WO2013108298A1 - Device for controlling stereoscopic image display, method for controlling stereoscopic image display, and program - Google Patents

Device for controlling stereoscopic image display, method for controlling stereoscopic image display, and program Download PDF

Info

Publication number
WO2013108298A1
WO2013108298A1 PCT/JP2012/003310 JP2012003310W WO2013108298A1 WO 2013108298 A1 WO2013108298 A1 WO 2013108298A1 JP 2012003310 W JP2012003310 W JP 2012003310W WO 2013108298 A1 WO2013108298 A1 WO 2013108298A1
Authority
WO
WIPO (PCT)
Prior art keywords
amount
stereoscopic image
change
display control
retraction
Prior art date
Application number
PCT/JP2012/003310
Other languages
French (fr)
Japanese (ja)
Inventor
聖治 久保
明弘 海老名
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2012538907A priority Critical patent/JP5181083B1/en
Priority to US13/722,635 priority patent/US8619076B2/en
Publication of WO2013108298A1 publication Critical patent/WO2013108298A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/128Adjusting depth or disparity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/144Processing image signals for flicker reduction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/167Synchronising or controlling image signals

Definitions

  • the present invention relates to a stereoscopic image display control apparatus capable of displaying a stereoscopic image.
  • Patent Document 1 in order to prevent a stereoscopically-viewed object included in image data from being perceived as moving at a speed equal to or greater than a predetermined value in the user direction, the left eye is directed in a direction that reduces user discomfort.
  • An apparatus is disclosed that adjusts and displays the amount of parallax between the image for use and the image for the right eye.
  • the present invention has been made in view of the above-described problems, and an object thereof is to provide a stereoscopic image display control device capable of reducing fatigue given to a viewer.
  • the stereoscopic image display control device displays a stereoscopic image on the display device.
  • the stereoscopic image display control device includes an output unit that outputs a stereoscopic image to the display device, and an input reception unit that receives an input of a change instruction for changing the stereoscopic image displayed on the display device from a user.
  • a change amount predicting unit that predicts a change amount of the pop-out amount and the retraction amount per unit time of the stereoscopic image when the stereoscopic image is changed according to the change instruction received by the input receiving unit, and the input A display control unit that changes a stereoscopic image output from the output unit in accordance with the change instruction received by the reception unit.
  • the display control unit when the change amount of the pop-out amount or the retraction amount per unit time predicted by the change amount prediction unit exceeds a predetermined threshold, the stereoscopic image output from the output unit The change rate of the stereoscopic image is slowed so that the amount of change of the pop-out amount or the amount of retraction per unit time is equal to or less than the threshold value.
  • FIG. 1 is a block diagram of the stereoscopic image display control apparatus according to the first embodiment.
  • FIG. 2 is a flowchart of the stereoscopic image display control method according to the first embodiment.
  • FIG. 3 is a diagram illustrating an example of rotation of a stereoscopic image displayed on the display unit.
  • FIG. 4 is a diagram illustrating a control result of the rotation speed of the stereoscopic image of FIG.
  • FIG. 5 is a diagram illustrating another example of rotation of a stereoscopic image displayed on the display unit.
  • FIG. 6 is a diagram illustrating a control result of the rotation speed of the stereoscopic image of FIG.
  • FIG. 7 is a diagram illustrating another example of rotation of a stereoscopic image displayed on the display unit.
  • FIG. 1 is a block diagram of the stereoscopic image display control apparatus according to the first embodiment.
  • FIG. 2 is a flowchart of the stereoscopic image display control method according to the first embodiment.
  • FIG. 3
  • FIG. 8 is a diagram illustrating a control result of the rotation speed of the stereoscopic image of FIG.
  • FIG. 9 is a flowchart of the stereoscopic image display control method according to the second embodiment.
  • FIG. 10 is a diagram illustrating an example of rotation of a stereoscopic image displayed on the display unit.
  • FIG. 11 is a diagram illustrating a control result of the rotation speed of the stereoscopic image of FIG.
  • FIG. 12 is a block diagram of the stereoscopic image display control apparatus according to the third embodiment.
  • FIG. 13 is a flowchart corresponding to FIG. 2 of the stereoscopic image display control method according to the third embodiment.
  • FIG. 14 is a flowchart corresponding to FIG. 9 of the stereoscopic image display control method according to the third embodiment.
  • FIG. 10 is a diagram illustrating an example of rotation of a stereoscopic image displayed on the display unit.
  • FIG. 11 is a diagram illustrating a control result of the rotation speed of the
  • FIG. 15 is a flowchart of a stereoscopic image display control method according to a modification of the third embodiment.
  • FIG. 16 is a diagram illustrating an example of rotation of a stereoscopic image that is asymmetric with respect to the rotation center.
  • FIG. 17 is a diagram illustrating a control result of the rotation speed of the stereoscopic image of FIG.
  • FIG. 18 is a diagram illustrating an example of rotating a stereoscopic image having a pattern on the surface.
  • the stereoscopic image display control device displays a stereoscopic image on the display device.
  • the stereoscopic image display control device includes an output unit that outputs a stereoscopic image to the display device, and an input reception unit that receives an input of a change instruction for changing the stereoscopic image displayed on the display device from a user.
  • a change amount predicting unit that predicts a change amount of the pop-out amount and the retraction amount per unit time of the stereoscopic image when the stereoscopic image is changed according to the change instruction received by the input receiving unit, and the input A display control unit that changes a stereoscopic image output from the output unit in accordance with the change instruction received by the reception unit.
  • the display control unit when the change amount of the pop-out amount or the retraction amount per unit time predicted by the change amount prediction unit exceeds a predetermined threshold, the stereoscopic image output from the output unit The change rate of the stereoscopic image is slowed so that the amount of change of the pop-out amount or the amount of retraction per unit time is equal to or less than the threshold value.
  • the change rate is slowed to reduce the fatigue given to the viewer. it can.
  • changing a stereoscopic image according to a change instruction refers to changing the stereoscopic image according to, for example, a change amount, a change time, or a change speed indicated in the change instruction.
  • reducing the change speed of the stereoscopic image means changing the stereoscopic image at a speed slower than the change speed indicated in the change instruction.
  • the change amount prediction unit may calculate a difference in the amount of protrusion of a point on the stereoscopic image that protrudes most from the display surface of the display device before and after a unit time as a change amount of the amount of protrusion per unit time.
  • the difference in the amount of retraction of the point on the stereoscopic image most retracted from the display surface of the display device before and after the unit time may be predicted as the amount of change in the amount of retraction per unit time. Good.
  • the first point farthest from the display surface before the change of the stereoscopic image and the second point different from the first point farthest from the display surface after the change of the stereoscopic image are used to jump out.
  • the amount of change per unit time of the amount and the amount of retraction can be predicted.
  • the change amount prediction unit may predict a difference in pop-out amount before and after a unit time of a specific point of a stereoscopic image as a change amount of the pop-out amount per unit time.
  • the difference in the amount of retraction before and after the unit time at this point may be predicted as the amount of change in the amount of retraction per unit time.
  • the “specific point” may be, for example, a pattern (texture) attached to the surface of the stereoscopic image, and when the stereoscopic image is changed by moving a finger superimposed on the stereoscopic image, It is also possible that the finger is superimposed.
  • the change instruction may include information specifying a change amount of the stereoscopic image and a change time required to change the stereoscopic image by the change amount. Then, when the change amount of the pop-out amount or the retraction amount per unit time predicted by the change amount prediction unit exceeds the threshold value, the display control unit takes only the change amount over a longer time than the change time. The stereoscopic image may be changed.
  • the change instruction may include information specifying a change amount of a stereoscopic image and a change time required to change the stereoscopic image by the change amount.
  • the display control unit when the change amount of the pop-out amount or the retraction amount per unit time predicted by the change amount prediction unit exceeds the threshold value, is less than the change amount during the change time.
  • the stereoscopic image may be changed.
  • the change speed of the stereoscopic image can be slowed by changing the stereoscopic image by an amount smaller than the change amount indicated by the change instruction during the same time as the change time indicated by the change instruction.
  • the display control unit when the change amount of the pop-out amount or the retraction amount per unit time predicted by the change amount prediction unit exceeds the threshold, the stereoscopic image according to the change instruction The change may not be performed.
  • the change speed of the stereoscopic image can be reduced by not changing the stereoscopic image indicated by the change instruction at all (changing the change speed to 0).
  • the stereoscopic image change instruction received by the input receiving unit may include movement, rotation, enlargement, or reduction of the stereoscopic image.
  • the input receiving unit may receive the change instruction of a predetermined change amount by a predetermined input operation by a user.
  • the above example corresponds to a case where, for example, when the user presses the right rotation button (an example of a predetermined operation), the stereoscopic image is rotated to the right by 45 ° (an example of a predetermined change amount).
  • the input receiving unit may receive the change instruction with a change amount corresponding to the magnitude of the input operation by the user.
  • the change amount of the stereoscopic image is changed in an analog manner according to the slide amount (an example of the size of the input operation) when the user slides the finger on the display screen. To do.
  • the stereoscopic image display control device may include the display device.
  • the stereoscopic image display control device may include a display device, or may control display on an external display device.
  • the stereoscopic image display control method is a method for displaying a stereoscopic image on a display device.
  • the stereoscopic image display control method includes an output step of outputting a stereoscopic image to the display device, and an input receiving step of receiving an input of a change instruction for changing the stereoscopic image displayed on the display device from a user.
  • a change amount prediction step for predicting a change amount of the pop-out amount and the retraction amount per unit time of the stereoscopic image when the stereoscopic image is changed according to the change instruction received in the input receiving step;
  • the stereoscopic image output in the output step The change rate of the stereoscopic image is slowed so that the amount of change of the pop-out amount or the amount of retraction per unit time is equal to or less than the threshold value.
  • the program causes a computer to display a stereoscopic image on a display device.
  • the program includes an output step of outputting a stereoscopic image to the display device, an input receiving step of receiving an input of a change instruction for changing the stereoscopic image displayed on the display device, and the input A change amount prediction step for predicting a change amount of the pop-out amount and the retraction amount per unit time of the stereoscopic image when the stereoscopic image is changed in accordance with the change instruction received in the reception step;
  • the computer is caused to execute a display control step of changing the stereoscopic image output in the output step in accordance with the change instruction.
  • the stereoscopic image output in the output step The change rate of the stereoscopic image is slowed so that the amount of change of the pop-out amount or the amount of retraction per unit time is equal to or less than the threshold value.
  • FIG. 1 is a block diagram of a stereoscopic image display control apparatus 10 according to the first embodiment.
  • the stereoscopic image display control device 10 shown in FIG. 1 is a device that can display a stereoscopic image (3D object), and can change the display of the stereoscopic image (3D object) in accordance with a user operation. .
  • the amount of projection of the stereoscopic image and the amount of change per unit time of the retraction amount are calculated, and the calculation result is determined in advance.
  • a stereoscopic image display control apparatus and a stereoscopic image display control method for suppressing a sudden change in the pop-out amount and the retracted amount by controlling the change speed of the stereoscopic image when exceeding the threshold value will be described.
  • the pop-out amount is the distance from the display unit 14 display surface of the stereoscopic image protruding from the display surface of the display unit 14 in the direction in which the user exists.
  • the amount of retraction is the distance from the display unit 14 (display surface) of a stereoscopic image that is retracted from the display surface of the display unit 14 in the direction opposite to the direction in which the user exists (depth direction).
  • a stereoscopic image display control device 10 receives an image data acquisition unit 11 that acquires stereoscopic image data in order to display a stereoscopic image, and an input that receives an operation (change instruction) from a user for operating the stereoscopic image.
  • the data storage unit 15 stores the acquired stereoscopic image data and the stereoscopic image data of the stereoscopic image currently displayed on the display unit 14.
  • the “change instruction” is an instruction to change the stereoscopic image displayed on the display unit 14, and a part of change type, change amount, time required to complete the change, change speed, etc. Includes information that directly or indirectly identifies everything.
  • the “variation type” includes movement, rotation, enlargement, or reduction of the stereoscopic image.
  • the control unit 13 predicts the change amount prediction unit 131 that predicts the amount of projection of the stereoscopic image and the change amount of the retraction amount per unit time in response to the change instruction received by the input reception unit 12 and the change amount prediction unit 131.
  • the display control unit 132 controls the change rate of the stereoscopic image in accordance with the change amount per unit time of the pop-out amount and / or the retraction amount.
  • the change amount predicting unit 131 acquires a change instruction from the input receiving unit 12 and acquires the data of the stereoscopic image displayed on the display unit 14 from the data holding unit 15. Then, the change amount predicting unit 131 predicts the change amount of the pop-out amount and the retraction amount per unit time of the stereo image when the stereo image is changed according to the change instruction. Then, the display control unit 132 displays the stereoscopic image displayed on the display unit 14 when the amount of change of the pop-out amount or the amount of retraction per unit time predicted by the change amount prediction unit 131 exceeds a predetermined threshold. The change rate of the stereoscopic image is reduced so that the amount of change in the pop-out amount or the retraction amount per unit time is less than or equal to the threshold value.
  • a specific example of the change instruction receiving method in the input receiving unit 12 is not particularly limited.
  • an input by a touch operation on a touch panel arranged so as to be superimposed on the display unit 14 of the stereoscopic image display control device 10 may be received, or a camera, an infrared method, a capacitance method, an ultrasonic method, It may be received by a method of recognizing a finger or hand movement (gesture) using a sensor such as a magnetic field detection method, or input from a mouse, a touch pad, or a joystick externally connected to the stereoscopic image display control device 10 is accepted.
  • an input from a remote controller may be accepted. That is, any method can be used as long as it can accept input from the user.
  • a specific example of a method for acquiring stereoscopic image data for displaying a stereoscopic image in the image data acquisition unit 11 is not particularly limited.
  • it may be acquired from various memories (USB memory or SD card (registered trademark)), or may be acquired via a network such as a wired LAN, a wireless LAN network, and a mobile phone line. That is, any method may be used as long as it can acquire stereoscopic image data.
  • the stereoscopic image display control device 10 can be configured even if the image data acquisition unit 11 does not exist. It is.
  • a specific example of the display method of the display unit 14 that displays a stereoscopic image using the left-eye image and the right-eye image is not particularly limited.
  • a parallax barrier, a lenticular, an integral method, or the like may be used in the autostereoscopic display method.
  • an active shutter type using glasses, a frame sequential method, or the like may be used. That is, any method can be used as long as a stereoscopic image can be displayed.
  • the image for the left eye and the image for the right eye may normally be images taken by cameras placed at two different positions, or rendered from two different viewpoints using three-dimensional computer graphics. It may be a computer graphics image obtained by performing (a process in which a computer generates a two-dimensional image in consideration of three-dimensional shape data and a viewpoint position). That is, any combination of a left-eye image and a right-eye image that can be recognized as a stereoscopic image may be used.
  • the display unit 14 is not an essential component for the stereoscopic image display control apparatus 10 according to the first embodiment, and can be omitted. That is, the stereoscopic image display control apparatus 10 according to Embodiment 1 may be an apparatus that outputs a stereoscopic image (that is, an image for the left eye and an image for the right eye) to an external display device. In that case, the stereoscopic image display control device 10 further includes an output unit (not shown) that outputs a stereoscopic image to an external display device.
  • the data holding unit 15 is a memory that stores stereoscopic image data, state transition states and predicted values, stereoscopic image states, and the like, and can read them out as necessary.
  • Specific examples of the memory are not particularly limited.
  • any means such as DRAM (Dynamic Random Access Memory), SDRAM (Synchronous Dynamic Access Memory), flash memory, ferroelectric memory, and the like can be recorded. You can use things.
  • Step S2001 When the control unit 13 detects that a change instruction from the user is received by the input receiving unit 12 (YES in step S2001), the control unit 13 proceeds to step S2002, and when not detected (NO in step S2001). The process returns to step S2001.
  • Step S2002 The change amount prediction unit 131 of the control unit 13 performs a stereoscopic image according to the change instruction based on the change instruction received by the input reception unit 12 and the state of the stereoscopic image currently displayed on the display unit 14. The amount of pop-out per unit time and the amount of change in the amount of retraction when predicting is changed, and the process proceeds to step S2003.
  • the amount-of-change prediction unit 131 calculates the difference in the amount of protrusion per unit time by using the difference in the amount of protrusion of a point on the stereoscopic image that protrudes most from the display surface of the display unit 14 before and after the unit time. Predict as change. Similarly, the change amount prediction unit 131 uses, as the change amount of the retraction amount per unit time, the difference in the retraction amount of the point on the stereoscopic image most retracted from the display surface of the display unit 14 before and after the unit time. Predict.
  • Step S2003 The display control unit 132 of the control unit 13 determines that at least one of the pop-out amount predicted by the change amount prediction unit 131 and the change amount of the retraction amount per unit time exceeds a threshold (YES in Step S2003). ) Proceeds to step S2004, and when both of the predicted change amounts (both the pop-out amount and the change amount per unit time of the retraction amount) are equal to or less than the threshold (NO in step S2003), the process proceeds to step S2005.
  • Step S2004 The display control unit 132 controls the display content of the display unit 14 so that the stereoscopic image currently displayed on the display unit 14 transitions under the transition condition A, and the stereoscopic image data after the state transition is stored as data. It is held by the holding unit 15.
  • the transition condition A is a condition for controlling the rotation speed of the stereoscopic image and displaying it on the display unit 14 in order to suppress a sudden change in the protruding amount and / or the retracting amount of the stereoscopic image. That is, the display control unit 132 rotates the stereoscopic image displayed on the display unit 14 at a rotation speed slower than the rotation speed indicated by the change instruction.
  • a method of controlling the rotation speed of the stereoscopic image displayed on the display unit 14 by changing (slowing) the time required to complete the rotation will be described.
  • Step S2005 The display control unit 132 controls the display content of the display unit 14 so that the stereoscopic image currently displayed on the display unit 14 transitions according to the transition condition B, and the stereoscopic image data after the state transition is stored as data. It is held by the holding unit 15.
  • the transition condition B is a transition condition when it is predicted that there is no sudden change in the pop-out amount and / or the retraction amount of the stereoscopic image, and the rotational speed of the stereoscopic image displayed on the display unit 14 It is a condition not to change. That is, the display control unit 132 rotates the stereoscopic image displayed on the display unit 14 at the rotation speed indicated by the change instruction.
  • Step S2006 The display unit 14 displays a stereoscopic image using the left-eye image and the right-eye image based on the control of the rotation speed of the stereoscopic image of the display control unit 132 in step S2004 or step S2005. To do.
  • the display control unit 132 reads the state of the stereoscopic image before the transition stored in the data holding unit 15 when the display state is changed in Steps S2004 and S2005, and Steps S2004 and The data holding unit 15 again holds the state of the stereoscopic image after the transition made under the condition of step S2005.
  • Example of stereoscopic image display control of stereoscopic image display control apparatus 10 according to Embodiment 1 An example in which the stereoscopic image display control apparatus 10 according to Embodiment 1 controls a stereoscopic image displayed on the display unit 14 based on a change instruction will be described with reference to FIGS. 3 and 4.
  • the rectangular parallelepiped is stereoscopically displayed on the stereoscopic image display control device 10, and the rectangular parallelepiped displayed on the display unit 14 in response to a single operation of the user (for example, tapping the display surface of the display unit 14).
  • the change instruction received by the input receiving unit 12 in this example is an instruction indicating that the rectangular parallelepiped is rotated by 45 degrees for a predetermined time (for example, time T41 in FIG. 4).
  • time T41 corresponds to a change amount of the stereoscopic image.
  • time T41 corresponds to a change time required to change the stereoscopic image by a predetermined change amount (45 degrees).
  • the protrusion amount of the most protruding point of the rectangular parallelepiped that is a stereoscopic image displayed on the display unit 14 is “0”, and the retracting amount of the most retracting point is “ A state of “0” is shown.
  • the rectangular parallelepiped displayed on the display unit 14 changes from the initial state ST300 to the state ST301 rotated by 45 degrees.
  • the amount of protrusion at the most protruding point is about “0.7H”
  • the amount of protrusion at the most retracted point is about “ ⁇ 0.7H”.
  • the rectangular parallelepiped displayed on the display unit 14 changes from the state ST301 to the state ST302 rotated by 45 degrees.
  • the amount of protrusion at the most protruding point is “H”
  • the amount of retracting at the most retracted point is “ ⁇ H”.
  • “H” is 1 ⁇ 2 of the length of the longest side of the rectangular parallelepiped.
  • the rectangular parallelepiped rotates about a straight line that passes through the center of gravity and is parallel to the short side of the display unit 14 (display surface).
  • the vertical axis in FIG. 4 indicates the pop-out amount and retraction amount of the stereoscopic image, and the horizontal axis indicates time.
  • the initial state ST300 in FIG. 3 corresponds to the state St41 in FIG. 4 (the amount of protrusion at the most protruding point is “0” and the amount of retracting at the most retracted point is “0”).
  • the amount of change predicting unit 131 is a pop-up amount per unit time when the cuboid rotates 45 degrees (ie, changes to the state ST301 in FIG. 3) due to the user's operation from this state St41, and Predict the amount of change in retraction.
  • the change amount predicting unit 131 changes the difference between the amount of protrusion at the most protruding point in the state St42 and the amount of protrusion at the most protruding point in the state St41, from the state St41 to the state St42.
  • the amount of change in the pop-out amount per unit time (the slope of the broken line in FIG. 4) is calculated.
  • the change amount predicting unit 131 changes the difference between the retracted amount of the most retracted point in the state St42 and the retracted amount of the most retracted point in the state St41 from the state St41 to the state St42.
  • the amount of change in the amount of retraction per unit time (the slope of the broken line in FIG. 4) is calculated by dividing by the time required for.
  • the change amount of the pop-out amount per unit time is about “0.7H”
  • the change amount of the retraction amount is about “ ⁇ 0.7H” (time T41 is calculated as a unit time). Since these change amounts both exceed a threshold value (in the example, the threshold value is set to 0.25H), the display control unit 132 decreases the rotation speed of the rectangular parallelepiped.
  • the amount of change in the amount of retraction exceeds the threshold means that the absolute value of the amount of change in the retraction (0.7H in the above example) is the threshold (0.25H). It may be considered that the amount of change is larger or the amount of change in the amount of retraction ( ⁇ 0.7H in the above example) is lower than the threshold value of the amount of retraction ( ⁇ 0.25H).
  • the transition from the state St41 to the state St42 shown in FIG. 4 is a predicted value, and shows a case where the rectangular parallelepiped rotates 45 degrees at time T41, but if this is the case, the amount of protrusion and the amount of retraction per unit time will change. Too big. Therefore, based on this predicted value, the rotation speed of the rectangular parallelepiped is changed (slow) so that the rectangular parallelepiped rotates 45 degrees at time T42 (longer than time T41) from state St41 to state St43.
  • the rectangular parallelepiped rotates 45 degrees at time T41, so that the amount of protrusion and the amount of retraction suddenly change.
  • the rectangular parallelepiped rotates 45 degrees during the time T42 (> T41) by controlling the rotation speed, it is possible to suppress sudden changes in the pop-out amount and the retraction amount.
  • the state St43 after the transition corresponds to the state ST301 in FIG.
  • the transition from the state St44 to the state St45 shown in FIG. 4 is a predicted value, and shows a case where the rectangular parallelepiped has rotated 45 degrees at time T43, but if this is the case, the amount of protrusion and the amount of retraction per unit time will change. Too big. Therefore, based on this predicted value, the rotation speed of the rectangular parallelepiped is changed (slow) so that the rectangular parallelepiped rotates 45 degrees during time T44 (longer than time T43) from state St44 to state St46.
  • the rectangular parallelepiped rotates 45 degrees at time T43, so that the amount of protrusion and the amount of retraction suddenly change.
  • the rectangular parallelepiped rotates 45 degrees during the time T44 (> T43) by controlling the rotation speed, it is possible to suppress sudden changes in the pop-out amount and the retraction amount.
  • the state St46 after the transition corresponds to the state ST302 in FIG.
  • the rotation speed that is, the rotation time for the same rotation amount (45 degrees) is controlled to be different at time T42 and time T44.
  • the state ST500 in FIG. 5 corresponds to the state ST302 in FIG. In FIG. 5, as in the case of FIG. 3, it is assumed that the rectangular parallelepiped rotates 45 degrees for each user operation.
  • the protrusion amount of the most protruding point of the rectangular parallelepiped displayed on the display unit 14 is “H”, and the retracting amount of the most retracted point is “ ⁇ H”.
  • the rectangular parallelepiped displayed on the display unit 14 changes from the state ST500 to the state ST501 rotated by 45 degrees.
  • the amount of protrusion at the most protruding point is about “0.7H”
  • the amount of retracting at the most retracted point is about “ ⁇ 0.7H”.
  • the rectangular parallelepiped displayed on the display unit 14 changes from the state ST501 to a state ST502 rotated by 45 degrees.
  • the protruding amount of the most protruding point is “0”
  • the retracting amount of the most retracted point is “0”.
  • the vertical axis in FIG. 6 indicates the pop-out amount and retraction amount of the stereoscopic image, and the horizontal axis indicates time.
  • state ST500 in FIG. 5 corresponds to state St61 in FIG. 6 (the amount of protrusion at the most protruding point is “H” and the amount of retracting at the most retracted point is “ ⁇ H”).
  • the rectangular parallelepiped is rotated 45 degrees as a result of the user's operation from this state ST500 (that is, when the state changes to state ST501 in FIG. 5)
  • the amount of protrusion per unit time and the amount of change in the amount of retraction are predicted.
  • the change amount of the pop-out amount per unit time is about “0.3H”
  • the change amount of the retraction amount is about “ ⁇ 0.3H”. Since these change amounts both exceed a threshold value (in the example, the threshold value is set to 0.25H), the display control unit 132 decreases the rotation speed of the rectangular parallelepiped.
  • the transition from the state St61 to the state St62 shown in FIG. 6 is a predicted value, and shows a case where the rectangular parallelepiped has rotated 45 degrees at time T61, but if this is the case, the amount of protrusion and the amount of retraction per unit time will change. Too big. Therefore, based on the predicted value, the rotation speed of the rectangular parallelepiped is changed (slow) so that the rectangular parallelepiped rotates 45 degrees during the time T62 (longer than the time T61) from the state St61 to the state St63.
  • the rectangular parallelepiped rotates 45 degrees at time T61, so that the pop-out amount and the retraction amount change suddenly.
  • the rectangular parallelepiped rotates 45 degrees during time T62 (> T61), so that sudden changes in the pop-out amount and the retraction amount can be suppressed.
  • the state St63 after this transition corresponds to the state ST501 in FIG.
  • the state St63 to the state St64 in FIG. 6 shows a time zone in which there is no operation and the state of the rectangular parallelepiped is not changing.
  • the amount of protrusion and the amount of change per unit time when the rectangular parallelepiped rotates 45 degrees due to the user's operation in state St64 that is, the state changes to state ST502 in FIG. 5.
  • Predicting the change amount of the pop-out amount per unit time is about “0.7H”, and the change amount of the retraction amount is about “ ⁇ 0.7H”. Since these change amounts both exceed a threshold value (in the example, the threshold value is set to 0.25H), the display control unit 132 decreases the rotation speed of the rectangular parallelepiped.
  • the transition from the state St64 to the state St65 shown in FIG. 6 is a predicted value, and shows a case where the rectangular parallelepiped has rotated 45 degrees at time T63, but if this is the case, the amount of protrusion and the amount of retraction per unit time will change. Too big. Therefore, based on the predicted value, the rotation speed of the rectangular parallelepiped is changed (slow) so that the rectangular parallelepiped rotates 45 degrees during the time T64 (longer than the time T63) from the state St64 to the state St66.
  • the rectangular parallelepiped rotates 45 degrees at time T63, so that the amount of protrusion and the amount of retraction suddenly change.
  • the stereoscopic image rotates 45 degrees during time T64 (> T63), so that sudden changes in the pop-out amount and the retraction amount can be suppressed.
  • the state St66 after the transition corresponds to the state ST502 in FIG.
  • the rotation speed that is, the rotation time with respect to the same rotation amount of 45 degrees is controlled to be different at time T62 and time T64. This indicates that the rotational speed is adjusted according to the amount of change per unit time of the pop-out amount and the retraction amount.
  • Embodiment 1 Another example when the stereoscopic image display control apparatus 10 according to Embodiment 1 controls the stereoscopic image displayed on the display unit 14 based on a change instruction from the user will be described with reference to FIGS. 7 and 8. To do.
  • the initial state ST700 is a state in which the pop-out amount of the most popped point of the sphere displayed on the display unit 14 is “H” and the pull-in amount of the most retracted point is “ ⁇ H”. Show.
  • the sphere displayed on the display unit 14 changes from the initial state ST700 to a state ST701 rotated by 45 degrees.
  • the amount of protrusion at the most protruding point in state ST701 is “H”
  • the amount of retracting at the most retracted point is “ ⁇ H”, which is the same as in the initial state ST700.
  • the sphere displayed on the display unit 14 changes from the state ST701 to the state ST702 rotated by 45 degrees.
  • the amount of protrusion at the most protruding point in state ST702 is “H”
  • the amount of retracting at the most retracted point is “ ⁇ H”, which is the same as in state ST701.
  • the vertical axis in FIG. 8 indicates the pop-out amount and retraction amount of the stereoscopic image, and the horizontal axis indicates time.
  • the initial state ST700 in FIG. 7 corresponds to the state St81 in FIG. 8 (the amount of protrusion at the most protruding point is “H” and the amount of retracting at the most retracted point is “ ⁇ H”).
  • the change amount of the pop-out amount per unit time is “0”, and the change amount of the retraction amount is “0”.
  • the display control unit 132 since there is no change in the pop-out amount and the retraction amount, and neither exceeds the threshold value (in this example, the threshold value is 0.25H), the display control unit 132 does not change the rotation speed of the sphere. That is, the display control unit 132 rotates the sphere displayed on the display unit 14 in accordance with the change instruction received by the input receiving unit 12.
  • the transition from the state St81 to the state St83 shown in FIG. 8 is a predicted value, and shows a case where the sphere rotates 45 degrees at time T81. However, the change in the amount of protrusion and the amount of retraction per unit time is small. There is no change in the example). Therefore, the display control unit 132 causes the display unit 14 to display without changing the rotation speed of the sphere so as to change from the state St81 to the state St83 based on the predicted value. This means that the operation by the user is reflected on the display as it is without changing the rotation speed of the sphere when there is no sudden change in the pop-out amount and the retraction amount.
  • the state St83 after the transition corresponds to the state ST701 in FIG.
  • state St84 From state St83 to state St84, there is no user operation and the time zone in which the display state of the sphere has not changed is shown.
  • the pop-out amount and the amount of change per unit time when the sphere is rotated 45 degrees due to an operation performed by the user in the state St84 that is, the state changes to the state ST702 in FIG. 7.
  • the amount of change in the pop-out amount per unit time is “0”, and the amount of change in the retraction amount is “0”, both of which do not exceed the threshold value (in the example, the threshold value is 0.25H).
  • the display control unit 132 displays on the display unit 14 without changing the rotation speed of the sphere.
  • the transition from the state St84 to the state St86 shown in FIG. 8 is a predicted value, and shows a case where the sphere has rotated 45 degrees at time T83, but the change in the amount of protrusion and the amount of retraction per unit time is small. There is no change in the example). Therefore, the display control unit 132 causes the display unit 14 to display without changing the rotation speed of the sphere so as to transit from the state St84 to the state St86 based on the predicted value.
  • the state St86 after this transition corresponds to the state ST702 in FIG.
  • the stereoscopic image can be rotated in response to the user's operation while keeping the size and shape of the stereoscopic image itself constant.
  • the rotational speed of the stereoscopic image is decreased. To do. As a result, it is possible to suppress a sudden change in the amount of protrusion and the amount of retraction, so that it is possible to reduce the fatigue given to the viewer.
  • the configuration of the stereoscopic image display control apparatus 10 shown in FIG. 1 is the same as that of the first embodiment of the present invention, and thus the description thereof is omitted here.
  • a detailed description of points common to the first embodiment will be omitted, and the description will focus on the differences.
  • Step S2001 When the control unit 13 detects that a change instruction from the user is received by the input receiving unit 12 (YES in step S2001), the control unit 13 proceeds to step S2002, and when not detected (NO in step S2001). The process returns to step S2001.
  • Step S2002 Based on the change instruction received by the input reception unit 12 and the state of the stereoscopic image currently displayed on the display unit 14, the change amount prediction unit 131 changes the stereoscopic image according to the change instruction.
  • the projection amount per unit time and the change amount of the retraction amount are predicted, and the process proceeds to step S2003.
  • Step S2003 When at least one of the pop-out amount predicted by the change amount prediction unit 131 and the change amount per unit time of the retraction amount exceeds the threshold (YES in step S2003), the display control unit 132 performs step S2008. If both of the predicted change amounts (both the pop-out amount and the change amount per unit time of the retraction amount) do not exceed the threshold value (NO in step S2003), the process advances to step S2005.
  • Step S2008 The display control unit 132 controls the display content of the display unit 14 so that the stereoscopic image currently displayed on the display unit 14 transitions according to the transition condition A ′, and also displays the stereoscopic image data after the state transition.
  • the data is held in the data holding unit 15.
  • the transition condition A ′ is a condition for controlling the display speed (rotation speed) of the stereoscopic image to display it on the display unit 14 in order to suppress a sudden change in the pop-out amount and the retraction amount of the stereoscopic image. is there.
  • a method for controlling the rotation speed of the stereoscopic image by changing the rotation amount (reducing the rotation amount) that rotates at a predetermined time indicated by the change instruction will be described. To do.
  • Step S2005 The display control unit 132 controls the display content of the display unit 14 so that the stereoscopic image currently displayed on the display unit 14 transitions according to the transition condition B, and the stereoscopic image data after the state transition is stored as data. It is held by the holding unit 15.
  • the transition condition B is a transition condition when it is predicted that there is no sudden change in the pop-out amount and the retraction amount of the stereoscopic image, and the rotation amount of the stereoscopic image is not changed (indicated by the change instruction).
  • the condition is to rotate at the rotation speed).
  • Step S2006 The display unit 14 displays a stereoscopic image using the left-eye image and the right-eye image based on the control of the rotation amount of the stereoscopic image of the display control unit 132 in step S2008 or step S2005. .
  • the display control unit 132 reads the state of the stereoscopic image before the transition stored in the data holding unit 15 when the display state is changed in Steps S2008 and S2005, and Steps S2008 and The data holding unit 15 again holds the state of the stereoscopic image after the transition made under the condition of step S2005.
  • Example of stereoscopic image display control of stereoscopic image display control apparatus 10 according to Embodiment 2 An example in which the stereoscopic image display control apparatus 10 according to Embodiment 2 controls a stereoscopic image displayed on the display unit 14 based on a change instruction will be described with reference to FIGS. 10 and 11.
  • the rectangular parallelepiped is stereoscopically displayed on the stereoscopic image display control device 10, and the rectangular parallelepiped displayed on the display unit 14 is determined according to changes in the pop-out amount and the retraction amount with respect to one operation of the user. It is assumed that the rotation amount is the same as the rotation amount. When the change amount per unit time does not exceed the threshold value, the rotation amount is 45 degrees.
  • the initial state ST1000 shows a state in which the protruding amount of the most protruding point of the rectangular parallelepiped displayed on the display unit 14 is “0” and the retracting amount of the most retracted point is “0”.
  • the state ST1001 is a state in which the rectangular parallelepiped is rotated 45 degrees from the initial state ST1000 so as to suppress a sudden change in the pop-out amount and the retraction amount due to one operation performed by the user. is there.
  • the protruding amount of the most protruding point is “0.7H”
  • the retracting amount of the most retracted point is “ ⁇ 0.7H”.
  • the vertical axis in FIG. 11 indicates the pop-out amount and the retraction amount of the stereoscopic image, and the horizontal axis indicates time.
  • the initial state ST1000 of FIG. 10 corresponds to the state St111 of FIG. 11 (the amount of protrusion at the most protruding point is “0” and the amount of retracting at the most retracted point is “0”).
  • the rectangular parallelepiped rotates 45 degrees as a result of the user's operation from this state St111 (that is, changes to the state ST1001 in FIG. 10)
  • the amount of change per unit time of the amount of withdrawal and the amount of retraction is predicted.
  • the change amount of the pop-out amount per unit time is about “0.7H”
  • the change amount of the retraction amount is about “ ⁇ 0.7H”. Since these change amounts both exceed a threshold value (in the example, the threshold value is set to 0.25H), the display control unit 132 decreases the rotation speed of the rectangular parallelepiped.
  • the transition from the state St111 to the state St112 shown in FIG. 11 is a predicted value, and shows a case where the rectangular parallelepiped rotates 45 degrees at time T111 (corresponding to the state ST1001 in FIG. 10).
  • the change in the amount of protrusion and the amount of retraction is too large. Therefore, the amount of rotation of the rectangular parallelepiped during the time T111 from the state St111 to the state St113 is reduced based on the predicted value. As a result, the rotation speed of the rectangular parallelepiped becomes slower than the rotation speed indicated in the change instruction.
  • the transition time from state St111 to state St112 and the transition time from state St111 to state St113 are both the same at time T111.
  • the rectangular parallelepiped rotates 45 degrees
  • the rectangular parallelepiped rotates only by an angle smaller than 45 degrees (for example, 30 degrees).
  • the state St43 after this transition corresponds to the state ST1002 in FIG.
  • the rotational speed of the rectangular parallelepiped can also be reduced by suppressing the amount of rotation of the rectangular parallelepiped at the same time. And also by such control, the sudden change of the amount of protrusion and the amount of retraction can be suppressed. Therefore, in order for the user to rotate the stereoscopic image by a predetermined angle (45 degrees), a stereoscopic image rotation instruction may be input several times.
  • the stereoscopic image display control device 10 that changes the display of a stereoscopic image (3D object) in response to an operation from the user has been described.
  • the first and second embodiments have been described on the assumption that the stereoscopic image is rotated by 45 degrees with respect to one operation from the user.
  • the third embodiment corresponds to changing the rotation amount in an analog manner according to the actual operation amount of the user. Furthermore, when rotating a stereoscopic image, if at least one of the amount of projection of the stereoscopic image and the amount of change per unit time of the withdrawal amount exceeds a predetermined threshold, the rotational speed of the stereoscopic image is reduced.
  • a stereoscopic image display control device 20 that suppresses a sudden change in the pop-out amount and the retract amount will be described with reference to FIG.
  • FIG. 12 is a block diagram for explaining an overview of the stereoscopic image display control apparatus 20 according to the third embodiment.
  • symbol is attached
  • detailed description of points common to Embodiments 1 and 2 will be omitted, and the description will focus on the differences.
  • the stereoscopic image display control device 20 in the third embodiment has a configuration in which an operation amount calculation unit 133 is provided in the control unit 13 in addition to the configuration of the stereoscopic image display control device 10 in the first embodiment.
  • the operation amount calculation unit 133 calculates the rotation amount from the user operation amount received by the input reception unit 12. That is, the change instruction according to the third embodiment includes the operation amount of the user.
  • the “user operation amount” is information that indirectly specifies the rotation amount (change amount).
  • the specific example of the rotation amount calculation method in the operation amount calculation unit 133 is not particularly limited.
  • the amount of rotation may be reduced.
  • the rotation amount may be increased as the operation distance to the touch panel is longer, and the rotation amount may be decreased as the operation distance to the touch panel is shorter.
  • the rotation amount may be changed according to the button pressing time (for example, the longer the pressing time, the larger the rotation amount, and the shorter the pressing time). Reduce the amount of rotation). In other words, any method may be used as long as the rotation amount can be calculated from the actual operation amount of the user.
  • the rotation time may be shortened (rotation speed is increased) as the operation speed on the touch panel is increased, and the rotation time may be increased (rotation speed is decreased) as the operation speed on the touch panel is decreased.
  • the change amount prediction unit 131 predicts the change amount per unit time of the stereoscopic image pop-out amount and the retraction amount according to the rotation amount acquired from the operation amount calculation unit 133.
  • FIG. 3 is a diagram illustrating an example of a control operation for a stereoscopic image of the stereoscopic image display control apparatus 20 according to the third embodiment. Note that portions similar to those described in FIG. 2 of the first embodiment and FIG. 9 of the second embodiment are denoted by the same reference numerals and description thereof is omitted.
  • FIG. 13 illustrates a stereoscopic image displayed on the display unit 14 according to the rotation amount calculated from the operation amount received by the input receiving unit 12 and the state of the stereoscopic image currently displayed on the display unit 14. It is a figure which shows an example of operation
  • FIG. 13 adds step S2007 to FIG. 2 of the first embodiment, and when the user's operation is detected, the rotation amount is calculated from the actual operation amount of the user in an analog manner to rotate according to the operation amount. It corresponds to the amount changing.
  • step S2001 the operation of step S2001, step S2007, and step S2002 will be described with a focus on step S2007.
  • step S2003 the operations after step S2003 are the same as those in FIG.
  • Step S2001 When the control unit 13 detects that a change instruction from the user is received by the input receiving unit 12 (YES in step S2001), the control unit 13 proceeds to step S2007, and when not detected (NO in step S2001). The process returns to step S2001.
  • Step S2007 The operation amount calculation unit 133 calculates the rotation amount of the stereoscopic image according to the operation amount included in the change instruction received by the input reception unit 12, and the process proceeds to step S2002.
  • Step S2002 Based on the rotation amount calculated by the operation amount calculation unit 133 and the state of the stereoscopic image currently displayed on the display unit 14, the change amount prediction unit 131 calculates the stereoscopic image by the calculated rotation amount. The amount of pop-out per unit time and the amount of change in the amount of retraction when rotating is predicted, and the process proceeds to step S2003.
  • FIG. 14 shows a method of controlling the rotation speed of a stereoscopic image according to the rotation amount calculated from the operation amount received by the input receiving unit 12 and the state of the stereoscopic image currently displayed on the display unit 14. It is a figure which shows an example.
  • FIG. 14 adds step S2007 to FIG. 9 of the second embodiment, and when the operation by the user is detected, the rotation amount is changed according to the operation amount by calculating the rotation amount from the actual operation amount of the user. It corresponds to doing.
  • Step S2001, step S2007, and step S2002 are the same as those in FIG. 13 described above, and the operations after step S2003 are the same as those in FIG.
  • the rotation speed of the stereoscopic image is set when at least one of the protruding amount of the stereoscopic image and the amount of change per unit time of the retracting amount exceeds a predetermined threshold. Slow down. As a result, it is possible to suppress a sudden change in the amount of protrusion and the amount of retraction, so that it is possible to reduce the fatigue given to the viewer.
  • Embodiments 1 to 3 when the stereoscopic image is changed in accordance with the user's operation as the operation of the stereoscopic image display control devices 10 and 20, the amount of projection and the amount of withdrawal of the stereoscopic image per unit time are changed.
  • a method has been described in which when at least one of the amounts exceeds a predetermined threshold, a rapid change in the pop-out amount and the retraction amount is suppressed by slowing the rotation speed of the stereoscopic image.
  • the method for suppressing the rapid change in the pop-out amount and the retraction amount is not limited to the above.
  • the rotation operation is not performed as shown in step S2009 (rotation speed).
  • the transition condition A ′′ may be adopted.
  • the initial state ST1600 indicates a state in which the pop-out amount of the most popped point of the stereoscopic image displayed on the display unit 14 is “H” and the pull-in amount of the most retracted point is “0”. ing.
  • the stereoscopic image displayed on the display unit 14 changes from the initial state ST1600 to the state ST1601 rotated by 45 degrees.
  • the protruding amount of the most protruding point is “H”
  • the retracting amount of the most retracted point is about “ ⁇ 0.7H”.
  • the stereoscopic image displayed on the display unit 14 changes from the state ST1601 to the state ST1602 rotated by 45 degrees.
  • the protruding amount of the most protruding point is “H”
  • the retracting amount of the most retracted point is “ ⁇ H”.
  • the vertical axis in FIG. 17 indicates the pop-out amount and retraction amount of the stereoscopic image, and the horizontal axis indicates time.
  • the initial state ST1600 in FIG. 16 corresponds to the state St171 in FIG. 17 (the amount of protrusion at the most protruding point is “H” and the amount of retracting at the most retracted point is “0”).
  • the pop-up amount when the stereoscopic image is rotated by 45 degrees due to the user's operation from this state St171 and the change amount per unit time of the retraction amount are predicted, the change amount of the pop-up amount per unit time is “0” and the amount of change in the retraction amount are about “ ⁇ 0.7H”.
  • the display control unit 132 decreases the rotation speed of the stereoscopic image.
  • the transition from the state St171 to the state St172 shown in FIG. 17 is a predicted value, and shows a case where the stereoscopic image is rotated 45 degrees at time T71.
  • the rotation speed of the stereoscopic image is changed (slowed) so that the stereoscopic image rotates 45 degrees at time T172 (longer than time T171) from state St171 to state St173.
  • the stereoscopic image rotates 45 degrees at time T171, so that the amount of retraction suddenly changes.
  • the stereoscopic image rotates 45 degrees during time T172 (> T171), so that a rapid change in the amount of retraction can be suppressed.
  • the state St173 after this transition corresponds to the state ST1601 in FIG.
  • the change amount of the pop-out amount per unit time is “0”, and The amount of change in the retraction amount is about “ ⁇ 0.3H”. That is, although the amount of change per unit time of the pop-out amount does not exceed the threshold (in the example, the threshold is 0.25H), the amount of change in the amount of withdrawal per unit time is the threshold (in the example, the threshold is 0.25H). Therefore, the display control unit 132 decreases the rotation speed of the stereoscopic image.
  • the transition from the state St174 to the state St175 shown in FIG. 17 is a predicted value, and shows a case where the stereoscopic image is rotated by 45 degrees at time T173.
  • the change in the amount of retraction per unit time is too large as it is. Therefore, based on this predicted value, the rotational speed of the stereoscopic image is changed (slowed) so that the stereoscopic image rotates 45 degrees during time T174 (longer than time T173) from state St174 to state St176.
  • the stereoscopic image rotates 45 degrees at time T173, and the amount of retraction suddenly changes.
  • the stereoscopic image rotates 45 degrees during time T174 (> T173), so that a rapid change in the amount of retraction can be suppressed.
  • the state St176 after this transition corresponds to the state ST1602 in FIG.
  • the rotational speed can be adjusted even in a stereoscopic image in which the pop-out amount per unit time and the retraction amount are different.
  • the display control unit 132 determines that the amount of change per unit time of the pop-out amount and the retract amount does not exceed the threshold value. To do.
  • the most popped point (the most retracted point) of the stereoscopic image before the unit time and the most popped point (the most retracted point) of the stereoscopic image after the unit time are the pop-out amount ( (Retraction amount) is the same.
  • the change amount predicting unit 131 pays attention to the difference between the protrusion amounts of the most protruding points (retraction amounts of the most retracted points) before and after the unit time.
  • the amount of change in the amount of protrusion (retraction amount) per unit time is predicted.
  • the change amount predicting unit 131 may predict the difference in the pop-out amount before and after the unit time of a specific point of the stereoscopic image as the change amount of the pop-out amount per unit time. Similarly, the change amount predicting unit 131 may predict a difference in the amount of retraction before and after a unit time of a specific point of the stereoscopic image as a change amount of the retraction amount per unit time.
  • an initial state ST1800 in FIG. 18 shows a state in which the pop-out amount of the Japanese archipelago (an example of a specific point) on the surface of the sphere displayed on the display unit 14 is “0.2H”.
  • the sphere displayed on display unit 14 rotates (rotates so that the Japanese archipelago moves in the zenith direction) and changes to state ST1801.
  • the amount of popping out of the Japanese archipelago in state ST1801 is “H”.
  • the change amount predicting unit 131 determines that the difference between the pop-out amount “0.2H” of the Japanese archipelago before the rotation and the pop-out amount “H” of the Japanese archipelago after the rotation is “0.8H”, and the ball is in the state ST1800 By dividing by the time required to change from state to state ST1801, the amount of change in the pop-out amount per unit time can be predicted. Then, the display control unit 132 decreases the rotation speed of the sphere when the pop-out amount calculated by the change amount prediction unit 131 exceeds the threshold value.
  • the sphere displayed on the display unit 14 rotates (rotates so that the Japanese archipelago approaches the equator on the back side) and changes to the state ST1802.
  • the amount of popping out of the Japanese archipelago in state ST1802 is “0.2H”.
  • the change amount predicting unit 131 indicates that the sphere has a difference of “ ⁇ 0.8H” between the popping amount “H” of the Japanese archipelago before the rotation and the popping amount “0.2H” of the Japanese archipelago after the rotation.
  • the display control unit 132 decreases the rotation speed of the sphere when the pop-out amount calculated by the change amount prediction unit 131 exceeds the threshold value.
  • the above processing can be applied not only when predicting the amount of change in the amount of protrusion per unit time but also the amount of change in the amount of withdrawal per unit time. That is, when the sphere shown in FIG. 18 is rotated in the opposite direction to the above example, the amount of change in the amount of retraction per unit time may be predicted by the above processing.
  • the above processing need not be applied to all patterns (textures) attached to the stereoscopic image.
  • the above-described processing may be selectively applied to a pattern located at the most protruding point or the most retracted point on the stereoscopic image before or after the rotation.
  • the points on the stereoscopic image to which the above processing is applied are not limited to the patterns attached to the stereoscopic image.
  • a finger (not limited to the finger but may be an indicator such as a hand or an indicator stick held in the hand) is superimposed on the stereoscopic image displayed on the display unit 14, and the finger is moved.
  • the above processing may be applied to the point where the finger of the stereoscopic image is superimposed.
  • the stereoscopic image display changing method has been described by taking an example of rotating a stereoscopic image.
  • the change of the stereoscopic image in response to an operation is not limited to rotation, and movement , Enlargement, reduction, etc.
  • the stereoscopic image is rotated around its center of gravity.
  • the rotational center of the stereoscopic image with respect to the operation is the rotation center of the stereoscopic image.
  • This control is not limited to the center of gravity, and can be applied even when a stereoscopic image is rotated around an arbitrary position.
  • each of the above devices can be realized by a computer system including a microprocessor, a ROM, a RAM, a hard disk unit, a display unit, a keyboard, a mouse, and the like.
  • a computer program is stored in the RAM or the hard disk unit.
  • Each device achieves its functions by the microprocessor operating according to the computer program.
  • the computer program is configured by combining a plurality of instruction codes indicating instructions for the computer in order to achieve a predetermined function.
  • a part or all of the components constituting each of the above devices may be configured by one system LSI (Large Scale Integration).
  • the system LSI is an ultra-multifunctional LSI manufactured by integrating a plurality of components on a single chip, and specifically, a computer system including a microprocessor, ROM, RAM, and the like. .
  • a computer program is stored in the ROM.
  • the system LSI achieves its functions by the microprocessor loading a computer program from the ROM to the RAM and performing operations such as operations in accordance with the loaded computer program.
  • Part or all of the constituent elements constituting each of the above devices may be configured from an IC card or a single module that can be attached to and detached from each device.
  • the IC card or module is a computer system that includes a microprocessor, ROM, RAM, and the like.
  • the IC card or the module may include the super multifunctional LSI described above.
  • the IC card or the module achieves its functions by the microprocessor operating according to the computer program. This IC card or this module may have tamper resistance.
  • the present invention may be realized by the method described above. Further, these methods may be realized by a computer program realized by a computer, or may be realized by a digital signal consisting of a computer program.
  • the present invention also relates to a computer-readable recording medium that can read a computer program or a digital signal, such as a flexible disk, hard disk, CD-ROM, MO, DVD, DVD-ROM, DVD-RAM, BD (Blu-ray Disc), You may implement
  • a computer program or a digital signal may be transmitted via an electric communication line, a wireless or wired communication line, a network represented by the Internet, a data broadcast, or the like.
  • the present invention is also a computer system including a microprocessor and a memory.
  • the memory stores a computer program, and the microprocessor may operate according to the computer program.
  • program or digital signal may be recorded on a recording medium and transferred, or the program or digital signal may be transferred via a network or the like, and may be implemented by another independent computer system.
  • the stereoscopic image display control device and the stereoscopic image display control method capable of suppressing the image are mainly used for AV equipment such as a mobile terminal such as a TV, a mobile terminal, and a tablet terminal.
  • the image display control device and the stereoscopic image display control method can be applied to any device that can display a stereoscopic image, and can also be applied to a display that can display a general stereoscopic image.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Controls And Circuits For Display Device (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

This device for controlling a stereoscopic image display is provided with: an output unit for outputting a stereoscopic image to a display device; an input acceptance unit (12) for accepting from the user a change instruction input for changing the stereoscopic image being displayed on the display device; a variation prediction unit (131) for predicting the variation per unit of time in the degree to which an element appears to protrude from the stereoscopic image and the degree to which an element appears to withdraw into the stereoscopic image when the stereoscopic image has been changed in accordance with the change instruction accepted by the input acceptance unit (12); and a display control unit (132) for delaying the rate of change of the stereoscopic image outputted from the output unit when the variation per unit of time in either the amount of overshoot or the amount of convergence predicted by the variation prediction unit (131) exceeds a predetermined threshold.

