WO2013103114A1 - System for designing long resin member - Google Patents
System for designing long resin member Download PDFInfo
- Publication number
- WO2013103114A1 WO2013103114A1 PCT/JP2012/083616 JP2012083616W WO2013103114A1 WO 2013103114 A1 WO2013103114 A1 WO 2013103114A1 JP 2012083616 W JP2012083616 W JP 2012083616W WO 2013103114 A1 WO2013103114 A1 WO 2013103114A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fishing rod
- strain energy
- design
- unit
- design system
- Prior art date
Links
- 239000011347 resin Substances 0.000 title claims abstract description 71
- 229920005989 resin Polymers 0.000 title claims abstract description 71
- 238000013461 design Methods 0.000 claims abstract description 85
- 238000004364 calculation method Methods 0.000 claims abstract description 44
- 238000000034 method Methods 0.000 claims description 33
- 238000005259 measurement Methods 0.000 claims description 16
- 238000009826 distribution Methods 0.000 description 53
- 238000011156 evaluation Methods 0.000 description 38
- 239000000463 material Substances 0.000 description 36
- 230000008569 process Effects 0.000 description 24
- 241000251468 Actinopterygii Species 0.000 description 23
- 230000008859 change Effects 0.000 description 20
- 238000004088 simulation Methods 0.000 description 20
- 238000005452 bending Methods 0.000 description 18
- 238000004519 manufacturing process Methods 0.000 description 18
- 238000010586 diagram Methods 0.000 description 17
- 239000000835 fiber Substances 0.000 description 17
- 238000012545 processing Methods 0.000 description 15
- 238000012938 design process Methods 0.000 description 12
- 230000035945 sensitivity Effects 0.000 description 12
- 210000001217 buttock Anatomy 0.000 description 10
- 239000012783 reinforcing fiber Substances 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 7
- 230000007423 decrease Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 241000276420 Lophius piscatorius Species 0.000 description 5
- 238000012937 correction Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000007689 inspection Methods 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 229920000049 Carbon (fiber) Polymers 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 239000004917 carbon fiber Substances 0.000 description 3
- 238000012854 evaluation process Methods 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 238000005266 casting Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 241000252233 Cyprinus carpio Species 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 210000000744 eyelid Anatomy 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007779 soft material Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- -1 thickness Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K87/00—Fishing rods
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B60/00—Details or accessories of golf clubs, bats, rackets or the like
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B49/00—Stringed rackets, e.g. for tennis
- A63B49/02—Frames
- A63B49/10—Frames made of non-metallic materials, other than wood
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B53/00—Golf clubs
- A63B53/10—Non-metallic shafts
Definitions
- the present invention relates to a design system for designing a tubular member or a plate-like long member made of resin by using a numerical sensibility evaluation by a physical element.
- This application claims priority based on Japanese Patent Application 2012-1608 (filed on January 6, 2012) and Japanese Patent Application 2012-33798 (filed on February 20, 2012), the contents of which are hereby incorporated by reference Incorporated herein in its entirety.
- tubular or plate-like long members such as fishing rods and golf shafts have been produced using resin materials containing reinforcing fibers such as carbon. Therefore, not only the length and the outer diameter, but also a long member having various characteristics can be designed.
- the ratio of the carbon reinforcing fiber in the resin material, the winding direction of the carbon reinforcing fiber, and the like are appropriately combined to determine specific characteristics such as bending rigidity and torsional rigidity.
- a fishing rod includes various elements such as a hanging curve, which is the degree of bending of the rod, rigidity of the rod, and transmission of vibration caused by a fish pull generated at the tip of the rod.
- the specifications are determined based on previous production materials and experience. For example, a prototype is produced by designing a resin material or structure that can obtain a desired bending rigidity. This prototype is actually used by a professional inspector to obtain a sensory evaluation result, and the final product specification is determined by adjusting the evaluation result through trial and error.
- a long member for example, a fishing rod
- a certain level of characteristics by using past evaluation results accumulated from past manufacturing experience.
- the load is applied to the tip of the heel, it is designed to combine the known values such as the direction of the carbon reinforcing fiber, the amount of resin, and the wall thickness for the bending curve, that is, the rigidity. This assumes a hanging curve.
- visual confirmation is also possible by suspending a weight from the tip of the prototype produced by the design.
- the present invention captures the sensibility evaluation related to a tubular or plate-like long member formed of a resin material as a quantified physical element, and the tubular or plate-like length of a desired specification from the physical element. It aims at providing the design system of the resin long member which designs a long member.
- a resin long member design system is a resin long member design system that deforms due to an external load, and is based on input information from an operator.
- a setting unit that sets design information necessary for design
- a calculation unit that calculates a physical element in a state where the resin long member based on the set design information is deformed by the external load
- the calculation unit A determination unit that determines the quality of the design information based on the calculation result of the physical element.
- sensibility evaluation related to a tubular or plate-like long member formed of a resin material is regarded as a numerical physical element, and a desired specification is determined from the physical element. It is possible to provide a resin long tubular member design system for designing a tubular or plate-like long member.
- FIG. 1 is a diagram showing a conceptual configuration of a resin tubular member design system according to a first embodiment of the present invention.
- FIG. 2 is a diagram conceptually illustrating a process of manufacturing a fishing rod.
- FIG. 3 is a diagram for explaining a hanging curve when the fishing rod is lifted.
- FIG. 4 is a diagram illustrating a first example of strain energy characteristics in a fishing rod.
- FIG. 5 is a diagram showing a second example of strain energy characteristics in a fishing rod.
- FIG. 6 is a diagram illustrating a third example of strain energy characteristics in a fishing rod.
- FIG. 7 is a diagram showing the bending rigidity characteristics of a fishing rod according to a conventional design technique.
- FIG. 8 is a diagram showing characteristics of a fishing rod hanging curve according to a conventional design technique.
- FIG. 9 is a diagram showing a conceptual configuration of a resin tubular member design system in the second embodiment.
- FIG. 10 is a diagram illustrating an example of a strain sensor disposed on a fishing rod. It is a figure which shows notionally the process of manufacturing the fishing rod in 2nd and 3rd embodiment.
- FIG. 12 is a diagram illustrating a conceptual configuration of a resin tubular member design system according to the third embodiment.
- FIG. 13 is a diagram illustrating an example of a captured image.
- a fishing rod made of a fiber reinforced resin material impregnated with a resin determines the desired length, outer diameter, etc., and sets physical quantities such as weight and rigidity (bending rigidity, torsional rigidity) and their distribution.
- the material is selected according to the specifications.
- the sensibility evaluation referred to in the present embodiment mainly refers to operability (such as a sling operation, a pulling operation, and a pulling operation) that occurs along with the operation of the fishing rod when the angler actually fishes and is judged sensuously.
- the term “tame” refers to a rigidity balance over the entire rod so that the rod can be manually operated (raising and lowering the rod and pulling the rod tip) when a large load (fish) is applied to the rod and bends. Note that a state in which the fishing rod cannot be led to the load is referred to as a rod being loaded.
- the fishing rod design system selects the physical elements related to the fishing rod so that it meets the specifications (desired dimensions (length and outer diameter), tone, bending condition, sensitivity, etc.) in designing and prototyping the fishing rod. Set.
- the physical elements related to fishing rods are explained. Specific examples of these known physical elements to be set include the following elements.
- [Length] The length of the fishing rod. It is set as appropriate depending on the target fish and the field to be used. For example, if the target fish is carp fishing in a river, the length is about 8 to 10 m, and if the target fish is kiss fishing on a fishing boat, the length is about 2 m.
- the weight is mainly based on the amount of the fiber reinforced resin material used.
- a reel seat and a fishing line guide are included.
- Number of joints This is the number of separated short baskets (pieces or guards) when a separation structure is adopted for carrying.
- a fishing rod without a joint is called a total rod or a one-piece rod. Note that the same number of joints are handled in both the case of parallel spears and the swing spears, but the strength is different because there are a plurality of different splice structures.
- the curvature is a value indicating the degree of curvature of the curve (curved surface) at each point on the curve (curved surface), and is represented by the reciprocal of the radius of curvature ⁇ .
- Fiber direction An arrangement direction (fiber direction) of a plurality of reinforcing fibers such as carbon in the fiber reinforced resin material.
- the longitudinal direction of the ridge is defined as the vertical direction (0 degree)
- the direction orthogonal thereto is defined as the horizontal direction (90 degrees). The rigidity changes depending on the angle in the fiber direction.
- [Laminated structure] A layer of fiber reinforced resin material impregnated with resin. A plurality of sheet-like resin material layers are overlapped and formed to taper in a columnar or cylindrical shape.
- the internal structure includes a laminated structure including the fiber direction of the sheet member and the number of laminated sheets.
- Resin Amount The amount of resin (resin) that functions as an adhesive between reinforcing fibers (carbon, glass, etc.) in the fiber reinforced resin material forming the fishing rod. By reducing the amount of resin in a predetermined cross-sectional area and increasing the density of carbon fibers (the number of fibers per unit volume), the weight can be reduced.
- the fiber reinforced resin material is formed as a thin sheet member. In the present specification, the resin of the sheet member is included in the resin material.
- the rigidity of the fishing rod is difficult to be deformed due to bending or twisting. Among these, the bending rigidity greatly affects the bending state when a load is applied to the fishing rod, that is, the hanging curve.
- the torsional rigidity differs depending on the fiber direction of the reinforcing fiber in the fiber-reinforced resin material. The case where the fiber direction is the longitudinal direction (0 degrees) and the lateral direction (90 degrees) of the ridge is the weakest, and the oblique direction may be 45 degrees. The biggest.
- the torsional rigidity is weak
- a load is applied to a plurality of guides provided on the fishing rod in the direction of rotation about the longitudinal direction of the rod, the guide is inclined in the rotation direction and the operability of the rod is deteriorated.
- a fishing rod having a specification for casting a lure affects the accuracy of the casting direction and the landing position.
- strain energy As a quantified physical element for performing kansei evaluation.
- strain energy will be described.
- the component part made of a hard material has a small strain
- the component part made of a soft material has a large strain.
- the strain energy in a fishing rod is the energy that the bent rod tries to return to its original straight state and is an important physical element of the design.
- a plurality of specific positions are determined from arbitrary positions on a fishing rod, strain energy at the specific positions is calculated, and used as a numerical value (energy distribution) for comparison for performing pass / fail judgment described later.
- the strain energy can be obtained from the acting moment and stiffness (bending stiffness), and is given by the following well-known formula (1).
- M EI / ⁇
- M moment
- EI object rigidity
- 1 / ⁇ curvature
- strain energy When strain energy is used for fishing rod design, the strain energy at each of a plurality of specific positions determined from the tip of the rod to the butt is calculated.
- the calculated result is not only managed as a numerical table, but is also graphed and used as a distribution characteristic for determination, as will be described later.
- the strain energy can be calculated by simulation using the above-described arithmetic expression.
- FIG. 7 shows the characteristics of the bending rigidity of a fishing rod according to a conventional design technique, which is calculated using the diameter of the rod at each position of the rod and the elastic modulus of the fiber reinforced resin material.
- FIG. 8 shows a fishing rod hanging curve according to a conventional design technique.
- a long fishing rod having a seam for fishing a rod or the like will be described as an example.
- FIG. 8 shows, for example, the multiplication curves of the fishing rods S1 and S2 when the same load is applied to the fishing rod tips of two fishing rods S1 and S2 having the same length, diameter, tone and weight load of the target fish. ing. Note that the plurality of steps on the bending rigidity characteristic curve shown in FIG. 7 indicate steep changes that occur in the joint portion of the fishing rod having higher rigidity. On the other hand, in a seamless fishing rod such as a one-piece rod, the change is smooth without steps.
- These bending rigidity and hanging curves become two characteristic curves which are shifted if the characteristics of the fishing rod are different, but here are substantially coincident and overlapping curves. In other words, it has the same characteristics in appearance. Therefore, from this evaluation result, these fishing rods are determined as fishing rods having the same characteristics.
- FIG. 4 shows a distribution (energy characteristic) of strain energy stored in the fishing rods S1 and S2 in a state where a light load (for example, a load caused by a device and a decoy rod) is applied to the rod tip under actual fishing, obtained by simulation.
- FIG. This figure shows the strain energy distribution in a predetermined range from the heel to the buttock side.
- the light load means a load on the light side within the weight load allowable range of the fishing rod.
- the medium load means a medium load within the allowable weight load range.
- a load applied when a fish is applied is assumed.
- a heavy load means a load on the heavy side within the weight load allowable range.
- a load applied when a fish is caught (or when a fishing line is wound up) or when a fish is pulled up is used. is assumed.
- both of them are located at a specific position m where the distance of less than 10% of the rod length in the range shown in FIG.
- the highest peak of strain energy is seen.
- the change in the strain energy characteristic of the fishing rod S1 is U-shaped with a smooth curve from the specific position m of the peak toward the bottom of the rod.
- a peak is seen at the same specific position m as the fishing rod S1, and the peak value is larger than that of the fishing rod S1.
- a U-shape having a plurality of steps is formed from a specific position m of the peak toward the buttock.
- the fishing rod S1 is determined to be good and the fishing rod S2 is determined to be poor, and the change in the strain energy characteristic of the fishing rod S2 is a fluctuation range from the tip of the fishing rod compared to the fishing rod S1.
- Is a large and steep change has a step-like change, and has a characteristic curve that is not a smooth transition.
- the strain energy is concentrated at a specific position, and the energy change at the tip of the tip is not transmitted smoothly in the direction of the tip of the tip. It can be considered that it has not been communicated. That is, the fishing rod S2 has a sensibility evaluation that it is difficult to operate the decoy rod because, for example, a change in the pull (fish trust) from the decoy rod cannot be transmitted well to the angler.
- FIG. 5 shows the distribution of strain energy stored in the above-described fishing rods S1 and S2 when a moderate load (for example, a load when a fish is applied) is applied to the rod tip under actual fishing obtained by simulation. It is a figure which shows an energy characteristic.
- a moderate load for example, a load when a fish is applied
- the highest peak of strain energy is set at the same specific position m as shown in FIG. 4 (when a light load is applied to the tip of the rod).
- the change in the strain energy characteristics decreases from a specific position m of the peak toward the buttock side and decreases with a smooth curve.
- a peak value higher than that of the fishing rod S1 is seen at the same specific position m as the fishing rod S1. From the specific position m of the peak toward the heel side, the peak sharply decreases with a reduction range larger than the reduction range in the energy characteristics of the fishing rod S1.
- the change in the strain energy characteristics of the fishing rod S2 is a sharp change with a large fluctuation range from the tip of the fishing rod, with the strain energy concentrated more at a specific position m than the fishing rod S1.
- the fish faith (load fluctuation) when the fish produced at the tip of the fish hooked is accumulated at a certain specific position (specific position m), reducing the size of the fish faith, and the accumulated time, Transmission of energy change from the tip to the buttock side is delayed. Therefore, the angler feels a delay in the transmission of the fish belief that the fish has been caught, and the result is not satisfactory as a sensitivity evaluation.
- FIG. 6 shows the strain accumulated in the above-described fishing rods S1 and S2 when a large load is applied to the rod tip under actual fishing obtained by simulation (for example, when a hung fish is attracted or pulled). It is a figure which shows distribution (energy characteristic) of energy. Comparing the energy characteristics of these fishing rods S1 and S2, both peaks having the highest strain energy at a specific position moved from the tip side to the buttock side by a distance of about 1/4 of the rod length in the range shown in FIG. Is seen.
- the change in the strain energy characteristics of the fishing rod S1 is a smooth and gently decreasing shape from the peak specific position n toward the buttock side.
- a peak value higher than that of the fishing rod S1 is seen at a specific position p closer to the rod tail side than the fishing rod S1. From the specific position p, which is the peak, toward the bottom of the rod, it decreases with a decrease larger than the decrease in the characteristic curve of the fishing rod S1 and crosses the characteristic curve of the fishing rod S1, and then has an energy value lower than that of the fishing rod S1.
