WO2013104232A1 - 上行信道功率控制方法、装置及系统 - Google Patents

上行信道功率控制方法、装置及系统 Download PDF

Info

Publication number
WO2013104232A1
WO2013104232A1 PCT/CN2012/086640 CN2012086640W WO2013104232A1 WO 2013104232 A1 WO2013104232 A1 WO 2013104232A1 CN 2012086640 W CN2012086640 W CN 2012086640W WO 2013104232 A1 WO2013104232 A1 WO 2013104232A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
channel priority
parameter
prach
uplink channels
Prior art date
Application number
PCT/CN2012/086640
Other languages
English (en)
French (fr)
Inventor
张兴炜
陈玉华
常俊仁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP12864871.4A priority Critical patent/EP2793514B1/en
Publication of WO2013104232A1 publication Critical patent/WO2013104232A1/zh
Priority to US14/324,649 priority patent/US9220073B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/281TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission taking into account user or data type priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • H04W52/346TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading distributing total power among users or channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/50TPC being performed in particular situations at the moment of starting communication in a multiple access environment

Definitions

  • the present invention belongs to the field of communications, and in particular, to an uplink channel power control method, apparatus, and system. Background technique
  • 3rd Generation Partnership Project 3rd Generation Partnership Project, 3GPP
  • Long Term Evolution Advanced (Long Term Evolution-Advanced, LTE -A) Rel- 10/11 technology is to enhance the LTE Rel-8 technology, which has more than LTE system Higher bandwidth requirements, supporting peak data rates up to 1G.
  • the LTE-A system uses Carrier Aggregation (CA) technology as its method to expand the system bandwidth, and uses a large number of Multiple-Input Multiple-Output (MIMO) enhancement techniques.
  • Adaptive technology to increase data rate and system performance.
  • a user equipment (UE) can support up to five component carriers.
  • the uplink channel of the LTE system includes a physical uplink control channel (PUCCH) and a physical uplink shared channel (Physical Uplink). Shared Channel, PUSCH), Sounding Reference Signal (SRS), and Physical Random Access CHannel (PRACH), when the channel is transmitted simultaneously, it is easy to occur because the UE's transmit power exceeds its The maximum transmit power results in limited power or interference levels that result in limited interference.
  • PUCCH physical uplink control channel
  • Physical Uplink shared channel Physical Uplink shared channel
  • SRS Sounding Reference Signal
  • PRACH Physical Random Access CHannel
  • the SRS is transmitted in the last symbol of the subframe (when a subframe includes a normal cyclic prefix of 14 symbols (Normal Cyclic Prefix) , NCP ) or 12 symbols of the Extended Cyclic Prefix (ECP); if not, discard the SRS;
  • the PRACH is transmitted simultaneously with the above channel:
  • the LTE-A Rel-10 system since the UE can only perform PRACH in the primary cell where the primary carrier is located, the PRACH channel does not transmit simultaneously with other channels, however,
  • different carriers are allowed to have different Timing Advance (TA) values, and the carriers are divided into different Timing Advance Groups (TAGs) according to different TA values, within each TAG.
  • the carrier's TA value is the same.
  • the TA value of the TAG of the primary cell (PCell) is referenced by the TA value of the PCell
  • the TAG of the secondary cell (SCell) may be referenced by the TA value of one of the SCells.
  • the system allows the PRACH on the SCell to send the RACH preamble to the UE.
  • the PRACH channel on the SCell may be associated with the PUCCH channel, PUSCH channel, SRS or other SCell on the PCell.
  • the purpose of the embodiments of the present invention is to provide an uplink channel power control method, which is intended to solve the problem that when the PRACH channel on the SCell and other channels are simultaneously transmitted in one subframe, the UE's transmit power is more likely to exceed its maximum transmit power. The power is limited, or the interference level is reached, resulting in limited interference.
  • An uplink channel power control method includes: comparing a transmission parameter of a preamble with at least one preset parameter threshold to obtain a comparison result, and determining a channel priority according to the comparison result,
  • the channel priority includes an ordering of physical random access channels PRACH in channel priority;
  • the transmission power of the plurality of uplink channels is controlled according to the channel priority.
  • Another object of the present invention is to provide an access channel power control apparatus, including: a channel priority determining module, configured to compare a transmission parameter of a preamble with at least one preset parameter threshold to obtain a comparison result, and Determining a channel priority according to the comparison result, where the channel priority includes a ranking of the PRACH in a channel priority;
  • a first power control module configured to: when a plurality of uplink channels need to be simultaneously transmitted, control transmit power of the multiple uplink channels according to the channel priority; the multiple uplink channels include the PRACH.
  • an unfixed strategy is adopted for the ranking of the PRACH in the channel priority, and the The transmission parameter of the preamble is compared with the preset parameter threshold to determine the channel priority, so that the transmission of the uplink channel is controlled according to the channel priority, so that the UE transmit power exceeds the PRACH due to the transmission of the PRACH on the Scell.
  • the maximum transmit power or the interference level is reached, thereby preventing power limitation and interference limitation.
  • Another object of the present invention is to provide an uplink channel power control method, including: receiving signaling sent by a base station, where the signaling is used to notify a UE of a channel priority pre-configured by the base station, the channel priority Including the ordering of PRACH in channel priority;
  • the transmission powers of the plurality of uplink channels are controlled according to the channel priority; the plurality of uplink channels include the PRACH.
  • Another object of the present invention is to provide an uplink channel power control apparatus, including: an uplink channel power control apparatus, including:
  • the signaling receiving module is configured to receive signaling sent by the base station, where the signaling is used to notify the UE of a pre-configured channel priority of the base station, where the channel priority includes a preamble of the PRACH in the channel priority;
  • a second power control module configured to: when a plurality of uplink channels need to be simultaneously transmitted, control transmit power of the multiple uplink channels according to the channel priority; the multiple uplink channels include the PRACH.
  • the embodiment of the present invention obtains the channel priority preset by the base station by using signaling, determines the sorting position of the PRACH in the channel priority, and performs power control on the uplink channel transmission according to the channel priority, thereby avoiding the PRACH in the Scell.
  • the above is transmitted such that the UE transmits power beyond its maximum transmit power or reaches an interference level, thereby preventing power limitation and interference limitation.
  • FIG. 1 is a schematic diagram of a PRACH channel provided by the prior art and other uplink channels transmitted simultaneously in one subframe. Schematic diagram of the loss;
  • FIG. 2 is a flowchart of implementing an uplink channel power control method according to a first embodiment of the present invention
  • FIG. 3 is a flowchart of implementing an uplink channel power control method according to a second embodiment of the present invention
  • FIG. 5 is a flowchart of an implementation of an uplink channel power control method according to a fourth embodiment of the present invention
  • FIG. 6 is a schematic diagram of a preamble three-time transmission according to an embodiment of the present invention
  • FIG. 7 is a flowchart of implementing an uplink channel power control method according to a fifth embodiment of the present invention
  • FIG. 8 is a flowchart of implementing an uplink channel power control method according to a sixth embodiment of the present invention
  • FIG. 9 is a seventh embodiment of the present invention
  • FIG. 10 is a block diagram showing the structure of an uplink channel power control apparatus according to an eighth embodiment of the present invention
  • FIG. 11 is a block diagram showing an uplink channel power control apparatus according to an eighth embodiment of the present invention
  • FIG. 12 is a structural block diagram of an uplink channel power control apparatus according to a ninth embodiment of the present invention.
  • the PRACH uses a non-fixed priority policy, and compares the transmit power of the preamble sent by the UE with the preset power threshold, and determines the order of the PRACH in the channel priority according to the comparison result, thereby
  • the transmission of the uplink channel is power-controlled, which avoids the limitation of power limitation and interference due to the fact that the PRACH is transmitted on the Scell such that the UE transmit power exceeds its maximum transmit power or reaches an interference level.
  • FIG. 2 is a flowchart showing an implementation process of an uplink channel power control method according to a first embodiment of the present invention, which is described in detail as follows:
  • step S201 the transmit power of the preamble transmitted by the UE is compared with at least one preset power threshold to obtain a comparison result, and the channel priority is determined according to the comparison result, where the channel priority includes the PRACH in the channel priority. Sort of.
  • the preset power threshold is used to consider the size of the transmit power of the preamble sent by the UE.
  • the preset power threshold may be one or more, and the preset situation is different. It will be described in detail in the following second and third embodiments, and will not be described herein.
  • the UE can directly obtain the preset power threshold; the base station determines that the UE acquires the signal sent by the base station; and is determined by the UE itself.
  • the manner of obtaining the power threshold is not limited, and will not be described in the following embodiments.