Description

立体画像表示制御装置、立体画像表示制御方法、及びプログラムStereoscopic image display control device, stereoscopic image display control method, and program
 本発明は、立体画像を表示可能な立体画像表示制御装置に関する。 The present invention relates to a stereoscopic image display control apparatus capable of displaying a stereoscopic image.
 近年、左眼用画像及び右眼用画像の視差を利用することで、立体(3D)画像の視聴を楽しむことができるTV等が普及している。また、このような立体画像は、TVのみならず、携帯端末をはじめとするモバイル端末でも表示できるようになってきており、家庭や屋外で気軽に立体画像を視聴できる環境が普及してきている。そして、ユーザの意図で自由に立体画像を動かして色々な角度から立体画像の視聴を楽しめ、かつ、その立体画像を疲労感なく視聴できる装置の開発が期待されている。 In recent years, TVs and the like that can enjoy viewing stereoscopic (3D) images by using the parallax between the left-eye image and the right-eye image have become widespread. Further, such a stereoscopic image can be displayed not only on a TV but also on a mobile terminal such as a portable terminal, and an environment in which a stereoscopic image can be easily viewed at home or outdoors has become widespread. Then, it is expected to develop a device that allows a user to freely view a stereoscopic image from various angles by moving the stereoscopic image freely by the user's intention, and to view the stereoscopic image without feeling tired.
 特許文献1には、画像データに含まれる立体視される物体が、ユーザ方向へ所定値以上の速度で移動するように知覚されることを防ぐために、ユーザの不快感を軽減する方向に左眼用画像及び右眼用画像の視差量を調整して表示する装置が開示されている。 In Patent Document 1, in order to prevent a stereoscopically-viewed object included in image data from being perceived as moving at a speed equal to or greater than a predetermined value in the user direction, the left eye is directed in a direction that reduces user discomfort. An apparatus is disclosed that adjusts and displays the amount of parallax between the image for use and the image for the right eye.
特開2011-55421号公報JP 2011-55421 A
 しかしながら、特許文献1に記載の装置では、立体視される物体のユーザ方向への飛び出し量の変化に着目し、立体視される物体の奥行き方向(引っ込み方向)への移動によるユーザの疲労は考慮されていない。また、特許文献1に記載の装置は、画像データを調整することで飛び出し量の調整を行なっており、物体そのもの大きさや形状等を一定に保つという点が考慮されていないという課題がある。 However, in the apparatus described in Patent Document 1, attention is paid to a change in the amount of projection of the stereoscopically viewed object in the user direction, and user fatigue due to movement of the stereoscopically viewed object in the depth direction (retraction direction) is considered. It has not been. Further, the apparatus described in Patent Document 1 adjusts the amount of popping out by adjusting image data, and there is a problem that it does not take into consideration that the size and shape of the object itself are kept constant.
 本発明は、上述した課題に鑑みてなされたものであり、視聴者に与える疲労を軽減することが可能な立体画像表示制御装置を提供することを目的とする。 The present invention has been made in view of the above-described problems, and an object thereof is to provide a stereoscopic image display control device capable of reducing fatigue given to a viewer.
 本発明の一形態に係る立体画像表示制御装置は、表示装置に立体画像を表示させる。具体的には、立体画像表示制御装置は、立体画像を前記表示装置に出力する出力部と、前記表示装置に表示されている立体画像を変化させる変化指示の入力を、ユーザから受け付ける入力受付部と、前記入力受付部で受け付けられた前記変化指示に従って立体画像を変化させた時の、当該立体画像の単位時間当たりの飛び出し量及び引っ込み量の変化量を予測する変化量予測部と、前記入力受付部で受け付けられた前記変化指示に従って、前記出力部から出力される立体画像を変化させる表示制御部とを備える。そして、前記表示制御部は、前記変化量予測部で予測された単位時間当たりの飛び出し量又は引っ込み量の変化量が予め定められた閾値を超える場合に、前記出力部から出力される立体画像の単位時間当たりの飛び出し量又は引っ込み量の変化量が前記閾値以下となるように、立体画像の変化速度を遅くする。 The stereoscopic image display control device according to an aspect of the present invention displays a stereoscopic image on the display device. Specifically, the stereoscopic image display control device includes an output unit that outputs a stereoscopic image to the display device, and an input reception unit that receives an input of a change instruction for changing the stereoscopic image displayed on the display device from a user. A change amount predicting unit that predicts a change amount of the pop-out amount and the retraction amount per unit time of the stereoscopic image when the stereoscopic image is changed according to the change instruction received by the input receiving unit, and the input A display control unit that changes a stereoscopic image output from the output unit in accordance with the change instruction received by the reception unit. Then, the display control unit, when the change amount of the pop-out amount or the retraction amount per unit time predicted by the change amount prediction unit exceeds a predetermined threshold, the stereoscopic image output from the output unit The change rate of the stereoscopic image is slowed so that the amount of change of the pop-out amount or the amount of retraction per unit time is equal to or less than the threshold value.
 なお、これらの全般的または具体的な態様は、システム、方法、集積回路、コンピュータプログラムまたは記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。 These general or specific aspects may be realized by a system, a method, an integrated circuit, a computer program, or a recording medium, and are realized by any combination of the system, method, integrated circuit, computer program, and recording medium. May be.
 本発明によれば、立体画像の視聴者に与える疲労を軽減することが可能となる。 According to the present invention, it is possible to reduce fatigue given to viewers of stereoscopic images.
図1は、実施の形態1に係る立体画像表示制御装置のブロック図である。FIG. 1 is a block diagram of the stereoscopic image display control apparatus according to the first embodiment. 図2は、実施の形態1に係る立体画像表示制御方法のフローチャートである。FIG. 2 is a flowchart of the stereoscopic image display control method according to the first embodiment. 図3は、表示部に表示される立体画像の回転の一例を示す図である。FIG. 3 is a diagram illustrating an example of rotation of a stereoscopic image displayed on the display unit. 図4は、図3の立体画像の回転速度の制御結果を示す図である。FIG. 4 is a diagram illustrating a control result of the rotation speed of the stereoscopic image of FIG. 図5は、表示部に表示される立体画像の回転の他の例を示す図である。FIG. 5 is a diagram illustrating another example of rotation of a stereoscopic image displayed on the display unit. 図6は、図5の立体画像の回転速度の制御結果を示す図である。FIG. 6 is a diagram illustrating a control result of the rotation speed of the stereoscopic image of FIG. 図7は、表示部に表示される立体画像の回転の他の例を示す図である。FIG. 7 is a diagram illustrating another example of rotation of a stereoscopic image displayed on the display unit. 図8は、図7の立体画像の回転速度の制御結果を示す図である。FIG. 8 is a diagram illustrating a control result of the rotation speed of the stereoscopic image of FIG. 図9は、実施の形態2に係る立体画像表示制御方法のフローチャートである。FIG. 9 is a flowchart of the stereoscopic image display control method according to the second embodiment. 図10は、表示部に表示される立体画像の回転の例を示す図である。FIG. 10 is a diagram illustrating an example of rotation of a stereoscopic image displayed on the display unit. 図11は、図10の立体画像の回転速度の制御結果を示す図である。FIG. 11 is a diagram illustrating a control result of the rotation speed of the stereoscopic image of FIG. 図12は、実施の形態3に係る立体画像表示制御装置のブロック図である。FIG. 12 is a block diagram of the stereoscopic image display control apparatus according to the third embodiment. 図13は、実施の形態3に係る立体画像表示制御方法の図2に対応するフローチャートである。FIG. 13 is a flowchart corresponding to FIG. 2 of the stereoscopic image display control method according to the third embodiment. 図14は、実施の形態3に係る立体画像表示制御方法の図9に対応するフローチャートである。FIG. 14 is a flowchart corresponding to FIG. 9 of the stereoscopic image display control method according to the third embodiment. 図15は、実施の形態3の変形例に係る立体画像表示制御方法のフローチャートである。FIG. 15 is a flowchart of a stereoscopic image display control method according to a modification of the third embodiment. 図16は、回転中心に対して非対称な立体画像の回転の例を示す図である。FIG. 16 is a diagram illustrating an example of rotation of a stereoscopic image that is asymmetric with respect to the rotation center. 図17は、図16の立体画像の回転速度の制御結果を示す図である。FIG. 17 is a diagram illustrating a control result of the rotation speed of the stereoscopic image of FIG. 図18は、表面に模様が付された立体画像を回転させる例を示す図である。FIG. 18 is a diagram illustrating an example of rotating a stereoscopic image having a pattern on the surface.
 本発明の一形態に係る立体画像表示制御装置は、表示装置に立体画像を表示させる。具体的には、立体画像表示制御装置は、立体画像を前記表示装置に出力する出力部と、前記表示装置に表示されている立体画像を変化させる変化指示の入力を、ユーザから受け付ける入力受付部と、前記入力受付部で受け付けられた前記変化指示に従って立体画像を変化させた時の、当該立体画像の単位時間当たりの飛び出し量及び引っ込み量の変化量を予測する変化量予測部と、前記入力受付部で受け付けられた前記変化指示に従って、前記出力部から出力される立体画像を変化させる表示制御部とを備える。そして、前記表示制御部は、前記変化量予測部で予測された単位時間当たりの飛び出し量又は引っ込み量の変化量が予め定められた閾値を超える場合に、前記出力部から出力される立体画像の単位時間当たりの飛び出し量又は引っ込み量の変化量が前記閾値以下となるように、立体画像の変化速度を遅くする。 The stereoscopic image display control device according to an aspect of the present invention displays a stereoscopic image on the display device. Specifically, the stereoscopic image display control device includes an output unit that outputs a stereoscopic image to the display device, and an input reception unit that receives an input of a change instruction for changing the stereoscopic image displayed on the display device from a user. A change amount predicting unit that predicts a change amount of the pop-out amount and the retraction amount per unit time of the stereoscopic image when the stereoscopic image is changed according to the change instruction received by the input receiving unit, and the input A display control unit that changes a stereoscopic image output from the output unit in accordance with the change instruction received by the reception unit. Then, the display control unit, when the change amount of the pop-out amount or the retraction amount per unit time predicted by the change amount prediction unit exceeds a predetermined threshold, the stereoscopic image output from the output unit The change rate of the stereoscopic image is slowed so that the amount of change of the pop-out amount or the amount of retraction per unit time is equal to or less than the threshold value.
 上記構成のように、立体画像を変化させる場合において、飛び出し量又は引っ込み量の単位時間当たりの変化量が閾値を超える場合、変化速度を遅くすることにより、視聴者に与える疲労を軽減することができる。 As in the above configuration, when changing the stereoscopic image, if the amount of change per unit time of the pop-out amount or the retraction amount exceeds the threshold, the change rate is slowed to reduce the fatigue given to the viewer. it can.
 なお、「変化指示に従って立体画像を変化させる」とは、例えば、変化指示に示される変化量、変化時間、又は変化速度等に従って立体画像を変化させることを指す。また、「立体画像の変化速度を遅くする」とは、変化指示に示される変化速度より遅い速度で立体画像を変化させることを指す。 Note that “changing a stereoscopic image according to a change instruction” refers to changing the stereoscopic image according to, for example, a change amount, a change time, or a change speed indicated in the change instruction. Further, “reducing the change speed of the stereoscopic image” means changing the stereoscopic image at a speed slower than the change speed indicated in the change instruction.
 一例として、前記変化量予測部は、単位時間の前後それぞれにおいて、前記表示装置の表示面から最も飛び出ている立体画像上の点の飛び出し量の差を、単位時間当たりの飛び出し量の変化量として予測してもよく、単位時間の前後それぞれにおいて、前記表示装置の表示面から最も引っ込んでいる立体画像上の点の引っ込み量の差を、単位時間当たりの引っ込み量の変化量として予測してもよい。 As an example, the change amount prediction unit may calculate a difference in the amount of protrusion of a point on the stereoscopic image that protrudes most from the display surface of the display device before and after a unit time as a change amount of the amount of protrusion per unit time. The difference in the amount of retraction of the point on the stereoscopic image most retracted from the display surface of the display device before and after the unit time may be predicted as the amount of change in the amount of retraction per unit time. Good.
 このように、立体画像の変化前における表示面から最も離れた第1点と、立体画像の変化後における表示面から最も離れた第1の点とは異なる第2の点とを用いて、飛び出し量及び引っ込み量の単位時間当たりの変化量を予測することができる。 As described above, the first point farthest from the display surface before the change of the stereoscopic image and the second point different from the first point farthest from the display surface after the change of the stereoscopic image are used to jump out. The amount of change per unit time of the amount and the amount of retraction can be predicted.
 他の例として、前記変化量予測部は、立体画像の特定の点の単位時間の前後における飛び出し量の差を、単位時間当たりの飛び出し量の変化量として予測してもよく、立体画像の特定の点の単位時間の前後における引っ込み量の差を、単位時間当たりの引っ込み量の変化量として予測してもよい。 As another example, the change amount prediction unit may predict a difference in pop-out amount before and after a unit time of a specific point of a stereoscopic image as a change amount of the pop-out amount per unit time. The difference in the amount of retraction before and after the unit time at this point may be predicted as the amount of change in the amount of retraction per unit time.
 また、立体画像上の特定の点(同じ点)の立体画像の変化の前後における表示面からの距離を用いて、飛び出し量及び引っ込み量の単位時間当たりの変化量を予測することもできる。「特定の点」とは、例えば、立体画像の表面に付された模様(テクスチャ)であってもよし、立体画像に重畳させた指を動かすことによって立体画像を変化させる場合に、立体画像上の指が重畳している点であってもよい。 Also, it is possible to predict the amount of change per unit time of the pop-out amount and the retraction amount using the distance from the display surface before and after the change of the stereo image of a specific point (same point) on the stereo image. The “specific point” may be, for example, a pattern (texture) attached to the surface of the stereoscopic image, and when the stereoscopic image is changed by moving a finger superimposed on the stereoscopic image, It is also possible that the finger is superimposed.
 一例として、前記変化指示は、立体画像の変化量と、立体画像を前記変化量だけ変化させるのに要する変化時間とを特定する情報を含んでもよい。そして、前記表示制御部は、前記変化量予測部で予測された単位時間当たりの飛び出し量又は引っ込み量の変化量が前記閾値を超える場合に、前記変化時間より長い時間をかけて前記変化量だけ立体画像を変化させてもよい。 As an example, the change instruction may include information specifying a change amount of the stereoscopic image and a change time required to change the stereoscopic image by the change amount. Then, when the change amount of the pop-out amount or the retraction amount per unit time predicted by the change amount prediction unit exceeds the threshold value, the display control unit takes only the change amount over a longer time than the change time. The stereoscopic image may be changed.
 このように、変化指示に示される変化量と同じ量だけ立体画像を変化させるのに、変化指示に示される変化時間より長い時間をかけることによって、立体画像の変化速度を遅くすることができる。 Thus, by changing the stereoscopic image by the same amount as the change amount indicated by the change instruction, it is possible to slow down the change speed of the stereoscopic image by taking a longer time than the change time indicated by the change instruction.
 他の例として、前記変化指示は、立体画像の変化量と、立体画像を前記変化量だけ変化させるのに要する変化時間とを特定する情報を含んでもよい。そして、前記表示制御部は、前記変化量予測部で予測された単位時間当たりの飛び出し量又は引っ込み量の変化量が前記閾値を超える場合に、前記変化時間の間に前記変化量より少ない量だけ立体画像を変化させてもよい。 As another example, the change instruction may include information specifying a change amount of a stereoscopic image and a change time required to change the stereoscopic image by the change amount. The display control unit, when the change amount of the pop-out amount or the retraction amount per unit time predicted by the change amount prediction unit exceeds the threshold value, is less than the change amount during the change time. The stereoscopic image may be changed.
 また、変化指示に示される変化時間と同じ時間の間に、変化指示に示される変化量より少ない量だけ立体画像を変化させることによっても、立体画像の変化速度を遅くすることができる。 Also, the change speed of the stereoscopic image can be slowed by changing the stereoscopic image by an amount smaller than the change amount indicated by the change instruction during the same time as the change time indicated by the change instruction.
 さらに他の例として、前記表示制御部は、前記変化量予測部で予測された単位時間当たりの飛び出し量又は引っ込み量の変化量が前記閾値を超える場合に、前記変化指示に従った立体画像の変化を行わないようにしてもよい。 As yet another example, the display control unit, when the change amount of the pop-out amount or the retraction amount per unit time predicted by the change amount prediction unit exceeds the threshold, the stereoscopic image according to the change instruction The change may not be performed.
 さらに、変化指示に示される立体画像の変化を全く行わない(変化速度を0にする)ことによっても、立体画像の変化速度を遅くすることができる。 Furthermore, the change speed of the stereoscopic image can be reduced by not changing the stereoscopic image indicated by the change instruction at all (changing the change speed to 0).
 例えば、前記入力受付部で受け付けられる立体画像の変化指示は、当該立体画像の移動、回転、拡大、又は縮小を含んでもよい。 For example, the stereoscopic image change instruction received by the input receiving unit may include movement, rotation, enlargement, or reduction of the stereoscopic image.
 一例として、前記入力受付部は、ユーザによる所定の入力操作によって、予め定められた変化量の前記変化指示を受け付けてもよい。 As an example, the input receiving unit may receive the change instruction of a predetermined change amount by a predetermined input operation by a user.
 上記の例は、例えば、ユーザが右回転ボタンを押下(所定の操作の例)すると、立体画像が45°(予め定められた変化量の例)だけ右回転するような場合が該当する。 The above example corresponds to a case where, for example, when the user presses the right rotation button (an example of a predetermined operation), the stereoscopic image is rotated to the right by 45 ° (an example of a predetermined change amount).
 他の例として、前記入力受付部は、ユーザによる入力操作の大きさに応じた変化量の前記変化指示を受け付けてもよい。 As another example, the input receiving unit may receive the change instruction with a change amount corresponding to the magnitude of the input operation by the user.
 上記の例は、例えば、表示画面上でユーザが指をスライドさせた場合のスライド量(入力操作の大きさの一例)に応じて立体画像の変化量をアナログ的に変化させるような場合が該当する。 In the above example, for example, the change amount of the stereoscopic image is changed in an analog manner according to the slide amount (an example of the size of the input operation) when the user slides the finger on the display screen. To do.
 さらに、前記立体画像表示制御装置は、前記表示装置を備えてもよい。 Furthermore, the stereoscopic image display control device may include the display device.
 上記のように、立体画像表示制御装置は、表示装置を備えてもよいし、外部の表示装置の表示を制御するものであってもよい。 As described above, the stereoscopic image display control device may include a display device, or may control display on an external display device.
 本発明の一形態に係る立体画像表示制御方法は、表示装置に立体画像を表示させる方法である。具体的には、立体画像表示制御方法は、立体画像を前記表示装置に出力する出力ステップと、前記表示装置に表示されている立体画像を変化させる変化指示の入力を、ユーザから受け付ける入力受付ステップと、前記入力受付ステップで受け付けられた前記変化指示に従って立体画像を変化させた時の、当該立体画像の単位時間当たりの飛び出し量及び引っ込み量の変化量を予測する変化量予測ステップと、前記入力受付ステップで受け付けられた前記変化指示に従って、前記出力ステップで出力される立体画像を変化させる表示制御ステップとを含む。そして、前記表示制御ステップでは、前記変化量予測ステップで予測された単位時間当たりの飛び出し量又は引っ込み量の変化量が予め定められた閾値を超える場合に、前記出力ステップで出力される立体画像の単位時間当たりの飛び出し量又は引っ込み量の変化量が前記閾値以下となるように、立体画像の変化速度を遅くする。 The stereoscopic image display control method according to an aspect of the present invention is a method for displaying a stereoscopic image on a display device. Specifically, the stereoscopic image display control method includes an output step of outputting a stereoscopic image to the display device, and an input receiving step of receiving an input of a change instruction for changing the stereoscopic image displayed on the display device from a user. A change amount prediction step for predicting a change amount of the pop-out amount and the retraction amount per unit time of the stereoscopic image when the stereoscopic image is changed according to the change instruction received in the input receiving step; A display control step of changing the stereoscopic image output in the output step in accordance with the change instruction received in the reception step. In the display control step, when the amount of change of the pop-out amount or the amount of retraction per unit time predicted in the change amount prediction step exceeds a predetermined threshold, the stereoscopic image output in the output step The change rate of the stereoscopic image is slowed so that the amount of change of the pop-out amount or the amount of retraction per unit time is equal to or less than the threshold value.
 本発明の一形態に係るプログラムは、コンピュータに、表示装置に立体画像を表示させる。具体的には、プログラムは、立体画像を前記表示装置に出力する出力ステップと、前記表示装置に表示されている立体画像を変化させる変化指示の入力を、ユーザから受け付ける入力受付ステップと、前記入力受付ステップで受け付けられた前記変化指示に従って立体画像を変化させた時の、当該立体画像の単位時間当たりの飛び出し量及び引っ込み量の変化量を予測する変化量予測ステップと、前記入力受付ステップで受け付けられた前記変化指示に従って、前記出力ステップで出力される立体画像を変化させる表示制御ステップとを、前記コンピュータに実行させる。そして、前記表示制御ステップでは、前記変化量予測ステップで予測された単位時間当たりの飛び出し量又は引っ込み量の変化量が予め定められた閾値を超える場合に、前記出力ステップで出力される立体画像の単位時間当たりの飛び出し量又は引っ込み量の変化量が前記閾値以下となるように、立体画像の変化速度を遅くする。 The program according to an embodiment of the present invention causes a computer to display a stereoscopic image on a display device. Specifically, the program includes an output step of outputting a stereoscopic image to the display device, an input receiving step of receiving an input of a change instruction for changing the stereoscopic image displayed on the display device, and the input A change amount prediction step for predicting a change amount of the pop-out amount and the retraction amount per unit time of the stereoscopic image when the stereoscopic image is changed in accordance with the change instruction received in the reception step; The computer is caused to execute a display control step of changing the stereoscopic image output in the output step in accordance with the change instruction. In the display control step, when the amount of change of the pop-out amount or the amount of retraction per unit time predicted in the change amount prediction step exceeds a predetermined threshold, the stereoscopic image output in the output step The change rate of the stereoscopic image is slowed so that the amount of change of the pop-out amount or the amount of retraction per unit time is equal to or less than the threshold value.
 以下、本発明を実施するための具体的な形態について、図面を参照しながら説明する。なお、以下で説明する実施の形態は、いずれも本発明の一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, specific modes for carrying out the present invention will be described with reference to the drawings. Note that each of the embodiments described below shows a specific example of the present invention. Numerical values, shapes, materials, components, arrangement and connection forms of components, steps, order of steps, and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention. In addition, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims indicating the highest concept are described as optional constituent elements.
 (実施の形態1)
 図1は、実施の形態1に係る立体画像表示制御装置10のブロック図である。図1に示される立体画像表示制御装置10は、立体画像(3Dオブジェクト)を表示可能な装置であり、ユーザの操作に応じて立体画像(3Dオブジェクト)の表示を変更することができる装置である。
(Embodiment 1)
FIG. 1 is a block diagram of a stereoscopic image display control apparatus 10 according to the first embodiment. The stereoscopic image display control device 10 shown in FIG. 1 is a device that can display a stereoscopic image (3D object), and can change the display of the stereoscopic image (3D object) in accordance with a user operation. .
 なお、本実施の形態1では、ユーザの操作に対応して立体画像を変化させる際に、立体画像の飛び出し量、及び、引っ込み量の単位時間当たりの変化量を計算し、計算結果が予め定めた閾値を超える場合に立体画像の変化速度を制御することによって、飛び出し量、及び、引っ込み量の急激な変化を抑制する立体画像表示制御装置、及び、立体画像表示制御方法について記載する。 In the first embodiment, when changing a stereoscopic image in response to a user operation, the amount of projection of the stereoscopic image and the amount of change per unit time of the retraction amount are calculated, and the calculation result is determined in advance. A stereoscopic image display control apparatus and a stereoscopic image display control method for suppressing a sudden change in the pop-out amount and the retracted amount by controlling the change speed of the stereoscopic image when exceeding the threshold value will be described.
 ここで、飛び出し量とは、表示部14の表示面からユーザの存在する向きに飛び出している立体画像の表示部14表示面からの距離である。引っ込み量とは、表示部14の表示面からユーザの存在する向きとは反対向き(奥行き方向)に引っ込んだ立体画像の表示部14(表示面)からの距離である。 Here, the pop-out amount is the distance from the display unit 14 display surface of the stereoscopic image protruding from the display surface of the display unit 14 in the direction in which the user exists. The amount of retraction is the distance from the display unit 14 (display surface) of a stereoscopic image that is retracted from the display surface of the display unit 14 in the direction opposite to the direction in which the user exists (depth direction).
 (実施の形態1に係る立体画像表示制御装置10のブロック図)
 図1において、立体画像表示制御装置10は、立体画像を表示するために立体画像データを取得する画像データ取得部11と、立体画像を操作するためのユーザからの操作(変化指示)を受け付ける入力受付部12と、変化指示に基づいて表示する立体画像を制御する制御部13と、左眼用画像及び右眼用画像を用いて立体画像を表示する表示部14と、画像データ取得部11で取得された立体画像データ、及び、表示部14に現在表示されている立体画像の立体画像データ等を保持するデータ保持部15とから構成される。
(Block diagram of stereoscopic image display control apparatus 10 according to Embodiment 1)