- the change in the strain energy characteristics of the fishing rod S2 is greatly changed from the strain energy peak to the buttock side compared to the fishing rod S1. That is, when viewed from the whole fishing rod, the rigidity in the vicinity of the specific position p where the strain energy is large (near the center of the buttocks side) is small, and the rigidity is large when hung on the rod tail side where the strain energy is low. Therefore, the fishing rod S2 has a characteristic that it is hard from the hand to the vicinity of the specific position p (near the center of the buttock side), and the tip side is bent more than that, and the angler has no operability. You will receive a sensitivity evaluation.
- the strain energy distribution related to the fishing rod S1 with good sensibility evaluation is stored as a reference for comparison, and used as a reference for comparison when a new fishing rod is designed. Thereafter, the strain energy distribution determined as good is stored each time. Further, an ideal strain energy distribution model may be constructed by using the previously stored strain energy distribution for correction. Further, the strain energy distribution determined to be defective may also be stored and used as a basis for the cause in the failure analysis.
- FIG. 1 is a diagram showing a conceptual configuration of a fishing rod design system according to the first embodiment of the present invention.
- the fishing rod design system 1 of this embodiment includes a physical element calculation unit (design unit) 2 that obtains the physical elements described above, an input unit 3, a display unit 4, and a plurality of external terminals 5.
- design unit physical element calculation unit
- the physical element calculation unit 2 is a control unit (processing unit: CPU) 7 that controls calculation processing and communication processing related to the physical elements described above, and selection and physical selection of resin materials or components to be used according to instructions from the input unit 3.
- a setting condition setting unit 6 for setting a target element, and parameters for selecting and setting the setting condition setting unit 6 for example, eigenvalues of physical elements defined in a resin material or a part to be used
- a parameter data unit 10 a physical element calculated by the control unit 7, for example, a determination unit 8 that performs pass / fail determination on strain energy and strain energy distribution (simulation value), and fishing rod data designed in the past It is composed of a data unit 9 for storing the evaluation results of actual fishing in association with each other and an I / O port 11 that functions as a communication interface with the external terminal 5. .
- parameter data unit 10 and the data unit 9 are configured separately, but may be integrated.
- the display unit 4 is a known display device that displays information using a liquid crystal display device or the like.
- the external terminal 5 is a personal computer or the like used by a designer connected to the I / O port 11 of the physical element calculation unit 2 via a network such as a LAN.
- the input unit 3 includes a keyboard and a touch panel provided on the screen surface of the display unit 4.
- the input unit 3 includes an input device such as a keyboard provided in the external terminal 5.
- the setting condition setting unit 6 causes the display unit 4 to display a setting screen necessary for selecting materials and parts to be used and setting physical elements, and sets setting items as design specifications based on instructions from the input unit 3 To do.
- the setting items are used for calculation (simulation) in the control unit 7, for example, the length of the ridge, the outer diameter, the guide position, the eigenvalues of the physical elements of the parts and resin materials used, the fiber direction, the wall thickness, and the laminated structure And the elastic modulus of the resin material.
- the control unit 7 calculates, for example, strain energy and strain energy distribution among physical elements by using a preset processing program for executing processing including the arithmetic processing of the above-described equation (1). I do.
- the control unit 7 uses other arithmetic expressions to calculate physical elements such as bending rigidity, torsional rigidity, strength, tone, curvature, weight, resin amount, curve with or without guide, weight distribution, moment of inertia, and mating structure. It is also possible to calculate.
- the setting condition setting unit 6 and the control unit 7 function as a calculation unit in an embodiment of the present invention.
- the control unit 7 calculates strain energy at a plurality of specific positions of the fishing rod, for example, and graphs the distribution of calculated values at each specific position of the fishing rod as shown in FIGS. In addition, when accessed by each external terminal 5, the control unit 7 performs arithmetic processing in accordance with an input instruction from the external terminal 5. In the fishing rod design system 1, the control unit 7 provides information such as various data to each external terminal in accordance with a request from each external terminal 5, performs calculation processing in each external terminal 5, and executes a simulation. Also good.
- the determination unit 8 compares the energy characteristics including, for example, strain energy and strain energy distribution among the physical elements calculated by the control unit 7 with the past data previously recorded in the data unit 9, Pass / fail judgment is performed.
- good / bad determination is performed by comparing the calculated strain energy distribution with a strain energy distribution that is a predetermined determination criterion from past data with good sensitivity evaluation.
- a strain energy distribution that matches or approximates the calculated strain energy distribution is searched from past data recorded in the data unit 9, and evaluation of the sensibility evaluation associated with the searched strain energy distribution is performed. Based on the result, good / bad is judged.
- the discrepancy with the strain energy distribution that is the criterion is within a predetermined determination range. Determined.
- the determination range that is determined to be good is set in advance based on data of fishing rods that have been used in the past (manufactured fishing rods or fishing rods that have good sensitivity evaluation results). If the discrepancy with the strain energy distribution, which is the criterion, is out of the judgment range and is not determined to be good, the disagreement point with the strain energy distribution of the criterion (defect location in the strain energy distribution) is displayed in color, etc. The location of the fishing rod to be corrected may be notified.
- FIG. 2 is a diagram conceptually showing a process of designing and manufacturing a fishing rod.
- an input setting by each designer is performed in consideration of a design specification process for determining the concept of the fishing rod by a meeting or the like, a design specification, and a feedback sentimental evaluation result.
- Create a fishing rod prototype based on the input settings in the design process, physical element calculation process for calculating physical elements such as strain energy and strain energy distribution based on the input setting information
- the input unit 3 inputs detailed design items of the fishing rod that realizes the proposed concept to the setting condition setting unit 6 of the fishing rod design system 1 of the embodiment.
- This design item can be set by selection input or direct input from the data stored in the parameter data section 10 on the setting screen displayed on the display section 4, for example, as described above, Length, outer diameter, number of joints, number of guides and arrangement position, weight, type of resin material, carbon fiber direction, and the like are included.
- the physical element calculation unit 2 of the fishing rod design system 1 calculates the moment, the bending rigidity, and the like based on the design items input and set in the design process.
- the strain energy is calculated using 1), and a strain energy distribution is created.
- the strain energy and strain energy distribution calculated by the physical element calculation unit 2 are already recorded in the data unit 9 in the past. Is used as a determination criterion to determine whether or not it is satisfactory. This determination is performed by the method described above.
- the process proceeds to the prototype process.
- the design process is returned to the design process. For example, as shown in FIG. 4 to FIG. 6 described above, when a local difference, an energy distribution difference, or a steep change occurs with respect to the determination criterion, the design process is returned to the design process.
- the rigidity balance is mainly adjusted. This is based on strain energy being affected by stiffness balance.
- This stiffness balance is, for example, the material, thickness, carbon fiber direction, number of resin sheets (number of carbon layers), combinations of resin sheets having different elastic moduli (layer order), and the outer diameter of a fishing rod, etc. It is possible to adjust by changing.
- a fishing rod that is a prototype is produced based on the input settings in the design process.
- the actual fishing inspection process an actual inspecting inspection is performed by a specialized inspector, and a sensibility evaluation regarding operability and the like is performed.
- the sensitivity evaluation process the performance test and sensitivity evaluation results of the fishing rod are examined to determine whether or not a design change is necessary.
- the determination result is a setting provided in the data unit 9 in association with the setting item set by the setting condition setting unit 6 of the fishing rod design system 1 of the embodiment and the strain energy and strain energy distribution calculated by the control unit 7. Register in the table.
- the sensitivity evaluation process if the prototype is judged to be good, it is determined as the product specification and the process proceeds to product manufacturing.
- a fishing rod design system has been described using a fishing rod as an example of the resin tubular member.
- the resin tubular member that can be designed by this design system is at least a fishing rod.
- resin plate-like members, ice hockey shafts, plate fishing rods used for smelting fishing rods, etc. single layer or laminated structure It can be easily applied to the design of a leaf spring or the like.
- Sensitivity evaluation can be digitized or graphed (patterned), and the evaluation of the fishing rod can be derived from the evaluation of the fishing rod that has been prepared before, without producing a large number of prototypes.
- the quantified physical elements obtained from the moment and bending stiffness are quantified as strain energy and strain energy distribution, the reproducibility is good, and the measurement data that supports the evaluation results is obtained by using a strain sensor. Is also possible. In particular, it is possible to obtain the characteristics of a fishing rod hanging curve according to actual fishing by using strain energy and strain energy distribution.
- FIG. 9 is a diagram showing a conceptual configuration of a fishing rod design system according to the second embodiment.
- the same components as those in the first embodiment described above are denoted by the same reference numerals, and detailed description thereof is omitted.
- the fishing rod design system 1 according to the present embodiment attaches a plurality of strain sensors 13 to a fishing rod 12 at a plurality of specific positions, and then actually lowers the load 14 toward the tip of the fishing rod 12 to curve the fishing rod 12. The strain energy is detected and strain energy is calculated.
- FIG. 10 the fishing rod design system 1 according to the present embodiment attaches a plurality of strain sensors 13 to a fishing rod 12 at a plurality of specific positions, and then actually lowers the load 14 toward the tip of the fishing rod 12 to curve the fishing rod 12. The strain energy is detected and strain energy is calculated.
- the strain sensors are arranged substantially evenly, but depending on the tone of the heel, the arrangement distance is narrowly arranged on the tip side and densely arranged, and the arrangement interval on the heel side is widened and arranged roughly.
- the arrangement can be changed as appropriate so that the strain sensor signal can be detected in detail from a point to be noted.
- This embodiment shown in FIG. 9 includes a physical element calculation unit (design unit) 2, an input unit 3, a display unit 4, a plurality of external terminals 5, and a plurality of strain sensors 13 (S1 to S13). Composed.
- the physical element calculation unit 2 includes a sensor signal processing unit 15 that calculates strain energy from strain sensor signals (strain values: ⁇ ) from the strain sensors S1 to S13, the selection of the above-described resin material or component, and physical elements.
- the strain sensor 13 uses a known metal strain gauge to detect a strain sensor signal consisting of a change in electric resistance value using a bridge circuit as the actual strain amount of the fishing rod.
- a piezoresistive element a strain gauge using a piezoelectric element, or an acceleration sensor may be employed.
- the detected strain sensor signal is input to the sensor signal processing unit 15, the curvature (sensor information) is calculated based on the strain sensor signal, and is output to the control unit 7.
- the control part 7 calculates
- M EI / ⁇
- M moment
- EI stiffness of object
- 1 / ⁇ curvature
- ⁇ strain value (sensor signal)
- R outer radius of fishing rod
- 1 / ⁇ ⁇ /
- the control unit 7 uses, for example, the curvature obtained from the actual measurement value and the setting item separately set by the setting condition setting unit 6, for example, strain energy and strain energy distribution among physical elements by the processing program. Calculation may be performed, graphed, and output. Based on these strain energy and strain energy distribution, the determination unit 8 compares the past data previously recorded in the data unit 9 with the pass / fail determination as in the first embodiment described above.
- FIG. 11 is a diagram conceptually showing a process of designing and manufacturing a fishing rod in the second embodiment.
- a sensor information process is added to the design / manufacturing process in FIG. 2 described above, and sensor information acquired by this sensor information process is input to the design process.
- the sensor information includes sensor information obtained in the prototype process and the actual fishing inspection process and its correction information, and the latest information is added or updated to the accumulated information.
- This sensor information is stored in the sensor signal processing unit 15 or a memory in the control unit 7.
- strain energy and strain energy distribution are calculated based on a highly accurate curvature based on a sensor signal (strain value) measured using a strain sensor with respect to an actual fishing rod. More accurate pass / fail judgment can be made. Therefore, the evaluation quality can be improved and the design time can be shortened.
- this embodiment can be used as a correction of actual measurement values or as a support for simulation results in combination with the simulation processing in the first embodiment described above.
- the strain energy distribution is calculated only by actual measurement according to the present embodiment, a high-performance calculation function for performing the simulation process is unnecessary, and a simple personal computer can be used as the control unit.
- the correlation between the strain energy and strain energy distribution by the sensor signal used in this embodiment and the strain energy and strain energy distribution obtained by the simulation processing of the first embodiment is investigated and saved as data. May be. In this way, when a fishing rod having substantially the same material and specifications is designed later, the strain energy and strain energy obtained by the simulation process are used for the strain energy and strain energy distribution. A determination can be made by estimating an actual measurement value of the energy distribution.
- FIG. 12 is a diagram showing a conceptual configuration of a fishing rod design system according to the third embodiment.
- the fishing rod design system 1 according to the present embodiment is configured to recognize a curved shape of a fishing rod from a photographed image, obtain a curvature from the position coordinates of a region of interest, and calculate strain energy.
- the present embodiment shown in FIG. 12 includes a physical element calculation unit 2, an input unit 3, a display unit 4, a plurality of external terminals 5, and a photographing unit 16.
- a photographing unit 16 As the photographing unit 16, a high-speed photographing camera or a progressive video camera that is equipped with a solid-state imaging device such as a CCD or a CMOS and can continuously photograph still images can be used. A continuous still image (image data) is output.
- the physical element calculation unit 2 acquires a continuous still image captured by the imaging unit 16, calculates the curvature from the position coordinates of the target region of the image data, and a setting in which the calculated curvature is provided in advance.
- a setting condition setting unit 6 which is stored in a table and selects the above-described resin materials or parts and sets other physical elements, a control unit 7 which calculates strain energy, an input unit 3, strain energy and strain energy It comprises a determination unit 8 that performs pass / fail determination on the result of distribution (measurement calculation value), the data unit 9 described above, and an I / O port 11.
- FIG. 13 is an overlay of the image of the first form 12a of the fishing rod and the image of the second form 12b of the fishing rod in which the load 14 is suspended from the tip of the fishing rod of the first form 12a. Two continuous images are shown.
- attention positions P1 to P9 (P1 'to P9') and P10 to P13 are set on the fishing rod of the photographed image.
- These attention positions P have two-dimensional position information on the image. This position information is obtained by setting a reference of the X axis-Y axis (coordinates 0, 0) to a common position (for example, buttock) of two images, It can be expressed by the position coordinates of the x coordinate and the y coordinate. Or you may use the pixel position of a solid-state image sensor as a position coordinate of an attention site.
- the curvature of each target position P in the first form 12a and the second form 12b is calculated from the position coordinates on the curve.
- the outer diameter R of the fishing rod required for calculating the strain energy is obtained by photographing the reference scale in advance, taking a correlation with the size of one pixel, and counting the number of pixels in the outer diameter portion of the photographed fishing rod.
- the outer diameter of the fishing rod at each target position P can be calculated.
- the control unit 7 calculates strain energy according to the above-described equation (1), and further calculates strain energy distribution of the entire fishing rod.
- the strain energy and the strain energy distribution can be calculated using the curvature obtained from the photographed fishing rod image. Therefore, it is not necessary to set parameters such as numerical values for performing the simulation process, and the curvature can be obtained from the curved two-dimensional image. For example, even if an actual fishing rod is not photographed, the curvature can be obtained even with a curved fishing rod pattern drawn on paper. In particular, even when measurement is required during actual fishing on a river or ship where the measurement substrate cannot be taken out, strain energy and strain energy distribution can be calculated if there is a photographed image.
- the manufacturing process of the fishing rod in the third embodiment is similar to the manufacturing process of the second embodiment described above, and image information such as curvature obtained from the image is used instead of the sensor signal. Data such as curvature acquired from the fishing rod image is stored as image information in the memory of the control unit 7 or the like.
- this embodiment can also be used as a correction based on actual measurement values or as a support for simulation results in combination with the simulation processing in the first embodiment.
- the configuration of this modification is the same as that of the third embodiment, and the calculation method is different.