  • the power control for the PRACH uses the climbing mechanism, if the preamble fails to be transmitted, the next time the preamble is sent, the transmit power is increased by one step based on the current transmit power. If the transmission fails again, the transmission continues to increase. The step size is until the preamble is successfully transmitted. Therefore, according to the above mechanism, if the channel priority of the PRACH is always defined as the lowest, although the transmission of other channels is guaranteed, it is possible that the transmission power of the PRACH is too small to prolong the transmission process of the PRACH. The next time the preamble continues to be sent, it may still collide with other channels.
  • the PRACH is not used with a fixed priority, but the preamble's transmit power is compared with a preset power threshold to determine the PRACH order in the channel priority, where
  • the channel priority includes a first channel priority when the PRACH and the PUCCH/PUSCH are simultaneously transmitted, and a second channel priority when the PRACH and the SRS are simultaneously transmitted.
  • the priority of the LTE-A Rel-10 system is the PUCCH, the second is the PUSCH carrying the UCI, and the lowest priority is the USCH, which carries only the PUSCH for transmitting data. Therefore, based on the above Priority definition, according to the order of PRACH in channel priority, the following order of channel priority may occur:
  • Priority 1 PRACH>PUCCH>UCI on PUSCH>PUSCH;
  • Priority 2 PUCCH>PRACH>UCI on PUSCH>PUSCH;
  • Priority three PUCCH>UCI on PUSCH>PRACH>PUSCH;
  • Priority 4 PUCCH>UCI on PUSCH>PUSCH>PRACH
  • the UCI on PUSCH represents the PUSCH carrying the UCI, and the PUSCH represents the PUSCH carrying only the data.
  • Priority six a-SRS>PRACH>p-SRS;
  • Priority 7 a-SRS>p-SRS>PRACH.
  • a-SRS stands for aperiodic SRS
  • p-SRS stands for periodic SRS
  • step S202 when multiple uplink channels need to be simultaneously transmitted, according to the channel priority Controlling transmit power of the plurality of uplink channels; the plurality of uplink channels including the PRACH.
  • the LTE terminal in order to maintain the backward compatibility of the system, the LTE terminal can ensure that the LTE terminal can access the LTE-A system, and after the channel priority is determined, the PRACH is simultaneously with other channels in one subframe.
  • power control is still performed based on the power scaling mechanism mentioned in the background art, and power control is still performed on the PRACH channel based on the climbing mechanism between the plurality of subframes.
  • step S202 is not required, that is, no more The transmit power of the uplink channels is controlled.
  • the available transmit power is preferentially used in the uplink channel with the highest channel prioritization based on the power scaling mechanism, and the uplink channel is guaranteed to be transmitted.
  • the power if there is still a power headroom, it is assigned to the channel with the highest priority of the channel priority, and so on.
  • the foregoing power control method is applicable to the scenario in which the power control is performed on multiple uplink channels in all embodiments of the present invention, and the related steps in the subsequent embodiments are not described again.
  • the corresponding channel priority can be flexibly determined according to the transmit power of the preamble sent by the UE, and the power scaling mechanism and the climbing mechanism are followed, and each uplink channel is determined according to the determined channel priority.
  • the transmission power is controlled to avoid the situation that the UE's transmit power exceeds its maximum transmit power or reaches the interference level because the PRACH channel on the Scell and other channels are transmitted in the same subframe.
  • FIG. 3 is a flowchart showing an implementation process of an uplink channel power control method according to a second embodiment of the present invention, which describes a refinement process of step S201 when at least one preset power threshold is a power threshold. Said as follows: In step S301, it is determined whether the transmission power is higher than the one power threshold. If yes, step S302 is performed, otherwise step S303 is performed.
  • step S302 the transmit power of the preamble sent by the UE is higher than the preset power threshold.
  • the system first guarantees the transmit power of the PRACH, and the PRACH is set in the channel priority because the transmit power is higher. For the highest. According to the climbing mechanism, the preamble will be sent out in a short time without affecting the transmission of other channels.
  • step S303 if the transmit power of the preamble sent by the UE is not higher than the one power threshold, the order of the PRACH in the channel priority is set to be the lowest. At this time, the preamble takes a long time because the transmit power is low. In order to be sent out, its priority is set to the lowest, which will not affect the transmission performance of other uplink channels.
  • FIG. 4 is a flowchart showing an implementation process of the uplink channel power control method according to the third embodiment of the present invention, which describes a refinement process of the foregoing step S201 when the preset power threshold is multiple, in this embodiment.
  • At least one preset power threshold is N-1 power thresholds, and the N is an integer greater than or equal to 3, and the N-1 power thresholds are sorted in descending order, thereby forming N power wide intervals, each of which corresponds to a sorting position of a PRACH in a channel priority.
  • the specific process is detailed as follows:
  • step S401 the transmit power is compared with a preset N-1 power thresholds to determine an i-th power threshold interval in which the transmit power is located, where 1 ⁇ ⁇ N.
  • step S402 the order of the PRACH in the channel priority is set to the ith bit according to the ith power wide interval.
  • the corresponding possible channel priority has four possibilities as described above, and the preset power is There are four thresholds, assuming that they are Tl, ⁇ 2, ⁇ 3, and ⁇ 4 from large to small.
  • T1 the transmit power of the preamble sent by the UE is higher than the maximum power threshold T1
  • the order of the PRACH in the channel priority is set to the first bit, that is, the channel priority of the PRACH is set to the highest, that is, the above priority.
  • the order of the PRACH in the channel priority is set to the second bit, that is, the case corresponding to the above priority two; and so on, when the UE If the transmit power of the transmit preamble is lower than T4, the order of the PRACH in the channel priority is set to the fourth bit, that is, the channel priority of the PRACH is set to the lowest, that is, the case of the above-mentioned priority four.
  • the preset power threshold is replaced by a preset number of transmissions, and the number of transmissions of the preamble is compared with a preset number of transmissions, and is determined according to the comparison result.
  • the ordering of PRACH in channel priority is replaced by a preset number of transmissions, and the number of transmissions of the preamble is compared with a preset number of transmissions, and is determined according to the comparison result.
  • FIG. 5 is a flowchart showing an implementation process of an uplink channel power control method according to a fourth embodiment of the present invention, which is described in detail as follows:
  • step S501 at least one preset number of times threshold is obtained.
  • the preset threshold value is used to consider the current transmission status of the preamble.
  • the number of the preset number of thresholds may be one or more.
  • the corresponding method of comparing the current actual number of transmissions with the threshold value is different in step S502, and the specific situation will be different. It will be described in detail in the subsequent embodiments 5 and 6, and will not be described herein.
  • the transmission parameter of the preamble is compared with at least one preset threshold value to obtain a comparison result, and the channel priority is determined according to the comparison result, where the channel priority includes the ranking of the PRACH in the channel priority.
  • the transmission parameters include, but are not limited to, the number of preamble transmissions, the number of PRACH and other channel collisions, or the number of chance occurrences that the preamble can transmit.
  • the preamble may not allocate the transmission power at all and cannot be transmitted.
  • the preamble is actually sent only for the second time, and the transmission also collides with the preamble of other UEs, and the transmission is not successful.
  • the preamble is sent.
  • the number of times is 1, the number of collisions between PRACH and other channels is 2, and the number of chances that the preamble can be sent is 3.
  • the preamble may have many transmission opportunities but failed to perform the corresponding transmission action, or sent a collision many times, causing the transmission to fail. Therefore, in this embodiment, the PRACH is not lost.
  • the PRACH is determined in the channel priority by comparing the current number of preamble transmissions, the number of PRACHs with other channel collisions, or the number of occurrences of the preamble transmittable with the preset number of thresholds. Sort.
  • step S503 when a plurality of uplink channels need to be simultaneously transmitted, the transmit power of the multiple uplink channels is controlled according to the channel priority; the multiple uplink channels include the PRACH.
  • the corresponding channel priority can be flexibly determined according to the current number of relevant transmissions that the UE transmits to the preamble, and the power scaling mechanism and the climbing mechanism are followed, according to the determined channel priority. Controlling the transmit power of each uplink channel, avoiding the situation that the UE's transmit power exceeds its maximum transmit power or reaches the interference level because the PRACH channel on the Scell and other channels are transmitted in the same subframe. Since the preamble transmission failure factor is comprehensively considered, the transmission success rate of the access channel is improved, and the improvement is improved. The transmission performance of the system.
  • FIG. 7 is a flowchart showing an implementation process of an uplink channel power control method according to a fifth embodiment of the present invention.