In FIG. 1, a stereoscopic image display control device 10 receives an image data acquisition unit 11 that acquires stereoscopic image data in order to display a stereoscopic image, and an input that receives an operation (change instruction) from a user for operating the stereoscopic image. The reception unit 12, the control unit 13 that controls the stereoscopic image to be displayed based on the change instruction, the display unit 14 that displays the stereoscopic image using the left-eye image and the right-eye image, and the image data acquisition unit 11 The data storage unit 15 stores the acquired stereoscopic image data and the stereoscopic image data of the stereoscopic image currently displayed on the display unit 14.
 なお、「変化指示」とは、表示部14に表示されている立体画像を変化させる指示であり、変化の種類、変化量、及び変化を完了するのに要する時間、変化速度等の一部又は全部を直接的又は間接的に特定する情報を含む。また、「変化の種類」には、当該立体画像の移動、回転、拡大、又は縮小等が含まれる。 The “change instruction” is an instruction to change the stereoscopic image displayed on the display unit 14, and a part of change type, change amount, time required to complete the change, change speed, etc. Includes information that directly or indirectly identifies everything. The “variation type” includes movement, rotation, enlargement, or reduction of the stereoscopic image.
 制御部13は、入力受付部12で受け付けられた変化指示に対する立体画像の飛び出し量、及び、引っ込み量の単位時間当たりの変化量を予測する変化量予測部131と、変化量予測部131で予測した飛び出し量、及び/又は、引っ込み量の単位時間当たりの変化量に応じて、立体画像の変化速度を制御する表示制御部132とで構成される。 The control unit 13 predicts the change amount prediction unit 131 that predicts the amount of projection of the stereoscopic image and the change amount of the retraction amount per unit time in response to the change instruction received by the input reception unit 12 and the change amount prediction unit 131. The display control unit 132 controls the change rate of the stereoscopic image in accordance with the change amount per unit time of the pop-out amount and / or the retraction amount.
 具体的には、変化量予測部131は、変化指示を入力受付部12から取得し、表示部14に表示されている立体画像のデータをデータ保持部15から取得する。そして、変化量予測部131は、変化指示に従って立体画像を変化させた時の、当該立体画像の単位時間当たりの飛び出し量及び引っ込み量の変化量を予測する。そして、表示制御部132は、変化量予測部131で予測された単位時間当たりの飛び出し量又は引っ込み量の変化量が予め定められた閾値を超える場合に、表示部14に表示される立体画像の単位時間当たりの飛び出し量又は引っ込み量の変化量が閾値以下となるように、立体画像の変化速度を遅くする。 Specifically, the change amount predicting unit 131 acquires a change instruction from the input receiving unit 12 and acquires the data of the stereoscopic image displayed on the display unit 14 from the data holding unit 15. Then, the change amount predicting unit 131 predicts the change amount of the pop-out amount and the retraction amount per unit time of the stereo image when the stereo image is changed according to the change instruction. Then, the display control unit 132 displays the stereoscopic image displayed on the display unit 14 when the amount of change of the pop-out amount or the amount of retraction per unit time predicted by the change amount prediction unit 131 exceeds a predetermined threshold. The change rate of the stereoscopic image is reduced so that the amount of change in the pop-out amount or the retraction amount per unit time is less than or equal to the threshold value.
 なお、入力受付部12における変化指示の受付方法の具体例は特に限定されない。例えば、立体画像表示制御装置10の表示部14に重畳するように配置されるタッチパネルへのタッチ操作による入力を受け付けてもよいし、また、カメラ、赤外線方式、静電容量方式、超音波方式、磁界検出方式等のセンサを用いて指や手の動作(ジェスチャ)を認識する方法で受け付けてもよいし、立体画像表示制御装置10に外部接続されるマウス、タッチパッド、ジョイスティックからの入力を受け付けてもよいし、リモコンからの入力を受け付けてもよい。すなわち、ユーザからの入力を受け付けることが可能な方法であればどのようなものでも構わない。 A specific example of the change instruction receiving method in the input receiving unit 12 is not particularly limited. For example, an input by a touch operation on a touch panel arranged so as to be superimposed on the display unit 14 of the stereoscopic image display control device 10 may be received, or a camera, an infrared method, a capacitance method, an ultrasonic method, It may be received by a method of recognizing a finger or hand movement (gesture) using a sensor such as a magnetic field detection method, or input from a mouse, a touch pad, or a joystick externally connected to the stereoscopic image display control device 10 is accepted. Alternatively, an input from a remote controller may be accepted. That is, any method can be used as long as it can accept input from the user.
 また、画像データ取得部11における立体画像を表示するための立体画像データの取得方法の具体例は特に限定されない。例えば、各種メモリ(USBメモリやSDカード(登録商標))から取得してもよいし、有線LAN、無線LANネットワーク、携帯電話回線等のネットワークを介して取得してもよい。すなわち、立体画像データを取得可能な方法であればどのようなものでも構わない。また、内蔵のメモリ(データ保持部15)などに、予め立体画像データを保持している場合は、上記画像データ取得部11は存在しなくても立体画像表示制御装置10を構成することは可能である。 In addition, a specific example of a method for acquiring stereoscopic image data for displaying a stereoscopic image in the image data acquisition unit 11 is not particularly limited. For example, it may be acquired from various memories (USB memory or SD card (registered trademark)), or may be acquired via a network such as a wired LAN, a wireless LAN network, and a mobile phone line. That is, any method may be used as long as it can acquire stereoscopic image data. Further, when stereoscopic image data is held in advance in a built-in memory (data holding unit 15) or the like, the stereoscopic image display control device 10 can be configured even if the image data acquisition unit 11 does not exist. It is.
 また、左眼用画像及び右眼用画像を用いて立体画像を表示する表示部14の表示方法の具体例は特に限定されない。例えば、裸眼立体視表示方法では、視差バリア、レンチキュラ、インテグラル方式等で構成してもよい。または、メガネを使うアクティブシャッター式、フレームシーケンシャル方式等で構成してもよい。すなわち、立体画像が表示可能な方法であればどのようなものでも構わない。 Also, a specific example of the display method of the display unit 14 that displays a stereoscopic image using the left-eye image and the right-eye image is not particularly limited. For example, in the autostereoscopic display method, a parallax barrier, a lenticular, an integral method, or the like may be used. Alternatively, an active shutter type using glasses, a frame sequential method, or the like may be used. That is, any method can be used as long as a stereoscopic image can be displayed.
 また、左眼用画像及び右眼用画像は、通常は、異なる2つの位置に置かれたカメラで撮影した画像であってもよいし、3次元コンピュータグラフィックスを用いて、異なる2視点からレンダリング(コンピュータが3次元形状データや視点位置を考慮して2次元の画像を生成する処理)を行って得られたコンピュータグラフィックス画像であってもよい。すなわち、立体画像として認識できる左眼用画像及び右眼用画像の組み合わせであればあればどのようなものでも構わない。 Further, the image for the left eye and the image for the right eye may normally be images taken by cameras placed at two different positions, or rendered from two different viewpoints using three-dimensional computer graphics. It may be a computer graphics image obtained by performing (a process in which a computer generates a two-dimensional image in consideration of three-dimensional shape data and a viewpoint position). That is, any combination of a left-eye image and a right-eye image that can be recognized as a stereoscopic image may be used.
 なお、表示部14は、実施の形態1に係る立体画像表示制御装置10に必須の構成要素ではなく、省略することができる。すなわち、実施の形態1に係る立体画像表示制御装置10は、外部の表示装置に対して立体画像(すなわち、左眼用画像及び右眼用画像)を出力する装置であってもよい。その場合、立体画像表示制御装置10は、外部の表示装置に対して立体画像を出力する出力部(図示省略)をさらに備える。 The display unit 14 is not an essential component for the stereoscopic image display control apparatus 10 according to the first embodiment, and can be omitted. That is, the stereoscopic image display control apparatus 10 according to Embodiment 1 may be an apparatus that outputs a stereoscopic image (that is, an image for the left eye and an image for the right eye) to an external display device. In that case, the stereoscopic image display control device 10 further includes an output unit (not shown) that outputs a stereoscopic image to an external display device.
 また、データ保持部15は、立体画像データ、状態遷移の状態及び予測値、立体画像の状態等を記憶し、必要に応じて読み出すことができるメモリである。メモリの具体例は特に限定されないが、例えば、DRAM(Dynamic Random Access Memory)、SDRAM(Synchronous Dynamic Random Access Memory)、フラッシュメモリ、強誘電体メモリ等のデータを記録可能な手段であればどのようなものを利用しても構わない。 The data holding unit 15 is a memory that stores stereoscopic image data, state transition states and predicted values, stereoscopic image states, and the like, and can read them out as necessary. Specific examples of the memory are not particularly limited. For example, any means such as DRAM (Dynamic Random Access Memory), SDRAM (Synchronous Dynamic Access Memory), flash memory, ferroelectric memory, and the like can be recorded. You can use things.
 (実施の形態1に係る立体画像表示制御装置10の動作)
 以下、入力受付部12で受け付けた変化指示の情報と、表示部14に現在表示されている立体画像の状態とに応じて、表示部14に表示されている立体画像の回転時間を変更することによって回転速度を制御する実施の形態1の方法の一例を、図2を参照して説明する。
(Operation of stereoscopic image display control apparatus 10 according to Embodiment 1)
Hereinafter, the rotation time of the stereoscopic image displayed on the display unit 14 is changed according to the change instruction information received by the input receiving unit 12 and the state of the stereoscopic image currently displayed on the display unit 14. An example of the method according to the first embodiment for controlling the rotation speed by means of FIG. 2 will be described with reference to FIG.
 (ステップS2001)制御部13は、ユーザからの変化指示が入力受付部12で受け付けられたことを検知した場合(ステップS2001でYES)はステップS2002に進み、検知しない場合(ステップS2001でNO)はステップS2001に戻る。 (Step S2001) When the control unit 13 detects that a change instruction from the user is received by the input receiving unit 12 (YES in step S2001), the control unit 13 proceeds to step S2002, and when not detected (NO in step S2001). The process returns to step S2001.
 (ステップS2002)制御部13の変化量予測部131は、入力受付部12で受け付けられた変化指示と、表示部14に現在表示されている立体画像の状態とに基づいて、変化指示に従って立体画像を変化させた時の、単位時間当たりの飛び出し量、及び、引っ込み量の変化量を予測計算し、ステップS2003に進む。 (Step S2002) The change amount prediction unit 131 of the control unit 13 performs a stereoscopic image according to the change instruction based on the change instruction received by the input reception unit 12 and the state of the stereoscopic image currently displayed on the display unit 14. The amount of pop-out per unit time and the amount of change in the amount of retraction when predicting is changed, and the process proceeds to step S2003.
 実施の形態1に係る変化量予測部131は、単位時間の前後それぞれにおいて、表示部14の表示面から最も飛び出ている立体画像上の点の飛び出し量の差を、単位時間当たりの飛び出し量の変化量として予測する。同様に、変化量予測部131は、単位時間の前後それぞれにおいて、表示部14の表示面から最も引っ込んでいる立体画像上の点の引っ込み量の差を、単位時間当たりの引っ込み量の変化量として予測する。 The amount-of-change prediction unit 131 according to the first embodiment calculates the difference in the amount of protrusion per unit time by using the difference in the amount of protrusion of a point on the stereoscopic image that protrudes most from the display surface of the display unit 14 before and after the unit time. Predict as change. Similarly, the change amount prediction unit 131 uses, as the change amount of the retraction amount per unit time, the difference in the retraction amount of the point on the stereoscopic image most retracted from the display surface of the display unit 14 before and after the unit time. Predict.
 (ステップS2003)制御部13の表示制御部132は、変化量予測部131で予測された飛び出し量、及び、引っ込み量の単位時間当たりの変化量の少なくとも一方が閾値を超える場合(ステップS2003でYES)はステップS2004に進み、予測した変化量の両方(飛び出し量、及び、引っ込み量の単位時間当たりの変化量の両方)が閾値以下の場合(ステップS2003でNO)はステップS2005に進む。 (Step S2003) The display control unit 132 of the control unit 13 determines that at least one of the pop-out amount predicted by the change amount prediction unit 131 and the change amount of the retraction amount per unit time exceeds a threshold (YES in Step S2003). ) Proceeds to step S2004, and when both of the predicted change amounts (both the pop-out amount and the change amount per unit time of the retraction amount) are equal to or less than the threshold (NO in step S2003), the process proceeds to step S2005.
 (ステップS2004)表示制御部132は、表示部14に現在表示されている立体画像を遷移条件Aで遷移するように表示部14の表示内容を制御すると共に、状態遷移後の立体画像データをデータ保持部15に保持させる。 (Step S2004) The display control unit 132 controls the display content of the display unit 14 so that the stereoscopic image currently displayed on the display unit 14 transitions under the transition condition A, and the stereoscopic image data after the state transition is stored as data. It is held by the holding unit 15.
 ここで、遷移条件Aは、立体画像の飛び出し量、及び/又は、引っ込み量の急激な変化を抑止するために、立体画像の回転速度を制御して表示部14に表示させる条件である。すなわち、表示制御部132は、表示部14に表示されている立体画像を、変化指示に示される回転速度より遅い回転速度で回転させる。なお、本実施の形態1における以後の説明では、回転し終わるのに要する時間を変更(遅く)することによって、表示部14に表示される立体画像の回転速度を制御する方法について説明する。 Here, the transition condition A is a condition for controlling the rotation speed of the stereoscopic image and displaying it on the display unit 14 in order to suppress a sudden change in the protruding amount and / or the retracting amount of the stereoscopic image. That is, the display control unit 132 rotates the stereoscopic image displayed on the display unit 14 at a rotation speed slower than the rotation speed indicated by the change instruction. In the following description of the first embodiment, a method of controlling the rotation speed of the stereoscopic image displayed on the display unit 14 by changing (slowing) the time required to complete the rotation will be described.
 (ステップS2005)表示制御部132は、表示部14に現在表示されている立体画像を遷移条件Bで遷移するように表示部14の表示内容を制御すると共に、状態遷移後の立体画像データをデータ保持部15に保持させる。 (Step S2005) The display control unit 132 controls the display content of the display unit 14 so that the stereoscopic image currently displayed on the display unit 14 transitions according to the transition condition B, and the stereoscopic image data after the state transition is stored as data. It is held by the holding unit 15.
 ここで、遷移条件Bは、立体画像の飛び出し量、及び/又は、引っ込み量の急激な変化がないと予測された場合の遷移条件であって、表示部14に表示される立体画像の回転速度を変更しない条件である。すなわち、表示制御部132は、表示部14に表示されている立体画像を、変化指示に示される回転速度で回転させる。 Here, the transition condition B is a transition condition when it is predicted that there is no sudden change in the pop-out amount and / or the retraction amount of the stereoscopic image, and the rotational speed of the stereoscopic image displayed on the display unit 14 It is a condition not to change. That is, the display control unit 132 rotates the stereoscopic image displayed on the display unit 14 at the rotation speed indicated by the change instruction.
 (ステップS2006)表示部14は、ステップS2004、または、ステップS2005での表示制御部132の立体画像の回転速度の制御に基づいて、左眼用画像及び右眼用画像を用いて立体画像を表示する。 (Step S2006) The display unit 14 displays a stereoscopic image using the left-eye image and the right-eye image based on the control of the rotation speed of the stereoscopic image of the display control unit 132 in step S2004 or step S2005. To do.
 ここで、表示制御部132は、ステップS2004、及び、ステップS2005で表示の状態を遷移させる際に、データ保持部15に記憶している遷移前の立体画像の状態を読み出し、ステップS2004、及び、ステップS2005の条件で遷移させた遷移後の立体画像の状態を再度データ保持部15に保持させる。 Here, the display control unit 132 reads the state of the stereoscopic image before the transition stored in the data holding unit 15 when the display state is changed in Steps S2004 and S2005, and Steps S2004 and The data holding unit 15 again holds the state of the stereoscopic image after the transition made under the condition of step S2005.
 (実施の形態1に係る立体画像表示制御装置10の立体画像の表示制御の一例)
 図3及び図4を用いて、実施の形態1に係る立体画像表示制御装置10が、変化指示に基づいて表示部14に表示される立体画像を制御する場合の一例について説明する。
(Example of stereoscopic image display control of stereoscopic image display control apparatus 10 according to Embodiment 1)
An example in which the stereoscopic image display control apparatus 10 according to Embodiment 1 controls a stereoscopic image displayed on the display unit 14 based on a change instruction will be described with reference to FIGS. 3 and 4.
 図3では、立体画像表示制御装置10に直方体が立体表示され、ユーザの一回の操作(例えば、表示部14の表示面をタップする等)に対して、表示部14に表示されている直方体が45度ずつ回転する場合を想定している。すなわち、この例で入力受付部12が受け付ける変化指示は、直方体を所定の時間(例えば、図4の時間T41)で45度回転させることを示す指示となる。ここで、「45度」は立体画像の変化量に相当する。また、「時間T41」は、立体画像を所定の変化量(45度)だけ変化させるのに要する変化時間に相当する。 In FIG. 3, the rectangular parallelepiped is stereoscopically displayed on the stereoscopic image display control device 10, and the rectangular parallelepiped displayed on the display unit 14 in response to a single operation of the user (for example, tapping the display surface of the display unit 14). Is assumed to rotate by 45 degrees. That is, the change instruction received by the input receiving unit 12 in this example is an instruction indicating that the rectangular parallelepiped is rotated by 45 degrees for a predetermined time (for example, time T41 in FIG. 4). Here, “45 degrees” corresponds to a change amount of the stereoscopic image. The “time T41” corresponds to a change time required to change the stereoscopic image by a predetermined change amount (45 degrees).
 まず、図3の初期状態ST300は、表示部14に表示されている立体画像である直方体の、最も飛び出している点の飛び出し量が「0」、及び、最も引っ込んでいる点の引っ込み量が「0」である状態を示している。次に、ユーザによって一回の操作が加えられることで、表示部14に表示される直方体は、初期状態ST300から45度回転した状態ST301に変化する。状態ST301における最も飛び出している点の飛び出し量は約「0.7H」、及び、最も引っ込んでいる点の引っ込み量は約「-0.7H」となる。 First, in the initial state ST300 in FIG. 3, the protrusion amount of the most protruding point of the rectangular parallelepiped that is a stereoscopic image displayed on the display unit 14 is “0”, and the retracting amount of the most retracting point is “ A state of “0” is shown. Next, when the user performs one operation, the rectangular parallelepiped displayed on the display unit 14 changes from the initial state ST300 to the state ST301 rotated by 45 degrees. In the state ST301, the amount of protrusion at the most protruding point is about “0.7H”, and the amount of protrusion at the most retracted point is about “−0.7H”.
 次に、ユーザによってさらに一回の操作が加えられることで、表示部14に表示される直方体は、状態ST301からさらに45度回転した状態ST302に変化する。状態ST302における最も飛び出している点の飛び出し量は「H」、及び、最も引っ込んでいる点の引っ込み量は「-H」となる。ここで、「H」は直方体の最も長い辺の長さの1/2である。また、直方体は、その重心を通り表示部14(表示面)の短辺に平行な直線を中心に回転する。 Next, when the user performs one more operation, the rectangular parallelepiped displayed on the display unit 14 changes from the state ST301 to the state ST302 rotated by 45 degrees. In the state ST302, the amount of protrusion at the most protruding point is “H”, and the amount of retracting at the most retracted point is “−H”. Here, “H” is ½ of the length of the longest side of the rectangular parallelepiped. The rectangular parallelepiped rotates about a straight line that passes through the center of gravity and is parallel to the short side of the display unit 14 (display surface).
 次に、図4を用いて、図3で示した初期状態ST300から状態ST301、及び、状態ST301から状態ST302に遷移する場合のそれぞれにおいて、立体画像の回転速度を制御する具体的な方法について説明する。 Next, a specific method for controlling the rotation speed of the stereoscopic image in each of the transitions from the initial state ST300 to the state ST301 and from the state ST301 to the state ST302 illustrated in FIG. 3 will be described using FIG. To do.
 図4の縦軸は立体画像の飛び出し量、及び、引っ込み量を示し、横軸は時間を示す。 The vertical axis in FIG. 4 indicates the pop-out amount and retraction amount of the stereoscopic image, and the horizontal axis indicates time.
 まず、図3の初期状態ST300は、図4の状態St41に対応する(最も飛び出している点の飛び出し量が「0」、及び、最も引っ込んでいる点の引っ込み量が「0」)。変化量予測部131は、この状態St41からユーザによって操作が加えられたことによって、直方体が45度回転する(すなわち、図3の状態ST301に変化する)場合の単位時間当たりの飛び出し量、及び、引っ込み量の変化量を予測する。 First, the initial state ST300 in FIG. 3 corresponds to the state St41 in FIG. 4 (the amount of protrusion at the most protruding point is “0” and the amount of retracting at the most retracted point is “0”). The amount of change predicting unit 131 is a pop-up amount per unit time when the cuboid rotates 45 degrees (ie, changes to the state ST301 in FIG. 3) due to the user's operation from this state St41, and Predict the amount of change in retraction.
 すなわち、変化量予測部131は、状態St42における最も飛び出している点の飛び出し量と、状態St41における最も飛び出している点の飛び出し量との差を、直方体が状態St41から状態St42に変化するのに要する時間で除すことにより、単位時間当たりの飛び出し量(図4の破線の傾き)の変化量を算出する。 That is, the change amount predicting unit 131 changes the difference between the amount of protrusion at the most protruding point in the state St42 and the amount of protrusion at the most protruding point in the state St41, from the state St41 to the state St42. By dividing by the time required, the amount of change in the pop-out amount per unit time (the slope of the broken line in FIG. 4) is calculated.
 同様に、変化量予測部131は、状態St42における最も引っ込んでいる点の引っ込み量と、状態St41における最も引っ込んでいる点の引っ込み量との差を、直方体が状態St41から状態St42に変化するのに要する時間で除すことにより、単位時間当たりの引っ込み量の変化量(図4の破線の傾き)を算出する。 Similarly, the change amount predicting unit 131 changes the difference between the retracted amount of the most retracted point in the state St42 and the retracted amount of the most retracted point in the state St41 from the state St41 to the state St42. The amount of change in the amount of retraction per unit time (the slope of the broken line in FIG. 4) is calculated by dividing by the time required for.
 その結果、単位時間当たりの飛び出し量の変化量は約「0.7H」、及び、引っ込み量の変化量は約「-0.7H」となる(時間T41を単位時間として計算している)。これらの変化量は、いずれも閾値(一例では、閾値を0.25Hとする)を超えるため、表示制御部132は、直方体の回転速度を遅くする。 As a result, the change amount of the pop-out amount per unit time is about “0.7H”, and the change amount of the retraction amount is about “−0.7H” (time T41 is calculated as a unit time). Since these change amounts both exceed a threshold value (in the example, the threshold value is set to 0.25H), the display control unit 132 decreases the rotation speed of the rectangular parallelepiped.
 なお、引っ込み量を符号付きで考える場合、「引っ込み量の変化量が閾値を超える」とは、引っ込み量の変化量の絶対値(上記の例では0.7H)が閾値(0.25H)を上回ると考えてもよいし、引っ込み量の変化量(上記の例では-0.7H)が引っ込み量の閾値(-0.25H)を下回ると考えてもよい。 When considering the amount of retraction with a sign, “the amount of change in the amount of retraction exceeds the threshold” means that the absolute value of the amount of change in the retraction (0.7H in the above example) is the threshold (0.25H). It may be considered that the amount of change is larger or the amount of change in the amount of retraction (−0.7H in the above example) is lower than the threshold value of the amount of retraction (−0.25H).
 図4で示す状態St41から状態St42への遷移は予測値であり、時間T41で直方体が45度回転をした場合を示すが、このままでは、単位時間当たりの飛び出し量、及び、引っ込み量の変化が大き過ぎる。そこで、この予測値を基に状態St41から状態St43までの時間T42(時間T41より長い)で直方体が45度回転するように、直方体の回転速度を変更(遅く)する。 The transition from the state St41 to the state St42 shown in FIG. 4 is a predicted value, and shows a case where the rectangular parallelepiped rotates 45 degrees at time T41, but if this is the case, the amount of protrusion and the amount of retraction per unit time will change. Too big. Therefore, based on this predicted value, the rotation speed of the rectangular parallelepiped is changed (slow) so that the rectangular parallelepiped rotates 45 degrees at time T42 (longer than time T41) from state St41 to state St43.
 言い換えれば、回転速度を制御しない場合は時間T41で直方体が45度回転するため、急激に飛び出し量、及び、引っ込み量が変化する。しかし、回転速度に制御を加えることで時間T42(>T41)の間に直方体が45度回転するため、飛び出し量、及び、引っ込み量の急激な変化を抑制できる。この遷移後の状態St43は、図3の状態ST301に対応する。 In other words, when the rotational speed is not controlled, the rectangular parallelepiped rotates 45 degrees at time T41, so that the amount of protrusion and the amount of retraction suddenly change. However, since the rectangular parallelepiped rotates 45 degrees during the time T42 (> T41) by controlling the rotation speed, it is possible to suppress sudden changes in the pop-out amount and the retraction amount. The state St43 after the transition corresponds to the state ST301 in FIG.
 次に、図4の状態St43から状態St44まではユーザの操作がなく、直方体の表示の状態が変化していない時間帯を示している。次に、状態St44でユーザによって操作が加えられたことによって直方体が45度回転する(すなわち、図3の状態ST302に変化する)場合の飛び出し量、及び、引っ込み量の単位時間当たりの変化量を予測すると、単位時間当たりの飛び出し量の変化量は約「0.3H」、及び、引っ込み量の変化量は約「-0.3H」となる。これらの変化量は、いずれも閾値(一例では、閾値を0.25Hとする)を超えるため、表示制御部132は、直方体の回転速度を遅くする。 Next, from the state St43 to the state St44 in FIG. 4, there is a time zone in which there is no user operation and the display state of the rectangular parallelepiped does not change. Next, the amount of protrusion and the amount of change per unit time when the rectangular parallelepiped is rotated 45 degrees due to the operation by the user in the state St44 (that is, the state changes to the state ST302 of FIG. 3). Predicting the change amount of the pop-out amount per unit time is about “0.3H”, and the change amount of the retraction amount is about “−0.3H”. Since these change amounts both exceed a threshold value (in the example, the threshold value is set to 0.25H), the display control unit 132 decreases the rotation speed of the rectangular parallelepiped.
