WO2013106073A1 - Compositions comprenant des polymères réticulés de liaison à des cations et utilisations associées - Google Patents

Compositions comprenant des polymères réticulés de liaison à des cations et utilisations associées Download PDF

Info

Publication number
WO2013106073A1
WO2013106073A1 PCT/US2012/038909 US2012038909W WO2013106073A1 WO 2013106073 A1 WO2013106073 A1 WO 2013106073A1 US 2012038909 W US2012038909 W US 2012038909W WO 2013106073 A1 WO2013106073 A1 WO 2013106073A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
base
subject
calcium carbonate
equivalents
Prior art date
Application number
PCT/US2012/038909
Other languages
English (en)
Inventor
Alan D. Strickland
George M. Grass
Linda Young
Original Assignee
Sorbent Therapeutics, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US2012/020843 external-priority patent/WO2012097011A1/fr
Application filed by Sorbent Therapeutics, Inc. filed Critical Sorbent Therapeutics, Inc.
Priority to CA2863233A priority Critical patent/CA2863233A1/fr
Publication of WO2013106073A1 publication Critical patent/WO2013106073A1/fr
Priority to IL233579A priority patent/IL233579A0/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1611Inorganic compounds
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1635Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates

Definitions

  • the present disclosure relates generally to compositions comprising crosslinked cation-binding polymers comprising monomers containing carboxylic acid groups, and a base, wherein said polymers contains less than about 20,000 ppm or less than about 50,000 ppm, of non-hydrogen cations, wherein said polymer is crosslinked with about 0.08 mol.% to about 0.2 mol.% of crosslinker or alternatively from about 0.025 mol.% to about 3.0 mol% including, for example, from about 0.025 mol.% to about 0.3 mol.% or from about 0.025 mol.% to about 0.17 mol.% or from about 0.025 mol.% to about 0.34 mol.%, and wherein the base is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of base per equivalent of carboxylic acid groups in the polymer.
  • the present disclosure also relates to methods of preparation of said compositions and methods of using such compositions in dosage forms and to treat various diseases or disorders.
  • ion imbalances e.g., hyperkalemia, hypernatremia, hypercalcemia, and hypermagnesia
  • ESRD end stage renal disease
  • patients afflicted with an increased level of potassium e.g., hyperkalemia
  • patients afflicted with increased levels of sodium may exhibit a variety of symptoms including, lethargy, weakness, irritability, edema and in severe cases, seizures and coma.
  • edema e.g., pulmonary edema, peripheral edema, edema of the legs, etc.
  • waste products in the blood e.g., urea, creatinine, other nitrogenous waste products, and electrolytes or minerals such as sodium, phosphate and potassium.
  • Treatments for diseases or disorders associated with ion imbalances and/or an increased retention of fluid attempt to restore the ion balance and decrease the retention of fluid.
  • treatment of diseases or disorders associated with ion imbalances may employ the use of ion exchange resins to restore ion balance.
  • Treatment of diseases or disorders associated with an increased retention of fluid may involve the use of diuretics ⁇ e.g., administration of diuretic agents and/or dialysis, such as hemodialysis or peritoneal dialysis and remediation of waste products that accumulate in the body).
  • treatment for ion imbalances and/or increased retention of fluid may include restrictions on dietary consumption of electrolytes and water. However, the effectiveness and/or patient compliance with present treatments is less than desired.
  • compositions comprising crosslinked cation-binding polymers comprising monomers containing carboxylic acid groups, and a base ⁇ e.g., calcium carbonate).
  • compositions comprising a crosslinked cation-binding polymer comprising: monomers that comprise carboxylic acid groups, wherein said polymer is crosslinked with about 0.08 mol.% to about 0.2 mol.% of crosslinker or alternatively from about 0.025 mol.% to about 3.0 mol% including, for example, from about 0.025 mol.% to about 0.3 mol.% or from about 0.025 mol.% to about 0.17 mol.% or from about 0.025 mol.% to about 0.34 mol.%; and a base ⁇ e.g., calcium carbonate), wherein said monomers are acrylic acid or salts thereof, wherein the polymer contains less than about 20,000 ppm of non-hydrogen cations, , and wherein the base is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of base ⁇ e.g., 0.2 to 0.95 equivalents, 0.2 to 0.9 equivalents, 0.2 to 0.85 equivalents,
  • the composition includes from about 0.5 equivalents to 0.85 equivalents of base per equivalent of carboxylic acid groups in the polymer. In some embodiments, the composition includes from about 0.7 equivalents to 0.8 equivalents of base per equivalent of carboxylic acid groups in the polymer. In some embodiments, the composition includes about 0.75 equivalents of base per equivalent of carboxylic acid groups in the polymer. In some embodiments, the composition includes from about 0.2 equivalents to 0.35 equivalents of base per equivalent of carboxylic acid groups in the polymer. In some embodiments, the composition includes from about 0.2 equivalents to 0.3 equivalents of base per equivalent of carboxylic acid groups in the polymer. In some embodiments, the composition includes about 0.25 equivalents of base per equivalent of carboxylic acid groups in the polymer.
  • compositions comprising a crosslinked cation-binding polymer comprising: monomers that comprise carboxylic acid groups, wherein said polymer is crosslinked with about 0.08 mol.% to about 0.2 mol.% of crosslinker or alternatively from about 0.025 mol.% to about 3.0 mol% including, for example, from about 0.025 mol.% to about 0.3 mol.% or from about 0.025 mol.% to about
  • the composition includes from about 0.2 equivalents to about 0.95 equivalents of base (e.g., 0.2 to 0.95 equivalents, 0.2 to 0.9 equivalents, 0.2 to 0.85 equivalents, 0.2 to 0.8 equivalents, 0.2 to 0.75 equivalents, 0.2 to 0.7 equivalents, 0.2 to 0.65 equivalents, 0.2 to 0.6 equivalents, 0.2 to 0.55 equivalents, 0.2 to 0.5 equivalents, 0.2 to 0.45 equivalents, 0.2 to 0.4 equivalents, 0.2 to 0.35 equivalents, 0.2 to 0.3 equivalents, or 0.2 to 0.25 equivalents of base) per equivalent of carboxylic acid groups in the polymer.
  • the composition includes from about 0.2 equivalents to about 0.95 equivalents of base (e.g., 0.2 to 0.95 equivalents, 0.2 to 0.9 equivalents, 0.2 to 0.85 equivalents, 0.2 to 0.8 equivalents, 0.2 to 0.75 equivalents, 0.2 to 0.7 equivalents, 0.2 to 0.65 equivalents, 0.2 to 0.6 equivalents, 0.2 to 0.55 equivalent
  • the composition includes from about 0.7 equivalents to 0.8 equivalents of base per equivalent of carboxylic acid groups in the polymer. In some embodiments, the composition includes about 0.75 equivalents of base per equivalent of carboxylic acid groups in the polymer. In some embodiments, the composition includes from about 0.2 equivalents to 0.35 equivalents of base per equivalent of carboxylic acid groups in the polymer. In some embodiments, the composition includes from about 0.2 equivalents to 0.3 equivalents of base per equivalent of carboxylic acid groups in the polymer. In some embodiments, the composition includes about 0.25 equivalents of base per equivalent of carboxylic acid groups in the polymer.
  • compositions comprising a crosslinked cation-binding polymer comprising monomers comprising carboxylic acid groups, and a base, wherein no less than about 70% of the polymer has a particle size of about 212 microns to about 500 microns, wherein said monomers are acrylic acid or salts thereof, wherein the polymer comprises less than about 20,000 ppm of non-hydrogen cations, and wherein said base is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of base per equivalent of carboxylic acid groups in said polymer.
  • at least one non-hydrogen cation is present in an amount of at least about 5,000 ppm.
  • compositions comprising a crosslinked cation-binding polymer comprising monomers comprising carboxylic acid groups, and a base, wherein no less than about 70% of the polymer has a particle size of about 212 microns to about 500 microns, wherein said monomers are acrylic acid or salts thereof, wherein the polymer comprises less than about 50,000 ppm of non-hydrogen cations, and wherein said base is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of base per equivalent of carboxylic acid groups in said polymer.
  • at least one non-hydrogen cation is present in an amount of at least about 5,000 ppm.
  • compositions comprising a crosslinked cation-binding polymer comprising monomers comprising carboxylic acid groups, and a base, wherein no less than about 70% of said polymer has a particle size of 75 microns or less, wherein the monomers are acrylic acid or salts thereof, wherein the polymer comprises less than about 20,000 ppm of non-hydrogen cations, wherein said base is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of base per equivalent of carboxylic acid groups in said polymer.
  • at least one non-hydrogen cation is present in an amount of at least about 5,000 ppm.
  • compositions comprising a crosslinked cation-binding polymer comprising monomers comprising carboxylic acid groups, and a base, wherein no less than about 70% of said polymer has a particle size of 75 microns or less, wherein the monomers are acrylic acid or salts thereof, wherein the polymer comprises less than about 50,000 ppm of non-hydrogen cations, wherein said base is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of base per equivalent of carboxylic acid groups in said polymer.
  • at least one non-hydrogen cation is present in an amount of at least about 5,000 ppm.
  • compositions comprising polycarbophil, and a base, wherein wherein the polymer comprises less than about 20,000 ppm of non- hydrogen cations, and wherein said base is not sodium bicarbonate and is present in an amount sufficient to provide about 0.2 to 0.95 equivalents of base per equivalent of carboxylic acid groups in said polycarbophil.
  • at least one non- hydrogen cation is present in an amount of at least about 5,000 ppm.
  • compositions comprising polycarbophil, and a base, wherein wherein the polymer comprises less than about 50,000 ppm of non- hydrogen cations, and wherein said base is not sodium bicarbonate and is present in an amount sufficient to provide about 0.2 to 0.95 equivalents of base per equivalent of carboxylic acid groups in said polycarbophil.
  • at least one non- hydrogen cation is present in an amount of at least about 5,000 ppm.
  • compositions comprising a crosslinked cation-binding polymer comprising a crosslinker and monomers that comprise carboxylic acid groups, and a base, wherein said monomers are acrylic acid or salts thereof, wherein the polymer comprises less than about 20,000 ppm of non-hydrogen cations, and wherein said base is present in an amount sufficient to provide from about 0.2 equivalents to about
  • At least one non-hydrogen cation is present in an amount of at least about 5,000 ppm.
  • compositions comprising a crosslinked cation-binding polymer comprising a crosslinker and monomers that comprise carboxylic acid groups, and a base, wherein said monomers are acrylic acid or salts thereof, wherein the polymer comprises less than about 50,000 ppm of non-hydrogen cations, and wherein said base is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of base per equivalent of carboxylic acid groups in said polymer.
  • at least one non-hydrogen cation is present in an amount of at least about
  • the crosslinked cation-binding polymer is a crosslinked polyacrylate polymer crosslinked with about 0.08 mol.% to about 0.2 mol.% of crosslinker or alternatively from about 0.025 mol.% to about 3.0 mol% including, for example, from about 0.025 mol.% to about 0.3 mol.% or from about 0.025 mol.% to about 0.17 mol.% or from about 0.025 mol.% to about 0.34 mol.%.
  • the polymer may be a polyacrylate polymer crosslinked with about 0.08 mol% to about 0.2 mol% or alternatively from about 0.025 mol.% to about 3.0 mol.% including, for example, from about 0.025 mol.% to about 0.3 mol.% or from about 0.025 mol.% to about 0.17 mol.% or from about 0.025 mol.% to about 0.34 mol.% crosslinker, and for example, may comprise an in vitro saline absorption capacity ⁇ e.g., saline holding capacity) of at least about 20 times its weight (e.g., at least about 20 grams of saline per gram of polymer, or "g/g"), at least about 30 times its weight, at least about 40 times its weight, at least about 50 times its weight, at least about 60 times its weight, at least about 70 times its weight, at least about 80 times its weight, at least about 90 times its weight, at least about 100 times its weight, or more.
  • saline absorption capacity e.g., saline holding capacity
  • saline solution buffered to pH 7 a saline solution buffered to pH 7.
  • the crosslinked polyacrylate polymer is in the form of individual particles or particles that are agglomerated
  • the diameter of individual particles or agglomerated particles is about 1 micron to about 10,000 microns (alternatively, about 1 micron to about 10 microns, about 1 micron to about 50 microns, about 10 microns to about 50 microns, about 10 microns to about 200 microns, about 50 microns to about 100 microns, about 50 microns to about 200 microns, about 50 microns to about 1000 microns, about 500 microns to about 1000 microns, about 1000 to about 5000 microns, or about 5000 microns to about 10,000 microns.
  • the polyacrylate polymer is in the form of small particles that flocculate to form agglomerated particles with a diameter of about 1 micron to about 10 microns.
  • any suitable base or combination of two or more bases may be used to prepare the compositions as disclosed herein.
  • the composition comprises a base such as an alkali earth metal carbonate, an alkali earth metal acetate, an alkali earth metal oxide, an alkali earth metal bicarbonate, an alkali earth metal hydroxide, an organic base, or combinations thereof.
  • the base is a calcium base such as calcium carbonate, calcium acetate, calcium oxide, calcium citrate, or combinations thereof.
  • the base is a magnesium base such as magnesium carbonate, magnesium hydroxide, magnesium oxide, or combinations thereof.
  • the base is a sodium base such as sodium bicarbonate.
  • the base is a potassium base such as potassium bicarbonate.
  • the base is an aluminum base such as aluminum hydroxide.
  • the base is an organic base such as lysine, choline, histidine, arginine, or combinations thereof.
  • compositions disclosed herein also provides formulations and dosage forms (e.g., oral dosage forms) that comprise one or more of the compositions disclosed herein.
  • the present disclosure also relates to methods of using such compositions and or dosage forms comprising the compositions disclosed herein to treat various diseases or disorders, including signs and/or symptoms of the diseases or disorders, and including those involving ion imbalances and/or fluid imbalances (e.g., overloads).
  • the disease is heart failure.
  • the disease is heart failure with chronic kidney disease.
  • the disease is end stage renal disease.
  • the disease is end stage renal disease with heart failure.
  • the disease is chronic kidney disease.
  • the disease is hypertension.
  • the disease is salt-sensitive hypertension.
  • the disease is refractory hypertension.
  • the disease involves an ion imbalance such as hyperkalemia, hypernatremia, hypercalcemia, etc.
  • the disease or disorder involves a fluid maldistribution or fluid overload state such as edema or ascites.
  • the disease or disorder is the result of, or is associated with, administration of another agent (e.g., drug).
  • compositions according to the present disclosure are useful in treating an increase in a subject's potassium level when co-administered with an agent (e.g., drug) known to cause increases in potassium levels, such as an alpha-adrenergic agonist, a RAAS inhibitor, an ACE inhibitor, an angiotensin II receptor blocker, a beta blocker, an aldosterone antagonist, etc.
  • an agent e.g., drug
  • compositions according to the present disclosure are useful in treating an increase in a subject's sodium level when co-administered with an agent (e.g.
  • drug known to cause increases in sodium levels, such as an anabolic steroid, a birth control pill, an antibiotic, clonidine, a corticosteroid, a laxative, lithium, a nonsteroidal anti-inflammatory drug (NSAID), etc.
  • anabolic steroid such as an anabolic steroid, a birth control pill, an antibiotic, clonidine, a corticosteroid, a laxative, lithium, a nonsteroidal anti-inflammatory drug (NSAID), etc.
  • NSAID nonsteroidal anti-inflammatory drug
  • compositions comprising a crosslinked cation-binding polymer and a base, wherein the polymer comprises carboxylic acid-containing monomers, wherein the polymer contains less than about 50,000 ppm, or less than about 20,000 ppm, of non-hydrogen cations, wherein said polymer is crosslinked with about 0.08 mol.% to about 0.2 mol.% of crosslinker or alternatively from about 0.025 mol.% to about 3.0 mol% including, for example, from about 0.025 mol.% to about 0.3 mol.% or from about 0.025 mol.% to about 0.17 mol.% or from about 0.025 mol.% to about 0.34 mol.%, and wherein the base is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of base per equivalent of carboxylic acid groups in the polymer (alternatively, 0.2 to 0.9 equivalents, 0.2 to 0.85 equivalents
  • the present disclosure relates generally to compositions comprising a crosslinked cation-binding polymer and a base, wherein the polymer comprises carboxylic acid-containing monomers, wherein the polymer contains less than about 20,000 ppm of non-hydrogen cations, and wherein the base is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of base per equivalent of carboxylic acid groups in the polymer (alternatively, from about 0.2 equivalents to about 0.35 equivalents of base per equivalent of carboxylic acid groups in the polymer; alternatively, from about 0.2 equivalents to about 0.3 equivalents of base per equivalent of carboxylic acid groups in the polymer; or alternatively about 0.25 equivalents of base per equivalent of carboxylic acid groups in the polymer).
  • a composition of the present disclosure comprises a crosslinked cation-binding polymer comprising monomers comprising carboxylic acid groups, and a base, wherein said monomers are acrylic acid or salts thereof, wherein the polymer comprises less than about
  • said base is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of base per equivalent of carboxylic acid groups in said polymer, and wherein no less than about 70% of the polymer has a particle size of about 212 microns to about 500 microns.
  • a composition of the present disclosure comprises a crosslinked cation-binding polymer comprising monomers comprising carboxylic acid groups, and a base, wherein said monomers are acrylic acid or salts thereof, wherein the polymer comprises less than about 50,000 ppm of non-hydrogen cations, wherein said base is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of base per equivalent of carboxylic acid groups in said polymer, and wherein no less than about 70% of the polymer has a particle size of about 212 microns to about 500 microns.
  • at least one non-hydrogen cation is present in an amount of at least about 5,000 ppm.
  • a composition of the present disclosure comprises a crosslinked cation- binding polymer comprising monomers comprising carboxylic acid groups, and a base, wherein said monomers are acrylic acid or salts thereof, wherein the polymer comprises less than about 20,000 ppm of non-hydrogen cations, wherein said base is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of base per equivalent of carboxylic acid groups in said polymer, and wherein no less than about 70% of the polymer has a particle size of 75 microns or less.
  • a composition of the present disclosure comprises a crosslinked cation-binding polymer comprising monomers comprising carboxylic acid groups, and a base, wherein said monomers are acrylic acid or salts thereof, wherein the polymer comprises less than about 50,000 ppm of non-hydrogen cations, wherein said base is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of base per equivalent of carboxylic acid groups in said polymer, and wherein no less than about 70% of the polymer has a particle size of 75 microns or less.
  • at least one non-hydrogen cation is present in an amount of at least about 5,000 ppm.
  • compositions with unexpected cation binding or removal and/or fluid binding or removal properties when administered to a subject are useful for the treatment of a variety of diseases or disorders, including those involving ion and/or fluid imbalances (e.g., overloads).
  • a subject e.g., a mammal, such as a human
  • ranges of base and polymer in the compositions have been discovered and are disclosed herein that are optimized for maintaining the cation binding and/or removal properties of the polymer (e.g., for potassium and/or sodium) and the fluid binding and/or removal properties of the polymer in humans, while neutralizing hydrogen cations released from administration of the polymer.
  • a neutral or substantially neutral acid/base status (e.g. , acid/base balance) is maintained in the body of a subject, for example, a human subject.
  • an acid/base status (e.g., acid/base balance) associated with the subject does not change, for example, as measured by serum total bicarbonate, serum total C0 2 , arterial blood pH, urine pH, urine phosphorus, urine ammonium, and/or anion gap.
  • An acid/base status that does not change includes one that does not change outside the normal range or outside the normal range for the subject.
  • the present disclosure also relates to methods of preparation of such compositions.
  • the present disclosure also relates to methods of using such compositions, for example, in dosage forms, for the treatment of various diseases or disorders as disclosed herein, including, for example, heart failure (e.g., with or without chronic kidney disease), end stage renal disease (e.g., with or without heart failure), chronic kidney disease, hypertension (including, e.g., salt sensitive and refractory), hyperkalemia (e.g., any origin), hypernatremia (e.g., any origin), and/or fluid overload states (e.g., edema or ascities).
  • heart failure e.g., with or without chronic kidney disease
  • end stage renal disease e.g., with or without heart failure
  • chronic kidney disease e.g., hypertension (including, e.g., salt sensitive and refractory)
  • hyperkalemia e.g., any origin
  • hypernatremia e.g., any origin
  • fluid overload states
  • compositions and/or dosage forms comprising a base and a cross-linked cation-binding polymer, including a cross-linked polyacrylate polymer, absorb about 20-fold, 30-fold, or 40-fold or more of their mass in a sodium solution (e.g., a solution of sodium salts at 0.154 molar total sodium concentration, for example, a saline solution or a physiological saline solution).
  • a sodium solution e.g., a solution of sodium salts at 0.154 molar total sodium concentration, for example, a saline solution or a physiological saline solution.
  • saline holding capacity for a disclosed cross-linked cation-binding polymer may be determined in a buffered saline solution, e.g., a buffered saline solution that maintains pH at about 7.
  • the polymer is a polycarboxylic acid polymer, such as a polyacrylate.
  • the polymer is derived from polymerization of carboxylic acid-containing monomers.
  • suitable carboxylic acid- containing monomers include, for example: acrylic acid and its salts, methacrylic acid and its salts, crotonic acid and its salts, tiglinic acid and its salts, 2-methyl-2-butenoic acid (Z) and its salts, 3-butenoic acid (vinylacetic acid) and its salts, 1-cyclopentene carboxylic acid and its salts, 2-cyclopentene carboxylic acid and its salts; and unsaturated dicarboxylic acids and their salts, such as maleic acid, fumaric acid, itaconic acid, glutaconic acid, and their salts.
  • Copolymers of the above monomers may be included in the polymers.
  • Other cross- linked cation-binding polyelectrolyte polymers may be based on sulfonic acids and their salts, or phosphonic acids and their salts and amines and their salts, for example, acrylic acid with sulfonic acids or salts thereof, phosphonic acids or salts thereof, or amines and their salts thereof.
  • the polymers useful in the present disclosure contain a plurality of carboxylic acid (-C(O)OH) groups.
  • such carboxylate groups are not bound to a cation other than a proton (H ), that is, essentially all, substantially all, or greater than about 99% of the carboxylate groups of the polymers are bound to protons.
  • H proton
  • the carboxylate groups in the polymer are bound to protons.
  • less than 2%>, less than 1%>, less than 0.5%, less than 0.4%>, less than 0.3%), less than 0.2%>, or less than 0.1 %> of the carboxylate groups of the polymer are bound to cations other than hydrogen, such as sodium, potassium, calcium, magnesium, and/or choline.
  • Polymers of the present disclosure are crosslinked. Any crosslinker known in the art may be used.
  • Crosslinking agents contemplated for use in the present disclosure include, for example, diethelyeneglycol diacrylate (diacryl glycerol), triallylamine, tetraallyloxy ethane, allylmethacrylate, 1,1,1-trimethylolpropane triacrylate (TMPTA), divinyl benzene, and divinyl glycol.
  • TMPTA 1,1,1-trimethylolpropane triacrylate
  • the amount of crosslinking agent used may vary depending on the absorbent characteristics desired. In general, increasing amounts of crosslinking agent will yield polymers with increasing degrees of crosslinking. Such polymers with higher degrees of crosslinking may be preferred over less crosslinked polymers when fluid absorption is unnecessary.