  • the refinement process of step S502 is as follows. :
  • step S701 it is determined whether the transmission parameter is higher than the one-time threshold. If it is higher, step S702 is performed; otherwise, step S703 is performed.
  • step S702 the number of preamble transmissions, the number of PRACHs and other channel collisions, or the number of times the preamble can be sent is higher than the preset number of thresholds, and the ranking of the PRACH in the channel priority is set to the highest, at this time, the system The transmit power of the PRACH is guaranteed first, and the preamble is sent out in a short time.
  • step S703 the number of preamble transmissions, the number of PRACHs and other channel collisions, or the number of times the preamble can be sent is not higher than a preset number of thresholds, and the ranking of the PRACH in the channel priority is set to the lowest.
  • the preamble is sent according to the climbing mechanism.
  • the PRACH sorting position in the channel priority is set to the highest.
  • the preamble does not generate the phenomenon that it has not been sent multiple times, which improves the transmission performance of the system.
  • FIG. 8 is a flowchart showing an implementation process of the uplink channel power control method according to the sixth embodiment of the present invention, which describes a refinement process of the foregoing step S502 when the preset number of times has a plurality of thresholds, in this embodiment.
  • At least one preset parameter has a value of N-1 parameter widths, and the N is an integer greater than or equal to 3, and the N-1 parameter thresholds are sorted in descending order, thereby forming N parameter wide interval, each parameter wide interval corresponding to a PRACH in the channel priority Set.
  • the specific process is detailed as follows:
  • step S801 the transmission parameter is compared with a preset N-1 threshold value, and the number of preamble transmissions, the number of PRACHs and other channel collisions, or the number of times the preamble can be sent is determined.
  • the threshold interval where ⁇ i ⁇ N.
  • step S802 the ranking of the PRACH in the channel priority is set to the ith bit according to the ith number threshold interval.
  • the preamble can be allowed to collide with other channels once to increase the channel priority of the PRACH.
  • the channel priority of the PRACH can be determined more accurately according to the current transmission condition of the reamble, and the transmission performance of the system and the power control performance of the uplink channel are further improved.
  • the current transmit power of the preamble, the number of preamble transmissions, the number of PRACH and other channel collisions, or the number of times the preamble can be sent and the corresponding parameter threshold (including the power threshold or the threshold value)
  • a comparison is made to determine the ordering of the PRACHs in the corresponding channel priorities based on the comparison results.
  • PUCCH/PUSCH and SRS do not occur simultaneously, but PRACH and PUCCH/PUSCH may be simultaneously transmitted, and PRACH and SRS may occur.
  • the first channel priority and the second channel priority are respectively obtained for the above two simultaneous transmission situations.
  • the same set of preset parameters may be used when performing power control.
  • the threshold value is controlled, and different, independent two sets of preset parameter thresholds can also be used for control.
  • the same set of preset parameter thresholds for control and the group parameter has multiple values, since the first channel priority has 4 sort orders, 3 parameter thresholds are needed to determine the order, but the second Channel priority has only 3 sort orders, only 2
  • the parameter values are used to determine the ordering. Therefore, for the determination process of the second channel priority, two of the three parameter thresholds can be arbitrarily selected to determine the channel priority. In a specific implementation, only two sets of preset parameter thresholds are used to determine the two channel priorities, which saves system resources to a certain extent.
  • FIG. 9 is a flowchart showing an implementation process of an uplink channel power control method according to a seventh embodiment of the present invention.
  • a channel priority is also used, and a channel priority is pre-configured by a base station, and The signaling priority is used to inform the UE which channel priority to use.
  • the specific implementation process is as follows:
  • step S901 the signaling sent by the base station is received, where the signaling is used to inform the UE of the pre-configured channel priority of the base station, and the channel priority includes the ordering of the PRACH in the channel priority.
  • the channel priority ranking of the PRACH may be considered as follows:
  • the PRACH should be configured with a higher channel priority. If the preamble spans multiple subframes and the collided subframe is the first subframe of the preamble, the PRACH is configured with a lower channel priority.
  • PRACH is configured with the lowest priority because it has generated power limitation or interference limitation and is not suitable for adding another aggregation carrier to the UE.
  • the channel priority configuration policy of the base station can be determined according to actual conditions. This is not limited.
  • step S902 when a plurality of uplink channels need to be simultaneously transmitted, the transmission powers of the plurality of uplink channels are controlled according to the channel priority; the plurality of uplink channels include the PRACH.
  • the signaling sent by the base station specifies the channel priority to be used by coding, for example, using 2-bit data to identify different channel priorities:
  • the same signaling code may be used to indicate the ordering of the PRACH in the channel priority, or may be indicated by using different signaling codes respectively.
  • different channel priorities can be indicated by joint coding, for example, by a 3-bit coding scheme.
  • the UE determines the channel priority to be used.
  • the flexibility of the channel priority can also be achieved through steps S901 to S902.
  • the control solves the power control problem of the uplink channel well, and avoids the limitation of power limitation or interference limitation.
  • Fig. 10 is a view showing the configuration of an uplink channel power control apparatus according to an eighth embodiment of the present invention. For convenience of explanation, only parts related to the present embodiment are shown.
  • the device can be run in a system such as LTE-A Rel-10/11, and includes: a channel priority determining module 1001, comparing the sending parameters of the preamble with at least one preset parameter threshold. As a result, a channel priority is determined based on the comparison result, the channel priority including a ranking of the PRACH in the channel priority.
  • the first power control module 1002 when multiple uplink channels need to be simultaneously transmitted, control transmit power of the multiple uplink channels according to the channel priority; the multiple uplink channels include the
  • the module preferentially uses the available transmit power for the uplink channel with the highest channel prioritization according to the order of each uplink channel in the determined channel priority.
  • 1001 includes:
  • the determining sub-module 10011 determines whether the sending parameter is higher than the one parameter threshold.
  • the first sort setting sub-module 10012 when the sending parameter is higher than the one parameter threshold, setting the ranking of the PRACH in the channel priority to the highest; when the sending parameter is not higher than the one parameter threshold When the PRACH is set to the lowest in the channel priority.
  • the first channel priority determining module 1101 includes:
  • a parameter threshold interval determining sub-module 11011 and the sending parameter and the N-1 parameter threshold For comparison, the i-th parameter threshold interval in which the transmission parameter is located is determined, where ⁇ i ⁇ N.
  • the second sorting setting sub-module 1 1012 sets the ranking of the PRACH in the channel priority to the ith bit according to the ith parameter threshold interval.
  • Fig. 12 is a view showing the configuration of an uplink channel power control apparatus according to a ninth embodiment of the present invention. For convenience of explanation, only parts related to the present embodiment are shown.
  • the device can be used in a system such as LTE-A Rel-10/11, and includes: a signaling receiving module 1201, which receives signaling sent by a base station, where the signaling is used to notify the UE that the base station is pre- The configured channel priority, the channel priority including the ordering of the PRACH in the channel priority.
  • a signaling receiving module 1201 which receives signaling sent by a base station, where the signaling is used to notify the UE that the base station is pre- The configured channel priority, the channel priority including the ordering of the PRACH in the channel priority.
  • the second power control module 1202 controls, when the multiple uplink channels need to transmit simultaneously, the transmit power of the multiple uplink channels according to the channel priority; the multiple uplink channels include the PRACH.
  • the device further includes:
  • the code acquisition module 1203 obtains an encoding in the signaling, where the encoding is used to indicate the channel priority.
  • the decoding module 1204 determines the channel priority according to the encoding according to a preset codec rule.
  • the embodiment of the present invention extracts a non-fixed policy for the sequence of the PRACH in the channel priority, and compares the sending parameter of the preamble sent by the UE with the preset parameter threshold, or determines the PRACH in the channel priority according to the signaling of the receiving base station.
  • the ordering in the stage controls the uplink channel power to avoid power limitation and interference limitation because the PRACH is transmitted on the Scell such that the UE transmit power exceeds its maximum transmit power or reaches an interference level.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种上行信道功率控制方法及装置,包括:将preamble的发送参数与至少一个预设的参数阈值进行比较得到比较结果,并根据比较结果确定信道优先级;当多个上行信道需要同时传输时,根据所述信道优先级来控制多个上行信道的发射功率;所述多个上行信道包括所述PRACH。本发明对PRACH在信道优先级中的排序釆取不固定策略,通过将preamble的发送参数与预设的参数阈值进行比较,或者根据接收基站的信令来确定PRACH在信道优先级中的排序,从而对上行信道传输进行了功率控制,避免了UE发射功率超出其最大发射功率或者达到干扰级别的情况,可以防止功率受限及干扰受限。

