WO2013100742A1 - Fiber-optic sensor device - Google Patents

Fiber-optic sensor device Download PDF

Info

Publication number
WO2013100742A1
WO2013100742A1 PCT/KR2012/011861 KR2012011861W WO2013100742A1 WO 2013100742 A1 WO2013100742 A1 WO 2013100742A1 KR 2012011861 W KR2012011861 W KR 2012011861W WO 2013100742 A1 WO2013100742 A1 WO 2013100742A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
light
bragg grating
unit
fiber bragg
Prior art date
Application number
PCT/KR2012/011861
Other languages
French (fr)
Korean (ko)
Inventor
반재경
최상진
Original Assignee
전북대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전북대학교산학협력단 filed Critical 전북대학교산학협력단
Priority to US14/352,009 priority Critical patent/US9170130B2/en
Publication of WO2013100742A1 publication Critical patent/WO2013100742A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/268Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light using optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35309Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
    • G01D5/35316Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Bragg gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35338Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
    • G01D5/35354Sensor working in reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • G01K11/3206Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres at discrete locations in the fibre, e.g. using Bragg scattering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02057Optical fibres with cladding with or without a coating comprising gratings
    • G02B6/02076Refractive index modulation gratings, e.g. Bragg gratings
    • G02B6/0208Refractive index modulation gratings, e.g. Bragg gratings characterised by their structure, wavelength response

Definitions

  • the present invention relates to an optical fiber sensor device, and more particularly, to an optical fiber sensor device for sensing a physical quantity using an optical fiber Bragg grating.
  • Optical gratings which are widely used for optical communication and optical fiber sensors, are generally made by a change in refractive index in the optical fiber core generated by irradiating a strong ultraviolet laser to the optical fiber.
  • the fiber Bragg grating induced a change in the axial refraction in the fiber core.
  • the optical fiber grating reflects only light with a narrow line width (typically 0.1 to Inm) at the center of the Bragg wavelength that satisfies Bragg conditions, and passes the light of the remaining wavelengths. This Bragg wavelength changes as the temperature of the fiber Bragg grating changes or when a stress is applied. Therefore, many optical fiber grating sensors have been developed that use this property to measure temperature, strain and pressure.
  • fiber optic grating sensors require expensive reference Fiber Bragg Grating (FBG), which is expensive and complicated in structure. Accordingly, there is a need for a search for a method for implementing a low cost simple structured fiber grating sensor.
  • FBG Fiber Bragg Grating
  • the present invention has been made to solve the above problems, and an object of the present invention is to detect a change in physical quantity by using two optical fiber Bragg grating portion disposed in the optical fiber and the optical fiber sensor portion disposed therebetween. It is to provide an optical fiber sensor device.
  • an optical fiber sensor device includes a light source for generating light; An optical fiber to which light generated by the light source is incident; The light A first optical fiber Bragg grating portion disposed in the fiber and reflecting a portion of the light generated by the light source; An optical fiber sensor unit disposed in the optical fiber and changing an intensity of light passing through the first optical fiber Bragg grating unit based on a specific physical quantity; A two-fiber Bragg grating portion disposed in the optical fiber and reflecting a portion of the light passing through the optical fiber sensor portion; And a monitoring unit configured to sense the specific physical quantity changed in the optical fiber sensor unit based on a ratio of the light intensity of the reflected light reflected by the first optical fiber Bragg grating unit and the reflected light reflected by the second optical fiber Bragg grating unit.
  • the monitoring unit may include: a filter unit configured to selectively pass first reflected light reflected from the first optical fiber Bragg grating unit and second reflected light reflected from the second optical fiber Bragg grating unit; A photoelectric conversion element converting the first reflected light and the second reflected light passing through the filter into a first electric signal and a second electric signal, respectively; And calculating the ratio of the light intensity of the first reflected light and the second reflected light using the first electric signal and the second electric signal, and changing the specificity changed in the optical fiber sensor unit based on the ratio of the light intensity. It may include a signal processor for detecting the physical quantity.
  • the filter unit may be a variable Fabry-Perot (F-P) filter for selectively passing light having a specific wavelength according to a bias voltage.
  • F-P variable Fabry-Perot
  • photo diode may be used.