  • an amount of crosslinking may be chosen that yields a polymer with an in vitro saline absorption capacity (e.g., saline holding capacity) of greater than about 20 times its own weight.
  • saline absorption capacity e.g., saline holding capacity
  • the amount of crosslinker used to crosslink polymers according to the present disclosure may range from about 0.08 mol% to about 0.2 mol% or alternatively from about 0.025 mol.% to about 3.0 mol.% including, for example, from about 0.025 mol.% to about 0.3 mol.% or from about 0.025 mol.% to about 0.17 mol.% or from about 0.025 mol.% to about 0.34 mol.%.
  • the crosslinked cation-binding polymer as described, for example, for inclusion in compositions, formulations, and/or dosage forms and/or for use in methods for treatment of various diseases or disorders as described herein, and/or for use in methods for cation binding and/or removal, and/or fluid binding and/or removal, as described herein, is a crosslinked polyacrylate polymer (i.e., derived from acrylic acid monomers or a salt thereof).
  • the polymer may be a polyacrylate polymer crosslinked with about 0.08 mol% to about 0.2 mol% or alternatively from about 0.025 mol.% to about 3.0 mol.% including, for example, from about 0.025 mol.% to about 0.3 mol.% or from about 0.025 mol.% to about 0.17 mol.% or from about 0.025 mol.% to about 0.34 mol.% crosslinker, and for example, may comprise an in vitro saline absorption capacity ⁇ e.g., saline holding capacity) of at least about 20 times its weight (e.g., at least about 20 grams of saline per gram of polymer, or "g/g"), at least about 30 times its weight, at least about 40 times its weight, at least about 50 times its weight, at least about 60 times its weight, at least about 70 times its weight, at least about 80 times its weight, at least about 90 times its weight, at least about 100 times its weight, or more.
  • the crosslinked polyacrylate polymer comprises individual particles or particles that are agglomerated (for example, flocculated) to form a larger particle, wherein the individual or agglomerated particle diameter is about 1 to about 10,000 microns (alternatively, about 1 micron to about 10 microns, about 1 micron to about 50 microns, about 10 microns to about
  • the polyacrylate polymer is in the form of small particles that flocculate to form agglomerated particles with a diameter of about 1 micron to about 10 microns.
  • non-hydrogen cations refers to sodium, potassium, magnesium and calcium cations.
  • the polymer contains less than about 20,000 ppm of non-hydrogen cations.
  • about 20,000 ppm of non-hydrogen cations refers to a maximum level in the polymer of about 20,000 ppm of the combination of sodium, potassium, magnesium, and calcium cations; and a maximum level in the polymer for each non-hydrogen cation (sodium, potassium, magnesium and calcium) of about 5,000 ppm.
  • the polymer contains less than about 19,000 ppm of non-hydrogen cations ( e.g., less than or equal to about 4,750 ppm of each non-hydrogen cation), about 18,000 ppm of non-hydrogen cations ⁇ e.g., less than or equal to about 4,500 ppm of each non-hydrogen cation), about 17,000 ppm of non-hydrogen cations ⁇ e.g., less than or equal to about 4,250 ppm of each non-hydrogen cation), about 16,000 ppm of non-hydrogen cations ⁇ e.g., less than or equal to about 4,000 ppm of each non-hydrogen cation), about 15,000 ppm of non-hydrogen cations (e.g., less than or equal to about 3,750 ppm of each non-hydrogen cation), about 14,000 ppm of non-hydrogen cations (e.g., less than or equal to about 3,500 ppm of each non-hydrogen c
  • non-hydrogen cation (e.g., less than or equal to about 2,000 ppm of each non-hydrogen cation), about 7,000 ppm of non-hydrogen cations (e.g., less than or equal to about 1 ,750 ppm of each non-hydrogen cation), about 6,000 ppm of non-hydrogen cations (e.g., less than or equal to about 1 ,500 ppm of each non-hydrogen cation), about 5,000 ppm of non-hydrogen cations (e.g., less than or equal to about 1 ,250 ppm of each non-hydrogen cation), about 4,000 ppm of non-hydrogen cations (e.g.,
  • each non-hydrogen cation less than or equal to about 1 ,000 ppm of each non-hydrogen cation
  • about 3,000 ppm of non-hydrogen cations e.g., less than or equal to about 750 ppm of each non-hydrogen cation
  • about 2,000 ppm of non-hydrogen cations e.g., less than or equal to about 500 ppm of each non-hydrogen cation
  • about 1 ,000 ppm of non-hydrogen cations e.g., less than or equal to about 250 ppm of each non-hydrogen cation
  • non-hydrogen cations e.g., less than or equal to about 125 ppm of each non- hydrogen cation
  • about 400 ppm of non-hydrogen cations e.g., less than or equal to about 100 ppm of each non-hydrogen cation
  • about 300 ppm of non-hydrogen cations e.g., less than or equal to about 75 ppm of each non-hydrogen cation
  • about 200 ppm of non- hydrogen cations e.g., less than or equal to about 50 ppm of each non-hydrogen cation
  • 100 ppm of non-hydrogen cations e.g., less than or equal to about 25 ppm of each non-hydrogen cation.
  • the polymer contains less than about 50,000 ppm of non-hydrogen cations.
  • the term "about 50,000 ppm of non-hydrogen cations" refers to a maximum level in the polymer of about 50,000 ppm of the combination of sodium, potassium, magnesium, and calcium cations.
  • the polymer contains less than about 50,000 ppm of all non-hydrogen cations combined, and at least about 5,000 ppm of one non-hydrogen cation; at least about 5,000 ppm each of two non-hydrogen cations (e.g., calcium and sodium, calcium and magnesium, calcium and potassium, sodium and magnesium, sodium and potassium, or magnesium and potassium); at least about 5,000 ppm each of two non-hydrogen cations (e.g., calcium, sodium and magnesium; calcium, sodium and potassium; calcium, magnesium and potassium; or sodium, magnesium and potassium); or at least about 5,000 ppm of each non-hydrogen cation.
  • two non-hydrogen cations e.g., calcium and sodium, calcium and magnesium, calcium and potassium, sodium and magnesium, sodium and potassium, or magnesium and potassium
  • at least about 5,000 ppm each of two non-hydrogen cation e.g., calcium, sodium and magnesium; calcium, sodium and potassium; calcium, magnesium and potassium; or sodium, magnesium and potassium
  • the polymer contains less than about 5,000 ppm of any single non-hydrogen cation, for example about 5,000 ppm, about 4,000 ppm, about 3,000 ppm, about 2,000 ppm, about 1 ,000 ppm, about 900 ppm, about 800 ppm, about 700 ppm, about 600 ppm, about 500 ppm, about 400 ppm, about 300 ppm, about 200 ppm, about 100 ppm, or less than about 100 ppm of any single non-hydrogen cation.
  • the polymer contains less than about 5,000 ppm of sodium, for example about 5,000 ppm, about 4,000 ppm, about 3,000 ppm, about 2,000 ppm, about 1 ,000 ppm, about 900 ppm, about 800 ppm, about 700 ppm, about 600 ppm, about 500 ppm, about 400 ppm, about 300 ppm, about 200 ppm, about 100 ppm, or less than about 100 ppm of sodium.
  • the polymer contains less than about 5,000 ppm of potassium, for example about 5,000 ppm, about 4,000 ppm, about 3,000 ppm, about 2,000 ppm, about 1 ,000 ppm, about 900 ppm, about 800 ppm, about 700 ppm, about 600 ppm, about 500 ppm, about 400 ppm, about 300 ppm, about 200 ppm, about 100 ppm, or less than about 100 ppm of potassium.
  • potassium for example about 5,000 ppm, about 4,000 ppm, about 3,000 ppm, about 2,000 ppm, about 1 ,000 ppm, about 900 ppm, about 800 ppm, about 700 ppm, about 600 ppm, about 500 ppm, about 400 ppm, about 300 ppm, about 200 ppm, about 100 ppm, or less than about 100 ppm of potassium.
  • the polymer contains less than about 5,000 ppm of magnesium, for example about 5,000 ppm, about 4,000 ppm, about 3,000 ppm, about 2,000 ppm, about 1 ,000 ppm, about 900 ppm, about 800 ppm, about 700 ppm, about 600 ppm, about 500 ppm, about 400 ppm, about 300 ppm, about 200 ppm, about 100 ppm, or less than about 100 ppm of magnesium.
  • magnesium for example about 5,000 ppm, about 4,000 ppm, about 3,000 ppm, about 2,000 ppm, about 1 ,000 ppm, about 900 ppm, about 800 ppm, about 700 ppm, about 600 ppm, about 500 ppm, about 400 ppm, about 300 ppm, about 200 ppm, about 100 ppm, or less than about 100 ppm of magnesium.
  • the polymer contains less than about 5,000 ppm of calcium, for example about 5,000 ppm, about 4,000 ppm, about 3,000 ppm, about 2,000 ppm, about 1 ,000 ppm, about 900 ppm, about 800 ppm, about 700 ppm, about 600 ppm, about 500 ppm, about 400 ppm, about 300 ppm, about 200 ppm, about 100 ppm, or less than about 100 ppm of calcium.
  • the present disclosure relates generally to compositions comprising a crosslinked cation-binding polymer and a base, wherein the polymer comprises carboxylic acid-containing monomers, wherein the polymer contains less than about 20,000 ppm of non-hydrogen cations, and wherein the base is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of base per equivalent of carboxylic acid groups in the polymer (alternatively, from about 0.2 equivalents to about 0.35 equivalents of base per equivalent of carboxylic acid groups in the polymer; alternatively, from about 0.2 equivalents to about 0.3 equivalents of base per equivalent of carboxylic acid groups in the polymer; or alternatively about 0.25 equivalents of base per equivalent of carboxylic acid groups in the polymer).
  • a composition of the present disclosure comprises a crosslinked cation-binding polymer comprising monomers comprising carboxylic acid groups, and a base, wherein no less than about 70% of the polymer has a particle size of about 212 microns to about 500 microns, wherein said monomers are acrylic acid or salts thereof, wherein the polymer comprises less than about 20,000 ppm of non-hydrogen cations, and wherein said base is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of base per equivalent of carboxylic acid groups in said polymer.
  • a composition of the present disclosure comprises a crosslinked cation-binding polymer comprising monomers comprising carboxylic acid groups, and a base, wherein no less than about 70%> of the polymer has a particle size of about 212 microns to about 500 microns, wherein said monomers are acrylic acid or salts thereof, wherein the polymer comprises less than about 50,000 ppm of non-hydrogen cations, and wherein said base is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of base per equivalent of carboxylic acid groups in said polymer.
  • at least one non-hydrogen cation is present in an amount of at least about 5,000 ppm.
  • a composition of the present disclosure comprises a crosslinked cation-binding polymer comprising monomers comprising carboxylic acid groups, and a base, wherein no less than about 70%> of the polymer has a particle size of 75 microns or less, wherein said monomers are acrylic acid or salts thereof, wherein the polymer comprises less than about 20,000 ppm of non-hydrogen cations, and wherein said base is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of base per equivalent of carboxylic acid groups in said polymer.
  • a composition of the present disclosure comprises a crosslinked cation-binding polymer comprising monomers comprising carboxylic acid groups, and a base, wherein no less than about 70% of the polymer has a particle size of 75 microns or less, wherein said monomers are acrylic acid or salts thereof, wherein the polymer comprises less than about 50,000 ppm of non-hydrogen cations, and wherein said base is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of base per equivalent of carboxylic acid groups in said polymer.
  • at least one non-hydrogen cation is present in an amount of at least about 5,000 ppm.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid, and further wherein: the polymer contains no more than about 5,000 ppm of sodium, no more than about 20 ppm of heavy metals, no more than about 1 ,000 ppm of residual monomer, no more than about 20 wt.% of soluble polymer, and loses less than about 5% of its weight upon drying; the polymer contains no more than about 1 ,000 ppm of sodium, no more than about 20 ppm of heavy metals, no more than about 500 ppm of residual monomer, no more than about 10 wt.% of soluble polymer, and loses less than about 5% of its weight upon drying; the polymer contains no more than about 500 ppm of sodium, no more than about 20 ppm of heavy metals
  • the base is calcium carbonate and the calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer (e.g., from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer, from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer, from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer, from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer, from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer, from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer, from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of
  • Determination of the content of non-hydrogen cations can be accomplished by any suitable means known in the art (e.g., ICP spectroscopy, atomic absorption spectroscopy, ion chromatography, or similar analytic methods).
  • the polymer may be analyzed with an inductively coupled plasma ("ICP") spectrometer (e.g., by mass spectroscopy (ICP-MS), atomic emission spectroscopy (ICP-AES), or optical emission spectroscopy (ICP-OES)) using methods known to those skilled in the art.
  • ICP inductively coupled plasma
  • Such methods include methods of sample preparation wherein the polymer is completely digested.
  • compositions and/or dosage forms comprising a polymer as disclosed herein additionally comprise a base (alternatively termed an alkali).
  • base refers to any suitable compound or mixture of compounds that is capable of increasing the pH of the blood or other bodily fluids.
  • Preferred bases include calcium carbonate, calcium acetate, magnesium oxide, calcium oxide, potassium citrate, potassium acetate, and sodium bicarbonate.
  • inorganic and organic bases can be used, provided they are acceptable, for example, pharmaceutically and/or physiologically acceptable. To be acceptable, the dose and route of administration of the specific base are important considerations.
  • the base is one or more of: an alkali metal hydroxide, an alkali metal acetate, an alkali metal carbonate, an alkali metal bicarbonate, an alkali metal oxide, an alkaline earth metal hydroxide, an alkaline earth metal acetate, an alkaline earth metal carbonate, an alkaline earth metal bicarbonate, an alkaline earth metal oxide, and an organic base.
  • the base is choline, lysine, arginine, histidine, a pharmaceutically acceptable salt thereof, or a combination thereof.
  • the base is an acetate, a butyrate, a propionate, a lactate, a succinate, a citrate, an isocitrate, a fumarate, a malate, a malonate, an oxaloacetate, a pyruvate, a phosphate, a carbonate, a bicarbonate, a lactate, a benzoate, a sulfate, a lactate, a silicate, an oxide, an oxalate, a hydroxide, an amine, a dihydrogen citrate, or a combination thereof.
  • the base is a bicarbonate, a carbonate, an oxide, or a hydrochloride.
  • the base is one or more of: calcium bicarbonate, calcium carbonate, calcium oxide, and calcium hydroxide.
  • the base is a lithium salt, a sodium salt, a potassium salt, a magnesium salt, a calcium salt, an aluminum salt, a rubidium salt, a barium salt, a chromium salt, a manganese salt, an iron salt, a cobalt salt, a nickel salt, a copper salt, a zinc salt, an ammonium salt, a lanthanum salt, a choline salt, or a serine salt of any of the foregoing anions or anion combinations.
  • the base may be selected to avoid increasing a level of a particular cation associated with the subject.
  • a composition according to the present disclosure intended to treat hyperkalemia in a subject would preferably contain a base that does not include potassium cations.
  • a composition according to the present disclosure intended to treat hypernatremia in a subject would preferably contain a base that does not include sodium cations.
  • the base is present in an amount sufficient to provide an equivalents ratio of from about 0.2 equivalents to 0.95 equivalents of base per equivalent (e.g., mole) of carboxylic acid groups in the polymer.
  • ER equivalents ratio
  • a monobasic base provides one equivalent of base per mole of monobasic base.
  • a dibasic base provides two equivalents of base per mole of dibasic base.
  • a tribasic base provides three equivalents of base per mole of tribasic base.
  • a composition comprising a polymer derived from polymerization and crosslinking of 1.0 mole of acrylic acid monomers may contain from about 0.2 moles to 0.95 moles of a monobasic base, such as a bicarbonate. If a dibasic base is used, such as a carbonate, a composition comprising 1.0 mole of carboxylic acid groups may contain from about 0.1 to about 0.475 equivalents of the dibasic base.
  • compositions of the present disclosure comprise a monobasic base present in an amount sufficient to provide from about 0.2 to about 0.95 moles of base per mole of carboxylic acid groups in the polymer, for example about 0.2 moles of base, about 0.25 moles of base, about 0.3 moles of base, about 0.35 moles of base, about 0.4 moles of base, about 0.45 moles of base, about 0.5 moles of base, about 0.55 moles of base, about 0.6 moles of base, about 0.65 moles of base, about 0.7 moles of base, about 0.75 moles of base, about 0.8 moles of base, about 0.85 moles of base, about 0.9 moles of base, or about 0.95 moles of base per mole of carboxylic acid groups in the polymer.
  • compositions of the present disclosure comprise a monobasic base present in an amount sufficient to provide from about 0.5 moles of base to about 0.85 moles of base of base, for example about 0.5 moles of base, about 0.55 moles of base, about 0.6 moles of base, about 0.65 moles of base, about 0.7 moles of base, about 0.75 moles of base, about 0.8 moles of base, or about 0.85 moles of base per mole of carboxylate groups in the polymer.
  • the composition includes from about 0.2 equivalents to 0.35 moles of base per mole of carboxylic acid groups in the polymer, for example about 0.2 moles of base to about 0.3 moles of base, about 0.2 moles of base, about 0.25 moles of base, about 0.3 moles of base, or about 0.35 moles of base per mole of carboxylic acid groups in the polymer.
  • compositions of the present disclosure comprise a monobasic base present in an amount sufficient to provide from about 0.7 moles of base to about 0.8 moles of base of base, for example about 0.7 moles of base, about 0.75 moles of base, about or 0.8 moles of base per mole of carboxylate groups in the polymer.
  • compositions of the present disclosure comprise a monobasic base present in an amount sufficient to provide about 0.75 moles of base per mole of carboxylate groups in the polymer.
  • compositions of the present disclosure comprise a dibasic base present in an amount sufficient to provide from about 0.1 to about 0.475 moles of base per mole of carboxylic acid groups in the polymer, for example about 0.1 moles of base, about 0.125 moles of base, about 0.15 moles of base, about 0.175 moles of base, about 0.2 moles of base, about 0.225 moles of base, about 0.25 moles of base, about 0.275 moles of base, about 0.3 moles of base, about 0.325 moles of base, about 0.35 moles of base, about
  • compositions of the present disclosure comprise a dibasic base present in an amount sufficient to provide from about 0.25 moles of base to about 0.425 moles of base of base, for example about 0.25 moles of base, about 0.275 moles of base, about 0.3 moles of base, about 0.325 moles of base, about 0.35 moles of base, about 0.375 moles of base, about 0.4 moles of base, or about 0.425 moles of base per mole of carboxylate groups in the polymer.
  • compositions of the present disclosure comprise a dibasic base present in an amount sufficient to provide from about 0.35 moles of base to about 0.4 moles of base of base, for example about 0.35 moles of base, about 0.375 moles of base, about or 0.4 moles of base per mole of carboxylate groups in the polymer. In some embodiments, compositions of the present disclosure comprise a dibasic base present in an amount sufficient to provide about 0.375 moles of base per mole of carboxylate groups in the polymer.
  • compositions of the present disclosure comprise a tribasic base present in an amount sufficient to provide from about 0.065 to about 0.32 moles of base per mole of carboxylic acid groups in the polymer, for example about 0.065 moles of base, about 0.07 moles of base, about 0.075 moles of base, about 0.08 moles of base, about 0.085 moles of base, about 0.09 moles of base, about 0.095 moles of base, about 0.1 moles of base, about 0.105 moles of base, about 0.11 moles of base, about 0.115 moles of base, about 0.12 moles of base, about 0.125 moles of base, about 0.13 moles of base, about 0.135 moles of base, about 0.14 moles of base, about 0.145 moles of base, about 0.15 moles of base, about 0.155 moles of base, about 0.16 moles of base, about 0.165 moles of base, about 0.17 moles of base, about 0.175 moles of base, about 0.18 moles of base
  • compositions of the present disclosure comprise a tribasic base present in an amount sufficient to provide from about 0.165 moles of base to about 0.285 moles of base of base, for example about 0.065 moles of base, about 0.07 moles of base, about 0.075 moles of base, about 0.08 moles of base, about 0.085 moles of base, about 0.09 moles of base, about 0.095 moles of base, about 0.1 moles of base, about 0.105 moles of base, about 0.11 moles of base, about 0.115 moles of base, about 0.12 moles of base, about 0.125 moles of base, about 0.13 moles of base, about 0.135 moles of base, about 0.14 moles of base, about 0.145 moles of base, about 0.15 moles of base, about 0.155 moles of base, about 0.16 moles of base, about 0.165 moles of base, about 0.17 moles of base, about 0.175 moles of base, about 0.18 moles of base, about 0.185 moles of base, about 0.185 moles of
  • compositions of the present disclosure comprise a tribasic base present in an amount sufficient to provide from about 0.235 moles of base to about 0.265 moles of base of base, for example about 0.235 moles of base, about 0.24 moles of base, about 0.245 moles of base, about 0.25 moles of base, about 0.255 moles of base, about 0.26 moles of base, or about 0.265 moles of base per mole of carboxylate groups in the polymer.
  • compositions of the present disclosure comprise a tribasic base present in an amount sufficient to provide about 0.25 moles of base per mole of carboxylate groups in the polymer.
  • compositions of the present disclosure comprise more than one base (e.g., one or more monobasic bases, one or more dibasic bases, one or more tribasic bases, etc.).
  • the compositions comprise an amount of each base such that the total number of equivalents of base present is between about 0.2 and about 0.95 equivalents per mole of carboxylic acid groups in the polymer.
  • a composition comprising 1.0 moles of carboxylic acid groups in the polymer may further comprise a total amount of base according to the following Equation 1 :
  • Ncoo H is the number of moles of carboxylate groups in the polymer
  • Nmonobasic is the number of moles of all monobasic bases present in the composition
  • Ndibasic is the number of moles of all dibasic bases present in the composition
  • Ntribasic is the number of moles of all tribasic bases present in the composition.
  • Ntetrabasic is the number of moles of all tetrabasic bases present in the composition.
  • a composition according to the present invention that comprises 1.0 mole of carboxylic acid groups and 0.1 moles of sodium bicarbonate may also comprise from about 0.05 moles to about 0.425 moles of a dibasic base such as magnesium carbonate.
  • a dibasic base such as magnesium carbonate.
  • the total equivalents of base would be equal to 0.1 + (2) (about 0.05 to about 0.425), or about 0.2 to about 0.95 equivalents of base.
  • the base is present in an amount sufficient to provide from about 0.2 to about 0.95 equivalents of base, for example about 0.2 equivalents, about 0.25 equivalents, about 0.3 equivalents, about 0.35 equivalents, about 0.4 equivalents, about 0.45 equivalents, about 0.5 equivalents, about 0.55 equivalents, about 0.6 equivalents, about 0.65 equivalents, about 0.7 equivalents, about 0.75 equivalents, about 0.8 equivalents, about 0.85 equivalents, about 0.9 equivalents, or about 0.95 equivalents of base per equivalent of carboxylic acid groups in the polymer.
  • the base is present in an amount sufficient to provide from about 0.2 equivalents to about 0.35 equivalents of base, for example about 0.2 equivalents, about 0.25 equivalents, about 0.3 equivalents, or about 0.35 equivalents of base per equivalent of carboxylate groups in the polymer. In some embodiments, the base is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of base, for example about 0.5 equivalents, about 0.55 equivalents, about 0.6 equivalents, about 0.65 equivalents, about 0.7 equivalents, about 0.75 equivalents, about 0.8 equivalents, or about 0.85 equivalents of base per equivalent of carboxylate groups in the polymer.
  • the base is present in an amount sufficient to provide from about 0.7 equivalents to about 0.8 equivalents of base, for example about 0.7 equivalents, about 0.75 equivalents, about or 0.8 equivalents of base per equivalent of carboxylate groups in the polymer. In some embodiments, the base is present in an amount sufficient to provide about 0.75 equivalents of base per equivalent of carboxylate groups in the polymer.
  • a composition of the present disclosure has an in vitro saline absorption capacity ⁇ e.g., saline holding capacity) of greater than about 20 times its own weight ⁇ e.g., greater than about 20 grams of saline per gram of composition, or "g/g")-
