WO2013105320A1 - Method for manufacturing latex foam - Google Patents

Method for manufacturing latex foam Download PDF

Info

Publication number
WO2013105320A1
WO2013105320A1 PCT/JP2012/076512 JP2012076512W WO2013105320A1 WO 2013105320 A1 WO2013105320 A1 WO 2013105320A1 JP 2012076512 W JP2012076512 W JP 2012076512W WO 2013105320 A1 WO2013105320 A1 WO 2013105320A1
Authority
WO
WIPO (PCT)
Prior art keywords
latex
turbine blade
disk
stirring
blade
Prior art date
Application number
PCT/JP2012/076512
Other languages
French (fr)
Japanese (ja)
Inventor
高井 淳
芳明 宮本
Original Assignee
住友ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ゴム工業株式会社 filed Critical 住友ゴム工業株式会社
Publication of WO2013105320A1 publication Critical patent/WO2013105320A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/30Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by mixing gases into liquid compositions or plastisols, e.g. frothing with air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/111Centrifugal stirrers, i.e. stirrers with radial outlets; Stirrers of the turbine type, e.g. with means to guide the flow
    • B01F27/1111Centrifugal stirrers, i.e. stirrers with radial outlets; Stirrers of the turbine type, e.g. with means to guide the flow with a flat disc or with a disc-like element equipped with blades, e.g. Rushton turbine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • B01F27/90Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with paddles or arms 
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3442Mixing, kneading or conveying the foamable material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2215/00Auxiliary or complementary information in relation with mixing
    • B01F2215/04Technical information in relation with mixing
    • B01F2215/0413Numerical information
    • B01F2215/0418Geometrical information
    • B01F2215/0431Numerical size values, e.g. diameter of a hole or conduit, area, volume, length, width, or ratios thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2007/00Use of natural rubber as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2075/00Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/48Wearing apparel
    • B29L2031/4842Outerwear
    • B29L2031/4864Gloves
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2321/00Characterised by the use of unspecified rubbers
    • C08J2321/02Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08J2327/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes

