WO2013103038A1 - Optical device and image display device - Google Patents

Optical device and image display device Download PDF

Info

Publication number
WO2013103038A1
WO2013103038A1 PCT/JP2012/075696 JP2012075696W WO2013103038A1 WO 2013103038 A1 WO2013103038 A1 WO 2013103038A1 JP 2012075696 W JP2012075696 W JP 2012075696W WO 2013103038 A1 WO2013103038 A1 WO 2013103038A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
carrier generation
optical device
plasmon excitation
Prior art date
Application number
PCT/JP2012/075696
Other languages
French (fr)
Japanese (ja)
Inventor
昌尚 棗田
雅雄 今井
慎 冨永
鈴木 尚文
瑞穂 冨山
友嗣 大野
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2013103038A1 publication Critical patent/WO2013103038A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/008Surface plasmon devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2073Polarisers in the lamp house
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1226Basic optical elements, e.g. light-guiding paths involving surface plasmon interaction

Definitions

  • the present invention relates to an optical device and an image display device.
  • a light source of an image display apparatus such as a projector
  • a light emitting element for example, a light emitting element, a light guide on which light (excitation light) from the light emitting element is incident, and the light guide Plasmons having a plasma frequency higher than the frequency of the light generated when the carrier generation layer is stacked on the carrier generation layer and the carrier generation layer is excited by the light of the light emitting element
  • An optical device has been developed which includes a plasmon excitation layer to be excited, and an emission layer which is laminated on the plasmon excitation layer and converts light incident from the plasmon excitation layer into light of a predetermined emission angle and emits the light. (Patent Document 1).
  • Such an optical device emits light according to the following principle. That is, first, the excitation light emitted from the light emitting element is absorbed in the carrier generation layer, whereby carriers are generated in the carrier generation layer. This carrier combines with free electrons in the plasmon excitation layer to excite surface plasmons. Then, the excited surface plasmons are emitted as light.
  • An object of the present invention is to provide an optical device and an image display device capable of improving the absorption efficiency of excitation light.
  • the optical device of the present invention is A light emitting element, A carrier generation layer in which light from the light emitting element is incident and carriers are generated; A plasmon excitation layer for exciting plasmons, which is stacked on the carrier generation layer and has a plasma frequency higher than the frequency of light generated when the carrier generation layer is excited by the light of the light emitting element; And an emission layer for converting light or surface plasmon generated on the surface of the plasmon excitation layer into light of a predetermined emission angle and emitting the light.
  • the incident angle of light incident on the carrier generation layer is 40 degrees or more.
  • the image display apparatus of the present invention is The optical device of the present invention, And an image display unit capable of displaying an image.
  • an optical device and an image display device capable of improving the absorption efficiency of excitation light.
  • FIG. 1 is a perspective view schematically showing the configuration of an example (first embodiment) of the optical device of the present invention.
  • FIG. 2A is a view showing the incident angle and the polarization dependency of the absorptivity of excitation light in the carrier generation layer when the thickness of the carrier generation layer is 50 nm.
  • FIG. 2B is a view showing the incident angle and the polarization dependency of the absorptivity of excitation light in the carrier generation layer when the thickness of the carrier generation layer is 100 nm.
  • FIG. 3 is a view showing the thickness dependency of the carrier generation layer of the absorptivity of excitation light.
  • FIG. 4 is a view showing the excitation light incident angle dependency of the emission spectrum from the optical device.
  • FIG. 1 is a perspective view schematically showing the configuration of an example (first embodiment) of the optical device of the present invention.
  • FIG. 2A is a view showing the incident angle and the polarization dependency of the absorptivity of excitation light in the carrier
  • FIG. 5 is a diagram showing an emission spectrum from the optical device when the thickness of the carrier generation layer is 50 nm.
  • FIG. 6 is a diagram showing an emission spectrum from the optical device when the thickness of the carrier generation layer is 100 nm.
  • FIG. 7 is a perspective view schematically showing the configuration of another example (Embodiment 2) of the optical device of the present invention.
  • FIG. 8 is a perspective view schematically showing the configuration of still another example (third embodiment) of the optical device of the present invention.
  • FIG. 9 is a schematic view showing a configuration of an example (Embodiment 5) of the image display device (LED projector) of the present invention.
  • FIG. 5 is a diagram showing an emission spectrum from the optical device when the thickness of the carrier generation layer is 50 nm.
  • FIG. 6 is a diagram showing an emission spectrum from the optical device when the thickness of the carrier generation layer is 100 nm.
  • FIG. 7 is a perspective view schematically showing the configuration of another example (Embodiment 2) of
  • FIG. 10 is a view for explaining an emission wavelength of an optical device used for the LED projector of the fifth embodiment, and an excitation wavelength and an emission wavelength of a phosphor.
  • FIG. 11 is a perspective view schematically showing the configuration of still another example (Embodiment 4) of the optical device of the present invention.
  • the optical device of the present embodiment is an example of an optical device having a dielectric layer.
  • the configuration of the optical device of the present embodiment is shown in the perspective view of FIG.
  • the optical device 1 of the present embodiment includes light emitting elements 101a and 101b and a light control unit 3 as main components.
  • the light control unit 3 is stacked on the carrier generation layer 103, the dielectric layer 104 stacked on the carrier generation layer 103, the plasmon excitation layer 105 stacked on the dielectric layer 104, and the plasmon excitation layer 105.
  • a wave number vector conversion layer 107 stacked on the dielectric layer 106.
  • the wave vector conversion layer 107 has a function as the “emission layer” in the present invention.
  • the light emitting elements 101 a and 101 b are disposed around the side surface of the light control unit 3. The relationship between the arrangement position of the light emitting elements 101a and 101b and the incident angle of light incident on the carrier generation layer 103 will be described later.
  • the effective dielectric constant of the excitation light incident side portion is that of the light emission side portion (hereinafter, sometimes referred to as “output side portion”). It is configured to be lower than the effective dielectric constant.
  • the incident side portion includes the entire structure stacked on the carrier generation layer 103 side of the plasmon excitation layer 105 and an ambient atmosphere medium (hereinafter, may be referred to as a “medium”) in contact with the carrier generation layer 103.
  • the entire structure includes dielectric layer 104 and carrier generation layer 103.
  • the emission side portion includes the entire structure stacked on the wave number vector conversion layer 107 side of the plasmon excitation layer 105 and a medium in contact with the wave number vector conversion layer 107.
  • the entire structure includes a dielectric layer 106 and a wave vector conversion layer 107. For example, even if the dielectric layer 104 and the dielectric layer 106 are removed, if the effective dielectric constant of the incident side portion is lower than the effective dielectric constant of the emission side portion, the dielectric layer 104 and the dielectric Layer 106 is not necessarily an essential component.
  • the effective dielectric constant ( ⁇ eff ) is a direction parallel to the interface of the plasmon excitation layer 105 as x-axis and y-axis, a direction perpendicular to the interface of the plasmon excitation layer 105 (the surface of the plasmon excitation layer 105 has irregularities
  • the angular frequency of the light emitted from the carrier generation layer 103 is ⁇
  • the plasmon excitation is ⁇ when the carrier generation layer 103 alone is excited by excitation light.
  • the effective dielectric constant ⁇ eff may be calculated using a formula represented by the following formula (7). However, it is particularly desirable to use the formula (1).
  • the integration range D is a range of three-dimensional coordinates of the incident side portion or the emission side portion with respect to the plasmon excitation layer 105.
  • the range in the x-axis and y-axis directions in the integration range D is a range not including the medium to the outer peripheral surface of the entire structure of the incident side portion or the outer peripheral surface of the entire structure of the output side portion; It is a range up to the outer edge in the plane parallel to the surface on the wave number vector conversion layer 107 side of the plasmon excitation layer 105.
  • the range in the z-axis direction in the integration range D is the range of the incident side portion or the emission side portion.
  • the effective dielectric when unevenness is formed on the surface of the plasmon excitation layer 105, if the origin of the z coordinate is moved along the unevenness of the plasmon excitation layer 105, the effective dielectric can be obtained from the above equations (1) and (7). The rate is determined.
  • when a material having optical anisotropy is included, ⁇ ( ⁇ , x, y, z) becomes a vector, which is different for each radial direction perpendicular to the z axis It has a value. That is, for each radial direction perpendicular to the z-axis, there is an effective dielectric constant of the incident side portion and the outgoing side portion.
  • the value of ⁇ ( ⁇ , x, y, z) is a dielectric constant in a direction parallel to the radial direction perpendicular to the z axis. Therefore, all phenomena related to the effective dielectric constant, such as k spp, z , k spp and deff described later, have different values in each radial direction perpendicular to the z axis.
  • the z component k spp, z of the wave number of the surface plasmon and the x and y component k spp of the wave number of the surface plasmon are ⁇ metal of the real part of the dielectric constant of the plasmon excitation layer 105, the wave number of light in vacuum
  • the distance from the surface on the carrier generation layer 103 side of the plasmon excitation layer 105 to the surface on the plasmon excitation layer 105 side of the carrier generation layer 103 is set shorter than the effective interaction distance d eff of surface plasmons.
  • d eff is a symbol indicating the imaginary part of the numerical value in [] as Im []
  • the effective interaction distance of the surface plasmon is the distance at which the intensity of the surface plasmon is e -2 .
  • the effective dielectric constants of the incident side portion and the emission side portion exist in each radial direction perpendicular to the z axis. Therefore, as described above, all phenomena related to the effective dielectric constant, such as k spp, z , k spp , and d eff described later, have different values in the radial direction perpendicular to the z-axis.
  • the effective permittivity is obtained by repeatedly calculating the equation (1) or the equation (7), the equation (2) and the equation (3) by giving an appropriate initial value as the effective permittivity ⁇ eff. ⁇ eff can be easily obtained.
  • the dielectric constant of the layer in contact with the plasmon excitation layer 105 corresponds to the effective dielectric constant in this case.
  • the effective dielectric constant in the embodiments described later is also defined in the same manner as the formula (1) or the formula (7).
  • the incident angle at which the light emitted from the light emitting elements 101 a and 101 b (hereinafter sometimes referred to as “excitation light”) is incident on the carrier generation layer 103 is set to 40 degrees or more There is.
  • the optical device 1 has a function of absorbing excitation light in the carrier generation layer 103, that is, a waveguide including the carrier generation layer 103, the dielectric layer 104, and the plasmon excitation layer 105 (hereinafter referred to as “waveguide Coupling efficiency is improved. It will be described in detail that the optical device 1 exerts such an effect.
  • the present inventors show that the absorption efficiency of excitation light in the carrier generation layer significantly depends on the incident angle of the excitation light to the carrier generation layer. I found it. Furthermore, the present inventors have found that the absorption efficiency also depends on the polarization characteristics of the excitation light. These findings are found for the first time by the present inventors. The incident angle dependency and the polarization dependency of the absorption efficiency will be further described based on the optical device 1 of the present embodiment.
  • FIGS. 2A and 2B show the incident angle and the polarization dependency of the absorptivity of the excitation light in the carrier generation layer 103.
  • FIG. 2A the thickness of the carrier generation layer 103 is set to 50 nm, and in the example shown in FIG. 2B, the thickness of the carrier generation layer 103 is set to 100 nm.
  • the optical device 1 is set to the following conditions including the thickness condition of the carrier generation layer 103. In this example, the light reflected by the plasmon excitation layer 105 is not reused.
  • the “incident angle” refers to the light beam and the carrier generation layer 103 when the light (light beam) emitted from the light emitting elements 101 a and 101 b enters the carrier generation layer 103 (light control unit 3). Indicates the angle formed by the normal to the incident surface.
  • the “incident angle” is indicated by the same concept as described above.
  • Light emitting element 101 Laser diode (emission wavelength: 460 nm)
  • Carrier generation layer 103 Forming material: phosphor (refractive index: 1.7 + 0.03 j) Thickness: 50 nm (FIG. 2A) or 100 nm (FIG.
  • Dielectric layer 104 Forming material: SiO 2 , thickness: 10 nm
  • Plasmon excitation layer 105 Forming material: Ag, thickness: 50 nm
  • Dielectric layer 106 Forming material: TiO 2 , thickness: 0.5 mm
  • Wave vector conversion layer 107 hemispherical lens (diameter: 10 mm)
  • the absorptivity of the excitation light is 31% or more at an incident angle of 40 degrees or more, 42% or more at an incident angle of 60 degrees or more, and an incident angle of 70 More than 53%.
  • the absorptivity of the excitation light is 19% or more at an incident angle of 40 degrees or more, 27% or more at an incident angle of 60 degrees or more, and an incident angle of 70 More than 33%.
  • the relationship between the absorptivity of excitation light and the thickness of the carrier generation layer 103 is shown in FIG.
  • the horizontal axis indicates the ratio of s-polarization component in the excitation light, 100% indicates that the excitation light is only s-polarization, and 0% indicates that the excitation light is only p-polarization. Show.
  • the thickness of the carrier generation layer 103 is 50 nm, the absorptivity of the excitation light is improved as the s-polarization component increases in the excitation light.
  • the absorptivity of the excitation light is improved as the s-polarization component decreases in the excitation light, that is, the p-polarization component increases. It can be said that under any conditions, the maximum value of the absorptivity is obtained in s-polarized light or p-polarized light. In addition, it can be said that the absorptivity does not reach the maximum value in the polarization between s-polarization and p-polarization, that is, in the middle polarization.
  • FIG. 4 shows the relationship between the emission spectrum from the optical device 1 and the incident angle of the excitation light when the thickness of the carrier generation layer 103 in the example shown in FIG. 2A and FIG. 3 is 50 nm.
  • “0 °”, “10 °”, “20 °”, “30 °”, “40 °”, “50 °”, “60 °”, “70 °” and “80 °” in FIG. 4 indicate the incident angles of the excitation light.
  • the vertical axis is normalized to 1 as the emission spectrum when the incident angle of the excitation light is 0 degree.
  • the incident angle of the excitation light to the carrier generation layer 103 is larger, the light emission power is improved. From the comparison with FIG. 2A, it can be seen that there is a correlation (for example, a proportional relationship) between the excitation light amount absorbed by the carrier generation layer 103 and the light emission power.
  • FIG. 5 shows an emission spectrum from the optical device 1 when the thickness of the carrier generation layer 103 in the example shown in FIG. 2A and FIG. 3 is 50 nm.
  • “0%”, “33%”, “66%” and “100%” in FIG. 5 indicate the ratio of the s-polarization component to the excitation light.
  • the ordinate represents the emission spectrum when the excitation light is p-polarized light (“0%” in FIG. 5), and is normalized to 1.
  • the light emission power is maximum when the excitation light is s-polarized light (100%), and is eight times as large as that when the excitation light is p-polarized light (0%). From the comparison with FIG. 3, it can be seen that there is a correlation (for example, a proportional relationship) between the excitation light amount absorbed by the carrier generation layer 103 and the light emission power.
  • FIG. 6 shows an emission spectrum from the optical device 1 when the thickness of the carrier generation layer 103 in the example shown in FIG. 2B and FIG. 3 is 100 nm.
  • “0%”, “33%”, “66%” and “100%” in FIG. 6 indicate the ratio of the s-polarization component to the excitation light.
  • the ordinate represents the emission spectrum when the excitation light is s-polarized light (“100%” in FIG. 6).
  • the light emission power is maximum when the excitation light is p polarization (0%), and is four times as high as the case where the excitation light is s polarization (100%). From the comparison with FIG. 3, as in the case where the thickness of the carrier generation layer 103 is 50 nm, there is a correlation (for example, a proportional relationship) between the excitation light amount absorbed by the carrier generation layer 103 and the emission power. I understand.
  • the absorption efficiency of excitation light in the carrier generation layer depends on the incident angle of the excitation light. Based on this finding, the present inventors have found that the absorption efficiency of excitation light can be improved by setting the incident angle of the excitation light to the carrier generation layer to 40 degrees or more, and the present invention has been completed. According to the present invention, by improving the absorption efficiency of excitation light, it is possible to realize, for example, an optical device having high light emission efficiency and high light output rating. For example, since the maximum value of the absorptivity of excitation light is the case where the incident angle is 40 degrees or more, the incident angle is preferably 50 degrees or more, more preferably 60 degrees or more, still more preferably 70 to 88 degrees It is a range.
  • the absorption efficiency of excitation light is maximized in either s-polarization or p-polarization, depending on the thickness of the carrier generation layer. Therefore, if only s-polarized light or p-polarized light is incident on the carrier generation layer at the predetermined incident angle or more according to the thickness of the carrier generation layer, for example, the absorption efficiency of excitation light can be further improved.
  • the excitation light emitted from the light emitting elements 101a and 101b enters the light control unit 3 at the predetermined incident angle (and polarization).
  • the excitation light is then coupled to the waveguide and confined therein.
  • the confined excitation light excites the carrier generation layer 103 to generate carriers in the carrier generation layer 103.
  • the carrier combines with free electrons in the plasmon excitation layer 105 separated by the dielectric layer 104 to excite surface plasmons at the interface between the dielectric layer 104 and the plasmon excitation layer 105.
  • the excited surface plasmons are emitted as light from the interface between the plasmon excitation layer 105 and the dielectric layer 106 (hereinafter sometimes referred to as “emission light”).
  • the light emission occurs because the effective dielectric constant of the incident side portion is lower than the effective dielectric constant of the output side portion.
  • the wavelength of the emitted light is equal to the wavelength of light generated when the carrier generation layer 103 is excited alone. Further, assuming that the refractive index of the dielectric layer 106 is n out , the emission angle ⁇ out of the emitted light is expressed by the following formula (5).
  • the wave number of the excited surface plasmon is present only in the vicinity uniquely set in the equation (2).
  • the emitted light is only a wave number vector of the surface plasmon converted. Therefore, the emission angle of the emitted light is uniquely determined, and its polarization state is always p-polarization. That is, the emitted light is p-polarized light having very high directivity.
  • the emitted light enters the wave vector conversion layer 107, is diffracted or refracted by the wave vector conversion layer 107, and is extracted outside the optical device 1.
  • the one not coupled to the waveguide is reflected by the light control unit 3 (for example, the plasmon excitation layer 105).
  • the reflected light is reflected by a reflector such as, for example, a metal mirror, a dielectric mirror, or a prism, and the light is incident on the light control unit 3 again to further improve the utilization efficiency of the excitation light.
  • the light emitting elements 101 a and 101 b emit light (excitation light) of a wavelength that can be absorbed by the carrier generation layer 103.
  • a light emitting diode LED
  • a laser diode a super luminescent diode and the like
  • the incident angle of the excitation light to the carrier generation layer 103 is as described above.
  • the light emitting elements 101a and 101b are arranged such that the incident angle falls within the predetermined range.
  • the carrier generation layer 103 is a layer that absorbs the excitation light to generate carriers.
  • the carrier generation layer 103 includes, for example, a light emitter.
  • the light emitter is, for example, a phosphor or a phosphor.
  • the phosphor include organic phosphors, inorganic phosphors, quantum dot phosphors, and semiconductor phosphors.
  • the organic fluorescent substance include rhodamine (Rhodamine 6G) and sulforhodamine (Sulforhodamine 101).
  • the inorganic phosphor include Y 2 O 2 S: Eu, BaMgAl x O y : Eu, and BaMgAl x O y : Mn.
  • Examples of the quantum dot phosphor include quantum dots such as CdSe and CdSe / ZnS.
  • Examples of the semiconductor phosphor include phosphors of inorganic material semiconductors and organic material semiconductors.
  • Examples of the inorganic material semiconductor include GaN and GaAs.
  • Examples of the organic material semiconductor include (thiophene / phenylene) co-oligomer, Alq3 (tris (8-quinolinolato) aluminum), and the like.
  • the carrier generation layer 103 may be made of, for example, a plurality of materials that generate light of a plurality of wavelengths having the same or different emission wavelengths.
  • the thickness of the carrier generation layer 103 is not particularly limited, and is, for example, preferably 1 ⁇ m or less, and particularly preferably 100 nm or less.
  • the carrier generation layer 103 may include, for example, metal particles.
  • the metal particle excites surface plasmons on the surface of the metal particle by interaction with the excitation light, and induces an enhanced electric field near 100 times the electric field strength of the excitation light in the vicinity of the surface.
  • This enhanced electric field carriers generated in the carrier generation layer 103 can be increased, and, for example, the utilization efficiency of the excitation light in the light control unit 3 can be improved.
  • the metal constituting the metal particles is, for example, gold, silver, copper, platinum, palladium, rhodium, osmium, ruthenium, iridium, iron, tin, zinc, cobalt, nickel, chromium, titanium, tantalum, tungsten, indium, aluminum Or these alloys and the like.
  • gold, silver, copper, platinum, aluminum, or an alloy containing any of these as a main component is preferable, and gold, silver, aluminum, or an alloy containing any of these as a main component is particularly preferable.
  • the metal particle has, for example, a core-shell structure different in metal species in the periphery and in the center; a combined hemispherical combined structure of hemispheres of two metals; a cluster-in-cluster structure in which different clusters assemble to form particles And the like.
  • the resonance wavelength can be controlled without changing the size, shape, etc. of the metal particles.
  • the shape of the metal particle may be a shape having a closed surface, and examples thereof include a rectangular parallelepiped, a cube, an ellipsoid, a sphere, a triangular pyramid, a triangular prism and the like.
  • the metal particles include, for example, those obtained by processing a metal thin film into a structure constituted by a closed surface having a side of less than 10 ⁇ m by fine processing represented by semiconductor lithography technology.
  • the size of the metal particles is, for example, in the range of 1 to 100 nm, preferably in the range of 5 to 70 nm, and more preferably in the range of 10 to 50 nm.
  • the plasmon excitation layer 105 is formed to have a plasma frequency higher than the frequency of light generated in the carrier generation layer 103 (hereinafter sometimes referred to as “light emission frequency”) when the carrier generation layer 103 alone is excited with excitation light. It is a fine particle layer or a thin film layer formed of a material. That is, plasmon excitation layer 105 has a negative dielectric constant at the light emission frequency. For example, in the range from the interface of the plasmon excitation layer 105 on the carrier generation layer 103 side to the carrier generation layer 103 side of the plasmon excitation layer 105 to the effective interaction distance of the surface plasmon represented by the formula (4), for example A portion of the dielectric layer having anisotropy may be disposed.
  • This dielectric layer has, for example, an optical anisotropy that differs in dielectric constant depending on the direction in the plane perpendicular to the stacking direction of the components of the light control unit 3, in other words, in the plane parallel to the interface of each layer . That is, in the dielectric layer, in a plane perpendicular to the stacking direction of the components of the light control unit 3, there is a magnitude relation between the dielectric constants in a certain direction and a direction perpendicular thereto. Due to this dielectric layer, in a plane perpendicular to the stacking direction of the components of the optical device 1, the effective dielectric constant of the incident side portion is different between a certain direction and a direction perpendicular thereto.
  • the effective dielectric constant of the incident side portion is set high enough to cause no plasmon coupling in a certain direction and low enough to cause plasmon coupling in the direction orthogonal thereto, for example, light incident on the wave number vector conversion layer 107
  • the angle of incidence and polarization of Therefore, for example, the light extraction efficiency of the wave vector conversion layer 107 can be further improved.