  • the composition has an in vitro saline absorption capacity ⁇ e.g., saline holding capacity) of about 20 times, about 25 times, about 30 times, about 35 times, about 40 times, about 45 times, about 50 times, about 55 times, about 60 times, about 65 times, about 70 times, about 75 times, about 80 times, about 85 times, about 90 times, about 95 times, or about 100 times its own weight, or more.
  • a composition comprises a crosslinked cation-binding polymer comprising ⁇ e.g., acrylic acid) monomers that comprise carboxylic acid groups, wherein said polymer is crosslinked with about 0.08 mol% to about 0.2 mol% or alternatively from about 0.025 mol.% to about 3.0 mol.% including, for example, from about 0.025 mol.% to about 0.3 mol.% or from about 0.025 mol.% to about 0.17 mol.% or from about 0.025 mol.% to about 0.34 mol.%, and a base, wherein said monomers are acrylic acid or salts thereof, wherein said polymer comprises less than about 20,000 ppm of non-hydrogen cations, and wherein base (e.g., calcium carbonate) is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • base e.g., calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • ⁇ e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 20,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 20,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.3 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 20,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.35 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 20,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 20,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 20,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 20,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 20,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 20,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 20,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 20,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e-g-, acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 20,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 15,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 15,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 15,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.3 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 15,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.35 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 15,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 15,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 15,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 15,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 15,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 15,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 15,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 15,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 15,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e-g-, acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 10,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • the crosslinked cation-binding polymer comprising monomers (e-g-, acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid
  • the base is calcium carbonate, wherein said polymer contains less than about 10,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 10,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.3 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 10,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.35 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 10,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 10,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 10,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 10,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 10,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 10,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 10,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 10,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 10,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 10,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation binding polymer comprising monomers (e.g.
  • acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e-g-, acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.3 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • the crosslinked cation-binding polymer comprising monomers (e-g-, acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid
  • the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.3 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.35 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.3 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e-g-, acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.35 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • the crosslinked cation-binding polymer comprising monomers (e-g-, acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid
  • the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.35 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.3 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.35 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e-g-, acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.3 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.35 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e-g-, acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • the crosslinked cation-binding polymer comprising monomers (e-g-, acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid
  • the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1 ,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1 ,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.3 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1 ,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.35 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1 ,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1 ,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e-g-, acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1 ,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • the crosslinked cation-binding polymer comprising monomers (e-g-, acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid
  • the base is calcium carbonate, wherein said polymer contains less than about 1 ,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1 ,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1 ,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1 ,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1 ,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1 ,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1 ,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1 ,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.3 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.35 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e-g-, acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • the crosslinked cation-binding polymer comprising monomers (e-g-, acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid
  • the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.3 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.35 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e-g-, acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • the crosslinked cation-binding polymer comprising monomers (e-g-, acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid
  • the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.3 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.35 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e-g-, acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • the crosslinked cation-binding polymer comprising monomers (e-g-, acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid
  • the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.3 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.35 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e-g-, acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • the crosslinked cation-binding polymer comprising monomers (e-g-, acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid
  • the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.3 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.35 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e-g-, acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • the crosslinked cation-binding polymer comprising monomers (e-g-, acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid
  • the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.3 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.35 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e-g-, acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.3 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.35 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide about
  • the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid
  • the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide about
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e-g-, acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.3 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.35 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.3 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e-g-, acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.35 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • the crosslinked cation-binding polymer comprising monomers (e-g-, acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid
  • the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.35 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1 ,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1 ,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1 ,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.3 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1 ,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.35 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1 ,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e-g-, acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1 ,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • the crosslinked cation-binding polymer comprising monomers (e-g-, acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid
  • the base is calcium carbonate, wherein said polymer contains less than about 1 ,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1 ,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1 ,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1 ,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1 ,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1 ,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1 ,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1 ,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.3 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.35 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e-g-, acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • the crosslinked cation-binding polymer comprising monomers (e-g-, acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid
  • the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.3 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.35 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g.
  • acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e-g-, acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.3 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.35 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g.
  • acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e-g-, acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • the crosslinked cation-binding polymer comprising monomers (e-g-, acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid
  • the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.3 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.35 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide about
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e-g-, acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • the crosslinked cation-binding polymer comprising monomers (e-g-, acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid
  • the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.3 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the base is calcium carbonate
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.35 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 10,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 10,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%), 99.8%), or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e-g-, acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 10,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%), 99.8%), or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 10,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%), 99.8%), or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 10,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 10,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 10,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 10,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%), 99.8%), or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e-g-, acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 10,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%), 99.8%), or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 10,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%), 99.8%), or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%), 99.8%), or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylate groups are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylate groups are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylate groups are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%), 99.8%), or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e-g-, acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%), 99.8%), or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%), 99.8%), or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%), 99.8%), or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylate groups are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylate groups are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylate groups are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%), 99.8%), or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e-g-, acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%), 99.8%), or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%), 99.8%), or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%), 99.8%), or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylate groups are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylate groups are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylate groups are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%), 99.8%), or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e-g-, acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%), 99.8%), or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%), 99.8%), or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%), 99.8%), or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylate groups are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylate groups are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylate groups are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%), 99.8%), or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e-g-, acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%), 99.8%), or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%), 99.8%), or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1 ,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%), 99.8%), or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carb
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylate groups are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylate groups are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylate groups are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1 ,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1 ,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1 ,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1 ,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%), 99.8%), or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxy
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e-g-, acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1 ,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%), 99.8%), or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1 ,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%), 99.8%), or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said poly
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%), 99.8%), or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylate groups are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylate groups are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylate groups are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%), 99.8%), or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e-g-, acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%), 99.8%), or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%), 99.8%), or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%), 99.8%), or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylate groups are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylate groups are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylate groups are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%), 99.8%), or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e-g-, acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%), 99.8%), or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%), 99.8%), or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%), 99.8%), or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylate groups are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylate groups are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylate groups are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and
  • the base is calcium carbonate
  • said polymer contains less than about 300 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%), 99.8%), or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e-g-, acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%), 99.8%), or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%), 99.8%), or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%), 99.8%), or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylate groups are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylate groups are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylate groups are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%), 99.8%), or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e-g-, acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%), 99.8%), or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%), 99.8%), or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%), 99.8%), or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylate groups are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylate groups are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylate groups are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%), 99.8%), or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e-g-, acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%), 99.8%), or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%), 99.8%), or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylate groups are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylate groups are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylate groups are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e-g-, acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%o) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%o) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%o) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylate groups are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylate groups are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylate groups are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e-g-, acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%o) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%o) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%o) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylate groups are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylate groups are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylate groups are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e-g-, acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%o) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%o) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%o) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylate groups are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylate groups are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylate groups are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e-g-, acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%o) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%o) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1 ,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%o) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylate groups are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylate groups are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylate groups are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1 ,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1 ,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1 ,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1 ,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said poly
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e-g-, acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1 ,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%o) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1 ,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%o) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. ,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%o) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylate groups are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylate groups are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylate groups are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e-g-, acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%o) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%o) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%o) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylate groups are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylate groups are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylate groups are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e-g-, acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%o) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%o) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%o) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylate groups are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylate groups are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylate groups are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e-g-, acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%o) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%o) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%o) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylate groups are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylate groups are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylate groups are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e-g-, acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%o) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%o) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%o) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylate groups are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylate groups are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers
  • carboxylate groups are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%,
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e-g-, acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%o) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g. , acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%o) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
  • monomers e.g. , acrylic acid
  • the present disclosure also relates to methods of using the polymers, and compositions, formulations, and/or dosage forms containing the polymers disclosed herein, with or without added base, to treat various diseases and disorders, ion imbalances, and fluid imbalances.
  • the disease or disorder is one or more of: heart failure, a renal insufficiency disease, end stage renal disease, liver cirrhosis, chronic renal insufficiency, chronic kidney disease, fluid overload, fluid maldistribution, edema, pulmonary edema, peripheral edema, lymphedema, nephrotic edema, idiopathic edema, ascites, cirrhotic ascites, interdialytic weight gain, high blood pressure, hyperkalemia, hypernatremia, abnormally high total body sodium, hypercalcemia, tumor lysis syndrome, head trauma, an adrenal disease, hyporeninemic hypoaldosteronism, hypertension, salt- sensitive hypertension, refractory hypertension, renal tubular disease, rhabdomyolysis, crush injuries, renal failure, acute tubular necrosis, insulin insufficiency, hyperkalemic periodic paralysis, hemolysis, malignant hyperthermia, pulmonary edema secondary to
  • the disease or disorder is the result of, or is associated with, administration of another drug.
  • compositions and/or dosage forms as disclosed herein are useful in treating an increase in a subject's potassium level when coadministered with a drug known to cause increases in potassium levels.
  • a drug is an alpha-adrenergic agonist, a RAAS inhibitor, an ACE inhibitor, an angiotensin II receptor blocker, a beta blocker, an aldosterone antagonist, etc.
  • Crosslinked cation-binding polymers including, for example, polyelectrolyte polymers, such as polyacrylate polymers, etc.
  • polyelectrolyte polymers such as polyacrylate polymers, etc.