Definitions

  • the present invention relates to a production method for producing latex foam by foaming rubber or resin latex by stirring.
  • Rubber and resin latexes are excellent in processability for processing into various article shapes, and can form articles excellent in strength and the like. For this reason, it is widely used as a forming material in various applications such as rubber gloves (including rubber gloves and resin gloves, the same applies hereinafter). For example, by immersing a mold corresponding to the three-dimensional shape of a rubber glove in the latex and pulling it up, after attaching the latex to the surface of the mold, in the case of rubber latex, the mold is heated and vulcanized together with the resin. In the case of this latex, the rubber gloves corresponding to the three-dimensional shape of the mold can be produced by drying and then curing as necessary and then removing from the mold.
  • the formed article when latex is foamed by stirring to form a latex foam containing air, and the latex foam is used as a material for forming an article such as a rubber glove, the formed article has a porous structure and improves properties such as flexibility. Or providing new characteristics such as liquid absorbency, and further, the weight of the article can be reduced.
  • the added value of an article formed using latex foam is determined by the size (average bubble diameter) and amount (bubble content) of bubbles contained in the article. Therefore, it is important to control the average bubble diameter and bubble content of the latex foam that affects these.
  • the average bubble diameter is important, and the smaller the average bubble diameter, the denser the bubbles, the more the relative bubble surface area can be increased when compared with the same bubble content while maintaining the strength of the article in an appropriate range. Therefore, characteristics such as liquid absorbency due to the porous structure can be further improved.
  • wet grip properties can be improved by imparting liquid absorbency with a porous structure on the surface.
  • the average bubble diameter of the latex foam as the forming material is small because the average bubble diameter of the rubber glove to be formed can be reduced and the liquid absorbency is improved.
  • the average cell diameter is preferably 300 ⁇ m or less, and more preferably about 100 ⁇ m or less.
  • the bubble content of the latex foam is preferably as small as possible.
  • the bubble content is preferably 60% by volume or less, and more preferably about 40% by volume or less.
  • Methods for foaming latex are roughly classified into chemical foaming and physical foaming.
  • the chemical foaming method uses a foaming agent that generates gas by heating or chemical reaction. By blending a foaming agent in the latex, gas is generated from the foaming agent by heating or the like, and the latex is included in the latex, the latex can be foamed.
  • the physical foaming method for example, a method of blowing air directly into the latex, or stirring and foaming the latex, that is, by mixing the lower latex (liquid) and the upper air from the liquid level by gas-liquid mixing, A method of including air as bubbles in latex is known.
  • the physical foaming method has the advantage that the material cost can be reduced by the amount that does not require a foaming agent compared with the chemical foaming method, but it is difficult to control the average bubble diameter and bubble content of latex foam. Yes.
  • Patent Document 1 it has been studied to disperse the generated bubbles by stirring them using a stirrer equipped with a propeller blade as a stirring blade after bubbling gas into latex.
  • Patent Document 2 it is considered that the latex is stirred and foamed using a continuous mechanical foaming machine, a home mixer, or the like.
  • the bubbles in the latex can be made finer to some extent than usual.
  • these methods may not be able to reduce the bubbles to a sufficient level, for example, a level capable of imparting good liquid absorbency to the rubber glove as described above.
  • the number of processes increases and the apparatus becomes complicated, and the time required for the work becomes long, resulting in a decrease in latex foam productivity and an increase in production cost.
  • An object of the present invention is to provide a method for producing a latex foam, which can produce a latex foam with fine bubbles to a sufficient level, with a simpler apparatus, with fewer steps and a shorter working time with high productivity. There is.
  • Latex foam can be produced with higher productivity than ever.
  • the invention of claim 1 is a method for producing a latex foam, comprising a step of preparing a bottomed cylindrical stirring tank arranged so that a central axis is vertical, and a latex of rubber or resin in the stirring tank A step of immersing a disc turbine blade having a rotating shaft in a vertical direction in the latex accommodated in the agitation tank, and stirring the latex by rotating the disc turbine blade at a constant speed for a certain period of time.
  • a method for producing a latex foam comprising: a step; and a step of pulling up the disk turbine blade after the rotation is stopped from within the latex.
  • the disk turbine blade is attached to a disk that rotates horizontally around a rotation axis, and to the circumferential direction of the disk, radially about the rotation axis and orthogonal to the disk.
  • the rotational speed of the disk turbine blade is 100 m / min or more as expressed by the linear velocity at the radially outer tip of the blade body. A method for producing latex foam.
  • the invention according to claim 4 is the latex foam according to claim 2, wherein the rotational speed of the disk turbine blade is 250 m / min or more in terms of the linear velocity at the radially outer tip of the blade body. It is a manufacturing method.
  • the invention of claim 5 is characterized in that the rotational speed of the disk turbine blade is 500 m / min or less, expressed by the linear velocity at the radially outer tip of the blade body. It is a manufacturing method of latex foam given in one paragraph.
  • the invention of claim 6 is characterized in that the rotational speed of the disk turbine blade is 450 m / min or less in terms of the linear velocity at the radially outer tip of the blade body.
  • the invention according to claim 7 is the method for producing latex foam according to claim 1, wherein the time for rotating the disk turbine blade in the step of stirring the latex is from 30 minutes to 2 hours.
  • the inner diameter of the agitating tank is set to D and the central portion in the height direction of the disc turbine blade immersed so that the rotation axis extends in the vertical direction and the liquid of the latex. 2.
  • the immersion depth is adjusted so that the ratio h / D is in a range satisfying 0.5 or more and 1.5 or less, where h is the distance to the surface.
  • the ratio d / D where D is the inner diameter of the stirring tank and d is the maximum diameter of the disk turbine blade (the dimension from the blade tip to the opposite blade tip through the rotation center). 2.
  • the ratio h / D that defines the amount of immersion of the disk turbine blade in the latex is less than 0.5, the amount of immersion is not sufficient, and the disk turbine blade is considerably on the liquid surface of the latex. It will rotate at a close position. Therefore, there is a tendency that the degree of gas-liquid mixing by stirring tends to be too strong, the bubble content of the latex foam becomes excessively high, and the workability when processing into the shape of an article using the latex foam as a forming material is high There is a possibility that the strength of the article to be formed may be reduced.
  • the ratio h / D is within the range of 0.5 or more and 1.5 or less, the amount of immersion of the disk turbine blade in the latex and the degree of gas-liquid mixing by stirring are in an appropriate range. Can be maintained.
  • the bubble content of the latex foam is set within a suitable range to further improve the workability, and further improve the properties such as strength and liquid absorbency of articles formed using the latex foam. It becomes possible to do.
  • miniaturized to sufficient level to a sufficient level with high productivity by a fewer process and short working time using a simpler apparatus can be provided. It becomes possible.
  • FIG. 1 It is a perspective view which shows the external appearance of an example of the disc turbine blade used with the manufacturing method of the latex foam of this invention. It is sectional drawing which shows an example of the process of foaming latex using the disk turbine blade of the example of the said FIG. 1 among the manufacturing methods of the latex foam of this invention.
  • FIG. 1 is a perspective view showing an appearance of an example of a disk turbine blade used in the method for producing a latex foam of the present invention.
  • a disc turbine blade 1 of this example is attached to and can be removed from a stirring shaft 2 of a stirrer (not shown) in a state orthogonal to the direction of the central axis L1 of the stirring shaft 2.
  • a disc 3 and a plurality of (six in this example) wing bodies 4 provided at equal intervals in the circumferential direction of the disc 3 are provided.
  • the wing body 4 has a rectangular flat plate shape that is attached radially to the stirring shaft 2 and orthogonal to the disc 3.
  • a cylindrical boss 6 having a through hole 5 through which the inner diameter thereof substantially coincides with the outer diameter of the stirring shaft 2 and through which the stirring shaft 2 is inserted is integrally provided.
  • the disc 3, the boss 6 and the through hole 5 are provided concentrically with each other.
  • the disc 3 is provided integrally with the boss 6 in a direction orthogonal to the direction of the boss 6 and the central axis of the through-hole 5 (which coincides with the central axis L1 of the stirring shaft 2 in the figure).
  • a screw hole 7 is passed through the boss 6 from the outer peripheral surface to the inner peripheral surface facing the through hole 5.
  • a screw (not shown) is screwed into the screw hole 7 and tightened to tighten the disc 3 in the direction of the central axis L 1 of the stirring shaft 2. It can be fixed in an orthogonal state. Moreover, the disc 3 can be removed from the stirring shaft 2 by loosening the tightening of the screw.
  • the disk turbine blade 1 in the example shown in the figure includes six blade bodies 4, the number of blade bodies 4 can be arbitrarily set. As the number of the wing bodies 4 increases, the effect of refining the bubbles by the shearing force is improved. On the other hand, however, a large rotational torque is required to rotate the disk turbine blade 1 at a predetermined rotational speed. Therefore, the number of the wing bodies 4 is preferably about 4 or more and 6 or less.
  • each wing body 4 is a rectangular flat plate shape as shown in the figure in consideration of applying a shearing force to latex to make bubbles finer. Is preferred.
  • the dimensions of both the vertical and horizontal sides are 0.2 times or more the maximum diameter d of the disk turbine blade 1 (the dimension from the tip of the blade body 4 to the tip of the opposite blade body 4 through the central axis L1), It is preferably about 0.3 times or less.
  • FIG. 2 is a cross-sectional view showing a process of foaming latex in a batch-type open stirring tank using the disk turbine blade 1 of FIG. 1 in the latex foam production method of the present invention.
  • stirring tank 8 has a cylindrical shape having a constant inner diameter D, and is disposed with its central axis L2 facing in the vertical direction.
  • the upper end of the stirring tank 8 in the vertical direction is an opening 9 and the lower end is closed as a bottom 10. That is, the stirring tank 8 has a bottomed cylindrical shape.
  • the distance from the liquid surface 12 of the latex 11 before stirring to the disk 3 of the disk turbine blade 1 (distance to the center in the height direction of the disk turbine blade 1) h (center axis L1, L2 direction (vertical)
  • the immersion depth is set so that the distance h) in the direction) is in a range satisfying 0.5 or more and 1.5 or less, expressed as a ratio h / D with the inner diameter D of the stirring tank 8. If the ratio h / D is less than 0.5, the immersion depth of the disk turbine blade 1 in the latex 11 is not sufficient, and the disk turbine blade 1 rotates at a position that is considerably close to the liquid surface 12 of the latex 11. become.
  • the degree of gas-liquid mixing by stirring tends to be too strong, the bubble content of the latex foam becomes excessively high, and the workability when processing into the shape of an article using the latex foam as a forming material is high There is a possibility that the strength of the article to be formed may be reduced.
  • the ratio h / D exceeds 1.5, the immersion depth becomes too deep, and the disc turbine blade 1 rotates at a position considerably deeper than the liquid surface 12 of the latex 11.
  • the degree of gas-liquid mixing by stirring tends to be too weak, and the bubble content of the latex foam becomes excessively low, and an article excellent in desired properties such as liquid absorbability may not be obtained.
  • the ratio h / D is in the range of 0.5 or more and 1.5 or less, the immersion depth of the disk turbine blade 1 in the latex 11 and the degree of gas-liquid mixing by stirring are in an appropriate range. Can be maintained.
  • the bubble content of the latex foam is set within a suitable range, the workability is further improved, and the properties such as strength and liquid absorbency of articles formed using the latex foam are further improved. It is possible to make it.
  • ratio h / d is 0.7 or more also in the said range, and it is preferable that it is 1.0 or less.
  • the blade diameter d of the disk turbine blade 1 can be arbitrarily set according to the size of the stirring tank 8. However, considering the stirring efficiency, the blade diameter d and the stirring tank 8 are set so that the ratio d / D between the blade diameter d and the inner diameter D of the stirring tank 8 is in the range of 0.3 to 0.4. It is preferable to set the inner diameter D of the. Further, in the example of the figure, only one disk turbine blade 1 is attached to the tip of the stirring shaft 2, but depending on the depth of the stirring tank 8, the amount of latex 11 accommodated in the stirring tank 8, etc. Two or more disk turbine blades 1 may be attached to one stirring shaft 2 in the axial direction thereof.
  • the lower latex 11 from the liquid level 12 and the upper air are gas-liquid mixed by stirring, and air is included in the latex 11 as bubbles, and the bubbles are transferred from the blade body 4 of the disk turbine blade 1 to the latex 11.
  • the rotational speed of the agitation shaft 2 is preferably set to 100 m / min or more, particularly 250 m / min or more in terms of the linear velocity of the disk turbine blade 1 at the radially outer tip 13 of the blade body 4.
  • the linear velocity is 500 m / min or less, particularly 450 m / min or less, taking into account that the degree of gas-liquid mixing by stirring becomes too strong and the bubble content of the latex foam is prevented from becoming excessively high. It is preferable to set.
  • the stirring time, temperature, and the like can be arbitrarily set according to the type and viscosity of the latex to be stirred.
  • the stirring temperature (latex liquid temperature) is about room temperature (5 to 35 ° C.) in consideration of foaming while preventing the rubber in the latex from being completely vulcanized during stirring. Is preferred. Further, the time for stirring is preferably 30 minutes or longer, and preferably 2 hours or shorter in consideration of making the bubbles fine enough to a sufficient level.
  • the latex that is the basis of the latex foam to be produced
  • various latexes that can be used as a forming material for various articles, including various rubbers and resins
  • the rubber latex include one or more of natural rubber latex, deproteinized natural rubber latex, nitrile rubber (acrylonitrile-butadiene rubber) latex, styrene-butadiene rubber latex, chloroprene rubber latex, and the like.
  • vulcanizing agents sulfur, etc.
  • vulcanization accelerators vulcanization accelerators (titanium oxide, etc.)
  • anti-aging agents fillers, dispersants, stability You may mix
  • a foaming agent, a microcapsule, a foaming agent, or the like may be blended, and the latex may be foamed by stirring and foamed by a chemical foaming method using a foaming agent or the like.
  • the resin latex examples include one or more emulsions (latex) of a resin that can be emulsified (latexed), such as a vinyl chloride resin, a urethane resin, and an acrylic resin.
  • a resin that can be emulsified (latexed) such as a vinyl chloride resin, a urethane resin, and an acrylic resin.
  • additives such as an antioxidant, a filler, a dispersant, a stabilizer, and a surfactant may be further added to the latex of the resin.
  • a foaming agent, microcapsules, a foaming agent and the like may be blended and foamed by stirring, and foamed by a chemical foaming method using a foaming agent or the like. According to the present invention, it is possible to produce a latex foam in which bubbles are refined to a sufficient level only by stirring a rubber or resin latex using a disk turbine blade in a short working time with high productivity. Become.
  • Example 1 (Latex preparation)
  • 0.5 parts by mass of ammonia casein, 1 part by mass of potassium oleate, 1 part by mass of potassium hydroxide, 1 part by mass of sulfur, and dibutyl per 100 parts by mass of rubber (solid content) in the natural rubber latex 1 part by mass of zinc carbamate, 0.5 part by mass of zinc oxide, and 3 parts by mass of titanium oxide were blended to prepare a latex as a raw material for latex foam.
  • aqueous solution among the said each component described the quantity of the active ingredient in it.
  • the stirring tank 8 for storing the latex has a cylindrical shape with an inner diameter D of 140 cm, and its central axis L2 is arranged in the vertical direction, and the upper end in the vertical direction is an opening 9. And having a capacity of 500 L with the lower end closed as the bottom 10.
  • a disc 3 attached to the stirring shaft 2 so as to be orthogonal to the direction of the central axis L ⁇ b> 1 of the stirring shaft 2, the circumferential direction of the disc 3, etc.
  • the ratio d / D between the blade diameter d and the inner diameter D of the stirring tank 8 is 0.36.
  • the disc turbine blade 1 attached to the tip of the stirring shaft 2 was immersed in the latex 11 so that the distance h from the liquid surface 12 of the latex 11 before stirring to the disk 3 was 120 cm.
  • the ratio h / D between the distance h and the inner diameter D of 8 of the stirring vessel is 0.86.
  • Example 2 A latex foam was produced in the same manner as in Example 1 except that the rotation speed of the stirring shaft 2 was 60 rpm, and the linear velocity of the radial outer tip 13 of the blade body 4 of the disk turbine blade 1 was 94 m / min.
  • Example 3 A latex foam was prepared in the same manner as in Example 1 except that the disk turbine blade 1 was immersed in the latex 11 so that the distance h from the liquid surface 12 of the latex 11 before stirring to the disk 3 was 60 cm. Manufactured.
  • Example 4 A latex foam was prepared in the same manner as in Example 1 except that the disk turbine blade 1 was immersed in the latex 11 so that the distance h from the liquid surface 12 of the latex 11 before stirring to the disc 3 was 210 cm. Manufactured.
  • the ratio d / D is 0.36, the same as in Example 1, and the ratio h / D is 1.5.
  • ⁇ Comparative example 1> Instead of the disk turbine blade 1, three blades having a substantially elliptical shape and twisted are fixed to a cylindrical boss by being inclined with respect to the direction of the central axis L1, and the blade diameter d is 50 cm. The three-blade propeller blade was used.
  • the propeller blade was immersed in the latex 11 so that the distance h from the liquid level 12 of the latex 11 before stirring to the boss of the propeller blade to the attachment portion of each blade was 60 cm.
  • the ratio d / D is 0.36, which is the same as in Example 1, and the ratio h / D is 0.43, which is the same as in Example 3.
  • the stirrer was driven, the stirring shaft 2 was rotated at a rotation speed of 200 rpm, and stirred for 1 hour to foam the latex, thereby producing a latex foam.
  • the paddle blade was immersed in the latex 11 so that the distance h from the liquid surface 12 of the latex 11 before stirring to the center position of the boss of the paddle blade in the direction of the central axes L1 and L2 was 60 cm. .
  • the ratio d / D is 0.36, which is the same as in Example 1, and the ratio h / D is 0.43, which is the same as in Example 3.
  • a small amount of the manufactured latex foam was sampled on a petri dish, an image was taken using a digital microscope, and image analysis was performed. That is, 50 bubbles were arbitrarily selected from the photographed image, and the average value was calculated from the result of measuring the diameter of each bubble in the two-point distance measurement mode to obtain the average bubble diameter ( ⁇ m).
  • the produced latex foam was weighed with a cylinder to have a volume of 100 ml, and its mass was measured to determine the apparent specific gravity of the latex foam.
  • the bubble content (% by volume) was calculated from the apparent specific gravity and the true specific gravity of the latex that was the basis of the latex foam.
  • the average cell diameter of the latex foam produced by using a disc turbine blade as a stirring blade is larger than when other stirring blades are used. It was found that the latex foam can be refined to a sufficient level and the latex foam can be produced with high productivity in a short working time without requiring a step of dispersing the bubbles.
  • the linear velocity at the radially outer tip of the blade body of the disk turbine blade is 100 m. It has been found that it is preferable to rotate the stirring shaft so that it is at least 1 minute. Furthermore, from the results of Examples 1 and 2 and Examples 3 and 4, considering that the bubble content is suppressed, the amount of immersion of the disk turbine blade in the latex is h / D of 0.5 or more, 1.5 It was found that it is preferable to set so as to be as follows.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

The present invention provides a method for manufacturing latex foam that can manufacture latex foam in which bubbles have been made small to a sufficient level using a simple device with excellent productivity with few steps and in a short time. A stirring tank (8) is disposed such that a center axis (L2) is vertical. Rubber or resin latex is accommodated in the stirring tank (8), and a disk turbine fin (1) having an axis of rotation (L1) in the vertical direction is immersed in the latex. Letting D be the inside diameter of the stirring tank (8) and h be the distance between the center part in the direction of the height of the disk turbine fin and the liquid surface of the latex, the depth of immersion is set to a depth that satisfies the ratio h/D being 0.5 - 1.5. Moreover, a disk turbine fin (1) that has a disk (3) that rotates horizontally and a plurality of flat plate shaped fin bodies (4) attached radially in the direction of the periphery of the disk (3) so as to be orthogonal to the disk (3) is used.