 図4で示す状態St44から状態St45への遷移は予測値であり、時間T43で直方体が45度回転をした場合を示すが、このままでは、単位時間当たりの飛び出し量、及び、引っ込み量の変化が大き過ぎる。そこで、この予測値を基に状態St44から状態St46までの時間T44(時間T43より長い)の間に直方体が45度回転するように、直方体の回転速度を変更(遅く)する。 The transition from the state St44 to the state St45 shown in FIG. 4 is a predicted value, and shows a case where the rectangular parallelepiped has rotated 45 degrees at time T43, but if this is the case, the amount of protrusion and the amount of retraction per unit time will change. Too big. Therefore, based on this predicted value, the rotation speed of the rectangular parallelepiped is changed (slow) so that the rectangular parallelepiped rotates 45 degrees during time T44 (longer than time T43) from state St44 to state St46.
 言い換えれば、回転速度を制御しない場合は時間T43で直方体が45度回転するため、急激に飛び出し量、及び、引っ込み量が変化する。しかし、回転速度に制御を加えることで時間T44(>T43)の間に直方体が45度回転するため、飛び出し量、及び、引っ込み量の急激な変化を抑制できる。この遷移後の状態St46は、図3の状態ST302に対応する。 In other words, when the rotational speed is not controlled, the rectangular parallelepiped rotates 45 degrees at time T43, so that the amount of protrusion and the amount of retraction suddenly change. However, since the rectangular parallelepiped rotates 45 degrees during the time T44 (> T43) by controlling the rotation speed, it is possible to suppress sudden changes in the pop-out amount and the retraction amount. The state St46 after the transition corresponds to the state ST302 in FIG.
 また、状態St41(=ST300)から状態St43(=ST301)への遷移と、状態St44(=ST301)から状態St46(=ST302)への遷移とでは、飛び出し量、及び、引っ込み量の単位時間当たりの変化量が異なるため、回転速度、すなわち同じ回転量(45度)に対する回転時間が、時間T42と時間T44とで異なるように制御している。 Further, in the transition from the state St41 (= ST300) to the state St43 (= ST301) and the transition from the state St44 (= ST301) to the state St46 (= ST302), the amount of pop-out and the amount of retraction per unit time Therefore, the rotation speed, that is, the rotation time for the same rotation amount (45 degrees) is controlled to be different at time T42 and time T44.
 図4の場合は、飛び出し量、及び、引っ込み量の単位時間当たりの変化量が比較的大きい状態St41(=ST300)から状態St43(=ST301)への変化に要する時間T42の方が、飛び出し量、及び、引っ込み量の単位時間当たりの変化量が比較的小さい状態St44(=ST301)から状態St46(=ST302)への変化に要する時間T44より長く設定している。 In the case of FIG. 4, the amount of popping out and the amount of popping out are larger for the time T42 required for the change from the state St41 (= ST300) to the state St43 (= ST301) where the amount of change per unit time is relatively large. The amount of change per unit time of the retraction amount is set to be longer than the time T44 required for the change from the state St44 (= ST301) to the state St46 (= ST302).
 このことは、飛び出し量、及び、引っ込み量の単位時間当たりの変化量に応じて回転速度を調整していることを示す。すなわち、飛び出し量及び引っ込み量の変化量に着目すれば、状態St41から状態St43までと、状態St44から状態St46までとは、同じ速度(すなわち、図4の実線の傾きが同一)で回転していることになる。一方、回転量(回転角度)に着目すれば、状態St41から状態St43までは、状態St44から状態St46までよりゆっくり(すなわち、長い時間をかけて)回転していることになる。 This indicates that the rotational speed is adjusted according to the amount of change per unit time of the pop-out amount and the retraction amount. In other words, if attention is paid to the amount of change in the pop-out amount and the retraction amount, the state St41 to the state St43 and the state St44 to the state St46 rotate at the same speed (that is, the inclination of the solid line in FIG. 4 is the same). Will be. On the other hand, focusing on the rotation amount (rotation angle), the state St41 to the state St43 are rotating more slowly (that is, taking a longer time) from the state St44 to the state St46.
 図5及び図6では、直方体にさらに操作を加えることによって、図3の状態ST302の直方体をさらに回転させる場合について説明する。 5 and 6, a case will be described in which the rectangular parallelepiped in the state ST302 in FIG. 3 is further rotated by further operating the rectangular parallelepiped.
 図5の状態ST500は、図3の状態ST302に対応する。なお、図5では、図3の場合と同様に、ユーザの一回の操作に対して直方体が45度ずつ回転する場合を想定している。 The state ST500 in FIG. 5 corresponds to the state ST302 in FIG. In FIG. 5, as in the case of FIG. 3, it is assumed that the rectangular parallelepiped rotates 45 degrees for each user operation.
 まず、状態ST500において、表示部14に表示されている直方体の最も飛び出している点の飛び出し量は「H」、及び、最も引っ込んでいる点の引っ込み量は「-H」である。次に、ユーザによって一回の操作が加えられることで、表示部14に表示される直方体は、状態ST500から45度回転した状態ST501に変化する。状態ST501における最も飛び出している点の飛び出し量は約「0.7H」、及び、最も引っ込んでいる点の引っ込み量は約「-0.7H」となる。 First, in the state ST500, the protrusion amount of the most protruding point of the rectangular parallelepiped displayed on the display unit 14 is “H”, and the retracting amount of the most retracted point is “−H”. Next, when the user performs one operation, the rectangular parallelepiped displayed on the display unit 14 changes from the state ST500 to the state ST501 rotated by 45 degrees. In the state ST501, the amount of protrusion at the most protruding point is about “0.7H”, and the amount of retracting at the most retracted point is about “−0.7H”.
 次に、ユーザによってさらに一回の操作が加えられることで、表示部14に表示される直方体は、状態ST501からさらに45度回転した状態ST502に変化する。状態ST502における最も飛び出している点の飛び出し量は「0」、及び、最も引っ込んでいる点の引っ込み量は「0」となる。 Next, when the user performs one more operation, the rectangular parallelepiped displayed on the display unit 14 changes from the state ST501 to a state ST502 rotated by 45 degrees. In the state ST502, the protruding amount of the most protruding point is “0”, and the retracting amount of the most retracted point is “0”.
 次に、図6を用いて、図5で示した状態ST500から状態ST501、及び、状態ST501から状態ST502に遷移する場合のそれぞれにおいて、立体画像の回転速度を制御する具体的な方法について説明する。 Next, a specific method for controlling the rotation speed of the stereoscopic image in each of the transition from the state ST500 to the state ST501 and the state ST501 to the state ST502 shown in FIG. 5 will be described with reference to FIG. .
 図6の縦軸は立体画像の飛び出し量、及び、引っ込み量を示し、横軸は時間を示す。 The vertical axis in FIG. 6 indicates the pop-out amount and retraction amount of the stereoscopic image, and the horizontal axis indicates time.
 まず、図5の状態ST500は、図6の状態St61に対応する(最も飛び出している点の飛び出し量が「H」、及び、最も引っ込んでいる点の引っ込み量が「-H」)。この状態ST500からユーザによって操作が加えられたことによって直方体が45度回転する(すなわち、図5の状態ST501に変化する)場合の単位時間当たりの飛び出し量、及び、引っ込み量の変化量を予測すると、単位時間当たりの飛び出し量の変化量は約「0.3H」、及び、引っ込み量の変化量は約「-0.3H」となる。これらの変化量は、いずれも閾値(一例では、閾値を0.25Hとする)を超えるため、表示制御部132は、直方体の回転速度を遅くする。 First, state ST500 in FIG. 5 corresponds to state St61 in FIG. 6 (the amount of protrusion at the most protruding point is “H” and the amount of retracting at the most retracted point is “−H”). When the rectangular parallelepiped is rotated 45 degrees as a result of the user's operation from this state ST500 (that is, when the state changes to state ST501 in FIG. 5), the amount of protrusion per unit time and the amount of change in the amount of retraction are predicted. The change amount of the pop-out amount per unit time is about “0.3H”, and the change amount of the retraction amount is about “−0.3H”. Since these change amounts both exceed a threshold value (in the example, the threshold value is set to 0.25H), the display control unit 132 decreases the rotation speed of the rectangular parallelepiped.
 図6で示す状態St61から状態St62への遷移は予測値であり、時間T61で直方体が45度回転をした場合を示すが、このままでは、単位時間当たりの飛び出し量、及び、引っ込み量の変化が大き過ぎる。そこで、この予測値を基に状態St61から状態St63までの時間T62(時間T61より長い)の間に直方体が45度回転するように、直方体の回転速度を変更(遅く)する。 The transition from the state St61 to the state St62 shown in FIG. 6 is a predicted value, and shows a case where the rectangular parallelepiped has rotated 45 degrees at time T61, but if this is the case, the amount of protrusion and the amount of retraction per unit time will change. Too big. Therefore, based on the predicted value, the rotation speed of the rectangular parallelepiped is changed (slow) so that the rectangular parallelepiped rotates 45 degrees during the time T62 (longer than the time T61) from the state St61 to the state St63.
 言い換えれば、回転速度を制御しない場合は時間T61で直方体が45度回転するため、急激に飛び出し量、及び、引っ込み量が変化する。しかし、回転速度の制御を加えることで、時間T62(>T61)の間に直方体が45度回転するため、飛び出し量、及び、引っ込み量の急激な変化を抑制できる。この遷移後の状態St63は、図5の状態ST501に対応する。 In other words, when the rotational speed is not controlled, the rectangular parallelepiped rotates 45 degrees at time T61, so that the pop-out amount and the retraction amount change suddenly. However, by adding control of the rotational speed, the rectangular parallelepiped rotates 45 degrees during time T62 (> T61), so that sudden changes in the pop-out amount and the retraction amount can be suppressed. The state St63 after this transition corresponds to the state ST501 in FIG.
 次に、図6の状態St63から状態St64までは操作がなく、直方体の状態が変化していない時間帯を示している。次に、状態St64でユーザによって操作が加えられたことによって直方体が45度回転する(すなわち、図5の状態ST502に変化する)場合の飛び出し量、及び、引っ込み量の単位時間当たりの変化量を予測すると、単位時間当たりの飛び出し量の変化量は約「0.7H」、及び、引っ込み量の変化量は約「-0.7H」となる。これらの変化量は、いずれも閾値(一例では、閾値を0.25Hとする)を超えるため、表示制御部132は、直方体の回転速度を遅くする。 Next, the state St63 to the state St64 in FIG. 6 shows a time zone in which there is no operation and the state of the rectangular parallelepiped is not changing. Next, the amount of protrusion and the amount of change per unit time when the rectangular parallelepiped rotates 45 degrees due to the user's operation in state St64 (that is, the state changes to state ST502 in FIG. 5). Predicting the change amount of the pop-out amount per unit time is about “0.7H”, and the change amount of the retraction amount is about “−0.7H”. Since these change amounts both exceed a threshold value (in the example, the threshold value is set to 0.25H), the display control unit 132 decreases the rotation speed of the rectangular parallelepiped.
 図6で示す状態St64から状態St65への遷移は予測値であり、時間T63で直方体が45度回転をした場合を示すが、このままでは、単位時間当たりの飛び出し量、及び、引っ込み量の変化が大き過ぎる。そこで、予測値を基に状態St64から状態St66までの時間T64(時間T63より長い)の間に直方体が45度回転するように、直方体の回転速度を変更(遅く)する。 The transition from the state St64 to the state St65 shown in FIG. 6 is a predicted value, and shows a case where the rectangular parallelepiped has rotated 45 degrees at time T63, but if this is the case, the amount of protrusion and the amount of retraction per unit time will change. Too big. Therefore, based on the predicted value, the rotation speed of the rectangular parallelepiped is changed (slow) so that the rectangular parallelepiped rotates 45 degrees during the time T64 (longer than the time T63) from the state St64 to the state St66.
 言い換えれば、回転速度を制御しない場合は時間T63で直方体が45度回転するため、急激に飛び出し量、及び、引っ込み量が変化する。しかし、回転速度の制御を加えることで時間T64(>T63)の間に立体画像が45度回転するため、飛び出し量、及び、引っ込み量の急激な変化を抑制できる。この遷移後の状態St66は、図5の状態ST502に対応する。 In other words, when the rotational speed is not controlled, the rectangular parallelepiped rotates 45 degrees at time T63, so that the amount of protrusion and the amount of retraction suddenly change. However, by controlling the rotation speed, the stereoscopic image rotates 45 degrees during time T64 (> T63), so that sudden changes in the pop-out amount and the retraction amount can be suppressed. The state St66 after the transition corresponds to the state ST502 in FIG.
 また、状態St61(=ST500)から状態St63(=ST501)への遷移と、状態St64(=ST501)から状態St66(=ST502)への遷移とでは、飛び出し量、及び、引っ込み量の単位時間当たりの変化量が異なるため、回転速度、すなわち同じ回転量45度に対する回転時間が、時間T62と時間T64とで異なるように制御している。このことは、飛び出し量、及び、引っ込み量の単位時間当たりの変化量に応じて回転速度を調整していることを示す。 Further, in the transition from the state St61 (= ST500) to the state St63 (= ST501) and the transition from the state St64 (= ST501) to the state St66 (= ST502), the amount of protrusion and the amount of retraction per unit time Therefore, the rotation speed, that is, the rotation time with respect to the same rotation amount of 45 degrees is controlled to be different at time T62 and time T64. This indicates that the rotational speed is adjusted according to the amount of change per unit time of the pop-out amount and the retraction amount.
 以上、図3~図6で説明した例は、いずれも、図2のステップS2004の遷移条件Aで状態遷移した場合について示したものである。 The examples described with reference to FIGS. 3 to 6 are all shown in the case where the state transition is performed under the transition condition A in step S2004 in FIG.
 図7及び図8を用いて、実施の形態1に係る立体画像表示制御装置10がユーザによる変化指示に基づいて、表示部14に表示されている立体画像を制御する場合の別の一例について説明する。 Another example when the stereoscopic image display control apparatus 10 according to Embodiment 1 controls the stereoscopic image displayed on the display unit 14 based on a change instruction from the user will be described with reference to FIGS. 7 and 8. To do.
 図7では、立体画像表示制御装置10に球状のオブジェクトが立体表示され、ユーザの一回の操作に対して球がその重心を中心として45度ずつ回転する場合を想定している。まず、初期状態ST700は、表示部14に表示されている球の、最も飛び出している点の飛び出し量が「H」、及び、最も引っ込んでいる点の引っ込み量が「-H」である状態を示している。 In FIG. 7, it is assumed that a spherical object is stereoscopically displayed on the stereoscopic image display control device 10 and the sphere rotates 45 degrees around its center of gravity for one operation of the user. First, the initial state ST700 is a state in which the pop-out amount of the most popped point of the sphere displayed on the display unit 14 is “H” and the pull-in amount of the most retracted point is “−H”. Show.
 次に、ユーザによって一回の操作が加えられることで、表示部14に表示される球は、初期状態ST700から45度回転した状態ST701に変化する。状態ST701における最も飛び出している点の飛び出し量は「H」、及び、最も引っ込んでいる点の引っ込み量は「-H」となり、初期状態ST700と同じになる。 Next, when the user performs one operation, the sphere displayed on the display unit 14 changes from the initial state ST700 to a state ST701 rotated by 45 degrees. The amount of protrusion at the most protruding point in state ST701 is “H”, and the amount of retracting at the most retracted point is “−H”, which is the same as in the initial state ST700.
 次に、ユーザによってさらに一回の操作が加えられることで、表示部14に表示される球は、状態ST701からさらに45度回転した状態ST702に変化する。状態ST702における最も飛び出している点の飛び出し量は「H」、及び、最も引っ込んでいる点の引っ込み量は「-H」となり、状態ST701と同じになる。 Next, when the user performs one more operation, the sphere displayed on the display unit 14 changes from the state ST701 to the state ST702 rotated by 45 degrees. The amount of protrusion at the most protruding point in state ST702 is “H”, and the amount of retracting at the most retracted point is “−H”, which is the same as in state ST701.
 次に、図8を用いて、図7で示した初期状態ST700から状態ST701、及び、状態ST701から状態ST702に遷移する場合のそれぞれにおいて、立体画像の回転速度を制御する具体的な方法について説明する。 Next, a specific method for controlling the rotation speed of the stereoscopic image in each of the transitions from the initial state ST700 to the state ST701 and from the state ST701 to the state ST702 shown in FIG. 7 will be described using FIG. To do.
 図8の縦軸は立体画像の飛び出し量、及び、引っ込み量を示し、横軸は時間を示す。 The vertical axis in FIG. 8 indicates the pop-out amount and retraction amount of the stereoscopic image, and the horizontal axis indicates time.
 まず、図7の初期状態ST700は、図8の状態St81に対応する(最も飛び出している点の飛び出し量が「H」、及び、最も引っ込んでいる点の引っ込み量が「-H」)。この状態St81からユーザによって操作が加えられたことによって球が45度回転する場(すなわち、図7の状態ST701に変化する)合の飛び出し量、及び、引っ込み量の単位時間当たりの変化量を予測すると、単位時間当たりの飛び出し量の変化量は「0」、及び、引っ込み量の変化量は「0」となる。 First, the initial state ST700 in FIG. 7 corresponds to the state St81 in FIG. 8 (the amount of protrusion at the most protruding point is “H” and the amount of retracting at the most retracted point is “−H”). Prediction of the amount of popping out and the amount of retraction per unit time when the sphere rotates 45 degrees as a result of the user's operation from this state St81 (that is, the state changes to state ST701 in FIG. 7) Then, the change amount of the pop-out amount per unit time is “0”, and the change amount of the retraction amount is “0”.
 すなわち、飛び出し量、及び、引っ込み量に変化がなく、いずれも閾値(一例では、閾値を0.25Hとする)を超えないため、表示制御部132は、球の回転速度を変更しない。すなわち、表示制御部132は、入力受付部12で受け付けられた変化指示に従って、表示部14に表示されている球を回転させる。 That is, since there is no change in the pop-out amount and the retraction amount, and neither exceeds the threshold value (in this example, the threshold value is 0.25H), the display control unit 132 does not change the rotation speed of the sphere. That is, the display control unit 132 rotates the sphere displayed on the display unit 14 in accordance with the change instruction received by the input receiving unit 12.
 図8で示す状態St81から状態St83への遷移は予測値であり、時間T81で球が45度回転をした場合を示すが、単位時間当たりの飛び出し量、及び、引っ込み量の変化が小さい(本例では変化がない)。そのため、表示制御部132は、この予測値を基に状態St81から状態St83に遷移するように、球の回転速度を変化させることなく表示部14に表示させる。このことは、飛び出し量、及び、引っ込み量の急激な変化がない場合は球の回転速度を変更することなく、ユーザによる操作をそのまま表示に反映させることを意味する。この遷移後の状態St83は、図7の状態ST701に対応する。 The transition from the state St81 to the state St83 shown in FIG. 8 is a predicted value, and shows a case where the sphere rotates 45 degrees at time T81. However, the change in the amount of protrusion and the amount of retraction per unit time is small. There is no change in the example). Therefore, the display control unit 132 causes the display unit 14 to display without changing the rotation speed of the sphere so as to change from the state St81 to the state St83 based on the predicted value. This means that the operation by the user is reflected on the display as it is without changing the rotation speed of the sphere when there is no sudden change in the pop-out amount and the retraction amount. The state St83 after the transition corresponds to the state ST701 in FIG.
 状態St83から状態St84まではユーザの操作がなく、球の表示の状態が変化していない時間帯を示している。次に、状態St84でユーザによって操作が加えられたことによって球を45度回転する(すなわち、図7の状態ST702に変化する)場合の飛び出し量、及び、引っ込み量の単位時間当たりの変化量を予測すると、単位時間当たりの飛び出し量の変化量は「0」、及び、引っ込み量の変化量は「0」となり、いずれも閾値(一例では、閾値を0.25Hとする)を超えないため、表示制御部132は、球の回転速度を変更することなく表示部14に表示させる。 From state St83 to state St84, there is no user operation and the time zone in which the display state of the sphere has not changed is shown. Next, the pop-out amount and the amount of change per unit time when the sphere is rotated 45 degrees due to an operation performed by the user in the state St84 (that is, the state changes to the state ST702 in FIG. 7). As predicted, the amount of change in the pop-out amount per unit time is “0”, and the amount of change in the retraction amount is “0”, both of which do not exceed the threshold value (in the example, the threshold value is 0.25H). The display control unit 132 displays on the display unit 14 without changing the rotation speed of the sphere.
 図8で示す状態St84から状態St86への遷移は予測値であり、時間T83で球が45度回転をした場合を示すが、単位時間当たりの飛び出し量、及び、引っ込み量の変化が小さい(本例では変化がない)。そのため、表示制御部132は、この予測値を基に状態St84から状態St86に遷移するように、球の回転速度を変化させることなく、表示部14に表示させる。この遷移後の状態St86は、図7の状態ST702に対応する。 The transition from the state St84 to the state St86 shown in FIG. 8 is a predicted value, and shows a case where the sphere has rotated 45 degrees at time T83, but the change in the amount of protrusion and the amount of retraction per unit time is small. There is no change in the example). Therefore, the display control unit 132 causes the display unit 14 to display without changing the rotation speed of the sphere so as to transit from the state St84 to the state St86 based on the predicted value. The state St86 after this transition corresponds to the state ST702 in FIG.
 図7及び図8で示す例では、飛び出し量、及び、引っ込み量の急激な変化がない(本例では変化がない)場合のため、回転速度を変更することなく表示すること、すなわち、いずれも、図2のステップS2005の遷移条件Bで状態遷移した場合について示したものである。 In the example shown in FIG. 7 and FIG. 8, since there is no sudden change in the pop-out amount and the retraction amount (there is no change in this example), it is displayed without changing the rotation speed, that is, both This shows a case where the state transition is performed under the transition condition B in step S2005 of FIG.
 上記のようにすることで、立体画像そのものの大きさや形を一定に保ったまま、ユーザの操作に対応して立体画像を回転させることができる。一方、操作に伴う立体画像の回転の際に、立体画像の飛び出し量、及び、引っ込み量の単位時間当たりの変化量の少なくとも一方が予め定めた閾値を超える場合に、立体画像の回転速度を遅くする。その結果、飛び出し量、及び、引っ込み量の急激な変化を抑制することができるため、視聴者に与える疲労を軽減することができるという効果を奏する。 By doing as described above, the stereoscopic image can be rotated in response to the user's operation while keeping the size and shape of the stereoscopic image itself constant. On the other hand, when rotating the stereoscopic image in accordance with the operation, if at least one of the amount of projection of the stereoscopic image and the amount of change per unit time of the retraction amount exceeds a predetermined threshold, the rotational speed of the stereoscopic image is decreased. To do. As a result, it is possible to suppress a sudden change in the amount of protrusion and the amount of retraction, so that it is possible to reduce the fatigue given to the viewer.
 (実施の形態2)
 実施の形態1では、図2から図8を用いて、ユーザの操作に対応して立体画像を回転させる場合において、立体画像の飛び出し量、及び、引っ込み量の単位時間当たりの変化量の少なくとも一方が予め定めた閾値を超える場合に、立体画像回転速度を遅くするために、変化指示に示される回転時間より長い時間をかけて、変化指示に示される所定の回転量だけ回転させる例を説明した。
(Embodiment 2)
In the first embodiment, at least one of the pop-out amount of the stereoscopic image and the change amount per unit time of the retraction amount when rotating the stereoscopic image in response to the user's operation using FIGS. 2 to 8. In order to slow down the stereoscopic image rotation speed when the value exceeds a predetermined threshold, the example in which the rotation time is longer than the rotation time indicated by the change instruction and the predetermined rotation amount indicated by the change instruction is rotated has been described. .
 これに対して、実施の形態2においては、図9から図11を用いて、ユーザの操作に対応して立体画像を回転させる場合において、立体画像の飛び出し量、及び、引っ込み量の単位時間当たりの変化量の少なくとも一方が予め定めた閾値を超える場合に、立体画像回転速度を遅くするために、所定の時間で通常より小さい回転量だけ回転させる例を説明する。 On the other hand, in the second embodiment, when rotating a stereoscopic image in response to a user operation using FIGS. 9 to 11, per unit time of the protruding amount of the stereoscopic image and the retracting amount. An example will be described in which when at least one of the change amounts exceeds a predetermined threshold, the rotation amount is rotated by a smaller rotation amount at a predetermined time in order to slow the stereoscopic image rotation speed.
 なお、本発明の実施の形態2においては、図1に示す立体画像表示制御装置10の構成については、本発明の実施の形態1と同様であるため、ここでは説明を省略する。その他、実施の形態1との共通点の詳しい説明は省略し、相違点を中心に説明する。 In the second embodiment of the present invention, the configuration of the stereoscopic image display control apparatus 10 shown in FIG. 1 is the same as that of the first embodiment of the present invention, and thus the description thereof is omitted here. In addition, a detailed description of points common to the first embodiment will be omitted, and the description will focus on the differences.
 (実施の形態2に係る立体画像表示制御装置10の動作)
 以下、入力受付部12で受け付けた変化指示の情報と、現在表示している立体画像の状態とに応じて、表示部14に表示されている立体画像の回転量を変更することによって回転速度を制御する実施の形態2の方法の一例を、図9を参照して説明する。なお、実施の形態2では、図2で説明したステップS2004を、図9ではステップS2008に置き換え、回転量を制御するものとなる。
(Operation of stereoscopic image display control apparatus 10 according to Embodiment 2)
Hereinafter, the rotation speed is changed by changing the amount of rotation of the stereoscopic image displayed on the display unit 14 according to the change instruction information received by the input receiving unit 12 and the state of the currently displayed stereoscopic image. An example of the method of Embodiment 2 to control is demonstrated with reference to FIG. In the second embodiment, step S2004 described in FIG. 2 is replaced with step S2008 in FIG. 9, and the amount of rotation is controlled.
 (ステップS2001)制御部13は、ユーザからの変化指示が入力受付部12で受け付けられたことを検知した場合(ステップS2001でYES)はステップS2002に進み、検知しない場合(ステップS2001でNO)はステップS2001に戻る。 (Step S2001) When the control unit 13 detects that a change instruction from the user is received by the input receiving unit 12 (YES in step S2001), the control unit 13 proceeds to step S2002, and when not detected (NO in step S2001). The process returns to step S2001.
 (ステップS2002)変化量予測部131は、入力受付部12で受け付けられた変化指示と、表示部14に現在表示されている立体画像の状態とに基づいて、変化指示に従って立体画像を変化させた時の、単位時間当たりの飛び出し量、及び、引っ込み量の変化量を予測し、ステップS2003に進む。 (Step S2002) Based on the change instruction received by the input reception unit 12 and the state of the stereoscopic image currently displayed on the display unit 14, the change amount prediction unit 131 changes the stereoscopic image according to the change instruction. The projection amount per unit time and the change amount of the retraction amount are predicted, and the process proceeds to step S2003.