  • aqueous one-phase methods e.g., Buchholz, F. L. and Graham, A. T., "Modern Superabsorbent Polymer Technology," John Wiley & Sons
  • Polymers with differential properties may be prepared that are useful as therapeutics for different diseases and disorders, including those involving an ion imbalance and/or a fluid imbalance.
  • methods are provided for washing the cross-linked polymer with an acid to replace bound counterions other than hydrogen with hydrogen.
  • the polymeric material including for example polymeric beads, may be further processed by milling or grinding the polymeric material into particles.
  • a polymer as described herein may contain many carboxylic acid groups, for example, polyacrylic acid, which may be reacted with alkali metals to produce a polycarboxylate, for example, polyacrylate.
  • polycarboxylates act as superabsorbent polymers and have a saline absorption capacity (e.g., saline holding capacity) of over twenty times their mass in vitro (e.g., about 40 times its mass) as measured in 0.9% saline solution (e.g., 0.15 M sodium chloride solution) buffered to pH 7 (see, e.g., Examples 5 and 6). Exemplary methods are provided below.
  • saline absorption capacity e.g., saline holding capacity
  • Cross-linked cation-binding polymers including cross-linked polyacrylate and/or polyacrylic acid polymers, may be prepared by commonly known methods in the art.
  • cross-linked polyelectrolyte polymers may be prepared as a suspension of drops of aqueous solution in a hydrocarbon, for example, a liquid hydrocarbon (e.g., by inverse suspension polymerization).
  • Cross-linked polyacrylate polymers may be prepared by polymerization of partially neutralized acrylic acid in an aqueous environment where an appropriate cross- linker is present in small quantities. Given that there is an inverse relationship between the amount of fluid the polymer will absorb and the degree of cross-linking of the polymer, it may be desirable to have a low level of cross-linking to obtain a fluid absorption capacity of at least 20 g/g (e.g. 20 g/g, 30 g/g, 40 g/g, 50 g/g, 60 g/g, 70 g/g, 80 g/g, 90 g/g, or 100 g/g polymer), for use in methods as described herein.
  • 20 g/g e.g. 20 g/g, 30 g/g, 40 g/g, 50 g/g, 60 g/g, 70 g/g, 80 g/g, 90 g/g, or 100 g/g polymer
  • Non-crosslinked polymer is soluble and may not contribute to the absorbency of the polymer since it dissolves in the fluid.
  • polyacrylates can be designed to absorb about 35 times their mass in pH 7 buffered physiological saline as a compromise between high absorbency and minimal soluble polymer.
  • the precise amount of each reactant used in the preparation of cross-linked polyelectrolyte polymer, such as polyacrylate may be determined by one of skill in the art. For example, in a five-hundred gallon reactor, about 190 to 200 pounds (roughly 85 to 90 kg) of acrylic acid may be used while in a three liter reactor 150 to 180 g of acrylic acid may be used. Accordingly, the amount of each reactant used for the preparation of an exemplary cross-linked polyacrylate may be expressed as a weight ratio to acrylic acid. Thus, acrylic acid weight may be taken as 1.0000 and other compounds are represented in relation to this value. Exemplary amounts of reactants used for the preparation of such a cross-linked polyacrylate by an inverse suspension polymerization are presented in Table 1.
  • Table 1 Exemplary amounts of reactants in an inverse suspension polymerization
  • An exemplary inverse suspension reaction to form a crosslinked polymer may involve preparation of two mixtures (e.g., a hydrophobic mixture and an aqueous mixture) in two different vessels followed by combination of the mixtures to form a reaction mixture.
  • One vessel may be designated as a hydrophobic compound vessel and the other may be designated as an aqueous solution vessel.
  • the hydrophobic compounds may be mixed in a larger vessel that will become a reaction vessel, while an aqueous solution may be prepared in a smaller vessel that may be discharged into the reaction vessel.
  • the hydrophobic mixture may contain solvent, surfactant, and crosslinking agent
  • the aqueous mixture may contain water, base, monomer (e.g., acrylic acid), initiator, and optional chelating agent.
  • a hydrophobic solvent may be introduced into the reaction vessel.
  • a hydrophobic solvent also referred to herein as the "oil phase”
  • oil phase may be chosen based upon one or more considerations, including, for example, the density and viscosity of the oil phase, the solubility of water in the oil phase, the partitioning of the neutralized and unneutralized ethylenically unsaturated monomers between the oil phase and the aqueous phase, the partitioning of the crosslinker and the initiator between the oil phase and the aqueous phase and/or the boiling point of the oil phase.
  • Hydrophobic solvents contemplated for use in the present disclosure include, for example, IsoparTM L (isoparaffm fluid), toluene, benzene, dodecane, cyclohexane, n- heptane and/or cumene.
  • IsoparTM L is chosen as a hydrophobic solvent due to its low viscosity, high boiling point and low solubility for neutralized monomers such as sodium acrylate and/or potassium acrylate.
  • One or more surfactants and one or more cross-linkers may be added to the oil (hydrophobic) phase.
  • the oil phase may then be agitated and sparged with an inert gas, such as nitrogen or argon to remove oxygen from the oil phase.
  • an inert gas such as nitrogen or argon to remove oxygen from the oil phase.
  • This addition of surfactant is designed to coat the water droplets formed in the initial reaction mixture before the reaction starts. Higher amounts of surfactant and higher agitation rates produce smaller droplets with more total surface area.
  • cross-linker and initiator may be used to prepare spherical to ellipsoid shaped beads.
  • One of skill in the art will be capable of determining an appropriate cross-linker for the preparation of a specified cross-linked cation-binding polymer.
  • cross-linker choice depends on whether it needs to be hydrophobic or hydrophilic polymer or whether it needs to resist acidic or basic external conditions.
  • An amount of cross-linker depends on how much soluble polymer is permissible and how much saline holding capacity is desired.
  • Exemplary surfactants include hydrophobic agents that are solids at room temperature, including, for example, hydrophobic silicas (such as Aerosil® or Perform-O- SilTM) and glycolipids (such as polyethylene glycol distearate, polyethylene glycol dioleate, sorbitan monostearate, sorbitan monooleate or octyl glucoside).
  • hydrophobic silicas such as Aerosil® or Perform-O- SilTM
  • glycolipids such as polyethylene glycol distearate, polyethylene glycol dioleate, sorbitan monostearate, sorbitan monooleate or octyl glucoside.
  • Crosslinking agents with two or more vinyl groups may be used, allowing for a wide variety in molecular weight, aqueous solubility and/or lipid (e.g., oil) solubility.
  • Crosslinking agents contemplated for use in the present disclosure include, for example, diethyleneglycol diacrylate, diacryl glycerol, triallylamine, tetraallyloxy ethane, allylmethacrylate, 1 , 1 ,1-trimethylolpropane triacrylate (TMPTA), divinyl benzene and divinyl glycol.
  • a heat activated crosslinker may be used in the preparation of crosslinked polymers according to the present disclosure.
  • heat-activated crosslinkers include hydroxyl-containing crosslinking agents, amine- containing crosslinking agents, or epoxy-containing crosslinking agents containing at least one functionality suitable to react with a carboxyl group on the polymer and containing at least two functional groups capable of forming covalent bonds with the polymer.
  • Some non- limiting examples of heat-activated crosslinkers suitable for such use is the class of compounds commonly referred to as polyols or polyhydroxy compounds.
  • polyols include: glycerin, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, 1 ,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, neopentyl glycol, polyglycerin, trimethylolpropane, polyethylene glycol, and polypropylene glycol-polyethylene glycol copolymers.
  • Masked polyols such as ethyleneglycol diacetate may also be used.
  • heat-activated crosslinkers containing amine functionality are ethylenediamine, diethylenetriamine, triethylenetetramine, monoethanolamine, and aminoethylethanolamine.
  • heat- activated crosslinkers containing epoxy functionality are glycidyl acrylate, glycidylmethacrylate, and ethyleneglycol diglycidylether,
  • dimodal crosslinkers may be used in the preparation of crosslinked polymers according to the present disclosure.
  • Dimodal crosslinkers contain one or more carboxylic acid-reactive groups and one or more ethylenically unsaturated groups in the same compound.
  • Non-limiting examples of dimodal crosslinkers suitable for use to crosslink polymers according to the present disclosure include: 2- hydroxyethyl(meth)acrylate, polyethylene glycol monomethacrylate, glycidyl methacrylate, allyl glycidyl ether, hydroxypropyl methacrylate, hydroxyethyl methacrylate, and hexapropylene glycol monomethacrylate.
  • polyvinyl compounds may be used in the preparation of crosslinked polymers according to the present disclosure.
  • polyvinyl crosslinkers include divinyl compounds or polyvinyl compounds such as: divinyl glycol, divinyl benzene, divinyl toluene, divinyl xylene, divinyl ether, divinyl ketone, trivinyl benzene; unsaturated polyesters that can be obtained by reacting an unsaturated acid such as maleic acid with polyols such as: ethylene glycol, glycerol, diethylene glycol, triethylene glycol, tetraethyleneglycol, propylene glycol, dipropyleneglycol, tripropyleneglycol, tetrapropyleneglycol, polyoxyethylene glycols and polyoxypropylene glycols, 1 ,4-butanediol, 1 ,5-pentanediol, 1 ,6-hexan
  • the crosslinker may be one or more compound consistent with the following formula:
  • R 1 is a straight-chain or branched-chain Ci-Cio polyalkoxy radical, optionally substituted with one or more oxygen atoms in the backbone, having x valences;
  • each R 2 is independently a C 2 -C 4 alkylene group
  • each R 3 is independently a straight-chain or branched-chain C 2 -Cio alkenyl moiety
  • n is a positive integer from 1-20;
  • x is a positive integer from 2-8.
  • An aqueous phase mixture may be prepared in another vessel ⁇ e.g., a vessel that is separate from that used to prepare the hydrophobic phase) that contains water.
  • preparation of neutralized or partially neutralized polymer base and monomer are added to the water.
  • preparation of non-neutralized (acid form) polymer monomer is added to the water without base.
  • the amount of base used in the vessel is determined by the degree of neutralization of the monomer desired. For neutralized or partially neutralized polymer, a degree of neutralization between about 60% and 100% is preferred.
  • the solubilities of sodium acrylate and sodium methacrylate in water are limited and are lower at lower temperatures ⁇ e.g., sodium acrylate is soluble at about 45% at 70 °C but less than 40% at 20 °C).
  • This solubility may establish the lower limit of the amount of water needed in the neutralization step.
  • the upper limit of the amount of water may be based on reactor size, amount of oil phase needed to reliably suspend the aqueous phase as droplets and/or the desired amount of polymer produced per batch.
  • Bases contemplated for use in methods of making the crosslinked polymers of the present disclosure include, for example, hydroxides, bicarbonates, or carbonates. Use of these bases allows neutralization of the acid monomer without residual anions left in the reaction mixture as the anions react to form water or C0 2 . Frequently, sodium bases are chosen in the method of making the crosslinked polymers. However, potassium bases, ammonium bases, and bases of other cations, including calcium bases, are contemplated for use in the present disclosure. [00708]
  • the water used in the reaction may be purified water or water from other sources such as city water or well water.
  • chelating agents may be needed to control metals, e.g., heavy metal ions, such as iron, calcium, and/or magnesium from destroying the initiator.
  • Chelating agents contemplated for use with the present disclosure include, for example, diethylenetriaminepentaacetic acid pentasodium
  • the amount of chelating agent added to the reaction mixture may be determined by one of skill in the art from a determination of the amount of undesirable metal in the water.
  • a metal may be added to catalyze the polymerization reaction (e.g. , iron).
  • the aqueous phase solution may be cooled to remove the heat released from dilution of the base, and one or more classes of monomers may be added, to react with the base, for example, monomers which will be neutralized by the base. As will be appreciated by one of skill in the art, the monomers will be neutralized to the degree dictated by the amount of base in the reaction.
  • the aqueous phase solution may be kept cool ⁇ e.g., below 35 to 40 °C) and preferably around 20 °C to prevent formation of prepolymer strands, dimers and/or possible premature polymerization.
  • Monomers are dissolved in water at concentrations of 10-70 wt% or 20-40 wt% and polymerization may subsequently be initiated by free radicals in the aqueous phase.
  • Monomers may be polymerized either in the acid form or as a partially neutralized salt.
  • monomers in the acid form may be less desirable due to high solubility in the oil phase.
  • the amount of water used to dissolve the monomer is minimally set so that all of the monomer ⁇ e.g., sodium acrylate) is dissolved in the water rather than crystallizing and maximally set so that there is the smallest volume of reaction mixture possible (to minimize the amount of distillation and allow the maximum yield per batch).
  • Exemplary monomer units contemplated for use in the present disclosure include, for example, acrylic acid and its salts, methacrylic acid and its salts, crotonic acid and its salts, tiglinic acid and its salts, 2-methyl-2-butenoic acid (Z) and its salts, 3-butenoic acid (vinylacetic acid) and its salts, 1-cyclopentene carboxylic acid, and 2-cyclopentene carboxylic acid and their salts; and unsaturated dicarboxylic acids and their salts, such as maleic acid, fumaric acid, itaconic acid, glutaconic acid, and their salts.
  • acrylic acid and its salts include, for example, acrylic acid and its salts, methacrylic acid and its salts, crotonic acid and its salts, tiglinic acid and its salts, 2-methyl-2-butenoic acid (Z) and its salts, 3-butenoic acid (vinylacetic acid) and its salts, 1-cyclopentene carboxylic acid,
  • cross-linked polyelectrolyte superabsorbent polymers may be based on sulfonic acids and their salts, or phosphonic acids and their salts.
  • additional monomers may be contemplated for use.
  • the additional monomers are those from which the desired carboxylic acid, sulfonic acid, or phosphonic acid functionality may be derived by known chemical reactions, for example by hydrolysis.
  • the monomer for example, acrylonitrile, acrylamide, methacrylamide, lower alcohol esters of unsaturated, polymerizable carboxylic acids (such as those mentioned in the paragraph above) or their mixtures, and the like may be polymerized with a suitable crosslinker to an intermediate crosslinked polymer, which is then subjected to chemical reaction (so-called "polymer analogous reaction") to convert the functional groups of the polymer into carboxylic functionality.
  • ethyl acrylate may be polymerized with a non-hydrolysis- susceptible crosslinker (e.g.
  • tetraallyloxy ethane to form a crosslinked intermediate polymer, which is then subjected to hydrolysis conditions to convert the ester functionality to carboxylic acid functionality by means known in the art.
  • acrylonitrile is graft polymerized to starch with a crosslinker as necessary to form a crosslinked starch- graft intermediate polymer, which is then treated with aqueous base to hydrolyze the nitrile functionality to carboxylic acid functionality (see, e.g., U.S. Patent Nos. 3,935,099,
  • One or more initiators may be added to the aqueous phase just before the aqueous phase is transferred into the oil phase.
  • the initiator amount and type used in the polymerization reaction depends on oil versus water solubility and whether longer chain lengths are desired. For example, a lower amount of initiator may be used in the polymerization reaction when longer chain lengths are desired.
  • one of the initiators may be a thermally sensitive compound such as a persulfate, 2,2'-azobis(2-amidino-propane)-dihydrochloride, 2,2'- azobis (2-amidino-propane)-dihydrochloride and/or 2,2'-azobis (4-cyanopentanoic acid).
  • a thermally sensitive compound such as a persulfate, 2,2'-azobis(2-amidino-propane)-dihydrochloride, 2,2'- azobis (2-amidino-propane)-dihydrochloride and/or 2,2'-azobis (4-cyanopentanoic acid).
  • thermally sensitive initiators polymerization does not begin until an elevated temperature is reached. For persulfates, this temperature is approximately 50 to 55 °C. Since the reaction is highly exothermic, vigorous removal of the heat of reaction is required to prevent boiling of the aqueous phase. It is preferred that the reaction mixture be maintained at approximately 65 °C. As will be appreciated by one of skill in the art, thermal initiators have the advantage of allowing control of the start of the reaction when the reaction mixture is adequately sparged of oxygen.
  • one of the initiators may be a redox pair such as persulfate/bisulfate, persulfate/thiosulfate, persulfate/ascorbate, hydrogen peroxide/ascorbate, sulfur dioxide/tert-butylhydroperoxide, persulfate/erythorbate, tert- butylhydroperoxide/erythorbate and/or tert-butylperbenzoate/erythorbate.
  • These initiators are able to initiate the reaction at room temperature, thereby minimizing the chance of heating the reaction mixture to the boiling point of the aqueous phase as heat is removed through the jacket around the reactor.
  • the reaction is not started immediately after the mixing of the aqueous phase into the oil phase in the final reactor because the aqueous phase still has an excessive amount of oxygen dissolved in the water. It will be appreciated by one of skill in the art that an excessive amount of oxygen may cause poor reactivity and inadequate mixing may prevent the establishment of uniform droplet sizes. Instead, the final reaction mixture is first sparged with an inert gas for ten to sixty minutes after all reagents (except the redox pair if that initiator system is used) have been placed in the reactor. The reaction may be initiated when a low oxygen content (e.g., below 15 ppm) is measured in the inert gas exiting the reactor.
  • a low oxygen content e.g., below 15 ppm
  • the reaction may be continued for four to six hours after the peak exotherm is seen to allow for maximal consumption of the monomer into the polymer.
  • the polymeric material may be isolated by either transferring the entire reaction mixture to a centrifuge or filter to remove the fluids or by initially distilling the water and some of the oil phase (e.g., frequently as an azeotrope) until no further removal of water is possible and the distillation temperature rises significantly above 100 °C, followed by isolating the polymeric material by either centrifugation or filtering.
  • the isolated crosslinked cation-binding polymeric material is then dried to a desired residual moisture content (e.g., less than 5%).
  • An exemplary cross-linked cation-binding polymer, polyacrylate may be formed by copolymerizing an ethylenically unsaturated carboxylic acid with a multifunctional cross-linking monomer.
  • the acid monomer or polymer may be substantially or partially neutralized with an alkali metal salt such as an oxide, a hydroxide, a carbonate, or a bicarbonate and polymerized by the addition of an initiator.
  • an alkali metal salt such as an oxide, a hydroxide, a carbonate, or a bicarbonate
  • One such exemplary polymer gel is a copolymer of acrylic acid/sodium acrylate and any of a variety of cross-linkers.
  • cross-linked cation-binding polymer cross-linked polyacrylate
  • This cross-linked cation- binding polymer may be produced as a one -hundred kilogram batch in a five-hundred gallon vessel.
  • cation-binding polymers may be prepared by other methods known in the art (e.g., Buchholz, F. L. and Graham, A.
  • crosslinker may be incorporated by copolymerization of the contemplated monomers with a crosslinker as described herein, and then the crosslinked polymer may be converted by, for example hydrolysis, to the desired crosslinked carboxylic acid-functional product.
  • the contemplated additional monomers may be polymerized to a non- crosslinked polymer, then converted to the carboxylic acid-functional polymer and subsequently reacted with a suitable crosslinker (for example, one of the heat-activated crosslinkers in the list) to provide the desired, crosslinked, carboxylic acid-functional polymer.
  • a suitable crosslinker for example, one of the heat-activated crosslinkers in the list.
  • the polymerization is accomplished in the normal way to yield an uncrosslinked polymer that also contains the molecularly dispersed, heat-activated crosslinker.
  • the polymer system is heated to a temperature that is suitable to cause the reaction between polymer functional groups and the crosslinker molecules, thereby crosslinking the polymer.
  • Partially neutralized or fully neutralized crosslinked cation-binding polymers may be acidified by washing the polymer with acid.
  • Suitable acids contemplated for use with the present disclosure include, for example, hydrochloric acid, acetic acid and phosphoric acid.
  • Acid-washed crosslinked cation-binding polymers may be additionally rinsed with water and then dried in, for example, a vacuum oven or inert atmosphere until, for example, less than 5% moisture remains, to produce a substantially free acid form of cross- linked polyacrylic acid.
  • Any particle form of partially or fully neutralized cross-linked cation-binding polymer may be used as the starting point, for example, particles, powders, or bead-form particles, or milled bead- form particles.
  • Acid form cross-linked cation-binding polymers may be prepared by any method known by those skilled in the art (e.g., Buchholz, F. L. and Graham, A. T., "Modern
  • Crosslinked cation-binding polymers may be prepared from monomers with unneutralized carboxylic acid groups.
  • a crosslinked polyacrylate can be prepared from acrylic acid.
  • a monomer solution is prepared in a reactor by dissolving an unsaturated carboxylic acid monomer (e.g., acrylic acid) in water.
  • a chelating agent e.g., VersenexTM 80
  • a metal added to catalyze the polymerization reaction e.g., iron
  • a suitable crosslinking agent e.g., trimethylolpropane triacrylate is added to the reactor.
  • the solution may be agitated and oxygen may be removed using nitrogen, argon or by other means known in the art.
  • the temperature of the solution may be adjusted as desired.
  • One or more polymerization initiators may be added to the reactor and the oxygen tension may be reduced or the temperature may be increased to initiate polymerization.
  • the reaction is allowed to proceed through the exothermic heating that occurs during reaction. Reaction heat can be removed and/or controlled as desired by methods known to those skilled in the art.
  • the reaction vessel may then be heated and oxygen tension in the reaction vessel may be kept low to continue the polymerization to low levels of residual monomer.
  • the polymerization reaction product can be removed from the reactor and the wet polymer may be reduced in size (e.g.
  • Crosslinked, cation-binding polymers with calcium and/or magnesium ions may be prepared by ion-exchange from a partially neutralized crosslinked, cation-binding polymer, by the addition of a calcium and/or magnesium base to an acid form of a crosslinked, cation-binding polymer, by using a calcium or magnesium base to neutralize acrylic acid prior to polymerization, or by other methods known by those skilled in the art.
  • Any particle form of partially or fully neutralized cross-linked cation-binding polymer may be used as the starting point, for example, particles, powders, or bead-form particles, or milled bead-form particles.
  • Partially neutralized crosslinked cation-binding polymers may be hydrated and equilibrated with several washes of a salt solution of calcium and/or magnesium (e.g. CaCl 2 , MgCl 2 ) of a concentration high enough to exchange the original counterions on the polymer with the calcium and/or magnesium cations and remove the original counterions from the solution.
  • a salt solution of calcium and/or magnesium e.g. CaCl 2 , MgCl 2
  • an appropriate amount of acid may be added with the calcium and/or magnesium salt to bring the neutralization level down to the desired level.
  • the replacement of the counterions (ion- exchange), including cations such as sodium atoms, by calcium and/or magnesium cations can be performed with many different calcium and/or magnesium salts and salt concentrations.
  • the calcium and/or magnesium crosslinked cation-binding polymers may be additionally rinsed with water and then dried in, for example, a vacuum oven or inert atmosphere until, for example, less than 5% moisture remains.
  • Crosslinked cation-binding polymers with calcium and/or magnesium counterions may be produced from the acid form of the polymer through the addition of a calcium and/or magnesium base (e.g, CaC0 3 , MgO).
  • the base may be added to the polymer as a solid or solution and the polymer may be hydrated prior to addition of the base.
  • the polymer and base may be stirred and/or heated to facilitate neutralization of the polymer with the base.