Description

ラテックスフォームの製造方法Method for producing latex foam
 本発明は、ゴムまたは樹脂のラテックスを攪拌により泡立たせてラテックスフォームを製造するための製造方法に関するものである。 The present invention relates to a production method for producing latex foam by foaming rubber or resin latex by stirring.
 ゴムや樹脂のラテックスは、種々の物品の形状に加工するための加工性に優れる上、強度等に優れた物品を形成できる。このため、例えばゴム手袋(ゴム製の手袋および樹脂製の手袋を含む。以下同様。)等の様々な用途において形成材料として広く利用されている。
 例えば、ゴム手袋の立体形状に対応した型をラテックス中に浸漬して引き上げることで、当該型の表面にラテックスを付着させたのち、ゴムのラテックスの場合は型ごと加熱して加硫させ、樹脂のラテックスの場合は乾燥させ、さらに必要に応じて硬化させたのち型から脱型すると、型の立体形状に対応したゴム手袋を製造することができる。
Rubber and resin latexes are excellent in processability for processing into various article shapes, and can form articles excellent in strength and the like. For this reason, it is widely used as a forming material in various applications such as rubber gloves (including rubber gloves and resin gloves, the same applies hereinafter).
For example, by immersing a mold corresponding to the three-dimensional shape of a rubber glove in the latex and pulling it up, after attaching the latex to the surface of the mold, in the case of rubber latex, the mold is heated and vulcanized together with the resin. In the case of this latex, the rubber gloves corresponding to the three-dimensional shape of the mold can be produced by drying and then curing as necessary and then removing from the mold.
 また、ラテックスを攪拌により泡立たせて空気を含ませたラテックスフォームとし、当該ラテックスフォームをゴム手袋等の物品の形成材料として用いると、形成した物品を多孔質構造として柔軟性等の特性を向上させたり、液吸収性等の新たな特性を付与したり、さらには物品を軽量化できるという利点がある。
 ラテックスフォームを用いて形成する物品の付加価値は、物品中に含まれる気泡のサイズ(平均気泡径)や量(気泡含有率)によって決まる。そのため、これらを左右するラテックスフォームの平均気泡径や気泡含有率のコントロールが重要である。
Moreover, when latex is foamed by stirring to form a latex foam containing air, and the latex foam is used as a material for forming an article such as a rubber glove, the formed article has a porous structure and improves properties such as flexibility. Or providing new characteristics such as liquid absorbency, and further, the weight of the article can be reduced.
The added value of an article formed using latex foam is determined by the size (average bubble diameter) and amount (bubble content) of bubbles contained in the article. Therefore, it is important to control the average bubble diameter and bubble content of the latex foam that affects these.
 特に平均気泡径が重要であり、平均気泡径が小さく気泡が緻密であるほど、物品の強度等を適度な範囲に維持しながら、同じ気泡含有率で比較した場合に相対気泡表面積を増加できる。よって、多孔質構造とすることによる液吸収性等の特性をさらに良好に発現させることができる。
 例えばゴム手袋では、その表面を多孔質構造として液吸収性を付与することにより、ウエットグリップ性を向上させることができる。その際、形成材料であるラテックスフォームの平均気泡径が小さい方が、形成されるゴム手袋の平均気泡径を小さくでき、液吸収性が向上するため好ましい。具体的には、平均気泡径は300μm以下、中でも100μm以下程度であるのが好ましい。
In particular, the average bubble diameter is important, and the smaller the average bubble diameter, the denser the bubbles, the more the relative bubble surface area can be increased when compared with the same bubble content while maintaining the strength of the article in an appropriate range. Therefore, characteristics such as liquid absorbency due to the porous structure can be further improved.
For example, in rubber gloves, wet grip properties can be improved by imparting liquid absorbency with a porous structure on the surface. At that time, it is preferable that the average bubble diameter of the latex foam as the forming material is small because the average bubble diameter of the rubber glove to be formed can be reduced and the liquid absorbency is improved. Specifically, the average cell diameter is preferably 300 μm or less, and more preferably about 100 μm or less.
 ただし加工性や物品の強度等の観点からは、ラテックスフォームの気泡含有率は小さいほど好ましい。具体的には、気泡含有率は60体積%以下、中でも40体積%以下程度であるのが好ましい。
 ラテックスを泡立たせる方法は、化学発泡法と物理発泡法に大別される。
 このうち化学発泡法では、加熱や化学反応によってガスを発生する発泡剤を使用する。発泡剤をラテックス中に配合し、加熱等によって発泡剤からガスを発生させてラテックス中に含ませることにより、ラテックスを泡立たせることができる。
However, from the viewpoint of processability, strength of the article, etc., the bubble content of the latex foam is preferably as small as possible. Specifically, the bubble content is preferably 60% by volume or less, and more preferably about 40% by volume or less.
Methods for foaming latex are roughly classified into chemical foaming and physical foaming.
Among these, the chemical foaming method uses a foaming agent that generates gas by heating or chemical reaction. By blending a foaming agent in the latex, gas is generated from the foaming agent by heating or the like, and the latex is included in the latex, the latex can be foamed.
 また物理発泡法としては、例えばラテックス中に直接に空気を吹き込む方法や、ラテックスを攪拌して泡立たせる、すなわち液面から下のラテックス(液)と上の空気とを気液混合することで、空気をラテックス中に気泡として含ませる方法等が知られている。
 一般に物理発泡法は、化学発泡法に比べて発泡剤を必要としない分、材料コストを低減できるという利点があるものの、ラテックスフォームの平均気泡径や気泡含有率をコントロールするのが難しいとされている。
In addition, as the physical foaming method, for example, a method of blowing air directly into the latex, or stirring and foaming the latex, that is, by mixing the lower latex (liquid) and the upper air from the liquid level by gas-liquid mixing, A method of including air as bubbles in latex is known.
In general, the physical foaming method has the advantage that the material cost can be reduced by the amount that does not require a foaming agent compared with the chemical foaming method, but it is difficult to control the average bubble diameter and bubble content of latex foam. Yes.
 この問題を解決するために、種々の方法が検討されている。
 例えば特許文献1においては、ラテックス中にガスを吹き込んで泡立たせた後、発生した気泡を、攪拌翼としてプロペラ翼を備えた攪拌機を用いて攪拌して分散させることが検討されている。また特許文献2では、ラテックスを、連続機械発泡機や家庭用ミキサー等を用いて攪拌して泡立たせることが検討されている。
In order to solve this problem, various methods have been studied.
For example, in Patent Document 1, it has been studied to disperse the generated bubbles by stirring them using a stirrer equipped with a propeller blade as a stirring blade after bubbling gas into latex. In Patent Document 2, it is considered that the latex is stirred and foamed using a continuous mechanical foaming machine, a home mixer, or the like.
 これらの方法によれば、ラテックス中の気泡を、通常よりある程度は細かくすることが可能であると考えられる。
 しかし発明者の検討によると、これらの方法では、依然として気泡を十分なレベル、例えば前記のようにゴム手袋に良好な液吸収性等を付与できるレベルまで微細化できない場合がある。また、工程数が増加したり装置が複雑化したりするとともに、作業に要する時間が長くなってラテックスフォームの生産性が低下し、生産コストが上昇するといった問題を生じる。
According to these methods, it is considered that the bubbles in the latex can be made finer to some extent than usual.
However, according to the inventor's study, these methods may not be able to reduce the bubbles to a sufficient level, for example, a level capable of imparting good liquid absorbency to the rubber glove as described above. In addition, the number of processes increases and the apparatus becomes complicated, and the time required for the work becomes long, resulting in a decrease in latex foam productivity and an increase in production cost.
特開2011-1662号公報JP 2011-1662 A 特開2007-231428号公報JP 2007-231428 A
 本発明の目的は、気泡が十分なレベルまで微細化されたラテックスフォームを、より簡易な装置を用いてより少ない工程、およびより短い作業時間で生産性良く製造できるラテックスフォームの製造方法を提供することにある。 An object of the present invention is to provide a method for producing a latex foam, which can produce a latex foam with fine bubbles to a sufficient level, with a simpler apparatus, with fewer steps and a shorter working time with high productivity. There is.
 前記課題を解決するため、発明者は、ラテックスを攪拌によって泡立たせるために用いる攪拌機について種々検討した。
 その結果、攪拌機の攪拌シャフトに取り付ける攪拌翼として、攪拌シャフトに、当該攪拌シャフトの中心軸の方向と直交させて取り付けられる円板(ディスク)と、当該円板の周方向に、前記攪拌シャフトを中心とする放射状で、かつ円板と直交させて取り付けられた複数の平板状の翼体とを備えたディスクタービン翼を用いればよいことを見出した。
In order to solve the above-mentioned problems, the inventor conducted various studies on a stirrer used for foaming latex by stirring.
As a result, as a stirring blade attached to the stirring shaft of the stirrer, a disc (disk) attached to the stirring shaft perpendicular to the direction of the central axis of the stirring shaft, and the stirring shaft in the circumferential direction of the disc It has been found that it is sufficient to use a disk turbine blade having a plurality of flat blade bodies that are radially attached to the center and are mounted perpendicular to the disk.
 すなわち、ディスクタービン翼を攪拌シャフトに取り付けた攪拌機を用いてラテックスを攪拌した場合には、気液混合によってラテックス中に気泡を発生させることができるだけでなく、発生させた気泡を、翼体からラテックスに与えられる強いせん断力によって細かく分散させて微細化させることもできる。
 そのため、ディスクタービン翼を備えた攪拌機を用いて攪拌を実施するだけで、他の工程を必要とせずに短時間で、ラテックスをより細かく泡立たせることができ、気泡が十分なレベルまで微細化されたラテックスフォームを、これまでよりも生産性良く製造することが可能となる。
That is, when the latex is stirred using a stirrer in which a disk turbine blade is attached to a stirring shaft, not only can the bubbles be generated in the latex by gas-liquid mixing, but the generated bubbles are also transferred from the blade body to the latex. It can also be finely dispersed by a strong shearing force applied to.
For this reason, the latex can be foamed more finely in a short time without the need for other processes, simply by using a stirrer equipped with a disk turbine blade, and the bubbles are refined to a sufficient level. Latex foam can be produced with higher productivity than ever.
 したがって、請求項1の発明は、ラテックスフォームの製造方法であって、中心軸が垂直になるように配置した有底円筒状の撹拌槽を準備するステップと、前記撹拌槽にゴムまたは樹脂のラテックスを収容するステップと、前記撹拌槽に収容したラテックス内に、垂直方向の回転軸を有するディスクタービン翼を浸漬させるステップと、ディスクタービン翼を一定時間、一定の速度で回転させてラテックスを撹拌するステップと、回転停止後のディスクタービン翼をラテックス内から引き上げるステップと、を含むラテックスフォームの製造方法である。 Accordingly, the invention of claim 1 is a method for producing a latex foam, comprising a step of preparing a bottomed cylindrical stirring tank arranged so that a central axis is vertical, and a latex of rubber or resin in the stirring tank A step of immersing a disc turbine blade having a rotating shaft in a vertical direction in the latex accommodated in the agitation tank, and stirring the latex by rotating the disc turbine blade at a constant speed for a certain period of time. A method for producing a latex foam, comprising: a step; and a step of pulling up the disk turbine blade after the rotation is stopped from within the latex.
 請求項2の発明は、前記ディスクタービン翼は、回転軸を中心に水平に回転する円板と、円板の周方向に、回転軸を中心に放射状で、円板と直交させて取り付けられた複数枚の平板状の翼体と、を有することを特徴とする、請求項1記載のラテックスフォームの製造方法である。
 請求項3の発明は、前記ラテックスを撹拌するステップにおいて、ディスクタービン翼の回転速度は、翼体の径方向外方先端の線速で表わして、100m/分以上である、請求項2記載のラテックスフォームの製造方法である。
According to a second aspect of the present invention, the disk turbine blade is attached to a disk that rotates horizontally around a rotation axis, and to the circumferential direction of the disk, radially about the rotation axis and orthogonal to the disk. The method for producing a latex foam according to claim 1, comprising a plurality of flat wing bodies.
According to a third aspect of the present invention, in the step of stirring the latex, the rotational speed of the disk turbine blade is 100 m / min or more as expressed by the linear velocity at the radially outer tip of the blade body. A method for producing latex foam.
 請求項4の発明は、ディスクタービン翼の回転速度は、翼体の径方向外方先端の線速で表わして、250m/分以上であることを特徴とする、請求項2記載のラテックスフォームの製造方法である。
 請求項5の発明は、ディスクタービン翼の回転速度は、翼体の径方向外方先端の線速で表わして、500m/分以下であることを特徴とする、請求項2~4のいずれか一項に記載のラテックスフォームの製造方法である。