- the same referential mark is attached
- the fishing rod design system of this modification example uses the image correlation method to obtain the curvature from the change in the position coordinates at the attention site for a plurality of attention sites set on the fishing rod included in the continuously shot images, This is a configuration for calculating strain energy.
- the physical element calculation unit 2 acquires a continuous still image captured by the imaging unit 16 and stores the calculated curvature in a setting table provided in advance, and an image processing unit 17 that calculates the curvature by comparing image signals.
- the above-mentioned setting condition setting unit 6 for selecting the resin material or part and setting the physical element, the control unit 7 for calculating the strain energy, the input unit 3, the strain energy and the strain energy distribution (measurement calculation value)
- the determination unit 8 that performs pass / fail determination on the result, the data unit 9 and the I / O port 11 described above.
- FIG. 13 is an overlay of the image of the first form 12a of the fishing rod and the image of the second form 12b of the fishing rod in which the load 14 is suspended from the tip of the fishing rod of the first form 12a. Two continuous images are shown. The background image is the same as the image in the first form 12a and the image in the second form 12b.
- attention positions P1 to P9 (P1 ′ to P9 ′) and P10 to P13 having position information (x, y) are set for the fishing rod 12 on the photographed image 100.
- the attention position P is, for example, a tip, and a plurality of pixels corresponding to the position are set as the attention pixel area. Since the target pixel region is configured as an arrangement of a plurality of pixels having a luminance difference, it can be recognized as a feature pattern. If the attention position P in the second form 12b of the fishing rod is detected based on the feature pattern of the attention position P set in the first form 12a of the fishing rod, the movement of the attention position P can be detected. Since the movement distance of the target position P (feature pattern) can be calculated based on a change in position coordinates, the amount of strain can be derived based on this movement distance.
- the movement distance of each target position is calculated based on the position information (coordinate position) at the target positions P1 to P13 and the target positions P1 'to P13', and is used as the distortion amount. By performing this calculation for all positions of interest, the strain energy distribution of the entire fishing rod can be calculated.
- the strain energy distribution can be calculated by the arithmetic processing in the first embodiment described above from the strain amount obtained by the image correlation method from the photographed fishing rod image. According to this modification, it is possible to obtain the same effects as those of the third embodiment. In addition, the required curvature can be easily obtained without the need for attaching a strain sensor or the like.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Environmental Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Physical Education & Sports Medicine (AREA)
- Marine Sciences & Fisheries (AREA)
- Animal Husbandry (AREA)
- Biodiversity & Conservation Biology (AREA)
- Fishing Rods (AREA)
- Golf Clubs (AREA)
Abstract
One embodiment of a system for designing a long resin member that deforms under an external load, wherein are provided: a setting unit for setting design information required for design of the long resin member on the basis of information input by an operator; a calculation unit for calculating, on the basis of the set design information, physical factors when the long resin member is in a state of deformation due to an external load; and an assessment unit for assessing whether the design information is good or bad on the basis of the results of the calculation of the physical factors by the calculation unit. The physical factors include strain energy.
Description
本発明は、物理的要素による数値化された感性的評価を用いて、樹脂製の管状若しくは板状の長尺部材を設計する設計システムに関する。
本出願は、日本国特許出願2012-1608(2012年1月6日出願)及び日本国特許出願2012-33798(2012年2月20日出願)に基づく優先権を主張し、その内容は参照により全体として本明細書に組み込まれる。 The present invention relates to a design system for designing a tubular member or a plate-like long member made of resin by using a numerical sensibility evaluation by a physical element.
This application claims priority based on Japanese Patent Application 2012-1608 (filed on January 6, 2012) and Japanese Patent Application 2012-33798 (filed on February 20, 2012), the contents of which are hereby incorporated by reference Incorporated herein in its entirety.
本出願は、日本国特許出願2012-1608(2012年1月6日出願)及び日本国特許出願2012-33798(2012年2月20日出願)に基づく優先権を主張し、その内容は参照により全体として本明細書に組み込まれる。 The present invention relates to a design system for designing a tubular member or a plate-like long member made of resin by using a numerical sensibility evaluation by a physical element.
This application claims priority based on Japanese Patent Application 2012-1608 (filed on January 6, 2012) and Japanese Patent Application 2012-33798 (filed on February 20, 2012), the contents of which are hereby incorporated by reference Incorporated herein in its entirety.
近年では、釣竿やゴルフシャフト等の管状若しくは板状の長尺部材は、カーボン等の強化繊維を含む樹脂材料を用いて作製されている。従って、長さや外径だけではなく、種々の特徴を持つ長尺部材を設計することができる。設計においては、例えば、樹脂材料内にカーボン強化繊維の占める割合及び、カーボン強化繊維の巻方向等々を適宜、組み合わせて、曲げ剛性やねじれ剛性等の固有の特性を決定している。例えば、釣竿においては、竿の曲がり具合である掛けカーブや竿の剛性、竿先に発生した魚の引きによる振動の伝達等、種々の要素が含まれている。
In recent years, tubular or plate-like long members such as fishing rods and golf shafts have been produced using resin materials containing reinforcing fibers such as carbon. Therefore, not only the length and the outer diameter, but also a long member having various characteristics can be designed. In the design, for example, the ratio of the carbon reinforcing fiber in the resin material, the winding direction of the carbon reinforcing fiber, and the like are appropriately combined to determine specific characteristics such as bending rigidity and torsional rigidity. For example, a fishing rod includes various elements such as a hanging curve, which is the degree of bending of the rod, rigidity of the rod, and transmission of vibration caused by a fish pull generated at the tip of the rod.
通常、新たな特徴を有する樹脂長尺部材を作製する場合には、これまでの作製資料や経験に基づいて仕様を決める。例えば、所望の曲げ剛性等が得られる樹脂材料や構造を取り入れた設計を行い試作品を作製する。この試作品は、専門の検査員が実際に使用して感覚的な評価結果を得て、この評価結果から試行錯誤しながら調整を行い、最終的な製品の仕様を決定している。
Normally, when producing a long resin member with new features, the specifications are determined based on previous production materials and experience. For example, a prototype is produced by designing a resin material or structure that can obtain a desired bending rigidity. This prototype is actually used by a professional inspector to obtain a sensory evaluation result, and the final product specification is determined by adjusting the evaluation result through trial and error.
従来から長尺部材例えば、釣竿の設計では、これまでの作製経験より積み重ねた過去の評価結果を利用することで、ある程度の特性を想定することが可能である。例えば、竿先に負荷が掛かった際の竿の曲がり具合、即ち、掛けカーブに対しては、カーボン強化繊維の方向、樹脂量及び、肉厚等の既知な数値を組み合わせた設計を行い、剛性や掛けカーブ等を想定している。また、その設計により作製した試作品に対して、竿先に錘を吊すことで、目視による確認も可能である。
Conventionally, in designing a long member, for example, a fishing rod, it is possible to assume a certain level of characteristics by using past evaluation results accumulated from past manufacturing experience. For example, when the load is applied to the tip of the heel, it is designed to combine the known values such as the direction of the carbon reinforcing fiber, the amount of resin, and the wall thickness for the bending curve, that is, the rigidity. This assumes a hanging curve. Moreover, visual confirmation is also possible by suspending a weight from the tip of the prototype produced by the design.
しかしながら、錘を吊す等の製造現場で得られる性能測定は、実釣における魚が掛かった時に得られる結果とは必ずしも一致しないため、専門の検査員の実釣による感性的評価を得て、設計変更を行っている。つまり、試作された複数の釣竿において、同じ重さの錘を竿先に吊して、見た目に略同じ形状の掛けカーブであったとしても、検査員による感性的評価結果、例えば操作性について、一方は良好であるが、他方は不十分であると判定が分かれる場合もあった。これは、現状の設計技術では、釣竿の操作性やタメ等の感性的評価が数値化されていないため、これらの仕様が設計段階では設定されがたいためであると考えられる。
However, performance measurements obtained at the manufacturing site, such as hanging weights, do not always match the results obtained when fish are caught in actual fishing. Changes have been made. In other words, in a plurality of prototype fishing rods, even if the weights of the same weight are hung on the tip of the fishing rod, even if it is a hanging curve of substantially the same shape to the appearance, the result of the sensibility evaluation by the inspector, for example, operability In some cases, it was judged that one was good but the other was insufficient. This is probably because the current design technology does not quantify the sensibility evaluation of the fishing rod operability and the tame, so that it is difficult to set these specifications at the design stage.
このため、得られた感性的評価において、良・不良が評価されたにもかかわらず、既存の設計技術で使用している剛性や掛けカーブの設定では差がでていない場合には、試作と実釣による確認の繰り返しによる場当たり的な設計変更となり、試作品を数多く作製する手間及び試作コストが増えて、製品の仕上がりまでに期間を要している。
For this reason, if there is no difference in the stiffness and multiplication curve used in the existing design technology, despite the good / bad evaluation in the obtained Kansei evaluation, It is a design change on a case-by-case basis due to repeated confirmation by actual fishing, and the time and cost for making a large number of prototypes and trial production costs increase, and it takes time to finish the product.
そこで本発明は、樹脂材料により形成される管状又は板状の長尺部材に関わる感性的評価を数値化された物理的要素として捕らえ、その物理的要素から所望する仕様の管状又は板状の長尺部材を設計する樹脂長尺部材の設計システムを提供することを目的とする。
Therefore, the present invention captures the sensibility evaluation related to a tubular or plate-like long member formed of a resin material as a quantified physical element, and the tubular or plate-like length of a desired specification from the physical element. It aims at providing the design system of the resin long member which designs a long member.
本発明の一実施形態に係る樹脂長尺部材の設計システムは、外的負荷によって変形する樹脂長尺部材の設計システムであって、操作者からの入力情報に基づいて、前記樹脂長尺部材の設計に必要な設計情報を設定する設定部と、前記設定した設計情報に基づく前記樹脂長尺部材が、前記外的負荷によって変形した状態における物理的要素を演算する演算部と、前記演算部による前記物理的要素の演算結果に基づいて、前記設計情報の良否を判定する判定部と、を備える。
A resin long member design system according to an embodiment of the present invention is a resin long member design system that deforms due to an external load, and is based on input information from an operator. A setting unit that sets design information necessary for design, a calculation unit that calculates a physical element in a state where the resin long member based on the set design information is deformed by the external load, and the calculation unit A determination unit that determines the quality of the design information based on the calculation result of the physical element.
本発明の様々な実施形態によれば、樹脂材料により形成される管状又は板状の長尺部材に関わる感性的評価を数値化された物理的要素として捉え、その物理的要素から所望する仕様の管状又は板状の長尺部材を設計する樹脂長尺管状部材の設計システムを提供することができる。
According to various embodiments of the present invention, sensibility evaluation related to a tubular or plate-like long member formed of a resin material is regarded as a numerical physical element, and a desired specification is determined from the physical element. It is possible to provide a resin long tubular member design system for designing a tubular or plate-like long member.
以下、図面を参照して本発明の実施形態について説明する。本発明の実施形態に係る樹脂管状部材の設計システムの概念について説明する。以下の説明においては、樹脂材料による管状又は板状の長尺部材として釣竿を一例とした釣竿設計システムについて詳細に説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The concept of the resin tubular member design system according to the embodiment of the present invention will be described. In the following description, a fishing rod design system using a fishing rod as an example of a tubular or plate-like long member made of a resin material will be described in detail.
一般的には、樹脂を含浸した繊維強化樹脂材料からなる釣竿は、所望する長さ、外径等を定めて、重量及び、剛性(曲げ剛性、ねじり剛性)等の物理量及びその分布を設定し、仕様に従った材料を選択して作製される。本実施形態でいう感性的評価とは、釣り人が実釣した際に釣竿に対する動作に伴って生じ、感覚的に判断される操作性(タメ操作、引き操作及び、抜きあげ操作等)を主とする。ここで、タメとは、釣竿に大きな負荷(魚)が掛かり湾曲した際に、釣竿の操作(竿の上げ下げ及び竿先の引き寄せ)を主導的に行えるような竿全体に及ぶ剛性バランスを示す。尚、負荷に対して、釣竿の主導的な操作ができない状態を竿がのされると称している。
In general, a fishing rod made of a fiber reinforced resin material impregnated with a resin determines the desired length, outer diameter, etc., and sets physical quantities such as weight and rigidity (bending rigidity, torsional rigidity) and their distribution. The material is selected according to the specifications. The sensibility evaluation referred to in the present embodiment mainly refers to operability (such as a sling operation, a pulling operation, and a pulling operation) that occurs along with the operation of the fishing rod when the angler actually fishes and is judged sensuously. And Here, the term “tame” refers to a rigidity balance over the entire rod so that the rod can be manually operated (raising and lowering the rod and pulling the rod tip) when a large load (fish) is applied to the rod and bends. Note that a state in which the fishing rod cannot be led to the load is referred to as a rod being loaded.
釣竿設計システムは、釣竿の設計及び試作にあたり、所望する仕様(竿の寸法(長さ及び外径)、調子、曲がり具合、感度等)になるように、釣竿に関わる物理的要素を選択して設定する。
The fishing rod design system selects the physical elements related to the fishing rod so that it meets the specifications (desired dimensions (length and outer diameter), tone, bending condition, sensitivity, etc.) in designing and prototyping the fishing rod. Set.
釣竿に関わる物理的要素について説明する。これらの設定される公知な物理的要素として、具体的には、主として以下の要素がある。
[長さ]釣竿の長さである。対象魚及び、使用するフィールド等により適宜、設定される。例えば、対象魚が河川における鮎釣であれば、8~10m程度の長さとなり、釣船上におけるキス釣であれば、2m前後の長さとなる。
[外径]竿の外径は、材料の強度、即ち樹脂を含浸した繊維強化樹脂材料の選択によって大半が決定され、竿の長さと同様に対象魚、又は仕掛けにより掛かる負荷に応じて、外径が設定される。管状構造(中空形状)である場合には、厚さ及び内径も含む。尚、撮影された画像における画素数から竿の外径を類推することもできる。 The physical elements related to fishing rods are explained. Specific examples of these known physical elements to be set include the following elements.
[Length] The length of the fishing rod. It is set as appropriate depending on the target fish and the field to be used. For example, if the target fish is carp fishing in a river, the length is about 8 to 10 m, and if the target fish is kiss fishing on a fishing boat, the length is about 2 m.
[Outer diameter] The outer diameter of the kite is largely determined by the strength of the material, that is, the selection of the fiber-reinforced resin material impregnated with the resin. The outer diameter depends on the target fish or the load applied by the device as well as the length of the kite. The diameter is set. In the case of a tubular structure (hollow shape), the thickness and the inner diameter are also included. It should be noted that the outer diameter of the eyelid can be inferred from the number of pixels in the photographed image.
[長さ]釣竿の長さである。対象魚及び、使用するフィールド等により適宜、設定される。例えば、対象魚が河川における鮎釣であれば、8~10m程度の長さとなり、釣船上におけるキス釣であれば、2m前後の長さとなる。
[外径]竿の外径は、材料の強度、即ち樹脂を含浸した繊維強化樹脂材料の選択によって大半が決定され、竿の長さと同様に対象魚、又は仕掛けにより掛かる負荷に応じて、外径が設定される。管状構造(中空形状)である場合には、厚さ及び内径も含む。尚、撮影された画像における画素数から竿の外径を類推することもできる。 The physical elements related to fishing rods are explained. Specific examples of these known physical elements to be set include the following elements.
[Length] The length of the fishing rod. It is set as appropriate depending on the target fish and the field to be used. For example, if the target fish is carp fishing in a river, the length is about 8 to 10 m, and if the target fish is kiss fishing on a fishing boat, the length is about 2 m.
[Outer diameter] The outer diameter of the kite is largely determined by the strength of the material, that is, the selection of the fiber-reinforced resin material impregnated with the resin. The outer diameter depends on the target fish or the load applied by the device as well as the length of the kite. The diameter is set. In the case of a tubular structure (hollow shape), the thickness and the inner diameter are also included. It should be noted that the outer diameter of the eyelid can be inferred from the number of pixels in the photographed image.