 (ステップS2003)表示制御部132は、変化量予測部131で予測された飛び出し量、及び、引っ込み量の単位時間当たりの変化量の少なくとも一方が閾値を超える場合(ステップS2003でYES)はステップS2008に進み、予測した変化量の両方(飛び出し量、及び、引っ込み量の単位時間当たりの変化量の両方)が閾値を超えない場合(ステップS2003でNO)はステップS2005に進む。 (Step S2003) When at least one of the pop-out amount predicted by the change amount prediction unit 131 and the change amount per unit time of the retraction amount exceeds the threshold (YES in step S2003), the display control unit 132 performs step S2008. If both of the predicted change amounts (both the pop-out amount and the change amount per unit time of the retraction amount) do not exceed the threshold value (NO in step S2003), the process advances to step S2005.
 (ステップS2008)表示制御部132は、表示部14に現在表示されている立体画像を遷移条件A’で遷移するように表示部14の表示内容を制御すると共に、状態遷移後の立体画像データをデータ保持部15に保持させる。 (Step S2008) The display control unit 132 controls the display content of the display unit 14 so that the stereoscopic image currently displayed on the display unit 14 transitions according to the transition condition A ′, and also displays the stereoscopic image data after the state transition. The data is held in the data holding unit 15.
 ここで、遷移条件A’は、立体画像の飛び出し量、及び、引っ込み量の急激な変化を抑止するために、立体画像の表示速度(回転速度)を制御して表示部14に表示させる条件である。なお、本実施の形態2における以後の説明では、変化指示に示される所定の時間で回転する回転量を変更する(回転量を小さくする)ことによって、立体画像の回転速度を制御する方法について説明する。 Here, the transition condition A ′ is a condition for controlling the display speed (rotation speed) of the stereoscopic image to display it on the display unit 14 in order to suppress a sudden change in the pop-out amount and the retraction amount of the stereoscopic image. is there. In the following description of the second embodiment, a method for controlling the rotation speed of the stereoscopic image by changing the rotation amount (reducing the rotation amount) that rotates at a predetermined time indicated by the change instruction will be described. To do.
 (ステップS2005)表示制御部132は、表示部14に現在表示されている立体画像を遷移条件Bで遷移するように表示部14の表示内容を制御すると共に、状態遷移後の立体画像データをデータ保持部15に保持させる。 (Step S2005) The display control unit 132 controls the display content of the display unit 14 so that the stereoscopic image currently displayed on the display unit 14 transitions according to the transition condition B, and the stereoscopic image data after the state transition is stored as data. It is held by the holding unit 15.
 ここで、遷移条件Bは、立体画像の飛び出し量、及び、引っ込み量の急激な変化がないと予測された場合の遷移条件であって、立体画像の回転量を変更しない(変化指示に示される回転速度で回転させる)条件である。 Here, the transition condition B is a transition condition when it is predicted that there is no sudden change in the pop-out amount and the retraction amount of the stereoscopic image, and the rotation amount of the stereoscopic image is not changed (indicated by the change instruction). The condition is to rotate at the rotation speed).
 (ステップS2006)表示部14は、ステップS2008、または、ステップS2005で表示制御部132の立体画像の回転量の制御に基づいて、左眼用画像及び右眼用画像を用いて立体画像を表示する。 (Step S2006) The display unit 14 displays a stereoscopic image using the left-eye image and the right-eye image based on the control of the rotation amount of the stereoscopic image of the display control unit 132 in step S2008 or step S2005. .
 ここで、表示制御部132は、ステップS2008、及び、ステップS2005で表示の状態を遷移させる際に、データ保持部15に記憶している遷移前の立体画像の状態を読み出し、ステップS2008、及び、ステップS2005の条件で遷移させた遷移後の立体画像の状態を再度データ保持部15に保持させる。 Here, the display control unit 132 reads the state of the stereoscopic image before the transition stored in the data holding unit 15 when the display state is changed in Steps S2008 and S2005, and Steps S2008 and The data holding unit 15 again holds the state of the stereoscopic image after the transition made under the condition of step S2005.
 (実施の形態2に係る立体画像表示制御装置10の立体画像の表示制御の一例)
 図10及び図11を用いて、実施の形態2に係る立体画像表示制御装置10が、変化指示に基づいて表示部14に表示される立体画像を制御する場合の一例について説明する。
(Example of stereoscopic image display control of stereoscopic image display control apparatus 10 according to Embodiment 2)
An example in which the stereoscopic image display control apparatus 10 according to Embodiment 2 controls a stereoscopic image displayed on the display unit 14 based on a change instruction will be described with reference to FIGS. 10 and 11.
 図10では、立体画像表示制御装置10に直方体が立体表示され、ユーザの一回の操作に対して、表示部14に表示されている直方体が飛び出し量、及び、引っ込み量の変化に応じて定まる回転量だけ回転する場合を想定しており、単位時間当たりの変化量が閾値を超えない場合は45度回転するものとしている。 In FIG. 10, the rectangular parallelepiped is stereoscopically displayed on the stereoscopic image display control device 10, and the rectangular parallelepiped displayed on the display unit 14 is determined according to changes in the pop-out amount and the retraction amount with respect to one operation of the user. It is assumed that the rotation amount is the same as the rotation amount. When the change amount per unit time does not exceed the threshold value, the rotation amount is 45 degrees.
 まず、初期状態ST1000は、表示部14に表示されている直方体の最も飛び出している点の飛び出し量が「0」、及び、最も引っ込んでいる点の引っ込み量が「0」である状態を示している。次に、状態ST1001は、ユーザによって一回の操作が加えられたことによって、飛び出し量、及び、引っ込み量の急激な変化を抑制するように、直方体を初期状態ST1000から45度回転させた状態である。状態ST1001における最も飛び出している点の飛び出し量は「0.7H」、及び、最も引っ込んでいる点の引っ込み量は「-0.7H」となる。 First, the initial state ST1000 shows a state in which the protruding amount of the most protruding point of the rectangular parallelepiped displayed on the display unit 14 is “0” and the retracting amount of the most retracted point is “0”. Yes. Next, the state ST1001 is a state in which the rectangular parallelepiped is rotated 45 degrees from the initial state ST1000 so as to suppress a sudden change in the pop-out amount and the retraction amount due to one operation performed by the user. is there. In the state ST1001, the protruding amount of the most protruding point is “0.7H”, and the retracting amount of the most retracted point is “−0.7H”.
 次に、図11を用いて、図10で示した初期状態ST1000から状態ST1001に遷移する場合の、立体画像の回転量を制御する具体的な方法について説明する。 Next, a specific method for controlling the amount of rotation of the stereoscopic image when transitioning from the initial state ST1000 shown in FIG. 10 to the state ST1001 will be described with reference to FIG.
 図11の縦軸は立体画像の飛び出し量、及び、引っ込み量を示し、横軸は時間を示す。    The vertical axis in FIG. 11 indicates the pop-out amount and the retraction amount of the stereoscopic image, and the horizontal axis indicates time. *
 まず、図10の初期状態ST1000は、図11の状態St111に対応する(最も飛び出している点の飛び出し量が「0」、及び、最も引っ込んでいる点の引っ込み量が「0」)。この状態St111からユーザによって操作が加えられたことによって直方体が45度回転する(すなわち、図10の状態ST1001に変化する)場合の飛び出し量、及び、引っ込み量の単位時間当たりの変化量を予測すると、単位時間当たりの飛び出し量の変化量は約「0.7H」、及び、引っ込み量の変化量は約「-0.7H」となる。これらの変化量は、いずれも閾値(一例では、閾値を0.25Hとする)を超えるため、表示制御部132は、直方体の回転速度を遅くする。 First, the initial state ST1000 of FIG. 10 corresponds to the state St111 of FIG. 11 (the amount of protrusion at the most protruding point is “0” and the amount of retracting at the most retracted point is “0”). When the rectangular parallelepiped rotates 45 degrees as a result of the user's operation from this state St111 (that is, changes to the state ST1001 in FIG. 10), the amount of change per unit time of the amount of withdrawal and the amount of retraction is predicted. The change amount of the pop-out amount per unit time is about “0.7H”, and the change amount of the retraction amount is about “−0.7H”. Since these change amounts both exceed a threshold value (in the example, the threshold value is set to 0.25H), the display control unit 132 decreases the rotation speed of the rectangular parallelepiped.
 図11で示す状態St111から状態St112への遷移は予測値であり、時間T111で直方体が45度回転をした場合(図10の状態ST1001に対応する)を示すが、このままでは、単位時間当たりの飛び出し量、及び、引っ込み量の変化が大き過ぎる。そこで、この予測値を基に状態St111から状態St113までの時間T111の間の直方体の回転量を小さくする。その結果、直方体の回転速度が、変化指示に示される回転速度よりも遅くなる。 The transition from the state St111 to the state St112 shown in FIG. 11 is a predicted value, and shows a case where the rectangular parallelepiped rotates 45 degrees at time T111 (corresponding to the state ST1001 in FIG. 10). The change in the amount of protrusion and the amount of retraction is too large. Therefore, the amount of rotation of the rectangular parallelepiped during the time T111 from the state St111 to the state St113 is reduced based on the predicted value. As a result, the rotation speed of the rectangular parallelepiped becomes slower than the rotation speed indicated in the change instruction.
 言い換えれば、状態St111から状態St112への遷移時間と、状態St111から状態St113への遷移時間とは、いずれも時間T111で同一である。しかしながら、状態St111から状態St112への遷移では直方体が45度回転するのに対し、状態St111から状態St113への遷移では直方体が45度より小さい角度(例えば、30度)しか回転しない。この遷移後の状態St43は、図10の状態ST1002に対応する。 In other words, the transition time from state St111 to state St112 and the transition time from state St111 to state St113 are both the same at time T111. However, in the transition from the state St111 to the state St112, the rectangular parallelepiped rotates 45 degrees, whereas in the transition from the state St111 to the state St113, the rectangular parallelepiped rotates only by an angle smaller than 45 degrees (for example, 30 degrees). The state St43 after this transition corresponds to the state ST1002 in FIG.
 このように、同一の時間における直方体の回転量を抑えることによっても、直方体の回転速度を遅くすることができる。そして、このような制御によっても、飛び出し量、及び、引っ込み量の急激な変化を抑制することができる。したがって、ユーザが立体画像を所定の角度(45度)回転させるためには、立体画像の回転指示を何度か入力すればよい。 As described above, the rotational speed of the rectangular parallelepiped can also be reduced by suppressing the amount of rotation of the rectangular parallelepiped at the same time. And also by such control, the sudden change of the amount of protrusion and the amount of retraction can be suppressed. Therefore, in order for the user to rotate the stereoscopic image by a predetermined angle (45 degrees), a stereoscopic image rotation instruction may be input several times.
 このことは、飛び出し量、及び、引っ込み量の単位時間当たりの変化量に応じて直方体の回転速度を調整していることを示し、図9のステップS2008の遷移条件A’で状態遷移したことを示したものである。なお、本実施の形態2では説明を省略するが、単位時間当たりの飛び出し量、及び、引っ込み量の変化がいずれも閾値を超えない場合は、立体画像の回転量(及び、回転速度)を変化させることなく表示部14に表示させる(図9のステップS2005に対応する)。 This indicates that the rotation speed of the rectangular parallelepiped is adjusted in accordance with the amount of change per unit time of the pop-out amount and the retraction amount, and that the state transition has occurred under the transition condition A ′ in step S2008 of FIG. It is shown. Although description is omitted in the second embodiment, if the change in the amount of protrusion and the amount of retraction per unit time does not exceed the threshold value, the rotation amount (and rotation speed) of the stereoscopic image is changed. It is displayed on the display unit 14 without corresponding (corresponding to step S2005 in FIG. 9).
 上記のようにすることで、立体画像そのものの大きさや形状を一定に保ったまま、ユーザの操作に対応して立体画像を回転させることができる。一方、ユーザによる操作に伴って立体画像を回転させる場合において、立体画像の飛び出し量、及び、引っ込み量の単位時間当たりの変化量の少なくとも一方が予め定めた閾値を超える場合に、所定の時間における回転量を小さくする。その結果、飛び出し量、及び、引っ込み量の急激な変化を抑制することができる。このため、視聴者に与える疲労を軽減することができるという効果を奏する。 By doing as described above, it is possible to rotate the stereoscopic image corresponding to the user's operation while keeping the size and shape of the stereoscopic image itself constant. On the other hand, in the case where the stereoscopic image is rotated in accordance with the operation by the user, when at least one of the projection amount of the stereoscopic image and the amount of change per unit time of the retraction amount exceeds a predetermined threshold, Reduce the amount of rotation. As a result, sudden changes in the pop-out amount and the retract amount can be suppressed. For this reason, the effect that the fatigue given to a viewer can be reduced is produced.
 (実施の形態3)
 実施の形態1、2では、ユーザからの操作に対して立体画像(3Dオブジェクト)の表示を変更する立体画像表示制御装置10について説明した。そして、実施の形態1、2では、ユーザからの一回の操作に対して、立体画像を45度だけ回転させることを前提として説明した。
(Embodiment 3)
In the first and second embodiments, the stereoscopic image display control device 10 that changes the display of a stereoscopic image (3D object) in response to an operation from the user has been described. The first and second embodiments have been described on the assumption that the stereoscopic image is rotated by 45 degrees with respect to one operation from the user.
 これに対して、本実施の形態3では、ユーザの実際の操作量に応じて回転量をアナログ的に変化させることに対応する。さらに、立体画像を回転させる場合において、立体画像の飛び出し量、及び、引っ込み量の単位時間当たりの変化量の少なくとも一方が予め定めた閾値を超える場合に、立体画像の回転速度を遅くすることによって、飛び出し量、及び、引っ込み量の急激な変化を抑制する立体画像表示制御装置20について、図12を用いて説明する。 On the other hand, the third embodiment corresponds to changing the rotation amount in an analog manner according to the actual operation amount of the user. Furthermore, when rotating a stereoscopic image, if at least one of the amount of projection of the stereoscopic image and the amount of change per unit time of the withdrawal amount exceeds a predetermined threshold, the rotational speed of the stereoscopic image is reduced. A stereoscopic image display control device 20 that suppresses a sudden change in the pop-out amount and the retract amount will be described with reference to FIG.
 (実施の形態3に係る立体画像表示制御装置20の構成)
 図12は、実施の形態3における立体画像表示制御装置20の概要を説明するためのブロック図である。なお、実施の形態1の立体画像表示制御装置10と同様の構成を有する部分については、同一符号を付してその説明を省略する。その他、実施の形態1、2との共通点の詳しい説明は省略し、相違点を中心に説明する。
(Configuration of stereoscopic image display control apparatus 20 according to Embodiment 3)
FIG. 12 is a block diagram for explaining an overview of the stereoscopic image display control apparatus 20 according to the third embodiment. In addition, about the part which has the structure similar to the stereo image display control apparatus 10 of Embodiment 1, the same code | symbol is attached | subjected and the description is abbreviate | omitted. In addition, detailed description of points common to Embodiments 1 and 2 will be omitted, and the description will focus on the differences.
 図12において、実施の形態3における立体画像表示制御装置20は、実施の形態1における立体画像表示制御装置10の構成に加えて、制御部13に操作量算出部133を備える構成となっている。操作量算出部133は、入力受付部12で受け付けられたユーザの操作量から回転量を算出する。すなわち、実施の形態3に係る変化指示には、ユーザの操作量が含まれる。そして、この「ユーザの操作量」が回転量(変化量)を間接的に特定する情報となる。 In FIG. 12, the stereoscopic image display control device 20 in the third embodiment has a configuration in which an operation amount calculation unit 133 is provided in the control unit 13 in addition to the configuration of the stereoscopic image display control device 10 in the first embodiment. . The operation amount calculation unit 133 calculates the rotation amount from the user operation amount received by the input reception unit 12. That is, the change instruction according to the third embodiment includes the operation amount of the user. The “user operation amount” is information that indirectly specifies the rotation amount (change amount).
 操作量算出部133における回転量の算出方法の具体例は特に限定されない。例えば、立体画像表示制御装置20の表示部14に重畳するように配置されるタッチパネルへのタッチ操作を受け付ける場合は、タッチパネルに対する操作速度が速いほど回転量を大きくし、タッチパネルに対する操作速度が遅いほど回転量を小さくするようにしてもよい。また、他の例として、タッチパネルに対する操作距離が長いほど回転量を大きくし、タッチパネルに対する操作距離が短いほど回転量を小さくするようにしてもよい。また、マウスやジョイスティック等のボタンを操作する場合は、ボタンの押下時間に応じて回転量を変更する等であってもよい(例えば、押下時間が長いほど回転量が大きく、押下時間が短いほど回転量を小さくする)。すなわち、ユーザの現実の操作量から、回転量を算出可能な方法であればどのようなものでも構わない。 The specific example of the rotation amount calculation method in the operation amount calculation unit 133 is not particularly limited. For example, when accepting a touch operation on a touch panel arranged so as to be superimposed on the display unit 14 of the stereoscopic image display control device 20, the faster the operation speed on the touch panel, the larger the rotation amount, and the slower the operation speed on the touch panel. The amount of rotation may be reduced. As another example, the rotation amount may be increased as the operation distance to the touch panel is longer, and the rotation amount may be decreased as the operation distance to the touch panel is shorter. Further, when operating a button such as a mouse or a joystick, the rotation amount may be changed according to the button pressing time (for example, the longer the pressing time, the larger the rotation amount, and the shorter the pressing time). Reduce the amount of rotation). In other words, any method may be used as long as the rotation amount can be calculated from the actual operation amount of the user.
 また、回転量のみならず、上記のように算出した回転量だけ回転させるのに要する時間(回転時間)や回転速度等を、ユーザの現実の操作量から算出してもよい。例えば、タッチパネルに対する操作速度が速いほど回転時間を短く(回転速度を早く)し、タッチパネルに対する操作速度が遅いほど回転時間を長く(回転速度を遅く)してもよい。 Further, not only the rotation amount but also the time (rotation time) required for rotation by the rotation amount calculated as described above, the rotation speed, and the like may be calculated from the actual operation amount of the user. For example, the rotation time may be shortened (rotation speed is increased) as the operation speed on the touch panel is increased, and the rotation time may be increased (rotation speed is decreased) as the operation speed on the touch panel is decreased.
 また、操作量算出部133で算出した回転量は、変化量予測部131に通知される。変化量予測部131は、操作量算出部133から取得した回転量に応じて立体画像の飛び出し量、及び、引っ込み量の単位時間当たりの変化量を予測する。 Also, the rotation amount calculated by the operation amount calculation unit 133 is notified to the change amount prediction unit 131. The change amount prediction unit 131 predicts the change amount per unit time of the stereoscopic image pop-out amount and the retraction amount according to the rotation amount acquired from the operation amount calculation unit 133.
 (実施の形態3に係る立体画像表示制御装置20の動作)
 図13及び図14は、実施の形態3における立体画像表示制御装置20の立体画像に対する制御動作の一例を示す図である。なお、実施の形態1の図2、及び、実施の形態2の図9で説明したステップと同様の部分については、同一符号を付してその説明を省略する。
(Operation of stereoscopic image display control apparatus 20 according to Embodiment 3)
13 and 14 are diagrams illustrating an example of a control operation for a stereoscopic image of the stereoscopic image display control apparatus 20 according to the third embodiment. Note that portions similar to those described in FIG. 2 of the first embodiment and FIG. 9 of the second embodiment are denoted by the same reference numerals and description thereof is omitted.
 図13は、入力受付部12で受け付けられた操作量から算出される回転量と、表示部14に現在表示されている立体画像の状態とに応じて、表示部14に表示されている立体画像の回転速度を制御する制御部13の動作の一例を示す図である。図13は、実施の形態1の図2にステップS2007を追加し、ユーザの操作を検知した時に、ユーザの現実の操作量から回転量をアナログ的に算出することで、操作量に応じて回転量が変化することに対応するものとなる。 FIG. 13 illustrates a stereoscopic image displayed on the display unit 14 according to the rotation amount calculated from the operation amount received by the input receiving unit 12 and the state of the stereoscopic image currently displayed on the display unit 14. It is a figure which shows an example of operation | movement of the control part 13 which controls the rotational speed of. FIG. 13 adds step S2007 to FIG. 2 of the first embodiment, and when the user's operation is detected, the rotation amount is calculated from the actual operation amount of the user in an analog manner to rotate according to the operation amount. It corresponds to the amount changing.
 以下、ステップS2007を中心に、ステップS2001、ステップS2007、ステップS2002の動作を説明する。なお、ステップS2003以降の動作に関しては、実施の形態1の図2と同様のため説明を省略する。 Hereinafter, the operation of step S2001, step S2007, and step S2002 will be described with a focus on step S2007. Note that the operations after step S2003 are the same as those in FIG.
 (ステップS2001)制御部13は、ユーザからの変化指示が入力受付部12で受け付けられたことを検知した場合(ステップS2001でYES)はステップS2007に進み、検知しない場合(ステップS2001でNO)はステップS2001に戻る。 (Step S2001) When the control unit 13 detects that a change instruction from the user is received by the input receiving unit 12 (YES in step S2001), the control unit 13 proceeds to step S2007, and when not detected (NO in step S2001). The process returns to step S2001.
 (ステップS2007)操作量算出部133は、入力受付部12で受け付けられた変化指示に含まれる操作量に応じて立体画像の回転量を算出し、ステップS2002に進む。 (Step S2007) The operation amount calculation unit 133 calculates the rotation amount of the stereoscopic image according to the operation amount included in the change instruction received by the input reception unit 12, and the process proceeds to step S2002.
 (ステップS2002)変化量予測部131は、操作量算出部133で算出された回転量と、表示部14に現在表示されている立体画像の状態とに基づいて、算出された回転量だけ立体画像を回転させた時の、単位時間当たりの飛び出し量、及び、引っ込み量の変化量を予測し、ステップS2003に進む。 (Step S2002) Based on the rotation amount calculated by the operation amount calculation unit 133 and the state of the stereoscopic image currently displayed on the display unit 14, the change amount prediction unit 131 calculates the stereoscopic image by the calculated rotation amount. The amount of pop-out per unit time and the amount of change in the amount of retraction when rotating is predicted, and the process proceeds to step S2003.
 図14は、入力受付部12で受け付けられた操作量から算出される回転量と、表示部14に現在表示されている立体画像の状態とに応じて、立体画像の回転速度を制御する方法の一例を示す図である。図14は、実施の形態2の図9にステップS2007を追加し、ユーザによる操作を検知した時に、ユーザの現実の操作量から回転量を算出することで、操作量に応じて回転量が変化することに対応するものとなる。ステップS2001、ステップS2007、ステップS2002は上述の図13と同様であり、ステップS2003以降の動作に関しては、実施の形態2の図9と同様のため説明を省略する。 FIG. 14 shows a method of controlling the rotation speed of a stereoscopic image according to the rotation amount calculated from the operation amount received by the input receiving unit 12 and the state of the stereoscopic image currently displayed on the display unit 14. It is a figure which shows an example. FIG. 14 adds step S2007 to FIG. 9 of the second embodiment, and when the operation by the user is detected, the rotation amount is changed according to the operation amount by calculating the rotation amount from the actual operation amount of the user. It corresponds to doing. Step S2001, step S2007, and step S2002 are the same as those in FIG. 13 described above, and the operations after step S2003 are the same as those in FIG.
 上記のようにすることで、ユーザの現実の操作量に対応して立体画像の回転量を算出することが可能となる。また、操作に伴って立体画像を変化させる場合において、立体画像の飛び出し量、及び、引っ込み量の単位時間当たりの変化量の少なくとも一方が予め定めた閾値を超える場合に、立体画像の回転速度を遅くする。その結果、飛び出し量、及び、引っ込み量の急激な変化を抑制することができるため、視聴者に与える疲労を軽減することができるという効果を奏する。 By doing as described above, it is possible to calculate the rotation amount of the stereoscopic image corresponding to the actual operation amount of the user. Further, when changing the stereoscopic image in accordance with the operation, the rotation speed of the stereoscopic image is set when at least one of the protruding amount of the stereoscopic image and the amount of change per unit time of the retracting amount exceeds a predetermined threshold. Slow down. As a result, it is possible to suppress a sudden change in the amount of protrusion and the amount of retraction, so that it is possible to reduce the fatigue given to the viewer.
 (その他の実施の形態)
 実施の形態1~3では、立体画像表示制御装置10、20の動作として、ユーザの操作に伴って立体画像を変化させる場合において、立体画像の飛び出し量、及び、引っ込み量の単位時間当たりの変化量の少なくとも一方が予め定めた閾値を超える場合に、立体画像の回転速度を遅くすることにより、飛び出し量、及び、引っ込み量の急激な変化を抑制する方法について説明した。しかしながら、飛び出し量、及び、引っ込み量の急激な変化を抑制する方法は、上記に限るものではない。
(Other embodiments)
In Embodiments 1 to 3, when the stereoscopic image is changed in accordance with the user's operation as the operation of the stereoscopic image display control devices 10 and 20, the amount of projection and the amount of withdrawal of the stereoscopic image per unit time are changed. A method has been described in which when at least one of the amounts exceeds a predetermined threshold, a rapid change in the pop-out amount and the retraction amount is suppressed by slowing the rotation speed of the stereoscopic image. However, the method for suppressing the rapid change in the pop-out amount and the retraction amount is not limited to the above.
 例えば、図15に示すように、立体画像の飛び出し量、及び、引っ込み量の単位時間当たりの変化量の少なくとも一方が閾値を超える場合に、ステップS2009で示すように、回転動作をしない(回転速度を0にする)という遷移条件A’’を採用してもよい。このような方法により、立体画像の飛び出し量、及び、引っ込み量の急激な変化を抑制することで、視聴者に与える疲労を軽減することができればよい。 For example, as shown in FIG. 15, when at least one of the projection amount of the stereoscopic image and the amount of change per unit time of the retraction amount exceeds the threshold value, the rotation operation is not performed as shown in step S2009 (rotation speed). The transition condition A ″ may be adopted. By such a method, it is only necessary to reduce the fatigue given to the viewer by suppressing the rapid change in the pop-out amount and the retraction amount of the stereoscopic image.