The invention according to claim 4 is the latex foam according to claim 2, wherein the rotational speed of the disk turbine blade is 250 m / min or more in terms of the linear velocity at the radially outer tip of the blade body. It is a manufacturing method.
The invention of claim 5 is characterized in that the rotational speed of the disk turbine blade is 500 m / min or less, expressed by the linear velocity at the radially outer tip of the blade body. It is a manufacturing method of latex foam given in one paragraph.
 請求項6の発明は、ディスクタービン翼の回転速度は、翼体の径方向外方先端の線速表わして、450m/分以下であることを特徴とする、請求項2~4のいずれか一項に記載のラテックスフォームの製造方法である。
 請求項7の発明は、ラテックスを撹拌するステップにおけるディスクタービン翼を回転させる時間は、30分以上で2時間以下であることを特徴とする、請求項1記載のラテックスフォームの製造方法である。
The invention of claim 6 is characterized in that the rotational speed of the disk turbine blade is 450 m / min or less in terms of the linear velocity at the radially outer tip of the blade body. The method for producing a latex foam according to the item.
The invention according to claim 7 is the method for producing latex foam according to claim 1, wherein the time for rotating the disk turbine blade in the step of stirring the latex is from 30 minutes to 2 hours.
 これら発明により、ディスクタービン翼の翼体からラテックスに強いせん断力を与えて、短時間で効率よく、気泡が十分なレベルまで微細化されたラテックスフォームを製造することができる。
 さらに、請求項11の発明は、ディスクタービン翼を浸漬させるステップにおいて、撹拌槽の内径をD、回転軸が垂直方向に延びるように浸漬されたディスクタービン翼の高さ方向中央部とラテックスの液面との距離をhとしたとき、比h/Dが0.5以上で1.5以下を満足する範囲内となるように、浸漬深さを調整することを特徴とする、請求項1記載のラテックスフォームの製造方法である。
By these inventions, it is possible to produce a latex foam in which bubbles are refined to a sufficient level in a short time efficiently by applying a strong shearing force to the latex from the blade body of the disk turbine blade.
Further, according to the invention of claim 11, in the step of immersing the disc turbine blade, the inner diameter of the agitating tank is set to D and the central portion in the height direction of the disc turbine blade immersed so that the rotation axis extends in the vertical direction and the liquid of the latex. 2. The immersion depth is adjusted so that the ratio h / D is in a range satisfying 0.5 or more and 1.5 or less, where h is the distance to the surface. This is a method for producing a latex foam.
 請求項12の発明は、撹拌槽の内径をD、ディスクタービン翼の最大直径(翼体先端から回転中心を通って反対側の翼体先端までの寸法)をdとしたとき、比d/Dが、0.3以上で0.4以下の範囲になるように、ディスクタービン翼の最大直径dおよび撹拌槽の内径Dが設定されていることを特徴とする、請求項1記載のラテックスフォームの製造方法である。 In the invention of claim 12, the ratio d / D, where D is the inner diameter of the stirring tank and d is the maximum diameter of the disk turbine blade (the dimension from the blade tip to the opposite blade tip through the rotation center). 2. The latex foam according to claim 1, wherein the maximum diameter d of the disk turbine blade and the inner diameter D of the stirring tank are set so that the pressure is in the range of 0.3 to 0.4. It is a manufacturing method.
 これら発明によれば、ディスクタービン翼のラテックスへの浸漬量を規定する前記比h/Dが0.5未満では、当該浸漬量が十分でなく、前記ディスクタービン翼が、ラテックスの液面にかなり近い位置で回転することになる。
 そのため、攪拌による気液混合の度合いが強くなり過ぎる傾向があり、ラテックスフォームの気泡含有率が過度に高くなって、当該ラテックスフォームを形成材料として用いて物品の形状に加工する際の加工性が低下したり、形成される物品の強度等が低下したりするおそれがある。
According to these inventions, when the ratio h / D that defines the amount of immersion of the disk turbine blade in the latex is less than 0.5, the amount of immersion is not sufficient, and the disk turbine blade is considerably on the liquid surface of the latex. It will rotate at a close position.
Therefore, there is a tendency that the degree of gas-liquid mixing by stirring tends to be too strong, the bubble content of the latex foam becomes excessively high, and the workability when processing into the shape of an article using the latex foam as a forming material is high There is a possibility that the strength of the article to be formed may be reduced.
 一方、比h/Dが1.5を超える場合には前記浸漬量が過剰になって、ディスクタービン翼が、ラテックスの液面よりもかなり深い位置で回転することになる。
 そのため、攪拌による気液混合の度合いが弱くなりすぎる傾向があり、ラテックスフォームの気泡含有率が過度に低くなって、液吸収性等の所望の特性に優れた物品が得られないおそれがある。
On the other hand, when the ratio h / D exceeds 1.5, the amount of immersion becomes excessive, and the disk turbine blade rotates at a position considerably deeper than the liquid level of the latex.
Therefore, there is a tendency that the degree of gas-liquid mixing by stirring tends to be too weak, and the bubble content of the latex foam becomes excessively low, and an article excellent in desired properties such as liquid absorbability may not be obtained.
 これに対し、前記比h/Dを前記0.5以上、1.5以下の範囲内とすると、ディスクタービン翼のラテックスへの浸漬量と、攪拌による気液の混合の度合いとを適度な範囲に維持することができる。
 そのため、ラテックスフォームの気泡含有率を好適な範囲内として、その加工性をより一層向上したり、当該ラテックスフォームを用いて形成される物品の強度等や、あるいは液吸収性等の特性をさらに向上したりすることが可能となる。
On the other hand, when the ratio h / D is within the range of 0.5 or more and 1.5 or less, the amount of immersion of the disk turbine blade in the latex and the degree of gas-liquid mixing by stirring are in an appropriate range. Can be maintained.
For this reason, the bubble content of the latex foam is set within a suitable range to further improve the workability, and further improve the properties such as strength and liquid absorbency of articles formed using the latex foam. It becomes possible to do.
 本発明によれば、気泡が十分なレベルまで微細化されたラテックスフォームを、より簡易な装置を用いてより少ない工程、および短い作業時間で生産性良く製造するための製造方法を提供することが可能となる。 ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method for manufacturing the latex foam refined | miniaturized to sufficient level to a sufficient level with high productivity by a fewer process and short working time using a simpler apparatus can be provided. It becomes possible.
本発明のラテックスフォームの製造方法で使用するディスクタービン翼の一例の外観を示す斜視図である。It is a perspective view which shows the external appearance of an example of the disc turbine blade used with the manufacturing method of the latex foam of this invention. 本発明のラテックスフォームの製造方法のうち、前記図1の例のディスクタービン翼を使用して、ラテックスを泡立たせる工程の一例を示す断面図である。It is sectional drawing which shows an example of the process of foaming latex using the disk turbine blade of the example of the said FIG. 1 among the manufacturing methods of the latex foam of this invention.
 図1は、本発明のラテックスフォームの製造方法で使用するディスクタービン翼の一例の外観を示す斜視図である。
 図1を参照して、この例のディスクタービン翼1は、攪拌機(図示せず)の攪拌シャフト2に対し、当該攪拌シャフト2の中心軸L1の方向と直交する状態に取り付けられ、かつ、取り外せる円板3と、円板3の周方向に等間隔に設けられた複数枚(この例では6枚)の翼体4とを備えている。翼体4は、攪拌シャフト2を中心として放射状に、かつ円板3と直交させて取り付けられた矩形平板状をしている。
FIG. 1 is a perspective view showing an appearance of an example of a disk turbine blade used in the method for producing a latex foam of the present invention.
Referring to FIG. 1, a disc turbine blade 1 of this example is attached to and can be removed from a stirring shaft 2 of a stirrer (not shown) in a state orthogonal to the direction of the central axis L1 of the stirring shaft 2. A disc 3 and a plurality of (six in this example) wing bodies 4 provided at equal intervals in the circumferential direction of the disc 3 are provided. The wing body 4 has a rectangular flat plate shape that is attached radially to the stirring shaft 2 and orthogonal to the disc 3.
 円板3の中心には、その内径が攪拌シャフト2の外径と略一致し、当該攪拌シャフト2が挿通される通孔5を備えた筒状のボス6が一体に設けられている。円板3、ボス6、および通孔5は、互いに同心状に設けられている。また円板3は、ボス6、および通孔5の中心軸(図では攪拌シャフト2の中心軸L1と一致する)の方向と直交して、当該ボス6と一体に設けられている。 At the center of the disc 3, a cylindrical boss 6 having a through hole 5 through which the inner diameter thereof substantially coincides with the outer diameter of the stirring shaft 2 and through which the stirring shaft 2 is inserted is integrally provided. The disc 3, the boss 6 and the through hole 5 are provided concentrically with each other. The disc 3 is provided integrally with the boss 6 in a direction orthogonal to the direction of the boss 6 and the central axis of the through-hole 5 (which coincides with the central axis L1 of the stirring shaft 2 in the figure).
 またボス6には、その外周面から、通孔5に臨む内周面にかけてネジ穴7が貫通されている。
 ボス6の通孔5に攪拌シャフト2を挿通した状態で、ネジ穴7にネジ(図示せず)を螺合させて締め付けることにより、円板3を、攪拌シャフト2の中心軸L1の方向と直交させた状態で固定することができる。またネジの締め付けを緩めることにより、円板3を、攪拌シャフト2から取り外すことができる。
A screw hole 7 is passed through the boss 6 from the outer peripheral surface to the inner peripheral surface facing the through hole 5.
With the stirring shaft 2 inserted into the through hole 5 of the boss 6, a screw (not shown) is screwed into the screw hole 7 and tightened to tighten the disc 3 in the direction of the central axis L 1 of the stirring shaft 2. It can be fixed in an orthogonal state. Moreover, the disc 3 can be removed from the stirring shaft 2 by loosening the tightening of the screw.
 なお図の例のディスクタービン翼1は、6枚の翼体4を供えているが、翼体4の枚数は任意に設定できる。
 翼体4の枚数が多いほど、せん断力により気泡を微細化する効果が向上する。しかし、その反面、ディスクタービン翼1を所定の回転数で回転させるために、大きな回転トルクを要する。そのため、翼体4の枚数は4枚以上、6枚以下程度であるのが好ましい。
Although the disk turbine blade 1 in the example shown in the figure includes six blade bodies 4, the number of blade bodies 4 can be arbitrarily set.
As the number of the wing bodies 4 increases, the effect of refining the bubbles by the shearing force is improved. On the other hand, however, a large rotational torque is required to rotate the disk turbine blade 1 at a predetermined rotational speed. Therefore, the number of the wing bodies 4 is preferably about 4 or more and 6 or less.
 また、各翼体4の形状や寸法は特に限定されないものの、当該翼体4の形状は、ラテックスにせん断力を与えて気泡を微細化することを考慮すると、図のように矩形平板状であるのが好ましい。
 また、矩形平板状の翼体4の各辺の寸法が大きいほど、ラテックスにせん断力を与えて気泡を微細化できるが、その反面、ディスクタービン翼1を所定の回転数で回転させるために、大きな回転トルクを要する。そのため、縦横いずれの辺の寸法も、ディスクタービン翼1の最大直径d(翼体4の先端から中心軸L1を通って反対側の翼体4の先端までの寸法)の0.2倍以上、0.3倍以下程度であるのが好ましい。
Further, although the shape and size of each wing body 4 are not particularly limited, the shape of the wing body 4 is a rectangular flat plate shape as shown in the figure in consideration of applying a shearing force to latex to make bubbles finer. Is preferred.
In addition, the larger the dimensions of each side of the rectangular flat blade body 4, the more the bubbles can be made finer by applying shear force to the latex. On the other hand, in order to rotate the disk turbine blade 1 at a predetermined rotational speed, Requires a large rotational torque. Therefore, the dimensions of both the vertical and horizontal sides are 0.2 times or more the maximum diameter d of the disk turbine blade 1 (the dimension from the tip of the blade body 4 to the tip of the opposite blade body 4 through the central axis L1), It is preferably about 0.3 times or less.
 図2は、本発明のラテックスフォームの製造方法のうち、図1のディスクタービン翼1を用いて、バッチ式開放型の攪拌槽においてラテックスを泡立たせる工程を示す断面図である。
 図2を参照して、攪拌槽8は、一定の内径Dを有する円筒形で、かつその中心軸L2を鉛直方向に向けて配設されている。攪拌槽8の、鉛直方向の上端は開口9とされ、下端は底部10として閉じられている。すなわち、攪拌槽8は有底円筒状である。
FIG. 2 is a cross-sectional view showing a process of foaming latex in a batch-type open stirring tank using the disk turbine blade 1 of FIG. 1 in the latex foam production method of the present invention.