Description

上行信道功率控制方法、 装置及系统
本申请要求于 2012 年 1 月 9 日提交中国专利局、 申请号为 201210004869.4、 发明名称为"上行信道功率控制方法、 装置及系统,,的中国专 利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明属于通信领域,尤其涉及一种上行信道功率控制方法、装置及系统。 背景技术
第 3代合作伙伴计划(3rd Generation Partnership Project, 3GPP )的高级长 期演进( Long Term Evolution-Advanced , LTE-A ) Rel- 10/11技术是 LTE Rel-8 技术的增强,其具有比 LTE系统更高的带宽要求, 支持高达 1G的峰值数据速 率。 为了满足相应的带宽要求, LTE-A 系统将载波聚合 ( Component Aggregation, CA )技术作为其扩展系统带宽的方法, 并大量釆用多输入多输 出 ( Multiple-Input Multiple-Output, MIMO )增强技术和自适应技术来提高数 据速率及系统性能。 在上述场景下, 一个用户设备 ( User Equipment, UE )最多可支持 5个成 员载波, 而通常 LTE系统的上行信道包括物理上行控制信道( Physical Uplink Control Channel, PUCCH )、物理上行共享信道( Physical Uplink Shared Channel, PUSCH ) 、 侦听参考信号(Sounding Reference Signal, SRS )和物理随机接入 信道(Physical Random Access CHannel, PRACH ) , 信道同时传输的情况时 有发生,容易出现由于 UE的发射功率超出其最大发射功率从而导致功率受限 或者达到干扰级别导致干扰受限的情况,针对上述问题的几种不同情况, 分别 有以下几种解决方法:
1、 PUCCH和 PUSCH同时传输: 由于 PUCCH只能发送在上行主载波上, 而在上行辅载波上只有 PUSCH, 因此, 当 PUCCH和 PUSCH同时传输时, 启 动功率缩放机制, 该机制在 LTE-A Rel-10系统中定义 PUCCH的优先级最高, 其次是携带了上行控制信息 (Uplink Control Information, UCI ) 的 PUSCH, 优先级最低的是只包含数据的 PUSCH, 按照上述优先级顺序, 在保证优先级 高的信道的发射功率后, 如果还有功率余量, 则分给优先级次高的信道, 如果 所有信道的优先级一样,则所有信道的发射功率在等比例缩小后均分最大发射 功率;
2、 SRS与 PUCCH同时传输: 如果 PUCCH使用的是缩短的 PUCCH格式 ( shorten PUCCH ) , 则将 SRS发送在子帧的最后一个符号(当一个子帧包括 14个符号的正常循环前缀(Normal Cyclic Prefix, NCP )或者 12个符号的扩 展循环前缀(Extended Cyclic Prefix, ECP ) 时) ; 如果不是, 则丟弃 SRS;
3、 SRS与 PUSCH同时传输:若 SRS与 PUSCH位于同载波,则将 PUSCH 按 13个符号(NCP )或者 11个符号(ECP )做速率匹配, 空出最后一个符号 用于发送 SRS; 若 SRS与 PUSCH分别出现在不同的载波上, 则丟弃 SRS;
4、 PRACH与上述信道同时传输: 在 LTE-A Rel- 10系统中, 由于 UE只 能在主载波所在的主小区做 PRACH, 因此不会出现 PRACH信道与其他信道 同时传输的情况, 然而, 在 LTE-A Rel-11系统中, 不同的载波允许有不同的 定时提前( Timing Advance , T A )值, 载波根据 TA值不同而分成不同的定时 提前组( Timing Advance Group, TAG ) , 每个 TAG内载波的 TA值相同。 包 含主小区 ( Primary Cell, PCell ) 的 TAG的 TA值以 PCell的 TA值为参考 , 而只包含了辅小区 (Secondary Cell, SCell ) 的 TAG可能以其中一个 SCell的 TA值为参考。 为了在 SCell上获取 TA值, 系统允许在 SCell上有 PRACH, 来给 UE发 RACH前导码(preamble ) 。 在上述情况下, 就出现了 SCell上的 PRACH信道可能与 PCell上的 PUCCH信道、 PUSCH信道、 SRS或者其他 SCell 上的 PUSCH信道、 SRS在一个子帧内同时传输的问题。 如图 1所示, 此时, 可能出现 UE发射功率超出其最大发射功率从而导致功率受限,或者达到干扰 级别导致干扰受限的情况。 发明内容
本发明实施例的目的在于提供一种上行信道功率控制方法, 旨在解决当 SCell上的 PRACH信道与其他信道在一个子帧内同时传输时, 容易出现 UE 的发射功率超出其最大发射功率从而导致功率受限,或者达到干扰级别导致干 扰受限的问题。
本发明实施例是这样实现的, 一种上行信道功率控制方法, 包括: 将 preamble的发送参数与至少一个预设的参数阔值进行比较得到比较结 果, 并根据所述比较结果确定信道优先级, 所述信道优先级包括物理随机接入 信道 PRACH在信道优先级中的排序;
当多个上行信道需要同时传输时,根据所述信道优先级来控制所述多个上 行信道的发射功率。
本发明实施例的另一目的在于提供一种接入信道功率控制装置, 包括: 信道优先级确定模块, 用于将 preamble的发送参数与至少一个预设的参 数阔值进行比较得到比较结果, 并根据所述比较结果确定信道优先级, 所述信 道优先级包括 PRACH在信道优先级中的排序;
第一功率控制模块, 用于当多个上行信道需要同时传输时,根据所述信道 优先级来控制所述多个上行信道的发射功率; 所述多个上行信道包括所述 PRACH。
本发明实施例对 PRACH在信道优先级中的排序釆取不固定策略,通过将 preamble的发送参数与预设的参数阔值进行比较, 确定出信道优先级,从而根 据该信道优先级对上行信道的传输进行了功率控制, 避免了由于 PRACH在 Scell上发送使得 UE发射功率超出其最大发射功率或者达到干扰级别的情况, 由此可以防止功率受限及干扰受限。
本发明实施例的另一目的在于提供一种上行信道功率控制方法, 包括: 接收基站发送的信令,所述信令用于告知 UE所述基站预先配置的信道优 先级, 所述信道优先级包括 PRACH在信道优先级中的排序;
当多个上行信道需要同时传输时,根据所述信道优先级来控制多个上行信 道的发射功率; 所述多个上行信道包括所述 PRACH。
本发明实施例的另一目的在于提供一种上行信道功率控制装置, 包括: 一种上行信道功率控制装置, 其特征在于, 包括:
信令接收模块, 用于接收基站发送的信令, 所述信令用于告知 UE所述基 站预先配置的信道优先级,所述信道优先级包括 PRACH在信道优先级中的排 序;
第二功率控制模块, 用于当多个上行信道需要同时传输时,根据所述信道 优先级来控制多个上行信道的发射功率;所述多个上行信道包括所述 PRACH。 本发明实施例通过信令获取到基站预设的信道优先级,确定 PRACH在信 道优先级中的排序位置,并根据该信道优先级对上行信道的传输进行了功率控 制, 避免了由于 PRACH在 Scell上发送使得 UE发射功率超出其最大发射功 率或者达到干扰级别的情况, 由此可以防止功率受限及干扰受限。 附图说明
图 1是现有技术提供的 PRACH信道与其他上行信道在一个子帧内同时传 输的原理图;
图 2是本发明第一实施例提供的上行信道功率控制方法的实现流程图; 图 3是本发明第二实施例提供的上行信道功率控制方法的实现流程图; 图 4是本发明第三实施例提供的上行信道功率控制方法的实现流程图; 图 5是本发明第四实施例提供的上行信道功率控制方法的实现流程图; 图 6是本发明实施例提供的 preamble三次发送的示意图;
图 7是本发明第五实施例提供的上行信道功率控制方法的实现流程图; 图 8是本发明第六实施例提供的上行信道功率控制方法的实现流程图; 图 9是本发明第七实施例提供的上行信道功率控制方法的实现流程图; 图 10是本发明第八实施例提供的上行信道功率控制装置的结构框图; 图 11是本发明第八实施例提供的上行信道功率控制装置当预设的参数阔 值为多个时的结构框图; 图 12是本发明第九实施例提供的上行信道功率控制装置的结构框图。 具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白, 以下结合附图及实 施例, 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅 仅用以解释本发明, 并不用于限定本发明。
本发明实施例对 PRACH 釆用不固定优先级的策略, 通过将 UE发送 preamble 的发射功率与预设的功率阔值进行比较, 并根据比较结果来确定 PRACH在信道优先级中的排序, 从而对上行信道的传输进行了功率控制, 避 免了由于 PRACH在 Scell上发送使得 UE发射功率超出其最大发射功率或者 达到干扰级别的情况, 可以防止功率受限及干扰受限。 图 2示出了本发明第一实施例提供的上行信道功率控制方法的实现流程, 详述如下:
在步骤 S201中, 将 UE发送 preamble的发射功率与至少一个预设的功率 阔值进行比较得到比较结果, 并根据所述比较结果确定信道优先级, 所述信道 优先级包括 PRACH在信道优先级中的排序。
在本实施例中,预设的功率阔值用于考量 UE发送 preamble的发射功率的 大小, 预设的功率阔值的个数可以为一个或者多个, 针对预设个数的不同, 相 情况将在后续实施例二和三中进行详细说明, 在此不赘述。
在本实施例中, 功率阔值的获取有三种方式: 根据相应的标准来预设,