[重量]主として、繊維強化樹脂材料の使用量による重さである。リールを使用する釣竿の場合には、リールシートや釣糸ガイドを含む。
[継ぎ数]携帯するために分離構造が採用された場合における、分離した短い竿(ピース又は番竿)の本数である。継ぎの無い釣竿は、延べ竿又は1ピース竿と称されている。尚、並継ぎ竿の場合も振り出し竿の場合も同じ継ぎ数に扱われるが、複数の異なる継ぎ構造があるため、強度は異なる。 [Weight] The weight is mainly based on the amount of the fiber reinforced resin material used. In the case of a fishing rod using a reel, a reel seat and a fishing line guide are included.
[Number of joints] This is the number of separated short baskets (pieces or guards) when a separation structure is adopted for carrying. A fishing rod without a joint is called a total rod or a one-piece rod. Note that the same number of joints are handled in both the case of parallel spears and the swing spears, but the strength is different because there are a plurality of different splice structures.
[継ぎ数]携帯するために分離構造が採用された場合における、分離した短い竿(ピース又は番竿)の本数である。継ぎの無い釣竿は、延べ竿又は1ピース竿と称されている。尚、並継ぎ竿の場合も振り出し竿の場合も同じ継ぎ数に扱われるが、複数の異なる継ぎ構造があるため、強度は異なる。 [Weight] The weight is mainly based on the amount of the fiber reinforced resin material used. In the case of a fishing rod using a reel, a reel seat and a fishing line guide are included.
[Number of joints] This is the number of separated short baskets (pieces or guards) when a separation structure is adopted for carrying. A fishing rod without a joint is called a total rod or a one-piece rod. Note that the same number of joints are handled in both the case of parallel spears and the swing spears, but the strength is different because there are a plurality of different splice structures.
[曲率]曲率とは、曲線(曲面)上の各点における、その曲線(曲面)の曲がりの程度を示す値であり、曲率半径ρの逆数で示される。曲率が大きいほど湾曲は大きくなる。また、撮影された画像を利用した曲率の算出も可能である。例えば、撮像素子の画素位置を位置情報として、曲がった釣竿の曲線上に設定した複数の注目位置における曲率を算出することもできる。又は、釣竿に負荷を掛けて撮影した連続画像(負荷を掛ける前の画像と掛けた後の画像)に対して、注目位置の画素とその周辺画素とにより構成される注目パターン領域を設定し、公知な画像相関法を利用して、画像間の注目パターン領域の変化に基づいてひずみを検出し、このひずみを利用して曲率を算出することもできる。尚、曲率は、1/ρで示され、1/ρ=M/EIである。尚、M:モーメント、EI:物体の剛性である。
[Curvature] The curvature is a value indicating the degree of curvature of the curve (curved surface) at each point on the curve (curved surface), and is represented by the reciprocal of the radius of curvature ρ. The greater the curvature, the greater the curvature. It is also possible to calculate the curvature using the captured image. For example, the curvature at a plurality of positions of interest set on a curved curve of a fishing rod can be calculated using the pixel position of the image sensor as position information. Or, for a continuous image taken with a load applied to a fishing rod (an image before the load and an image after the load), set an attention pattern region composed of pixels of the attention position and surrounding pixels, By using a known image correlation method, distortion can be detected based on a change in the pattern area of interest between images, and the curvature can be calculated using this distortion. The curvature is indicated by 1 / ρ, and 1 / ρ = M / EI. M: moment, EI: rigidity of the object.
[掛けカーブ]釣竿の竿先に負荷が掛かった時の曲がり形状である。ガイドの有無により、曲がり形状が異なる。
[樹脂材料]公知な樹脂材料であり、繊維や樹脂の有無や材質の設計仕様に基づき、適宜選択される。 [Hanging curve] It is a bent shape when a load is applied to the tip of the fishing rod. The bend shape varies depending on the presence or absence of a guide.
[Resin Material] A known resin material, which is appropriately selected based on the presence / absence of fibers and resin and the design specifications of the material.
[樹脂材料]公知な樹脂材料であり、繊維や樹脂の有無や材質の設計仕様に基づき、適宜選択される。 [Hanging curve] It is a bent shape when a load is applied to the tip of the fishing rod. The bend shape varies depending on the presence or absence of a guide.
[Resin Material] A known resin material, which is appropriately selected based on the presence / absence of fibers and resin and the design specifications of the material.
[繊維方向]繊維強化樹脂材料における複数のカーボン等の強化繊維の配列方向(繊維方向)である。ここでは、竿の長手方向を縦方向(0度)とし、これと直交する方向を横方向(90度)としている。この繊維方向の角度により、剛性が変化する。
[Fiber direction] An arrangement direction (fiber direction) of a plurality of reinforcing fibers such as carbon in the fiber reinforced resin material. Here, the longitudinal direction of the ridge is defined as the vertical direction (0 degree), and the direction orthogonal thereto is defined as the horizontal direction (90 degrees). The rigidity changes depending on the angle in the fiber direction.
[積層構造]樹脂を含浸した繊維強化樹脂材料の層である。シート状の樹脂材料層を複数重ね合わせて、円柱又は円筒形状で先細るように形成される。釣竿の構造には、内部に空間がある円筒状の管状構造と、内部の空間がない中実構造がある。異なる弾性の強化繊維を有する繊維強化樹脂材料の積層順によって剛性が異なってくる。尚、本明細書においては、シート部材の繊維方向、及び積層枚数を含めた積層構造が内部構造に含まれる。
[Laminated structure] A layer of fiber reinforced resin material impregnated with resin. A plurality of sheet-like resin material layers are overlapped and formed to taper in a columnar or cylindrical shape. There are two types of fishing rod structures: a cylindrical tubular structure with a space inside, and a solid structure with no space inside. Rigidity varies depending on the stacking order of fiber reinforced resin materials having different elastic reinforcing fibers. In the present specification, the internal structure includes a laminated structure including the fiber direction of the sheet member and the number of laminated sheets.
[樹脂量]釣竿を形成する繊維強化樹脂材料における強化繊維(カーボンやガラス等)間の接着剤として機能する樹脂(レジン)の量である。所定の断面積におけるレジン量を減らしてカーボン繊維の密度(単位体積あたりの繊維数)を高めることにより、軽量化できる。通常は、繊維強化樹脂材料は、薄いシート部材として形成されている。尚、本明細書においては、シート部材の樹脂が樹脂材料に含まれる。
[Resin Amount] The amount of resin (resin) that functions as an adhesive between reinforcing fibers (carbon, glass, etc.) in the fiber reinforced resin material forming the fishing rod. By reducing the amount of resin in a predetermined cross-sectional area and increasing the density of carbon fibers (the number of fibers per unit volume), the weight can be reduced. Usually, the fiber reinforced resin material is formed as a thin sheet member. In the present specification, the resin of the sheet member is included in the resin material.
[剛性(弾性率)]釣竿における曲げやねじれ等に対する変形しにくさである。このうち、曲げ剛性は、釣竿に負荷が掛かった際の曲がり具合、即ち、掛けカーブに大きく影響を与える。ねじり剛性は、繊維強化樹脂材料における強化繊維の繊維方向によって異なり、繊維方向が竿の長手方向(0度)及び横方向(90度)である場合が最も弱く、斜め方向45°である場合が最も大きい。ねじり剛性が弱い場合には、例えば、釣竿に設けた複数のガイドに竿の長手方向を軸として回転する方向に負荷が掛かると、ガイドが回転方向に傾き、竿の操作性が悪くなる。例えば、ルアーをキャストする仕様の釣竿であれば、キャスト方向及び着水位置の正確さに影響する。
[Rigidity (elastic modulus)] The rigidity of the fishing rod is difficult to be deformed due to bending or twisting. Among these, the bending rigidity greatly affects the bending state when a load is applied to the fishing rod, that is, the hanging curve. The torsional rigidity differs depending on the fiber direction of the reinforcing fiber in the fiber-reinforced resin material. The case where the fiber direction is the longitudinal direction (0 degrees) and the lateral direction (90 degrees) of the ridge is the weakest, and the oblique direction may be 45 degrees. The biggest. In the case where the torsional rigidity is weak, for example, if a load is applied to a plurality of guides provided on the fishing rod in the direction of rotation about the longitudinal direction of the rod, the guide is inclined in the rotation direction and the operability of the rod is deteriorated. For example, a fishing rod having a specification for casting a lure affects the accuracy of the casting direction and the landing position.
これらは、釣竿設計の際に設定する既知な主たるパラメータである。これらの物理的要素は、互いに影響し合う関係を持ち、1つの物理的要素を変えると、他の物理的要素にも影響を及ぼす。従って、1つの物理的要素の向上を図る設計を行うと、他の物理的要素に悪影響がでる場合もあるので、複数の物理的要素間で調和をとる必要がある。
These are known main parameters that are set during fishing rod design. These physical elements have a mutually influencing relationship, and changing one physical element affects other physical elements. Accordingly, when a design for improving one physical element is performed, other physical elements may be adversely affected, and therefore, it is necessary to achieve a harmony among a plurality of physical elements.
本発明の実施形態では、モーメント及び剛性に関する物理的要素の1つとして、釣竿に働くエネルギーに着目する。通常、図3に示すように、釣竿の竿先に外力(例えば、釣魚による負荷)が働いた場合には、竿全体に曲がりが発生する。具体的には、竿尻を支点とし、釣り人の手による竿の把持箇所を支持位置として水平面に対する竿の角度を角度θ1として保持した場合に、鉛直方向に対して角度θ2の方向(竿先が指し示す方向)に負荷荷重が作用し、掛けカーブが生じる。
In the embodiment of the present invention, attention is paid to energy acting on a fishing rod as one of physical elements related to moment and rigidity. Normally, as shown in FIG. 3, when an external force (for example, a load due to fishing fish) acts on the tip of a fishing rod, the entire rod is bent. Specifically, when the angle of the heel with respect to the horizontal plane is held as an angle θ1 with the heel as the fulcrum and the position where the angler's hand grips the support position as the angle θ1, Load direction acts in the direction indicated by, and a multiplying curve is generated.
釣竿の竿先に負荷が加わった場合、竿先から竿尻に掛けて変形することにより、元の形状に戻ろうとするエネルギーが釣竿全体に生じ、負荷が解除されるまで、蓄えられる。このエネルギーを感性的評価を行うための数値化された物理的要素として、[ひずみエネルギー]と称する。
When a load is applied to the tip of the fishing rod, energy is generated in the entire fishing rod by deforming it from the tip of the rod to the bottom of the rod, and is stored until the load is released. This energy is referred to as [strain energy] as a quantified physical element for performing kansei evaluation.
[ひずみエネルギー]について説明する。通常、加えられる力に対するひずみは、同じ形状であれば、硬質材料による構成部位はひずみが小さく、軟質材料による構成部位はひずみが大きくなる。前述したように、ひずみが生じると元の形状に戻ろうとする力が生じる。釣竿におけるひずみエネルギーは、曲がった竿が元のまっすぐな状態に戻ろうとするエネルギーであり、設計の重要な物理的要素である。
[Strain energy] will be described. Usually, if the strain with respect to the applied force is the same shape, the component part made of a hard material has a small strain, and the component part made of a soft material has a large strain. As described above, when strain occurs, a force is generated to return to the original shape. The strain energy in a fishing rod is the energy that the bent rod tries to return to its original straight state and is an important physical element of the design.
以下に説明する実施形態では、釣竿上の任意の位置から複数の特定位置を定め、この特定位置におけるひずみエネルギーを算出し、後述する良否判定を行う比較のための数値(エネルギー分布)として利用する。ひずみエネルギーは、作用するモーメントと剛性(曲げ剛性)により求めることができ、以下の公知な式(1)で与えられる。
In an embodiment described below, a plurality of specific positions are determined from arbitrary positions on a fishing rod, strain energy at the specific positions is calculated, and used as a numerical value (energy distribution) for comparison for performing pass / fail judgment described later. . The strain energy can be obtained from the acting moment and stiffness (bending stiffness), and is given by the following well-known formula (1).
但し、M=EI/ρであり、M:モーメント、EI:物体の剛性、1/ρ:曲率とする。
However, M = EI / ρ, M: moment, EI: object rigidity, 1 / ρ: curvature.
釣竿の設計にひずみエネルギーを用いる場合、竿先から竿尻までに定めた複数の特定位置におけるそれぞれのひずみエネルギーを算出する。算出された結果は、数値表として管理するだけではなく、後述するように、グラフ化して分布特性として判定に用いる。ひずみエネルギーは、上述した演算式を利用したシミュレーションにより算出することができる。または、実際の釣竿の特定位置に既知なひずみセンサーを配置して、実測を行い、シミュレーションによる算出結果を確認することも可能である。
When strain energy is used for fishing rod design, the strain energy at each of a plurality of specific positions determined from the tip of the rod to the butt is calculated. The calculated result is not only managed as a numerical table, but is also graphed and used as a distribution characteristic for determination, as will be described later. The strain energy can be calculated by simulation using the above-described arithmetic expression. Alternatively, it is also possible to place a known strain sensor at a specific position of an actual fishing rod, perform an actual measurement, and check a calculation result by simulation.
次に、釣竿の設計シミュレーションについて、具体的な掛けカーブを一例として説明する。図7は、従来の設計技術による釣竿の曲げ剛性の特性を示しており、竿の各位置における竿の径、繊維強化樹脂材料の弾性率を用いて算出される。図8は、従来の設計技術による釣竿の掛けカーブを示している。この例では、鮎等を釣るための継ぎ目を有する長尺な釣竿(鮎竿)を例として説明する。
Next, the design simulation of a fishing rod will be described using a specific curve as an example. FIG. 7 shows the characteristics of the bending rigidity of a fishing rod according to a conventional design technique, which is calculated using the diameter of the rod at each position of the rod and the elastic modulus of the fiber reinforced resin material. FIG. 8 shows a fishing rod hanging curve according to a conventional design technique. In this example, a long fishing rod having a seam for fishing a rod or the like will be described as an example.
図8は、例えば、対象魚、竿の長さ・径、調子、錘負荷が同じ2つの釣竿S1,S2の竿先に同じ負荷をそれぞれに掛けた時の釣竿S1,S2の掛けカーブを示している。尚、図7に示す曲げ剛性の特性曲線上の複数の段は、より剛性の大きな釣竿の継ぎ目部分に生じる急峻な変化を示している。これに対して、1ピースロッド等の継ぎ目の無い釣竿においては、段のない滑らかな変化となる。
FIG. 8 shows, for example, the multiplication curves of the fishing rods S1 and S2 when the same load is applied to the fishing rod tips of two fishing rods S1 and S2 having the same length, diameter, tone and weight load of the target fish. ing. Note that the plurality of steps on the bending rigidity characteristic curve shown in FIG. 7 indicate steep changes that occur in the joint portion of the fishing rod having higher rigidity. On the other hand, in a seamless fishing rod such as a one-piece rod, the change is smooth without steps.
これらの曲げ剛性及び掛けカーブは、釣竿の特性が異なっていれば、ずれた2本の特性曲線となるが、ここでは略一致して重なった曲線となっている。つまり、見かけ上は、同じ特性を有している。従って、この評価結果から、これらの釣竿は同じ特性の釣竿として判定される。
These bending rigidity and hanging curves become two characteristic curves which are shifted if the characteristics of the fishing rod are different, but here are substantially coincident and overlapping curves. In other words, it has the same characteristics in appearance. Therefore, from this evaluation result, these fishing rods are determined as fishing rods having the same characteristics.