  • the carriers generated in the carrier generation layer 103 are surface plasmons in the plasmon excitation layer 105. Excite.
  • the carriers do not excite surface plasmons. That is, the above-mentioned effective dielectric constant high enough that the plasmon coupling does not occur is such a dielectric constant that the sum of the dielectric constant of the plasmon excitation layer 105 and the effective dielectric constant of the incident side becomes positive.
  • the effective dielectric constant low enough to cause coupling is a dielectric constant such that the sum of the dielectric constant of the plasmon excitation layer 105 and the effective dielectric constant of the incident side portion becomes negative or zero.
  • the efficiency with which the carriers generated in the carrier generation layer 103 couple to the surface plasmon is a condition under which the effective dielectric constant of the incident side portion and the sum of the dielectric constants of the plasmon excitation layer 105 become zero. Therefore, the condition that the sum of the dielectric constant of the plasmon excitation layer 105 and the lowest value of the effective dielectric constant of the incident side portion is 0 is the most preferable in that the directivity with respect to the azimuth angle is enhanced.
  • the directivity of the azimuth angle is not excessively enhanced in practice.
  • azimuth angles 315 degrees to 45 degrees, 135 degrees to 225 degrees High directional radiation is obtained in the range.
  • the constituent material of the dielectric layer having optical anisotropy include anisotropic crystals such as TiO 2 , YVO 4 , and Ta 2 O 5 .
  • the structure of the dielectric layer include a diagonal vapor deposition film of a dielectric, a diagonal sputtering film, and the like.
  • the constituent material of the plasmon excitation layer 105 is, for example, gold, silver, copper, platinum, palladium, rhodium, osmium, ruthenium, iridium, iron, tin, zinc, cobalt, nickel, chromium, titanium, tantalum, tungsten, indium, aluminum Or these alloys and the like.
  • gold, silver, copper, platinum, aluminum, and a mixture with a dielectric containing these as the main component is preferable, and gold, silver, aluminum, and a dielectric containing these as the main component are preferable. Mixtures with are particularly preferred.
  • the thickness of the plasmon excitation layer 105 is not particularly limited, and is preferably 200 nm or less, and particularly preferably about 10 to 100 nm.
  • the surface on the carrier generation layer 103 side of the plasmon excitation layer 105 may be roughened, for example.
  • the rough surface provides, for example, the scattering of the excitation light and the excitation of localized plasmons at the tip of the rough surface, thereby increasing the number of carriers excited in the carrier generation layer 103. As a result, for example, the utilization efficiency of the excitation light in the light control unit 3 can be improved.
  • the dielectric layer 104 is a layer containing a dielectric, and specifically, for example, SiO 2 nanorod array film; SiO 2 , AlF 3 , MgF 2 , Na 3 AlF 6 , NaF, LiF, CaF 2 , BaF 2 And thin films or porous films such as low dielectric constant plastics.
  • the thickness of the dielectric layer 104 is not particularly limited, and is, for example, in the range of 1 to 100 nm, preferably in the range of 5 to 50 nm, and more preferably in the range of 5 to 20 nm.
  • the constituent material of the dielectric layer 106 is, for example, diamond, TiO 2 , CeO 2 , Ta 2 O 5 , ZrO 2 , Sb 2 O 3 , HfO 2 , La 2 O 3 , NdO 3 , Y 2 O 3 , ZnO, A high dielectric constant material such as Nb 2 O 5 can be mentioned.
  • the thickness of the dielectric layer 106 is not particularly limited.
  • the wave vector conversion layer 107 is an emission unit that emits light emitted from the interface between the plasmon excitation layer 105 and the dielectric layer 106 from the optical device 1 by converting the wave vector.
  • the wave number vector conversion layer 107 has a function of causing the optical device 1 to emit the radiation in the direction substantially orthogonal to the interface between the plasmon excitation layer 105 and the dielectric layer 106.
  • the shape of the wave number vector conversion layer 107 is, for example, a surface relief grating; a periodic structure represented by a photonic crystal, or a quasi-periodic structure; a texture structure whose size is larger than the wavelength of light emitted from the optical device 1 Surface structure constituted by a surface); hologram; microlens array etc.
  • the quasi-periodic structure indicates, for example, an incomplete periodic structure in which part of the periodic structure is missing.
  • the shape is preferably a periodic structure represented by a photonic crystal, or a quasi-periodic structure; a microlens array or the like.
  • the photonic crystal preferably has a triangular lattice structure.
  • the wave number vector conversion layer 107 may have, for example, a structure in which a convex portion is provided on a flat base.
  • the distance from the surface on the carrier generation layer 103 side of the plasmon excitation layer 105 to the surface on the plasmon excitation layer 105 side of the carrier generation layer 103 is set shorter than the effective interaction distance d eff of surface plasmons. It is done.
  • the region with high coupling efficiency is, for example, the carrier generation layer 103 side surface of the plasmon excitation layer 105 from the position in the carrier generation layer 103 where carriers are generated (for example, the position in the carrier generation layer 103 where the phosphor is present).
  • the region is, for example, as narrow as about 200 nm, for example, in the range of 1 to 200 nm or in the range of 10 to 100 nm.
  • the carrier generation layer 103 is preferably disposed in the range of 1 to 200 nm from the plasmon excitation layer 105.
  • the carrier generation layer 103 is preferably disposed in the range of 10 to 100 nm from the plasmon excitation layer 105, and specifically, for example, The thickness of the dielectric layer 104 is 10 nm, and the thickness of the carrier generation layer 103 is 90 nm.
  • the carrier generation layer 103 be thinner.
  • the carrier generation layer 103 be thicker. Therefore, the thickness of the carrier generation layer 103 is determined based on, for example, the required light extraction efficiency and the light output rating.
  • the range of the region changes depending on the dielectric constant of the dielectric layer disposed between the carrier generation layer and the plasmon excitation layer, so that, for example, the dielectric may be selected according to the range of the region under predetermined conditions.
  • the thickness of the layer, the thickness of the carrier generation layer, and the like may be set as appropriate.
  • the excitation light may be incident on the light control unit 3 through, for example, a light guide.
  • the shape of the light guide may be, for example, a rectangular parallelepiped or a wedge shape, or a shape having a light emitting portion of the light guide or a light extraction structure inside the light guide.
  • the structure for light extraction preferably has, for example, a function of converting the incident angle of the excitation light to the carrier generation layer to an angle equal to or more than the predetermined incident angle to improve the absorptivity.
  • the surface of the light guide excluding the light emitting portion is subjected to a process for preventing the excitation light from being emitted from the surface, using, for example, a reflective material or a dielectric multilayer film.
  • the optical device of the present invention may include an optical member (for example, a mirror or the like) capable of adjusting the incident angle of the excitation light to the carrier generation layer to be equal to or more than the predetermined incident angle.
  • the plasmon excitation layer is sandwiched between the two dielectric layers, but as described above, the dielectric layer is not essential in the present invention, and, for example, The plasmon excitation layer may be disposed on the carrier generation layer.
  • the dielectric layer may be laminated only on one side of the plasmon excitation layer.
  • the configuration of the optical device of the present embodiment is shown in the perspective view of FIG.
  • the optical device of the present embodiment has the same configuration as the optical device of the first embodiment except that the light control unit does not include a dielectric layer.
  • the optical device 11 of the present embodiment includes light emitting elements 101 a and 101 b and a light control unit 13 as main components.
  • the light control unit 13 includes a carrier generation layer 103, a plasmon excitation layer 105 stacked on the carrier generation layer 103, and a wave number vector conversion layer (emission layer) 207 stacked on the plasmon excitation layer 105.
  • the light emitting elements 101 a and 101 b are disposed around the side surface of the light control unit 13.
  • the optical device 11 is configured such that the effective dielectric constant of the incident side portion is higher than or equal to the effective dielectric constant of the emission side portion.
  • the incident side portion includes the entire structure stacked on the carrier generation layer 103 side of the plasmon excitation layer 105 and a medium in contact with the carrier generation layer 103.
  • the entire structure includes a carrier generation layer 103.
  • the emission side portion includes the entire structure stacked on the wave number vector conversion layer 207 side of the plasmon excitation layer 105 and a medium in contact with the wave number vector conversion layer 207.
  • the whole structure includes a wave vector conversion layer 207.
  • the excitation light emitted from the light emitting elements 101a and 101b enters the light control unit 13 at the predetermined incident angle (and polarization).
  • the excitation light is then coupled to the waveguide and confined therein.
  • the confined excitation light excites the carrier generation layer 103 to generate carriers in the carrier generation layer 103.
  • the carriers couple with free electrons in the plasmon excitation layer 105 and excite surface plasmons at the interface between the carrier generation layer 103 and the plasmon excitation layer 105 and at the interface between the plasmon excitation layer 105 and the wave vector conversion layer 207.
  • the surface plasmon excited at the interface between the carrier generation layer 103 and the plasmon excitation layer 105 passes through the plasmon excitation layer 105 and propagates to the interface between the plasmon excitation layer 105 and the wave vector conversion layer 207.
  • the optical device 11 is configured such that the effective dielectric constant of the incident side portion is higher than or equal to the effective dielectric constant of the emission side portion, and the plasmon excitation layer of the wave number vector conversion layer 207
  • the distance from the surface of the wave number vector conversion layer 207 of the plasmon excitation layer 105 is arranged within the range of the effective interaction distance of surface plasmons at the end on the 105 side.
  • the wave number vector conversion layer 207 is a flat dielectric layer
  • surface plasmons at the interface between the plasmon excitation layer 105 and the wave number vector conversion layer 207 are not converted to light at the interface.
  • the surface plasmon at the interface is emitted (emitted) as light to the outside of the optical device 11 because the wave number vector conversion layer 207 has a function of extracting the surface plasmon as light, for example, a diffractive action.
  • the wavelength of the emitted light is equal to the wavelength of light generated when the carrier generation layer 103 is excited alone.
  • the radiation angle ⁇ rad of the emitted light is the refractive index of the light extraction side of the wave vector conversion layer 207 (that is, the medium in contact with the wave vector conversion layer 207), where the pitch of the periodic structure of the wave vector conversion layer 207 is ⁇ . Is given by the following equation (6).
  • the wave number of the surface plasmon excited at the interface between the carrier generation layer 103 and the plasmon excitation layer 105 exists only in the vicinity uniquely set by the equation (2). The same applies to the wave number of the surface plasmon excited at the interface between the plasmon excitation layer 105 and the wave vector conversion layer 207. Therefore, the emission angle of the emitted light is uniquely determined, and its polarization state is always p-polarization. That is, the emitted light is p-polarized light having very high directivity.
  • the excitation light incident on the carrier generation layer 103 the one not coupled to the waveguide is reflected by the light control unit 13 (for example, the plasmon excitation layer 105).
  • the reflected light is reflected by a reflector such as, for example, a metal mirror, a dielectric mirror, or a prism, and the light is incident on the light control unit 3 again to further improve the utilization efficiency of the excitation light.
  • the incident angle of the excitation light to the carrier generation layer 103 is the same as that of the first embodiment.
  • the wave number vector conversion layer 207 extracts surface plasmons excited at the interface between the plasmon excitation layer 105 and the wave number vector conversion layer 207 as light from the interface by converting the wave number vector, and emits the light from the optical device 11 It is an emitting part. That is, the wave vector conversion layer 207 converts the surface plasmon into light of a predetermined radiation angle, and causes the light to be emitted from the optical device 11. Furthermore, the wave number vector conversion layer 207 has a function of emitting radiation light from the optical device 11 so as to be substantially orthogonal to the interface between the plasmon excitation layer 105 and the wave number vector conversion layer 207, for example.
  • the wave number vector conversion layer 207 can use, for example, the same one as the wave number vector conversion layer 107 of the first embodiment.
  • the carrier generation layer is disposed in contact with the plasmon excitation layer, but the present invention is not limited to this example. Even if, for example, a dielectric layer having a thickness smaller than the effective interaction distance d eff of the surface plasmon represented by the formula (4) is disposed between the carrier generation layer and the plasmon excitation layer. Good. Moreover, although the said wave number vector conversion layer is arrange
  • a dielectric layer having optical anisotropy may be disposed between the carrier generation layer and the plasmon excitation layer.
  • the effective dielectric constant of the incident side portion is set high enough not to cause plasmon coupling in a certain direction, and low enough to cause plasmon coupling in the direction orthogonal thereto, for example, light enters the wave number vector conversion layer
  • the angle of incidence and polarization of the light can be further limited.
  • the light extraction efficiency of the wave number vector conversion layer can be further improved.
  • the optical device 21 of the present embodiment includes light emitting elements 101 a and 101 b and a light control unit 23 as main components.
  • the light control unit 23 includes a carrier generation unit 303, a plasmon excitation layer 305, and a dielectric layer 306.
  • the dielectric layer 306 is stacked on the plasmon excitation layer 305.
  • the carrier generation unit 303 is periodically embedded in the dielectric layer 306, penetrates the dielectric layer 306, and one end thereof is in contact with the plasmon excitation layer 305.
  • the carrier generation unit 303 has a function as the “emission layer” in the present invention.
  • the light emitting elements 101 a and 101 b are disposed around the side surface of the light control unit 23.
  • the distance from the surface on the carrier generation unit 303 side of the plasmon excitation layer 305 to the surface on the plasmon excitation layer 305 side of the carrier generation unit 303 is an effective interaction of surface plasmons represented by the equation (4). It is set shorter than the distance d eff .
  • excitation light from the light emitting elements 101 a and 101 b enters the light control unit 23, and the surface of the carrier generation unit 303 and the surface of the dielectric layer 306 opposite to the plasmon excitation layer 305 side
  • the operation of emitting light from the (light emitting surface 309) will be described.
  • the excitation light emitted from the light emitting elements 101a and 101b enters the carrier generation unit 303 at the predetermined incident angle (and polarization). Then, the carrier generation unit 303 is excited by the excitation light, and carriers are generated in the carrier generation unit 303. The carriers couple with free electrons in the plasmon excitation layer 305, and excite surface plasmons at the interface between the carrier generation unit 303 and the plasmon excitation layer 305. The excited surface plasmon is diffracted by the periodic structure formed by the carrier generation unit 303 and the dielectric layer 306, and is emitted as light through the light emitting surface 309 to the outside of the optical device 21.
  • the wavelength of the emitted light is equal to the wavelength of light generated when the carrier generation unit 303 is excited alone.
  • those not coupled to the surface plasmons are emitted from the optical device 21 as, for example, general light and propagating light.
  • the emission angle ⁇ rad of the emitted light is expressed by the equation (6).
  • the portion including the entire structure stacked on the dielectric layer 306 side of the plasmon excitation layer 305 and the medium in contact with the carrier generation unit 303 (and the dielectric layer 306) It serves both as the excitation light incident side portion and the light emission side portion defined.
  • the wave number of the surface plasmon excited at the interface between the dielectric layer 306 and the plasmon excitation layer 305 exists only in the vicinity uniquely set by the equation (2). Therefore, the emission angle of the emitted light is uniquely determined, and its polarization state is always p-polarization. That is, the emitted light is p-polarized light having very high directivity.
  • the light distribution distribution of the propagation light by the carriers not coupled with the surface plasmons is superimposed on the light distribution distribution of the emitted light.
  • the carrier generation unit 303 is a layer that absorbs excitation light to generate carriers, and the functions, constituent materials, and the like thereof are the same as, for example, the carrier generation layer 103 of the first embodiment.
  • the carrier generation unit 303 may include, for example, the metal particles as in the carrier generation layer 103 of the first embodiment.
  • the metal and the effect etc. which comprise the said metal particle are the same as that of what was shown in the said Embodiment 1.
  • the constituent material of the dielectric layer 306 is, for example, diamond, TiO 2 , CeO 2 , Ta 2 O 5 , ZrO 2 , Sb 2 O 3 , HfO 2 , La 2 O 3 , NdO 3 , Y 2 O 3 , ZnO,
  • a high dielectric constant material such as Nb 2 O 5 can be mentioned.
  • the thickness of the dielectric layer 306 is not particularly limited, and is, for example, in the range of 1 to 100 nm, preferably in the range of 5 to 50 nm, and more preferably in the range of 5 to 10 nm.
  • the function, constituent material, shape, and the like of the plasmon excitation layer 305 are, for example, the same as those of the plasmon excitation layer 105 of the first embodiment.
  • a dielectric layer having optical anisotropy may be disposed on the side of the plasmon excitation layer 305 on which the dielectric layer 306 is stacked.
  • the configuration, effects and the like of this dielectric layer are the same as those shown in the first embodiment.
  • the carrier generation unit is embedded in the dielectric layer, but the present invention is not limited to this example, for example, the dielectric layer and the dielectric layer
  • the dielectric portion may be periodically embedded in the carrier generation layer by reversing the relationship with the carrier generation portion. Even with such a configuration, the same effect as described above can be obtained.
  • generation part are set to the same height, this invention The present invention is not limited to this example, and does not necessarily have to have the same height.
  • the carrier generation unit may be connected, for example, over the entire surface of the dielectric layer, or one end of the carrier generation unit may not be in contact with the plasmon excitation layer.
  • the optical device of the present embodiment is an example of an optical device provided with a half wave plate as a polarization conversion element.
  • the structure of the optical apparatus of this embodiment is shown in the schematic diagram of FIG.
  • the optical device 31 of the present embodiment includes the optical device 1 and a half wave plate 410 as main components.
  • the optical device 1 is the optical device of the first embodiment shown in FIG.
  • the half-wave plate 410 is disposed on the side of the wave number vector conversion layer 107 of the optical device 1.
  • the half-wave plate 410 is indicated by a two-dot chain line.
  • the light is emitted from the wave number vector conversion layer 107. Since the light is p-polarized as described above, the field pattern of the light has a radial polarization direction. For this reason, the light is axisymmetrically polarized (see, for example, [0104] of WO 2011/040528). Then, the light (axisymmetric polarization) is incident on the half wave plate 410. At this time, the axisymmetric polarization is converted into linearly polarized light by the half wave plate 410. As described above, in the optical device of the present embodiment, the polarization state of the light can be aligned (see, for example, [0105] in the same International Publication).
  • the half-wave plate 410 is not particularly limited, and examples thereof include conventionally known ones. Specifically, for example, the following half-wave plate disclosed in WO 2011/040528 may be mentioned.
  • the half-wave plate disclosed in the above publication includes, for example, a pair of glass substrates each having an alignment film formed thereon, a liquid crystal layer disposed with the alignment films of these substrates facing each other, and the glass substrate, And a spacer provided between the substrates.
  • the liquid crystal layer, n 0 the refractive index for the ordinary light, the refractive index when the n e for extraordinary light, a refractive index greater than n 0 the refractive index n e is.
  • is the wavelength of incident light in vacuum.
  • liquid crystal molecules are arranged concentrically with respect to the center of the half wave plate.
  • the liquid crystal molecule has an angle of ⁇ between the main axis of the liquid crystal molecule and the coordinate axis in the vicinity of the main axis, and the angle between the coordinate axis and the polarization direction is ⁇ . It is oriented in a direction satisfying any of the relational expressions of 2 ⁇ -180.
  • axisymmetric polarization is converted into linearly polarized light by the 1 ⁇ 2 wavelength plate, but the present invention is not limited to this example.
  • the axisymmetric polarization is circular It may be converted to polarized light.
  • the optical device of the first embodiment is used in the optical device of the present embodiment, the present invention is not limited to this example, for example, using the optical device of the second or third embodiment. It is also good.
  • Embodiment 5 The image display device of the present embodiment is an example of a three-panel projection display device (LED projector).
  • FIG. 9 shows the configuration of the LED projector of this embodiment.
  • Fig.9 (a) is a schematic perspective view of the LED projector of this embodiment
  • FIG.9 (b) is a top view of the same LED projector.
  • the LED projector 10 includes the optical devices 1r, 1g, 1b of any of the three embodiments 1 to 4, three liquid crystal panels 502r, 502g, 502b, and color synthesis.
  • An optical element 503 and a projection optical system 504 are included as main components.
  • the optical device 1r and the liquid crystal panel 502r, the optical device 1g and the liquid crystal panel 502g, and the optical device 1b and the liquid crystal panel 502b form an optical path, respectively.
  • the optical devices 1r, 1g, and 1b are respectively made of different materials for red (R) light, green (G) light, and blue (B) light.
  • the liquid crystal panels 502r, 502g, and 502b receive the light emitted from the optical device and modulate the light intensity in accordance with the image to be displayed.
  • the color combining optical element 503 combines the light modulated by the liquid crystal panels 502r, 502g, and 502b.
  • the projection optical system 504 includes a projection lens that projects the light emitted from the color combining optical element 503 onto a projection surface such as a screen.
  • FIG. 10 shows the light emission wavelengths (Rs, Gs, Bs) of the optical device used for the LED projector 10, and the excitation wavelengths (Ra, Ga, Ba) and the light emission wavelengths (Rr, Gr, Br) of the carrier generation layer. It shows the relationship with the strength. As shown in FIG. 10, the emission wavelengths Rs, Gs, Bs of the optical device for R light, the optical device for G light, and the optical device for B light, and the excitation wavelengths Ra, Ga, Ba of the carrier generation layer are approximately the same. It is set equally.
  • the emission wavelengths Rs, Gs, and Bs of the optical device, the excitation wavelengths Ra, Ga, and Ba of the carrier generation layer, and the emission wavelengths Rr, Gr, and Br of the carrier generation layer do not overlap with each other. It is set.
  • the emission spectra of the R optical device, the G optical device, and the B optical device are set to match the excitation spectrum of each carrier generation layer or to be within the excitation spectrum. There is.
  • the emission spectrum of the carrier generation layer is set so as not to almost overlap with any excitation spectrum of the carrier generation layer.
  • the LED projector 10 modulates the image on the liquid crystal panel for each of the light paths by a control circuit unit (not shown).
  • the LED projector 10 can improve the brightness of the projection image by including the optical device according to any one of the first to fourth embodiments.
  • the optical device since the optical device exhibits very high directivity, it can be miniaturized, for example, without using an illumination optical system.
  • the LED projector of the present embodiment shown in FIG. 9 is a three-plate type liquid crystal projector
  • the present invention is not limited to this example, and may be, for example, a single-plate type liquid crystal projector.
  • the image display device of the present invention may be a projector using not only the above-described LED projector but also, for example, a light emitting element other than an LED (for example, a laser diode, a super luminescent diode, etc.) It may be an image display device combined with a backlight or a backlight using MEMS.
  • the optical device of the present invention has an improved absorption efficiency of excitation light. Therefore, the image display device using the optical device of the present invention can be used as a projector or the like.
  • the projector may be, for example, a mobile projector, a next-generation rear projection TV, a digital cinema, a retinal scanning display (RSD), a head up display (HUD), or a mobile phone, digital
  • RSD retinal scanning display
  • HUD head up display
  • a mobile phone digital
  • a camera a built-in projector (embedded projector) in a notebook personal computer and the like, and application to a wide range of markets is possible. However, the application is not limited and can be applied to a wide range of fields.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