Referring to FIG. 2, stirring tank 8 has a cylindrical shape having a constant inner diameter D, and is disposed with its central axis L2 facing in the vertical direction. The upper end of the stirring tank 8 in the vertical direction is an opening 9 and the lower end is closed as a bottom 10. That is, the stirring tank 8 has a bottomed cylindrical shape.
 この工程では、まず攪拌槽8内に、ラテックスフォームのもとになる所定量のラテックス11を収容する。
 次に、図1および図2を参照して、前記攪拌槽8内に、当該攪拌槽8の中心軸L2と、攪拌機(図示せず)の攪拌シャフト2の中心軸L1とが互いに一致するように、先端にディスクタービン翼1を取り付けた攪拌シャフト2をラテックス11中に浸漬する。
In this step, first, a predetermined amount of latex 11 that becomes the basis of the latex foam is accommodated in the stirring vessel 8.
Next, referring to FIGS. 1 and 2, the central axis L <b> 2 of the stirring tank 8 and the central axis L <b> 1 of the stirring shaft 2 of the stirrer (not shown) coincide with each other in the stirring tank 8. In addition, the stirring shaft 2 having the disk turbine blade 1 attached to the tip is immersed in the latex 11.
 この際、攪拌前のラテックス11の液面12から、ディスクタービン翼1の円板3までの距離(ディスクタービン翼1の高さ方向中央部までの距離)h(中心軸L1,L2方向(垂直方向)の距離h)が、攪拌槽8の内径Dとの比h/Dで表して0.5以上、1.5以下を満足する範囲内となるように浸漬深さを設定する。
 比h/Dが0.5未満では、ディスクタービン翼1の、ラテックス11中への浸漬深さが十分でなく、ディスクタービン翼1が、ラテックス11の液面12にかなり近い位置で回転することになる。
At this time, the distance from the liquid surface 12 of the latex 11 before stirring to the disk 3 of the disk turbine blade 1 (distance to the center in the height direction of the disk turbine blade 1) h (center axis L1, L2 direction (vertical) The immersion depth is set so that the distance h) in the direction) is in a range satisfying 0.5 or more and 1.5 or less, expressed as a ratio h / D with the inner diameter D of the stirring tank 8.
If the ratio h / D is less than 0.5, the immersion depth of the disk turbine blade 1 in the latex 11 is not sufficient, and the disk turbine blade 1 rotates at a position that is considerably close to the liquid surface 12 of the latex 11. become.
 そのため、攪拌による気液混合の度合いが強くなり過ぎる傾向があり、ラテックスフォームの気泡含有率が過度に高くなって、当該ラテックスフォームを形成材料として用いて物品の形状に加工する際の加工性が低下したり、形成される物品の強度等が低下したりするおそれがある。
 一方、比h/Dが1.5を超える場合には浸漬深さが深くなりすぎ、ディスクタービン翼1が、ラテックス11の液面12よりもかなり深い位置で回転することになる。
Therefore, there is a tendency that the degree of gas-liquid mixing by stirring tends to be too strong, the bubble content of the latex foam becomes excessively high, and the workability when processing into the shape of an article using the latex foam as a forming material is high There is a possibility that the strength of the article to be formed may be reduced.
On the other hand, when the ratio h / D exceeds 1.5, the immersion depth becomes too deep, and the disc turbine blade 1 rotates at a position considerably deeper than the liquid surface 12 of the latex 11.
 そのため、攪拌による気液混合の度合いが弱くなりすぎる傾向があり、ラテックスフォームの気泡含有率が過度に低くなって、液吸収性等の所望の特性に優れた物品が得られないおそれがある。
 これに対し、比h/Dを0.5以上、1.5以下の範囲内とすると、ディスクタービン翼1のラテックス11への浸漬深さと、攪拌による気液の混合の度合いとを適度な範囲に維持することができる。
Therefore, there is a tendency that the degree of gas-liquid mixing by stirring tends to be too weak, and the bubble content of the latex foam becomes excessively low, and an article excellent in desired properties such as liquid absorbability may not be obtained.
On the other hand, when the ratio h / D is in the range of 0.5 or more and 1.5 or less, the immersion depth of the disk turbine blade 1 in the latex 11 and the degree of gas-liquid mixing by stirring are in an appropriate range. Can be maintained.
 そのため、ラテックスフォームの気泡含有率を好適な範囲内として、その加工性をより一層向上させたり、当該ラテックスフォームを用いて形成される物品の強度等や、あるいは液吸収性等の特性をさらに向上させたりすることが可能となる。
 なお、比h/dは、前記範囲内でも0.7以上であるのが好ましく、1.0以下であるのが好ましい。
For this reason, the bubble content of the latex foam is set within a suitable range, the workability is further improved, and the properties such as strength and liquid absorbency of articles formed using the latex foam are further improved. It is possible to make it.
In addition, it is preferable that ratio h / d is 0.7 or more also in the said range, and it is preferable that it is 1.0 or less.
 ディスクタービン翼1の翼直径dは、攪拌槽8の大きさに応じて任意に設定できる。ただし攪拌効率を考慮すると、翼直径dと、攪拌槽8の内径Dとの比d/Dが0.3以上、0.4以下の範囲内となるように、翼直径dと、攪拌槽8の内径Dとを設定するのが好ましい。
 また、図の例ではディスクタービン翼1を1つだけ、攪拌シャフト2の先端に取り付けているが、攪拌槽8の深さ、および当該攪拌槽8内に収容するラテックス11の量等によっては、1本の攪拌シャフト2に、その軸方向に2つ以上のディスクタービン翼1を取り付けてもよい。
The blade diameter d of the disk turbine blade 1 can be arbitrarily set according to the size of the stirring tank 8. However, considering the stirring efficiency, the blade diameter d and the stirring tank 8 are set so that the ratio d / D between the blade diameter d and the inner diameter D of the stirring tank 8 is in the range of 0.3 to 0.4. It is preferable to set the inner diameter D of the.
Further, in the example of the figure, only one disk turbine blade 1 is attached to the tip of the stirring shaft 2, but depending on the depth of the stirring tank 8, the amount of latex 11 accommodated in the stirring tank 8, etc. Two or more disk turbine blades 1 may be attached to one stirring shaft 2 in the axial direction thereof.
 その際には、ラテックス11の液面12に近い、攪拌シャフト2の上側に取り付けたディスクタービン翼1の浸漬深さが、前記比h/Dの範囲を満足するように設定すればよい。
 次いで浸漬状態で、図示しない攪拌シャフト2を回転させ、攪拌シャフト2の先端に取り付けられたディスクタービン翼1によってラテックス11を攪拌する。
In that case, what is necessary is just to set so that the immersion depth of the disc turbine blade 1 attached to the upper side of the stirring shaft 2 near the liquid level 12 of the latex 11 may satisfy the range of the ratio h / D.
Next, in the immersed state, the stirring shaft 2 (not shown) is rotated, and the latex 11 is stirred by the disk turbine blade 1 attached to the tip of the stirring shaft 2.
 そうすると、攪拌によって液面12から下のラテックス11と上の空気とが気液混合され、空気をラテックス11中に気泡として含ませるとともに、当該気泡を、ディスクタービン翼1の翼体4からラテックス11に与えられる強いせん断力によって細かく分散させて微細化することができる。
 よって、攪拌のみを実施するだけで、他の工程を必要とせずに短時間で、ラテックスを細かく泡立たせることができ、気泡が十分なレベルまで微細化したラテックスフォームを、生産性良く製造することができる。
Then, the lower latex 11 from the liquid level 12 and the upper air are gas-liquid mixed by stirring, and air is included in the latex 11 as bubbles, and the bubbles are transferred from the blade body 4 of the disk turbine blade 1 to the latex 11. Can be finely dispersed by a strong shearing force applied to.
Therefore, only by stirring, latex can be finely foamed in a short time without the need for other steps, and latex foam with fine bubbles to a sufficient level is produced with high productivity. Can do.
 なお攪拌シャフト2の回転数は、ディスクタービン翼1の、翼体4の径方向外方先端13の線速で表して100m/分以上、特に250m/分以上に設定するのが好ましい。
 線速を前記範囲内とすることで、ディスクタービン翼1の翼体4からラテックス11に強いせん断力を与えて、短時間で効率よく、気泡が十分なレベルまで微細化したラテックスフォームを製造することが可能となる。
The rotational speed of the agitation shaft 2 is preferably set to 100 m / min or more, particularly 250 m / min or more in terms of the linear velocity of the disk turbine blade 1 at the radially outer tip 13 of the blade body 4.
By setting the linear velocity within the above range, a strong shearing force is applied to the latex 11 from the blade body 4 of the disk turbine blade 1, and a latex foam in which the bubbles are refined to a sufficient level in a short time is manufactured. It becomes possible.
 なお線速は、攪拌による気液混合の度合いが強くなり過ぎて、ラテックスフォームの気泡含有率が過度に高くなるのを防止すること等を考慮すると、500m/分以下、特に450m/分以下に設定するのが好ましい。
 攪拌の時間、温度等は、攪拌するラテックスの種類や粘度等に応じて任意に設定することができる。
The linear velocity is 500 m / min or less, particularly 450 m / min or less, taking into account that the degree of gas-liquid mixing by stirring becomes too strong and the bubble content of the latex foam is prevented from becoming excessively high. It is preferable to set.
The stirring time, temperature, and the like can be arbitrarily set according to the type and viscosity of the latex to be stirred.
 このうち攪拌の温度(ラテックスの液温)は、攪拌中にラテックス中のゴムが完全に加硫してしまうのを防止しながら泡立たせること等を考慮すると室温(5~35℃)程度であるのが好ましい。
 また攪拌の時間は、気泡を十分なレベルまで微細化させることを考慮すると、30分間以上であるのが好ましく、2時間以下であるのが好ましい。
Among these, the stirring temperature (latex liquid temperature) is about room temperature (5 to 35 ° C.) in consideration of foaming while preventing the rubber in the latex from being completely vulcanized during stirring. Is preferred.
Further, the time for stirring is preferably 30 minutes or longer, and preferably 2 hours or shorter in consideration of making the bubbles fine enough to a sufficient level.
 製造するラテックスフォームのもとになるラテックスとしては、各種のゴムや樹脂等を含み、様々な物品の形成材料として使用可能な種々のラテックスが使用可能である。
 ゴムのラテックスとしては、例えば天然ゴムラテックス、脱蛋白天然ゴムラテックス、ニトリルゴム(アクリロニトリル-ブタジエンゴム)ラテックス、スチレン-ブタジエンゴムラテックス、およびクロロプレンゴムラテックス等の1種または2種以上が挙げられる。
As the latex that is the basis of the latex foam to be produced, various latexes that can be used as a forming material for various articles, including various rubbers and resins, can be used.
Examples of the rubber latex include one or more of natural rubber latex, deproteinized natural rubber latex, nitrile rubber (acrylonitrile-butadiene rubber) latex, styrene-butadiene rubber latex, chloroprene rubber latex, and the like.
 ゴムのラテックスには、ゴムを加硫させるための加硫剤(硫黄等)の他、加硫促進剤、加硫促進助剤(酸化チタン等)、老化防止剤、充てん剤、分散剤、安定剤、界面活性剤等の各種添加剤を配合してもよい。
 また発泡剤、マイクロカプセル、起泡剤等を配合して、ラテックスを、攪拌によって泡立たせるとともに、発泡剤等を用いた化学発泡法によって泡立たせることを併用してもよい。
For rubber latex, in addition to vulcanizing agents (sulfur, etc.) for vulcanizing rubber, vulcanization accelerators, vulcanization accelerators (titanium oxide, etc.), anti-aging agents, fillers, dispersants, stability You may mix | blend various additives, such as an agent and surfactant.
Further, a foaming agent, a microcapsule, a foaming agent, or the like may be blended, and the latex may be foamed by stirring and foamed by a chemical foaming method using a foaming agent or the like.
 また樹脂のラテックスとしては、例えば、塩化ビニル系樹脂、ウレタン系樹脂、アクリル系樹脂等の、エマルション化(ラテックス化)が可能な樹脂のエマルション(ラテックス)の1種または2種以上が挙げられる。
 樹脂のラテックスには、さらに老化防止剤、充てん剤、分散剤、安定剤、界面活性剤等の各種添加剤を配合してもよい。
Examples of the resin latex include one or more emulsions (latex) of a resin that can be emulsified (latexed), such as a vinyl chloride resin, a urethane resin, and an acrylic resin.
Various additives such as an antioxidant, a filler, a dispersant, a stabilizer, and a surfactant may be further added to the latex of the resin.
 またゴムのラテックスと同様に発泡剤、マイクロカプセル、起泡剤等を配合して、攪拌によって泡立たせるとともに、発泡剤等を用いた化学発泡法によって泡立たせることを併用してもよい。
 本発明によれば、ゴムまたは樹脂のラテックスを、ディスクタービン翼を用いて攪拌するだけで、気泡が十分なレベルまで微細化したラテックスフォームを、短い作業時間で生産性良く製造することが可能となる。
Further, in the same manner as rubber latex, a foaming agent, microcapsules, a foaming agent and the like may be blended and foamed by stirring, and foamed by a chemical foaming method using a foaming agent or the like.
According to the present invention, it is possible to produce a latex foam in which bubbles are refined to a sufficient level only by stirring a rubber or resin latex using a disk turbine blade in a short working time with high productivity. Become.
 以下に本発明を、実施例、比較例に基づいてより具体的に説明するが、本発明の構成は、これらに限定されるものではない。なお実施例、比較例のラテックスフォームの製造は、いずれも23℃の環境下で実施した。
 〈実施例1〉
 (ラテックスの調製)