UE 即可以直接获知预设的功率阔值; 由基站确定, UE通过基站发送来的信 令获取; 由 UE自身确定。 在本实施例中, 功率阔值的获取方式不作限定, 同 在后续实施例中不再作说明。
由于针对 PRACH的功率控制釆用爬坡机制,若本次发送 preamble失败后, 在下一次发送 preamble 时则将发射功率在本次发射功率的基础上增加一个步 长, 如果发送再次失败, 则继续增加步长, 直到 preamble发送成功, 因此, 根据上述机制, 如果始终将 PRACH的信道优先级定义为最低, 虽然保证了其 他信道的传输,但有可能 PRACH的发射功率过小延长了 PRACH的发送过程, 且下一次继续发送 preamble 时可能仍然会与其他的信道发生碰撞; 如果始终 将 PRACH的优先级定义为最高, 虽然增加了此次 preamble发送成功的概率, 但影响了其他信道的传输, 降低了上行信道的传输性能。 因此, 在本实施例中, 对 PRACH 不釆用固定的优先级, 而是通过将 preamble的发射功率与预设的功率阔值进行比较,从而来确定 PRACH在信道 优先级中的排序, 这里的信道优先级包括 PRACH与 PUCCH/ PUSCH同时传 输时的第一信道优先级, 以及 PRACH与 SRS同时传输时的第二信道优先级。
由于在 LTE-A Rel-10系统定义的优先级中,优先级最高的为 PUCCH, 其 次是携带了 UCI的 PUSCH, 优先级最低的为不携带 UCI, 只携带发送数据的 PUSCH, 因此,基于上述的优先级定义, 根据 PRACH在信道优先级中的排序 不同, 可能会出现下述几种信道优先级的排序:
(一 )针对 PRACH与 PUCCH或者 PUSCH同时传输的情况:
优先级一: PRACH>PUCCH>UCI on PUSCH>PUSCH;
优先级二: PUCCH>PRACH>UCI on PUSCH>PUSCH;
优先级三: PUCCH>UCI on PUSCH>PRACH>PUSCH;
优先级四: PUCCH>UCI on PUSCH>PUSCH>PRACH ,
其中, UCI on PUSCH代表携带了 UCI的 PUSCH, PUSCH代表只携带发 送数据的 PUSCH。
(二 )针对 PRACH与 SRS同时传输的情况:
优先级五: PRACH>a-SRS>p-SRS;
优先级六: a-SRS>PRACH>p-SRS;
优先级七: a-SRS>p-SRS>PRACH。
其中, a-SRS代表非周期 SRS ( aperiodic SRS ) , p-SRS代表周期 SRS
( eriodic SRS ) 。
在步骤 S202中, 当多个上行信道需要同时传输时, 根据所述信道优先级 来控制所述多个上行信道的发射功率; 所述多个上行信道包括所述 PRACH。 需要说明的是, 在本发明实施例中, 为了保持系统的后向兼容性, 保证 LTE 终端能够接入 LTE-A 系统, 在信道优先级确定之后, 在一个子帧内对 PRACH与其他信道同时传输的情况下仍然基于背景技术中提及的功率缩放机 制来进行功率控制,在多个子帧间对于 PRACH信道仍然基于爬坡机制来进行 功率控制。
具体地, 针对一个子帧内对 PRACH与其他信道同时传输的情况, 当 UE 当前可用的发射功率足够对多个上行信道进行同时传输时, 则不需执行步骤 S202, 即此时不需要对多个上行信道的发射功率进行控制。 当 UE当前可用的 发射功率不足以对多个上行信道进行同时传输时, 则基于功率缩放机制, 将可 用的发射功率优先用于信道优先级排序最高的上行信道中,在保证该上行信道 的发射功率后, 如果还有功率余量, 则分给信道优先级排序次高的上行信道, 以此类推。上述功率控制方法均适用于本发明所有实施例对多个上行信道进行 功率控制的场景, 对于后续实施例的相关步骤不再赘述。
在本实施例中,根据上述步骤, 能够灵活地根据 UE发送 preamble的发射 功率来确定相应的信道优先级, 并遵循功率缩放机制及爬坡机制,依照确定的 信道优先级来对每个上行信道的发射功率进行控制, 避免了因为 Scell 上的 PRACH信道与其他信道在同一子帧内传输时可能出现的 UE的发射功率超出 其最大发射功率或者达到干扰级别的情况发生。
图 3示出了本发明第二实施例提供的上行信道功率控制方法的实现流程, 其描述了当至少一个预设的功率阔值为一个功率阔值时, 上述步骤 S201的细 化流程, 详述如下: 在步骤 S301中, 判断所述发射功率是否高于所述一个功率阔值, 若高于 则执行步骤 S302, 否则执行步骤 S303。
在步骤 S302中, UE发送 preamble的发射功率高于预设的功率阔值, 则, 此时, 系统会先保证 PRACH的发射功率, 由于发射功率较高, 将 PRACH在 信道优先级中的排序设置为最高。按照爬坡机制, preamble会在短时间内被发 送出去, 且不影响其他信道的传输。
在步骤 S303中, UE发送 preamble的发射功率不高于所述一个功率阔值, 则将 PRACH在信道优先级中的排序设置为最低, 此时, 由于发射功率较低, preamble需要较长的时间才能被发送出去, 因此将其优先级设置为最低, 不会 影响其他上行信道的传输性能。
图 4示出了本发明第三实施例提供的上行信道功率控制方法的实现流程, 其描述了当预设的功率阔值为多个时, 上述步骤 S201的细化流程, 在本实施 例中, 至少一个预设的功率阔值为 N-1个功率阔值, 所述 N为大于等于 3的 整数, 将这 N-1个功率阔值按从大到小的顺序进行排序, 由此形成 N个功率 阔值区间,每个功率阔值区间分别对应一个 PRACH在信道优先级中的排序位 置。 具体流程详述如下:
在步骤 S401中, 将所述发射功率与预设的 N-1个功率阔值进行比较, 确 定所述发射功率所处的第 i个功率阔值区间, 其中, 1≤ ≤N。
在步骤 S402中, 根据所述第 i个功率阔值区间, 将 PRACH在信道优先 级中的排序设置为第 i位。
例如, 针对 PRACH和 PUCCH或者 PUSCH在一个子帧内进行同时传输 的情况,对应的可能出现的信道优先级有如上所述的四种可能, 则预设的功率 阔值有四个, 假设其从大到小分别为 Tl、 Τ2、 Τ3和 Τ4。 当 UE发送 preamble 的发射功率高于最大的功率阔值 T1时, 则将 PRACH在信道优先级中的排序 设置为第 1位, 即 PRACH的信道优先级被设置为最高, 即为上述的优先级一 的情况; 当 UE发送 preamble的发射功率高于 T2但小于 T1时, 则 PRACH 在信道优先级中的排序设置为第 2位, 即对应上述的优先级二的情况; 以此类 推, 当 UE发送 preamble的发射功率低于 T4, 则将 PRACH在信道优先级中 的排序设置为第 4位, 即 PRACH的信道优先级被设置为最低, 即为上述的优 先级四的情况。
本实施例通过预设多个功率阔值,能够更加精确地根据不同的发射功率来 确定不同的信道优先级, 进一步提高了上行信道功率控制的性能。
作为本发明的另一个实施例,基于上述思想,将预设的功率阔值用预设的 发送次数进行替代, 通过将 preamble的发送次数与预设的发送次数进行比较, 并根据比较结果来确定 PRACH在信道优先级中的排序。
图 5示出了本发明第四实施例提供的上行信道功率控制方法的实现流程, 详述如下:
在步骤 S501中, 获取至少一个预设的次数阔值。
由于基于爬坡机制, 当 preamble 的发射功率较小时, 有可能会经过若干 次发送才能够发送成功, 因此, 在本实施例中, 预设的次数阔值用来考量 preamble的当前发送状况。预设的次数阔值的个数可以为一个或者多个,针对 预设个数的不同, 相应的在步骤 S502中将当前实际发送次数与次数阔值进行 比较的方式也有所不同, 具体情况将在后续实施例五和六中进行详细说明,在 此不赘述。 在步骤 S502中, 将 preamble的发送参数与至少一个预设的次数阔值进行 比较得到比较结果, 并根据所述比较结果确定信道优先级, 所述信道优先级包 括 PRACH在信道优先级中的排序 ,所述发送参数包括但不限于 preamble发送 次数、 PRACH与其他信道碰撞次数或者 preamble可发送的机会出现次数。
在实际的信道传输过程中,如果始终将 PRACH的信道优先级设置为最低, 则 preamble有可能根本分配不到发射功率, 无法发送出去。 如图 6所示, 在 对 preamble进行的三次发送中, 实际上只在第二次将 preamble发送出去, 且 此次发送还与其他 UE的 preamble发生了碰撞,没有发送成功,此时, preamble 发送次数为 1 , PRACH与其他信道碰撞次数为 2, preamble可发送的机会出现 次数为 3。 在上述情况下, preamble有可能有许多次发送机会但都未能执行相 应发送动作,或者发送了许多次都发生了碰撞从而导致发送失败的现象,因此, 在本实施例中, 对 PRACH不釆用固定的优先级, 而是通过将当前的 preamble 发送次数、 PRACH与其他信道碰撞 次数或者 preamble可发送的机会出现次 数与预设的次数阔值进行比较, 从而来确定 PRACH在信道优先级中的排序。
在步骤 S503中, 当多个上行信道需要同时传输时, 根据所述信道优先级 来控制所述多个上行信道的发射功率; 所述多个上行信道包括所述 PRACH。
在本实施例中,根据上述步骤, 能够灵活地根据 UE对 preamble进行发送 的当前的相关发送次数来确定相应的信道优先级,并遵循功率缩放机制及爬坡 机制,依照确定的信道优先级来对每个上行信道的发射功率进行控制,避免了 因为 Scell上的 PRACH信道与其他信道在同一子帧内传输时可能出现的 UE 的发射功率超出其最大发射功率或者达到干扰级别的情况发生, 同时, 由于综 合考虑了 preamble发送失败的因素, 提高了接入信道的发送成功率, 提高了 系统的传输性能。