Provided is an optical device and image display device capable of improving absorption efficiency of excited light. This optical device (1) is equipped with: light emitting elements (101a, 101b); a carrier generation layer (103) upon which light from the light emitting elements (101a, 101b) is incident and carriers are generated; a plasmon excitation layer (105) for exciting plasmons and having a plasma frequency higher than the frequency of light generated when the carrier generation layer (103) is excited by light from the light emitting elements (101a, 101b), the plasmon excitation layer being layered on top of the carrier generation layer (103); and a light emission layer (107) for emitting light by converting the surface plasmons or the light generated on the surface of the plasmon excitation layer (105) to light with a predetermined emission angle; the incident angle of light incident upon the carrier generation layer (103) being 40 degrees or greater.

Description

光学装置および画像表示装置Optical device and image display device
 本発明は、光学装置および画像表示装置に関する。 The present invention relates to an optical device and an image display device.
 近年、プロジェクタ等の画像表示装置の光源として、例えば、発光素子と、発光素子からの光(励起光)が入射する導光体と、前記導光体に設けられ、前記導光体からの光によってキャリアが生成されるキャリア生成層と、前記キャリア生成層の上に積層され、前記キャリア生成層を前記発光素子の光で励起したときに発生する光の周波数よりも高いプラズマ周波数を有するプラズモンを励起するプラズモン励起層と、前記プラズモン励起層の上に積層され、前記プラズモン励起層から入射する光を所定の出射角の光に変換して出射する出射層とを備える光学装置が開発されている(特許文献1)。 In recent years, as a light source of an image display apparatus such as a projector, for example, a light emitting element, a light guide on which light (excitation light) from the light emitting element is incident, and the light guide Plasmons having a plasma frequency higher than the frequency of the light generated when the carrier generation layer is stacked on the carrier generation layer and the carrier generation layer is excited by the light of the light emitting element An optical device has been developed which includes a plasmon excitation layer to be excited, and an emission layer which is laminated on the plasmon excitation layer and converts light incident from the plasmon excitation layer into light of a predetermined emission angle and emits the light. (Patent Document 1).
 このような光学装置は、つぎのような原理で発光する。すなわち、まず、前記キャリア生成層に前記発光素子から照射された励起光が吸収されることで、前記キャリア生成層中にキャリアが生成される。このキャリアは、前記プラズモン励起層中の自由電子と結合し、表面プラズモンを励起する。そして、前記励起された表面プラズモンが、光として放出される。 Such an optical device emits light according to the following principle. That is, first, the excitation light emitted from the light emitting element is absorbed in the carrier generation layer, whereby carriers are generated in the carrier generation layer. This carrier combines with free electrons in the plasmon excitation layer to excite surface plasmons. Then, the excited surface plasmons are emitted as light.
国際公開第2011/040528号International Publication No. 2011/040528
 前記特許文献1等に記載の光学装置では、発光効率の向上が望まれており、発光効率の向上において、発光素子から照射された励起光の吸収効率の向上は重要な要因である。 In the optical device described in Patent Document 1 or the like, improvement in light emission efficiency is desired, and improvement in absorption efficiency of excitation light emitted from a light emitting element is an important factor in improvement of light emission efficiency.
 本発明の目的は、励起光の吸収効率を向上可能な光学装置および画像表示装置を提供することにある。 An object of the present invention is to provide an optical device and an image display device capable of improving the absorption efficiency of excitation light.
 前記目的を達成するために、本発明の光学装置は、
発光素子と、
前記発光素子からの光が入射し、キャリアが生成されるキャリア生成層と、
前記キャリア生成層の上側に積層され、前記キャリア生成層を前記発光素子の光で励起したときに発生する光の周波数よりも高いプラズマ周波数を有する、プラズモンを励起するプラズモン励起層と、
前記プラズモン励起層の表面に発生する光または表面プラズモンを、所定の出射角の光に変換して出射する出射層とを備え、
前記キャリア生成層に入射する光の入射角を、40度以上とする。
In order to achieve the above object, the optical device of the present invention is
A light emitting element,
A carrier generation layer in which light from the light emitting element is incident and carriers are generated;
A plasmon excitation layer for exciting plasmons, which is stacked on the carrier generation layer and has a plasma frequency higher than the frequency of light generated when the carrier generation layer is excited by the light of the light emitting element;
And an emission layer for converting light or surface plasmon generated on the surface of the plasmon excitation layer into light of a predetermined emission angle and emitting the light.
The incident angle of light incident on the carrier generation layer is 40 degrees or more.
 本発明の画像表示装置は、
前記本発明の光学装置と、
画像を表示可能な画像表示部とを含む。
The image display apparatus of the present invention is
The optical device of the present invention,
And an image display unit capable of displaying an image.
 本発明によれば、励起光の吸収効率を向上可能な光学装置および画像表示装置を提供できる。 According to the present invention, it is possible to provide an optical device and an image display device capable of improving the absorption efficiency of excitation light.
図1は、本発明の光学装置の一例(実施形態1)の構成を模式的に示す斜視図である。FIG. 1 is a perspective view schematically showing the configuration of an example (first embodiment) of the optical device of the present invention. 図2Aは、キャリア生成層の厚みが50nmの場合の、キャリア生成層における励起光の吸収率の入射角および偏光依存性を示す図である。FIG. 2A is a view showing the incident angle and the polarization dependency of the absorptivity of excitation light in the carrier generation layer when the thickness of the carrier generation layer is 50 nm. 図2Bは、キャリア生成層の厚みが100nmの場合の、キャリア生成層における励起光の吸収率の入射角および偏光依存性を示す図である。FIG. 2B is a view showing the incident angle and the polarization dependency of the absorptivity of excitation light in the carrier generation layer when the thickness of the carrier generation layer is 100 nm. 図3は、励起光の吸収率の、キャリア生成層の厚み依存性を示す図である。FIG. 3 is a view showing the thickness dependency of the carrier generation layer of the absorptivity of excitation light. 図4は、光学装置からの発光スペクトルの励起光入射角依存性を示す図である。FIG. 4 is a view showing the excitation light incident angle dependency of the emission spectrum from the optical device. 図5は、キャリア生成層の厚みが50nmの場合の、光学装置からの発光スペクトルを示す図である。FIG. 5 is a diagram showing an emission spectrum from the optical device when the thickness of the carrier generation layer is 50 nm. 図6は、キャリア生成層の厚みが100nmの場合の、光学装置からの発光スペクトルを示す図である。FIG. 6 is a diagram showing an emission spectrum from the optical device when the thickness of the carrier generation layer is 100 nm. 図7は、本発明の光学装置のその他の例(実施形態2)の構成を模式的に示す斜視図である。FIG. 7 is a perspective view schematically showing the configuration of another example (Embodiment 2) of the optical device of the present invention. 図8は、本発明の光学装置のさらにその他の例(実施形態3)の構成を模式的に示す斜視図である。FIG. 8 is a perspective view schematically showing the configuration of still another example (third embodiment) of the optical device of the present invention. 図9は、本発明の画像表示装置(LEDプロジェクタ)の一例(実施形態5)の構成を示す模式図である。FIG. 9 is a schematic view showing a configuration of an example (Embodiment 5) of the image display device (LED projector) of the present invention. 図10は、前記実施形態5のLEDプロジェクタに使用される光学装置の発光波長と蛍光体の励起波長および発光波長とを説明する図である。FIG. 10 is a view for explaining an emission wavelength of an optical device used for the LED projector of the fifth embodiment, and an excitation wavelength and an emission wavelength of a phosphor. 図11は、本発明の光学装置のさらにその他の例(実施形態4)の構成を模式的に示す斜視図である。FIG. 11 is a perspective view schematically showing the configuration of still another example (Embodiment 4) of the optical device of the present invention.
 以下、本発明の光学装置および画像表示装置について、図面を参照して詳細に説明する。ただし、本発明は、以下の実施形態に限定されない。なお、以下の図1から図11において、同一部分には、同一符号を付し、その説明を省略する場合がある。また、図面においては、説明の便宜上、各部の構造は適宜簡略化して示す場合があり、各部の寸法比等は、実際とは異なり、模式的に示す場合がある。 Hereinafter, the optical device and the image display device of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following embodiments. In addition, in the following FIGS. 1-11, the same code | symbol may be attached | subjected to an identical part and the description may be abbreviate | omitted. Further, in the drawings, for convenience of explanation, the structure of each part may be appropriately simplified and shown, and the dimensional ratio of each part may be schematically shown differently from the actual one.
(実施形態1)
 本実施形態の光学装置は、誘電体層を有する光学装置の一例である。図1の斜視図に、本実施形態の光学装置の構成を示す。
(Embodiment 1)
The optical device of the present embodiment is an example of an optical device having a dielectric layer. The configuration of the optical device of the present embodiment is shown in the perspective view of FIG.
 図1に示すように、本実施形態の光学装置1は、発光素子101aおよび101bと、光制御部3とを、主要な構成要素として含む。光制御部3は、キャリア生成層103と、キャリア生成層103上に積層された誘電体層104と、誘電体層104上に積層されたプラズモン励起層105と、プラズモン励起層105上に積層された誘電体層106と、誘電体層106上に積層された波数ベクトル変換層107とを含む。波数ベクトル変換層107は、前記本発明における「出射層」としての機能を有する。発光素子101aおよび101bは、光制御部3の側面周囲に配置されている。発光素子101aおよび101bの配置位置と、キャリア生成層103に入射する光の入射角との関係は、後述する。 As shown in FIG. 1, the optical device 1 of the present embodiment includes light emitting elements 101a and 101b and a light control unit 3 as main components. The light control unit 3 is stacked on the carrier generation layer 103, the dielectric layer 104 stacked on the carrier generation layer 103, the plasmon excitation layer 105 stacked on the dielectric layer 104, and the plasmon excitation layer 105. And a wave number vector conversion layer 107 stacked on the dielectric layer 106. The wave vector conversion layer 107 has a function as the “emission layer” in the present invention. The light emitting elements 101 a and 101 b are disposed around the side surface of the light control unit 3. The relationship between the arrangement position of the light emitting elements 101a and 101b and the incident angle of light incident on the carrier generation layer 103 will be described later.
 光制御部3は、励起光入射側部分(以下、「入射側部分」ということがある。)の実効誘電率が、光出射側部分(以下、「出射側部分」ということがある。)の実効誘電率よりも低くなるように構成されている。前記入射側部分は、プラズモン励起層105のキャリア生成層103側に積層された構造全体とキャリア生成層103に接する周囲雰囲気媒質(以下、「媒質」ということがある。)とを含む。前記構造全体には、誘電体層104およびキャリア生成層103が含まれる。前記出射側部分は、プラズモン励起層105の波数ベクトル変換層107側に積層された構造全体と波数ベクトル変換層107に接する媒質とを含む。前記構造全体には、誘電体層106および波数ベクトル変換層107が含まれる。なお、例えば、誘電体層104および誘電体層106を除いたとしても、前記入射側部分の実効誘電率が前記出射側部分の実効誘電率よりも低い場合には、誘電体層104および誘電体層106は、必ずしも必須の構成要素ではない。 In the light control unit 3, the effective dielectric constant of the excitation light incident side portion (hereinafter, sometimes referred to as "incident side portion") is that of the light emission side portion (hereinafter, sometimes referred to as "output side portion"). It is configured to be lower than the effective dielectric constant. The incident side portion includes the entire structure stacked on the carrier generation layer 103 side of the plasmon excitation layer 105 and an ambient atmosphere medium (hereinafter, may be referred to as a “medium”) in contact with the carrier generation layer 103. The entire structure includes dielectric layer 104 and carrier generation layer 103. The emission side portion includes the entire structure stacked on the wave number vector conversion layer 107 side of the plasmon excitation layer 105 and a medium in contact with the wave number vector conversion layer 107. The entire structure includes a dielectric layer 106 and a wave vector conversion layer 107. For example, even if the dielectric layer 104 and the dielectric layer 106 are removed, if the effective dielectric constant of the incident side portion is lower than the effective dielectric constant of the emission side portion, the dielectric layer 104 and the dielectric Layer 106 is not necessarily an essential component.
 ここで、前記実効誘電率(εeff)は、プラズモン励起層105の界面に平行な方向をx軸、y軸、プラズモン励起層105の界面に垂直な方向(プラズモン励起層105の表面に凹凸が形成されている場合には、その平均面に垂直な方向)をz軸とし、キャリア生成層103単体を励起光で励起したとき、キャリア生成層103から出射する光の角周波数をω、プラズモン励起層105に対する前記入射側部分または前記出射側部分における誘電体の誘電率分布のε(ω,x,y,z)、表面プラズモンの波数のz成分をkspp,z、虚数単位をj、Re[ ]を[ ]内の数値の実部を示す記号とすれば、下記式(1)で表される。 Here, the effective dielectric constant (ε eff ) is a direction parallel to the interface of the plasmon excitation layer 105 as x-axis and y-axis, a direction perpendicular to the interface of the plasmon excitation layer 105 (the surface of the plasmon excitation layer 105 has irregularities When the carrier generation layer 103 alone is excited with excitation light, the angular frequency of the light emitted from the carrier generation layer 103 is ω, and the plasmon excitation is ω when the carrier generation layer 103 alone is excited by excitation light. Ε (ω, x, y, z) of the dielectric constant distribution of the dielectric in the incident side portion or the emission side portion with respect to the layer 105, the z component of the wave number of surface plasmons k spp, z , the imaginary unit j, Re If [] is a symbol indicating the real part of the numerical value in [], it is represented by the following formula (1).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 実効誘電率εeffは、下記式(7)で表される式を用いて算出されてもよい。ただし、前記式(1)を用いるのが、特に望ましい。 The effective dielectric constant ε eff may be calculated using a formula represented by the following formula (7). However, it is particularly desirable to use the formula (1).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 前記式(1)および前記式(7)において、積分範囲Dは、プラズモン励起層105に対する、前記入射側部分または前記出射側部分の三次元座標の範囲である。言い換えれば、この積分範囲Dにおけるx軸及びy軸方向の範囲は、前記入射側部分の構造全体の外周面、または前記出射側部分の構造全体の外周面までの媒質を含まない範囲であり、プラズモン励起層105の波数ベクトル変換層107側の面に平行な面内の外縁までの範囲である。積分範囲Dにおけるz軸方向の範囲は、前記入射側部分または前記出射側部分の範囲である。なお、積分範囲Dにおけるz軸方向の範囲は、プラズモン励起層105と、プラズモン励起層105に隣接する、誘電性を有する層(誘電体層104または誘電体層106)との界面を、z=0となる位置とし、これらの界面から、プラズモン励起層105の、誘電体層104または誘電体層106側の無限遠までの範囲であり、これらの界面から遠ざかる方向を、前記式(1)および前記式(7)における(+)z方向とする。例えば、プラズモン励起層105の表面に凹凸が形成されている場合、プラズモン励起層105の凹凸に沿ってz座標の原点を移動させれば、前記式(1)および前記式(7)から実効誘電率が求められる。例えば、実効誘電率の計算範囲において、光学異方性を有する材料が含まれている場合、ε(ω,x,y,z)はベクトルとなり、z軸に垂直な動径方向ごとに異なった値を有する。すなわち、z軸に垂直な動径方向ごとに、前記入射側部分および前記出射側部分の実効誘電率が存在する。この場合、ε(ω,x,y,z)の値は、z軸に垂直な動径方向に平行方向に対する誘電率とする。したがって、後述のkspp,z、kspp、deff等の、実効誘電率の関係する全ての現象は、z軸に垂直な動径方向ごとに、異なった値を有する。 In the formula (1) and the formula (7), the integration range D is a range of three-dimensional coordinates of the incident side portion or the emission side portion with respect to the plasmon excitation layer 105. In other words, the range in the x-axis and y-axis directions in the integration range D is a range not including the medium to the outer peripheral surface of the entire structure of the incident side portion or the outer peripheral surface of the entire structure of the output side portion; It is a range up to the outer edge in the plane parallel to the surface on the wave number vector conversion layer 107 side of the plasmon excitation layer 105. The range in the z-axis direction in the integration range D is the range of the incident side portion or the emission side portion. The range in the z-axis direction in the integration range D is the interface between the plasmon excitation layer 105 and the dielectric layer (dielectric layer 104 or dielectric layer 106) adjacent to the plasmon excitation layer 105, z = The position from 0 to this point is the range from these interfaces to infinity on the dielectric layer 104 or dielectric layer 106 side of the plasmon excitation layer 105, and the direction away from these interfaces is the above equation (1) and The (+) z direction in the equation (7) is used. For example, when unevenness is formed on the surface of the plasmon excitation layer 105, if the origin of the z coordinate is moved along the unevenness of the plasmon excitation layer 105, the effective dielectric can be obtained from the above equations (1) and (7). The rate is determined. For example, in the calculation range of the effective dielectric constant, when a material having optical anisotropy is included, ε (ω, x, y, z) becomes a vector, which is different for each radial direction perpendicular to the z axis It has a value. That is, for each radial direction perpendicular to the z-axis, there is an effective dielectric constant of the incident side portion and the outgoing side portion. In this case, the value of ε (ω, x, y, z) is a dielectric constant in a direction parallel to the radial direction perpendicular to the z axis. Therefore, all phenomena related to the effective dielectric constant, such as k spp, z , k spp and deff described later, have different values in each radial direction perpendicular to the z axis.
 また、前記表面プラズモンの波数のz成分kspp,z、前記表面プラズモンの波数のx、y成分ksppは、プラズモン励起層105の誘電率の実部をεmetal、真空中での光の波数をk0とすれば、下記式(2)および(3)で表される。 The z component k spp, z of the wave number of the surface plasmon and the x and y component k spp of the wave number of the surface plasmon are ε metal of the real part of the dielectric constant of the plasmon excitation layer 105, the wave number of light in vacuum Let k 0 be the following equation (2) and (3).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 さらに、光学装置1では、プラズモン励起層105のキャリア生成層103側表面からキャリア生成層103のプラズモン励起層105側表面までの距離は、表面プラズモンの有効相互作用距離deffより短く設定されている。前記deffは、Im[ ]を[ ]内の数値の虚部を示す記号とし、表面プラズモンの有効相互作用距離を表面プラズモンの強度がe-2となる距離とすれば、下記式(4)で表される。 Furthermore, in the optical device 1, the distance from the surface on the carrier generation layer 103 side of the plasmon excitation layer 105 to the surface on the plasmon excitation layer 105 side of the carrier generation layer 103 is set shorter than the effective interaction distance d eff of surface plasmons. . Assuming that d eff is a symbol indicating the imaginary part of the numerical value in [] as Im [], and the effective interaction distance of the surface plasmon is the distance at which the intensity of the surface plasmon is e -2 , the following equation (4) Is represented by