しかし、実釣を行ったところ、専門の検査員による感性的評価では、一方は、釣竿の竿先から竿尻に移動しながら掛かる負荷の全体的なバランスが悪いとの評価結果であった。この点については、従来のシミュレーションでは、数値として評価することができない。
However, when actual fishing was performed, in the sensuous evaluation by a professional inspector, one of the evaluation results showed that the overall balance of the load applied while moving from the tip of the fishing rod to the bottom of the rod was poor. This point cannot be evaluated as a numerical value in the conventional simulation. *
そこで、本発明の実施形態では、外力が加わった時に、釣竿に働くひずみエネルギーに着目して、シミュレーションを行う。図4は、シミュレーションで得た、実釣下における竿先に軽い負荷(例えば、仕掛け及びおとり鮎による負荷)が掛かった状態の釣竿S1,S2に蓄えられるひずみエネルギーの分布(エネルギー特性)を示す図である。尚、この図は、竿先から竿尻側方向の所定範囲におけるひずみエネルギーの分布を示すものである。また、軽い負荷とは、釣竿のおもり負荷許容範囲内で軽い側の負荷をいうものであり、例えば、仕掛けを水中に沈めた状態が想定される。また以下の説明において、中程度の負荷とは、おもり負荷許容範囲内の中程の負荷をいうものであり、例えば、魚が掛かった際に掛かる負荷が想定される。同様に、大きい負荷とは、おもり負荷許容範囲内の重い側の負荷をいうものであり、例えば、魚が掛かった際の引き寄せ時(又は、釣り糸の巻き上げ時)又は、抜きあげ時に掛かる負荷が想定される。
Therefore, in the embodiment of the present invention, the simulation is performed by paying attention to the strain energy acting on the fishing rod when an external force is applied. FIG. 4 shows a distribution (energy characteristic) of strain energy stored in the fishing rods S1 and S2 in a state where a light load (for example, a load caused by a device and a decoy rod) is applied to the rod tip under actual fishing, obtained by simulation. FIG. This figure shows the strain energy distribution in a predetermined range from the heel to the buttock side. The light load means a load on the light side within the weight load allowable range of the fishing rod. For example, a state where the device is submerged in water is assumed. In the following description, the medium load means a medium load within the allowable weight load range. For example, a load applied when a fish is applied is assumed. Similarly, a heavy load means a load on the heavy side within the weight load allowable range. For example, a load applied when a fish is caught (or when a fishing line is wound up) or when a fish is pulled up is used. is assumed.
図3に示したように、釣竿の竿先が持ち上げられて、水平面に対する竿の角度を任意の角度θ1(例えば、45°)に維持されることを想定して、釣竿上の複数の特定位置におけるひずみエネルギーを前述した式(1)を用いて算出して、プロットする。ここで図4においては、各プロットが曲線状に並ばない場合には、近似した曲線にて記載している。尚、ここでは、検査員による感性的評価結果として、釣竿S1は操作性が良好であるが、釣竿S2は不良と判定されている。
As shown in FIG. 3, a plurality of specific positions on the fishing rod are assumed on the assumption that the rod tip of the fishing rod is lifted and the angle of the rod with respect to the horizontal plane is maintained at an arbitrary angle θ1 (for example, 45 °). Is calculated using the above-described equation (1) and plotted. Here, in FIG. 4, when the plots are not arranged in a curved line, they are described as approximate curves. Here, as a result of the sensibility evaluation by the inspector, the fishing rod S1 has good operability, but the fishing rod S2 is determined to be defective.
これらの釣竿S1,S2のシミュレーションで得たひずみエネルギー特性を比較すると、共に竿先側から、図4において示される範囲の竿長の1割弱の距離を竿尻側に移動した特定位置mにひずみエネルギーの最も高いピークが見られる。ひずみエネルギー特性の変化は、釣竿S1においては、そのピークの特定位置mから竿尻に向かい、スムーズな曲線でU字形状を成している。一方、釣竿S2においては、釣竿S1と同じ特定位置mにピークが見られ、そのピーク値は、釣竿S1よりも大きい値である。そのピークの特定位置mから竿尻に向かい、複数の段を有したU字形状を成している。
Comparing the strain energy characteristics obtained by the simulation of these fishing rods S1 and S2, both of them are located at a specific position m where the distance of less than 10% of the rod length in the range shown in FIG. The highest peak of strain energy is seen. The change in the strain energy characteristic of the fishing rod S1 is U-shaped with a smooth curve from the specific position m of the peak toward the bottom of the rod. On the other hand, in the fishing rod S2, a peak is seen at the same specific position m as the fishing rod S1, and the peak value is larger than that of the fishing rod S1. A U-shape having a plurality of steps is formed from a specific position m of the peak toward the buttock.
前述したように、検査員による感性的評価では、釣竿S1が良好、釣竿S2が不良と判定されており、釣竿S2のひずみエネルギー特性の変化は、釣竿S1に比べて、竿先からの変動幅が大きく急峻な変化であり、且つ階段状の変化を有し、平滑的な推移ではない特性曲線となっている。つまり、釣竿全体で見ると、ひずみエネルギーがある特定位置に集中し、竿先におけるエネルギー変化が平滑的に竿尻方向に伝達されないため、竿先に生じている小さな負荷変化が、釣り人へ感性的には伝えられていないものと考えることができる。即ち、釣竿S2は、例えば、おとり鮎からの引きの変化(魚信)が上手く釣り人に伝えられないため、おとり鮎の操作がしづらいという感性的評価となる。
As described above, in the sensitivity evaluation by the inspector, the fishing rod S1 is determined to be good and the fishing rod S2 is determined to be poor, and the change in the strain energy characteristic of the fishing rod S2 is a fluctuation range from the tip of the fishing rod compared to the fishing rod S1. Is a large and steep change, has a step-like change, and has a characteristic curve that is not a smooth transition. In other words, when looking at the fishing rod as a whole, the strain energy is concentrated at a specific position, and the energy change at the tip of the tip is not transmitted smoothly in the direction of the tip of the tip. It can be considered that it has not been communicated. That is, the fishing rod S2 has a sensibility evaluation that it is difficult to operate the decoy rod because, for example, a change in the pull (fish trust) from the decoy rod cannot be transmitted well to the angler.
図5は、シミュレーションで得た、実釣下における竿先に中程度の負荷(例えば、魚が掛かったときの負荷)が掛かった時に、前述した釣竿S1,S2に蓄えられるひずみエネルギーの分布(エネルギー特性)を示す図である。
FIG. 5 shows the distribution of strain energy stored in the above-described fishing rods S1 and S2 when a moderate load (for example, a load when a fish is applied) is applied to the rod tip under actual fishing obtained by simulation. It is a figure which shows an energy characteristic.
これらの釣竿S1,S2のエネルギー特性を比較すると、共に図4に示した場合(竿先に軽い負荷が掛かった場合)と同じ特定位置mにひずみエネルギーの最も高いピークが設定される。ひずみエネルギー特性の変化は、釣竿S1では、そのピークの特定位置mから竿尻側に向かい、スムーズな曲線で減少している。釣竿S2においては、釣竿S1と同じ特定位置mで釣竿S1よりも高いピーク値が見られる。そのピークの特定位置mから竿尻側に向かい、釣竿S1のエネルギー特性における減少幅よりも大きな減少幅で急激に減少している。
When comparing the energy characteristics of these fishing rods S1 and S2, the highest peak of strain energy is set at the same specific position m as shown in FIG. 4 (when a light load is applied to the tip of the rod). In the fishing rod S1, the change in the strain energy characteristics decreases from a specific position m of the peak toward the buttock side and decreases with a smooth curve. In the fishing rod S2, a peak value higher than that of the fishing rod S1 is seen at the same specific position m as the fishing rod S1. From the specific position m of the peak toward the heel side, the peak sharply decreases with a reduction range larger than the reduction range in the energy characteristics of the fishing rod S1.
釣竿S2のひずみエネルギー特性の変化は、釣竿全体で見ると、釣竿S1に比べて、ひずみエネルギーがある特定位置mに大きく集中し、竿先からの変動幅が大きく急峻な変化である。つまり、竿先に生じた魚が掛かった時の魚信(負荷変動)をある特定位置(特定位置m)で溜めてしまい、魚信の大きさを減少させると共に、溜めていた時間分、竿先から竿尻側までのエネルギー変化の伝達が遅延する。よって、釣り人は、魚が掛かったという魚信の伝達遅れを感じ、感性的評価として満足できない結果となる。
The change in the strain energy characteristics of the fishing rod S2 is a sharp change with a large fluctuation range from the tip of the fishing rod, with the strain energy concentrated more at a specific position m than the fishing rod S1. In other words, the fish faith (load fluctuation) when the fish produced at the tip of the fish hooked is accumulated at a certain specific position (specific position m), reducing the size of the fish faith, and the accumulated time, Transmission of energy change from the tip to the buttock side is delayed. Therefore, the angler feels a delay in the transmission of the fish belief that the fish has been caught, and the result is not satisfactory as a sensitivity evaluation.
図6は、シミュレーションで得た、実釣下における竿先に大きい負荷(例えば、掛かった魚を引き寄せる時又は、抜きあげ時の負荷)が掛かった時に、前述した釣竿S1,S2に蓄えられるひずみエネルギーの分布(エネルギー特性)を示す図である。これらの釣竿S1,S2のエネルギー特性を比較すると、共に竿先側から図6において示される範囲の竿長の1/4程度の距離を竿尻側に移動した特定位置にひずみエネルギーの最も高いピークが見られる。
FIG. 6 shows the strain accumulated in the above-described fishing rods S1 and S2 when a large load is applied to the rod tip under actual fishing obtained by simulation (for example, when a hung fish is attracted or pulled). It is a figure which shows distribution (energy characteristic) of energy. Comparing the energy characteristics of these fishing rods S1 and S2, both peaks having the highest strain energy at a specific position moved from the tip side to the buttock side by a distance of about 1/4 of the rod length in the range shown in FIG. Is seen.
ひずみエネルギー特性の変化は、釣竿S1では、そのピークである特定位置nから竿尻側に向かい、スムーズで緩やかに減少する形状を成している。釣竿S2においては、釣竿S1よりも竿尻側に近い特定位置pで釣竿S1よりも高いピーク値が見られる。そのピークである特定位置pから竿尻側に向かい、釣竿S1の特性曲線における減少幅よりも大きな減少幅で減少して釣竿S1の特性曲線と交差し、その後、釣竿S1よりも低いエネルギー値となる。
The change in the strain energy characteristics of the fishing rod S1 is a smooth and gently decreasing shape from the peak specific position n toward the buttock side. In the fishing rod S2, a peak value higher than that of the fishing rod S1 is seen at a specific position p closer to the rod tail side than the fishing rod S1. From the specific position p, which is the peak, toward the bottom of the rod, it decreases with a decrease larger than the decrease in the characteristic curve of the fishing rod S1 and crosses the characteristic curve of the fishing rod S1, and then has an energy value lower than that of the fishing rod S1. Become.
釣竿S2のひずみエネルギー特性の変化は、釣竿S1に比べて、ひずみエネルギーのピークから竿尻側に掛けて変動幅が大きく変化している。つまり、釣竿全体で見ると、ひずみエネルギーが大きい特定位置pの付近(竿尻側の中央寄り)の剛性が小さく、ひずみエネルギーが低くなる竿尻側に掛けて剛性が大きい。よって、釣竿S2は、手元から特定位置pの付近(竿尻側の中央寄り)までが硬くそれより穂先側の部分がより大きく曲がる特性となり、釣り人から、タメのない操作性であるとの感性的評価を受けることとなる。
The change in the strain energy characteristics of the fishing rod S2 is greatly changed from the strain energy peak to the buttock side compared to the fishing rod S1. That is, when viewed from the whole fishing rod, the rigidity in the vicinity of the specific position p where the strain energy is large (near the center of the buttocks side) is small, and the rigidity is large when hung on the rod tail side where the strain energy is low. Therefore, the fishing rod S2 has a characteristic that it is hard from the hand to the vicinity of the specific position p (near the center of the buttock side), and the tip side is bent more than that, and the angler has no operability. You will receive a sensitivity evaluation.
感性的評価が良好である釣竿S1に関するひずみエネルギー分布は、比較のための基準として記憶され、新たな釣竿が設計される際に、比較基準として用いられる。以降、良好として判定されたひずみエネルギー分布は、その都度、記憶される。さらに、先に記憶されているひずみエネルギー分布の補正に使用して、理想とするひずみエネルギー分布のモデルを構築してもよい。また、不良と判定されたひずみエネルギー分布も併せて記憶し、不良解析の際に原因の根拠としてもよい。
The strain energy distribution related to the fishing rod S1 with good sensibility evaluation is stored as a reference for comparison, and used as a reference for comparison when a new fishing rod is designed. Thereafter, the strain energy distribution determined as good is stored each time. Further, an ideal strain energy distribution model may be constructed by using the previously stored strain energy distribution for correction. Further, the strain energy distribution determined to be defective may also be stored and used as a basis for the cause in the failure analysis.
図1は、本発明の第1の実施形態における釣竿設計システムの概念的な構成を示す図である。本実施形態の釣竿設計システム1は、前述した物理的要素を得る物理的要素演算部(設計部)2と、入力部3と、表示部4と、複数の外部端末5で構成される。
FIG. 1 is a diagram showing a conceptual configuration of a fishing rod design system according to the first embodiment of the present invention. The fishing rod design system 1 of this embodiment includes a physical element calculation unit (design unit) 2 that obtains the physical elements described above, an input unit 3, a display unit 4, and a plurality of external terminals 5.
物理的要素演算部2は、前述した物理的要素に関する演算処理及び通信処理の制御を行う制御部(処理部:CPU)7と、入力部3の指示により使用する樹脂材料又は部品の選択及び物理的要素の設定を行う設定条件設定部6と、設定条件設定部6に対して選択設定させるためのパラメータ(例えば、使用する樹脂材料又は部品に規定されている物理的要素の固有値)を記憶するパラメータデータ部10と、制御部7によって算出された物理的要素、例えば、ひずみエネルギー及びひずみエネルギー分布(シミュレーション値)に対して良否判定を行う判定部8と、過去に設計された釣竿のデータと実釣による評価結果を関連づけて記憶するデータ部9と、外部端末5との通信インタフェースとして機能するI/Oポート11とで構成される。
The physical element calculation unit 2 is a control unit (processing unit: CPU) 7 that controls calculation processing and communication processing related to the physical elements described above, and selection and physical selection of resin materials or components to be used according to instructions from the input unit 3. A setting condition setting unit 6 for setting a target element, and parameters for selecting and setting the setting condition setting unit 6 (for example, eigenvalues of physical elements defined in a resin material or a part to be used) A parameter data unit 10, a physical element calculated by the control unit 7, for example, a determination unit 8 that performs pass / fail determination on strain energy and strain energy distribution (simulation value), and fishing rod data designed in the past It is composed of a data unit 9 for storing the evaluation results of actual fishing in association with each other and an I / O port 11 that functions as a communication interface with the external terminal 5. .
なお、この実施形態では、パラメータデータ部10とデータ部9とを別々の構成としたが、統合してもよい。
In this embodiment, the parameter data unit 10 and the data unit 9 are configured separately, but may be integrated.
表示部4は、液晶表示デバイス等により情報を表示する公知な表示装置である。外部端末5は、LAN等のネットワークを介して物理的要素演算部2のI/Oポート11に接続された、設計者が使用するパソコン等である。入力部3は、キーボード及び、表示部4の画面表面に設けられたタッチパネル等により構成される。尚、入力部3としては、外部端末5に備えられるキーボード等の入力デバイスも含まれる。
The display unit 4 is a known display device that displays information using a liquid crystal display device or the like. The external terminal 5 is a personal computer or the like used by a designer connected to the I / O port 11 of the physical element calculation unit 2 via a network such as a LAN. The input unit 3 includes a keyboard and a touch panel provided on the screen surface of the display unit 4. The input unit 3 includes an input device such as a keyboard provided in the external terminal 5.
