炉吹錬過程で発生する転炉ガスを、回収フードから回収する転炉ガス回収装置において、
     平面から見て炉前側に配置されている集塵ダクトと転炉炉口中心との間の転炉スペースに、炉前側から上記転炉炉口へ向かう空気流に向けて、不活性ガスを主成分とするシールガスの吹込部を設けてなることを特徴とする転炉ガス回収装置。
    In the converter gas recovery device that recovers the converter gas generated in the converter blowing process from the recovery hood,
    An inert gas is mainly supplied to the converter space between the dust collection duct arranged on the front side of the furnace when viewed from the plane and the center of the converter furnace port, toward the air flow from the front side of the furnace to the converter furnace port. A converter gas recovery device comprising a blowing portion for sealing gas as a component.
  2.  平面から見て上記転炉の傾動軸に沿って上記吹込部から上記ガスが吹き込まれるとともに、上記シールガスの吹込目標が上記転炉炉口よりも炉前側に向けられている請求項1に記載の転炉ガス回収装置。 The said gas is blown in from the said blowing part along the tilting axis of the said converter seeing from a plane, The blowing target of the said seal gas is orient | assigned to the furnace front side rather than the said converter furnace port. Converter gas recovery equipment.
  3.  上記吹込部が、上記転炉を中心として左右対称に対向した状態で一対配置されている請求項1または2に記載の転炉ガス回収装置。 The converter gas recovery device according to claim 1 or 2, wherein a pair of the blowing portions are arranged in a state of being symmetrically opposed with respect to the converter.
  4.  上記吹込部の吹込口が、上記転炉を収容している左右の壁面に開口している請求項3に記載の転炉ガス回収装置。 The converter gas recovery device according to claim 3, wherein the inlet of the blowing section is open to the left and right wall surfaces that house the converter.
  5.  上記吹込部の吹込口が、上記転炉を収容している左右の壁面から上記転炉の傾動軸に沿って延設されたダクトの先端に開口している請求項3に記載の転炉ガス回収装置。 4. The converter gas according to claim 3, wherein the blowing port of the blowing section opens from a left and right wall surface accommodating the converter to a tip of a duct extending along a tilting axis of the converter. Recovery device.
  6.  上記不活性ガスを主成分とするシールガスとして、上記転炉の吹錬に使用する酸素を空気から分離する際に副生される窒素ガスが使用される請求項1に記載の転炉ガス回収装置。 The converter gas recovery according to claim 1, wherein nitrogen gas produced as a by-product when oxygen used for blowing the converter is separated from air is used as the seal gas containing the inert gas as a main component. apparatus.
  7.  転炉ガスを回収フードから回収する際に、転炉炉口と上記回収フードとの空隙部をシールガスにてシールするシールガス吹込運転方法において、
     転炉ガス回収中のシールガスの流れの変化を検知するか、またはシールガス供給流量に対する集塵ダクト吸込流量を求め、
     上記シールガスの流れが変化した際、またはシールガス供給流量に対する集塵ダクト吸込流量が所定値よりも低下した際に、上記シールガスの供給量を低下させるかまたは上記シールガスの供給を停止させることを特徴とするシールガス吹込運転方法。
    When recovering the converter gas from the recovery hood, in the seal gas blowing operation method of sealing the gap between the converter furnace port and the recovery hood with a seal gas,
    Detect the change in the seal gas flow during converter gas recovery, or obtain the dust collection duct suction flow rate relative to the seal gas supply flow rate,
    When the flow of the seal gas changes or when the dust collection duct suction flow rate with respect to the seal gas supply flow rate falls below a predetermined value, the supply amount of the seal gas is reduced or the supply of the seal gas is stopped. A sealing gas blowing operation method characterized by that.
  8.  上記シールガスの流れの変化を、上記転炉の炉前側に設置されている防熱板の内部観察窓部に風向センサを取り付けて検知する請求項7に記載のシールガス吹込運転方法。 The seal gas blowing operation method according to claim 7, wherein a change in the flow of the seal gas is detected by attaching a wind direction sensor to an internal observation window portion of a heat insulating plate installed on the front side of the converter.
  9.  上記シールガスの流れの変化を、上記転炉の炉前側に設置されている防熱板の裏側隙間部に風向センサを取り付けて検知する請求項7に記載のシールガス吹込運転方法。 The seal gas injection operation method according to claim 7, wherein a change in the flow of the seal gas is detected by attaching a wind direction sensor to a back side gap portion of a heat insulating plate installed on the front side of the converter.
  10.  集塵ダクトの内部圧力を流量に換算することにより上記集塵ダクト吸込流量を求め、シールガス供給流量に対する上記集塵ダクト吸込流量の比がしきい値よりも低下した場合に、シールガス供給路のゲート弁を調整することによりそのしきい値以上を維持できるまでシールガス供給量を低下させるかまたはシールガス供給路の遮断弁を閉じることによりシールガスの供給を停止させる請求項7に記載のシールガス吹込運転方法。 The dust collection duct suction flow rate is obtained by converting the internal pressure of the dust collection duct into a flow rate, and when the ratio of the dust collection duct suction flow rate to the seal gas supply flow rate falls below a threshold value, the seal gas supply channel 8. The seal gas supply is stopped by adjusting the gate valve of the seal gas to reduce the seal gas supply amount until the threshold value or more can be maintained or by closing the shut-off valve of the seal gas supply path Seal gas blowing operation method.
  11.  シールガスの供給開始が指令された際にタイマーを起動し、所定の時間を計時し終えるまでに次のシールガスの供給開始指令が与えられない場合に、シールガス供給路の遮断弁を閉じ、上記シールガスの供給を停止させる請求項7~10のいずれか1項に記載のシールガス吹込運転方法。 When the start of the seal gas supply is commanded, the timer is started, and when the next seal gas supply start command is not given by the end of the predetermined time, the shut-off valve of the seal gas supply path is closed, The sealing gas blowing operation method according to any one of claims 7 to 10, wherein the supply of the sealing gas is stopped.
PCT/JP2012/081882 2012-01-19 2012-12-10 Converter gas recovery device and seal gas blowing operation method WO2013108512A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-009319 2012-01-19
JP2012009319A JP5869891B2 (en) 2012-01-19 2012-01-19 Converter gas recovery system
JP2012-086798 2012-04-05
JP2012086798A JP5869945B2 (en) 2012-04-05 2012-04-05 Seal gas injection operation method