  • the Bragg reflection wavelength characteristics may be different from each other in the first optical fiber Bragg grating portion and the second optical fiber Bragg grating portion.
  • the optical fiber sensor unit may be an intensity-type optical fiber sensor that changes and outputs the intensity of incident light according to a specific physical quantity.
  • the optical fiber, n (n is a natural number) of the optical fiber Bragg grating portion and includes n-1 optical fiber sensor unit disposed between each of the n optical fiber Bragg grating portion, the monitoring The specific physics changed in the optical fiber sensor section disposed between the two neighboring optical fiber Bragg grating sections based on the ratio of the light intensities of the two reflected light reflected by the two neighboring optical fiber Bragg grating sections in the optical fiber. Volume can be detected.
  • the optical fiber may have m pieces (m is a natural number), and may further include a wavelength division multiplexer that splits the light incident from the light source into wavelengths and enters the m optical fibers, respectively.
  • an optical fiber sensor device for detecting a change in physical quantity using two optical fiber Bragg grating portions disposed in an optical fiber and an optical fiber sensor portion disposed therebetween. Also, it is possible to implement a low cost, simple structure fiber grating sensor that does not require a reference FBG.
  • FIG. 1 is a view showing an optical fiber sensor device according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a case of an optical fiber sensor device including a plurality of optical fiber Bragg gratings and a plurality of optical fiber sensor units according to an embodiment of the present invention.
  • the optical fiber sensor device 100 includes a light source 110, a first optical fiber Bragg grating 120, a second optical fiber Bragg grating 125, an optical fiber sensor unit 130, and a monitoring unit ( 140).
  • the light source 110 includes all optical fiber Bragg gratings (FBG) included in the optical fiber sensor device 100.
  • FBG optical fiber Bragg gratings
  • Fiber Bragg Grating generates a wide band of light that includes all of the reflected wavelength band. Then, the light source 110 injects the generated light into the optical fiber 115 through the circler 150 (drculator).
  • the light generated by the light source 110 is incident to the optical fiber 115.
  • Fiber Optics (115)
  • the crab 1 optical fiber Bragg grating part 120, the 2nd optical fiber Bragg grating part 125, and the optical fiber sensor part 130 are arrange
  • the first optical fiber Bragg grating portion 120 is disposed in the optical fiber 115 and reflects a part of the light generated by the light source 110.
  • the first reflected light reflected by the first optical fiber Bragg grating unit 120 is incident to the monitoring unit 140 through the circler 150.
  • the optical fiber sensor unit 130 is disposed in the optical fiber 115 and changes the intensity of light passing through the giant U optical fiber Bragg grating portion based on the specific physical quantity.
  • the optical fiber sensor unit 130 is an intensity type optical fiber sensor that changes and outputs the intensity of incident light according to a specific physical quantity. Therefore, when a specific physical quantity is applied to the optical fiber sensor unit 130, the optical fiber sensor changes the intensity of the incident light and outputs the light.
  • the optical fiber sensor unit 130 is applied voltage, current, temperature, pressure, strain, turnover, sound, gas concentration The intensity of the incident light is varied according to the output.
  • the second optical fiber Bragg grating part 135 is disposed in the optical fiber 115 and reflects a part of the light passing through the optical fiber sensor part 130.
  • the second reflected light reflected from the second optical fiber Bragg grating unit 135 passes through the optical fiber sensor unit 130 and the first optical fiber Bragg grating unit 120 to the monitoring unit 140 through the circler 150. Incident.
  • the first optical fiber Bragg grating portion 120 and the second optical fiber Bragg grating portion 125 have a Bragg reflection wavelength characteristic . Are different. Therefore, the first reflected light and the second reflected light are different in wavelength from each other.
  • the monitoring unit 140 is based on the ratio of the light intensity of the first reflected light reflected by the first optical fiber Bragg grating unit 120 and the second reflected light reflected by the second optical fiber Bragg grating unit 125.
  • the sensor unit 130 detects a specific physical quantity changed or applied.
  • the monitoring unit 140 includes a filter unit 142, a photoelectric conversion element 144, and a signal processing unit 146.
  • the filter unit 142 may include the first reflected light and the second reflected light from the first optical fiber Bragg grating unit 120.
  • the second light reflected by the optical fiber Bragg grating portion 125 is selectively passed.