  • the calcium and/or magnesium crosslinked cation-binding polymers may be additionally rinsed with water and then dried in, for example, a vacuum oven or inert atmosphere until, for example, less than 5% moisture remains.
  • Crosslinked cation-binding polymers with calcium and magnesium counterions may be prepared from monomers with unneutralized carboxylic acid groups (acid form) and a calcium or magnesium base.
  • a solution of the calcium or magnesium base is prepared by adding the appropriate base slowly to water (e.g. CaC0 3 , MgO). Cooling may be used to control the solution temperature.
  • the monomer solution is then prepared in a reactor by adding the monomer (e.g., acrylic acid), water and the base solution and then stirring.
  • the solid base can be added to the reactor with the monomer and water. Care should be taken to ensure that the base does not precipitate.
  • a chelating agent e.g., VersenexTM 80
  • a metal added to catalyze the polymerization reaction e.g., iron
  • a suitable crosslinking agent e.g., trimethylolpropane triacrylate
  • Oxygen may be removed using a nitrogen or argon sparge, or by other means known in the art.
  • the temperature of the solution may be adjusted.
  • One or more polymerization initiators e.g. sodium persulfate
  • an inert gas e.g., nitrogen
  • the reaction is then initiated either by reaching an oxygen concentration where a redox couple (e.g., tertiary butylhydroperoxide/thiosulfate, or hydrogen peroxide/erythorbic acid) produces enough radicals that are not quenched by oxygen, or by adding heat to cause a temperature dependent initiator (e.g., sodium persulfate) to produce radicals.
  • a redox couple e.g., tertiary butylhydroperoxide/thiosulfate, or hydrogen peroxide/erythorbic acid
  • a temperature dependent initiator e.g., sodium persulfate
  • the reaction is allowed to proceed through the exothermic heating that occurs during reaction. Reaction heat can be removed and/or controlled as desired by methods known to those skilled in the art.
  • the reaction vessel may then be heated and oxygen tension in the reaction vessel may be kept low to continue the polymerization to low levels of residual monomer.
  • the polymerization reaction product can be removed from the reactor and the wet polymer may be reduced in size (e.g. by cutting or by methods known to those skilled in the art) into pieces of appropriate size for drying.
  • the polymer pieces can then be dried in a vacuum oven or other equipment known to those skilled in the art. Conditions during drying may be adjusted (e.g. humidity level, rate of drying) so that polymerization and reduction of residual monomer continues during the drying process.
  • the particles can be separated by size and/or milled and/or sieved to produce the desired particle size.
  • Exemplary crosslinked cation-binding polymers including for example those prepared according to Examples 1-4, generally have a pH 7 buffered saline holding capacity of about 20 g/g or greater, including, for example, greater than about 40 g/g as described in Examples 5 and 6; and contain less than about 5,000 ppm of sodium, less than about 20 ppm of heavy metals, less than about 1000 ppm (e.g., less than about 500 ppm) of residual monomer, less than about 2,000 ppm of residual chloride, and less than about 20 wt % of soluble polymer.
  • acidified polymers useful as crosslinked cation-binding polymers prepared according to this disclosure have a saline holding capacity of preferably greater than about 40 g/g, (e.g., 80 g/g) contain less than about 500 ppm of sodium, less than about 20 ppm of heavy metals, less than about 500 ppm of residual monomer, less than about 1 ,500 ppm of residual chloride, and less than about 10 wt.% of soluble polymer.
  • Crosslinked cation-binding polymers prepared, for example, according to the method of Example 1 or 2 using acrylic acid monomers, followed by acidification as described in Example 3, or crosslinked cation-binding polymers prepared, for example, as described in Example 4, are referred to as "H-CLP" or "HCLP” in Examples 7 to 15.
  • the polymer particles may be reduced in size by milling or grinding or other means known to those skilled in the art. Particles of certain size ranges or a particle size distribution may be obtained by means known to those of skill in the art, for example, by sieving through sieves or screens. Seives may be stacked vertically starting with the smallest pore size at the bottom (largest mesh size) to largest pore size at the top (smallest mesh size). The material is placed on top of the screen and the screens are shaken to allow particles to pass through screens until they are caught on a screen smaller than diameter.
  • the material on each screen will then be smaller than the screen above, but larger than the screen below.
  • particles that pass through an 18 Mesh screen and are caught on a 20 Mesh screen are between 850 and 1000 microns in diameter.
  • Screen mesh and the corresponding maximum particle size allowed to pass through the mesh include, 18 mesh, 1000 microns; 20 mesh, 850 microns; 25 mesh, 710 microns; 30 mesh, 600 microns; 35 mesh, 500 microns, 40 mesh, 425 microns; 45 mesh, 35 microns; 50 mesh, 300 microns; 60 mesh, 250 microns; 70 mesh, 212 microns; 80 mesh, 180 microns; 100 mesh, 150 microns; 120 mesh, 125 microns; 140 mesh, 106 microns; 170 mesh, 90 microns; 200 mesh, 75 microns; 230 mesh, 63 microns; and 270 mesh, 53 microns.
  • particles of varying sizes may be obtained through the use of one or more screens.
  • the particle size range may be characterized, for example, by sieves or screens, a particle size distribution determined, for example, by laser light diffraction, by an average size, or other measures.
  • the particle size distribution can also be characterized by describing particle diameters where
  • compositions comprising a cross-linked cation- binding polymer (e.g., a cross-linked polyacrylic acid polymer). These compositions may be delivered to a subject, including using a wide variety of routes or modes of administration. Preferred routes for administration are oral or intestinal.
  • the polymers disclosed herein for inclusion in a composition, formulation, or dosage form, e.g. , for administration to an individual, e.g. , for use in methods of treatment disclosed herein comprise a crosslinked cation-binding polymer comprising: monomers that comprise carboxylic acid groups, wherein said polymer is crosslinked with about 0.08 mol.% to about 0.2 mol.% of crosslinker or alternatively from about 0.025 mol.% to about 3.0 mol% including, for example, from about 0.025 mol.% to about 0.3 mol.% or from about 0.025 mol.% to about 0.17 mol.% or from about 0.025 mol.% to about 0.34 mol.%; and a base (e.g., calcium carbonate), wherein said monomers are acrylic acid or salts thereof, wherein the polymer contains less than about 20,000 ppm of non-hydrogen cations, , and wherein the base is present in an amount sufficient to
  • the composition includes from about 0.5 equivalents to 0.85 equivalents of base per equivalent of carboxylic acid groups in the polymer. In some embodiments, the composition includes from about 0.7 equivalents to 0.8 equivalents of base per equivalent of carboxylic acid groups in the polymer. In some embodiments, the composition includes about 0.75 equivalents of base per equivalent of carboxylic acid groups in the polymer. In some embodiments, the composition includes from about 0.2 equivalents to 0.35 equivalents of base per equivalent of carboxylic acid groups in the polymer. In some embodiments, the composition includes from about 0.2 equivalents to 0.3 equivalents of base per equivalent of carboxylic acid groups in the polymer. In some embodiments, the composition includes about 0.25 equivalents of base per equivalent of carboxylic acid groups in the polymer.
  • the polymers disclosed herein for inclusion in a composition, formulation, or dosage form, e.g. , for administration to an individual, e.g. , for use in methods of treatment disclosed herein comprise a crosslinked cation-binding polymer comprising: monomers that comprise carboxylic acid groups, wherein said polymer is crosslinked with about 0.08 mol.% to about 0.2 mol.% of crosslinker or alternatively from about 0.025 mol.% to about 3.0 mol% including, for example, from about 0.025 mol.% to about 0.3 mol.% or from about 0.025 mol.% to about 0.17 mol.% or from about 0.025 mol.% to about 0.34 mol.%, and a base ⁇ e.g., calcium carbonate), wherein said monomers are acrylic acid or salts thereof, wherein the polymer contains less than about 50,000 ppm of non-hydrogen cations, and wherein the base is present in an amount sufficient to provide from
  • the composition includes from about 0.5 equivalents to 0.85 equivalents of base per equivalent of carboxylic acid groups in the polymer. In some embodiments, the composition includes from about 0.7 equivalents to 0.8 equivalents of base per equivalent of carboxylic acid groups in the polymer. In some embodiments, the composition includes about 0.75 equivalents of base per equivalent of carboxylic acid groups in the polymer. In some embodiments, the composition includes from about 0.2 equivalents to 0.35 equivalents of base per equivalent of carboxylic acid groups in the polymer. In some embodiments, the composition includes from about 0.2 equivalents to 0.3 equivalents of base per equivalent of carboxylic acid groups in the polymer. In some embodiments, the composition includes about 0.25 equivalents of base per equivalent of carboxylic acid groups in the polymer.
  • the polymers disclosed herein for inclusion in a composition, formulation, or dosage form, e.g., for administration to an individual, e.g., for use in methods of treatment disclosed herein comprise a crosslinked cation-binding polymer comprising monomers comprising carboxylic acid groups, and a base, wherein no less than about 70% of the polymer has a particle size of about 212 microns to about 500 microns, wherein said monomers are acrylic acid or salts thereof, wherein the polymer comprises less than about 20,000 ppm of non-hydrogen cations, and wherein said base is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of base per equivalent of carboxylic acid groups in said polymer.
  • at least one non-hydrogen cation is present in an amount of at least about 5,000 ppm.
  • the polymers disclosed herein for inclusion in a composition, formulation, or dosage form, e.g. , for administration to an individual, e.g. , for use in methods of treatment disclosed herein comprise a crosslinked cation-binding polymer comprising monomers comprising carboxylic acid groups, and a base, wherein no less than about 70% of the polymer has a particle size of about 212 microns to about 500 microns, wherein said monomers are acrylic acid or salts thereof, wherein the polymer comprises less than about 50,000 ppm of non-hydrogen cations, and wherein said base is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of base per equivalent of carboxylic acid groups in said polymer.
  • at least one non-hydrogen cation is present in an amount of at least about 5,000 ppm.
  • the polymers disclosed herein for inclusion in a composition, formulation, or dosage form, e.g. , for administration to an individual, e.g. , for use in methods of treatment disclosed herein comprise a crosslinked cation-binding polymer comprising monomers comprising carboxylic acid groups, and a base, wherein no less than about 70% of said polymer has a particle size of 75 microns or less, wherein the monomers are acrylic acid or salts thereof, wherein the polymer comprises less than about 20,000 ppm of non-hydrogen cations, wherein said base is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of base per equivalent of carboxylic acid groups in said polymer. In some embodiments, at least one non-hydrogen cation is present in an amount of at least about 5,000 ppm.
  • the polymers disclosed herein for inclusion in a composition, formulation, or dosage form, e.g. , for administration to an individual, e.g. , for use in methods of treatment disclosed herein comprise a crosslinked cation-binding polymer comprising monomers comprising carboxylic acid groups, and a base, wherein no less than about 70% of said polymer has a particle size of 75 microns or less, wherein the monomers are acrylic acid or salts thereof, wherein the polymer comprises less than about 50,000 ppm of non-hydrogen cations, wherein said base is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of base per equivalent of carboxylic acid groups in said polymer. In some embodiments, at least one non-hydrogen cation is present in an amount of at least about 5,000 ppm.
  • the polymers disclosed herein for inclusion in a composition, formulation, or dosage form, e.g. , for administration to an individual, e.g. , for use in methods of treatment disclosed herein comprise polycarbophil, and a base, wherein wherein the polymer comprises less than about 20,000 ppm of non-hydrogen cations, and wherein said base is not sodium bicarbonate and is present in an amount sufficient to provide about 0.2 to 0.95 equivalents of base per equivalent of carboxylic acid groups in said polycarbophil. In some embodiments, at least one non-hydrogen cation is present in an amount of at least about 5,000 ppm.
  • the polymers disclosed herein for inclusion in a composition, formulation, or dosage form, e.g. , for administration to an individual, e.g. , for use in methods of treatment disclosed herein comprise polycarbophil, and a base, wherein wherein the polymer comprises less than about 50,000 ppm of non-hydrogen cations, and wherein said base is not sodium bicarbonate and is present in an amount sufficient to provide about 0.2 to 0.95 equivalents of base per equivalent of carboxylic acid groups in said polycarbophil. In some embodiments, at least one non-hydrogen cation is present in an amount of at least about 5,000 ppm.
  • the polymers disclosed herein for inclusion in a composition, formulation, or dosage form, e.g. , for administration to an individual, e.g. , for use in methods of treatment disclosed herein comprise a crosslinked cation-binding polymer comprising a crosslinker and monomers that comprise carboxylic acid groups, and a base, wherein said monomers are acrylic acid or salts thereof, wherein the polymer comprises less than about 20,000 ppm of non-hydrogen cations, and wherein said base is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of base per equivalent of carboxylic acid groups in said polymer.
  • at least one non-hydrogen cation is present in an amount of at least about 5,000 ppm.
  • the polymers disclosed herein for inclusion in a composition, formulation, or dosage form, e.g. , for administration to an individual, e.g. , for use in methods of treatment disclosed herein comprise a crosslinked cation-binding polymer comprising a crosslinker and monomers that comprise carboxylic acid groups, and a base, wherein said monomers are acrylic acid or salts thereof, wherein the polymer comprises less than about 50,000 ppm of non-hydrogen cations, and wherein said base is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of base per equivalent of carboxylic acid groups in said polymer.
  • at least one non-hydrogen cation is present in an amount of at least about 5,000 ppm.
  • the dosage form comprises a crosslinked cation-binding polymer comprising repeat units containing carboxylic acid groups, and a base, wherein less than 1% of carboxylic acid groups are neutralized by non-hydrogen cations; and said base is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of base per equivalent of carboxylic acid groups in the polymer ⁇ e.g., moles of carboxylic acid groups in the polymer).
  • the dosage form contains about 0.2 equivalents, about 0.25 equivalents, about 0.3 equivalents, about 0.35 equivalents, about 0.4 equivalents, about 0.45 equivalents, about 0.5 equivalents, about 0.55 equivalents, about 0.6 equivalents, about 0.65 equivalents, about 0.7 equivalents, about 0.75 equivalents, about 0.8 equivalents, about 0.85 equivalents, about 0.9 equivalents, or about 0.95 equivalents of base per equivalent of carboxylic acid groups in the polymer.
  • hydrogen cations i.e., protons (H + ) are bound to at least 98%, at least 98.1%, at least 98.2%, at least 98.3%, at least 98.4%, at least 98.5%, at least 98.6%, at least 98.7%, at least 98.8%, at least 98.9%, at least 99%, at least 99.1%, at least 99.2%, at least 99.3%, at least 99.4%, at least 99.5%, at least 99.6%, at least 99.7%, at least 99.8%, or at least 99.9% of the carboxylate groups in the polymer.
  • less than 5%, less than 4%), less than 3%, less than 2%, less than 1%, less than 0.5%>, less than 0.4%>, less than 0.3%), less than 0.2%>, or less than 0.1 % of the carboxylate groups of the polymer are bound to cations other than hydrogen (e.g., non-hydrogen cations), such as sodium, potassium, calcium, magnesium, choline, etc.
  • cations other than hydrogen e.g., non-hydrogen cations
  • the polymers disclosed herein for inclusion in a composition, formulation, or dosage form, e.g. , for administration to an individual, e.g. , for use in methods of treatment disclosed herein are individual particles or particles agglomerated to form a larger particle (for example, flocculated particles), and have a diameter of about 1 to about 10,000 microns (alternatively, about 1 micron to about 50 microns, about 10 microns to about 50 microns, about 10 microns to about 200 microns, about 50 microns to about 100 microns, about 50 microns to about 200 microns, about 50 microns to about 1000 microns, about 500 microns to about 1000 microns, about 1000 to about 5000 microns, or about 5000 microns to about 10,000 microns).
  • the particles or agglomerated particles have a diameter of about 1, about 5, about 10, about 20, about 30, about 40, about 50, about 60, about 70, about 80, about 90, about 100, about 110, about 120, about 130, about 140, about 150, about 160, about 170, about 180, about 190, about 200, about 250, about 300, about 350, about 400, about 450, about 500, about 550, about 600, about 650, about 700, about 750, about 800, about 850, about 900, about 950, about 1000 , about 1500, about 2000, about 2500, about 3000, about 3500, about 4000, about 4500, about 5000, about 5500, about 6000, about 7000, about 7500, about 8000, about 8500, about 9000, about 9500, or about 10,000 microns.
  • the crosslinked cation-binding polymer disclosed herein for inclusion in a composition, formulation, or dosage form, e.g. , for administration to an individual, e.g., for use in methods of treatment disclosed herein is a crosslinked polyacrylate polymer.
  • the polymer may be a polyacrylate polymer crosslinked with about 0.08 mol% to about 0.2 mol% or alternatively from about 0.025 mol.% to about 3.0 mol.% including, for example, from about 0.025 mol.% to about 0.3 mol.% or about 0.025 mol.% to about 0.17 mol.% or from about 0.025 mol.% to about 0.34 mol.% crosslinker, and for example, may comprise an in vitro saline absorption capacity ⁇ e.g., saline holding capacity) of at least about 20 times its weight (e.g., at least about 20 grams of saline per gram of polymer, or "g/g"), at least about 30 times its weight, at least about 40 times its weight, at least about 50 times its weight, at least about 60 times its weight, at least about 70 times its weight, at least about 80 times its weight, at least about 90 times its weight, at least about 100 times its weight, or more.
  • the crosslinked polyacrylate polymer is in the form of individual particles or particles that are agglomerated (for example, flocculated) to form a larger particle, wherein the diameter of individual particles or agglomerated particles is about 1 micron to about 10,000 microns (alternatively, about 1 micron to about 10 microns, about 1 micron to about 50 microns, about 10 microns to about 50 microns, about 10 microns to about 200 microns, about 50 microns to about 100 microns, about 50 microns to about 200 microns, about 50 microns to about 1000 microns, about 500 microns to about 1000 microns, about 1000 to about 5000 microns, or about 5000 microns to about 10,000 microns.
  • the polyacrylate polymer is in the form of small particles that flocculate to form agglomerated particles with a diameter of about 1 micron to about 10 microns.
  • the above dosage forms additionally comprise one or more excipients, carriers, or diluents.
  • Compositions for use in accordance with the present disclosure may be formulated in conventional manner using one or more physiologically acceptable carriers comprising excipients, diluents, and auxiliaries which facilitate processing of the polymer into preparations which may be used pharmaceutically. Proper formulation is dependent upon the route of administration chosen.
  • Such compositions may contain a therapeutically effective amount of polymer and may include a pharmaceutically acceptable carrier, excipient, and/or diluent.
  • Pharmaceutically acceptable carriers, additives, and formulation ingredients include those approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, and more particularly, in humans. Carriers can include an active ingredient in which the disclosed compositions are administered.
  • dosage forms according to the present disclosure comprise a crosslinked cation-binding polymer comprising carboxylic acid monomers, and a base.
  • the compositions contain less than about 20,000 ppm of non-hydrogen cations.
  • the dosage form comprises an amount of the base sufficient to provide from about 0.2 to about 0.95 equivalents of base per equivalent of carboxylic acid groups on the polymer.
  • the dosage form includes an amount of base sufficient to ameliorate or prevent acidosis in a subject to whom the polymer is administered.
  • Monomers, crosslinkers, and bases useful in the preparation of the crosslinked cation-binding polymers as described above are also suitable for the dosage forms of the present disclosure.
  • the dosage form is a capsule, a tablet, a chewable tablet, a suspension, an oral suspension, a powder, a gel block, a gel pack, a confection, a chocolate bar, a pudding, a flavored bar, or a sachet.
  • the dosage form contains about 0.25 g, 0.5 g, or 1 g to about 7.5 g, 15 g, 30 g, or about 100 g of a disclosed cation-binding polymer.
  • the composition, formulation, or dosage form may include about 0.25 g, about 0.5 g, about 1 g, about 1.5 g, about 2 g, about 2.5 g, about 3 g, about 3.5 g, about 4 g, about 4.5 g, about 5 g, about 5.5 g, about 6 g, about 6.5 g, about 7 g, about 7.5 g, about 8 g, about 8.5 g, about 9 g, about 9.5 g, about 10 g, about 11 g, about 12 g, about 13 g, about 14 g, about 15 g, about 16 g, about 17 g, about 18 g, about 19 g, about 20 g, about 21 g, about 22 g, about 23 g, about 24 g, about 25 g, about 26 g, about 27 g, about 28 g, about 29 g, about 30 g , about 35 g, about 40 g, about 45 g, about 50 g, about 55 g
  • the dosage form may include an amount of the composition to provide about 1 g, about 1.5 g, about 2 g, about 2.5 g, about 3 g, about 3.5 g, about 4 g, about 4.5 g, about 5 g, about 5.5 g, about 6 g, about 6.5 g, about 7 g, about 7.5 g, about 8 g, about 8.5 g, about 9 g, about 9.5 g, about 10 g, about 11 g, about 12 g, about 13 g, about 14 g, about 15 g, about 16 g, about 17 g, about 18 g, about 19 g, about 20 g, about 21 g, about 22 g, about 23 g, about 24 g, about 25 g, about 26 g, about 27 g, about 28 g, about 29 g, or about 30 g, about 35 g, about 40 g, about 45 g, about 50 g, about 55 g, about 60 g, about 65 g, or about 30
  • the dosage forms of the present disclosure also include from about 0.2 to about 0.95, about 0.5 to about 0.9, or about 0.6 to about 0.8 equivalents of base per equivalent of carboxylate groups in the polymer, for example, about 0.2 equivalents, about 0.25 equivalents, about 0.3 equivalents, about 0.35 equivalents, about 0.4 equivalents, about 0.45 equivalents, about 0.5 equivalents, about 0.55 equivalents, about
  • the base is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of base, for example about 0.5 equivalents, about 0.55 equivalents, about 0.6 equivalents, about 0.65 equivalents, about 0.7 equivalents, about 0.75 equivalents, about 0.8 equivalents, or about 0.85 equivalents of base per equivalent of carboxylate groups in the polymer.
  • the base is present in an amount sufficient to provide from about 0.7 equivalents to about 0.8 equivalents of base, for example about 0.7 equivalents, about 0.75 equivalents, about or 0.8 equivalents of base per equivalent of carboxylate groups in the polymer. In some embodiments, the base is present in an amount sufficient to provide about 0.75 equivalents of base per equivalent of carboxylate groups in the polymer.
  • the base component of the dosage form is one or more of: an alkali metal hydroxide, an alkali metal acetate, an alkali metal carbonate, an alkali metal bicarbonate, an alkali metal oxide, an alkali earth metal hydroxide, an alkali earth metal acetate, an alkali earth metal carbonate, an alkali earth metal bicarbonate, an alkali earth metal oxide, an organic base, choline, lysine, arginine, histidine, an acetate, a butyrate, a propionate, a lactate, a succinate, a citrate, an isocitrate, a fumarate, a malate, a malonate, an oxaloacetate, a pyruvate, a phosphate, a carbonate, a bicarbonate, a lactate, a benzoate, a sulfate, a lactate, a silicate, an oxide
  • compositions may be formulated readily by combining them with pharmaceutically acceptable carriers well known in the art.
  • Such carriers enable the compositions of the disclosure to be formulated, preferably in capsules but alternatively in other dosage forms such as tablets, chewable tablets, pills, dragees, capsules, liquids, gel packs, gel blocks, syrups, slurries, suspensions, wafers, sachets, powders, dissolving tablets and the like, for oral ingestion by a subject, including a subject to be treated.
  • the compositions or capsules containing the compositions have an enteric coating.
  • the compositions or capsules containing the compositions do not have an enteric coating.