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 したがって、前記式(1)または前記式(7)、前記式(2)および前記式(3)を用い、ε(ω,x,y,z)として、プラズモン励起層105の前記入射側部分の誘電率分布の実部εin(ω,x,y,z)、およびプラズモン励起層105の前記出射側部分の誘電率分布の実部εout(ω,x,y,z)をそれぞれ代入して、計算することで、プラズモン励起層105に対する前記入射側部分の実効誘電率εeffin、および前記出射側部分の実効誘電率εeffoutが、それぞれ求められる。例えば、z軸に垂直な面内に誘電率の異方性がある場合、z軸に垂直な動径方向ごとに、前記入射側部分および前記出射側部分の実効誘電率が存在する。したがって、前述のように、kspp,z、kspp、後述のdeff等の、実効誘電率の関係する全ての現象は、z軸に垂直な動径方向ごとに、異なった値を有する。実際には、実効誘電率εeffとして適当な初期値を与え、前記式(1)または前記式(7)、前記式(2)および前記式(3)を繰り返し計算することで、実効誘電率εeffを容易に求められる。なお、例えば、プラズモン励起層105に接する層の誘電率の実部が非常に大きい場合、前記式(2)で表される表面プラズモンの波数のz成分kspp,zが実数となる。これは、その界面において表面プラズモンが発生しないことに相当する。このため、プラズモン励起層105に接する層の誘電率が、この場合の実効誘電率に相当する。後述の実施形態における実効誘電率も、前記式(1)または前記式(7)と同様に定義される。 Therefore, using the above equation (1) or the above equation (7), the above equation (2) and the above equation (3), ε (ω, x, y, z) Substituting the real part ε in (ω, x, y, z) of the dielectric constant distribution and the real part ε out (ω, x, y, z) of the dielectric constant distribution of the emission side of the plasmon excitation layer 105 Te, by calculating the effective permittivity epsilon effin of the incident-side portion relative to plasmon excitation layer 105, and the effective permittivity epsilon Effout of the exit-side portion, obtained respectively. For example, when there is anisotropy of the dielectric constant in a plane perpendicular to the z axis, the effective dielectric constants of the incident side portion and the emission side portion exist in each radial direction perpendicular to the z axis. Therefore, as described above, all phenomena related to the effective dielectric constant, such as k spp, z , k spp , and d eff described later, have different values in the radial direction perpendicular to the z-axis. In practice, the effective permittivity is obtained by repeatedly calculating the equation (1) or the equation (7), the equation (2) and the equation (3) by giving an appropriate initial value as the effective permittivity ε eff. ε eff can be easily obtained. Note that, for example, when the real part of the dielectric constant of the layer in contact with the plasmon excitation layer 105 is very large, the z component k spp, z of the wave number of the surface plasmon represented by the formula (2) becomes a real number. This corresponds to the absence of surface plasmons at the interface. Therefore, the dielectric constant of the layer in contact with the plasmon excitation layer 105 corresponds to the effective dielectric constant in this case. The effective dielectric constant in the embodiments described later is also defined in the same manner as the formula (1) or the formula (7).
 光学装置1では、発光素子101aおよび101bから出射される光(以下、「励起光」ということがある)が、キャリア生成層103に入射される際の、入射角が40度以上に設定されている。このような構成により、光学装置1は、キャリア生成層103における励起光の吸収効率、すなわち、キャリア生成層103、誘電体層104、プラズモン励起層105から構成される導波路(以下、「導波路」ということがある。)への結合効率が向上されている。光学装置1が、このような効果を奏することについて、以下に、詳細に説明する。 In the optical device 1, the incident angle at which the light emitted from the light emitting elements 101 a and 101 b (hereinafter sometimes referred to as “excitation light”) is incident on the carrier generation layer 103 is set to 40 degrees or more There is. With such a configuration, the optical device 1 has a function of absorbing excitation light in the carrier generation layer 103, that is, a waveguide including the carrier generation layer 103, the dielectric layer 104, and the plasmon excitation layer 105 (hereinafter referred to as “waveguide Coupling efficiency is improved. It will be described in detail that the optical device 1 exerts such an effect.
 光学装置の発光効率の向上には、発光素子からの励起光の吸収率の向上が重要である。本発明者らは、励起光の吸収効率向上の観点から、鋭意研究を重ねた結果、キャリア生成層における励起光の吸収効率が、励起光のキャリア生成層への入射角に著しく依存することを見出した。さらに、本発明者らは、前記吸収効率は、前記励起光の偏光特性にも依存することを見出した。これらの知見は、本発明者らが初めて見出したものである。前記吸収効率の入射角依存性および偏光依存性について、本実施形態の光学装置1に基づいて、さらに説明する。 In order to improve the light emission efficiency of the optical device, it is important to improve the absorptivity of the excitation light from the light emitting element. As a result of intensive studies from the viewpoint of improving the absorption efficiency of excitation light, the present inventors show that the absorption efficiency of excitation light in the carrier generation layer significantly depends on the incident angle of the excitation light to the carrier generation layer. I found it. Furthermore, the present inventors have found that the absorption efficiency also depends on the polarization characteristics of the excitation light. These findings are found for the first time by the present inventors. The incident angle dependency and the polarization dependency of the absorption efficiency will be further described based on the optical device 1 of the present embodiment.
 図2Aおよび図2Bに、キャリア生成層103における励起光の吸収率の入射角および偏光依存性を示す。図2Aに示す例では、キャリア生成層103の厚みを50nmに、図2Bに示す例では、キャリア生成層103の厚みを100nmに設定している。図2Aおよび図2Bに示す例では、キャリア生成層103の厚み条件も含めて、光学装置1を下記の条件に設定している。この例では、プラズモン励起層105で反射した光を、再利用していない。本実施形態において、前記「入射角」は、発光素子101aおよび101bから出射された光(光線)がキャリア生成層103(光制御部3)に入射する際の、前記光線とキャリア生成層103における入射面の法線とがなす角を示す。以下、本発明において、前記「入射角」は、前述と同様の概念で示される。
発光素子101:レーザダイオード(発光波長:460nm)
キャリア生成層103:形成材料:蛍光体(屈折率:1.7+0.03j)
           厚み:50nm(図2A)または100nm(図2B)
誘電体層104:形成材料:SiO、厚み:10nm
プラズモン励起層105:形成材料:Ag、厚み:50nm
誘電体層106:形成材料:TiO、厚み:0.5mm
波数ベクトル変換層107:半球レンズ(直径:10mm)
FIGS. 2A and 2B show the incident angle and the polarization dependency of the absorptivity of the excitation light in the carrier generation layer 103. FIG. In the example shown in FIG. 2A, the thickness of the carrier generation layer 103 is set to 50 nm, and in the example shown in FIG. 2B, the thickness of the carrier generation layer 103 is set to 100 nm. In the example shown in FIGS. 2A and 2B, the optical device 1 is set to the following conditions including the thickness condition of the carrier generation layer 103. In this example, the light reflected by the plasmon excitation layer 105 is not reused. In the present embodiment, the “incident angle” refers to the light beam and the carrier generation layer 103 when the light (light beam) emitted from the light emitting elements 101 a and 101 b enters the carrier generation layer 103 (light control unit 3). Indicates the angle formed by the normal to the incident surface. Hereinafter, in the present invention, the “incident angle” is indicated by the same concept as described above.
Light emitting element 101: Laser diode (emission wavelength: 460 nm)
Carrier generation layer 103: Forming material: phosphor (refractive index: 1.7 + 0.03 j)
Thickness: 50 nm (FIG. 2A) or 100 nm (FIG. 2B)
Dielectric layer 104: Forming material: SiO 2 , thickness: 10 nm
Plasmon excitation layer 105: Forming material: Ag, thickness: 50 nm
Dielectric layer 106: Forming material: TiO 2 , thickness: 0.5 mm
Wave vector conversion layer 107: hemispherical lens (diameter: 10 mm)
 図2Aに示すように、キャリア生成層103の厚みが50nmの場合、キャリア生成層103への励起光の入射角が大きくなるほど、前記励起光の偏光がs偏光の場合、吸収率が著しく増加し、前記励起光の偏光がp偏光の場合、吸収率が著しく減少する。ここで、前記励起光の吸収率は、前記励起光の偏光がs偏光の場合、入射角が40度以上で、31%以上、入射角が60度以上で、42%以上、入射角が70度以上で、53%以上である。前記励起光の偏光がs偏光の場合、吸収率の最大値は、前記励起光の入射角が84度で、77%であった。このように、前記吸収効率は、前記励起光の入射角および偏光に依存することが分かる。 As shown in FIG. 2A, when the thickness of the carrier generation layer 103 is 50 nm, as the incident angle of the excitation light to the carrier generation layer 103 is larger, the absorptivity is significantly increased when the polarization of the excitation light is s-polarization. When the polarization of the excitation light is p polarization, the absorptivity is significantly reduced. Here, when the polarization of the excitation light is s-polarization, the absorptivity of the excitation light is 31% or more at an incident angle of 40 degrees or more, 42% or more at an incident angle of 60 degrees or more, and an incident angle of 70 More than 53%. When the polarization of the excitation light was s-polarization, the maximum value of the absorptivity was 77% when the incident angle of the excitation light was 84 degrees. Thus, it can be seen that the absorption efficiency depends on the incident angle and polarization of the excitation light.
 図2Bに示すように、キャリア生成層103の厚みが100nmの場合、キャリア生成層103への励起光の入射角が大きくなるほど、前記励起光の偏光がp偏光の場合、吸収率が著しく増加し、前記励起光の偏光がs偏光の場合、吸収率が著しく減少する。ここで、前記励起光の吸収率は、前記励起光の偏光がp偏光の場合、入射角が40度以上で、19%以上、入射角が60度以上で、27%以上、入射角が70度以上で、33%以上である。前記励起光の偏光がp偏光の場合、吸収率の最大値は、前記励起光の入射角が78度で、37%であった。このように、前記吸収効率は、前記励起光の入射角および偏光に依存することが分かる。 As shown in FIG. 2B, when the thickness of the carrier generation layer 103 is 100 nm, as the incident angle of the excitation light to the carrier generation layer 103 is larger, the absorptivity is significantly increased when the polarization of the excitation light is p polarization. When the polarization of the excitation light is s-polarization, the absorptivity is significantly reduced. Here, when the polarization of the excitation light is p polarization, the absorptivity of the excitation light is 19% or more at an incident angle of 40 degrees or more, 27% or more at an incident angle of 60 degrees or more, and an incident angle of 70 More than 33%. When the polarization of the excitation light was p polarization, the maximum value of the absorptivity was 37% when the incident angle of the excitation light was 78 degrees. Thus, it can be seen that the absorption efficiency depends on the incident angle and polarization of the excitation light.
 図3に、励起光の吸収率とキャリア生成層103の厚みとの関係を示す。図3に示す例では、前記励起光の入射角を70度としたこと以外は、図2に示す例と同様の条件とした。図3において、横軸は、前記励起光におけるs偏光成分の割合を示し、100%は前記励起光がs偏光のみであることを示し、0%は前記励起光がp偏光のみであることを示す。図3に示すように、キャリア生成層103の厚みが50nmの場合、前記励起光にs偏光成分が多くなるのに伴い、前記励起光の吸収率が向上する。一方、キャリア生成層103の厚みが100nmの場合、前記励起光にs偏光成分が少なくなる、すなわち、p偏光成分が多くなるのに伴い、前記励起光の吸収率が向上する。いずれの条件においても、s偏光またはp偏光において吸収率の最大値となるということが共通して言える。また、s偏光とp偏光との間の偏光、すなわち、中間の偏光において吸収率が最大値となることはないとも言える。 The relationship between the absorptivity of excitation light and the thickness of the carrier generation layer 103 is shown in FIG. In the example shown in FIG. 3, conditions were the same as those in the example shown in FIG. 2 except that the incident angle of the excitation light was 70 degrees. In FIG. 3, the horizontal axis indicates the ratio of s-polarization component in the excitation light, 100% indicates that the excitation light is only s-polarization, and 0% indicates that the excitation light is only p-polarization. Show. As shown in FIG. 3, when the thickness of the carrier generation layer 103 is 50 nm, the absorptivity of the excitation light is improved as the s-polarization component increases in the excitation light. On the other hand, when the thickness of the carrier generation layer 103 is 100 nm, the absorptivity of the excitation light is improved as the s-polarization component decreases in the excitation light, that is, the p-polarization component increases. It can be said that under any conditions, the maximum value of the absorptivity is obtained in s-polarized light or p-polarized light. In addition, it can be said that the absorptivity does not reach the maximum value in the polarization between s-polarization and p-polarization, that is, in the middle polarization.
 図4に、図2Aおよび図3に示す例のキャリア生成層103の厚みが50nmの場合の、光学装置1からの発光スペクトルと、励起光の入射角との関係を示す。図4における「0°」「10°」「20°」「30°」「40°」「50°」「60°」「70°」「80°」は、前記励起光の入射角を示す。図4において、縦軸を、前記励起光の入射角が0度の場合の発光スペクトルを1として規格化した。図4に示すように、キャリア生成層103への前記励起光の入射角が大きくなるほど、発光パワーは、向上した。図2Aとの比較から、キャリア生成層103で吸収された励起光量と発光パワーとには、相関関係(例えば、比例関係)があることが分かる。 FIG. 4 shows the relationship between the emission spectrum from the optical device 1 and the incident angle of the excitation light when the thickness of the carrier generation layer 103 in the example shown in FIG. 2A and FIG. 3 is 50 nm. “0 °”, “10 °”, “20 °”, “30 °”, “40 °”, “50 °”, “60 °”, “70 °” and “80 °” in FIG. 4 indicate the incident angles of the excitation light. In FIG. 4, the vertical axis is normalized to 1 as the emission spectrum when the incident angle of the excitation light is 0 degree. As shown in FIG. 4, as the incident angle of the excitation light to the carrier generation layer 103 is larger, the light emission power is improved. From the comparison with FIG. 2A, it can be seen that there is a correlation (for example, a proportional relationship) between the excitation light amount absorbed by the carrier generation layer 103 and the light emission power.
 図5に、図2Aおよび図3に示す例のキャリア生成層103の厚みが50nmの場合の、光学装置1からの発光スペクトルを示す。図5における「0%」「33%」「66%」「100%」は、前記励起光に占めるs偏光成分の割合を示す。図5において、縦軸を、前記励起光がp偏光(図5中の「0%」)の場合の発光スペクトルを1として規格化した。図5に示すように、発光パワーは、前記励起光がs偏光(100%)の場合に、最大となり、前記励起光がp偏光(0%)の場合の8倍であった。図3との比較から、キャリア生成層103で吸収された励起光量と発光パワーとには、相関関係(例えば、比例関係)があることが分かる。 FIG. 5 shows an emission spectrum from the optical device 1 when the thickness of the carrier generation layer 103 in the example shown in FIG. 2A and FIG. 3 is 50 nm. “0%”, “33%”, “66%” and “100%” in FIG. 5 indicate the ratio of the s-polarization component to the excitation light. In FIG. 5, the ordinate represents the emission spectrum when the excitation light is p-polarized light (“0%” in FIG. 5), and is normalized to 1. As shown in FIG. 5, the light emission power is maximum when the excitation light is s-polarized light (100%), and is eight times as large as that when the excitation light is p-polarized light (0%). From the comparison with FIG. 3, it can be seen that there is a correlation (for example, a proportional relationship) between the excitation light amount absorbed by the carrier generation layer 103 and the light emission power.
 図6に、図2Bおよび図3に示す例のキャリア生成層103の厚みが100nmの場合の、光学装置1からの発光スペクトルを示す。図6における「0%」「33%」「66%」「100%」は、前記励起光に占めるs偏光成分の割合を示す。図6において、縦軸を、前記励起光がs偏光(図6中の「100%」)の場合の発光スペクトルを1として規格化した。図6に示すように、発光パワーは、前記励起光がp偏光(0%)の場合に、最大となり、前記励起光がs偏光(100%)の場合の4倍であった。図3との比較から、キャリア生成層103の厚みが50nmの場合と同様に、キャリア生成層103で吸収された励起光量と発光パワーとには、相関関係(例えば、比例関係)があることが分かる。 FIG. 6 shows an emission spectrum from the optical device 1 when the thickness of the carrier generation layer 103 in the example shown in FIG. 2B and FIG. 3 is 100 nm. “0%”, “33%”, “66%” and “100%” in FIG. 6 indicate the ratio of the s-polarization component to the excitation light. In FIG. 6, the ordinate represents the emission spectrum when the excitation light is s-polarized light (“100%” in FIG. 6). As shown in FIG. 6, the light emission power is maximum when the excitation light is p polarization (0%), and is four times as high as the case where the excitation light is s polarization (100%). From the comparison with FIG. 3, as in the case where the thickness of the carrier generation layer 103 is 50 nm, there is a correlation (for example, a proportional relationship) between the excitation light amount absorbed by the carrier generation layer 103 and the emission power. I understand.
 以上のように、キャリア生成層における励起光の吸収効率は、励起光の入射角に依存する。この知見に基づき、本発明者らは、励起光のキャリア生成層への入射角を40度以上とすることにより、励起光の吸収効率を向上できることが見出し、本発明を完成させるに至った。本発明によれば、励起光の吸収効率の向上により、例えば、高い発光効率と高い光出力定格を備える光学装置を実現できる。例えば、励起光の吸収率の最大値は、入射角が40度以上の場合であるため、前記入射角は、50度以上が好ましく、より好ましくは60度以上、さらに好ましくは70~88度の範囲である。 As described above, the absorption efficiency of excitation light in the carrier generation layer depends on the incident angle of the excitation light. Based on this finding, the present inventors have found that the absorption efficiency of excitation light can be improved by setting the incident angle of the excitation light to the carrier generation layer to 40 degrees or more, and the present invention has been completed. According to the present invention, by improving the absorption efficiency of excitation light, it is possible to realize, for example, an optical device having high light emission efficiency and high light output rating. For example, since the maximum value of the absorptivity of excitation light is the case where the incident angle is 40 degrees or more, the incident angle is preferably 50 degrees or more, more preferably 60 degrees or more, still more preferably 70 to 88 degrees It is a range.
 また、励起光の吸収効率は、キャリア生成層の厚みに応じて、s偏光またはp偏光のいずれかにおいて、最大となる。したがって、前記キャリア生成層の厚みに応じて、s偏光またはp偏光のみを、前記所定の入射角以上でキャリア生成層に入射させれば、例えば、励起光の吸収効率をさらに向上できる。 In addition, the absorption efficiency of excitation light is maximized in either s-polarization or p-polarization, depending on the thickness of the carrier generation layer. Therefore, if only s-polarized light or p-polarized light is incident on the carrier generation layer at the predetermined incident angle or more according to the thickness of the carrier generation layer, for example, the absorption efficiency of excitation light can be further improved.
 つぎに、光学装置1について、発光素子101aおよび101bから出射された励起光が、光制御部3に入射し、光制御部3の波数ベクトル変換層107から光が出射される動作を説明する。 Next, with regard to the optical device 1, an operation will be described in which excitation light emitted from the light emitting elements 101a and 101b enters the light control unit 3 and light is emitted from the wave number vector conversion layer 107 of the light control unit 3.
 発光素子101aおよび101bから出射された励起光は、前記所定の入射角(および偏光)で、光制御部3に入射する。そして、前記励起光は、前記導波路に結合し、その中に閉じ込められる。この閉じ込められた励起光により、キャリア生成層103が励起され、キャリア生成層103中にキャリアが生成される。このキャリアは、誘電体層104を隔てたプラズモン励起層105中の自由電子と結合し、誘電体層104とプラズモン励起層105との界面に表面プラズモンを励起する。励起された表面プラズモンは、プラズモン励起層105と誘電体層106との界面から光として放出される(以下、「放出光」ということがある。)。前記光の放出は、前記入射側部分の実効誘電率が、前記出射側部分の実効誘電率より低いことにより起こる。前記放出光の波長は、キャリア生成層103を単独で励起したときに発生する光の波長に等しい。また、前記放出光の出射角度θoutは、誘電体層106の屈折率をnoutとすれば、下記式(5)で表される。 The excitation light emitted from the light emitting elements 101a and 101b enters the light control unit 3 at the predetermined incident angle (and polarization). The excitation light is then coupled to the waveguide and confined therein. The confined excitation light excites the carrier generation layer 103 to generate carriers in the carrier generation layer 103. The carrier combines with free electrons in the plasmon excitation layer 105 separated by the dielectric layer 104 to excite surface plasmons at the interface between the dielectric layer 104 and the plasmon excitation layer 105. The excited surface plasmons are emitted as light from the interface between the plasmon excitation layer 105 and the dielectric layer 106 (hereinafter sometimes referred to as “emission light”). The light emission occurs because the effective dielectric constant of the incident side portion is lower than the effective dielectric constant of the output side portion. The wavelength of the emitted light is equal to the wavelength of light generated when the carrier generation layer 103 is excited alone. Further, assuming that the refractive index of the dielectric layer 106 is n out , the emission angle θ out of the emitted light is expressed by the following formula (5).