 天然ゴムラテックスに、当該天然ゴムラテックス中のゴム分(固形分)100質量部あたり、アンモニアカゼイン0.5質量部、オレイン酸カリウム1質量部、水酸化カリウム1質量部、硫黄1質量部、ジブチルカルバミン酸亜鉛1質量部、酸化亜鉛0.5質量部、および酸化チタン3質量部を配合して、ラテックスフォームの原料としてのラテックスを調製した。なお、前記各成分のうち水溶液で供給されるものは、その中の有効成分の量を上記に記載した。
Hereinafter, the present invention will be described more specifically based on examples and comparative examples, but the configuration of the present invention is not limited to these examples. In addition, manufacture of the latex foam of an Example and a comparative example was implemented in 23 degreeC environment.
<Example 1>
(Latex preparation)
For natural rubber latex, 0.5 parts by mass of ammonia casein, 1 part by mass of potassium oleate, 1 part by mass of potassium hydroxide, 1 part by mass of sulfur, and dibutyl per 100 parts by mass of rubber (solid content) in the natural rubber latex 1 part by mass of zinc carbamate, 0.5 part by mass of zinc oxide, and 3 parts by mass of titanium oxide were blended to prepare a latex as a raw material for latex foam. In addition, what was supplied in aqueous solution among the said each component described the quantity of the active ingredient in it.
 (攪拌工程)
 ラテックスを収容する攪拌槽8としては、図2に示すように、内径Dが140cmの円筒形で、かつその中心軸L2が鉛直方向に向けて配設されるとともに、鉛直方向の上端が開口9とされ、下端が底部10として閉じられた、容量500Lのものを用いた。
 また攪拌翼としては、図1、図2に示すように、攪拌シャフト2に、当該攪拌シャフト2の中心軸L1の方向と直交させて取り付けられる円板3と、円板3の周方向に等間隔に設けられ、攪拌シャフト2を中心として放射状で、かつ円板3と直交させて取り付けられた6枚の矩形平板状の翼体4とを備え、翼直径dが50cmであるディスクタービン翼1を用いた。
(Stirring process)
As shown in FIG. 2, the stirring tank 8 for storing the latex has a cylindrical shape with an inner diameter D of 140 cm, and its central axis L2 is arranged in the vertical direction, and the upper end in the vertical direction is an opening 9. And having a capacity of 500 L with the lower end closed as the bottom 10.
As the stirring blade, as shown in FIGS. 1 and 2, a disc 3 attached to the stirring shaft 2 so as to be orthogonal to the direction of the central axis L <b> 1 of the stirring shaft 2, the circumferential direction of the disc 3, etc. A disc turbine blade 1 having six blades 4 having a rectangular plate shape, which is provided at intervals, is radially centered on the agitation shaft 2 and is mounted perpendicularly to the disc 3, and has a blade diameter d of 50 cm. Was used.
 翼直径dと、攪拌槽の8の内径Dとの比d/Dは0.36である。
 攪拌シャフト2の先端に取り付けたディスクタービン翼1を、攪拌前のラテックス11の液面12から、円板3までの距離hが120cmとなるように、ラテックス11中に浸漬した。
 距離hと、攪拌槽の8の内径Dとの比h/Dは0.86である。
The ratio d / D between the blade diameter d and the inner diameter D of the stirring tank 8 is 0.36.
The disc turbine blade 1 attached to the tip of the stirring shaft 2 was immersed in the latex 11 so that the distance h from the liquid surface 12 of the latex 11 before stirring to the disk 3 was 120 cm.
The ratio h / D between the distance h and the inner diameter D of 8 of the stirring vessel is 0.86.
 次いで、攪拌シャフト2を200rpmの回転数で回転させて1時間攪拌することでラテックスを泡立たせてラテックスフォームを製造した。
 攪拌時のディスクタービン翼1の、翼体4の径方向外方先端13の線速は314m/分であった。
 〈実施例2〉
 攪拌シャフト2の回転数を60rpm、ディスクタービン翼1の、翼体4の径方向外方先端13の線速を94m/分としたこと以外は実施例1と同様にしてラテックスフォームを製造した。
Next, the stirring shaft 2 was rotated at a rotation speed of 200 rpm and stirred for 1 hour to foam the latex, thereby producing a latex foam.
The linear velocity of the radially outer tip 13 of the blade body 4 of the disk turbine blade 1 during stirring was 314 m / min.
<Example 2>
A latex foam was produced in the same manner as in Example 1 except that the rotation speed of the stirring shaft 2 was 60 rpm, and the linear velocity of the radial outer tip 13 of the blade body 4 of the disk turbine blade 1 was 94 m / min.
 比d/Dは実施例1と同じ0.36であり、比h/Dも実施例1と同じ0.86である。
 〈実施例3〉
 ディスクタービン翼1を、攪拌前のラテックス11の液面12から、円板3までの距離hが60cmとなるように、ラテックス11中に浸漬したこと以外は実施例1と同様にしてラテックスフォームを製造した。
The ratio d / D is 0.36, which is the same as in Example 1, and the ratio h / D is also 0.86, which is the same as in Example 1.
<Example 3>
A latex foam was prepared in the same manner as in Example 1 except that the disk turbine blade 1 was immersed in the latex 11 so that the distance h from the liquid surface 12 of the latex 11 before stirring to the disk 3 was 60 cm. Manufactured.
 比d/Dは実施例1と同じ0.36であり、比h/Dは0.43である。
 〈実施例4〉
 ディスクタービン翼1を、攪拌前のラテックス11の液面12から、円板3までの距離hが210cmとなるように、ラテックス11中に浸漬したこと以外は実施例1と同様にしてラテックスフォームを製造した。
The ratio d / D is 0.36, the same as in Example 1, and the ratio h / D is 0.43.
<Example 4>
A latex foam was prepared in the same manner as in Example 1 except that the disk turbine blade 1 was immersed in the latex 11 so that the distance h from the liquid surface 12 of the latex 11 before stirring to the disc 3 was 210 cm. Manufactured.
 比d/Dは実施例1と同じ0.36であり、比h/Dは1.5である。
 〈比較例1〉
 ディスクタービン翼1に代えて、略楕円状でかつねじりを加えた3枚の翼体が、中心軸L1の方向に対してそれぞれ傾斜させて筒状のボスに固定された、翼直径dが50cmの、3枚翼のプロペラ翼を用いた。
The ratio d / D is 0.36, the same as in Example 1, and the ratio h / D is 1.5.
<Comparative example 1>
Instead of the disk turbine blade 1, three blades having a substantially elliptical shape and twisted are fixed to a cylindrical boss by being inclined with respect to the direction of the central axis L1, and the blade diameter d is 50 cm. The three-blade propeller blade was used.
 プロペラ翼を、攪拌前のラテックス11の液面12から、当該プロペラ翼のボスの、各翼の取り付け部までの距離hが60cmとなるように、ラテックス11中に浸漬した。
 比d/Dは実施例1と同じ0.36であり、比h/Dは実施例3と同じ0.43である。
 そしてこの状態で攪拌機を駆動させて、攪拌シャフト2を200rpmの回転数で回転させて1時間攪拌することでラテックスを泡立たせてラテックスフォームを製造した。
The propeller blade was immersed in the latex 11 so that the distance h from the liquid level 12 of the latex 11 before stirring to the boss of the propeller blade to the attachment portion of each blade was 60 cm.
The ratio d / D is 0.36, which is the same as in Example 1, and the ratio h / D is 0.43, which is the same as in Example 3.
In this state, the stirrer was driven, the stirring shaft 2 was rotated at a rotation speed of 200 rpm, and stirred for 1 hour to foam the latex, thereby producing a latex foam.
 攪拌時のプロペラ翼の、翼体の径方向外方先端の線速は314m/分であった。
 〈比較例2〉
 ディスクタービン翼1に代えて、矩形平板状の4枚の翼体が、中心軸L1の方向に対してそれぞれ傾斜させて筒状のボスに固定された、翼直径dが50cmの、4枚翼のパドル翼を用いた。
The linear velocity at the radially outer tip of the blade body of the propeller blade during stirring was 314 m / min.
<Comparative example 2>
Instead of the disc turbine blade 1, four blades having a blade diameter d of 50 cm, in which four blades having a rectangular flat plate shape are fixed to a cylindrical boss while being inclined with respect to the direction of the central axis L <b> 1. The paddle wing was used.
 前記パドル翼を、攪拌前のラテックス11の液面12から、当該パドル翼のボスの、中心軸L1、L2の方向の中心位置までの距離hが60cmとなるように、ラテックス11中に浸漬した。
 比d/Dは実施例1と同じ0.36であり、比h/Dは実施例3と同じ0.43である。
The paddle blade was immersed in the latex 11 so that the distance h from the liquid surface 12 of the latex 11 before stirring to the center position of the boss of the paddle blade in the direction of the central axes L1 and L2 was 60 cm. .
The ratio d / D is 0.36, which is the same as in Example 1, and the ratio h / D is 0.43, which is the same as in Example 3.
 そしてこの状態で攪拌機を駆動させて、攪拌シャフト2を200rpmの回転数で回転させて1時間攪拌することでラテックスを泡立たせてラテックスフォームを製造した。
 攪拌時のパドル翼の、翼体の径方向外方先端の線速は314m/分であった。
 〈ラテックスフォームの特性測定〉
 各実施例、比較例で製造したラテックスフォームの平均気泡径、および気泡含有率を、下記の方法によって測定した。なお測定は、いずれも23℃の環境下で実施した。
In this state, the stirrer was driven, the stirring shaft 2 was rotated at a rotation speed of 200 rpm, and stirred for 1 hour to foam the latex, thereby producing a latex foam.
The linear velocity at the radially outer tip of the blade body of the paddle blade during stirring was 314 m / min.
<Measurement of latex foam properties>
The average bubble diameter and bubble content of the latex foam produced in each example and comparative example were measured by the following methods. All measurements were performed in an environment of 23 ° C.
 (平均気泡径)
 製造したラテックスフォームを少量、シャーレ上にサンプリングし、デジタルマイクロスコープを用いて画像を撮影し、画像解析した。すなわち、撮影した画像中から任意で50個の気泡を選び、それぞれの気泡の直径を2点間距離測定モードによって測定した結果から平均値を算出して平均気泡径(μm)とした。
(Average bubble diameter)
A small amount of the manufactured latex foam was sampled on a petri dish, an image was taken using a digital microscope, and image analysis was performed. That is, 50 bubbles were arbitrarily selected from the photographed image, and the average value was calculated from the result of measuring the diameter of each bubble in the two-point distance measurement mode to obtain the average bubble diameter (μm).
 (気泡含有率)
 製造したラテックスフォームを、メシリンダーで体積が100mlになるように計量し、その質量を測定して、当該ラテックスフォームの見かけ比重を求めた。
 そしてこの見かけの比重と、ラテックスフォームのもとになるラテックスの真比重とから気泡含有率(体積%)を算出した。
(Bubble content)
The produced latex foam was weighed with a cylinder to have a volume of 100 ml, and its mass was measured to determine the apparent specific gravity of the latex foam.
The bubble content (% by volume) was calculated from the apparent specific gravity and the true specific gravity of the latex that was the basis of the latex foam.
 結果を表1に示す。 The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の実施例1~4と比較例1、2の結果より、攪拌翼としてディスクタービン翼を用いることにより、他の攪拌翼を用いた場合に比べて、製造されるラテックスフォームの平均気泡径を大幅に小さくすることができ、気泡が十分なレベルまで微細化しラテックスフォームを、気泡を分散させる工程を必要とせずに、短い作業時間で生産性良く製造できることが判った。 From the results of Examples 1 to 4 and Comparative Examples 1 and 2 in Table 1, the average cell diameter of the latex foam produced by using a disc turbine blade as a stirring blade is larger than when other stirring blades are used. It was found that the latex foam can be refined to a sufficient level and the latex foam can be produced with high productivity in a short working time without requiring a step of dispersing the bubbles.
 また実施例1、3、4と実施例2の結果より、同じ攪拌時間で平均気泡径をできるだけ小さくすることを考慮すると、ディスクタービン翼の、翼体の径方向外方先端の線速が100m/分以上となるように、攪拌シャフトを回転させるのが好ましいことが判った。
 さらに実施例1、2と実施例3、4の結果より、気泡含有率を抑制することを考慮すると、ディスクタービン翼のラテックスへの浸漬量は、h/Dが0.5以上、1.5以下となるように設定するのが好ましいことが判った。
Further, from the results of Examples 1, 3, 4 and Example 2, in consideration of making the average bubble diameter as small as possible with the same stirring time, the linear velocity at the radially outer tip of the blade body of the disk turbine blade is 100 m. It has been found that it is preferable to rotate the stirring shaft so that it is at least 1 minute.
Furthermore, from the results of Examples 1 and 2 and Examples 3 and 4, considering that the bubble content is suppressed, the amount of immersion of the disk turbine blade in the latex is h / D of 0.5 or more, 1.5 It was found that it is preferable to set so as to be as follows.
1     ディスクタービン翼
2     攪拌シャフト
3     円板
4     翼体
5     通孔
6     ボス
7     ネジ穴
8     攪拌槽
9     開口
10   底部
11   ラテックス
12   液面
13   径方向外方先端
D     内径
d     翼直径
h     距離
L1、L2    中心軸
DESCRIPTION OF SYMBOLS 1 Disc turbine blade 2 Stirring shaft 3 Disc 4 Blade body 5 Through-hole 6 Boss 7 Screw hole 8 Stirrer tank 9 Opening 10 Bottom part 11 Latex 12 Liquid surface 13 Radially outward tip D Inner diameter d Blade diameter h Distance L1, L2 center axis