  • the filter unit 142 is used a variable Fabry-Perot (F-P) filter that selectively passes the light of a specific wavelength in accordance with the bias voltage. Therefore, since the first reflected light and the second reflected light have different wavelengths, the filter unit 142 can pass the first reflected light and the second reflected light separately.
  • F-P variable Fabry-Perot
  • the photoelectric conversion element 144 converts the first and second reflected light passing through the filter unit 142 into first and second electric signals, respectively. To this end, a photodiode for converting light into an electrical signal is used as the photoelectric conversion element 144.
  • the signal processor 146 receives the first electrical signal and the crab 2 electrical signal. Then, the signal processing unit 146 calculates the ratio of the light intensity of the first reflected light and the second reflected light using the electric signal and the second electric signal, and changes the optical signal at the optical fiber sensor unit 130 based on the ratio of the light intensity. Detected specific physical quantity.
  • the optical fiber sensor device 100 having such a structure has a measurable self-reference characteristic even when the light source generates output change over a short time or a long time by using a ratio of light reflected from two optical fiber Bragg gratings.
  • This self-reference property does not require an expensive reference fiber Bragg grating and enables the implementation of the optical fiber-based optical fiber sensor device 100 having a relatively simple structure.
  • the signal processing unit 146 and the first reflected light reflected from the first optical fiber Bragg grating unit 120 and A process of sensing the physical quantity changed in the optical fiber sensor unit 130 using the ratio of the second reflected light reflected by the second optical fiber Bragg grating unit 125 will be described below.
  • the first optical fiber Bragg grating portion 120 and the second optical fiber Bragg grating portion 125 have reflectances R u and R 12 , respectively, and the conditions of the optical fiber sensor device 100.
  • Bragg reflection wavelength characteristics center wavelength and full wavelength at half maximum (FWHM)).
  • the light emitted from the light source 110 proceeds from the port 1 to the port 2 through the optical circler 150 and is incident to the optical fiber 115.
  • the incident light is reflected from the first optical fiber Bragg grating unit 120 to the first reflected light corresponding to the Bragg reflection wavelength, and the light of the other wavelengths is formed by the first optical fiber Bragg grating unit 120 and the optical fiber sensor unit 130.
  • the second optical fiber Bragg grating portion 125 is reached.
  • the second reflected light having a wavelength corresponding to the Bragg reflected wavelength of the second optical fiber Bragg grating part 125 is reflected by the second optical fiber Bragg grating part 125 and passes through the optical fiber sensor part 130 to the optical circler 150.
  • the second reflected light emitted from the port 3 is reflected by the first reflected light reflected by the first optical fiber Bragg grating part 120 and the second optical fiber Bragg grating part 125 according to the bias voltage input to the filter part 142. Divided into second reflected light. The first reflected light and the second reflected light are converted into a first electrical signal and a second electrical signal by the photoelectric conversion element 144.
  • the optical fiber loss between the light source 110, the optical circler 150, the optical circler 150, the filter unit 142, and the photoelectric conversion element 144 is ignored. .
  • the optical power Pu of the first reflected light reflected by the first optical fiber Bragg grating portion 120 and incident on the photoelectric conversion element 144 may be expressed by Equation (1) below.
  • K cl - 2 loss that occurs when proceeding from the optical circler 150 port 1 to the port 2
  • K fiberl the optical circler port 150 and the first optical fiber loss between the Bragg grating (120)
  • R u first reflectivity of the fiber Bragg grating (120)
  • K C2 - 3 the light standing Klee data 150 loss that occurs when going from port 2 a port 3
  • K fp This is a loss of the variable F-P filter portion 142.
  • the optical power 12 12 of the second reflected light reflected from the second optical fiber Bragg grating 125 and incident on the photoelectric conversion element 144 may be represented by Equation (2).
  • K fiber2 loss between the first optical fiber Bragg grating 120 and the second optical fiber Bragg grating 125
  • K FBG11 loss depending on the transmission spectrum of the first optical fiber Bragg grating 120
  • R 12 2 reflectance of the optical fiber Bragg grating 125
  • H u transfer function of the optical fiber sensor unit 130 S u .