图 7示出了本发明第五实施例提供的上行信道功率控制方法的实现流程, 其描述了当至少一个预设的次数阔值仅为一个时,上述步骤 S502的细化流程, 详述如下:
在步骤 S701中, 判断所述发送参数是否高于所述一个次数阔值, 若高于 则执行步骤 S702 , 否则执行步骤 S703。
在步骤 S702中, preamble发送次数、 PRACH与其他信道碰撞 次数或 者 preamble可发送的机会出现次数高于预设的次数阔值,则将 PRACH在信道 优先级中的排序设置为最高, 此时, 系统会先保证 PRACH 的发射功率, 将 preamble在短时间内发送出去。
在步骤 S703中, preamble发送次数、 PRACH与其他信道碰撞 次数或 者 preamble可发送的机会出现次数不高于预设的次数阔值,则将 PRACH在信 道优先级中的排序设置为最低, 此时, preamble按照爬坡机制进行发送, 直至 当前发送次数或者当前可发送的机会出现次数超过了预设的次数阔值时, PRACH在信道优先级中的排序位置会被设置为最高。
通过上述步骤, preamble不会产生发送了多次仍未发送出去的现象,提高 了系统的传输性能。
图 8示出了本发明第六实施例提供的上行信道功率控制方法的实现流程, 其描述了当预设的次数阔值为多个时, 上述步骤 S502的细化流程, 在本实施 例中, 至少一个预设的参数阔值为 N-1个参数阔值, 所述 N为大于等于 3的 整数, 将这 N-1个参数阔值按从大到小的顺序进行排序, 由此形成 N个参数 阔值区间,每个参数阔值区间分别对应一个 PRACH在信道优先级中的排序位 置。 具体流程详述如下:
在步骤 S801中, 将所述发送参数与预设的 N-1个次数阔值进行比较, 确 定 preamble发送次数、 PRACH与其他信道碰撞次数或者 preamble可发送的 机会出现次数所处的第 i个次数阔值区间, 其中, \≤i < N。
在步骤 S802中, 根据所述第 i个次数阔值区间, 将 PRACH在信道优先 级中的排序设置为第 i位。
例如, 可以通过设置相应的次数阔值, 来允许 preamble与其他信道碰撞 一次即提高 PRACH的一个信道优先级。 本实施例通过预设多个次数阔值, 能 够更加精确地根据 reamble的当前发送情况来确定 PRACH的信道优先级,进 一步提高的系统的传输性能及上行信道的功率控制性能。
在本发明实施例一至六中, 通过将 preamble 当前的发射功率、 preamble 发送次数、 PRACH与其他信道碰撞 次数或者 preamble可发送的机会出现次 数与相应的参数阔值 (包括功率阔值或者次数阔值)进行比较, 从而根据比较 结果来确定 PRACH在相应的信道优先级中的排序。 需要说明的是, 由于在实 际的信道传输过程中, 基于背景技术的介绍, PUCCH/PUSCH与 SRS不会出 现同时传输的情况, 但可能出现 PRACH与 PUCCH/PUSCH同时传输的情况, 以及 PRACH与 SRS同时传输的情况,针对上述两种同时传输情况会分别得到 第一信道优先级和第二信道优先级,对于上述两种信道优先级, 在进行功率控 制时, 可以釆用同一组预设的参数阔值进行控制, 也可以分别使用不同的、 独 立的两组预设的参数阔值来进行控制。当釆用同一组预设的参数阔值进行控制 且该组参数阔值为多个时, 由于第一信道优先级有 4 种排序顺序, 需要用 3 个参数阔值来确定排序, 但第二信道优先级仅有 3 种排序顺序, 仅需要用 2 个参数阔值来确定排序, 因此, 对于第二信道优先级的确定过程, 可以任意地 选择 3个参数阔值中的 2个来进行信道优先级的确定。在具体的实现中,仅釆 用一组预设的参数阔值对两种信道优先级进行确定,在一定程度上节约了系统 资源。
图九示出了本发明第七实施例提供的上行信道功率控制方法的实现流程, 在本实施例中, 同样釆用了不固定信道优先级的方式, 其信道优先级由基站预 先配置, 并以信令的方式通知 UE使用哪一种信道优先级, 其具体的实现流程 详述如下:
在步骤 S901中, 接收基站发送的信令, 所述信令用于告知 UE所述基站 预先配置的信道优先级,所述信道优先级包括 PRACH在信道优先级中的排序。
在本实施例中, 基站在预先配置信道优先级时, 关于 PRACH的信道优先 级排序, 可以有如下考虑:
1、 对于非竟争的 PRACH, 配置最高的信道优先级;
2、若 preamble跨越多个子帧, 且发生碰撞的子帧不是该 preamble的第一 个子帧, 则由于该 preamble 的发射功率在第一个子帧已经确定, 在后续子帧 中应该保持一致,则应该给 PRACH配置较高的信道优先级; 若 preamble跨越 多个子帧,且发生碰撞的子帧是该 preamble的第一个子帧, 则给 PRACH配置 较低的信道优先级;
3、 对于上述考虑 1和 2以外的其他情况, 由于已经产生功率受限或者干 扰受限, 不太适合再增加一个汇聚载波给 UE, 则给 PRACH配置最低的优先 级。
在实际应用中,基站的信道优先级配置策略可以按照实际情况来确定,在 此不作限定。
在步骤 S902中, 当多个上行信道需要同时传输时, 根据所述信道优先级 来控制多个上行信道的发射功率; 所述多个上行信道包括所述 PRACH。
在本实施例中, 基站发送的信令中通过编码来指定要使用的信道优先级, 例如, 使用 2比特数据来标识不同的信道优先级:
(一 )针对 PRACH与 PUCCH或者 PUSCH同时传输的情况:
00: PRACH>PUCCH>UCI on PUSCH>PUSCH;
01: PUCCH>PRACH>UCI on PUSCH>PUSCH;
10: PUCCH>UCI on PUSCH>PRACH>PUSCH;
11 : PUCCH>UCI on PUSCH>PUSCH>PRACH。
(二 )针对 PRACH与 SRS同时传输的情况:
00: PRACH>a-SRS>p-SRS;
01 : a-SRS>PRACH>p-SRS;
10: a-SRS>p-SRS>PRACH。
作为本发明的一个实施例,对于上述两种情况,可以釆用同一个信令编码 来标示 PRACH在信道优先级中的排序,也可以分别釆用不同的信令编码来标 示。
作为本发明的另一个实施例, 对于上述两种情况, 可以通过联合编码, 例 如通过 3比特的编码方式来标示不同的信道优先级。
在上述实现方式中, UE通过获取信令中用于指示信道优先级的编码, 并 按照预设的编解码规则来对编码进行解码之后, 确定要使用的信道优先级。
在本实施例中, 通过步骤 S901至 S902, 也可以实现对信道优先级的灵活 控制,很好地解决了上行信道的功率控制问题,避免了功率受限或者干扰受限 情况的出现。
图 10示出了本发明第八实施例提供的上行信道功率控制装置的结构, 为 了便于说明, 仅示出了与本实施例相关的部分。
如图 10所示, 该装置可以运行于 LTE-A Rel-10/l l等系统中, 包括: 信道优先级确定模块 1001 , 将 preamble的发送参数与至少一个预设的参 数阔值进行比较得到比较结果, 并根据所述比较结果确定信道优先级, 所述信 道优先级包括 PRACH在信道优先级中的排序。
第一功率控制模块 1002, 当多个上行信道需要同时传输时, 根据所述信 道优先级来控制所述多个上行信道的发射功率; 所述多个上行信道包括所述
PRACH。 具体地, 该模块根据每个上行信道在确定的信道优先级中的排序, 将可用的发射功率优先用于信道优先级排序最高的上行信道。
当至少一个预设的参数阔值为一个参数阔值时,所述信道优先级确定模块
1001包括:
判断子模块 10011 , 判断所述发送参数是否高于所述一个参数阔值。 第一排序设置子模块 10012, 当所述发送参数高于所述一个参数阔值时, 将 PRACH在信道优先级中的排序设置为最高; 当所述发送参数不高于所述一 个参数阔值时, 将 PRACH在信道优先级中的排序设置为最低。
而作为本发明的另一个实施例, 如图 11所示, 当至少一个预设的参数阔 值为 N-1个参数阔值, 所述 N为大于等于 3的整数时, 所述 N-1个参数阔值 形成 N个参数区间; 所述第一信道优先级确定模块 1101包括:
参数阔值区间确定子模块 11011 ,将所述发送参数与所述 N-1个参数阔值 进行比较, 确定所述发送参数所处的第 i个参数阔值区间, 其中, \≤i≤N。 第二排序设置子模块 1 1012 , 根据所述第 i个参数阔值区间, 将 PRACH 在信道优先级中的排序设置为第 i位。
图 12示出了本发明第九实施例提供的上行信道功率控制装置的结构, 为 了便于说明, 仅示出了与本实施例相关的部分。
如图 12所示, 该装置可以运行于 LTE-A Rel-10/l l等系统中, 包括: 信令接收模块 1201 , 接收基站发送的信令, 所述信令用于告知 UE所述 基站预先配置的信道优先级, 所述信道优先级包括 PRACH在信道优先级中的 排序。
第二功率控制模块 1202 , 当多个上行信道需要同时传输时, 根据所述信 道优先级来控制多个上行信道的发射功率; 所述多个上行信道包括所述 PRACH。
具体地, 该装置还包括:
编码获取模块 1203 , 获取所述信令中的编码, 所述编码用于指示所述信 道优先级。
解码模块 1204 , 按照预设的编解码规则, 根据所述编码确定所述信道优 先级。
本发明实施例对 PRACH在信道优先级中的排序釆取不固定策略,通过将 UE发送 preamble的发送参数与预设的参数阔值进行比较, 或者根据接收基站 的信令来确定 PRACH在信道优先级中的排序,从而对上行信道功率进行了控 制, 避免了由于 PRACH在 Scell上发送使得 UE发射功率超出其最大发射功 率或者达到干扰级别的情况, 可以防止功率受限及干扰受限。 以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发 明的精神和原则之内所作的任何修改、等同替换和改进等, 均应包含在本发明 的保护范围之内。