 また、実施の形態1~3では、飛び出し量と引っ込み量とが同じように変化する直方体及び球の例を説明したが、図16に示すように、飛び出し量と引っ込み量とが異なる立体画像であっても上記の各実施の形態に係る制御方法は適用可能である。以下、図16及び図17を用いて、飛び出し量と引っ込み量とが異なる立体画像を回転させる場合に、実施の形態1に係る立体画像表示制御装置10が立体画像の回転速度を制御する場合のさらに別の一例について説明する。 In the first to third embodiments, examples of a rectangular parallelepiped and a sphere in which the pop-out amount and the retraction amount change in the same way have been described. However, as shown in FIG. Even if it exists, the control method which concerns on said each embodiment is applicable. Hereinafter, in the case where a stereoscopic image with different pop-out amount and retracted amount is rotated with reference to FIGS. 16 and 17, the stereoscopic image display control apparatus 10 according to Embodiment 1 controls the rotation speed of the stereoscopic image. Another example will be described.
 図16では、立体画像表示制御装置10に立体画像が立体表示され、ユーザの一回の操作に対して、表示部14に表示されている立体画像が45度ずつ回転する場合を想定している。まず、初期状態ST1600は、表示部14に表示されている立体画像の、最も飛び出している点の飛び出し量が「H」、及び、最も引っ込んでいる点の引っ込み量が「0」の状態を示している。 In FIG. 16, it is assumed that a stereoscopic image is stereoscopically displayed on the stereoscopic image display control device 10, and the stereoscopic image displayed on the display unit 14 is rotated by 45 degrees in response to a single user operation. . First, the initial state ST1600 indicates a state in which the pop-out amount of the most popped point of the stereoscopic image displayed on the display unit 14 is “H” and the pull-in amount of the most retracted point is “0”. ing.
 次に、ユーザによって一回の操作が加えられることで、表示部14に表示されている立体画像は、初期状態ST1600から45度回転した状態ST1601まで変化する。状態ST1601における最も飛び出している点の飛び出し量は「H」、及び、最も引っ込んでいる点の引っ込み量は約「-0.7H」となる。次に、ユーザによってさらに一回の操作が加えられることで、表示部14に表示される立体画像は、状態ST1601からさらに45度回転した状態ST1602まで変化する。状態ST1602における最も飛び出している点の飛び出し量は「H」、及び、最も引っ込んでいる点の引っ込み量は「-H」となる。 Next, when the user performs one operation, the stereoscopic image displayed on the display unit 14 changes from the initial state ST1600 to the state ST1601 rotated by 45 degrees. In the state ST1601, the protruding amount of the most protruding point is “H”, and the retracting amount of the most retracted point is about “−0.7H”. Next, when the user performs one more operation, the stereoscopic image displayed on the display unit 14 changes from the state ST1601 to the state ST1602 rotated by 45 degrees. In the state ST1602, the protruding amount of the most protruding point is “H”, and the retracting amount of the most retracted point is “−H”.
 次に、図17を用いて、図16で示した初期状態ST1600から状態ST1601、及び、状態ST1601から状態ST1602に遷移する場合のそれぞれにおいて、立体画像の回転速度を制御する具体的な方法について説明する。 Next, with reference to FIG. 17, a specific method for controlling the rotation speed of the stereoscopic image in each of the transitions from the initial state ST1600 to the state ST1601 and from the state ST1601 to the state ST1602 shown in FIG. To do.
 図17の縦軸は立体画像の飛び出し量、及び、引っ込み量を示し、横軸は時間を示す。    The vertical axis in FIG. 17 indicates the pop-out amount and retraction amount of the stereoscopic image, and the horizontal axis indicates time. *
 まず、図16の初期状態ST1600は、図17の状態St171に対応する(最も飛び出している点の飛び出し量が「H」、及び、最も引っ込んでいる点の引っ込み量が「0」)。この状態St171からユーザによって操作が加えられたことによって立体画像が45度回転した場合の飛び出し量、及び、引っ込み量の単位時間当たりの変化量を予測すると、単位時間当たりの飛び出し量の変化量は「0」、及び、引っ込み量の変化量は約「-0.7H」となる。 First, the initial state ST1600 in FIG. 16 corresponds to the state St171 in FIG. 17 (the amount of protrusion at the most protruding point is “H” and the amount of retracting at the most retracted point is “0”). When the pop-up amount when the stereoscopic image is rotated by 45 degrees due to the user's operation from this state St171 and the change amount per unit time of the retraction amount are predicted, the change amount of the pop-up amount per unit time is “0” and the amount of change in the retraction amount are about “−0.7H”.
 ここで、飛び出し量の単位時間当たりの変化量は閾値(一例では、閾値を0.25Hとする)を超えないものの、引っ込み量の単位時間当たりの変化量は閾値(一例では、閾値を0.25Hとする)を超えるため、表示制御部132は、立体画像の回転速度を遅くする。 Here, although the amount of change per unit time of the pop-out amount does not exceed a threshold (in the example, the threshold is 0.25H), the amount of change per unit time of the retracted amount is the threshold (in the example, the threshold is set to 0. 0). 25H), the display control unit 132 decreases the rotation speed of the stereoscopic image.
 図17で示す状態St171から状態St172への遷移は予測値であり、時間T71で立体画像が45度回転をした場合を示すが、このままでは、単位時間当たりの引っ込み量の変化が大き過ぎる。そこで、この予測値を基に状態St171から状態St173までの時間T172(時間T171より長い)で立体画像が45度回転するように、立体画像の回転速度を変更(遅く)する。 The transition from the state St171 to the state St172 shown in FIG. 17 is a predicted value, and shows a case where the stereoscopic image is rotated 45 degrees at time T71. However, if the state is kept as it is, the change in the amount of retraction per unit time is too large. Therefore, based on this predicted value, the rotation speed of the stereoscopic image is changed (slowed) so that the stereoscopic image rotates 45 degrees at time T172 (longer than time T171) from state St171 to state St173.
 言い換えれば、回転速度を制御しない場合は時間T171で立体画像が45度回転するため、急激に引っ込み量が変化する。しかし、回転速度に制御を加えることで時間T172(>T171)の間に立体画像が45度回転するため、引っ込み量の急激な変化を抑制できる。この遷移後の状態St173は、図16の状態ST1601に対応する。 In other words, when the rotational speed is not controlled, the stereoscopic image rotates 45 degrees at time T171, so that the amount of retraction suddenly changes. However, by controlling the rotation speed, the stereoscopic image rotates 45 degrees during time T172 (> T171), so that a rapid change in the amount of retraction can be suppressed. The state St173 after this transition corresponds to the state ST1601 in FIG.
 次に、図17の状態St173から状態St174まではユーザの操作がなく、表示の状態が変化していない時間帯を示している。次に、状態St174でユーザによって操作が加えられたことによって立体画像が45度回転する場合の飛び出し量、及び、引っ込み量を予測すると、単位時間当たりの飛び出し量の変化量は「0」、及び、引っ込み量の変化量は約「-0.3H」となる。すなわち、飛び出し量の単位時間当たりの変化量は閾値(一例では、閾値を0.25Hとする)を超えないものの、引っ込み量の単位時間当たりの変化量は閾値(一例では、閾値を0.25Hとする)を超えるため、表示制御部132は、立体画像の回転速度を遅くする。 Next, from the state St173 to the state St174 in FIG. 17, there is a time zone in which there is no user operation and the display state does not change. Next, when the pop-out amount and the retraction amount when the stereoscopic image rotates 45 degrees due to the operation performed by the user in the state St174, the change amount of the pop-out amount per unit time is “0”, and The amount of change in the retraction amount is about “−0.3H”. That is, although the amount of change per unit time of the pop-out amount does not exceed the threshold (in the example, the threshold is 0.25H), the amount of change in the amount of withdrawal per unit time is the threshold (in the example, the threshold is 0.25H). Therefore, the display control unit 132 decreases the rotation speed of the stereoscopic image.
 図17で示す状態St174から状態St175への遷移は予測値であり、時間T173で立体画像が45度回転をした場合を示すが、このままでは、単位時間当たりの引っ込み量の変化が大き過ぎる。そこで、この予測値を基に状態St174から状態St176までの時間T174(時間T173より長い)の間に立体画像が45度回転するように、立体画像の回転速度を変更(遅く)する。 The transition from the state St174 to the state St175 shown in FIG. 17 is a predicted value, and shows a case where the stereoscopic image is rotated by 45 degrees at time T173. However, the change in the amount of retraction per unit time is too large as it is. Therefore, based on this predicted value, the rotational speed of the stereoscopic image is changed (slowed) so that the stereoscopic image rotates 45 degrees during time T174 (longer than time T173) from state St174 to state St176.
 言い換えれば、回転速度を制御しない場合は時間T173で立体画像が45度回転するため、急激に引っ込み量が変化する。しかし、回転速度に制御を加えることで時間T174(>T173)の間に立体画像が45度回転するため、引っ込み量の急激な変化を抑制できる。この遷移後の状態St176は、図16の状態ST1602に対応する。 In other words, when the rotational speed is not controlled, the stereoscopic image rotates 45 degrees at time T173, and the amount of retraction suddenly changes. However, by controlling the rotation speed, the stereoscopic image rotates 45 degrees during time T174 (> T173), so that a rapid change in the amount of retraction can be suppressed. The state St176 after this transition corresponds to the state ST1602 in FIG.
 以上のように、飛び出し量と引っ込み量との単位時間当たりの変化量が異なるような立体画像を変化させる場合でも、飛び出し量及び引っ込み量の単位時間当たりの変化量の少なくとも一方が閾値を超える場合に回転速度を調整する。これにより、単位時間あたりの飛び出し量と引っ込み量とが異なる立体画像でも回転速度を調整することができる。 As described above, even when changing the stereoscopic image in which the amount of change per unit time of the pop-out amount and the retract amount is different, at least one of the change amount per unit time of the pop-out amount and the retract amount exceeds the threshold value Adjust the rotation speed to. Thereby, the rotational speed can be adjusted even in a stereoscopic image in which the pop-out amount per unit time and the retraction amount are different.
 なお、図16及び図17を用いて説明した例は、いずれも、図2のステップS2004の遷移条件Aで状態遷移した場合について示したものである。このように、飛び出し量と引っ込み量との単位時間当たりの変化量が異なる場合でも実施の形態1の制御方法は適用可能であり、実施の形態2、及び、実施の形態3で説明した方法も同様に適用可能である。 Note that the examples described with reference to FIGS. 16 and 17 both show the case where the state transition is performed under the transition condition A in step S2004 of FIG. As described above, the control method of the first embodiment can be applied even when the amount of change per unit time of the pop-out amount and the retraction amount is different, and the methods described in the second and third embodiments are also applicable. The same applies.
 また、上記の各実施の形態1~3では、図7に示されるような場合に、表示制御部132は、飛び出し量、及び、引っ込み量の単位時間当たりの変化量が閾値を超えないと判断する。図7の例では、単位時間の前における立体画像の最も飛び出した点(最も引っ込んだ点)と、単位時間の後における立体画像の最も飛び出した点(最も引っ込んだ点)とは、飛び出し量(引っ込み量)が同じになっている。 In each of the first to third embodiments described above, in the case as shown in FIG. 7, the display control unit 132 determines that the amount of change per unit time of the pop-out amount and the retract amount does not exceed the threshold value. To do. In the example of FIG. 7, the most popped point (the most retracted point) of the stereoscopic image before the unit time and the most popped point (the most retracted point) of the stereoscopic image after the unit time are the pop-out amount ( (Retraction amount) is the same.
 すなわち、上記の各実施の形態1~3に係る変化量予測部131は、単位時間の前後のそれぞれにおける最も飛び出した点の飛び出し量(最も引っ込んだ点の引っ込み量)同士の差に着目して、単位時間当たりの飛び出し量(引っ込み量)の変化量を予測している。 That is, the change amount predicting unit 131 according to each of the above first to third embodiments pays attention to the difference between the protrusion amounts of the most protruding points (retraction amounts of the most retracted points) before and after the unit time. The amount of change in the amount of protrusion (retraction amount) per unit time is predicted.
 しかしながら、図18に示されるように、表面に模様(図18の例では、日本列島の模様)が付されているような球を回転させる場合、ユーザは、その模様を眼で追い続ける可能性がある。 However, as shown in FIG. 18, when a sphere having a pattern on its surface (in the example of FIG. 18, a Japanese archipelago pattern) is rotated, the user may continue to follow the pattern with his eyes. There is.
 このような場合、変化量予測部131は、立体画像の特定の点の単位時間の前後における飛び出し量の差を、単位時間当たりの飛び出し量の変化量として予測すればよい。同様に、変化量予測部131は、立体画像の特定の点の単位時間の前後における引っ込み量の差を、単位時間当たりの引っ込み量の変化量として予測すればよい。 In such a case, the change amount predicting unit 131 may predict the difference in the pop-out amount before and after the unit time of a specific point of the stereoscopic image as the change amount of the pop-out amount per unit time. Similarly, the change amount predicting unit 131 may predict a difference in the amount of retraction before and after a unit time of a specific point of the stereoscopic image as a change amount of the retraction amount per unit time.
 まず、図18の初期状態ST1800は、表示部14に表示されている球の表面の日本列島(特定の点の一例)の飛び出し量が「0.2H」である状態を示している。次に、ユーザによって一回の操作が加えられることで、表示部14に表示される球が回転(日本列島が天頂方向に移動するように回転)して状態ST1801に変化する。状態ST1801における日本列島の飛び出し量は「H」となる。 First, an initial state ST1800 in FIG. 18 shows a state in which the pop-out amount of the Japanese archipelago (an example of a specific point) on the surface of the sphere displayed on the display unit 14 is “0.2H”. Next, when the user performs one operation, the sphere displayed on display unit 14 rotates (rotates so that the Japanese archipelago moves in the zenith direction) and changes to state ST1801. The amount of popping out of the Japanese archipelago in state ST1801 is “H”.
 このとき、変化量予測部131は、回転前の日本列島の飛び出し量「0.2H」と、回転後の日本列島の飛び出し量「H」との差「0.8H」を、球が状態ST1800から状態ST1801に変化するのに要する時間で除すことにより、単位時間当たりの飛び出し量の変化量を予測することができる。そして、表示制御部132は、変化量予測部131で算出された飛び出し量が閾値を超える場合に、球の回転速度を遅くする。 At this time, the change amount predicting unit 131 determines that the difference between the pop-out amount “0.2H” of the Japanese archipelago before the rotation and the pop-out amount “H” of the Japanese archipelago after the rotation is “0.8H”, and the ball is in the state ST1800 By dividing by the time required to change from state to state ST1801, the amount of change in the pop-out amount per unit time can be predicted. Then, the display control unit 132 decreases the rotation speed of the sphere when the pop-out amount calculated by the change amount prediction unit 131 exceeds the threshold value.
 次に、ユーザによってさらに一回の操作が加えられることで、表示部14に表示される球が回転(日本列島が奥側の赤道に近づくように回転)して状態ST1802に変化する。状態ST1802における日本列島の飛び出し量は「0.2H」となる。 Next, when the user performs one more operation, the sphere displayed on the display unit 14 rotates (rotates so that the Japanese archipelago approaches the equator on the back side) and changes to the state ST1802. The amount of popping out of the Japanese archipelago in state ST1802 is “0.2H”.
 このとき、変化量予測部131は、回転前の日本列島の飛び出し量「H」と、回転後の日本列島の飛び出し量「0.2H」との差「-0.8H」を、球が状態ST1801から状態ST1802に変化するのに要する時間で除すことにより、単位時間当たりの飛び出し量の変化量と予測する。そして、表示制御部132は、変化量予測部131で算出された飛び出し量が閾値を超える場合に、球の回転速度を遅くする。 At this time, the change amount predicting unit 131 indicates that the sphere has a difference of “−0.8H” between the popping amount “H” of the Japanese archipelago before the rotation and the popping amount “0.2H” of the Japanese archipelago after the rotation. By dividing by the time required to change from ST1801 to state ST1802, it is predicted as the amount of change in the pop-out amount per unit time. Then, the display control unit 132 decreases the rotation speed of the sphere when the pop-out amount calculated by the change amount prediction unit 131 exceeds the threshold value.
 上記の処理は、単位時間当たりの飛び出し量の変化量のみならず、単位時間当たりの引っ込み量の変化量を予測する際にも適用することができる。すなわち、図18に示される球を上記の例と反対方向に回転させる場合は、上記の処理によって単位時間当たりの引っ込み量の変化量を予測すればよい。 The above processing can be applied not only when predicting the amount of change in the amount of protrusion per unit time but also the amount of change in the amount of withdrawal per unit time. That is, when the sphere shown in FIG. 18 is rotated in the opposite direction to the above example, the amount of change in the amount of retraction per unit time may be predicted by the above processing.
 また、上記の処理は、立体画像に付されている全ての模様(テクスチャ)に対して適用する必要はない。例えば、回転の前後のいずれか一方において、立体画像上の最も飛び出した点、又は、最も引っ込んだ点に位置する模様に対して、選択的に上記の処理を適用すればよい。 Further, the above processing need not be applied to all patterns (textures) attached to the stereoscopic image. For example, the above-described processing may be selectively applied to a pattern located at the most protruding point or the most retracted point on the stereoscopic image before or after the rotation.
 さらに、上記の処理を適用する立体画像上の点は、立体画像に付された模様に限定されない。例えば、表示部14に表示された立体画像に指(指に限定されず、手、又は手に持っている指示棒等の指示物等であってもよい)を重畳させ、その指を動かすことによって、指を動かした方向に動かした量だけ立体画像を回転(変化)させる場合、立体画像の指を重畳させた点に対して、上記の処理を適用してもよい。 Furthermore, the points on the stereoscopic image to which the above processing is applied are not limited to the patterns attached to the stereoscopic image. For example, a finger (not limited to the finger but may be an indicator such as a hand or an indicator stick held in the hand) is superimposed on the stereoscopic image displayed on the display unit 14, and the finger is moved. Thus, when the stereoscopic image is rotated (changed) by the amount moved in the direction in which the finger is moved, the above processing may be applied to the point where the finger of the stereoscopic image is superimposed.
 また、上記の各実施の形態1~3では立体画像の表示変更方法として、立体画像を回転させることを例として説明したが、操作に対する立体画像の変化は回転に限定されるものではなく、移動、拡大、縮小等であってもよい。 Further, in each of the first to third embodiments, the stereoscopic image display changing method has been described by taking an example of rotating a stereoscopic image. However, the change of the stereoscopic image in response to an operation is not limited to rotation, and movement , Enlargement, reduction, etc.
 また、上記の各実施の形態1~3では、立体画像の表示変更方法として立体画像をその重心を中心として回転させることを例として説明したが、操作に対する立体画像の回転中心はその立体画像の重心に限定されるものではなく、任意の位置を中心に立体画像を回転させる場合であっても本制御は適用可能である。 In each of the first to third embodiments described above, as an example of the method of changing the display of a stereoscopic image, the stereoscopic image is rotated around its center of gravity. However, the rotational center of the stereoscopic image with respect to the operation is the rotation center of the stereoscopic image. This control is not limited to the center of gravity, and can be applied even when a stereoscopic image is rotated around an arbitrary position.
 なお、本発明を上記実施の形態に基づいて説明してきたが、本発明は、上記の実施の形態に限定されないのはもちろんである。以下のような場合も本発明に含まれる。 Although the present invention has been described based on the above embodiment, it is needless to say that the present invention is not limited to the above embodiment. The following cases are also included in the present invention.
 (1)上記の各装置は、具体的には、マイクロプロセッサ、ROM、RAM、ハードディスクユニット、ディスプレイユニット、キーボード、マウスなどから構成されるコンピュータシステムで実現され得る。RAMまたはハードディスクユニットには、コンピュータプログラムが記憶されている。マイクロプロセッサが、コンピュータプログラムにしたがって動作することにより、各装置は、その機能を達成する。ここでコンピュータプログラムは、所定の機能を達成するために、コンピュータに対する指令を示す命令コードが複数個組み合わされて構成されたものである。 (1) Specifically, each of the above devices can be realized by a computer system including a microprocessor, a ROM, a RAM, a hard disk unit, a display unit, a keyboard, a mouse, and the like. A computer program is stored in the RAM or the hard disk unit. Each device achieves its functions by the microprocessor operating according to the computer program. Here, the computer program is configured by combining a plurality of instruction codes indicating instructions for the computer in order to achieve a predetermined function.
 (2)上記の各装置を構成する構成要素の一部または全部は、1個のシステムLSI(Large Scale Integration:大規模集積回路)から構成されているとしてもよい。システムLSIは、複数の構成部を1個のチップ上に集積して製造された超多機能LSIであり、具体的には、マイクロプロセッサ、ROM、RAMなどを含んで構成されるコンピュータシステムである。ROMには、コンピュータプログラムが記憶されている。マイクロプロセッサが、ROMからRAMにコンピュータプログラムをロードし、ロードしたコンピュータプログラムにしたがって演算等の動作することにより、システムLSIは、その機能を達成する。 (2) A part or all of the components constituting each of the above devices may be configured by one system LSI (Large Scale Integration). The system LSI is an ultra-multifunctional LSI manufactured by integrating a plurality of components on a single chip, and specifically, a computer system including a microprocessor, ROM, RAM, and the like. . A computer program is stored in the ROM. The system LSI achieves its functions by the microprocessor loading a computer program from the ROM to the RAM and performing operations such as operations in accordance with the loaded computer program.
 (3)上記の各装置を構成する構成要素の一部または全部は、各装置に脱着可能なICカードまたは単体のモジュールから構成されてもよい。ICカードまたはモジュールは、マイクロプロセッサ、ROM、RAMなどから構成されるコンピュータシステムである。ICカードまたはモジュールには、上記の超多機能LSIが含まれてもよい。マイクロプロセッサが、コンピュータプログラムにしたがって動作することにより、ICカードまたはモジュールは、その機能を達成する。このICカードまたはこのモジュールは、耐タンパ性を有してもよい。 (3) Part or all of the constituent elements constituting each of the above devices may be configured from an IC card or a single module that can be attached to and detached from each device. The IC card or module is a computer system that includes a microprocessor, ROM, RAM, and the like. The IC card or the module may include the super multifunctional LSI described above. The IC card or the module achieves its functions by the microprocessor operating according to the computer program. This IC card or this module may have tamper resistance.
 (4)本発明は、上記に示す方法で実現されてもよい。また、これらの方法をコンピュータにより実現するコンピュータプログラムで実現してもよいし、コンピュータプログラムからなるデジタル信号で実現してもよい。 (4) The present invention may be realized by the method described above. Further, these methods may be realized by a computer program realized by a computer, or may be realized by a digital signal consisting of a computer program.
 また、本発明は、コンピュータプログラムまたはデジタル信号をコンピュータ読み取り可能な記録媒体、例えば、フレキシブルディスク、ハードディスク、CD-ROM、MO、DVD、DVD-ROM、DVD-RAM、BD(Blu-ray Disc)、半導体メモリなどに記録したもので実現してもよい。また、これらの記録媒体に記録されているデジタル信号で実現してもよい。 The present invention also relates to a computer-readable recording medium that can read a computer program or a digital signal, such as a flexible disk, hard disk, CD-ROM, MO, DVD, DVD-ROM, DVD-RAM, BD (Blu-ray Disc), You may implement | achieve with what was recorded on the semiconductor memory etc. Moreover, you may implement | achieve with the digital signal currently recorded on these recording media.
 また、本発明は、コンピュータプログラムまたはデジタル信号を、電気通信回線、無線または有線通信回線、インターネットを代表とするネットワーク、データ放送等を経由して伝送してもよい。 In the present invention, a computer program or a digital signal may be transmitted via an electric communication line, a wireless or wired communication line, a network represented by the Internet, a data broadcast, or the like.
 また、本発明は、マイクロプロセッサとメモリを備えたコンピュータシステムであって、メモリは、コンピュータプログラムを記憶しており、マイクロプロセッサは、コンピュータプログラムにしたがって動作してもよい。 The present invention is also a computer system including a microprocessor and a memory. The memory stores a computer program, and the microprocessor may operate according to the computer program.
 また、プログラムまたはデジタル信号を記録媒体に記録して移送することにより、またはプログラムまたはデジタル信号をネットワーク等を経由して移送することにより、独立した他のコンピュータシステムにより実施してもよい。 Also, the program or digital signal may be recorded on a recording medium and transferred, or the program or digital signal may be transferred via a network or the like, and may be implemented by another independent computer system.
 (5)上記実施の形態及び上記変形例をそれぞれ組み合わせてもよい。 (5) You may combine the said embodiment and said modification, respectively.
 以上、図面を参照してこの発明の実施形態を説明したが、この発明は、図示した実施形態のものに限定されない。図示した実施形態に対して、この発明と同一の範囲内において、あるいは均等の範囲内において、種々の修正や変形を加えることが可能である。 As mentioned above, although embodiment of this invention was described with reference to drawings, this invention is not limited to the thing of embodiment shown in figure. Various modifications and variations can be made to the illustrated embodiment within the same range or equivalent range as the present invention.
 本発明による、視聴者に与える疲労を軽減することができる形態で、操作に対する立体画像の回転速度、及び、回転量を自動で制御し、立体画像の飛び出し量、及び、引っ込み量の急激な変化を抑制することが可能な立体画像表示制御装置及び立体画像表示制御方法は、主に、TVや、携帯端末、タブレット端末をはじめとするモバイル端末等のAV機器に用いられるが、本発明の立体画像表示制御装置及び立体画像表示制御方法は、立体画像を表示可能な装置であれば応用可能であり、一般の立体画像が表示可能なディスプレイ等においても応用可能である。 According to the present invention, it is possible to reduce the fatigue given to the viewer in a form that can automatically control the rotation speed and rotation amount of the stereoscopic image with respect to the operation, and suddenly change the projection amount and the retraction amount of the stereoscopic image. The stereoscopic image display control device and the stereoscopic image display control method capable of suppressing the image are mainly used for AV equipment such as a mobile terminal such as a TV, a mobile terminal, and a tablet terminal. The image display control device and the stereoscopic image display control method can be applied to any device that can display a stereoscopic image, and can also be applied to a display that can display a general stereoscopic image.
 10,20 立体画像表示制御装置
 11 画像データ取得部
 12 入力受付部
 13 制御部
 14 表示部
 15 データ保持部
 131 変化量予測部
 132 表示制御部
 133 操作量算出部
DESCRIPTION OF SYMBOLS 10,20 Stereoscopic image display control apparatus 11 Image data acquisition part 12 Input reception part 13 Control part 14 Display part 15 Data holding part 131 Change amount estimation part 132 Display control part 133 Operation amount calculation part