設定条件設定部6は、使用する材料や部品の選択及び物理的要素の設定に必要な設定画面を表示部4に表示させると共に、入力部3からの指示に基づき設計仕様としての設定項目を設定する。設定項目は、制御部7における演算(シミュレーション)に用いられ、例えば、竿の長さ、外径、ガイド位置、使用する部品や樹脂材料の物理的要素の固有値、繊維方向、肉厚、積層構造、樹脂材料の弾性率等を挙げることができる。
The setting condition setting unit 6 causes the display unit 4 to display a setting screen necessary for selecting materials and parts to be used and setting physical elements, and sets setting items as design specifications based on instructions from the input unit 3 To do. The setting items are used for calculation (simulation) in the control unit 7, for example, the length of the ridge, the outer diameter, the guide position, the eigenvalues of the physical elements of the parts and resin materials used, the fiber direction, the wall thickness, and the laminated structure And the elastic modulus of the resin material.
制御部7は、前述した式(1)の演算処理を含む処理を実行するための予め設定された処理プログラムを用いて、物理的要素のうちの、例えば、ひずみエネルギー及び、ひずみエネルギー分布の算出を行う。制御部7は、他の演算式を用いて、曲げ剛性、ねじり剛性、強度、調子、曲率、重量、樹脂量、ガイド有無の掛けカーブ、重量分布、慣性モーメント、合わせ構造等の物理的要素を算出することも可能である。尚、設定条件設定部6と制御部7は、本発明の一実施形態における演算部として機能する。
The control unit 7 calculates, for example, strain energy and strain energy distribution among physical elements by using a preset processing program for executing processing including the arithmetic processing of the above-described equation (1). I do. The control unit 7 uses other arithmetic expressions to calculate physical elements such as bending rigidity, torsional rigidity, strength, tone, curvature, weight, resin amount, curve with or without guide, weight distribution, moment of inertia, and mating structure. It is also possible to calculate. The setting condition setting unit 6 and the control unit 7 function as a calculation unit in an embodiment of the present invention.
制御部7は、例えば、釣竿の複数の特定位置におけるひずみエネルギーを算出して、釣竿の各特定位置における算出値の分布を図4乃至図6で示したようにグラフ化する。また、制御部7は、各外部端末5によりアクセスされた場合には、外部端末5からの入力指示に従い、演算処理を行う。尚、釣竿設計システム1において、制御部7は、各外部端末5からの要求に従い、各種データ等の情報を各外部端末に提供し、各外部端末5において演算処理を行ってシミュレーションを実行させてもよい。
The control unit 7 calculates strain energy at a plurality of specific positions of the fishing rod, for example, and graphs the distribution of calculated values at each specific position of the fishing rod as shown in FIGS. In addition, when accessed by each external terminal 5, the control unit 7 performs arithmetic processing in accordance with an input instruction from the external terminal 5. In the fishing rod design system 1, the control unit 7 provides information such as various data to each external terminal in accordance with a request from each external terminal 5, performs calculation processing in each external terminal 5, and executes a simulation. Also good.
判定部8は、制御部7によって算出された物理的要素のうちの、例えばひずみエネルギー及び、ひずみエネルギー分布からなるエネルギー特性に対して、以前にデータ部9に記録された過去データと対比し、良否判定を行う。例えば、算出されたひずみエネルギー分布と、感性的評価が良好な過去データの中から予め設定された判定基準となるひずみエネルギー分布と比較して、良・不良の判定を行う。又は、例えば、算出されたひずみエネルギー分布と一致する又は最も近似するひずみエネルギー分布をデータ部9に記録された過去データから検索し、この検索されたひずみエネルギー分布に関連付けられた感性的評価の評価結果に基づき、良・不良の判定を行う。
The determination unit 8 compares the energy characteristics including, for example, strain energy and strain energy distribution among the physical elements calculated by the control unit 7 with the past data previously recorded in the data unit 9, Pass / fail judgment is performed. For example, good / bad determination is performed by comparing the calculated strain energy distribution with a strain energy distribution that is a predetermined determination criterion from past data with good sensitivity evaluation. Alternatively, for example, a strain energy distribution that matches or approximates the calculated strain energy distribution is searched from past data recorded in the data unit 9, and evaluation of the sensibility evaluation associated with the searched strain energy distribution is performed. Based on the result, good / bad is judged.
予め設定された判定基準となるひずみエネルギー分布と比較して、良・不良の判定を行う場合には、判定基準となるひずみエネルギー分布との不一致が予め定めた判定範囲以内にある場合に良好と判定される。良好と判定される判定範囲は、過去の実績がある釣竿(製品化された釣竿又は感性的評価結果がよかった釣竿)のデータに基づき予め設定されている。判定基準となるひずみエネルギー分布との不一致が判定範囲外となり良好と判定されない場合には、判定基準のひずみエネルギー分布との不一致点(ひずみエネルギー分布における不良箇所)を色表示等で表示して、補正すべき釣竿の箇所を告知してもよい。
Compared with the strain energy distribution that is a preset criterion, when determining good / bad, it is determined that the discrepancy with the strain energy distribution that is the criterion is within a predetermined determination range. Determined. The determination range that is determined to be good is set in advance based on data of fishing rods that have been used in the past (manufactured fishing rods or fishing rods that have good sensitivity evaluation results). If the discrepancy with the strain energy distribution, which is the criterion, is out of the judgment range and is not determined to be good, the disagreement point with the strain energy distribution of the criterion (defect location in the strain energy distribution) is displayed in color, etc. The location of the fishing rod to be corrected may be notified.
図2は、釣竿を設計・製造する工程を概念的に示す図である。本実施形態における釣竿を設計・製造する工程は、会議等により釣竿のコンセプトを決定する設計仕様工程、設計仕様及び、フィードバックされた感性的評価結果を考慮して、各設計者による入力設定を行う設計工程、入力設定された情報に基づいて物理的要素、例えばひずみエネルギー及び、ひずみエネルギー分布の演算処理を行う物理的要素演算工程、設計工程での入力設定に基づいて釣竿の試作品を作成する試作工程、検査員による実釣検査工程、実釣を行った検査員から評価を得る感性評価工程、決定された仕様による製品の製造工程がある。
FIG. 2 is a diagram conceptually showing a process of designing and manufacturing a fishing rod. In the process of designing and manufacturing a fishing rod in the present embodiment, an input setting by each designer is performed in consideration of a design specification process for determining the concept of the fishing rod by a meeting or the like, a design specification, and a feedback sentimental evaluation result. Create a fishing rod prototype based on the input settings in the design process, physical element calculation process for calculating physical elements such as strain energy and strain energy distribution based on the input setting information There are a trial production process, an actual fishing inspection process by an inspector, a sensitivity evaluation process for obtaining an evaluation from an inspector who performed actual fishing, and a product manufacturing process according to the determined specifications.
以下に、それぞれの工程について説明する。まず、釣竿の設計仕様工程においては、市場調査等を含め、新製品となる釣竿のコンセプトが提案される。次に、設計工程において、実施形態の釣竿設計システム1の設定条件設定部6に対して、提案されたコンセプトを実現する釣竿の詳細な設計項目の入力を入力部3により行う。この設計項目は、表示部4に表示された設定画面において、パラメータデータ部10に記憶されているデータからの選択入力又は、直接入力によって設定することができ、例えば、前述したように、竿の長さ、外径、継ぎ数、ガイド数と配置位置、重量、樹脂材料の種別、及びカーボン繊維方向等が含まれる。
Each process will be described below. First of all, in the design specification process of fishing rods, a new fishing rod concept is proposed, including market research. Next, in the design process, the input unit 3 inputs detailed design items of the fishing rod that realizes the proposed concept to the setting condition setting unit 6 of the fishing rod design system 1 of the embodiment. This design item can be set by selection input or direct input from the data stored in the parameter data section 10 on the setting screen displayed on the display section 4, for example, as described above, Length, outer diameter, number of joints, number of guides and arrangement position, weight, type of resin material, carbon fiber direction, and the like are included.
物理的要素演算工程では、実施形態の釣竿設計システム1の物理的要素演算部2により、設計工程において入力設定された設計項目に基づき、モーメントと曲げ剛性等を算出し、さらに、前述した式(1)を用いてひずみエネルギーを算出し、併せて、ひずみエネルギー分布を作成する。さらに、実施形態の釣竿設計システム1の判定部8において、物理的要素演算部2によって算出されたひずみエネルギー及びひずみエネルギー分布について、既にデータ部9に記録されている過去のひずみエネルギー及びひずみエネルギー分布を判定基準に用いて、良好か否かを判定する。この判定は、前述した方法により行われる。
In the physical element calculation process, the physical element calculation unit 2 of the fishing rod design system 1 according to the embodiment calculates the moment, the bending rigidity, and the like based on the design items input and set in the design process. The strain energy is calculated using 1), and a strain energy distribution is created. Furthermore, in the determination unit 8 of the fishing rod design system 1 according to the embodiment, the strain energy and strain energy distribution calculated by the physical element calculation unit 2 are already recorded in the data unit 9 in the past. Is used as a determination criterion to determine whether or not it is satisfactory. This determination is performed by the method described above.
この判定において、良好と判定された場合には、試作工程に移行する。一方、良好と判定されない場合には、設計工程に戻り設計変更を行う。例えば、前述した図4乃至図6に示したように、判定基準に対して、局所的な差、エネルギー分布差又は急峻な変化が生じていた場合には、設計工程に戻り設計変更を行う。設計変更を行う場合には、主として、剛性バランスの調整を行う。これは、ひずみエネルギーが、剛性バランスの影響を受けることに基づく。
In this determination, if it is determined to be good, the process proceeds to the prototype process. On the other hand, if it is not determined to be good, the design process is returned to the design process. For example, as shown in FIG. 4 to FIG. 6 described above, when a local difference, an energy distribution difference, or a steep change occurs with respect to the determination criterion, the design process is returned to the design process. When the design is changed, the rigidity balance is mainly adjusted. This is based on strain energy being affected by stiffness balance.
この剛性バランスは、例えば、樹脂部材における、材質、厚さ、カーボン繊維方向、樹脂シートの枚数(カーボンの層数)、弾性率の異なる樹脂シートの組み合わせ(層順)及び、釣竿の外径等を変更することで調整することが可能である。次に、試作工程において、設計工程での入力設定に基づいて試作品となる釣竿を作製する。
This stiffness balance is, for example, the material, thickness, carbon fiber direction, number of resin sheets (number of carbon layers), combinations of resin sheets having different elastic moduli (layer order), and the outer diameter of a fishing rod, etc. It is possible to adjust by changing. Next, in the prototype process, a fishing rod that is a prototype is produced based on the input settings in the design process.
次に、実釣検査工程では、専門の検査員による実釣検査を実施し、操作性等に関する感性的評価を行う。感性評価工程では、釣竿の性能試験及び感性的評価結果を検討して、設計変更が必要か否かを判定する。その判定結果は、実施形態の釣竿設計システム1の設定条件設定部6により設定された設定項目及び制御部7によって演算されたひずみエネルギー及びひずみエネルギー分布と関連づけて、データ部9に設けられた設定テーブルに登録する。感性評価工程において、試作品が良好な判定を受けた場合には、製品の仕様として決定し、製品製造に移行する。一方、感性的評価結果が不十分であった場合には、設計工程にて、フィードバックされた感性的評価結果を参照して、前述した物理的要素演算工程による物理的要素のうちの、例えばひずみエネルギー及びひずみエネルギー分布を考慮した設定項目の再設定を行い、再度、試作品の釣竿を作製する。
Next, in the actual fishing inspection process, an actual inspecting inspection is performed by a specialized inspector, and a sensibility evaluation regarding operability and the like is performed. In the sensitivity evaluation process, the performance test and sensitivity evaluation results of the fishing rod are examined to determine whether or not a design change is necessary. The determination result is a setting provided in the data unit 9 in association with the setting item set by the setting condition setting unit 6 of the fishing rod design system 1 of the embodiment and the strain energy and strain energy distribution calculated by the control unit 7. Register in the table. In the sensitivity evaluation process, if the prototype is judged to be good, it is determined as the product specification and the process proceeds to product manufacturing. On the other hand, when the sensibility evaluation result is insufficient, referring to the sensual evaluation result fed back in the design process, for example, distortion among physical elements in the physical element calculation process described above. Reset the setting items considering the energy and strain energy distribution, and make a prototype fishing rod again.
以上説明した実施形態においては、樹脂管状部材として釣竿を一例とした釣竿設計システムについて説明したが、これに限定されるものではなく、本設計システムにより設計可能な樹脂管状部材としては、少なくとも、釣竿、ゴルフ又はバトミントンのシャフト、棒高跳び競技のポール及び、弓の矢のシャフト等、さらに、樹脂板状部材としては、アイスホッケーシャフト、ワカサギ用釣竿等に用いられる板状釣竿、単層又は積層構造による板バネ等の設計に容易に適用することができる。
In the embodiment described above, a fishing rod design system has been described using a fishing rod as an example of the resin tubular member. However, the present invention is not limited to this, and the resin tubular member that can be designed by this design system is at least a fishing rod. , Golf or badminton shafts, pole vaulting poles, bow and arrow shafts, etc. In addition, as resin plate-like members, ice hockey shafts, plate fishing rods used for smelting fishing rods, etc., single layer or laminated structure It can be easily applied to the design of a leaf spring or the like.
以上説明した本実施形態の樹脂長尺部材の設計システムによれば、釣竿に作用するモーメントと曲げ剛性により求めた数値化された物理的要素を、釣竿の設計項目として取り込むことにより、実釣による感性評価を数値化又はグラフ化(パターン化)することができ、多数の試作品を作製しなくとも、その釣竿の評価を、以前に作製された釣竿の評価から導き出すことができる。
According to the resin long member design system of the present embodiment described above, by taking the physical element obtained by the moment and the bending stiffness acting on the fishing rod as the design items of the fishing rod, Sensitivity evaluation can be digitized or graphed (patterned), and the evaluation of the fishing rod can be derived from the evaluation of the fishing rod that has been prepared before, without producing a large number of prototypes.
モーメントと曲げ剛性により求めた数値化された物理的要素を、ひずみエネルギー及びひずみエネルギー分布として数値化しているため、再現性もよく、またひずみセンサーを用いることにより、評価結果を裏付ける測定データの取得も可能である。特に、ひずみエネルギー及びひずみエネルギー分布を利用して、実釣に則した釣竿の掛けカーブの特性を求めることができる。
Since the quantified physical elements obtained from the moment and bending stiffness are quantified as strain energy and strain energy distribution, the reproducibility is good, and the measurement data that supports the evaluation results is obtained by using a strain sensor. Is also possible. In particular, it is possible to obtain the characteristics of a fishing rod hanging curve according to actual fishing by using strain energy and strain energy distribution.
さらに、試作品の作製数の減少による製造コストの低減、製品作製期間の短縮が実現できる。また、試作品の設計に用いた設計項目と、ひずみエネルギー及びひずみエネルギー分布を含む物理的要素に関連づけた感性評価結果を共有可能なデータとして格納しておくことで、他の設計者であっても、新製品の設計に役立てることができる。よって、設計期間においても短縮化が実現できる。
Furthermore, it is possible to reduce the manufacturing cost and shorten the product production period by reducing the number of prototypes produced. In addition, by storing the design items used for designing the prototype and the sensitivity evaluation results associated with physical elements including strain energy and strain energy distribution as sharable data, other designers can Can also help in the design of new products. Therefore, shortening can be realized even in the design period.