Claims (12)

  1.  ラテックスフォームの製造方法であって、
     中心軸が垂直になるように配置した有底円筒状の撹拌槽を準備するステップと、
     前記撹拌槽にゴムまたは樹脂のラテックスを収容するステップと、
     前記撹拌槽に収容したラテックス内に、垂直方向の回転軸を有するディスクタービン翼を浸漬させるステップと、
     ディスクタービン翼を一定時間、一定の速度で回転させてラテックスを撹拌するステップと、
     回転停止後のディスクタービン翼をラテックス内から引き上げるステップと、
    を含むラテックスフォームの製造方法。
    A method for producing latex foam, comprising:
    Preparing a bottomed cylindrical stirring tank arranged so that the central axis is vertical;
    Containing a latex of rubber or resin in the stirring tank;
    Immersing a disk turbine blade having a vertical axis of rotation in the latex contained in the stirring vessel;
    Agitating the latex by rotating the disk turbine blade at a constant speed for a certain period of time;
    A step of lifting the disk turbine blade after the rotation stops from within the latex;
    A method for producing a latex foam.
  2.  前記ディスクタービン翼は、回転軸を中心に水平に回転する円板と、円板の周方向に、回転軸を中心に放射状で、円板と直交させて取り付けられた複数枚の平板状の翼体と、を有することを特徴とする、請求項1記載のラテックスフォームの製造方法。 The disk turbine blade includes a circular plate that rotates horizontally around a rotating shaft, and a plurality of flat blades that are mounted in a circumferential direction of the disk, radially about the rotating shaft and orthogonal to the disk. The method for producing a latex foam according to claim 1, comprising: a body.
  3.  前記ラテックスを撹拌するステップにおいて、ディスクタービン翼の回転速度は、翼体の径方向外方先端の線速で表わして、100m/分以上である、請求項2記載のラテックスフォームの製造方法。 The method for producing a latex foam according to claim 2, wherein in the step of stirring the latex, the rotational speed of the disk turbine blade is 100 m / min or more as expressed by the linear velocity at the radially outer tip of the blade body.
  4.  ディスクタービン翼の回転速度は、翼体の径方向外方先端の線速で表わして、250m/分以上であることを特徴とする、請求項2記載のラテックスフォームの製造方法。 3. The method for producing a latex foam according to claim 2, wherein the rotational speed of the disc turbine blade is 250 m / min or more as expressed by the linear velocity at the radially outer tip of the blade body.
  5.  ディスクタービン翼の回転速度は、翼体の径方向外方先端の線速で表わして、500m/分以下であることを特徴とする、請求項2~4のいずれか一項に記載のラテックスフォームの製造方法。 The latex foam according to any one of claims 2 to 4, wherein the rotational speed of the disk turbine blade is 500 m / min or less, expressed as a linear velocity at a radially outer tip of the blade body. Manufacturing method.
  6.  ディスクタービン翼の回転速度は、翼体の径方向外方先端の線速で表わして、450m/分以下であることを特徴とする、請求項2~4のいずれか一項に記載のラテックスフォームの製造方法。 The latex foam according to any one of claims 2 to 4, wherein the rotational speed of the disk turbine blade is 450 m / min or less, expressed as a linear velocity at a radially outer tip of the blade body. Manufacturing method.
  7.  ラテックスを撹拌するステップにおけるディスクタービン翼を回転させる時間は、30分以上で2時間以下であることを特徴とする、請求項1記載のラテックスフォームの製造方法。 The method for producing a latex foam according to claim 1, wherein the time for rotating the disk turbine blade in the step of stirring the latex is 30 minutes or more and 2 hours or less.
  8.  ラテックスを収納するステップにおいて、撹拌槽に収納するゴムのラテックスは、天然ゴムラテックス、脱蛋白天然ゴムラテックス、ニトリルゴム(アクリロニトリル-ブタジエンゴム)ラテックス、スチレン-ブタジエンゴムラテックス、および、クロロプレンゴムラテックスのうちの1種または2種以上を含むことを特徴とする、請求項1記載のラテックスフォームの製造方法。 In the step of storing the latex, the rubber latex stored in the agitation tank may be natural rubber latex, deproteinized natural rubber latex, nitrile rubber (acrylonitrile-butadiene rubber) latex, styrene-butadiene rubber latex, or chloroprene rubber latex. The process for producing a latex foam according to claim 1, comprising one or more of the following.
  9.  ラテックスを収容するステップにおいて、撹拌槽に収容する樹脂のラテックスは、塩化ビニル系樹脂、ウレタン系樹脂またはアクリル系樹脂のエマルション化(ラテックス化)が可能な樹脂のエマルション(ラテックス)から選ばれる1種または2種以上を含むことを特徴とする、請求項1記載のラテックスフォームの製造方法。 In the step of storing the latex, the latex of the resin stored in the stirring tank is one selected from a resin emulsion (latex) that can be emulsified (latexed) with a vinyl chloride resin, a urethane resin, or an acrylic resin. The method for producing a latex foam according to claim 1, comprising two or more kinds.
  10.  ラテックスを撹拌するステップにおいて、ディスクタービン翼の回転軸と撹拌槽の中心軸とが一致した状態で、ディスクタービン翼を回転させることを特徴とする、請求項1記載のラテックスフォームの製造方法。 The method for producing a latex foam according to claim 1, wherein in the step of stirring the latex, the disk turbine blade is rotated in a state in which the rotation axis of the disk turbine blade and the central axis of the stirring tank coincide with each other.
  11.  ディスクタービン翼を浸漬させるステップにおいて、
     撹拌槽の内径をD、回転軸が垂直方向に延びるように浸漬されたディスクタービン翼の高さ方向中央部とラテックスの液面との距離をhとしたとき、比h/Dが0.5以上で1.5以下を満足する範囲内となるように、浸漬深さを調整することを特徴とする、請求項1記載のラテックスフォームの製造方法。
    In the step of immersing the disc turbine blade,
    The ratio h / D is 0.5, where D is the inner diameter of the stirring tank and h is the distance between the central portion in the height direction of the disk turbine blade immersed so that the rotation axis extends in the vertical direction and the liquid level of the latex. The method for producing a latex foam according to claim 1, wherein the immersion depth is adjusted so as to be within a range satisfying 1.5 or less.
  12.  撹拌槽の内径をD、ディスクタービン翼の最大直径(翼体先端から回転中心を通って反対側の翼体先端までの寸法)をdとしたとき、
     比d/Dが、0.3以上で0.4以下の範囲になるように、ディスクタービン翼の最大直径dおよび撹拌槽の内径Dが設定されていることを特徴とする、請求項1記載のラテックスフォームの製造方法。
    When the inner diameter of the stirring tank is D and the maximum diameter of the disk turbine blade (the dimension from the blade tip to the tip of the opposite blade through the rotation center) is d,
    2. The maximum diameter d of the disk turbine blade and the inner diameter D of the stirring tank are set so that the ratio d / D is in a range of 0.3 to 0.4. Process for producing latex foam.
PCT/JP2012/076512 2012-01-11 2012-10-12 Method for manufacturing latex foam WO2013105320A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-002887 2012-01-11
JP2012002887A JP5351983B2 (en) 2012-01-11 2012-01-11 Method for producing latex foam