Claims (12)

  1.  表示装置に立体画像を表示させる立体画像表示制御装置であって、
     立体画像を前記表示装置に出力する出力部と、
     前記表示装置に表示されている立体画像を変化させる変化指示の入力を、ユーザから受け付ける入力受付部と、
     前記入力受付部で受け付けられた前記変化指示に従って立体画像を変化させた時の、当該立体画像の単位時間当たりの飛び出し量及び引っ込み量の変化量を予測する変化量予測部と、
     前記入力受付部で受け付けられた前記変化指示に従って、前記出力部から出力される立体画像を変化させる表示制御部とを備え、
     前記表示制御部は、前記変化量予測部で予測された単位時間当たりの飛び出し量又は引っ込み量の変化量が予め定められた閾値を超える場合に、前記出力部から出力される立体画像の単位時間当たりの飛び出し量又は引っ込み量の変化量が前記閾値以下となるように、立体画像の変化速度を遅くする
     立体画像表示制御装置。
    A stereoscopic image display control device for displaying a stereoscopic image on a display device,
    An output unit for outputting a stereoscopic image to the display device;
    An input receiving unit that receives, from a user, an input of a change instruction that changes a stereoscopic image displayed on the display device;
    A change amount predicting unit for predicting a change amount of the pop-out amount and the retraction amount per unit time of the stereoscopic image when the stereoscopic image is changed according to the change instruction received by the input receiving unit;
    A display control unit that changes a stereoscopic image output from the output unit according to the change instruction received by the input receiving unit;
    The display control unit is configured to output a unit time of a stereoscopic image output from the output unit when a change amount of the pop-out amount or the retraction amount per unit time predicted by the change amount prediction unit exceeds a predetermined threshold value. A stereoscopic image display control device that slows the change rate of a stereoscopic image so that the amount of change in the amount of popping out or retracting is equal to or less than the threshold value.
  2.  前記変化量予測部は、
     単位時間の前後それぞれにおいて、前記表示装置の表示面から最も飛び出ている立体画像上の点の飛び出し量の差を、単位時間当たりの飛び出し量の変化量として予測し、
     単位時間の前後それぞれにおいて、前記表示装置の表示面から最も引っ込んでいる立体画像上の点の引っ込み量の差を、単位時間当たりの引っ込み量の変化量として予測する
     請求項1に記載の立体画像表示制御装置。
    The change amount prediction unit
    Predicting the difference in the amount of protrusion of a point on the stereoscopic image that protrudes most from the display surface of the display device before and after the unit time as the amount of change in the amount of protrusion per unit time,
    The stereoscopic image according to claim 1, wherein a difference in the amount of retraction of a point on the stereoscopic image most retracted from the display surface of the display device is predicted as a change amount of the retraction amount per unit time before and after the unit time. Display control device.
  3.  前記変化量予測部は、
     立体画像の特定の点の単位時間の前後における飛び出し量の差を、単位時間当たりの飛び出し量の変化量として予測し、
     立体画像の特定の点の単位時間の前後における引っ込み量の差を、単位時間当たりの引っ込み量の変化量として予測する
     請求項1に記載の立体画像表示制御装置。
    The change amount prediction unit
    Predict the difference in the amount of pop-up before and after the unit time of a specific point in the stereoscopic image as the amount of change in the amount of pop-out per unit time,
    The stereoscopic image display control apparatus according to claim 1, wherein a difference in the amount of retraction before and after a unit time of a specific point of the stereoscopic image is predicted as a change amount of the amount of retraction per unit time.
  4.  前記変化指示は、立体画像の変化量と、立体画像を前記変化量だけ変化させるのに要する変化時間とを特定する情報を含み、
     前記表示制御部は、前記変化量予測部で予測された単位時間当たりの飛び出し量又は引っ込み量の変化量が前記閾値を超える場合に、前記変化時間より長い時間をかけて前記変化量だけ立体画像を変化させる
     請求項1~3のいずれか1項に記載の立体画像表示制御装置。
    The change instruction includes information for specifying a change amount of the stereoscopic image and a change time required to change the stereoscopic image by the change amount,
    When the change amount of the pop-out amount or the retraction amount per unit time predicted by the change amount prediction unit exceeds the threshold value, the display control unit takes a longer time than the change time to generate the stereoscopic image by the change amount. The stereoscopic image display control apparatus according to any one of claims 1 to 3, wherein:
  5.  前記変化指示は、立体画像の変化量と、立体画像を前記変化量だけ変化させるのに要する変化時間とを特定する情報を含み、
     前記表示制御部は、前記変化量予測部で予測された単位時間当たりの飛び出し量又は引っ込み量の変化量が前記閾値を超える場合に、前記変化時間の間に前記変化量より少ない量だけ立体画像を変化させる
     請求項1~3のいずれか1項に記載の立体画像表示制御装置。
    The change instruction includes information for specifying a change amount of the stereoscopic image and a change time required to change the stereoscopic image by the change amount,
    The display control unit, when the change amount of the pop-out amount or the retraction amount per unit time predicted by the change amount prediction unit exceeds the threshold, the stereoscopic image by an amount smaller than the change amount during the change time. The stereoscopic image display control apparatus according to any one of claims 1 to 3, wherein:
  6.  前記表示制御部は、前記変化量予測部で予測された単位時間当たりの飛び出し量又は引っ込み量の変化量が前記閾値を超える場合に、前記変化指示に従った立体画像の変化を行わない
     請求項1~3のいずれか1項に記載の立体画像表示制御装置。
    The display control unit does not change a stereoscopic image according to the change instruction when a change amount of a pop-out amount or a retraction amount per unit time predicted by the change amount prediction unit exceeds the threshold value. 4. The stereoscopic image display control device according to any one of 1 to 3.
  7.  前記入力受付部で受け付けられる立体画像の変化指示は、当該立体画像の移動、回転、拡大、又は縮小を含む
     請求項1~6のいずれか1項に記載の立体画像表示制御装置。
    The stereoscopic image display control apparatus according to any one of claims 1 to 6, wherein the stereoscopic image change instruction received by the input reception unit includes movement, rotation, enlargement, or reduction of the stereoscopic image.
  8.  前記入力受付部は、ユーザによる所定の入力操作によって、予め定められた変化量の前記変化指示を受け付ける
     請求項1~7のいずれか1項に記載の立体画像表示制御装置。
    The stereoscopic image display control apparatus according to any one of claims 1 to 7, wherein the input receiving unit receives the change instruction of a predetermined change amount by a predetermined input operation by a user.
  9.  前記入力受付部は、ユーザによる入力操作の大きさに応じた変化量の前記変化指示を受け付ける
     請求項1~7のいずれか1項に記載の立体画像表示制御装置。
    The stereoscopic image display control apparatus according to any one of claims 1 to 7, wherein the input receiving unit receives the change instruction of a change amount according to a magnitude of an input operation by a user.
  10.  前記立体画像表示制御装置は、さらに、前記表示装置を備える
     請求項1~9のいずれか1項に記載の立体画像表示制御装置。
    The stereoscopic image display control device according to any one of claims 1 to 9, wherein the stereoscopic image display control device further includes the display device.
  11.  表示装置に立体画像を表示させる立体画像表示制御方法であって、
     立体画像を前記表示装置に出力する出力ステップと、
     前記表示装置に表示されている立体画像を変化させる変化指示の入力を、ユーザから受け付ける入力受付ステップと、
     前記入力受付ステップで受け付けられた前記変化指示に従って立体画像を変化させた時の、当該立体画像の単位時間当たりの飛び出し量及び引っ込み量の変化量を予測する変化量予測ステップと、
     前記入力受付ステップで受け付けられた前記変化指示に従って、前記出力ステップで出力される立体画像を変化させる表示制御ステップとを含み、
     前記表示制御ステップでは、前記変化量予測ステップで予測された単位時間当たりの飛び出し量又は引っ込み量の変化量が予め定められた閾値を超える場合に、前記出力ステップで出力される立体画像の単位時間当たりの飛び出し量又は引っ込み量の変化量が前記閾値以下となるように、立体画像の変化速度を遅くする
     立体画像表示制御方法。
    A stereoscopic image display control method for displaying a stereoscopic image on a display device,
    An output step of outputting a stereoscopic image to the display device;
    An input receiving step of receiving from the user an input of a change instruction for changing the stereoscopic image displayed on the display device;
    A change amount prediction step for predicting a change amount of the pop-out amount and the retraction amount per unit time of the stereoscopic image when the stereoscopic image is changed according to the change instruction received in the input receiving step;
    A display control step of changing the stereoscopic image output in the output step according to the change instruction received in the input reception step,
    In the display control step, the unit time of the stereoscopic image output in the output step when the amount of change of the pop-out amount or the retraction amount per unit time predicted in the change amount prediction step exceeds a predetermined threshold value A stereoscopic image display control method that slows the change rate of a stereoscopic image so that the amount of change in the amount of popping out or retracting is equal to or less than the threshold value.
  12.  コンピュータに、表示装置に立体画像を表示させるプログラムであって、
     立体画像を前記表示装置に出力する出力ステップと、
     前記表示装置に表示されている立体画像を変化させる変化指示の入力を、ユーザから受け付ける入力受付ステップと、
     前記入力受付ステップで受け付けられた前記変化指示に従って立体画像を変化させた時の、当該立体画像の単位時間当たりの飛び出し量及び引っ込み量の変化量を予測する変化量予測ステップと、
     前記入力受付ステップで受け付けられた前記変化指示に従って、前記出力ステップで出力される立体画像を変化させる表示制御ステップとを、前記コンピュータに実行させ、
     前記表示制御ステップでは、前記変化量予測ステップで予測された単位時間当たりの飛び出し量又は引っ込み量の変化量が予め定められた閾値を超える場合に、前記出力ステップで出力される立体画像の単位時間当たりの飛び出し量又は引っ込み量の変化量が前記閾値以下となるように、立体画像の変化速度を遅くする
     プログラム。
    A program for causing a computer to display a stereoscopic image on a display device,
    An output step of outputting a stereoscopic image to the display device;
    An input receiving step of receiving from the user an input of a change instruction for changing the stereoscopic image displayed on the display device;
    A change amount prediction step for predicting a change amount of the pop-out amount and the retraction amount per unit time of the stereoscopic image when the stereoscopic image is changed according to the change instruction received in the input receiving step;
    In accordance with the change instruction received in the input receiving step, causing the computer to execute a display control step of changing the stereoscopic image output in the output step,
    In the display control step, the unit time of the stereoscopic image output in the output step when the amount of change of the pop-out amount or the retraction amount per unit time predicted in the change amount prediction step exceeds a predetermined threshold value A program that slows the change rate of a stereoscopic image so that the amount of change in the amount of popping out or the amount of retraction becomes equal to or less than the threshold.
PCT/JP2012/003310 2012-01-19 2012-05-21 Device for controlling stereoscopic image display, method for controlling stereoscopic image display, and program WO2013108298A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012538907A JP5181083B1 (en) 2012-01-19 2012-05-21 Stereoscopic image display control device, stereoscopic image display control method, and program
US13/722,635 US8619076B2 (en) 2012-01-19 2012-12-20 Stereoscopic image display control apparatus, stereoscopic image display control method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-008872 2012-01-19
JP2012008872 2012-01-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/722,635 Continuation US8619076B2 (en) 2012-01-19 2012-12-20 Stereoscopic image display control apparatus, stereoscopic image display control method, and program