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 前記励起された表面プラズモンの波数は、前記式(2)で一義的に設定される付近しか存在しない。前記放出光は、前記表面プラズモンの波数ベクトルが変換されただけである。したがって、前記放出光の放射角度は一義的に決定され、その偏光状態は常にp偏光である。すなわち、前記放出光は、非常に高い指向性を有する、p偏光の光である。前記放出光は、波数ベクトル変換層107に入射し、波数ベクトル変換層107によって回折または屈折されて、光学装置1外部に取り出される。なお、キャリア生成層103に入射した励起光のうち、前記導波路に結合しなかったものは、光制御部3(例えば、プラズモン励起層105)より反射される。この反射光を、例えば、金属ミラー、誘電体ミラー、プリズム等の反射体によって反射させ、再度、光制御部3に入射させることで励起光の利用効率をさらに向上できる。 The wave number of the excited surface plasmon is present only in the vicinity uniquely set in the equation (2). The emitted light is only a wave number vector of the surface plasmon converted. Therefore, the emission angle of the emitted light is uniquely determined, and its polarization state is always p-polarization. That is, the emitted light is p-polarized light having very high directivity. The emitted light enters the wave vector conversion layer 107, is diffracted or refracted by the wave vector conversion layer 107, and is extracted outside the optical device 1. Of the excitation light incident on the carrier generation layer 103, the one not coupled to the waveguide is reflected by the light control unit 3 (for example, the plasmon excitation layer 105). The reflected light is reflected by a reflector such as, for example, a metal mirror, a dielectric mirror, or a prism, and the light is incident on the light control unit 3 again to further improve the utilization efficiency of the excitation light.
 発光素子101aおよび101bは、キャリア生成層103が吸収可能な波長の光(励起光)を出射する。具体的には、例えば、発光ダイオード(LED)、レーザダイオード、スーパールミネッセントダイオード等があげられる。前記LEDの場合、放射角および偏光の揃った光を放出する工夫が施されていることが好ましい。前記スーパールミネッセントダイオードの場合、偏光の揃った光を放出する工夫が施されていることが好ましい。前記励起光のキャリア生成層103への入射角は、前述のとおりであり、例えば、発光素子101aおよび101bは、前記入射角が前記所定の範囲となるように配置される。 The light emitting elements 101 a and 101 b emit light (excitation light) of a wavelength that can be absorbed by the carrier generation layer 103. Specifically, for example, a light emitting diode (LED), a laser diode, a super luminescent diode and the like can be mentioned. In the case of the LED, it is preferable to devise a device that emits light having a uniform emission angle and polarization. In the case of the super luminescent diode, it is preferable that a device for emitting light with uniform polarization is provided. The incident angle of the excitation light to the carrier generation layer 103 is as described above. For example, the light emitting elements 101a and 101b are arranged such that the incident angle falls within the predetermined range.
 キャリア生成層103は、前記励起光を吸光してキャリアを生成させる層である。キャリア生成層103は、例えば、発光体を含む。前記発光体は、例えば、蛍光体または燐光体等である。前記蛍光体は、例えば、有機蛍光体、無機蛍光体、量子ドット蛍光体、半導体蛍光体等があげられる。前記有機蛍光体は、例えば、ローダミン(Rhodamine 6G)、スルホローダミン(Sulforhodamine 101)等があげられる。前記無機蛍光体は、例えば、YS:Eu、BaMgAl:Eu、BaMgAl:Mn等があげられる。前記量子ドット蛍光体は、例えば、CdSe、CdSe/ZnS等の量子ドット等があげられる。前記半導体蛍光体は、例えば、無機材料半導体または有機材料半導体の蛍光体があげられる。前記無機材料半導体は、例えば、GaN、GaAs等があげられる。前記有機材料半導体は、例えば、(チオフェン/フェニレン)コオリゴマー、Alq3(トリス(8-キノリノラト)アルミニウム)等があげられる。キャリア生成層103は、例えば、発光波長が同一または異なる複数の波長の光を発生する、複数の材料から構成されてもよい。キャリア生成層103の厚みは、特に制限されず、例えば、1μm以下が好ましく、100nm以下が特に好ましい。 The carrier generation layer 103 is a layer that absorbs the excitation light to generate carriers. The carrier generation layer 103 includes, for example, a light emitter. The light emitter is, for example, a phosphor or a phosphor. Examples of the phosphor include organic phosphors, inorganic phosphors, quantum dot phosphors, and semiconductor phosphors. Examples of the organic fluorescent substance include rhodamine (Rhodamine 6G) and sulforhodamine (Sulforhodamine 101). Examples of the inorganic phosphor include Y 2 O 2 S: Eu, BaMgAl x O y : Eu, and BaMgAl x O y : Mn. Examples of the quantum dot phosphor include quantum dots such as CdSe and CdSe / ZnS. Examples of the semiconductor phosphor include phosphors of inorganic material semiconductors and organic material semiconductors. Examples of the inorganic material semiconductor include GaN and GaAs. Examples of the organic material semiconductor include (thiophene / phenylene) co-oligomer, Alq3 (tris (8-quinolinolato) aluminum), and the like. The carrier generation layer 103 may be made of, for example, a plurality of materials that generate light of a plurality of wavelengths having the same or different emission wavelengths. The thickness of the carrier generation layer 103 is not particularly limited, and is, for example, preferably 1 μm or less, and particularly preferably 100 nm or less.
 キャリア生成層103は、例えば、金属粒子を含んでもよい。前記金属粒子は、前記励起光との相互作用により、前記金属粒子の表面に表面プラズモンを励起し、その表面近傍に、前記励起光の電場強度に対して100倍近くの増強電場を誘起する。この増強電場により、キャリア生成層103内に生成されるキャリアを増加でき、例えば、光制御部3における前記励起光の利用効率を向上できる。 The carrier generation layer 103 may include, for example, metal particles. The metal particle excites surface plasmons on the surface of the metal particle by interaction with the excitation light, and induces an enhanced electric field near 100 times the electric field strength of the excitation light in the vicinity of the surface. By this enhanced electric field, carriers generated in the carrier generation layer 103 can be increased, and, for example, the utilization efficiency of the excitation light in the light control unit 3 can be improved.
 前記金属粒子を構成する金属は、例えば、金、銀、銅、白金、パラジウム、ロジウム、オスミウム、ルテニウム、イリジウム、鉄、錫、亜鉛、コバルト、ニッケル、クロム、チタン、タンタル、タングステン、インジウム、アルミニウム、またはこれらの合金等があげられる。これらの中でも、前記金属は、金、銀、銅、白金、アルミニウム、またはこれらを主成分とする合金が好ましく、金、銀、アルミニウム、またはこれらを主成分とする合金が特に好ましい。前記金属粒子は、例えば、その周辺部と中心部とで金属種の異なるコアシェル構造;2種の金属の半球の合体した半球合体構造;異なるクラスターが集合して粒子を作るクラスター・イン・クラスター構造等の構造を有してもよい。前記金属粒子を、例えば、前記合金または、前述の特殊構造とすることにより、前記金属粒子の寸法、形状等を変化させなくとも、共鳴波長を制御できる。 The metal constituting the metal particles is, for example, gold, silver, copper, platinum, palladium, rhodium, osmium, ruthenium, iridium, iron, tin, zinc, cobalt, nickel, chromium, titanium, tantalum, tungsten, indium, aluminum Or these alloys and the like. Among these, gold, silver, copper, platinum, aluminum, or an alloy containing any of these as a main component is preferable, and gold, silver, aluminum, or an alloy containing any of these as a main component is particularly preferable. The metal particle has, for example, a core-shell structure different in metal species in the periphery and in the center; a combined hemispherical combined structure of hemispheres of two metals; a cluster-in-cluster structure in which different clusters assemble to form particles And the like. By setting the metal particles to, for example, the alloy or the special structure described above, the resonance wavelength can be controlled without changing the size, shape, etc. of the metal particles.
 前記金属粒子の形状は、閉じた表面を有する形状であればよく、例えば、直方体、立方体、楕円体、球体、三角錐、三角柱等があげられる。前記金属粒子は、例えば、半導体リソグラフィ技術に代表される微細加工により、金属薄膜が一辺10μm未満の閉じた面で構成される構造体に加工されたものも含まれる。前記金属粒子のサイズは、例えば、1~100nmの範囲であり、好ましくは5~70nmの範囲であり、より好ましくは10~50nmの範囲である。 The shape of the metal particle may be a shape having a closed surface, and examples thereof include a rectangular parallelepiped, a cube, an ellipsoid, a sphere, a triangular pyramid, a triangular prism and the like. The metal particles include, for example, those obtained by processing a metal thin film into a structure constituted by a closed surface having a side of less than 10 μm by fine processing represented by semiconductor lithography technology. The size of the metal particles is, for example, in the range of 1 to 100 nm, preferably in the range of 5 to 70 nm, and more preferably in the range of 10 to 50 nm.
 プラズモン励起層105は、キャリア生成層103単体を励起光で励起したときにキャリア生成層103で発生する光の周波数(以下、「発光周波数」ということがある。)よりも高いプラズマ周波数を有する形成材料により形成された、微粒子層または薄膜層である。すなわち、プラズモン励起層105は、発光周波数において負の誘電率を有する。プラズモン励起層105のキャリア生成層103側に、プラズモン励起層105のキャリア生成層103側の界面から、前記式(4)で表される表面プラズモンの有効相互作用距離までの範囲に、例えば、光学異方性を有する誘電体層の一部が配置されてもよい。この誘電体層は、例えば、この光制御部3の構成要素の積層方向に垂直な面内、言い換えれば、各層の界面に平行な面内での方向によって誘電率が異なる光学異方性を有する。すなわち、この誘電体層は、光制御部3の構成要素の積層方向に垂直な面内において、ある方向とそれに直交する方向で、誘電率の大小関係がある。この誘電体層により、光学装置1の構成要素の積層方向に垂直な面内において、ある方向とそれに直交する方向とでは、前記入射側部分の実効誘電率が異なる。そして、前記入射側部分の実効誘電率を、ある方向でプラズモン結合が発生しないほど高く、それと直交する方向ではプラズモン結合が発生する程度低く設定すれば、例えば、波数ベクトル変換層107に入射する光の入射角および偏光をさらに限定できる。このため、例えば、波数ベクトル変換層107による光の取り出し効率を、さらに向上できる。 The plasmon excitation layer 105 is formed to have a plasma frequency higher than the frequency of light generated in the carrier generation layer 103 (hereinafter sometimes referred to as “light emission frequency”) when the carrier generation layer 103 alone is excited with excitation light. It is a fine particle layer or a thin film layer formed of a material. That is, plasmon excitation layer 105 has a negative dielectric constant at the light emission frequency. For example, in the range from the interface of the plasmon excitation layer 105 on the carrier generation layer 103 side to the carrier generation layer 103 side of the plasmon excitation layer 105 to the effective interaction distance of the surface plasmon represented by the formula (4), for example A portion of the dielectric layer having anisotropy may be disposed. This dielectric layer has, for example, an optical anisotropy that differs in dielectric constant depending on the direction in the plane perpendicular to the stacking direction of the components of the light control unit 3, in other words, in the plane parallel to the interface of each layer . That is, in the dielectric layer, in a plane perpendicular to the stacking direction of the components of the light control unit 3, there is a magnitude relation between the dielectric constants in a certain direction and a direction perpendicular thereto. Due to this dielectric layer, in a plane perpendicular to the stacking direction of the components of the optical device 1, the effective dielectric constant of the incident side portion is different between a certain direction and a direction perpendicular thereto. Then, if the effective dielectric constant of the incident side portion is set high enough to cause no plasmon coupling in a certain direction and low enough to cause plasmon coupling in the direction orthogonal thereto, for example, light incident on the wave number vector conversion layer 107 The angle of incidence and polarization of Therefore, for example, the light extraction efficiency of the wave vector conversion layer 107 can be further improved.
 理論的には、前記入射側部分の実効誘電率とプラズモン励起層105の誘電率との和が、負または0の場合、キャリア生成層103で生成されたキャリアは、プラズモン励起層105に表面プラズモンを励起する。一方、前記和が正の場合、前記キャリアは、表面プラズモンを励起しない。すなわち、前述のプラズモン結合が発生しない程度高い実効誘電率とは、プラズモン励起層105の誘電率と前記入射側部分の実効誘電率との和が正となるような誘電率であり、前述のプラズモン結合が発生する程度低い実効誘電率とは、プラズモン励起層105の誘電率と前記入射側部分の実効誘電率との和が負または0となるような誘電率である。キャリア生成層103で生成されたキャリアが表面プラズモンへ結合する効率は、前記入射側部分の実効誘電率とプラズモン励起層105の誘電率の和とが0となる条件である。したがって、プラズモン励起層105の誘電率と前記入射側部分の実効誘電率の最低値との和が0となる条件が、方位角に対する指向性を高める点で、最も好ましい。ただし、上記条件では、例えば、方位角に対する指向性を高め過ぎによる、プラズモン励起層105を透過する発光の減少やそれに伴うプラズモン励起層105での発熱が懸念される。このため、実用上は、方位角の指向性を高めすぎないのが好ましい。具体的には、プラズモン励起層105の誘電率と前記入射側部分の実効誘電率の中間値との和が0となる条件で、例えば、方位角315度~45度、135度~225度の範囲に高指向性放射が得られる。このため、例えば、方位角に対する指向性の向上と発光減少の抑制とを両立できる。前記光学異方性を有する誘電体層の構成材料は、例えば、TiO2、YVO4、Ta25等の異方性結晶等があげられる。前記誘電体層の構造は、例えば、誘電体の斜め蒸着膜、斜めスパッタ膜等があげられる。 Theoretically, when the sum of the effective permittivity of the incident side portion and the permittivity of the plasmon excitation layer 105 is negative or 0, the carriers generated in the carrier generation layer 103 are surface plasmons in the plasmon excitation layer 105. Excite. On the other hand, when the sum is positive, the carriers do not excite surface plasmons. That is, the above-mentioned effective dielectric constant high enough that the plasmon coupling does not occur is such a dielectric constant that the sum of the dielectric constant of the plasmon excitation layer 105 and the effective dielectric constant of the incident side becomes positive. The effective dielectric constant low enough to cause coupling is a dielectric constant such that the sum of the dielectric constant of the plasmon excitation layer 105 and the effective dielectric constant of the incident side portion becomes negative or zero. The efficiency with which the carriers generated in the carrier generation layer 103 couple to the surface plasmon is a condition under which the effective dielectric constant of the incident side portion and the sum of the dielectric constants of the plasmon excitation layer 105 become zero. Therefore, the condition that the sum of the dielectric constant of the plasmon excitation layer 105 and the lowest value of the effective dielectric constant of the incident side portion is 0 is the most preferable in that the directivity with respect to the azimuth angle is enhanced. However, under the above conditions, for example, there is a concern that the emission of light passing through the plasmon excitation layer 105 may be reduced due to excessive directivity with respect to the azimuth angle, and the heat generation in the plasmon excitation layer 105 may be caused. For this reason, it is preferable that the directivity of the azimuth angle is not excessively enhanced in practice. Specifically, under the condition that the sum of the dielectric constant of the plasmon excitation layer 105 and the intermediate value of the effective dielectric constant of the incident side becomes 0, for example, azimuth angles of 315 degrees to 45 degrees, 135 degrees to 225 degrees High directional radiation is obtained in the range. Therefore, for example, it is possible to simultaneously improve the directivity with respect to the azimuth angle and suppress the decrease in light emission. Examples of the constituent material of the dielectric layer having optical anisotropy include anisotropic crystals such as TiO 2 , YVO 4 , and Ta 2 O 5 . Examples of the structure of the dielectric layer include a diagonal vapor deposition film of a dielectric, a diagonal sputtering film, and the like.
 プラズモン励起層105の構成材料は、例えば、金、銀、銅、白金、パラジウム、ロジウム、オスミウム、ルテニウム、イリジウム、鉄、錫、亜鉛、コバルト、ニッケル、クロム、チタン、タンタル、タングステン、インジウム、アルミニウム、またはこれらの合金等があげられる。これらの中でも、前記構成材料は、金、銀、銅、白金、アルミニウム、およびこれらを主成分とする誘電体との混合体が好ましく、金、銀、アルミニウム、およびこれらを主成分とする誘電体との混合物が特に好ましい。プラズモン励起層105の厚みは、特に制限されず、200nm以下が好ましく、10~100nm程度が特に好ましい。 The constituent material of the plasmon excitation layer 105 is, for example, gold, silver, copper, platinum, palladium, rhodium, osmium, ruthenium, iridium, iron, tin, zinc, cobalt, nickel, chromium, titanium, tantalum, tungsten, indium, aluminum Or these alloys and the like. Among these, gold, silver, copper, platinum, aluminum, and a mixture with a dielectric containing these as the main component is preferable, and gold, silver, aluminum, and a dielectric containing these as the main component are preferable. Mixtures with are particularly preferred. The thickness of the plasmon excitation layer 105 is not particularly limited, and is preferably 200 nm or less, and particularly preferably about 10 to 100 nm.
 プラズモン励起層105のキャリア生成層103側表面は、例えば、粗面化されていてもよい。前記粗面が、例えば、前記励起光の散乱、前記粗面の先鋭部における局在プラズモンの励起をもたらし、キャリア生成層103中に励起されるキャリアを増加させる。この結果、例えば、光制御部3における励起光の利用効率を向上できる。 The surface on the carrier generation layer 103 side of the plasmon excitation layer 105 may be roughened, for example. The rough surface provides, for example, the scattering of the excitation light and the excitation of localized plasmons at the tip of the rough surface, thereby increasing the number of carriers excited in the carrier generation layer 103. As a result, for example, the utilization efficiency of the excitation light in the light control unit 3 can be improved.
 誘電体層104は、誘電体を含む層であり、具体的には、例えば、SiOナノロッドアレイフィルム;SiO、AlF、MgF、NaAlF、NaF、LiF、CaF、BaF、低誘電率プラスチック等の薄膜または多孔質膜等があげられる。誘電体層104の厚みは、特に制限されず、例えば、1~100nmの範囲であり、好ましくは5~50nmの範囲であり、より好ましくは5~20nmの範囲である。 The dielectric layer 104 is a layer containing a dielectric, and specifically, for example, SiO 2 nanorod array film; SiO 2 , AlF 3 , MgF 2 , Na 3 AlF 6 , NaF, LiF, CaF 2 , BaF 2 And thin films or porous films such as low dielectric constant plastics. The thickness of the dielectric layer 104 is not particularly limited, and is, for example, in the range of 1 to 100 nm, preferably in the range of 5 to 50 nm, and more preferably in the range of 5 to 20 nm.
 誘電体層106の構成材料は、例えば、ダイヤモンド、TiO、CeO、Ta、ZrO、Sb、HfO、La、NdO、Y、ZnO、Nb等の高誘電率材料があげられる。誘電体層106の厚みは、特に制限されない。 The constituent material of the dielectric layer 106 is, for example, diamond, TiO 2 , CeO 2 , Ta 2 O 5 , ZrO 2 , Sb 2 O 3 , HfO 2 , La 2 O 3 , NdO 3 , Y 2 O 3 , ZnO, A high dielectric constant material such as Nb 2 O 5 can be mentioned. The thickness of the dielectric layer 106 is not particularly limited.
 波数ベクトル変換層107は、プラズモン励起層105と誘電体層106との界面から放射される光を、その波数ベクトルを変換することにより、光学装置1から出射させる出射部である。波数ベクトル変換層107は、前記放射光を、プラズモン励起層105と誘電体層106との界面にほぼ直交する向きに、光学装置1から出射させる機能を有する。 The wave vector conversion layer 107 is an emission unit that emits light emitted from the interface between the plasmon excitation layer 105 and the dielectric layer 106 from the optical device 1 by converting the wave vector. The wave number vector conversion layer 107 has a function of causing the optical device 1 to emit the radiation in the direction substantially orthogonal to the interface between the plasmon excitation layer 105 and the dielectric layer 106.
 波数ベクトル変換層107の形状は、例えば、表面レリーフ格子;フォトニック結晶に代表される周期構造、または準周期構造;そのサイズが光学装置1からの出射光の波長より大きいテクスチャー構造(例えば、粗面によって構成される表面構造);ホログラム;マイクロレンズアレイ等があげられる。前記準周期構造は、例えば、周期構造の一部が欠けている不完全な周期構造を示す。光の取り出し効率の向上および指向性制御の観点から、前記形状は、フォトニック結晶に代表される周期構造、または準周期構造;マイクロレンズアレイ等が好ましい。前記フォトニック結晶は、結晶構造が三角格子構造を採るものが好ましい。波数ベクトル変換層107は、例えば、平板状の基部上に凸部が設けられた構造でもよい。 The shape of the wave number vector conversion layer 107 is, for example, a surface relief grating; a periodic structure represented by a photonic crystal, or a quasi-periodic structure; a texture structure whose size is larger than the wavelength of light emitted from the optical device 1 Surface structure constituted by a surface); hologram; microlens array etc. The quasi-periodic structure indicates, for example, an incomplete periodic structure in which part of the periodic structure is missing. From the viewpoint of improvement of light extraction efficiency and directivity control, the shape is preferably a periodic structure represented by a photonic crystal, or a quasi-periodic structure; a microlens array or the like. The photonic crystal preferably has a triangular lattice structure. The wave number vector conversion layer 107 may have, for example, a structure in which a convex portion is provided on a flat base.