Claims

权 利 要 求
1、 一种上行信道功率控制方法, 其特征在于, 包括:
将前导码 preamble的发送参数与至少一个预设的参数阔值进行比较得到 比较结果, 并根据所述比较结果确定信道优先级, 所述信道优先级包括物理随 机接入信道 PRACH在信道优先级中的排序;
当多个上行信道需要同时传输时,根据所述信道优先级来控制所述多个上 行信道的发射功率; 所述多个上行信道包括所述 PRACH。
2、 如权利要求 1所述的方法, 其特征在于, 所述发送参数为发射功率, 所述参数阔值为功率阔值。
3、 如权利要求 1所述的方法, 其特征在于, 所述发送参数为 preamble发 送次数、 PRACH与至少一个其他信道碰撞次数或者 preamble可发送的机会出 现次数, 所述参数阔值为次数阔值。
4、 如权利要求 1所述的方法, 其特征在于, 至少一个预设的参数阔值为 一个参数阔值;
所述将 preamble的发送参数与至少一个预设的参数阔值进行比较得到比 较结果, 并根据所述比较结果确定 PRACH在信道优先级中的排序包括: 判断所述发送参数是否高于所述一个参数阔值;
当所述发送参数高于所述一个参数阔值时,将 PRACH在信道优先级中的 排序设置为最高;
当所述发送参数不高于所述一个参数阔值时,将 PRACH在信道优先级中 的排序设置为最低。
5、 如权利要求 1所述的方法, 其特征在于, 至少一个预设的参数阔值为 N-1个参数阔值, 所述 N为大于等于 3的整数, 所述 N-1个参数阔值形成 N 个参数区间;
所述将 preamble的发送参数与至少一个预设的参数阔值进行比较得到比 较结果, 并根据所述比较结果确定 PRACH在信道优先级中的排序包括:
将所述发送参数与所述 N-1个参数阔值进行比较,确定所述发送参数所处 的第 i个参数阔值区间, 其中, \≤i < N
根据所述第 i个参数阔值区间, 将 PRACH在信道优先级中的排序设置为 第 i位。
6、 如权利要求 1 - 5中任一项所述的方法, 其特征在于, 所述根据所述信 道优先级来控制所述多个上行信道的发射功率包括:
当可用的发射功率无法同时传输所述多个上行信道时 ,根据多个上行信道 在所述信道优先级中的排序,将所述可用的发射功率优先用于在所述信道优先 级中排序最高的上行信道。
7、 如权利要求 1 - 6中任一项所述的方法, 其特征在于, 所述多个上行信 道还包括物理上行控制信道 PUCCH与物理上行共享信道 PUSCH的至少一项; 或者
所述多个上行信道还包括侦听参考信号 SRS。
8、 一种上行信道功率控制方法, 其特征在于, 包括:
接收基站发送的信令,所述信令用于告知 UE所述基站预先配置的信道优 先级, 所述信道优先级包括 PRACH在信道优先级中的排序;
当多个上行信道需要同时传输时,根据所述信道优先级来控制多个上行信 道的发射功率; 所述多个上行信道包括所述 PRACH。
9、 如权利要求 8所述的方法, 其特征在于, 所述根据所述信道优先级来 控制所述多个上行信道的发射功率包括:
当可用的发射功率无法同时传输所述多个上行信道时 ,根据多个上行信道 在所述信道优先级中的排序,将所述可用的发射功率优先用于在所述信道优先 级中排序最高的上行信道。
10、 如权利要求 8或 9所述的方法, 其特征在于, 所述多个上行信道还包 括 PUCCH与 PUSCH的至少一项; 或者
所述多个上行信道还包括 SRS。
11、 如权利要求 8 - 10中任一项所述的方法, 其特征在于, 在接收基站发 送的信令后, 所述方法还包括:
获取所述信令中的编码, 所述编码用于指示所述信道优先级;
按照预设的编解码规则, 根据所述编码确定所述信道优先级。
12、 一种上行信道功率控制装置, 其特征在于, 包括:
信道优先级确定模块, 用于将 preamble的发送参数与至少一个预设的参 数阔值进行比较得到比较结果, 并根据所述比较结果确定信道优先级, 所述信 道优先级包括 PRACH在信道优先级中的排序;
第一功率控制模块,用于当多个上行信道需要同时传输时,根据所述信道 优先级来控制所述多个上行信道的发射功率; 所述多个上行信道包括所述 PRACH0
13、 如权利要求 12所述的装置, 其特征在于, 至少一个预设的参数阔值 为一个参数阔值, 所述信道优先级确定模块包括:
判断子模块, 用于判断所述发送参数是否高于所述一个参数阔值; 第一排序设置子模块,用于当所述发送参数高于所述一个参数阔值时,将
PRACH在信道优先级中的排序设置为最高; 当所述发送参数不高于所述一个 参数阔值时, 将 PRACH在信道优先级中的排序设置为最低。
14、 如权利要求 12所述的装置, 其特征在于, 至少一个预设的参数阔值 为 N-1个参数阔值, 所述 N为大于等于 3的整数, 所述 N-1个参数阔值形成
N个参数区间; 所述信道优先级确定模块包括:
参数阔值区间确定子模块,用于将所述发送参数与所述 N-1个参数阔值进 行比较, 确定所述发送参数所处的第 i个参数阔值区间, 其中, \≤i≤N
第二排序设置子模块, 用于根据所述第 i个参数阔值区间, 将 PRACH在 信道优先级中的排序设置为第 i位。
15、 如权利要求 12 - 14任一项所述的装置, 其特征在于, 当可用的发射 功率无法同时传输所述多个上行信道时,所述第一功率控制模块根据多个上行 信道在所述信道优先级中的排序,将所述可用的发射功率优先用于在所述信道 优先级中排序最高的上行信道。
16、 一种上行信道功率控制装置, 其特征在于, 包括:
信令接收模块, 用于接收基站发送的信令, 所述信令用于告知 UE所述基 站预先配置的信道优先级,所述信道优先级包括 PRACH在信道优先级中的排 序;
第二功率控制模块,用于当多个上行信道需要同时传输时,根据所述信道 优先级来控制多个上行信道的发射功率;所述多个上行信道包括所述 PRACH。
17、 如权利要求 16所述的装置, 其特征在于, 当可用的发射功率无法同 时传输所述多个上行信道时,所述第二功率控制模块根据多个上行信道在所述 信道优先级中的排序,将所述可用的发射功率优先用于在所述信道优先级中排 序最高的上行信道。
18、 如权利要求 16或 17所述的装置, 其特征在于, 还包括:
编码获取模块,用于获取所述信令中的编码, 所述编码用于指示所述信道 优先级;
解码模块, 用于按照预设的编解码规则,根据所述编码确定所述信道优先
PCT/CN2012/086640 2012-01-09 2012-12-14 上行信道功率控制方法、装置及系统 WO2013104232A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12864871.4A EP2793514B1 (en) 2012-01-09 2012-12-14 Method, device and system for controlling uplink channel power
US14/324,649 US9220073B2 (en) 2012-01-09 2014-07-07 Method, device and system for controlling uplink channel power

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210004869.4 2012-01-09
CN201210004869.4A CN103200663B (zh) 2012-01-09 2012-01-09 上行信道功率控制方法、装置及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/324,649 Continuation US9220073B2 (en) 2012-01-09 2014-07-07 Method, device and system for controlling uplink channel power

Publications (1)

Publication Number Publication Date
WO2013104232A1 true WO2013104232A1 (zh) 2013-07-18

Family

ID=48722980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/086640 WO2013104232A1 (zh) 2012-01-09 2012-12-14 上行信道功率控制方法、装置及系统

Country Status (4)

Country Link
US (1) US9220073B2 (zh)
EP (1) EP2793514B1 (zh)
CN (1) CN103200663B (zh)
WO (1) WO2013104232A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016530807A (ja) * 2013-08-13 2016-09-29 富士通株式会社 上りチャネルのパワー制御方法、ユーザ装置及び通信システム
US9838972B2 (en) 2014-05-08 2017-12-05 Fujitsu Limited Method for controlling power of uplink channel, user equipment and communication system
RU2641666C1 (ru) * 2014-01-28 2018-01-19 Хуавэй Текнолоджиз Ко., Лтд. Способ расширенной передачи физического канала произвольного доступа, сетевое устройство и терминал
CN113498111A (zh) * 2020-04-08 2021-10-12 维沃移动通信有限公司 传输优先级的处理方法、终端及网络侧设备