Publications (1)

Publication Number Publication Date
WO2013108298A1 true WO2013108298A1 (en) 2013-07-25

Family

ID=48798758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/003310 WO2013108298A1 (en) 2012-01-19 2012-05-21 Device for controlling stereoscopic image display, method for controlling stereoscopic image display, and program

Country Status (1)

Country Link
WO (1) WO2013108298A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11164328A (en) * 1997-11-27 1999-06-18 Toshiba Corp Stereoscopic video image display device
JP2008103820A (en) * 2006-10-17 2008-05-01 Sharp Corp Stereoscopic image processing apparatus
JP2011250318A (en) * 2010-05-28 2011-12-08 Sharp Corp Three-dimensional image data generation device, display device, three-dimensional image data generation method, program, and recording medium
WO2012002020A1 (en) * 2010-06-30 2012-01-05 富士フイルム株式会社 Playback device, compound-eye imaging device, playback method and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11164328A (en) * 1997-11-27 1999-06-18 Toshiba Corp Stereoscopic video image display device
JP2008103820A (en) * 2006-10-17 2008-05-01 Sharp Corp Stereoscopic image processing apparatus
JP2011250318A (en) * 2010-05-28 2011-12-08 Sharp Corp Three-dimensional image data generation device, display device, three-dimensional image data generation method, program, and recording medium
WO2012002020A1 (en) * 2010-06-30 2012-01-05 富士フイルム株式会社 Playback device, compound-eye imaging device, playback method and program

Similar Documents

Publication Publication Date Title
JP6410918B2 (en) System and method for use in playback of panoramic video content
KR102059969B1 (en) Mobile display device
US8762846B2 (en) Method and system for adaptive viewport for a mobile device based on viewing angle
US20120229595A1 (en) Synthesized spatial panoramic multi-view imaging
US20090282429A1 (en) Viewer tracking for displaying three dimensional views
EP3097690B1 (en) Multi-view display control
KR102250821B1 (en) Display apparatus and operating method thereof
CN109126131B (en) Game picture display method, storage medium and terminal
JP2011090400A (en) Image display device, method, and program
EP3113159A1 (en) Method and device for processing a part of an immersive video content according to the position of reference parts
US9007404B2 (en) Tilt-based look around effect image enhancement method
US9167225B2 (en) Information processing apparatus, program, and information processing method
US20130176303A1 (en) Rearranging pixels of a three-dimensional display to reduce pseudo-stereoscopic effect
JP5181084B1 (en) Stereoscopic image display control apparatus and stereoscopic image display control method
JP5181083B1 (en) Stereoscopic image display control device, stereoscopic image display control method, and program
WO2013108298A1 (en) Device for controlling stereoscopic image display, method for controlling stereoscopic image display, and program
EP2803198B1 (en) 3d display apparatus and method thereof
US10339722B2 (en) Display device and control method therefor
JP5319796B2 (en) Information processing apparatus and display control method
WO2012070425A1 (en) Electronic device, display control method, and program
US20140098200A1 (en) Imaging device, imaging selection method and recording medium
US20120281067A1 (en) Image processing method, image processing apparatus, and display apparatus
JP5161999B2 (en) Electronic device, display control method, and display control program
CN107833265B (en) Image switching display method and virtual reality equipment
JP5281720B1 (en) 3D image processing apparatus and 3D image processing method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012538907

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12865753

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12865753

Country of ref document: EP

Kind code of ref document: A1