 前述のように、光学装置1では、プラズモン励起層105のキャリア生成層103側表面からキャリア生成層103のプラズモン励起層105側表面までの距離は、表面プラズモンの有効相互作用距離deffより短く設定されている。このように設定されていることで、キャリア生成層103中に生成されるキャリアとプラズモン励起層105中の自由電子とを、効率よく結合でき、その結果、例えば、発光効率を向上できる。結合効率の高い領域は、例えば、キャリア生成層103中のキャリアが生成される位置(例えば、キャリア生成層103中の蛍光体が存在する位置)から、プラズモン励起層105のキャリア生成層103側表面までの領域である。前記領域は、例えば、200nm程度と非常に狭く、例えば、1~200nm範囲または10~100nmの範囲である。光学装置1において、前記領域が1~200nmの範囲の場合には、例えば、キャリア生成層103は、プラズモン励起層105から1~200nmの範囲内に配置されていることが好ましい。また、前記領域が10~100nmの範囲の場合には、例えば、キャリア生成層103は、プラズモン励起層105から10~100nmの範囲内に配置されていることが好ましく、具体的には、例えば、誘電体層104の厚みを10nm、キャリア生成層103の厚みを90nmとする。光取り出し効率の観点からは、キャリア生成層103は薄いほど好ましい。一方、光出力定格の観点からは、キャリア生成層103は厚いほど好ましい。したがって、キャリア生成層103の厚みは、例えば、求められる光取り出し効率と光出力定格とに基づいて決定される。なお、前記領域の範囲は、キャリア生成層とプラズモン励起層との間に配置される誘電体層の誘電率等により変化するため、所定条件における前記領域の範囲に応じて、例えば、前記誘電体層の厚みおよび前記キャリア生成層の厚み等を、適宜設定すればよい。 As described above, in the optical device 1, the distance from the surface on the carrier generation layer 103 side of the plasmon excitation layer 105 to the surface on the plasmon excitation layer 105 side of the carrier generation layer 103 is set shorter than the effective interaction distance d eff of surface plasmons. It is done. By setting in this way, carriers generated in the carrier generation layer 103 and free electrons in the plasmon excitation layer 105 can be efficiently coupled, and as a result, for example, luminous efficiency can be improved. The region with high coupling efficiency is, for example, the carrier generation layer 103 side surface of the plasmon excitation layer 105 from the position in the carrier generation layer 103 where carriers are generated (for example, the position in the carrier generation layer 103 where the phosphor is present). Area until The region is, for example, as narrow as about 200 nm, for example, in the range of 1 to 200 nm or in the range of 10 to 100 nm. In the optical device 1, when the region is in the range of 1 to 200 nm, for example, the carrier generation layer 103 is preferably disposed in the range of 1 to 200 nm from the plasmon excitation layer 105. When the region is in the range of 10 to 100 nm, for example, the carrier generation layer 103 is preferably disposed in the range of 10 to 100 nm from the plasmon excitation layer 105, and specifically, for example, The thickness of the dielectric layer 104 is 10 nm, and the thickness of the carrier generation layer 103 is 90 nm. From the viewpoint of light extraction efficiency, it is preferable that the carrier generation layer 103 be thinner. On the other hand, from the viewpoint of light output rating, it is preferable that the carrier generation layer 103 be thicker. Therefore, the thickness of the carrier generation layer 103 is determined based on, for example, the required light extraction efficiency and the light output rating. The range of the region changes depending on the dielectric constant of the dielectric layer disposed between the carrier generation layer and the plasmon excitation layer, so that, for example, the dielectric may be selected according to the range of the region under predetermined conditions. The thickness of the layer, the thickness of the carrier generation layer, and the like may be set as appropriate.
 図1に示す本実施形態の光学装置において、前記発光素子は、2つ配置されているが、本発明は、この例に限定されない。前記発光素子の数は、特に制限されない。前記励起光は、例えば、導光体を介して、光制御部3に入射されてもよい。前記導光体の形状は、例えば、直方体または楔形;前記導光体の光出射部または前記導光体内部に光取り出し用の構造体を有する形状のもの等があげられる。前記光取り出し用の構造体は、例えば、前記励起光の前記キャリア生成層への入射角を、前記所定の入射角以上の角度に変換し、吸収率を向上させる機能を有するものが好ましい。前記導光体の光出射部を除く面は、例えば、反射材料または誘電体多層膜等を使用して、前記励起光を前記面から出射させない処理が施されているのが好ましい。また、例えば、本発明の光学装置は、前記励起光の前記キャリア生成層への入射角を前記所定の入射角以上に調整可能な光学部材(例えば、ミラー等)を含んでもよい。 In the optical device of the present embodiment shown in FIG. 1, two light emitting elements are arranged, but the present invention is not limited to this example. The number of light emitting elements is not particularly limited. The excitation light may be incident on the light control unit 3 through, for example, a light guide. The shape of the light guide may be, for example, a rectangular parallelepiped or a wedge shape, or a shape having a light emitting portion of the light guide or a light extraction structure inside the light guide. The structure for light extraction preferably has, for example, a function of converting the incident angle of the excitation light to the carrier generation layer to an angle equal to or more than the predetermined incident angle to improve the absorptivity. It is preferable that the surface of the light guide excluding the light emitting portion is subjected to a process for preventing the excitation light from being emitted from the surface, using, for example, a reflective material or a dielectric multilayer film. Also, for example, the optical device of the present invention may include an optical member (for example, a mirror or the like) capable of adjusting the incident angle of the excitation light to the carrier generation layer to be equal to or more than the predetermined incident angle.
 また、本実施形態の光学装置において、前記プラズモン励起層は、前記2つの誘電体層に挟まれているが、前述のように、前記誘電体層は、本発明において必須ではなく、例えば、前記キャリア生成層上に、前記プラズモン励起層が配置されてもよい。また、前記誘電体層は、前記プラズモン励起層の一方の面のみに積層されてよい。 Moreover, in the optical device of the present embodiment, the plasmon excitation layer is sandwiched between the two dielectric layers, but as described above, the dielectric layer is not essential in the present invention, and, for example, The plasmon excitation layer may be disposed on the carrier generation layer. The dielectric layer may be laminated only on one side of the plasmon excitation layer.
(実施形態2)
 図7の斜視図に、本実施形態の光学装置の構成を示す。本実施形態の光学装置は、前記光制御部が誘電体層を含まないこと以外は、前記実施形態1の光学装置と同様の構成を有する。図7に示すように、本実施形態の光学装置11は、発光素子101aおよび101bと、光制御部13とを、主要な構成要素として含む。光制御部13は、キャリア生成層103と、キャリア生成層103上に積層されたプラズモン励起層105と、プラズモン励起層105上に積層された波数ベクトル変換層(出射層)207とを含む。発光素子101aおよび101bは、光制御部13の側面周囲に配置されている。
Second Embodiment
The configuration of the optical device of the present embodiment is shown in the perspective view of FIG. The optical device of the present embodiment has the same configuration as the optical device of the first embodiment except that the light control unit does not include a dielectric layer. As shown in FIG. 7, the optical device 11 of the present embodiment includes light emitting elements 101 a and 101 b and a light control unit 13 as main components. The light control unit 13 includes a carrier generation layer 103, a plasmon excitation layer 105 stacked on the carrier generation layer 103, and a wave number vector conversion layer (emission layer) 207 stacked on the plasmon excitation layer 105. The light emitting elements 101 a and 101 b are disposed around the side surface of the light control unit 13.
 光学装置11は、入射側部分の実効誘電率が、出射側部分の実効誘電率よりも高いか、または等しくなるように構成されている。前記入射側部分は、プラズモン励起層105のキャリア生成層103側に積層された構造全体とキャリア生成層103に接する媒質とを含む。前記構造全体には、キャリア生成層103が含まれる。前記出射側部分は、プラズモン励起層105の波数ベクトル変換層207側に積層された構造全体と波数ベクトル変換層207に接する媒質とを含む。前記構造全体には、波数ベクトル変換層207が含まれる。 The optical device 11 is configured such that the effective dielectric constant of the incident side portion is higher than or equal to the effective dielectric constant of the emission side portion. The incident side portion includes the entire structure stacked on the carrier generation layer 103 side of the plasmon excitation layer 105 and a medium in contact with the carrier generation layer 103. The entire structure includes a carrier generation layer 103. The emission side portion includes the entire structure stacked on the wave number vector conversion layer 207 side of the plasmon excitation layer 105 and a medium in contact with the wave number vector conversion layer 207. The whole structure includes a wave vector conversion layer 207.
 つぎに、光学装置11について、発光素子101からの励起光が、光制御部13に入射し、光制御部13の波数ベクトル変換層207から光が出射される動作を説明する。 Next, an operation of the optical device 11 in which excitation light from the light emitting element 101 is incident on the light control unit 13 and light is emitted from the wave number vector conversion layer 207 of the light control unit 13 will be described.
 発光素子101aおよび101bから出射された励起光は、前記所定の入射角(および偏光)で、光制御部13に入射する。そして、前記励起光は、前記導波路に結合し、その中に閉じ込められる。この閉じ込められた励起光により、キャリア生成層103が励起され、キャリア生成層103中にキャリアが生成される。このキャリアは、プラズモン励起層105中の自由電子と結合し、キャリア生成層103とプラズモン励起層105との界面、およびプラズモン励起層105と波数ベクトル変換層207との界面に表面プラズモンを励起する。キャリア生成層103とプラズモン励起層105との界面に励起された表面プラズモンは、プラズモン励起層105を透過し、プラズモン励起層105と波数ベクトル変換層207との界面まで伝搬する。前述のように、光学装置11は、前記入射側部分の実効誘電率が、前記出射側部分の実効誘電率よりも高いか、または等しくなるように構成され、波数ベクトル変換層207のプラズモン励起層105側の端部は、プラズモン励起層105の波数ベクトル変換層207の面からの距離が、表面プラズモンの有効相互作用距離の範囲内に配置されている。ここで、波数ベクトル変換層207が平坦な誘電体層である場合、プラズモン励起層105と波数ベクトル変換層207との界面での表面プラズモンは、その界面では光に変換されない。前記界面での表面プラズモンは、波数ベクトル変換層207が表面プラズモンを光として取り出す機能、例えば、回折作用を有するため、光学装置11外部に光として放出(放射)される。前記放出光の波長は、キャリア生成層103を単独で励起したときに発生する光の波長に等しい。また、前記放出光の放射角度θradは、波数ベクトル変換層207の周期構造のピッチをΛとし、波数ベクトル変換層207の光取り出し側(すなわち、波数ベクトル変換層207に接する媒質)の屈折率をnradとすれば、下記式(6)で表される。 The excitation light emitted from the light emitting elements 101a and 101b enters the light control unit 13 at the predetermined incident angle (and polarization). The excitation light is then coupled to the waveguide and confined therein. The confined excitation light excites the carrier generation layer 103 to generate carriers in the carrier generation layer 103. The carriers couple with free electrons in the plasmon excitation layer 105 and excite surface plasmons at the interface between the carrier generation layer 103 and the plasmon excitation layer 105 and at the interface between the plasmon excitation layer 105 and the wave vector conversion layer 207. The surface plasmon excited at the interface between the carrier generation layer 103 and the plasmon excitation layer 105 passes through the plasmon excitation layer 105 and propagates to the interface between the plasmon excitation layer 105 and the wave vector conversion layer 207. As described above, the optical device 11 is configured such that the effective dielectric constant of the incident side portion is higher than or equal to the effective dielectric constant of the emission side portion, and the plasmon excitation layer of the wave number vector conversion layer 207 The distance from the surface of the wave number vector conversion layer 207 of the plasmon excitation layer 105 is arranged within the range of the effective interaction distance of surface plasmons at the end on the 105 side. Here, when the wave number vector conversion layer 207 is a flat dielectric layer, surface plasmons at the interface between the plasmon excitation layer 105 and the wave number vector conversion layer 207 are not converted to light at the interface. The surface plasmon at the interface is emitted (emitted) as light to the outside of the optical device 11 because the wave number vector conversion layer 207 has a function of extracting the surface plasmon as light, for example, a diffractive action. The wavelength of the emitted light is equal to the wavelength of light generated when the carrier generation layer 103 is excited alone. Further, the radiation angle θ rad of the emitted light is the refractive index of the light extraction side of the wave vector conversion layer 207 (that is, the medium in contact with the wave vector conversion layer 207), where the pitch of the periodic structure of the wave vector conversion layer 207 is Λ. Is given by the following equation (6).
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 キャリア生成層103とプラズモン励起層105との界面に励起される表面プラズモンの波数は、前記式(2)で一義的に設定される付近しか存在しない。プラズモン励起層105と波数ベクトル変換層207との界面に励起される表面プラズモンの波数についても同様である。したがって、前記放出光の放射角度は一義的に決定され、その偏光状態は常にp偏光である。すなわち、前記放出光は、非常に高い指向性を有する、p偏光の光である。なお、キャリア生成層103に入射した励起光のうち、前記導波路に結合しなかったものは、光制御部13(例えば、プラズモン励起層105)より反射される。この反射光を、例えば、金属ミラー、誘電体ミラー、プリズム等の反射体によって反射させ、再度、光制御部3に入射させることで励起光の利用効率をさらに向上できる。前記励起光のキャリア生成層103への入射角は、前記実施形態1と同様である。 The wave number of the surface plasmon excited at the interface between the carrier generation layer 103 and the plasmon excitation layer 105 exists only in the vicinity uniquely set by the equation (2). The same applies to the wave number of the surface plasmon excited at the interface between the plasmon excitation layer 105 and the wave vector conversion layer 207. Therefore, the emission angle of the emitted light is uniquely determined, and its polarization state is always p-polarization. That is, the emitted light is p-polarized light having very high directivity. Of the excitation light incident on the carrier generation layer 103, the one not coupled to the waveguide is reflected by the light control unit 13 (for example, the plasmon excitation layer 105). The reflected light is reflected by a reflector such as, for example, a metal mirror, a dielectric mirror, or a prism, and the light is incident on the light control unit 3 again to further improve the utilization efficiency of the excitation light. The incident angle of the excitation light to the carrier generation layer 103 is the same as that of the first embodiment.
 波数ベクトル変換層207は、プラズモン励起層105と波数ベクトル変換層207との界面に励起された表面プラズモンを、その波数ベクトルを変換することで、前記界面から光として取り出し、光学装置11から放射させる出射部である。すなわち、波数ベクトル変換層207は、表面プラズモンを所定の放射角の光に変換して、前記光を光学装置11から放射させる。さらに、波数ベクトル変換層207は、例えば、プラズモン励起層105と波数ベクトル変換層207との界面に対してほぼ直交するように、放射光を光学装置11から放射させる機能を有している。波数ベクトル変換層207は、例えば、前記実施形態1の波数ベクトル変換層107と同様のものを使用できる。 The wave number vector conversion layer 207 extracts surface plasmons excited at the interface between the plasmon excitation layer 105 and the wave number vector conversion layer 207 as light from the interface by converting the wave number vector, and emits the light from the optical device 11 It is an emitting part. That is, the wave vector conversion layer 207 converts the surface plasmon into light of a predetermined radiation angle, and causes the light to be emitted from the optical device 11. Furthermore, the wave number vector conversion layer 207 has a function of emitting radiation light from the optical device 11 so as to be substantially orthogonal to the interface between the plasmon excitation layer 105 and the wave number vector conversion layer 207, for example. The wave number vector conversion layer 207 can use, for example, the same one as the wave number vector conversion layer 107 of the first embodiment.
 図7に示す本実施形態の光学装置において、前記キャリア生成層は、前記プラズモン励起層に接して配置されているが、本発明は、この例には限定されない。前記キャリア生成層と前記プラズモン励起層との間には、例えば、その厚みが前記式(4)で表わされる表面プラズモンの有効相互作用距離deffより小さい厚みの、誘電体層が配置されてもよい。また、前記波数ベクトル変換層は、前記プラズモン励起層に接して配置されているが、本発明は、この例には限定されず、例えば、前記波数ベクトル変換層と前記プラズモン励起層との間には、その厚みが前記式(4)で表わされる表面プラズモンの有効相互作用距離deffより小さい厚みの、誘電体層が配置されてもよい。 In the optical device of the present embodiment shown in FIG. 7, the carrier generation layer is disposed in contact with the plasmon excitation layer, but the present invention is not limited to this example. Even if, for example, a dielectric layer having a thickness smaller than the effective interaction distance d eff of the surface plasmon represented by the formula (4) is disposed between the carrier generation layer and the plasmon excitation layer. Good. Moreover, although the said wave number vector conversion layer is arrange | positioned in contact with the said plasmon excitation layer, this invention is not limited to this example, For example, between the said wave number vector conversion layer and the said plasmon excitation layer The dielectric layer may have a thickness smaller than the effective interaction distance d eff of the surface plasmon represented by the formula (4).
 また、本実施形態の光学装置は、例えば、前記実施形態1と同様に、前記キャリア生成層と前記プラズモン励起層との間に、光学異方性を有する誘電体層が配置されてもよい。この場合、前記入射側部分の実効誘電率を、ある方向でプラズモン結合が発生しないほど高く、それと直交する方向ではプラズモン結合が発生する程度低く設定すれば、例えば、前記波数ベクトル変換層に入射する光の入射角および偏光をさらに限定できる。このため、例えば、前記波数ベクトル変換層による光の取り出し効率を、さらに向上できる。 Further, in the optical device of this embodiment, for example, as in the first embodiment, a dielectric layer having optical anisotropy may be disposed between the carrier generation layer and the plasmon excitation layer. In this case, if the effective dielectric constant of the incident side portion is set high enough not to cause plasmon coupling in a certain direction, and low enough to cause plasmon coupling in the direction orthogonal thereto, for example, light enters the wave number vector conversion layer The angle of incidence and polarization of the light can be further limited. Thus, for example, the light extraction efficiency of the wave number vector conversion layer can be further improved.
(実施形態3)
 図8の斜視図に、本実施形態の光学装置の構成を示す。図8に示すように、本実施形態の光学装置21は、発光素子101aおよび101bと、光制御部23とを、主要な構成要素として含む。光制御部23は、キャリア生成部303と、プラズモン励起層305と、誘電体層306とを含む。誘電体層306は、プラズモン励起層305に積層されている。キャリア生成部303は、誘電体層306に周期的に埋め込まれ、誘電体層306を貫通し、その一端部がプラズモン励起層305と接している。キャリア生成部303は、前記本発明における「出射層」としての機能を有する。発光素子101aおよび101bは、光制御部23の側面周囲に配置されている。
(Embodiment 3)
The configuration of the optical device of the present embodiment is shown in the perspective view of FIG. As shown in FIG. 8, the optical device 21 of the present embodiment includes light emitting elements 101 a and 101 b and a light control unit 23 as main components. The light control unit 23 includes a carrier generation unit 303, a plasmon excitation layer 305, and a dielectric layer 306. The dielectric layer 306 is stacked on the plasmon excitation layer 305. The carrier generation unit 303 is periodically embedded in the dielectric layer 306, penetrates the dielectric layer 306, and one end thereof is in contact with the plasmon excitation layer 305. The carrier generation unit 303 has a function as the “emission layer” in the present invention. The light emitting elements 101 a and 101 b are disposed around the side surface of the light control unit 23.
 さらに、光学装置21では、プラズモン励起層305のキャリア生成部303側表面からキャリア生成部303のプラズモン励起層305側表面までの距離は、前記式(4)で表される表面プラズモンの有効相互作用距離deffより短く設定されている。 Furthermore, in the optical device 21, the distance from the surface on the carrier generation unit 303 side of the plasmon excitation layer 305 to the surface on the plasmon excitation layer 305 side of the carrier generation unit 303 is an effective interaction of surface plasmons represented by the equation (4). It is set shorter than the distance d eff .
 つぎに、光学装置21について、発光素子101aおよび101bからの励起光が、光制御部23に入射し、キャリア生成部303および誘電体層306のプラズモン励起層305側の面とは反対側の面(光出射面309)から光が出射される動作を説明する。 Next, in the optical device 21, excitation light from the light emitting elements 101 a and 101 b enters the light control unit 23, and the surface of the carrier generation unit 303 and the surface of the dielectric layer 306 opposite to the plasmon excitation layer 305 side The operation of emitting light from the (light emitting surface 309) will be described.