  • Equation (1) Using Equation (1) and Equation (2), we can define the measurement parameters:
  • V fpll the bias voltage of the variable FP filter unit 142 that passes the wavelength corresponding to the reflected wavelength of the first optical fiber Bragg grating 120
  • V fpll the bias voltage of the variable FP filter unit 142 that passes the wavelength corresponding to the reflected wavelength of the first optical fiber Bragg grating 120
  • the optical fiber sensor device 100 can detect a change in physical quantity generated in the optical fiber sensor unit 130.
  • the optical fiber sensor device 100 does not require an expensive reference optical fiber Bragg grating, which is required in the conventional wavelength-based fiber Bragg grating sensor structure, and can measure the input light regardless of the change in the input light or the temperature change. This has the advantage of reducing the cost of implementing an interrogator.
  • FIG. 2 is a diagram illustrating an optical fiber sensor device including a plurality of optical fiber Bragg gratings and a plurality of optical fiber sensor units in the measuring unit 410, according to an exemplary embodiment.
  • the optical fiber sensor device 200 of FIG. 2 includes a plurality of optical fiber Bragg gratings and a plurality of optical fiber sensor parts in the measuring unit 410, and the optical fiber sensor device 200 includes a wavelength division multiplexer 420 for each optical fiber. You can see that it is multiplexed.
  • each optical fiber constitutes one row
  • n optical fiber Bragg grating parts, and n ⁇ 1 optical fiber sensor parts disposed between each of the n optical fiber Bragg grating parts.
  • n is a natural number.
  • the monitoring unit 140 is an optical fiber sensor disposed between two neighboring optical fiber Bragg grating portion based on the ratio of the light intensity of the two reflected light reflected by two adjacent optical fiber Bragg grating portion in the optical fiber.
  • the unit detects a specific physical quantity that has changed.
  • wavelength division multiplexer 420 is a light source 110
  • the light incident on the beam is divided into wavelengths and then incident on the m optical fibers.
  • the wavelength division multiplexer 420 determines the division unit of the wavelength according to the reflection wavelength band of all of the optical fiber Bragg gratings included in each optical fiber.
  • all of the plurality of optical fiber Bragg gratings included in the measuring unit 410 may have different Bragg reflection characteristics.
  • the optical fiber sensor device 200 including the plurality of optical fiber Bragg gratings and the plurality of optical fiber measuring units may detect a change in physical quantity in a wide area.
  • the optical fiber sensor device 100 may be far apart because the monitoring unit 140 and the optical fiber sensor unit 130 are connected by using the optical fiber 115, and are separated and paralleled by a wavelength division multiplexer. Since each measurement point multiplexed by X can have different lengths, there is no restriction of the distance between the monitoring point and the measurement point.
  • the optical intensity-based optical fiber sensor units are located between two optical fiber Bragg gratings, and each calibration factor is measured through Equation (3).
  • m * (n-1) light intensity based optical fiber sensor parts can be arranged, so that multiple points can be measured at the same time.
  • a light intensity based fiber optic sensor located between the two fiber Bragg gratings.
  • the light intensity-based optical fiber sensor unit located between the two optical fiber Bragg gratings is composed of optical fibers, the user can adjust the measurement range to the desired measurement range without limiting the length of the portion to be measured from the point sensor to the distributed sensor.
  • the present invention is applicable to the optical fiber sensor device industry as a sensor device for sensing a physical quantity using an optical fiber Bragg grating.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Transform (AREA)

Abstract

Provided is a fiber-optic sensor device. The fiber-optic sensor device is capable of sensing a change in physical quantity by using two fiber Bragg grating units arranged within an optical fiber and a fiber-optic sensor unit arranged therebetween, thereby implementing a low cost fiber-optic grating sensor having a simple structure without requiring a reference FBG.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
광섬유 센서장치  Fiber optic sensor
【기술분야】  Technical Field
<1> 본 발명은 광섬유 센서장치에 관한 것으로, 더욱 상세하게는, 광섬유 브래그 격자를 이용하여 물리량을 감지하는 광섬유 센서장치에 관한 것이다.  The present invention relates to an optical fiber sensor device, and more particularly, to an optical fiber sensor device for sensing a physical quantity using an optical fiber Bragg grating.