  • the dosage form comprises a base and an unneutralized crosslinked polycarboxylate polymer as described herein, and is administered in an amount sufficient to provide from about 0.01 moles of carboxylate groups to about 0.5 moles or about 0.56 moles of carboxylate groups to the subject per day, for example, about 0.01 moles, about 0.02 moles, about 0.03 moles, about 0.04 moles, about 0.05 moles, about 0.06 moles, about 0.07 moles, about 0.08 moles, about 0.09 moles, about 0.1 moles, about 0.11 moles, about 0.12 moles, about 0.13 moles, about 0.14 moles, about 0.15 moles, about 0.16 moles, about 0.17 moles, about 0.18 moles, about 0.19 moles, about 0.2 moles, about 0.21 moles, about 0.22 moles, about 0.23 moles, about 0.24 moles, about 0.25 moles, about 0.26 moles, about 0.27 moles, about 0.28 moles, about 0.29 mo
  • the dosage forms are administered in an amount sufficient to provide from about 0.01 to about 0.25 moles of carboxylate groups per day. In a more preferred embodiment, the dosage forms are administered in an amount sufficient to provide from about 0.1 to about 0.25 moles of carboxylate groups per day.
  • the dosage form comprises a base and an unneutralized crosslinked polyacrylate polymer as described herein, and is administered in an amount sufficient to provide from about 1 g to about 30 g or 100 g of polymer per day, for example, about 1 g per day, about 2 g per day, about 3 g per day, about 4 g per day, about 5 g per day, about 6 g per day, about 7 g per day, about 8 g per day, about 9 g per day, about 10 g per day, about 11 g per day, about 12 g per day, about 13 g per day, about 14 g per day, about 15 g per day, about 16 g per day, about 17 g per day, about 18 g per day, about 19 g per day, about 20 g per day, about 21 g per day, about 22 g per day, about 23 g per day, about 24 g per day, about 25 g per day, about 26 g per day, about 27 g per day
  • the dosage form is a sachet and contains a composition according to the present disclosure in sufficient amount to provide from about 1 g to about
  • a sachet may contain a composition according to the present disclosure in sufficient amount to provide about 1 g, about 1.5 g, about 2 g, about 2.5 g, about 3 g, about 3.5 g, about 4 g, about 4.5 g, about 5 g, about 5.5 g, about 6 g, about 6.5 g, about 7 g, about 7.5 g, about 8 g, about 8.5 g, about 9 g, about 9.5 g, about 10 g, about 10.5 g, about 11 g, about 11.5 g, about 12 g, about 12.5 g, about 13 g, about 13.5 g, about 14 g, about 14.5 g, about 15 g, about 15.5 g, about 16 g, about 16.5 g, about 17 g, about 17.5 g, about 18 g, about 18.5 g, about 19 g, about 19.5 g, about 20 g, about 20.5 g, about 21 g,
  • the dosage form is a capsule containing an amount of a composition according to the present disclosure sufficient to provide from about 0.1 g to about 1 g of the polymer.
  • a capsule may contain an amount of a composition according to the present disclosure that is sufficient to provide about 0.1 g, about 0.15 g, about 0.2 g, about 0.25 g, about 0.3 g, about 0.35 g, about 0.4 g, about 0.45 g, about 0.5 g, about 0.55 g, about 0.6 g, about 0.65 g, about 0.7 g, about 0.75 g, about 0.8 g, about 0.85 g, about 0.9 g, about 0.95 g, or about 1 g of polymer.
  • the dosage form is a tablet that contains an amount of a composition according to the present disclosure to provide from about 0.3 g to about 1 g of the polymer.
  • the tablet may contain about 0.3 g, about 0.35 g, about 0.4 g, about 0.45 g, about 0.5 g, about 0.55 g, about 0.6 g, about 0.65 g, about 0.7 g, about 0.75 g, about 0.8 g, about 0.85 g, about 0.9 g, about 0.95 g, or about 1 g of polymer.
  • a disclosed composition is formulated as a tablet that is spherical or substantially spherical.
  • the dosage form is a sachet, flavored bar, gel block, gel pack, pudding, or powder that contains an amount of a composition according to the present disclosure to provide from about lg or about 2 g to about 30 g of the polymer.
  • the sachet, flavored bar, gel block, gel pack, pudding, or powder may contain an amount of a composition according to the present disclosure to provide about 2 g, about 3 g, about 4 g, about 5 g, about 6 g, about 7 g, about 8 g, about 9 g, about 10 g, about 11 g, about 12 g, about 13 g, about 14 g, about 15 g, about 16 g, about 17 g, about 18 g, about 19 g, about 20 g, about 21 g, about 22 g, about 23 g, about 24 g, about 25 g, about 26 g, about 27 g, about 28 g, about 29 g, or about 30 g of the polymer.
  • the dosage form is a suspension or an oral suspension that contains an amount of a composition according to the present disclosure to provide from about lg or about 2 g to about 30 g of the polymer.
  • the suspension or oral suspension may contain an amount of a composition according to the present disclosure to provide about 2 g, about 3 g, about 4 g, about 5 g, about 6 g, about 7 g, about 8 g, about 9 g, about 10 g, about 11 g, about 12 g, about 13 g, about 14 g, about 15 g, about 16 g, about 17 g, about 18 g, about 19 g, about 20 g, about 21 g, about 22 g, about 23 g, about 24 g, about 25 g, about 26 g, about 27 g, about 28 g, about 29 g, or about 30 g of the polymer.
  • dosage forms according to the present disclosure further include an additional agent.
  • the additional agent is one that causes, routinely causes, typically causes, is known to cause, or is suspected of causing an increase in an ion level in at least some subjects upon administration.
  • the additional agent may be an agent known to cause an increase in serum potassium levels in at least some subjects upon administration.
  • the additional agent may be an agent known to cause an increase in serum sodium levels in at least some subjects upon administration.
  • the additional agent may be one or more of: a tertiary amine, spironolactone, fluoxetine, pyridinium and its derivatives, metoprolol, quinine, loperamide, chlorpheniramine, chlorpromazine, ephedrine, amitryptyline, imipramine, loxapine, cinnarizine, amiodarone, nortriptyline, a mineralocorticosteroid, propofol, digitalis, fluoride, succinylcholine, eplerenone, an alpha-adrenergic agonist, a RAAS inhibitor, an ACE inhibitor, an angiotensin II receptor blocker, a beta blocker, an aldosterone antagonist, benazepril, captopril, enalapril, fosinopril, lisinopril, moexipril, perindopril, quinapril, ram
  • compositions of the present disclosure may be administered in combination with other therapeutic agents.
  • therapeutic agents that may be coadministered with the compositions of the disclosure will depend, in part, on the condition being treated.
  • Compositions of the present disclosure may be administered in combination with a therapeutic agent that causes an increase, or is known to commonly cause an increase, in one or more ions in the subject.
  • the crosslinked cation-binding polymer of the present disclosure may be administered with a therapeutic agent that causes an increase, or is known to commonly cause an increase, in the potassium and/or sodium level of a subject.
  • the disclosed polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers may be used to treat a subject with a disease and/or disorder. Additionally or alternatively, the disclosed polymers, compositions comprising the disclosed polymers and/or oral dosage forms comprising the disclosed polymers may be used to prevent a subject from becoming afflicted with a disease and/or disorder.
  • a base may be co-administered along with the polymer, composition comprising a polymer, and/or dosage form comprising a polymer, either simultaneously (e.g., at the same time) or sequentially (e.g.,, before or after administration of the polymer).
  • the base When administering the polymer in a dosage form, the base may be included in the same dosage form or separate from the dosage form containing the polymer, for example in a separate dosage form which is co-administered at the same time or before or after the dosage form that contains the polymer.
  • compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers may be used in methods for the removal of fluid from a subject.
  • compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers may also be used in methods for treating diseases or disorders associated with increased retention of fluid and/or ion imbalances.
  • the disclosed polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers may also be used in methods to treat end stage renal disease (ESRD), chronic kidney disease (CKD), congestive heart failure (CHF), hyperkalemia, hypernatremia, or hypertension.
  • ESRD end stage renal disease
  • CKD chronic kidney disease
  • CHF congestive heart failure
  • hyperkalemia hypernatremia
  • hypertension hypertension
  • the polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers as disclosed herein may be used to remove one or more ions selected from the group consisting of: sodium, potassium, calcium, magnesium and/or ammonium.
  • the polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers as disclosed herein may be substantially coated with a coating (e.g., an enteric coating) that allows it to pass through the gut and open in the intestine where the polymer may absorb fluid and/or specific ions that are concentrated in that particular portion of the intestine.
  • a coating e.g., an enteric coating
  • the polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers disclosed herein do not comprise such a coating.
  • the absorbent material, i.e., polymer as disclosed herein
  • the capsule may be substantially coated with a coating (e.g., an enteric coating) that allows it to pass through the gut and open in the intestine where the capsule may release the polymer to absorb fluid or specific ions that are concentrated in that particular position of the intestine.
  • a coating e.g., an enteric coating
  • the capsule does not contain such a coating.
  • Individual particles of polymer or groups of particles may be encapsulated or alternatively, larger quantities of beads or particles may be encapsulated together.
  • polymers as disclosed herein may be milled to give finer particles in order to increase drug loading of capsules, or to provide better palatability for formulations such as gels, bars, puddings, or sachets.
  • milled particles or groups of particles, or unmilled polymeric material e.g., beads
  • These coatings may or may not have enteric properties but will have the common characteristic that they will separate the polymer from the tissues of the mouth and prevent the polymer from adhering to tissue.
  • such coatings may include, but are not limited to: a single polymer or mixtures thereof, such as may be selected from polymers of ethyl cellulose, polyvinyl acetate, cellulose acetate, polymers such as cellulose phthalate, acrylic based polymers and copolymers or any combination of soluble, insoluble polymers or polymer systems, waxes and wax based coating systems.
  • the polymers disclosed herein for administration to an individual or inclusion in a composition, formulation, or dosage form for administration to an individual, e.g., for use in a method of treatment as disclosed herein are individual particles or particles agglomerated to form a larger particle (for example, flocculated particles), and have a diameter of about 1 to about 10,000 microns (alternatively, about 1 micron to about 50 microns, about 10 microns to about 50 microns, about 10 microns to about 200 microns, about 50 microns to about 100 microns, about 50 microns to about 200 microns, about 50 microns to about 1000 microns, about 500 microns to about 1000 microns, about 1000 to about 5000 microns, or about 5000 microns to about 10,000 microns).
  • the particles or agglomerated particles have a diameter of about 1, about 5, about 10, about 20, about 30, about 40, about 50, about 60, about 70, about 80, about 90, about 100, about 110, about 120, about 130, about 140, about 150, about 160, about 170, about 180, about 190, about 200, about 250, about 300, about 350, about 400, about 450, about 500, about 550, about 600, about 650, about 700, about 750, about 800, about 850, about 900, about 950, about 1000 , about 1500, about 2000, about 2500, about 3000, about 3500, about 4000, about 4500, about 5000, about 5500, about 6000, about 7000, about 7500, about 8000, about 8500, about 9000, about 9500, or about 10,000 microns. In one embodiment, the particles with a diameter of about 1 micron to about 10 microns.
  • the crosslinked cation-binding polymer as described, for example, for administration to an individual or inclusion in a composition, formulation, or dosage form for administration to an individual, e.g. , for use in a method of treatment as disclosed herein, is a crosslinked polyacrylate polymer (i.e., derived from acrylic acid monomers or a salt thereof).
  • the polymer may be a polyacrylate polymer crosslinked with about 0.08 mol% to about 0.2 mol% or alternatively from about 0.025 mol.% to about 3.0 mol.% including, for example, from about 0.025 mol.% to about 0.3 mol.% or about 0.025 mol.% to about 0.17 mol.% or from about 0.025 mol.% to about 0.34 mol.% crosslinker, and for example, may comprise an in vitro saline absorption capacity (e.g., saline holding capacity) of at least about 20 times its weight (e.g., at least about 20 grams of saline per gram of polymer, or "g/g"), at least about 30 times its weight, at least about 40 times its weight, at least about 50 times its weight, at least about 60 times its weight, at least about 70 times its weight, at least about 80 times its weight, at least about 90 times its weight, at least about 100 times its weight, or more.
  • the crosslinked polyacrylate polymer comprises individual particles or particles that are agglomerated (for example, flocculated) to form a larger particle, wherein the individual or agglomerated particle diameter is about 1 to about 10,000 microns (alternatively, about 1 micron to about 10 microns, about 1 micron to about 50 microns, about 10 microns to about 50 microns, about 10 microns to about 200 microns, about 50 microns to about 100 microns, about 50 microns to about 200 microns, about 50 microns to about 1000 microns, about 500 microns to about 1000 microns, about 1000 to about 5000 microns, or about 5000 microns to about 10,000 microns.
  • the individual or agglomerated particle diameter is about 1 to about 10,000 microns (alternatively, about 1 micron to about 10 microns, about 1 micron to about 50 microns, about 10 microns to about 50 microns, about 10 microns to about 200 microns,
  • the polymer may be mixed with base in the same dosage form and may be in contact with fluid within the dosage from, such as suspensions or gels.
  • fluid within the dosage from such as suspensions or gels.
  • pharmaceutical coatings known in the art can be used to coat the polymer, the base, or both to prevent or impede interaction of the polymer and the base.
  • the pharmaceutical coating may have enteric properties.
  • pharmaceutical coatings may include but are not limited to: a single polymeric coating or mixtures of more than one pharmaceutical coating, such as may be selected from polymers of ethyl cellulose, polyvinyl acetate, cellulose acetate; polymers such as cellulose phthalate, acrylic based polymers and copolymers, or any combination of soluble polymers, insoluble polymers and/or polymer systems, waxes and wax based coating systems.
  • the polymer and base are administered in separate dosage forms.
  • a subject e.g., an individual or patient
  • a vertebrate preferably a mammal, more preferably a human.
  • Mammals include, but are not limited to, farm animals (such as cows), sport animals, pets (such as cats, dogs and horses), primates, and rodents (such as mice and rats).
  • a subject includes any animal such as those classified as a mammal, including humans, domestic and farm animals, and zoo, wild, sports, or pet animals, such as dogs, horses, cats, cows, etc.
  • the subject for treatment, prognosis and/or diagnosis is human.
  • a disease or disorder includes any condition that would benefit from treatment with a composition as disclosed herein. This includes both chronic and acute diseases or disorders, including those pathological conditions which predispose the subject to the disease or disorder in question.
  • treatment refers to clinical intervention in an attempt to alter the natural course of the subject being treated, and can be performed either for prophylaxis (e.g., prevention) or during the course of clinical pathology (e.g., after the subject is identified as having a disease or disorder or the symptoms of a disease or disorder).
  • Desirable effects of treatment include preventing occurrence or recurrence of disease, alleviation of symptoms, diminishment of any direct or indirect pathological consequences of the disease or disorder, decreasing the rate of disease progression, amelioration or palliation of the disorder, and remission or improved prognosis.
  • Terms such as treating/treatment/to treat or alleviating/to alleviate refer to both 1) therapeutic measures that cure, slow down, lessen symptoms of, and/or halt progression of a diagnosed disease or disorder (e.g., a pathologic condition or disorder) and 2) prophylactic or preventative measures that prevent and/or slow the development of a disease or disorder (e.g., a targeted pathologic condition or disorder).
  • a diagnosed disease or disorder e.g., a pathologic condition or disorder
  • prophylactic or preventative measures that prevent and/or slow the development of a disease or disorder (e.g., a targeted pathologic condition or disorder).
  • those in need of treatment may include those already with the disease or disorder; those prone to have the disease or disorder; and those in whom the disease or disorder is to be prevented.
  • An effective amount refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired therapeutic or prophylactic result.
  • a therapeutically effective amount of a composition disclosed herein may vary according to factors such as the disorder, age, sex, and weight of the subject, and the ability of the composition to elicit a desired response in the individual.
  • a therapeutically effective amount is also one in which any toxic or detrimental effects of the composition are outweighed by the therapeutically beneficial effects.
  • a prophylactically effective amount refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired prophylactic result.
  • a prophylactic dose is used in subjects prior to or at an earlier stage of disease, the prophylactically effective amount may be less than the therapeutically effective amount.
  • a therapeutically or prophylactically effective amount includes administration of about 1 g to about 30 g, about 15g to about 25g, or about 15g to about 30g, for example, about 15g per day of a disclosed cross-linked polymer to an individual.
  • base is co-administered at about 0.2 equivalents to about 0.95 equivalents, for example, about 0.5 equivalents to about 0.85 equivalents, about 0.7 equivalents to about 0.8 equivalents, or about 0.75 equivalents, with respect to carboxylic acid groups on the polymer.
  • a therapeutically or prophylactically effective amount of polymer and base may be administered in a single dosage or multiple doses, for example, administered once per day or administered 2-4 or more times daily, i.e., divided into and administered as 1, 2, 3, 4, or more doses per day, or administered at intervals of 2, 3, 4, 5, or 6 days, weekly, bi-weekly, etc..
  • Pharmaceutically acceptable includes approved or approvable by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, including humans.
  • a pharmaceutically acceptable salt includes a salt of a compound that is pharmaceutically acceptable and that possesses the desired pharmacological activity of the parent compound.
  • a pharmaceutically acceptable excipient, carrier or adjuvant includes an excipient, carrier or adjuvant that can be administered to a subject, together with at least one composition of the present disclosure, and which does not destroy the pharmacological activity thereof and is nontoxic when administered in doses sufficient to deliver a therapeutic or prophylactic amount of the composition.
  • a pharmaceutically acceptable vehicle includes a diluent, adjuvant, excipient, or carrier with which at least one composition of the present disclosure is administered.
  • compositions comprising cross-linked cation binding polymers as disclosed herein can be used either alone or in combination with one or more other agents for administration to a subject (e.g., in a therapy or prophylaxis).
  • combined therapies or prophylaxis include combined administration (where the composition and one or more agents are included in the same or separate formulations) and separate administration, in which case, administration of the composition disclosed herein can occur prior to, contemporaneous with and/or following, administration of the one or more other agents (e.g., for adjunct therapy or intervention).
  • co-administered or co -administration includes administration of the compositions of the present disclosure before, during and/or after the administration of one or more additional agents or therapies.
  • the polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers are useful for treating a disease or disorder.
  • the disclosed polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers are coadministered with a base, as described herein.
  • the base may be included in the same composition and/or dosage form as the polymer. In other embodiments, the base may be administered separately from the composition and/or dosage form.
  • the disease or disorder is one or more of: heart failure, a renal insufficiency disease, end stage renal disease, liver cirrhosis, chronic renal insufficiency, chronic kidney disease, fluid overload, fluid maldistribution, edema, pulmonary edema, peripheral edema, lymphedema, nephrotic edema, idiopathic edema, ascites, cirrhotic ascites, interdialytic weight gain, high blood pressure, hyperkalemia, hypernatremia, abnormally high total body sodium, hypercalcemia, tumor lysis syndrome, head trauma, an adrenal disease, hyporeninemic hypoaldosteronism, hypertension, salt- sensitive hypertension, refractory hypertension, renal tubular disease, rhabdomyolysis, crush injuries, renal failure, acute tubular necrosis, insulin insufficiency, hyperkalemic periodic paralysis, hemolysis, malignant hyperthermia, pulmonary edema secondary to cardiogenic pathophysio
  • the polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers as disclosed herein are useful for treating a disease or disorder involving an ion imbalance in a subject by administering to the subject an effective amount of a polymer, a composition comprising a disclosed polymer, and/or a dosage form comprising a disclosed polymer (e.g., an effective amount) as disclosed herein.
  • the disclosed polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers are co-administered with a base, as described herein.
  • the disease or disorder is hyperkalemia.
  • the disease or disorder is hypernatremia.
  • the disease or disorder is a high sodium level.
  • the disease or disorder is an abnormally high potassium level.
  • the disease or disorder is hypernatremia and hyperkalemia.
  • the polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers as disclosed herein are useful for treating a subject with heart failure by administering to the subject an effective amount of a polymer, composition comprising a disclosed polymer, and/or a dosage form comprising a disclosed polymer as disclosed herein.
  • the disclosed polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers are co-administered with a base, as described herein.
  • the subject has both heart failure and chronic kidney disease.
  • the methods further comprise reducing one or more symptoms of a fluid overload state in the subject.
  • Symptoms of a fluid overload state in a subject are known to those skilled in the art, and may include, for example and without limitation, difficulty breathing when lying down, ascites, fatigue, shortness of breath, increased body weight, peripheral edema, and/or pulmonary edema.
  • the subject may be on concomitant dialysis therapy.
  • the dialysis therapy may be reduced or discontinued after administration of the polymer, the composition comprising the disclosed polymer, and/or the dosage form comprising the disclosed polymer as disclosed herein.
  • the method further comprises identifying the subject as having heart failure before administering the polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer.
  • administration of the disclosed polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers, as described herein improves or ameliorates at least one symptom of heart failure, for example, at least one symptom that impacts the subject's quality of life and/or physical function.
  • administration may result in body weight reduction, dyspnea improvement (for example, overall and dyspnea at exertion), six minute walk test improvement, and/or improvement or absence of edema (e.g., peripheral edema).
  • administration of the disclosed polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers, as described herein results in reduction of patient classification by at least one heart failure class, according to the New York Heart Association Class I, II, III, IV functional classification system.
  • the polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers as disclosed herein are useful for treating a subject with end stage renal disease (ESRD) by administering to the subject an effective amount of a polymer, a composition comprising a disclosed polymer, and/or a dosage form comprising a disclosed polymer as disclosed herein.
  • ESRD end stage renal disease
  • the disclosed polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers are co-administered with a base, as described herein.
  • the subject is on concomitant dialysis therapy.