Publications (1)

Publication Number Publication Date
WO2013108512A1 true WO2013108512A1 (en) 2013-07-25

Family

ID=48798949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081882 WO2013108512A1 (en) 2012-01-19 2012-12-10 Converter gas recovery device and seal gas blowing operation method

Country Status (1)

Country Link
WO (1) WO2013108512A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3215523A (en) * 1963-05-27 1965-11-02 Chemical Construction Corp Recovery of off-gas from a steel converter
JPS4844114A (en) * 1971-10-04 1973-06-25
JP2001107126A (en) * 1999-10-13 2001-04-17 Nippon Steel Corp Duct structure in converter exhaust gas treating equipment
JP2007302932A (en) * 2006-05-10 2007-11-22 Jp Steel Plantech Co Structure for sealing skirt board in converter waste gas treating facility

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3215523A (en) * 1963-05-27 1965-11-02 Chemical Construction Corp Recovery of off-gas from a steel converter
JPS4844114A (en) * 1971-10-04 1973-06-25
JP2001107126A (en) * 1999-10-13 2001-04-17 Nippon Steel Corp Duct structure in converter exhaust gas treating equipment
JP2007302932A (en) * 2006-05-10 2007-11-22 Jp Steel Plantech Co Structure for sealing skirt board in converter waste gas treating facility

Similar Documents

Publication Publication Date Title
JP5599511B2 (en) Tunnel ventilation method and system in normal and fire conditions
CN105675810B (en) A kind of monitoring method of boiler water-cooling wall high-temperature corrosion atmosphere monitoring system and high-temperature corrosion atmosphere
JP2006188608A (en) Method for repairing inside of flue of coke oven and heat-insulating box for work, and method for operating coke oven on repairing
KR101125188B1 (en) Smoke detecting apparatus for fire extinguishment
JP5568081B2 (en) How to put pulverized coal into the blast furnace
CN110514011A (en) A kind of smoke impervious cover and the sintering flue gas circulatory system and control method
US20140327192A1 (en) Method for operating an oxygen blowing lance in a metallurgical vessel and a measurement system for determining a measurement signal used in the method
JP2011164101A (en) Resident measuring system of charging level of blast furnace
JP2012062376A (en) Gasification furnace, operation method of the same, and coal gasification compound power plant
JP5915849B2 (en) Dust removal water amount control method and dust removal water amount control device for LD gas blower
WO2013108512A1 (en) Converter gas recovery device and seal gas blowing operation method
ES2769200T3 (en) A system and method for collecting and analyzing data related to an operating condition in an upper submerged puncture injector reactor system
JP5869945B2 (en) Seal gas injection operation method
US6175676B1 (en) Fiber optic sensor and method of use thereof to determine carbon content of molten steel contained in a basic oxygen furnace
CN105135897A (en) Self-adjusting system and method for PM 2.5 flue gas flow fields
CN107192846A (en) A kind of anti-blocking resistant wear wind speed and wind system for measuring quantity
JP5869891B2 (en) Converter gas recovery system
CN217528490U (en) Novel loop scanner protection device
CN109750133A (en) A kind of devaporizer amount of water sprayed control method and device based on modeling
CN114689389A (en) Flue gas collecting and detecting device
CN108036977A (en) A kind of coal burning boiler of power station flue gas multi-point sampling system
CN113932614A (en) Chlorination furnace gas inlet system and control method
CN208502769U (en) A kind of gas ventilator for fire operation with pressure in shield cabin
CN219065412U (en) Air extraction type back blowing zirconia oxygen measuring device
US9162785B2 (en) Method and nozzle for suppressing the generation of iron-containing vapor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12865879

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12865879

Country of ref document: EP

Kind code of ref document: A1