Publications (1)

Publication Number Publication Date
WO2013105320A1 true WO2013105320A1 (en) 2013-07-18

Family

ID=48781284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076512 WO2013105320A1 (en) 2012-01-11 2012-10-12 Method for manufacturing latex foam

Country Status (2)

Country Link
JP (1) JP5351983B2 (en)
WO (1) WO2013105320A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105056802A (en) * 2015-08-07 2015-11-18 无锡市悦丰化工有限公司 Mixing kettle for production of methyl methacrylate
EP3626422A1 (en) * 2018-09-24 2020-03-25 LTA S.r.l. Method for making a material in sheets or rolls for manufacturing medical devices and respective material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6290727B2 (en) * 2014-06-27 2018-03-07 東洋ゴム工業株式会社 Deformation detection sensor for sealed secondary battery, sealed secondary battery, and deformation detection method for sealed secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5891801A (en) * 1981-11-24 1983-05-31 東和グロ−ブ株式会社 Glove and production thereof
JPH10110017A (en) * 1996-10-04 1998-04-28 Daikin Ind Ltd Method for polymerizing fluoroolefin monomer
JP2002182429A (en) * 2000-12-14 2002-06-26 Canon Inc Method for producing polymerized toner
JP2005320652A (en) * 2004-05-10 2005-11-17 Showa Co Glove
JP2009533508A (en) * 2006-04-11 2009-09-17 ソルヴェイ・ソレクシス・エッセ・ピ・ア Polymerization method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003000222A (en) * 2001-06-25 2003-01-07 Hitachi Ltd Culture tank
JP2007084656A (en) * 2005-09-21 2007-04-05 Dainippon Ink & Chem Inc Method for producing liquid absorbing resin

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5891801A (en) * 1981-11-24 1983-05-31 東和グロ−ブ株式会社 Glove and production thereof
JPH10110017A (en) * 1996-10-04 1998-04-28 Daikin Ind Ltd Method for polymerizing fluoroolefin monomer
JP2002182429A (en) * 2000-12-14 2002-06-26 Canon Inc Method for producing polymerized toner
JP2005320652A (en) * 2004-05-10 2005-11-17 Showa Co Glove
JP2009533508A (en) * 2006-04-11 2009-09-17 ソルヴェイ・ソレクシス・エッセ・ピ・ア Polymerization method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105056802A (en) * 2015-08-07 2015-11-18 无锡市悦丰化工有限公司 Mixing kettle for production of methyl methacrylate
EP3626422A1 (en) * 2018-09-24 2020-03-25 LTA S.r.l. Method for making a material in sheets or rolls for manufacturing medical devices and respective material

Also Published As

Publication number Publication date
JP5351983B2 (en) 2013-11-27
JP2013142116A (en) 2013-07-22

Similar Documents

Publication Publication Date Title
JP4727766B1 (en) Unvulcanized rubber composition, method for producing the same, and pneumatic tire
WO2013105320A1 (en) Method for manufacturing latex foam
US6431742B2 (en) Continuous mixing apparatus with upper and lower disk impellers each having scrapers
JP2008106099A (en) Protein-degraded natural rubber, method for producing the same and composition containing the same
CN105793339A (en) Rubber latex elastic foam body
JP2014223581A (en) Low shear type concentric biaxial mixer
CN203790950U (en) Reaction kettle
WO2017002795A1 (en) Stirring member, stirring device using said stirring member, and method for manufacturing tofu using said stirring device
CN210675028U (en) Magnetic stirrer
CN110467743A (en) A kind of foamed material and preparation method thereof
CN206853563U (en) A kind of dispersion impeller
JP2008150409A (en) Manufacturing method of polyurethane foam
CN208975677U (en) It is a kind of to prepare nano material agitating device
CN204380624U (en) For the anchor agitator of high-viscosity material turbulences
CN207951428U (en) A kind of self-suction gas-liquid consolidates agitating device
CN206566924U (en) A kind of beaker for chemical experiments
CN206391939U (en) A kind of pair of stirring-type stirred tank
CN205416071U (en) Plastics production mixes machine with heat
CN207056451U (en) A kind of the bottom of a pan of high-efficiency stirring boiling pot
JPH08143700A (en) Production of fine mesh puff substrate
CN208529456U (en) A kind of stirring structure
CN204544073U (en) Fireproof heat insulating slurry agitator tank
CN207745745U (en) A kind of glue agitating device
CN207887168U (en) One kind being used for more preferable dispersed material agitating paddle
CN208493877U (en) A kind of horizontal-type biaxial Agravicmixer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12865001

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12865001

Country of ref document: EP

Kind code of ref document: A1