  • the method reduces blood pressure in an ESRD subject on concomitant dialysis therapy, for example, pre-dialysis, post-dialysis, and/or interdialytic systolic and diastolic blood pressure may be reduced. In some embodiments, the method reduces interdialytic weight gain in an ESRD subject on concomitant dialysis therapy. In some embodiments, the subject also has heart failure. In some embodiments, one or more symptoms of intradialytic hypotension are improved after administration of a polymer, a composition comprising a disclosed polymer, and/or a dosage form comprising a disclosed polymer as disclosed herein.
  • incidences of vomiting, fainting and/or drops in blood pressure levels are reduced or eliminated.
  • the subject experiences one or more of: a reduced frequency of emergency dialysis sessions, a reduced frequency of inadequate dialysis sessions, a reduced frequency of dialysis sessions on low-potassium dialysis bath, and/or reduced frequency or reduced severity of EKG signs during dialysis sessions.
  • one or more symptom of intradialytic hypotension are reduced or eliminated after administration of a polymer, a composition comprising a disclosed polymer, and/or a dosage form comprising a disclosed polymer.
  • Symptoms of intradialytic hypotension are known to those skilled in the art and may include, for example, vomiting, fainting, an abrupt decrease in blood pressure, seizures, dizziness, severe abdominal cramping, severe leg or arm muscular cramping, intermittent blindness, infusion, medication, and dialysis session interruption or discontinuation.
  • ESRD subjects may experience an improvement in physical function as expressed by increaseas in the 6 Minute Walk Test.
  • polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers as disclosed herein are useful for treating a subject having a chronic kidney disease.
  • the methods comprise administering to the subject an effective amount of a polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer as disclosed herein.
  • the disclosed polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers are co-administered with a base, as described herein.
  • the methods further comprise identifying the subject as having a chronic kidney disease before administration of the polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer as disclosed herein. In some related embodiments, the methods further comprise reducing one or more symptoms of a fluid overload state in the subject. In some embodiments, a comorbidity of chronic kidney disease is reduced, alleviated, and/or eliminated after administration of a polymer, a composition comprising a disclosed polymer, and/or a dosage form comprising a disclosed polymer.
  • Comorbidities of chronic kidney disease are known to those skilled in the art and include, for example, fluid overload, edema, pulmonary edema, hypertension, hyperkalemia, excess total body sodium, heart failure, ascites, and/or uremia.
  • CKD patients may experience prevention of doubling of serum creatinine over the duration of a study (for example, 1 to 2 years), prevention of disease progression to dialysis, and/or prevention of death and CKD related hospitalizations and/or complications.
  • polymers, compositions comprising a disclosed polymer, and/or dosage forms comprising a disclosed polymer as disclosed herein are useful for treating a subject having hypertension.
  • the methods comprise administering to the subject an effective amount of a polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer as disclosed herein.
  • the disclosed polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers are co-administered with a base, as described herein.
  • the methods further comprise identifying that the subject has hypertension before administering the polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer as disclosed herein.
  • hypertension includes the various subtypes of hypertension known to those skilled in the art, for example and without limitation: primary hypertension, secondary hypertension, salt sensitive hypertension, and refractory hypertension and combinations thereof.
  • the method is effective in reducing the subject's blood pressure.
  • the method may further comprise determining a blood pressure level before, after, or both before and after administration of the polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer as disclosed herein.
  • the method may further comprise determining the subject's diastolic blood pressure, systolic blood pressure, and/or mean arterial pressure ("MAP") before, after, or both before and after administration of the polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer as disclosed herein.
  • MAP mean arterial pressure
  • one or more symptom of a fluid overload state is reduced, improved, or alleviated by administering a polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer as disclosed herein.
  • the method may further comprise determining a fluid overload state symptom before, after, or both before and after administration of the polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer as disclosed herein.
  • the method may further comprise observing an improvement in the subject's breathing while lying down, ascites, fatigue, shortness of breath, body weight, peripheral edema, and/or pulmonary edema.
  • the subject is on concomitant diuretic therapy.
  • diuretic therapy refers to administration of pharmaceutical compositions (e.g., diuretic agents), and non-chemical intervention, such as dialysis or restriction of fluid intake.
  • Diuretic agents are known to those skilled in the art and include, for example, furosemide, bumetanide, torsemide, hydrochlorthiazide, amiloride and/or spironolactone.
  • the diuretic therapy may be reduced or discontinued following administration of the polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer as disclosed herein.
  • the polymers, compositions comprising a disclosed polymer, and/or dosage forms comprising a disclosed polymer as disclosed herein of the present disclosure are useful for treating hyperkalemia in a subject.
  • the method comprises administering to the subject an effective amount of a polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer according to the present disclosure.
  • the disclosed polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers are co-administered with a base, as described herein.
  • the method further comprises identifying the subject as having hyperkalemia, or as having a risk of developing hyperkalemia, before administering the polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer as disclosed herein.
  • the method may further comprise determining a potassium ion level in the subject before administering the polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer as disclosed herein.
  • the potassium ion level may be within a normal range, slightly elevated, or elevated before administering the polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer as disclosed herein.
  • the subject has been prescribed or will be administered a drug known to increase potassium levels. In some embodiments, the subject has already ingested a drug known to increase potassium levels. In some embodiments, the method may further comprise determining a second, reduced potassium ion level in the subject after administration of the polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer as disclosed herein. In some embodiments, an acid/base status (e.g., acid/base balance) associated with the subject does not change, for example, as measured by serum total bicarbonate, serum total C0 2 , arterial blood pH, urine pH, urine phosphorus, urine ammonium, and/or anion gap.
  • an acid/base status e.g., acid/base balance
  • An acid/base status that does not change includes one that does not change outside the normal range or outside the normal range for the subject.
  • the polymers, compositions comprising a disclosed polymer, and/or dosage forms comprising a disclosed polymer as disclosed herein of the present disclosure are useful for treating an high sodium level, e.g., hypernatremia, in a subject.
  • the method comprises administering to the subject an effective amount of a polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer as disclosed herein.
  • the disclosed polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers are co-administered with a base, as described herein.
  • the method further comprises identifying the subject as having an high sodium level, or as having a risk of developing an high sodium level, before administering the polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer as disclosed herein.
  • the method may further comprise determining a sodium ion level in the subject before administering the polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer as disclosed herein.
  • the sodium ion level may be within a normal range, slightly elevated, or elevated before administering the polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer as disclosed herein.
  • the method may further comprise determining a second, reduced sodium ion level in the subject after administration of the polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer as disclosed herein.
  • an acid/base status e.g., acid/base balance
  • an acid/base status that does not change includes one that does not change outside the normal range or outside the normal range for the subject.
  • the subject has taken or will take a drug known to increase sodium levels, for example and without limitation: estrogen containing compositions, mineralocorticoids, osmotic diuretics (e.g., glucose or urea), vaptans (e.g., tolvaptan, lixivaptan), lactulose, cathartics (e.g., phenolphthalein), phenytoin, lithium, Amphotericin B, demeclocycline, dopamine, ofloxacin, orlistat, ifosfamide, cyclophosphamide, hyperosmolar radiographic contrast agents (e.g., gastrographin, renographin), cidofovir, ethanol, foscarnet, indinavir, libenzapril, mesalazine, methoxyflurane, pimozide, rifampin, streptozotocin, tenofir, triamterene, and/or cholchicine.
  • administration of the polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers may further comprise increasing a dose of one or more additional agents, for example, an agent known to cause an increase in sodium levels.
  • the method further comprises increasing a dose of one or more of: an aldosterone antagonist, an angiotensin II receptor blocker, and/or an angiotensin-converting enzyme inhibitor before, concomitantly, and/or after administering a polymer, a composition comprising a disclosed polymer, and/or a dosage form comprising a disclosed polymer.
  • administration of the polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers may further comprise decreasing a dose or discontinuing administration or coadministration of a diuretic.
  • the polymers, compositions comprising a disclosed polymer, and/or dosage forms comprising a disclosed polymer as disclosed herein are useful for treating a subject with a disease or disorder involving fluid overload (e.g., a fluid overload state such as heart failure, end stage renal disease, ascites, renal failure (for example, acute renal failure), nephritis, and nephrosis).
  • a fluid overload state such as heart failure, end stage renal disease, ascites, renal failure (for example, acute renal failure), nephritis, and nephrosis.
  • the method comprises administering to the subject an effective amount of a polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer as disclosed herein.
  • the disclosed polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers are coadministered with a base, as described herein.
  • the subject may be on concomitant diuretic therapy.
  • the method may further comprise identifying a fluid overload state in the subject, or identifying a risk that the subject will develop a fluid overload state before administration of a polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer.
  • an acid/base status (e.g., acid/base balance) associated with the subject does not change, for example, as measured by serum total bicarbonate, serum total C0 2 , arterial blood pH, urine pH, urine phosphorus, urine ammonium, and/or anion gap.
  • An acid/base status that does not change includes one that does not change outside the normal range or outside the normal range for the subject.
  • the polymers, compositions comprising a disclosed polymer, and/or dosage forms comprising a disclosed polymer as disclosed herein according to the present disclosure are useful for treating a subject with a disease or disorder involving fluid maldistribution (e.g., a fluid maldistribution state such as pulmonary edema, angioneurotic edema, ascites, high altitude sickness, adult respiratory distress syndrome, uticarial edema, papille edema, facial edema, eyelid edema, cerebral edema, and scleral edema).
  • a disease or disorder involving fluid maldistribution e.g., a fluid maldistribution state such as pulmonary edema, angioneurotic edema, ascites, high altitude sickness, adult respiratory distress syndrome, uticarial edema, papille edema, facial edema, eyelid edema, cerebral edema, and s
  • the method comprises administering to the subject an effective amount of a polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer as disclosed herein.
  • the disclosed polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers are co-administered with a base, as described herein.
  • the method may further comprise identifying a fluid maldistribution state or a risk of developing a fluid maldistribution state in the subject before administering to the subject a polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer.
  • the polymers, compositions comprising a disclosed polymer, and/or dosage forms comprising a disclosed polymer as disclosed herein are useful for treating edema in a subject.
  • the method comprises administering to the subject an effective amount of a polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer as disclosed herein.
  • the disclosed polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers are co-administered with a base, as described herein.
  • the method may further comprise identifying an edematous state or a risk of developing an edematous state in the subject before administering a polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer as disclosed herein.
  • the edematous state is nephritic edema, pulmonary edema, peripheral edema, lymphedema, and/or angioneurotic edema.
  • the subject is on concomitant diuretic therapy.
  • the diuretic therapy may be reduced or discontinued after administration of the polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer as disclosed herein.
  • the method may further comprise, before administering a polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer as disclosed herein, determining one or more of: a baseline level of one or more ions (e.g., sodium, potassium, lithium and/or magnesium) in the subject, a baseline total body weight associated with the subject, a baseline total body water level associated with the subject, a baseline total extracellular water level associated with the subject, and/or a baseline total intracellular water level associated with the subject.
  • ions e.g., sodium, potassium, lithium and/or magnesium
  • the method may further comprise, after administering a polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer as disclosed herein, determining one or more of: a second level of one or more ions in the subject, a second total body weight associated with the subject, a second total body water level associated with the subject, a second total extracellular water level associated with the subject, and/or a second total intracellular water level associated with said subject.
  • the second level is lower than the corresponding baseline level.
  • an acid/base status (e.g., acid/base balance) associated with the subject does not change, for example, as measured by serum total bicarbonate, serum total C0 2 , arterial blood pH, urine pH, urine phosphorus, urine ammonium, and/or anion gap.
  • An acid/base status that does not change includes one that does not change outside the normal range or outside the normal range for the subject.
  • a blood pressure level associated with the subject after administration of the polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer is substantially lower than a baseline blood pressure level associated with the subject determined before administration of the polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer.
  • one or more symptoms of edema are reduced and/or eliminated following administration of a polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer as disclosed herein.
  • Symptoms of edema are known to those skilled in the art; some non-limiting examples include: difficulty breathing when lying down, shortness of breath, peripheral edema, and leg edema.
  • the polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers according to the present disclosure are useful for treating ascites in a subject.
  • the method comprises administering to the subject an effective amount of a polymer composition comprising a disclosed polymer, and/or a dosage form comprising a disclosed polymer according to the present disclosure.
  • the disclosed polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers are co-administered with a base, as described herein.
  • the method may further comprise identifying an ascitic state or a risk of developing an ascitic state in the subject.
  • the subject is on concomitant diuretic therapy.
  • the diuretic therapy may be reduced or discontinued after administration of the composition.
  • the subject may have taken, or will take, a drug known to increase potassium levels.
  • the polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers as disclosed herein are useful for treating nephrotic syndrome in a subject.
  • the method comprises administering to said subject an effective amount of a polymer, a composition comprising a disclosed polymer, and/or a dosage form comprising a disclosed polymer as disclosed herein.
  • the disclosed polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers are coadministered with a base, as described herein.
  • the method further comprises identifying the subject as having nephrotic syndrome, or as having a risk of developing nephrotic syndrome, before administering the polymer, the composition comprising a disclosed polymer, and/or the dosage form comprising a disclosed polymer.
  • the method may further comprise determining one or more of: a level of one or more ions (e.g., sodium, potassium calcium, lithium, and/or magnesium) in the subject, a total body weight associated with the subject, a total body water level associated with the subject, a total extracellular water level associated with the subject, and/or a total intracellular water level associated with the subject before administering the polymer, the composition comprising a disclosed polymer, and/or the dosage form comprising a disclosed polymer.
  • ions e.g., sodium, potassium calcium, lithium, and/or magnesium
  • the method may further comprise determining a second, lower level of one or more of: a level of one or more ions in the subject, a total body weight associated with the subject, a total body water level associated with the subject, a total extracellular water level associated with the subject, and/or a total intracellular water level associated with the subject after administering the polymer, the composition comprising a disclosed polymer, and/or the dosage form comprising a disclosed polymer.
  • an acid/base status e.g., acid/base balance
  • an acid/base status associated with the subject does not change, for example, as measured by serum total bicarbonate, serum total C0 2 , arterial blood pH, urine pH, urine phosphorus, urine ammonium, and/or anion gap.
  • An acid/base status that does not change includes one that does not change outside the normal range or outside the normal range for the subject.
  • a blood pressure level associated with the subject after administration of the polymer, the composition comprising a disclosed polymer, and/or the dosage form comprising a disclosed polymer is substantially lower than a baseline blood pressure level associated with the subject before the administration(s).
  • one or more symptoms of fluid overload is alleviated, reduced, or eliminated after administration of polymer, the composition comprising a disclosed polymer, and/or the dosage form comprising a disclosed polymer.
  • the symptom may be one or more of: difficulty breathing when lying down, shortness of breath, peripheral edema, and/or leg edema.
  • the subject may be on concomitant diuretic therapy.
  • the diuretic therapy may be reduced or eliminated after administration of the polymer, the composition comprising a disclosed polymer, and/or the dosage form comprising a disclosed polymer.
  • methods according to the present disclosure may further comprise administering to the subject an additional agent, for example, a drug or agent for treatment of a condition such as end stage renal disease, including, for example, phosphate binders.
  • additional agents include mannitol, sorbitol, calcium acetate, sevelamer carbonate (Renvela®), and/or sevelamer hydrochloride.
  • methods according to the present disclosure may further comprise administering to the subject an agent known to increase potassium levels.
  • an agent known to increase potassium levels refers to agents that are known to cause an increase, are suspected of causing an increase, or are correlated with an increase in potassium levels upon administration.
  • agents known to cause an increase in potassium levels may include: a tertiary amine, spironolactone, fluoxetine, pyridinium and its derivatives, metoprolol, quinine, loperamide, chlorpheniramine, chlorpromazine, ephedrine, amitryptyline, imipramine, loxapine, cinnarizine, amiodarone, nortriptyline, a mineralocorticosteroid, propofol, digitalis, fluoride, succinylcholine, eplerenone, an alpha-adrenergic agonist, a RAAS inhibitor, an ACE inhibitor, an angiotensin II receptor blocker, a beta blocker, an aldosterone antagonist, benazepril, captopril, enalapril, fosinopril, lisinopril, moexipril, perindopril, quinapril
  • administration of the polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers may further comprise increasing a dose of one or more additional agents, for example, an agent known to cause an increase in potassium levels.
  • administration of the polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers may further comprise decreasing a dose or discontinuing administration or co-administration of a diuretic.
  • methods according to the present disclosure may further comprise administering to the subject an agent known to increase sodium levels.
  • an agent known to increase sodium levels refers to agents that are known to cause an increase, are suspected of causing an increase, or are correlated with an increase in sodium levels upon administration.
  • agents known to cause an increase in sodium levels may include: estrogen containing compositions, mineralocorticoids, osmotic diuretics (e.g., glucose or urea), lactulose, cathartics (e.g., phenolphthalein), phenytoin, lithium, Amphotericin B, demeclocycline, dopamine, ofloxacin, orlistat, ifosfamide, cyclophosphamide, hyperosmolar radiographic contrast agents (e.g., gastrographin, renographin), cidofovir, ethanol, foscarnet, indinavir, libenzapril, mesalazine, methoxyflurane, pimozide, rifampin, streptozotocin, tenofir, triamterene, and/or cholchicine.
  • osmotic diuretics e.g., glucose or urea
  • cathartics e.g., phenolphthalein
  • administration of the polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers may further comprise increasing a dose of one or more additional agents, for example, an agent known to cause an increase in sodium levels.
  • administration of the polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers may further comprise decreasing a dose or discontinuing administration or co-administration of a diuretic.
  • methods according to the present disclosure may further comprise determining a baseline level of one or more ions in a subject before administering a polymer, the composition comprising a disclosed polymer, and/or the dosage form comprising a disclosed polymer as disclosed herein, and determining a second level of said one or more ions in the subject after administering a polymer, the composition comprising a disclosed polymer, and/or the dosage form comprising a disclosed polymer as disclosed herein.
  • Ion levels may be determined in a subject, for example, in serum, urine, and/or feces.
  • Non-limiting examples of methods that may be used to measure ions include atomic absorption, clinical laboratory blood and urine tests, ion chromatography, and ICP (inductively coupled plasma mass spectroscopy).
  • a baseline level of potassium is determined in a subject.
  • a baseline level of sodium is determined in a subject.
  • a polymer, the composition comprising a disclosed polymer, and/or the dosage form comprising a disclosed polymer as disclosed herein is administered to the subject, followed by a determination of a second potassium and/or sodium level.
  • the second potassium and/or sodium level is lower than the baseline potassium level.
  • methods according to the present disclosure may further comprise determining a baseline total body weight associated with a subject before administering a polymer, the composition comprising a disclosed polymer, and/or the dosage form comprising a disclosed polymer as disclosed herein, and determining a second total body weight associated with the subject after administering a polymer, the composition comprising a disclosed polymer, and/or the dosage form comprising a disclosed polymer as disclosed herein.
  • the second total body weight is lower than the baseline total body weight. Any suitable method for determining the total body weight associated with a subject may be used.