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014109569A1 (ko) * 2013-01-09 2014-07-17 엘지전자 주식회사 신호 전송 방법 및 이를 위한 장치
CN104427604B (zh) * 2013-08-28 2018-10-12 上海诺基亚贝尔股份有限公司 一种用于分配上行功率的方法和设备
WO2015060860A1 (en) * 2013-10-25 2015-04-30 Telefonaktiebolaget L M Ericsson (Publ) Rrc diversity
CN104683082B (zh) * 2013-12-03 2018-10-09 索尼公司 无线通信系统和在无线通信系统中进行无线通信的方法
CN106416387B (zh) * 2014-01-22 2019-06-28 Lg电子株式会社 执行功率控制的方法和用户设备
JP6371398B2 (ja) * 2014-01-31 2018-08-08 ノキア ソリューションズ アンド ネットワークス オサケユキチュア 方法、装置、および、コンピュータ・プログラム
CN105379367B (zh) * 2014-03-05 2020-04-28 华为技术有限公司 发射功率控制方法及设备
CN104902559B (zh) * 2014-03-08 2019-05-24 上海朗帛通信技术有限公司 一种双连接通信的方法和装置
CN104936300A (zh) * 2014-03-20 2015-09-23 中兴通讯股份有限公司 上行信道处理方法、终端、基站和系统
CN104936276B (zh) * 2014-03-21 2018-10-09 上海诺基亚贝尔股份有限公司 为双连接中同时传输的消息3和普通ul信息分配功率
KR102184585B1 (ko) * 2014-03-21 2020-11-30 후아웨이 테크놀러지 컴퍼니 리미티드 이중 연결을 고려한 전력 제한 상황에서의 pusch/pucch 전력 스케일링 방법 및 그 장치
US10129910B2 (en) * 2014-10-06 2018-11-13 Qualcomm Incorporated PRACH transmission power adjustment
CN106304299A (zh) 2015-05-15 2017-01-04 北京三星通信技术研究有限公司 一种上行功率的分配方法和用户设备
US20190200391A1 (en) * 2016-05-12 2019-06-27 Huawei Technologies Co., Ltd. Random Access Method and Apparatus
US10986599B2 (en) 2016-05-13 2021-04-20 Huawei Technologies Co., Ltd. TA obtaining method and apparatus
KR102161007B1 (ko) 2016-08-12 2020-09-29 후아웨이 테크놀러지 컴퍼니 리미티드 업링크 채널 송신 방법 및 장치
CN110073690B (zh) * 2016-12-14 2021-02-26 Oppo广东移动通信有限公司 传输方法和装置
WO2018119681A1 (zh) * 2016-12-27 2018-07-05 广东欧珀移动通信有限公司 通信方法和装置
CN108282855B (zh) * 2017-01-06 2024-06-18 华为技术有限公司 上行功率控制方法及终端
CN108347760B (zh) 2017-01-22 2021-06-08 华为技术有限公司 一种上行信道的功率分配方法及装置
EP3574701B1 (en) * 2017-01-26 2023-12-20 Motorola Mobility LLC Resource configuration priority levels
US10477484B2 (en) 2017-03-10 2019-11-12 Qualcomm Incorporated Multi-link transmit power control for a plurality of uplink beam pairs
US11337190B2 (en) 2017-05-10 2022-05-17 Lg Electronics Inc. Method for transmitting uplink signal in wireless communication system and apparatus therefor
WO2019005797A1 (en) * 2017-06-26 2019-01-03 Convida Wireless, Llc COEXISTENCE LTE WITH 5G NR
CN109392126A (zh) * 2017-08-10 2019-02-26 华为技术有限公司 上行传输方法、终端设备和网络设备
WO2019033302A1 (zh) * 2017-08-16 2019-02-21 Oppo广东移动通信有限公司 信号传输的方法和终端设备
CN112135339A (zh) * 2018-01-09 2020-12-25 Oppo广东移动通信有限公司 终端发送数据的控制方法、终端设备及计算机存储介质
CN110475372B (zh) * 2018-05-10 2021-09-24 维沃移动通信有限公司 一种上行传输方法及终端
WO2019213968A1 (zh) * 2018-05-11 2019-11-14 Oppo广东移动通信有限公司 上行信道的发送方法和终端设备
CN110636532B (zh) * 2018-06-21 2021-01-08 维沃移动通信有限公司 一种功率分配方法及终端
WO2020019230A1 (zh) * 2018-07-26 2020-01-30 Oppo广东移动通信有限公司 一种资源配置方法及装置、终端设备、网络设备
US11665746B2 (en) * 2018-08-08 2023-05-30 Samsung Electronics Co., Ltd. Handling collisions in wireless networks
US11917697B2 (en) * 2018-08-21 2024-02-27 Qualcomm Incorporated Interlace PRACH design in NR-U
CN111886906B (zh) * 2018-09-25 2022-01-18 Oppo广东移动通信有限公司 一种功率分配方法、终端设备及存储介质
EP3869900A4 (en) 2018-10-27 2021-12-15 Guangdong Oppo Mobile Telecommunications Corp., Ltd. RANDOM ACCESS PROCESS, TERMINAL DEVICE AND NETWORK DEVICE
CN110001452A (zh) * 2019-03-07 2019-07-12 北京长城华冠汽车科技股份有限公司 电动车辆及其电池运行监控系统
CN111756502B (zh) * 2019-03-29 2023-09-12 中兴通讯股份有限公司 传输的发送方法及装置、存储介质
CN112136337B (zh) * 2019-04-09 2022-01-14 Oppo广东移动通信有限公司 下行控制信令传输方法及相关产品
CN116074938A (zh) 2019-06-10 2023-05-05 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114731632A (zh) * 2019-11-07 2022-07-08 华为技术有限公司 一种随机接入的方法和装置
CN113411909B (zh) * 2021-08-19 2021-10-29 成都爱瑞无线科技有限公司 数据处理方法、设备、系统及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101686560A (zh) * 2008-09-22 2010-03-31 大唐移动通信设备有限公司 一种随机接入信道频域位置配置方法和装置
CN101883437A (zh) * 2009-05-05 2010-11-10 中兴通讯股份有限公司 随机接入方法以及基站
CN102238716A (zh) * 2011-07-15 2011-11-09 电信科学技术研究院 一种调整发射功率的方法及装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2875077B1 (fr) * 2004-09-09 2006-12-08 Nortel Networks Ltd Procede et dispositif de controle de la puissance d'emission d'un terminal mobile dans un systeme radio cellulaire, et terminal adapte a la mise en oeuvre du procede
US20100074204A1 (en) * 2008-09-16 2010-03-25 Qualcomm Incorporated Uplink hybrid automatic repeat request operation during random access
US8804585B2 (en) * 2009-01-09 2014-08-12 Qualcomm Incorporated Special management connection between base station and relay stations in multihop relay systems for controlling sleep-mode
US8670432B2 (en) * 2009-06-22 2014-03-11 Qualcomm Incorporated Methods and apparatus for coordination of sending reference signals from multiple cells
MX2012003664A (es) * 2009-10-02 2012-04-30 Ericsson Telefon Ab L M Control de potencia de enlace ascendente en un sistema de comunicacion inalambrica.
CA2793703C (en) * 2010-04-01 2020-06-30 Panasonic Corporation Transmit power control for physical random access channels
US9179426B2 (en) * 2010-05-07 2015-11-03 Qualcomm Incorporated Modulation and coding scheme adjustment for uplink channel power control in advanced telecommunication networks

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101686560A (zh) * 2008-09-22 2010-03-31 大唐移动通信设备有限公司 一种随机接入信道频域位置配置方法和装置
CN101883437A (zh) * 2009-05-05 2010-11-10 中兴通讯股份有限公司 随机接入方法以及基站
CN102238716A (zh) * 2011-07-15 2011-11-09 电信科学技术研究院 一种调整发射功率的方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2793514A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016530807A (ja) * 2013-08-13 2016-09-29 富士通株式会社 上りチャネルのパワー制御方法、ユーザ装置及び通信システム
RU2628761C1 (ru) * 2013-08-13 2017-08-22 Фудзицу Лимитед Способ управления мощностью для канала восходящей линии связи, пользовательское оборудование и система связи
RU2641666C1 (ru) * 2014-01-28 2018-01-19 Хуавэй Текнолоджиз Ко., Лтд. Способ расширенной передачи физического канала произвольного доступа, сетевое устройство и терминал
US10070399B2 (en) 2014-01-28 2018-09-04 Huawei Technologies Co., Ltd. Physical random access channel enhanced transmission method, network device, and terminal
US11089556B2 (en) 2014-01-28 2021-08-10 Huawei Technologies Co., Ltd. Physical random access channel enhanced transmission method, network device, and terminal
US9838972B2 (en) 2014-05-08 2017-12-05 Fujitsu Limited Method for controlling power of uplink channel, user equipment and communication system
CN113498111A (zh) * 2020-04-08 2021-10-12 维沃移动通信有限公司 传输优先级的处理方法、终端及网络侧设备

Also Published As

Publication number Publication date
US20140321389A1 (en) 2014-10-30
CN103200663A (zh) 2013-07-10
EP2793514B1 (en) 2017-12-13
US9220073B2 (en) 2015-12-22
EP2793514A1 (en) 2014-10-22
EP2793514A4 (en) 2015-04-22
CN103200663B (zh) 2016-03-09

Similar Documents

Publication Publication Date Title
WO2013104232A1 (zh) 上行信道功率控制方法、装置及系统
US11277864B2 (en) Method and apparatus for determining LBT mode and method for LBT mode switching
KR102473623B1 (ko) 업링크 신호를 송신하기 위한 방법, 사용자 장치 및 기지국
US10375582B2 (en) Uplink channel access, reservation and data transmission for licensed assist access long term evolution (LAA-LTE)
CN107466112B (zh) 上行数据传输方法、随机接入方法和相应的终端和基站
EP2826326B1 (en) Random access channel enhancements for lte devices
US11632793B2 (en) Method and apparatus for random access procedure
US20180007684A1 (en) Method and apparatus for reducing latency of lte uplink transmissions
US11671949B2 (en) Time domain resource allocation for PUSCH transmission
WO2017041685A1 (zh) 用于上行数据传输的方法、终端设备和网络设备
EP2540130B1 (en) Methods and arrangements for contention-based uplink transmission in a wireless communications system
US20150296542A1 (en) Performing random access in carrier aggregation
US20180184461A1 (en) Random access method, device and system
EP2680658B1 (en) Method of handling random access response
US20130272241A1 (en) Wireless communication system, receiving device, transmitting device, and wireless communication method
CN113412674A (zh) 用于响应于传输prach前导码和pusch接收pdsch的方法和装置
US20130250888A1 (en) Radio communication terminal, radio communication base station and communication methods thereof, program for carrying out the communication method and medium for storing the program
EP3316644B1 (en) Transmission device, receiving device and method for uplink data
CN111385909A (zh) 信号传输方法、ue、基站以及计算机可读介质
EP3820187A1 (en) Unlicensed channel sharing method and device, storage medium, terminal and base station
CN114731697A (zh) 用于两步随机接入过程的方法和装置
WO2014047918A1 (en) Methods and apparatus for contention-based transmission
WO2018171504A1 (zh) 数据传输的方法和装置
WO2023201515A1 (en) Methods and systems for initial access in asymmetric carrier aggregation
OA20260A (en) Time domain resource allocation for PUSCH transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12864871

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012864871

Country of ref document: EP