 発光素子101aおよび101bから出射された励起光は、前記所定の入射角(および偏光)で、キャリア生成部303に入射する。そして、前記励起光により、キャリア生成部303が励起され、キャリア生成部303中にキャリアが生成される。このキャリアは、プラズモン励起層305中の自由電子と結合し、キャリア生成部303とプラズモン励起層305との界面に表面プラズモンを励起する。励起された表面プラズモンは、キャリア生成部303と誘電体層306とが形成する周期構造によって、回折され、光出射面309を通って、光学装置21外部に光として放出される。前記放出光の波長は、キャリア生成部303を単独で励起したときに発生する光の波長に等しい。キャリア生成部303中に生成されたキャリアのうち、表面プラズモンと結合しなかったものは、例えば、一般的な光、伝搬光として、光学装置21から放出される。また、前記放出光の出射角度θradは、前記式(6)で表される。ここで、本実施形態では、プラズモン励起層305の誘電体層306側に積層された全体構造とキャリア生成部303(および誘電体層306)に接する媒質とを含む部分が、前記実施形態1で定義した励起光入射側部分および光出射側部分を兼ねている。誘電体層306とプラズモン励起層305との界面に励起される表面プラズモンの波数は、前記式(2)で一義的に設定される付近しか存在しない。したがって、前記放出光の放射角度は一義的に決定され、その偏光状態は常にp偏光である。すなわち、前記放出光は非常に高い指向性を有する、p偏光の光である。この放射光の配光分布に、表面プラズモンと結合しなかったキャリアによる伝搬光の配光分布が重畳される。 The excitation light emitted from the light emitting elements 101a and 101b enters the carrier generation unit 303 at the predetermined incident angle (and polarization). Then, the carrier generation unit 303 is excited by the excitation light, and carriers are generated in the carrier generation unit 303. The carriers couple with free electrons in the plasmon excitation layer 305, and excite surface plasmons at the interface between the carrier generation unit 303 and the plasmon excitation layer 305. The excited surface plasmon is diffracted by the periodic structure formed by the carrier generation unit 303 and the dielectric layer 306, and is emitted as light through the light emitting surface 309 to the outside of the optical device 21. The wavelength of the emitted light is equal to the wavelength of light generated when the carrier generation unit 303 is excited alone. Among the carriers generated in the carrier generation unit 303, those not coupled to the surface plasmons are emitted from the optical device 21 as, for example, general light and propagating light. The emission angle θ rad of the emitted light is expressed by the equation (6). Here, in the present embodiment, the portion including the entire structure stacked on the dielectric layer 306 side of the plasmon excitation layer 305 and the medium in contact with the carrier generation unit 303 (and the dielectric layer 306) It serves both as the excitation light incident side portion and the light emission side portion defined. The wave number of the surface plasmon excited at the interface between the dielectric layer 306 and the plasmon excitation layer 305 exists only in the vicinity uniquely set by the equation (2). Therefore, the emission angle of the emitted light is uniquely determined, and its polarization state is always p-polarization. That is, the emitted light is p-polarized light having very high directivity. The light distribution distribution of the propagation light by the carriers not coupled with the surface plasmons is superimposed on the light distribution distribution of the emitted light.
 キャリア生成部303は、励起光を吸光してキャリアを生成させる層であり、その機能・構成材料等は、例えば、前記実施形態1のキャリア生成層103と同様である。キャリア生成部303は、例えば、前記実施形態1のキャリア生成層103と同様に、前記金属粒子を含んでもよい。前記金属粒子を構成する金属および効果等は、前記実施形態1で示したものと同様である。 The carrier generation unit 303 is a layer that absorbs excitation light to generate carriers, and the functions, constituent materials, and the like thereof are the same as, for example, the carrier generation layer 103 of the first embodiment. The carrier generation unit 303 may include, for example, the metal particles as in the carrier generation layer 103 of the first embodiment. The metal and the effect etc. which comprise the said metal particle are the same as that of what was shown in the said Embodiment 1. FIG.
 誘電体層306の構成材料は、例えば、ダイヤモンド、TiO、CeO、Ta、ZrO、Sb、HfO、La、NdO、Y、ZnO、Nb等の高誘電率材料があげられる。前記高誘電率材料を使用することにより、例えば、キャリア生成部303中に生成されたキャリアのうち、表面プラズモンと結合するキャリアの数を増加でき、より指向性の高く、より偏光度の高い光を光学装置21から出射できる。誘電体層306の厚みは、特に制限されず、例えば、1~100nmの範囲であり、好ましくは5~50nmの範囲であり、より好ましくは5~10nmの範囲である。 The constituent material of the dielectric layer 306 is, for example, diamond, TiO 2 , CeO 2 , Ta 2 O 5 , ZrO 2 , Sb 2 O 3 , HfO 2 , La 2 O 3 , NdO 3 , Y 2 O 3 , ZnO, A high dielectric constant material such as Nb 2 O 5 can be mentioned. By using the high dielectric constant material, for example, among the carriers generated in the carrier generation unit 303, the number of carriers coupled to surface plasmons can be increased, and light having higher directivity and higher degree of polarization can be obtained. Can be emitted from the optical device 21. The thickness of the dielectric layer 306 is not particularly limited, and is, for example, in the range of 1 to 100 nm, preferably in the range of 5 to 50 nm, and more preferably in the range of 5 to 10 nm.
 プラズモン励起層305において、その機能・構成材料・形状等は、例えば、前記実施形態1のプラズモン励起層105と同様である。プラズモン励起層305の誘電体層306が積層されている側には、例えば、光学異方性を有する誘電体層が配置されてもよい。この誘電体層の構成および効果等は、前記実施形態1で示したものと同様である。 The function, constituent material, shape, and the like of the plasmon excitation layer 305 are, for example, the same as those of the plasmon excitation layer 105 of the first embodiment. For example, a dielectric layer having optical anisotropy may be disposed on the side of the plasmon excitation layer 305 on which the dielectric layer 306 is stacked. The configuration, effects and the like of this dielectric layer are the same as those shown in the first embodiment.
 図8に示す本実施形態の光学装置において、前記キャリア生成部は、前記誘電体層内に埋め込まれているが、本発明は、この例には限定されず、例えば、前記誘電体層と前記キャリア生成部との関係を逆転させ、キャリア生成層内に誘電体部が周期的に埋め込まれていてもよい。このような構成でも、前述と同様の効果が得られる。また、前記誘電体層の前記プラズモン励起層が積層されていない側表面と前記キャリア生成部の前記プラズモン励起層とは反対側の表面とは、同じ高さに設定されているが、本発明は、この例には限定されず、必ずしも同じ高さである必要はない。前記キャリア生成部は、例えば、前記誘電体層表面の全体に亘って繋がったものでもよいし、前記キャリア生成部の一端部が前記プラズモン励起層に接していなくてもよい。 In the optical device of the present embodiment shown in FIG. 8, the carrier generation unit is embedded in the dielectric layer, but the present invention is not limited to this example, for example, the dielectric layer and the dielectric layer The dielectric portion may be periodically embedded in the carrier generation layer by reversing the relationship with the carrier generation portion. Even with such a configuration, the same effect as described above can be obtained. Moreover, although the side surface where the said plasmon excitation layer of the said dielectric material layer is not laminated | stacked and the surface on the opposite side to the said plasmon excitation layer of the said carrier production | generation part are set to the same height, this invention The present invention is not limited to this example, and does not necessarily have to have the same height. The carrier generation unit may be connected, for example, over the entire surface of the dielectric layer, or one end of the carrier generation unit may not be in contact with the plasmon excitation layer.
(実施形態4)
 本実施形態の光学装置は、偏光変換素子として1/2波長板を備える光学装置の一例である。図11の模式図に、本実施形態の光学装置の構成を示す。
(Embodiment 4)
The optical device of the present embodiment is an example of an optical device provided with a half wave plate as a polarization conversion element. The structure of the optical apparatus of this embodiment is shown in the schematic diagram of FIG.
 図11に示すように、本実施形態の光学装置31は、光学装置1と、1/2波長板410とを、主要な構成要素として含む。光学装置1は、図1に示した前記実施形態1の光学装置である。1/2波長板410は、光学装置1の波数ベクトル変換層107側に配置されている。なお、図11では、説明の便宜上、1/2波長板410を二点鎖線で示している。 As shown in FIG. 11, the optical device 31 of the present embodiment includes the optical device 1 and a half wave plate 410 as main components. The optical device 1 is the optical device of the first embodiment shown in FIG. The half-wave plate 410 is disposed on the side of the wave number vector conversion layer 107 of the optical device 1. In FIG. 11, for convenience of explanation, the half-wave plate 410 is indicated by a two-dot chain line.
 前記実施形態1で示したように、波数ベクトル変換層107から光が出射される。前記光は、前述のように、p偏光であるため、前記光のフィールドパターンは、偏光方向が放射状になっている。このため、前記光は、軸対称偏光となっている(例えば、国際公開第2011/040528号の[0104]参照)。そして、前記光(軸対称偏光)は、1/2波長板410に入射する。この時、前記軸対称偏光は、1/2波長板410により、直線偏光に変換される。このように、本実施形態の光学装置では、前記光の偏光状態を揃えることができる(例えば、同国際公開の[0105]参照)。 As shown in the first embodiment, light is emitted from the wave number vector conversion layer 107. Since the light is p-polarized as described above, the field pattern of the light has a radial polarization direction. For this reason, the light is axisymmetrically polarized (see, for example, [0104] of WO 2011/040528). Then, the light (axisymmetric polarization) is incident on the half wave plate 410. At this time, the axisymmetric polarization is converted into linearly polarized light by the half wave plate 410. As described above, in the optical device of the present embodiment, the polarization state of the light can be aligned (see, for example, [0105] in the same International Publication).
 1/2波長板410は、特に制限されず、例えば、従来公知のものがあげられる。具体的には、例えば、国際公開第2011/040528号に開示されている、下記の1/2波長板があげられる。 The half-wave plate 410 is not particularly limited, and examples thereof include conventionally known ones. Specifically, for example, the following half-wave plate disclosed in WO 2011/040528 may be mentioned.
 前記公報に開示の1/2波長板は、例えば、配向膜がそれぞれ形成された一対のガラス基板と、これらの基板の配向膜を対向させてガラス基板に挟んで配置された液晶層と、ガラス基板の間に配置されたスペーサとを備えるものがあげられる。前記液晶層は、常光に対する屈折率をn、異常光に対する屈折率をnとすると、屈折率nが屈折率nより大きい。また、前記液晶層の厚みdは、(n-n)×d=λ/2を満たしている。なお、前記λは、真空中における入射光の波長である。 The half-wave plate disclosed in the above publication includes, for example, a pair of glass substrates each having an alignment film formed thereon, a liquid crystal layer disposed with the alignment films of these substrates facing each other, and the glass substrate, And a spacer provided between the substrates. The liquid crystal layer, n 0 the refractive index for the ordinary light, the refractive index when the n e for extraordinary light, a refractive index greater than n 0 the refractive index n e is. The thickness d of the liquid crystal layer satisfies (n e −n 0 ) × d = λ / 2. Here, λ is the wavelength of incident light in vacuum.
 前記液晶層において、液晶分子は、前記1/2波長板の中心に対して同心円状に配置されている。また、前記液晶分子は、液晶分子の主軸とこの主軸近傍の座標軸とのなす角をφとし、座標軸と偏光方向とがなす角をθとすると、前記液晶分子は、θ=2φ、または、θ=2φ-180のいずれかの関係式を満たす方向に配向されている。 In the liquid crystal layer, liquid crystal molecules are arranged concentrically with respect to the center of the half wave plate. The liquid crystal molecule has an angle of θ between the main axis of the liquid crystal molecule and the coordinate axis in the vicinity of the main axis, and the angle between the coordinate axis and the polarization direction is θ. It is oriented in a direction satisfying any of the relational expressions of 2φ-180.
 図11に示す本実施形態の光学装置では、前記1/2波長板により軸対称偏光を直線偏光に変換したが、本発明は、この例には限定されず、例えば、前記軸対称偏光を円偏光に変換してもよい。また、本実施形態の光学装置では、前記実施形態1の光学装置を使用しているが、本発明は、この例に限定されず、例えば、前記実施形態2または3の光学装置を使用してもよい。 In the optical device of the present embodiment shown in FIG. 11, axisymmetric polarization is converted into linearly polarized light by the 1⁄2 wavelength plate, but the present invention is not limited to this example. For example, the axisymmetric polarization is circular It may be converted to polarized light. In addition, although the optical device of the first embodiment is used in the optical device of the present embodiment, the present invention is not limited to this example, for example, using the optical device of the second or third embodiment. It is also good.
(実施形態5)
 本実施形態の画像表示装置は、3板式の投射型表示装置(LEDプロジェクタ)の一例である。図9に、本実施形態のLEDプロジェクタの構成を示す。図9(a)は、本実施形態のLEDプロジェクタの概略斜視図であり、図9(b)は、同LEDプロジェクタの上面図である。
Embodiment 5
The image display device of the present embodiment is an example of a three-panel projection display device (LED projector). FIG. 9 shows the configuration of the LED projector of this embodiment. Fig.9 (a) is a schematic perspective view of the LED projector of this embodiment, FIG.9 (b) is a top view of the same LED projector.
 図9に示すように、本実施形態のLEDプロジェクタ10は、3つの前記実施形態1から4のいずれかの光学装置1r、1g、1bと、3つの液晶パネル502r、502g、502bと、色合成光学素子503と、投射光学系504とを主要な構成要素として含む。光学装置1rおよび液晶パネル502rと、光学装置1gおよび液晶パネル502gと、光学装置1bおよび液晶パネル502bとが、それぞれ光路を形成している。 As shown in FIG. 9, the LED projector 10 according to this embodiment includes the optical devices 1r, 1g, 1b of any of the three embodiments 1 to 4, three liquid crystal panels 502r, 502g, 502b, and color synthesis. An optical element 503 and a projection optical system 504 are included as main components. The optical device 1r and the liquid crystal panel 502r, the optical device 1g and the liquid crystal panel 502g, and the optical device 1b and the liquid crystal panel 502b form an optical path, respectively.
 光学装置1r、1g、1bは、それぞれ、赤(R)光用、緑(G)光用、及び青(B)光用で異なる材料で構成されている。液晶パネル502r、502g、502bは、前記光学装置からの出射光が入射され、表示させる画像に合わせて光の強度を変調する。色合成光学素子503は、液晶パネル502r、502g、502bで変調された光を合成する。投射光学系504は、色合成光学素子503からの出射光をスクリーン等の投射面上に投射する投射レンズを含む。 The optical devices 1r, 1g, and 1b are respectively made of different materials for red (R) light, green (G) light, and blue (B) light. The liquid crystal panels 502r, 502g, and 502b receive the light emitted from the optical device and modulate the light intensity in accordance with the image to be displayed. The color combining optical element 503 combines the light modulated by the liquid crystal panels 502r, 502g, and 502b. The projection optical system 504 includes a projection lens that projects the light emitted from the color combining optical element 503 onto a projection surface such as a screen.
 図10に、LEDプロジェクタ10に使用される光学装置の発光波長(Rs、Gs、Bs)と、前記キャリア生成層の励起波長(Ra、Ga、Ba)および発光波長(Rr、Gr、Br)の強度との関係を示す。図10に示すように、R光用光学装置、G光用光学装置、B光用光学装置の発光波長Rs、Gs、Bsと、前記キャリア生成層の励起波長Ra、Ga、Baは、それぞれほぼ等しく設定されている。また、前記光学装置の発光波長Rs、Gs、Bs、および前記キャリア生成層の励起波長Ra、Ga、Baと、前記キャリア生成層の発光波長Rr、Gr、Brとは、それぞれ互いに重ならないように設定されている。また、それぞれのR光用光学装置、G光用光学装置、B光用光学装置の発光スペクトルは、それぞれのキャリア生成層の励起スペクトルと一致するか、励起スペクトルの内側に収まるように設定されている。また、前記キャリア生成層の発光スペクトルは、前記キャリア生成層のいずれの励起スペクトルにもほとんど重ならないように設定されている。 FIG. 10 shows the light emission wavelengths (Rs, Gs, Bs) of the optical device used for the LED projector 10, and the excitation wavelengths (Ra, Ga, Ba) and the light emission wavelengths (Rr, Gr, Br) of the carrier generation layer. It shows the relationship with the strength. As shown in FIG. 10, the emission wavelengths Rs, Gs, Bs of the optical device for R light, the optical device for G light, and the optical device for B light, and the excitation wavelengths Ra, Ga, Ba of the carrier generation layer are approximately the same. It is set equally. In addition, the emission wavelengths Rs, Gs, and Bs of the optical device, the excitation wavelengths Ra, Ga, and Ba of the carrier generation layer, and the emission wavelengths Rr, Gr, and Br of the carrier generation layer do not overlap with each other. It is set. In addition, the emission spectra of the R optical device, the G optical device, and the B optical device are set to match the excitation spectrum of each carrier generation layer or to be within the excitation spectrum. There is. In addition, the emission spectrum of the carrier generation layer is set so as not to almost overlap with any excitation spectrum of the carrier generation layer.
 LEDプロジェクタ10は、制御回路部(図示せず)により、前記光路ごとに前記液晶パネル上の像を変調させる。LEDプロジェクタ10は、前記実施形態1から4のいずれかの光学装置を備えることにより、投射映像の輝度を向上できる。また、前記光学装置が非常に高い指向性を示すため、例えば、照明光学系を使用することなく、小型化できる。 The LED projector 10 modulates the image on the liquid crystal panel for each of the light paths by a control circuit unit (not shown). The LED projector 10 can improve the brightness of the projection image by including the optical device according to any one of the first to fourth embodiments. In addition, since the optical device exhibits very high directivity, it can be miniaturized, for example, without using an illumination optical system.
 図9に示す本実施形態のLEDプロジェクタは、3板型液晶プロジェクタであるが、本発明は、この例には限定されず、例えば、単板型液晶プロジェクタ等でもよい。また、本発明の画像表示装置は、前述のLEDプロジェクタのみならず、例えば、LED以外の発光素子(例えば、レーザダイオード、スーパールミネッセントダイオード等)を使用したプロジェクタでもよいし、液晶表示装置のバックライト、またはMEMSを使用したバックライトと組み合わせた画像表示装置でもよい。 Although the LED projector of the present embodiment shown in FIG. 9 is a three-plate type liquid crystal projector, the present invention is not limited to this example, and may be, for example, a single-plate type liquid crystal projector. Further, the image display device of the present invention may be a projector using not only the above-described LED projector but also, for example, a light emitting element other than an LED (for example, a laser diode, a super luminescent diode, etc.) It may be an image display device combined with a backlight or a backlight using MEMS.
 前述のように、本発明の光学装置は、励起光の吸収効率が向上されている。従って、本発明の光学装置を使用した画像表示装置は、プロジェクタ等として使用できる。前記プロジェクタは、例えば、モバイルプロジェクタ、次世代リアプロジェクションTV(rear projection TV)、デジタルシネマ、網膜走査ディスプレイ(RSD:Retinal Scanning Display)、ヘッドアップディスプレイ(HUD:Head Up Display)、または携帯電話、デジタルカメラ、ノートパソコン等への組込型プロジェクタ(embedded projector)等があげられ、幅広い市場に対する応用が可能である。ただし、その用途は限定されず、広い分野に適用可能である。 As described above, the optical device of the present invention has an improved absorption efficiency of excitation light. Therefore, the image display device using the optical device of the present invention can be used as a projector or the like. The projector may be, for example, a mobile projector, a next-generation rear projection TV, a digital cinema, a retinal scanning display (RSD), a head up display (HUD), or a mobile phone, digital There are a camera, a built-in projector (embedded projector) in a notebook personal computer and the like, and application to a wide range of markets is possible. However, the application is not limited and can be applied to a wide range of fields.
 以上、実施形態を参照して本願発明を説明したが、本願発明は、上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解しうる様々な変更をすることができる。 Although the present invention has been described above with reference to the embodiments, the present invention is not limited to the above embodiments. Various modifications that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
 この出願は、2012年1月7日に出願された日本出願特願2012-1693を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2012-1693 filed on Jan. 7, 2012, the entire disclosure of which is incorporated herein.
1、1r、1g、1b、11、21、31 光学装置
3、13、23 光制御部
10  LEDプロジェクタ(画像表示装置)
101a、101b 発光素子
103 キャリア生成層
104 誘電体層
105、305 プラズモン励起層
106、306 誘電体層
107、207 波数ベクトル変換層(出射層)
303 キャリア生成部(出射層)
309 光出射面
410 1/2波長板(偏光変換素子)
502r、502g、502b 液晶パネル
503 色合成光学素子
504 投射光学系
 