図9は、第2の実施形態における釣竿設計システムの概念的な構成を示す図である。本実施形態について、前述した第1の実施形態と同等の構成部位には、同じ参照符号を付して、その詳細な説明は省略する。本実施形態の釣竿設計システム1は、図10に示すように、釣竿12に複数のひずみセンサー13を複数の特定位置に取り付けた後、実際に負荷14を竿先に下げて釣竿12の湾曲状態におけるひずみを検出して、ひずみエネルギーを算出する構成である。図10では、ひずみセンサーを略均等に配置しているが、竿の調子によって、穂先側の配置間隔を狭めて密に配置し、竿尻側の配置間隔を広めて粗に配置するなど、設計上注目すべき箇所から詳細にひずみセンサー信号を検出できるように、適宜配置を変更することができる。
FIG. 9 is a diagram showing a conceptual configuration of a fishing rod design system according to the second embodiment. In this embodiment, the same components as those in the first embodiment described above are denoted by the same reference numerals, and detailed description thereof is omitted. As shown in FIG. 10, the fishing rod design system 1 according to the present embodiment attaches a plurality of strain sensors 13 to a fishing rod 12 at a plurality of specific positions, and then actually lowers the load 14 toward the tip of the fishing rod 12 to curve the fishing rod 12. The strain energy is detected and strain energy is calculated. In FIG. 10, the strain sensors are arranged substantially evenly, but depending on the tone of the heel, the arrangement distance is narrowly arranged on the tip side and densely arranged, and the arrangement interval on the heel side is widened and arranged roughly. The arrangement can be changed as appropriate so that the strain sensor signal can be detected in detail from a point to be noted.
図9に示す本実施形態は、物理的要素演算部(設計部)2と、入力部3と、表示部4と、複数の外部端末5と、複数のひずみセンサー13(S1~S13)とで構成される。物理的要素演算部2は、各ひずみセンサーS1~S13からのひずみセンサー信号(ひずみ値:ε)からひずみエネルギーを算出するセンサー信号処理部15と、前述した樹脂材料又は部品の選択及び物理的要素の設定を行う設定条件設定部6と、算出されたひずみエネルギーを予め設けた設定テーブルに格納し、予め設定された処理プログラム(演算式等)に従って、ひずみエネルギー分布等を算出する制御部7と、入力部3と、ひずみエネルギー及びひずみエネルギー分布(実測値)の結果に対して良否判定を行う判定部8と、データ部9と、I/Oポート11とで構成される。
This embodiment shown in FIG. 9 includes a physical element calculation unit (design unit) 2, an input unit 3, a display unit 4, a plurality of external terminals 5, and a plurality of strain sensors 13 (S1 to S13). Composed. The physical element calculation unit 2 includes a sensor signal processing unit 15 that calculates strain energy from strain sensor signals (strain values: ε) from the strain sensors S1 to S13, the selection of the above-described resin material or component, and physical elements. A setting condition setting unit 6 for setting the above, a control unit 7 for storing the calculated strain energy in a setting table provided in advance, and calculating a strain energy distribution and the like according to a preset processing program (calculation formula, etc.) , An input unit 3, a determination unit 8 that performs pass / fail determination on the result of strain energy and strain energy distribution (actual measurement value), a data unit 9, and an I / O port 11.
ひずみセンサー13は、公知な金属ひずみゲージを用いて、実際の釣竿のひずみ量として、ブリッジ回路を利用した電気抵抗値の変化からなるひずみセンサー信号を検出する。他にも、センサーとしては、ピエゾ抵抗素子、圧電素子を利用したひずみゲージ又は加速度センサーを採用してもよい。
The strain sensor 13 uses a known metal strain gauge to detect a strain sensor signal consisting of a change in electric resistance value using a bridge circuit as the actual strain amount of the fishing rod. In addition, as the sensor, a piezoresistive element, a strain gauge using a piezoelectric element, or an acceleration sensor may be employed.
検出されたひずみセンサー信号はセンサー信号処理部15に入力され、このひずみセンサー信号に基づいて曲率(センサ情報)を演算し、制御部7に出力される。制御部7は、この曲率を用いて、以下の式(2)でひずみエネルギーを求める。
The detected strain sensor signal is input to the sensor signal processing unit 15, the curvature (sensor information) is calculated based on the strain sensor signal, and is output to the control unit 7. The control part 7 calculates | requires distortion energy with the following formula | equation (2) using this curvature.
但し、M=EI/ρであり、M:モーメント、EI:物体の剛性、1/ρ:曲率、ε:ひずみ値(センサー信号)、R:釣竿の外半径、また、1/ρ=ε/Rとする。
Where M = EI / ρ, M: moment, EI: stiffness of object, 1 / ρ: curvature, ε: strain value (sensor signal), R: outer radius of fishing rod, and 1 / ρ = ε / Let R be.
従って、本実施形態によれば、釣竿の複数の特定位置にひずみセンサーをそれぞれに配置して実測されたひずみに基づいて曲率を求めることができる。制御部7は、実測値から求めた曲率と、別途、設定条件設定部6により設定された設定項目を用いて、処理プログラムにより物理的要素のうちの、例えば、ひずみエネルギー及び、ひずみエネルギー分布の算出を行い、グラフ化して、出力してもよい。これらのひずみエネルギー及びひずみエネルギー分布により、前述した第1の実施形態と同様に、判定部8により、以前にデータ部9に記録された過去データと対比し、良否判定を行う。
Therefore, according to the present embodiment, it is possible to obtain the curvature based on the strain actually measured by disposing strain sensors at a plurality of specific positions of the fishing rod. The control unit 7 uses, for example, the curvature obtained from the actual measurement value and the setting item separately set by the setting condition setting unit 6, for example, strain energy and strain energy distribution among physical elements by the processing program. Calculation may be performed, graphed, and output. Based on these strain energy and strain energy distribution, the determination unit 8 compares the past data previously recorded in the data unit 9 with the pass / fail determination as in the first embodiment described above.
図11は、第2の実施形態における釣竿を設計・製造する工程を概念的に示す図である。この釣竿の設計・製造工程は、前述した図2における設計・製造工程において、センサ情報工程を追加し、このセンサ情報工程によって取得したセンサ情報を設計工程に入力している。センサー情報には、試作工程及び実釣検査工程で得られるセンサー情報やその補正情報を含み、蓄積された情報に最新の情報が追加又は更新される。このセンサー情報は、センサ信号処理部15又は、制御部7内のメモリに記憶される。
FIG. 11 is a diagram conceptually showing a process of designing and manufacturing a fishing rod in the second embodiment. In this fishing rod design / manufacturing process, a sensor information process is added to the design / manufacturing process in FIG. 2 described above, and sensor information acquired by this sensor information process is input to the design process. The sensor information includes sensor information obtained in the prototype process and the actual fishing inspection process and its correction information, and the latest information is added or updated to the accumulated information. This sensor information is stored in the sensor signal processing unit 15 or a memory in the control unit 7.
以上説明した本実施形態によれば、実際の釣竿に対してひずみセンサーを用いて実測されたセンサー信号(ひずみ値)による正確性の高い曲率に基づき、ひずみエネルギー及び、ひずみエネルギー分布を算出して、より正確な良否判定を行うことができる。よって、評価品質の向上と設計時間の短縮が図れる。
According to the present embodiment described above, strain energy and strain energy distribution are calculated based on a highly accurate curvature based on a sensor signal (strain value) measured using a strain sensor with respect to an actual fishing rod. More accurate pass / fail judgment can be made. Therefore, the evaluation quality can be improved and the design time can be shortened.
また、本実施形態は、前述した第1の実施形態におけるシミュレーション処理と組み合わせて、実測値による補正やシミュレーション結果の裏付けとして利用することも可能である。また、本実施形態の実測のみでひずみエネルギー分布を算出する構成であれば、シミュレーション処理を実施するための高性能な演算機能は必要が無く、簡易なパソコンを制御部として用いることができる。
Also, this embodiment can be used as a correction of actual measurement values or as a support for simulation results in combination with the simulation processing in the first embodiment described above. In addition, if the strain energy distribution is calculated only by actual measurement according to the present embodiment, a high-performance calculation function for performing the simulation process is unnecessary, and a simple personal computer can be used as the control unit.
さらに、本実施形態で使用されたセンサー信号によるひずみエネルギー及び、ひずみエネルギー分布と、第1の実施形態のシミュレーション処理により求めたひずみエネルギー及び、ひずみエネルギー分布との相関関係を調べてデータとして保存してもよい。こうすれば、後に、略同等な材料や仕様の釣竿を設計した場合に、シミュレーション処理により求めたひずみエネルギー及び、ひずみエネルギー分布に対して、前述した相関関係を利用して、ひずみエネルギー及び、ひずみエネルギー分布の実測値を推定して、判定を行うことができる。
Further, the correlation between the strain energy and strain energy distribution by the sensor signal used in this embodiment and the strain energy and strain energy distribution obtained by the simulation processing of the first embodiment is investigated and saved as data. May be. In this way, when a fishing rod having substantially the same material and specifications is designed later, the strain energy and strain energy obtained by the simulation process are used for the strain energy and strain energy distribution. A determination can be made by estimating an actual measurement value of the energy distribution.
図12は、第3の実施形態における釣竿設計システムの概念的な構成を示す図である。本実施形態について、前述した第1の実施形態と同等の構成部位には、同じ参照符号を付して、その詳細な説明は省略する。本実施形態の釣竿設計システム1は、撮影された画像から釣竿の湾曲形態を認識して、注目部位の位置座標から曲率を求めて、ひずみエネルギーを算出する構成である。
FIG. 12 is a diagram showing a conceptual configuration of a fishing rod design system according to the third embodiment. In this embodiment, the same components as those in the first embodiment described above are denoted by the same reference numerals, and detailed description thereof is omitted. The fishing rod design system 1 according to the present embodiment is configured to recognize a curved shape of a fishing rod from a photographed image, obtain a curvature from the position coordinates of a region of interest, and calculate strain energy.
図12に示す本実施形態は、物理的要素演算部2と、入力部3と、表示部4と、複数の外部端末5と、撮影部16とで構成される。撮影部16としては、CCD又はCMOS等の固体撮像素子を搭載し、連続的に静止画像を撮影できる高速度撮影カメラ又は、プログレッシブ方式のビデオカメラを用いることができ、これらのカメラにより撮影された連続静止画像(画像データ)を出力する。
The present embodiment shown in FIG. 12 includes a physical element calculation unit 2, an input unit 3, a display unit 4, a plurality of external terminals 5, and a photographing unit 16. As the photographing unit 16, a high-speed photographing camera or a progressive video camera that is equipped with a solid-state imaging device such as a CCD or a CMOS and can continuously photograph still images can be used. A continuous still image (image data) is output.
物理的要素演算部2は、撮影部16により撮影された連続静止画像を取得し、画像データの注目部位の位置座標から曲率を算出する画像処理部17と、算出された曲率を予め設けた設定テーブルに格納し、前述した樹脂材料又は部品の選択及び他の物理的要素の設定を行う設定条件設定部6と、ひずみエネルギーを算出する制御部7と、入力部3と、ひずみエネルギー及びひずみエネルギー分布(計測算出値)の結果に対して良否判定を行う判定部8と、前述したデータ部9と、I/Oポート11とで構成される。
The physical element calculation unit 2 acquires a continuous still image captured by the imaging unit 16, calculates the curvature from the position coordinates of the target region of the image data, and a setting in which the calculated curvature is provided in advance. A setting condition setting unit 6 which is stored in a table and selects the above-described resin materials or parts and sets other physical elements, a control unit 7 which calculates strain energy, an input unit 3, strain energy and strain energy It comprises a determination unit 8 that performs pass / fail determination on the result of distribution (measurement calculation value), the data unit 9 described above, and an I / O port 11.
図13を参照して、撮影された画像からの曲率の算出について説明する。図13は、釣竿の第1の形態12aの画像と、第1の形態12aの釣竿の竿先に負荷14が吊り下げられた形態である釣竿の第2の形態12bの画像とを重ね合わせた2枚の連続画像を示している。
Referring to FIG. 13, the calculation of the curvature from the captured image will be described. FIG. 13 is an overlay of the image of the first form 12a of the fishing rod and the image of the second form 12b of the fishing rod in which the load 14 is suspended from the tip of the fishing rod of the first form 12a. Two continuous images are shown.
図13において、撮影画像の釣竿上には、注目位置P1~P9(P1’~P9’)、P10~P13が設定される。これらの注目位置Pは、画像上における2次元的な位置情報を有している。この位置情報は、2枚の画像の共通位置(例えば、竿尻)にX軸-Y軸(座標0,0)の基準を設定して、それぞれの注目部位(例えば、竿先等)を、x座標及びy座標の位置座標で表すことができる。又は、固体撮像素子の画素位置を注目部位の位置座標として用いてもよい。
In FIG. 13, attention positions P1 to P9 (P1 'to P9') and P10 to P13 are set on the fishing rod of the photographed image. These attention positions P have two-dimensional position information on the image. This position information is obtained by setting a reference of the X axis-Y axis (coordinates 0, 0) to a common position (for example, buttock) of two images, It can be expressed by the position coordinates of the x coordinate and the y coordinate. Or you may use the pixel position of a solid-state image sensor as a position coordinate of an attention site.
これらの位置座標と公知な画像処理ソフトウエアを用いて、曲線上の各位置座標から第1の形態12a及び第2の形態12bにおける各注目位置Pの曲率を算出する。尚、ひずみエネルギーの算出に必要な釣竿の外径Rは、予め基準目盛りを撮影して、1画素の大きさとの相関関係を取り、撮影された釣竿の外径部分の画素数を数えることで、各注目位置Pにおける釣竿の外径を算出することができる。制御部7は、算出された曲率と外径を用いて、前述した式(1)により、ひずみエネルギーを算出し、さらに、釣竿全体のひずみエネルギー分布を算出する。
Using these position coordinates and known image processing software, the curvature of each target position P in the first form 12a and the second form 12b is calculated from the position coordinates on the curve. Note that the outer diameter R of the fishing rod required for calculating the strain energy is obtained by photographing the reference scale in advance, taking a correlation with the size of one pixel, and counting the number of pixels in the outer diameter portion of the photographed fishing rod. The outer diameter of the fishing rod at each target position P can be calculated. Using the calculated curvature and outer diameter, the control unit 7 calculates strain energy according to the above-described equation (1), and further calculates strain energy distribution of the entire fishing rod.
以上説明した本実施形態によれば、撮影した釣竿の画像から取得した曲率を用いて、ひずみエネルギー及び、ひずみエネルギー分布を算出することができる。よって、シミュレーション処理を行うための数値等のパラメータ設定が必要なく、湾曲した2次元画像から曲率を求めることができる。例えば、実際の釣竿を撮影しなくとも、紙面に描いた湾曲した釣竿の絵柄であっても曲率を求めることかできる。特に、測定基材を持ち出せない河川や船上での実釣時において測定が必要となる場合であっても、撮影した画像があれば、ひずみエネルギー及び、ひずみエネルギー分布を算出することができる。尚、第3の実施形態における釣竿を製造する工程においては、前述した第2の実施形態の製造工程と同様であり、センサ信号に代わって、画像から取得した曲率等の画像情報を用いる。釣竿の画像から取得した曲率等のデータは、画像情報として、制御部7のメモリ等に記憶される。
According to the present embodiment described above, the strain energy and the strain energy distribution can be calculated using the curvature obtained from the photographed fishing rod image. Therefore, it is not necessary to set parameters such as numerical values for performing the simulation process, and the curvature can be obtained from the curved two-dimensional image. For example, even if an actual fishing rod is not photographed, the curvature can be obtained even with a curved fishing rod pattern drawn on paper. In particular, even when measurement is required during actual fishing on a river or ship where the measurement substrate cannot be taken out, strain energy and strain energy distribution can be calculated if there is a photographed image. Note that the manufacturing process of the fishing rod in the third embodiment is similar to the manufacturing process of the second embodiment described above, and image information such as curvature obtained from the image is used instead of the sensor signal. Data such as curvature acquired from the fishing rod image is stored as image information in the memory of the control unit 7 or the like.