Abstract

La présente invention concerne généralement des compositions comprenant un polymère réticulé de liaison à des cations comprenant des monomères comprenant des groupes acide carboxylique, et une base, le polymère contenant moins d'environ 50 000 ppm, ou moins d'environ 20 000 ppm de cations non hydrogène, et la base étant présente en une quantité suffisante pour fournir d'environ 0,2 équivalent à environ 0,95 équivalent de base par équivalent de groupes acide carboxylique dans le polymère. La présente description concerne en outre des procédés de préparation desdites compositions et des procédés d'utilisation desdites compositions pour traiter différentes maladies ou différents troubles.
PCT/US2012/038909 2012-01-10 2012-05-21 Compositions comprenant des polymères réticulés de liaison à des cations et utilisations associées WO2013106073A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA2863233A CA2863233A1 (fr) 2012-01-10 2012-05-21 Compositions comprenant des polymeres reticules de liaison a des cations et utilisations associees
IL233579A IL233579A0 (en) 2012-01-10 2014-07-09 Preparations containing cross-linked cation-binding polymers and their uses

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
USPCT/US2012/020843 2012-01-10
PCT/US2012/020843 WO2012097011A1 (fr) 2011-01-10 2012-01-10 Compositions comportant des polymères réticulés de liaison à des cations et une base, et leurs utilisations

Publications (1)

Publication Number Publication Date
WO2013106073A1 true WO2013106073A1 (fr) 2013-07-18

Family

ID=46210429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2012/038909 WO2013106073A1 (fr) 2012-01-10 2012-05-21 Compositions comprenant des polymères réticulés de liaison à des cations et utilisations associées

Country Status (2)

Country Link
IL (1) IL233579A0 (fr)
WO (1) WO2013106073A1 (fr)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014152211A1 (fr) 2013-03-14 2014-09-25 Moderna Therapeutics, Inc. Formulation et administration de compositions de nucléosides, de nucléotides, et d'acides nucléiques modifiés
WO2015034928A1 (fr) 2013-09-03 2015-03-12 Moderna Therapeutics, Inc. Polynucléotides chimériques
WO2015034925A1 (fr) 2013-09-03 2015-03-12 Moderna Therapeutics, Inc. Polynucléotides circulaires
WO2015051214A1 (fr) 2013-10-03 2015-04-09 Moderna Therapeutics, Inc. Polynucléotides codant pour un récepteur de lipoprotéines de faible densité
WO2016014846A1 (fr) 2014-07-23 2016-01-28 Moderna Therapeutics, Inc. Polynucléotides modifiés destinés à la production d'anticorps intracellulaires
WO2018213731A1 (fr) 2017-05-18 2018-11-22 Modernatx, Inc. Polynucléotides codant pour des polypeptides d'interleukine-12 (il12) ancrés et leurs utilisations
WO2018213789A1 (fr) 2017-05-18 2018-11-22 Modernatx, Inc. Arn messager modifié comprenant des éléments d'arn fonctionnels
WO2018232006A1 (fr) 2017-06-14 2018-12-20 Modernatx, Inc. Polynucléotides codant pour le facteur viii de coagulation
WO2019104195A1 (fr) 2017-11-22 2019-05-31 Modernatx, Inc. Polynucléotides codant pour des sous-unités alpha et bêta de propionyl-coa carboxylase pour le traitement de l'acidémie propionique
WO2019104152A1 (fr) 2017-11-22 2019-05-31 Modernatx, Inc. Polynucléotides codant pour l'ornithine transcarbamylase pour le traitement de troubles du cycle de l'urée
WO2019104160A2 (fr) 2017-11-22 2019-05-31 Modernatx, Inc. Polynucléotides codant pour la phénylalanine hydroxylase pour le traitement de la phénylcétonurie
WO2019136241A1 (fr) 2018-01-05 2019-07-11 Modernatx, Inc. Polynucléotides codant pour des anticorps anti-virus du chikungunya
WO2019226650A1 (fr) 2018-05-23 2019-11-28 Modernatx, Inc. Administration d'adn
WO2020023390A1 (fr) 2018-07-25 2020-01-30 Modernatx, Inc. Traitement enzymatique substitutif basé sur l'arnm combiné à un chaperon pharmacologique pour le traitement de troubles du stockage lysosomal
WO2020047201A1 (fr) 2018-09-02 2020-03-05 Modernatx, Inc. Polynucléotides codant pour l'acyl-coa déshydrogénase à très longue chaîne pour le traitement de l'insuffisance en acyl-coa déshydrogénase à très longue chaîne
WO2020056155A2 (fr) 2018-09-13 2020-03-19 Modernatx, Inc. Polynucléotides codant pour les sous-unités e1-alpha, e1-beta et e2 du complexe alpha-cétoacide déshydrogénase à chaîne ramifiée pour le traitement de la leucinose
WO2020056147A2 (fr) 2018-09-13 2020-03-19 Modernatx, Inc. Polynucléotides codant la glucose-6-phosphatase pour le traitement de la glycogénose
WO2020056239A1 (fr) 2018-09-14 2020-03-19 Modernatx, Inc. Polynucléotides codant pour le polypeptide a1, de la famille de l'uridine diphosphate glycosyltransférase 1, pour le traitement du syndrome de crigler-najjar
WO2020069169A1 (fr) 2018-09-27 2020-04-02 Modernatx, Inc. Polynucléotides codant pour l'arginase 1 pour le traitement d'une déficience en arginase
WO2020227642A1 (fr) 2019-05-08 2020-11-12 Modernatx, Inc. Compositions pour peau et plaies et leurs méthodes d'utilisation
WO2021247507A1 (fr) 2020-06-01 2021-12-09 Modernatx, Inc. Variants de la phénylalanine hydroxylase et leurs utilisations
WO2022104131A1 (fr) 2020-11-13 2022-05-19 Modernatx, Inc. Polynucléotides codant pour un régulateur de conductance transmembranaire de la mucoviscidose pour le traitement de la mucoviscidose
WO2022204370A1 (fr) 2021-03-24 2022-09-29 Modernatx, Inc. Nanoparticules lipidiques et polynucléotides codant pour l'ornithine transcarbamylase pour le traitement d'une déficience en ornithine transcarbamylase
WO2022204380A1 (fr) 2021-03-24 2022-09-29 Modernatx, Inc. Nanoparticules lipidiques contenant des polynucléotides codant pour des sous-unités alpha et bêta de propionyl-coa carboxylase et leurs utilisations
WO2022204390A1 (fr) 2021-03-24 2022-09-29 Modernatx, Inc. Nanoparticules lipidiques contenant des polynucléotides codant pour la phénylalanine hydroxylase et leurs utilisations
WO2022204371A1 (fr) 2021-03-24 2022-09-29 Modernatx, Inc. Nanoparticules lipidiques contenant des polynucléotides codant pour la glucose-6-phosphatase et leurs utilisations
WO2022204369A1 (fr) 2021-03-24 2022-09-29 Modernatx, Inc. Polynucléotides codant pour la méthylmalonyl-coa mutase pour le traitement de l'acidémie méthylmalonique
WO2022266083A2 (fr) 2021-06-15 2022-12-22 Modernatx, Inc. Polynucléotides modifiés pour expression spécifique de type cellulaire ou micro-environnement
WO2022271776A1 (fr) 2021-06-22 2022-12-29 Modernatx, Inc. Polynucléotides codant pour le polypeptide a1, de la famille de l'uridine diphosphate glycosyltransférase 1, pour le traitement du syndrome de crigler-najjar
EP4159741A1 (fr) 2014-07-16 2023-04-05 ModernaTX, Inc. Procédé de production d'un polynucléotide chimérique pour coder un polypeptide ayant une liaison internucléotidique contenant un triazole
WO2023056044A1 (fr) 2021-10-01 2023-04-06 Modernatx, Inc. Polynucléotides codant la relaxine pour le traitement de la fibrose et/ou d'une maladie cardiovasculaire
WO2023183909A2 (fr) 2022-03-25 2023-09-28 Modernatx, Inc. Polynucléotides codant pour des protéines du groupe de complémentation de l'anémie de fanconi, destinées au traitement de l'anémie de fanconi
WO2024026254A1 (fr) 2022-07-26 2024-02-01 Modernatx, Inc. Polynucléotides modifiés pour la régulation temporelle de l'expression

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4944389B1 (fr) * 1970-12-18 1974-11-28
US7223827B1 (en) * 2004-02-27 2007-05-29 Fritz Industries, Inc Water control in a subsurface formation
EP1847271A2 (fr) * 2000-11-20 2007-10-24 Sorbent Therapeutics, Inc. Polymères hydroabsorbants et leur utilisation en tant que médicament
WO2009029829A1 (fr) * 2007-08-29 2009-03-05 Sorbent Therapeutics, Inc. Compositions polymères à capacité de retenue de solution saline renforcée et leur procédé de préparation et d'utilisation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4944389B1 (fr) * 1970-12-18 1974-11-28
EP1847271A2 (fr) * 2000-11-20 2007-10-24 Sorbent Therapeutics, Inc. Polymères hydroabsorbants et leur utilisation en tant que médicament
US7223827B1 (en) * 2004-02-27 2007-05-29 Fritz Industries, Inc Water control in a subsurface formation
WO2009029829A1 (fr) * 2007-08-29 2009-03-05 Sorbent Therapeutics, Inc. Compositions polymères à capacité de retenue de solution saline renforcée et leur procédé de préparation et d'utilisation

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014152211A1 (fr) 2013-03-14 2014-09-25 Moderna Therapeutics, Inc. Formulation et administration de compositions de nucléosides, de nucléotides, et d'acides nucléiques modifiés
WO2015034928A1 (fr) 2013-09-03 2015-03-12 Moderna Therapeutics, Inc. Polynucléotides chimériques
WO2015034925A1 (fr) 2013-09-03 2015-03-12 Moderna Therapeutics, Inc. Polynucléotides circulaires
WO2015051214A1 (fr) 2013-10-03 2015-04-09 Moderna Therapeutics, Inc. Polynucléotides codant pour un récepteur de lipoprotéines de faible densité
EP4159741A1 (fr) 2014-07-16 2023-04-05 ModernaTX, Inc. Procédé de production d'un polynucléotide chimérique pour coder un polypeptide ayant une liaison internucléotidique contenant un triazole
WO2016014846A1 (fr) 2014-07-23 2016-01-28 Moderna Therapeutics, Inc. Polynucléotides modifiés destinés à la production d'anticorps intracellulaires
EP4253544A2 (fr) 2017-05-18 2023-10-04 ModernaTX, Inc. Arn messager modifié comprenant des éléments d'arn fonctionnels
WO2018213731A1 (fr) 2017-05-18 2018-11-22 Modernatx, Inc. Polynucléotides codant pour des polypeptides d'interleukine-12 (il12) ancrés et leurs utilisations
WO2018213789A1 (fr) 2017-05-18 2018-11-22 Modernatx, Inc. Arn messager modifié comprenant des éléments d'arn fonctionnels
WO2018232006A1 (fr) 2017-06-14 2018-12-20 Modernatx, Inc. Polynucléotides codant pour le facteur viii de coagulation
WO2019104195A1 (fr) 2017-11-22 2019-05-31 Modernatx, Inc. Polynucléotides codant pour des sous-unités alpha et bêta de propionyl-coa carboxylase pour le traitement de l'acidémie propionique
WO2019104160A2 (fr) 2017-11-22 2019-05-31 Modernatx, Inc. Polynucléotides codant pour la phénylalanine hydroxylase pour le traitement de la phénylcétonurie
WO2019104152A1 (fr) 2017-11-22 2019-05-31 Modernatx, Inc. Polynucléotides codant pour l'ornithine transcarbamylase pour le traitement de troubles du cycle de l'urée
WO2019136241A1 (fr) 2018-01-05 2019-07-11 Modernatx, Inc. Polynucléotides codant pour des anticorps anti-virus du chikungunya
WO2019226650A1 (fr) 2018-05-23 2019-11-28 Modernatx, Inc. Administration d'adn
WO2020023390A1 (fr) 2018-07-25 2020-01-30 Modernatx, Inc. Traitement enzymatique substitutif basé sur l'arnm combiné à un chaperon pharmacologique pour le traitement de troubles du stockage lysosomal
WO2020047201A1 (fr) 2018-09-02 2020-03-05 Modernatx, Inc. Polynucléotides codant pour l'acyl-coa déshydrogénase à très longue chaîne pour le traitement de l'insuffisance en acyl-coa déshydrogénase à très longue chaîne
WO2020056147A2 (fr) 2018-09-13 2020-03-19 Modernatx, Inc. Polynucléotides codant la glucose-6-phosphatase pour le traitement de la glycogénose
WO2020056155A2 (fr) 2018-09-13 2020-03-19 Modernatx, Inc. Polynucléotides codant pour les sous-unités e1-alpha, e1-beta et e2 du complexe alpha-cétoacide déshydrogénase à chaîne ramifiée pour le traitement de la leucinose
WO2020056239A1 (fr) 2018-09-14 2020-03-19 Modernatx, Inc. Polynucléotides codant pour le polypeptide a1, de la famille de l'uridine diphosphate glycosyltransférase 1, pour le traitement du syndrome de crigler-najjar
WO2020069169A1 (fr) 2018-09-27 2020-04-02 Modernatx, Inc. Polynucléotides codant pour l'arginase 1 pour le traitement d'une déficience en arginase
WO2020227642A1 (fr) 2019-05-08 2020-11-12 Modernatx, Inc. Compositions pour peau et plaies et leurs méthodes d'utilisation
WO2021247507A1 (fr) 2020-06-01 2021-12-09 Modernatx, Inc. Variants de la phénylalanine hydroxylase et leurs utilisations
WO2022104131A1 (fr) 2020-11-13 2022-05-19 Modernatx, Inc. Polynucléotides codant pour un régulateur de conductance transmembranaire de la mucoviscidose pour le traitement de la mucoviscidose
WO2022204369A1 (fr) 2021-03-24 2022-09-29 Modernatx, Inc. Polynucléotides codant pour la méthylmalonyl-coa mutase pour le traitement de l'acidémie méthylmalonique
WO2022204371A1 (fr) 2021-03-24 2022-09-29 Modernatx, Inc. Nanoparticules lipidiques contenant des polynucléotides codant pour la glucose-6-phosphatase et leurs utilisations
WO2022204390A1 (fr) 2021-03-24 2022-09-29 Modernatx, Inc. Nanoparticules lipidiques contenant des polynucléotides codant pour la phénylalanine hydroxylase et leurs utilisations
WO2022204380A1 (fr) 2021-03-24 2022-09-29 Modernatx, Inc. Nanoparticules lipidiques contenant des polynucléotides codant pour des sous-unités alpha et bêta de propionyl-coa carboxylase et leurs utilisations
WO2022204370A1 (fr) 2021-03-24 2022-09-29 Modernatx, Inc. Nanoparticules lipidiques et polynucléotides codant pour l'ornithine transcarbamylase pour le traitement d'une déficience en ornithine transcarbamylase
WO2022266083A2 (fr) 2021-06-15 2022-12-22 Modernatx, Inc. Polynucléotides modifiés pour expression spécifique de type cellulaire ou micro-environnement
WO2022271776A1 (fr) 2021-06-22 2022-12-29 Modernatx, Inc. Polynucléotides codant pour le polypeptide a1, de la famille de l'uridine diphosphate glycosyltransférase 1, pour le traitement du syndrome de crigler-najjar
WO2023056044A1 (fr) 2021-10-01 2023-04-06 Modernatx, Inc. Polynucléotides codant la relaxine pour le traitement de la fibrose et/ou d'une maladie cardiovasculaire
WO2023183909A2 (fr) 2022-03-25 2023-09-28 Modernatx, Inc. Polynucléotides codant pour des protéines du groupe de complémentation de l'anémie de fanconi, destinées au traitement de l'anémie de fanconi
WO2024026254A1 (fr) 2022-07-26 2024-02-01 Modernatx, Inc. Polynucléotides modifiés pour la régulation temporelle de l'expression

Also Published As

Publication number Publication date
IL233579A0 (en) 2014-08-31

Similar Documents

Publication Publication Date Title
WO2013106073A1 (fr) Compositions comprenant des polymères réticulés de liaison à des cations et utilisations associées
JP6600062B2 (ja) 架橋型カチオン結合性ポリマーを含む組成物
WO2013106086A1 (fr) Compositions comprenant des polymères réticulés de liaison à des cations et utilisations associées
CA2863240A1 (fr) Compositions comprenant des polymeres reticules de liaison a des cations et utilisations associees
EP2187979B1 (fr) Compositions polymères absorbantes à contenu de contre-ion variable et leurs procédés de préparation et d'utilisation
EP2663290A1 (fr) Compositions comportant des polymères réticulés de liaison à des cations et une base, et leurs utilisations
CA2863233A1 (fr) Compositions comprenant des polymeres reticules de liaison a des cations et utilisations associees
WO2014015244A1 (fr) Composition comprenant des polymères réticulés à liaison cationique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12726283

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014552179

Country of ref document: JP

Kind code of ref document: A

Ref document number: 2863233

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 233579

Country of ref document: IL

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 12726283

Country of ref document: EP

Kind code of ref document: A1