1, 1 r, 1 g, 1 b, 11, 21, 31 Optical devices 3, 13, 23 Light control unit 10 LED projector (image display device)
101a, 101b Light emitting element 103 Carrier generation layer 104 Dielectric layer 105, 305 Plasmon excitation layer 106, 306 Dielectric layer 107, 207 Wavenumber vector conversion layer (emission layer)
303 Carrier generation unit (emission layer)
309 Light emitting surface 410 1/2 wavelength plate (polarization conversion element)
502r, 502g, 502b liquid crystal panel 503 color combining optical element 504 projection optical system

Claims (14)

  1. 発光素子と、
    前記発光素子からの光が入射し、キャリアが生成されるキャリア生成層と、
    前記キャリア生成層の上側に積層され、前記キャリア生成層を前記発光素子の光で励起したときに発生する光の周波数よりも高いプラズマ周波数を有する、プラズモンを励起するプラズモン励起層と、
    前記プラズモン励起層の表面に発生する光または表面プラズモンを、所定の出射角の光に変換して出射する出射層とを備え、
    前記キャリア生成層に入射する光の入射角を、40度以上とする、光学装置。
    A light emitting element,
    A carrier generation layer in which light from the light emitting element is incident and carriers are generated;
    A plasmon excitation layer for exciting plasmons, which is stacked on the carrier generation layer and has a plasma frequency higher than the frequency of light generated when the carrier generation layer is excited by the light of the light emitting element;
    And an emission layer for converting light or surface plasmon generated on the surface of the plasmon excitation layer into light of a predetermined emission angle and emitting the light.
    The optical apparatus which makes the incident angle of the light which injects into the said carrier production | generation layer 40 degrees or more.
  2. 前記入射角を、60度以上とする、請求項1記載の光学装置。 The optical device according to claim 1, wherein the incident angle is 60 degrees or more.
  3. 前記プラズモン励起層の少なくとも一方の面に、誘電体層が積層されている、請求項1または2記載の光学装置。 The optical device according to claim 1, wherein a dielectric layer is laminated on at least one surface of the plasmon excitation layer.
  4. 前記プラズモン励起層の前記キャリア生成層側表面と、前記キャリア生成層の前記プラズモン励起層側表面との距離は、前記プラズモン励起層の前記キャリア生成層側表面に励起される表面プラズモンの有効相互作用距離よりも短い、請求項1から3のいずれか一項に記載の光学装置。 The distance between the carrier generation layer side surface of the plasmon excitation layer and the plasmon excitation layer side surface of the carrier generation layer is an effective interaction of surface plasmons excited on the carrier generation layer side surface of the plasmon excitation layer The optical device according to any one of claims 1 to 3, which is shorter than the distance.
  5. 前記キャリア生成層は、前記プラズモン励起層からの距離が、1~200nmの範囲内に配置されている、請求項4記載の光学装置。 The optical device according to claim 4, wherein the carrier generation layer is disposed within a range of 1 to 200 nm from the plasmon excitation layer.
  6. 前記出射層は、表面周期構造を有する、請求項1から5のいずれか一項に記載の光学装置。 The optical device according to any one of claims 1 to 5, wherein the exit layer has a surface periodic structure.
  7. 前記キャリア生成層は、表面周期構造を有し、かつ、前記出射層を兼ねる、請求項1から6のいずれか一項に記載の光学装置。 The optical device according to any one of claims 1 to 6, wherein the carrier generation layer has a surface periodic structure and doubles as the exit layer.
  8. さらに、前記出射層から出射される軸対称偏光を所定の偏光状態に揃える偏光変換素子を備える、請求項1から7のいずれか一項に記載の光学装置。 The optical device according to any one of claims 1 to 7, further comprising a polarization conversion element for aligning the axially symmetric polarized light emitted from the output layer into a predetermined polarization state.
  9. 前記プラズモン励起層の前記発光素子側に積層された構造全体と前記発光素子に接する媒質とを含む入射側部分の実効誘電率は、前記プラズモン励起層の前記出射層側に積層された構造全体と前記出射層に接する媒質とを含む出射側部分の実効誘電率より、低い、請求項1から8のいずれか一項に記載の光学装置。 The effective dielectric constant of the incident side portion including the entire structure stacked on the light emitting element side of the plasmon excitation layer and the medium in contact with the light emitting element is the entire structure stacked on the output layer side of the plasmon excitation layer The optical device according to any one of claims 1 to 8, which is lower than an effective dielectric constant of an output side portion including a medium in contact with the output layer.
  10. 前記プラズモン励起層の前記発光素子側に積層された構造全体と前記発光素子に接する媒質とを含む入射側部分の実効誘電率は、前記プラズモン励起層の前記出射層側に積層された構造全体と前記出射層に接する媒質とを含む出射側部分の実効誘電率より、高いまたは等しく、
    前記出射層の前記プラズモン励起層側の端部は、前記プラズモン励起層の前記出射層側の面からの距離が、表面プラズモンの有効相互作用距離の範囲内に配置されている、請求項1から8のいずれか一項に記載の光学装置。
    The effective dielectric constant of the incident side portion including the entire structure stacked on the light emitting element side of the plasmon excitation layer and the medium in contact with the light emitting element is the entire structure stacked on the output layer side of the plasmon excitation layer Higher than or equal to the effective dielectric constant of the emission side portion including the medium in contact with the emission layer,
    The end of the emission layer on the plasmon excitation layer side is located within the range of the effective interaction distance of surface plasmons from the surface of the plasmon excitation layer on the emission layer side. 8. The optical device according to any one of 8.
  11. 前記実効誘電率(εeff)は、前記プラズモン励起層の界面に平行な方向をx軸、y軸、前記プラズモン励起層の界面に垂直な方向をz軸、前記キャリア生成層から出射する光の角周波数をω、前記入射側部分または前記出射側部分の誘電体の誘電率分布をε(ω,x,y,z)、積分範囲Dを前記入射側部分または前記出射側部分の三次元座標の範囲、表面プラズモンの波数のz成分をkspp,z、虚数単位をj、Re[ ]を[ ]内の数値の実部を示す記号とすれば、下記式(1)または式(7)のいずれか一方で表され、
    かつ、前記表面プラズモンの波数のz成分kspp,z、および前記表面プラズモンの波数のx、y成分ksppは、前記プラズモン励起層の誘電率の実部をεmetal、真空中での光の波数をk0とすれば、下記式(2)および式(3)で表される、請求項9または10記載の光学装置。
    Figure JPOXMLDOC01-appb-M000001
    Figure JPOXMLDOC01-appb-M000002
    Figure JPOXMLDOC01-appb-M000003
    Figure JPOXMLDOC01-appb-M000004
    The effective dielectric constant (ε eff ) is such that a direction parallel to the interface of the plasmon excitation layer is x-axis, y-axis, a direction perpendicular to the interface of the plasmon excitation layer is z-axis, of the light emitted from the carrier generation layer The angular frequency is ω, the dielectric constant distribution of the dielectric of the incident side or the emission side is ε (ω, x, y, z), the integration range D is three dimensional coordinates of the incident side or the emission side If the z component of the wave number of the surface plasmon is k spp, z , the imaginary unit is j, and Re [] is a symbol indicating the real part of the numerical value in [], the following equation (1) or (7) Represented by either
    The z component k spp, z of the wave number of the surface plasmon and the x, y component k spp of the wave number of the surface plasmon are ε metal of the real part of the dielectric constant of the plasmon excitation layer. The optical device according to claim 9 or 10, which is represented by the following formula (2) and formula (3), assuming that the wave number is k 0 .
    Figure JPOXMLDOC01-appb-M000001
    Figure JPOXMLDOC01-appb-M000002
    Figure JPOXMLDOC01-appb-M000003
    Figure JPOXMLDOC01-appb-M000004
  12. 前記有効相互作用距離deffは、Im[ ]を[ ]内の数値の虚部を示す記号とすれば、下記式(4)で表される、請求項4から11のいずれか一項に記載の光学装置。
    Figure JPOXMLDOC01-appb-M000005
    12. The effective interaction distance d eff according to any one of claims 4 to 11, wherein Im [] is a symbol indicating an imaginary part of a numerical value in []. Optical device.
    Figure JPOXMLDOC01-appb-M000005
  13. 請求項1から12のいずれか一項に記載の光学装置と、
    画像を表示可能な画像表示部とを含む、画像表示装置。
    An optical device according to any one of the preceding claims,
    An image display device including an image display unit capable of displaying an image.
  14. さらに、前記画像表示部からの出射光により投射映像を投射する投射光学系を含む、請求項13記載の画像表示装置。 The image display device according to claim 13, further comprising a projection optical system that projects a projection image by light emitted from the image display unit.
PCT/JP2012/075696 2012-01-07 2012-10-03 Optical device and image display device WO2013103038A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-001693 2012-01-07
JP2012001693 2012-01-07

Publications (1)

Publication Number Publication Date
WO2013103038A1 true WO2013103038A1 (en) 2013-07-11

Family

ID=48745105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075696 WO2013103038A1 (en) 2012-01-07 2012-10-03 Optical device and image display device

Country Status (2)

Country Link
JP (1) JPWO2013103038A1 (en)
WO (1) WO2013103038A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009206459A (en) * 2008-02-29 2009-09-10 Sharp Corp Color conversion member and light-emitting apparatus using the same
WO2011040528A1 (en) * 2009-09-30 2011-04-07 日本電気株式会社 Optical element, light source device, and projection display device
WO2011142456A1 (en) * 2010-05-14 2011-11-17 日本電気株式会社 Display element, display, and projection display device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5424229B2 (en) * 2007-09-28 2014-02-26 独立行政法人産業技術総合研究所 Optical waveguide mode sensor using oxide film and manufacturing method thereof
JP2010096645A (en) * 2008-10-17 2010-04-30 National Institute Of Advanced Industrial Science & Technology Microplate having periodic structure, surface plasmon excitation enhanced fluorescence microscope using the same, fluorescence microplate reader, and method of detecting specific antigen/antibody reaction

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009206459A (en) * 2008-02-29 2009-09-10 Sharp Corp Color conversion member and light-emitting apparatus using the same
WO2011040528A1 (en) * 2009-09-30 2011-04-07 日本電気株式会社 Optical element, light source device, and projection display device
WO2011142456A1 (en) * 2010-05-14 2011-11-17 日本電気株式会社 Display element, display, and projection display device

Also Published As

Publication number Publication date
JPWO2013103038A1 (en) 2015-05-11

Similar Documents

Publication Publication Date Title
WO2013103037A1 (en) Optical device, optical element, and image display device
JP5605368B2 (en) Optical element, light source device and projection display device
JP5527327B2 (en) Light emitting device, light source device, and projection display device
JP5664657B2 (en) Optical element, light source, and projection display device
US7535171B2 (en) System and method for total light extraction from flat-panel light-emitting devices
US9170351B2 (en) Optical element, light source apparatus, and projection-type display apparatus
JP5605426B2 (en) Optical element, light source device and projection display device
JP5605427B2 (en) Light emitting device, light source device, and projection display device
WO2011142455A1 (en) Display element, display, and projecting display device
WO2013103039A1 (en) Optical element, optical device, image display device, and method for improving excited light absorption rate
US20140226197A1 (en) Optical element and projection-type display device using same
WO2013046865A1 (en) Optical element, light source device, and projection-type display device
WO2013046872A1 (en) Optical element, light source device and projection-type display device
WO2013175670A1 (en) Optical element, lighting device, and image display device
WO2013103038A1 (en) Optical device and image display device
WO2014020954A1 (en) Optical element, illumination device, image display device, method of operating optical element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12864439

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013552388

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12864439

Country of ref document: EP

Kind code of ref document: A1