また、ひずみセンサー等の取り付け作業の必要もなく、簡易に、必要とする曲率を取得することができる。さらに本実施形態は、前述した第2の実施形態と同様に、第1の実施形態におけるシミュレーション処理と組み合わせて、実測値による補正やシミュレーション結果の裏付けとして利用することも可能である。
Also, the required curvature can be easily obtained without the need for mounting a strain sensor or the like. Furthermore, like the second embodiment described above, this embodiment can also be used as a correction based on actual measurement values or as a support for simulation results in combination with the simulation processing in the first embodiment.
次に、第3の実施形態の変形例の釣竿設計システムについて説明する。本変形例の構成は、第3の実施形態の構成と同等であり、演算方法が異なっている。本変形例については、前述した第1の実施形態と同等の構成部位には、同じ参照符号を付して、その詳細な説明は省略する。本変形例の釣竿設計システムは、連続撮影された画像に含まれる釣竿上に設定した複数の注目部位に対して、画像相関法を用いて、注目部位における位置座標の変化から曲率を求めて、ひずみエネルギーを算出する構成である。
Next, a fishing rod design system according to a modification of the third embodiment will be described. The configuration of this modification is the same as that of the third embodiment, and the calculation method is different. About this modification, the same referential mark is attached | subjected to the component equivalent to 1st Embodiment mentioned above, and the detailed description is abbreviate | omitted. The fishing rod design system of this modification example uses the image correlation method to obtain the curvature from the change in the position coordinates at the attention site for a plurality of attention sites set on the fishing rod included in the continuously shot images, This is a configuration for calculating strain energy.
物理的要素演算部2は、撮影部16により撮影された連続静止画像を取得し、画像信号の比較により曲率を算出する画像処理部17と、算出された曲率を予め設けた設定テーブルに格納し、前述した樹脂材料又は部品の選択及び物理的要素の設定を行う設定条件設定部6と、ひずみエネルギーを算出する制御部7と、入力部3と、ひずみエネルギー及びひずみエネルギー分布(計測算出値)の結果に対して良否判定を行う判定部8と、前述したデータ部9と、I/Oポート11とで構成される。
The physical element calculation unit 2 acquires a continuous still image captured by the imaging unit 16 and stores the calculated curvature in a setting table provided in advance, and an image processing unit 17 that calculates the curvature by comparing image signals. The above-mentioned setting condition setting unit 6 for selecting the resin material or part and setting the physical element, the control unit 7 for calculating the strain energy, the input unit 3, the strain energy and the strain energy distribution (measurement calculation value) The determination unit 8 that performs pass / fail determination on the result, the data unit 9 and the I / O port 11 described above.
図13を参照して、撮影された画像からの曲率の算出について説明する。図13は、釣竿の第1の形態12aの画像と、第1の形態12aの釣竿の竿先に負荷14が吊り下げられた形態である釣竿の第2の形態12bの画像とを重ね合わせた2枚の連続画像を示している。尚、背景画像は、第1の形態12aの画像と第2の形態12bの画像とは同一である。
Referring to FIG. 13, the calculation of the curvature from the captured image will be described. FIG. 13 is an overlay of the image of the first form 12a of the fishing rod and the image of the second form 12b of the fishing rod in which the load 14 is suspended from the tip of the fishing rod of the first form 12a. Two continuous images are shown. The background image is the same as the image in the first form 12a and the image in the second form 12b.
図13において、撮影された画像100上の釣竿12に対して、位置情報(x,y)を有する注目位置P1~P9(P1’~P9’)、P10~P13を設定する。
In FIG. 13, attention positions P1 to P9 (P1 ′ to P9 ′) and P10 to P13 having position information (x, y) are set for the fishing rod 12 on the photographed image 100.
注目位置Pは、例えば、竿先であり、その位置に対応する複数の画素が注目画素領域として設定される。この注目画素領域は輝度差を有する複数の画素の配置として構成されるから、特徴パターンとして認識することができる。釣竿の第1の形態12aで設定した注目位置Pの特徴パターンに基づいて、釣竿の第2の形態12bにおける注目位置Pを検出すれば、注目位置Pの移動を検出することができる。注目位置P(特徴パターン)の移動距離は位置座標の変化に基づいて算出することができるから、この移動距離に基づいてひずみ量を導き出すことができる。
The attention position P is, for example, a tip, and a plurality of pixels corresponding to the position are set as the attention pixel area. Since the target pixel region is configured as an arrangement of a plurality of pixels having a luminance difference, it can be recognized as a feature pattern. If the attention position P in the second form 12b of the fishing rod is detected based on the feature pattern of the attention position P set in the first form 12a of the fishing rod, the movement of the attention position P can be detected. Since the movement distance of the target position P (feature pattern) can be calculated based on a change in position coordinates, the amount of strain can be derived based on this movement distance.
無負荷時又は、仕掛け投入時の釣竿12を撮影し、次に、負荷(魚)が掛かった状態の釣竿を撮影する。これらの撮影により、釣竿の第1の形態12aの画像と、引き続く釣竿の第2の形態12bの画像とを取得する。撮影された釣竿の第1の形態12aの釣竿上に複数の注目位置P1~P13を設定し、第2の形態12bの釣竿の画像に対して、画像相関を行い、注目位置P1~P13の注目画素領域の特徴パターンに基づいて、第2の形態12bの画像における注目位置P1’~P13’を検出する。釣竿の外径は、前述した様に、画素数を数えることにより、算出することができる。
Shoot the fishing rod 12 when no load is applied or when the device is turned on, and then shoot the fishing rod with the load (fish) applied. By these photographing, an image of the first form 12a of the fishing rod and an image of the second form 12b of the subsequent fishing rod are acquired. A plurality of attention positions P1 to P13 are set on the fishing rod of the first form 12a of the photographed fishing rod, and image correlation is performed on the image of the fishing rod of the second form 12b, so that attentions of the attention positions P1 to P13 are obtained. Based on the feature pattern of the pixel area, attention positions P1 ′ to P13 ′ in the image of the second form 12b are detected. The outer diameter of the fishing rod can be calculated by counting the number of pixels as described above.
注目位置P1~P13と注目位置P1’~P13’における位置情報(座標位置)に基づき各注目位置の移動距離を算出し、ひずみ量とする。この演算を全ての注目位置に対して行うことで、釣竿全体のひずみエネルギー分布を算出することができる。
The movement distance of each target position is calculated based on the position information (coordinate position) at the target positions P1 to P13 and the target positions P1 'to P13', and is used as the distortion amount. By performing this calculation for all positions of interest, the strain energy distribution of the entire fishing rod can be calculated.
以上説明した本変形例によれば、撮影した釣竿の画像から画像相関法により取得したひずみ量から前述した第1の実施形態における演算処理により、ひずみエネルギー分布を算出することができる。本変形例によれば、第3の実施形態と同様な作用効果を得ることができる。また、ひずみセンサー等の取り付け作業の必要もなく、簡易に、必要とする曲率を取得することができる。
According to this modification described above, the strain energy distribution can be calculated by the arithmetic processing in the first embodiment described above from the strain amount obtained by the image correlation method from the photographed fishing rod image. According to this modification, it is possible to obtain the same effects as those of the third embodiment. In addition, the required curvature can be easily obtained without the need for attaching a strain sensor or the like.
Claims (9)
- 外的負荷によって変形する樹脂長尺部材の設計システムであって、
操作者からの入力情報に基づいて、前記樹脂長尺部材の設計に必要な設計情報を設定する設定部と、
前記設定した設計情報に基づく前記樹脂長尺部材が、前記外的負荷によって変形した状態における物理的要素を演算する演算部と、
前記演算部による前記物理的要素の演算結果に基づいて、前記設計情報の良否を判定する判定部と、
を備える設計システム。 It is a design system for a resin long member that is deformed by an external load,
Based on input information from the operator, a setting unit for setting design information necessary for designing the resin long member,
A calculation unit that calculates a physical element in a state where the resin long member based on the set design information is deformed by the external load;
A determination unit that determines pass / fail of the design information based on a calculation result of the physical element by the calculation unit;
Design system with - 前記物理的要素の基準値を記憶する記憶部を更に備え、
前記判定部は、前記演算部による前記物理的要素の演算結果と前記記憶部に記憶されている前記物理的要素の基準値との比較に基づいて、前記設計情報の良否を判定する、
請求項1に記載の設計システム。 A storage unit for storing a reference value of the physical element;
The determination unit determines pass / fail of the design information based on a comparison between a calculation result of the physical element by the calculation unit and a reference value of the physical element stored in the storage unit.
The design system according to claim 1. - 前記演算部は、前記物理的要素としてひずみエネルギーを演算する請求項1に記載の設計システム。 The design system according to claim 1, wherein the calculation unit calculates strain energy as the physical element.
- 前記設定部は、前記設計情報の少なくとも一部として、前記樹脂長尺部材の所定の位置における剛性と、前記外的負荷によって変形した状態における前記樹脂長尺部材の前記所定の位置におけるモーメントとを設定し、
前記演算部は、前記剛性と前記モーメントとに基づいて前記所定の位置におけるひずみエネルギーを演算する、
請求項3に記載の設計システム。 The setting unit includes, as at least a part of the design information, a rigidity at a predetermined position of the resin long member and a moment at the predetermined position of the resin long member in a state of being deformed by the external load. Set,
The calculation unit calculates strain energy at the predetermined position based on the rigidity and the moment.
The design system according to claim 3. - 前記設定部は、前記設計情報の少なくとも一部として、前記樹脂長尺部材の所定の位置における剛性と、前記外的負荷によって変形した状態における前記樹脂長尺部材の前記所定の位置における曲率とを設定し、
前記演算部は、前記剛性と前記曲率とに基づいて前記所定の位置におけるひずみエネルギーを演算する、
請求項3に記載の設計システム。 The setting unit includes, as at least a part of the design information, a rigidity at a predetermined position of the resin long member and a curvature at the predetermined position of the resin long member in a state deformed by the external load. Set,
The calculation unit calculates strain energy at the predetermined position based on the rigidity and the curvature.
The design system according to claim 3. - 樹脂長尺部材が前記外的負荷によって変形した状態におけるひずみエネルギーの実測値を入力する実測値入力部を更に備え、
前記演算部は、前記入力部によって入力された実測値を前記ひずみエネルギーとする、
請求項3記載の設計システム。 An actual measurement value input unit for inputting an actual measurement value of strain energy in a state where the resin long member is deformed by the external load;
The calculation unit uses the actual measurement value input by the input unit as the strain energy.
The design system according to claim 3. - 少なくとも前記樹脂長尺部材が前記外的負荷によって変形する前の画像と、前記樹脂長尺部材が前記外的負荷によって変形した後の画像とを含む画像を入力する画像入力部を更に備え、
前記演算部は、前記画像入力部によって入力された画像に基づいて前記ひずみエネルギーを演算する、
請求項3記載の設計システム。 An image input unit for inputting an image including at least an image before the resin long member is deformed by the external load and an image after the resin long member is deformed by the external load;
The calculation unit calculates the strain energy based on the image input by the image input unit.
The design system according to claim 3. - 前記演算部は、画像相関法を用いて前記ひずみエネルギーを演算する請求項7記載の設計システム。 The design system according to claim 7, wherein the calculation unit calculates the strain energy using an image correlation method.
- 前記樹脂長尺部材は、釣竿及びゴルフクラブシャフトのいずれかを含む請求項1に記載の設計システム。 The design system according to claim 1, wherein the long resin member includes a fishing rod or a golf club shaft.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012001608 | 2012-01-06 | ||
JP2012-001608 | 2012-01-27 | ||
JP2012033798A JP5914032B2 (en) | 2012-01-06 | 2012-02-20 | Resin long material design system |
JP2012-033798 | 2012-02-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013103114A1 true WO2013103114A1 (en) | 2013-07-11 |
Family
ID=48745175
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/083616 WO2013103114A1 (en) | 2012-01-06 | 2012-12-26 | System for designing long resin member |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5914032B2 (en) |
WO (1) | WO2013103114A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113383756A (en) * | 2020-02-26 | 2021-09-14 | 古洛布莱株式会社 | Fishing rod evaluation method |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2024125889A (en) * | 2023-03-06 | 2024-09-19 | グローブライド株式会社 | A method for objectively evaluating fishing rod performance |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08196670A (en) * | 1995-01-27 | 1996-08-06 | Kinki Kigyo Kofun Yugenkoshi | Shaft of golf club |
JP2005337901A (en) * | 2004-05-27 | 2005-12-08 | Tokyo Electric Power Co Inc:The | Apparatus and method for deciding integrity of columnar body |
JP2006329628A (en) * | 2005-05-23 | 2006-12-07 | Hitachi Zosen Corp | Measuring method of deformation amount in structure |
JP2008015635A (en) * | 2006-07-03 | 2008-01-24 | Toyota Central Res & Dev Lab Inc | Method and program for evaluating structure |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003058584A (en) * | 2001-08-20 | 2003-02-28 | Sumitomo Rubber Ind Ltd | Method for simulating static physical property value of golf club shaft and golf club shaft design system using the simulation method |
JP2006218885A (en) * | 2005-02-08 | 2006-08-24 | Honda Motor Co Ltd | Collision determining device for vehicle |
-
2012
- 2012-02-20 JP JP2012033798A patent/JP5914032B2/en active Active
- 2012-12-26 WO PCT/JP2012/083616 patent/WO2013103114A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08196670A (en) * | 1995-01-27 | 1996-08-06 | Kinki Kigyo Kofun Yugenkoshi | Shaft of golf club |
JP2005337901A (en) * | 2004-05-27 | 2005-12-08 | Tokyo Electric Power Co Inc:The | Apparatus and method for deciding integrity of columnar body |
JP2006329628A (en) * | 2005-05-23 | 2006-12-07 | Hitachi Zosen Corp | Measuring method of deformation amount in structure |
JP2008015635A (en) * | 2006-07-03 | 2008-01-24 | Toyota Central Res & Dev Lab Inc | Method and program for evaluating structure |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113383756A (en) * | 2020-02-26 | 2021-09-14 | 古洛布莱株式会社 | Fishing rod evaluation method |
Also Published As
Publication number | Publication date |
---|---|
JP2013153740A (en) | 2013-08-15 |
JP5914032B2 (en) | 2016-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013103114A1 (en) | System for designing long resin member | |
JP5588829B2 (en) | Golf club fitting method | |
JP2004233334A5 (en) | ||
JP2010530070A5 (en) | ||
JPWO2020065815A1 (en) | Material tester | |
JP2011130933A (en) | Shaft selection assist apparatus | |
CN107664598A (en) | Fibrous material tensile property measuring method based on one-dimensional digital figure correlation method | |
US20230082405A1 (en) | Apparatus, method, computer-readable storage medium for non-destructive inspection of bicycle based on analyzing amount of scale value change | |
CN107770520A (en) | A kind of line-scan digital camera auxilary focusing method and device | |
JP2017203701A (en) | Information processing apparatus, measurement system, information processing method, and program | |
CN111563894B (en) | Method and system for measuring bending stiffness of continuous fiber reinforced material | |
JP2022093509A5 (en) | Control device, display method and inspection method | |
TWI296502B (en) | ||
US9689654B2 (en) | Selection assisting method and selection assisting apparatus | |
JP4404304B2 (en) | How to display the status of a fishing rod | |
Hagara et al. | Stress Analysis Performed in the Near Surrounding of Small Hole by a Digital Image Correlation Method | |
JP6440758B2 (en) | Golf club fitting method, apparatus and analysis method thereof | |
JP4385023B2 (en) | Manufacturing method of fishing rod | |
JP2003058584A (en) | Method for simulating static physical property value of golf club shaft and golf club shaft design system using the simulation method | |
JP7415409B2 (en) | golf club fitting device | |
JP2007004552A (en) | Analysis method for laminated material | |
TWI326580B (en) | ||
JP6677470B2 (en) | External force detection device, external force detection method, and program | |
JP7467867B2 (en) | Golf club fitting device | |
TWI294266B (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12864436 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12864436 Country of ref document: EP Kind code of ref document: A1 |