【배경기술】  Background Art
<2> 광통신용 및 광섬유 센서용으로 널리 쓰이고 있는 광섬유 격자는 일반적으로 광섬유에 강한 자외선 레이저를 조사하여 발생되는 광섬유 코어 내에서의 굴절률 변화에 의해 만들어진다.  Optical gratings, which are widely used for optical communication and optical fiber sensors, are generally made by a change in refractive index in the optical fiber core generated by irradiating a strong ultraviolet laser to the optical fiber.
<3> 이 때, 발생되는 광섬유의 굴절률 변조 주기 등의 특성에 따라 단주기 광섬 유 격자, 장주기 광섬유 격자 등으로 분류되고, 각기 특성에 따라 파장에 따른 반 사 및 투과 필터 등으로 연구 및 사용되고 있다.  <3> At this time, it is classified into short period optical fiber grating and long period optical fiber grating according to the characteristics of refractive index modulation cycle of generated optical fiber, and has been researched and used as reflection and transmission filter according to wavelength according to their characteristics. .
<4> 또한, 광섬유 브래그 격자 (fiber Bragg grating)는 광섬유 코아 (core)에 축 방향으로 주기적인 굴절를 변화를 유도한 것이다. 이 광섬유 격자는 브래그 조건올 만족하는 브래그 파장 (Bragg wavelength) 중심으로 좁은 선폭 (통상 0.1〜: Inm)의 빛 만 반사하게 되고 나머지 파장의 빛은 통과시키는 특성을 가진다. 이 브래그 파장 은 광섬유 브래그 격자의 온도가 변화하거나 웅력 (stress)이 인가되면 그에 따라 변화하게 된다. 따라서 이 성질을 이용해서 온도, 변형를 (strain), 압력 등을 측정 하는 많은 광섬유 격자 센서들이 개발되어 왔다.  In addition, the fiber Bragg grating induced a change in the axial refraction in the fiber core. The optical fiber grating reflects only light with a narrow line width (typically 0.1 to Inm) at the center of the Bragg wavelength that satisfies Bragg conditions, and passes the light of the remaining wavelengths. This Bragg wavelength changes as the temperature of the fiber Bragg grating changes or when a stress is applied. Therefore, many optical fiber grating sensors have been developed that use this property to measure temperature, strain and pressure.
<5> 하지만, 광섬유 격자 센서들은 고가의 기준 FBG(Fiber Bragg Grating)을 필 요로 하기 때문에 가격이 비싸며 구조가 복잡해진다. 이에 따라, 저가의 단순한 구 조의 광섬유 격자 센서를 구현하기 위한 방안의 모색이 요청된다.  However, fiber optic grating sensors require expensive reference Fiber Bragg Grating (FBG), which is expensive and complicated in structure. Accordingly, there is a need for a search for a method for implementing a low cost simple structured fiber grating sensor.
【발명의 상세한 설명】  [Detailed Description of the Invention]
【기술적 과제】  [Technical problem]
<6> 본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명 의 목적은, 광섬유 내에 배치된 두개의 광섬유 브래그 격자부 및 그 사이에 배치된 광섬유 센서부를 이용하여 물리량의 변화를 감지하는 광섬유 센서장치를 제공함에 있다.  The present invention has been made to solve the above problems, and an object of the present invention is to detect a change in physical quantity by using two optical fiber Bragg grating portion disposed in the optical fiber and the optical fiber sensor portion disposed therebetween. It is to provide an optical fiber sensor device.
【기술적 해결방법】  Technical Solution
<7> 상기 목적을 달성하기. 위한 본 발명의 일 실시예에 따른, 광섬유 센서장치 는, 광을 생성시키는 광원; 상기 광원에서 생성된 광이 입사되는 광섬유; 상기 광 섬유 내에 배치되고, 상기 광원에서 생성된 광의 일부를 반사시키는 제 1 광섬유 브 래그 격자부; 상기 광섬유 내에 배치되고, 특정 물리량에 기초하여 상기 제 1 광섬 유 브래그 격자부를 통과한 광의 세기를 변화시키는 광섬유 센서부; 상기 광섬유 내에 배치되고, 상기 광섬유 센서부를 통과한 광의 일부를 반사시키는 게 2 광섬유 브래그 격자부; 및 상기 게 1 광섬유 브래그 격자부에서 반사된 반사광과 상기 제 2 광섬유 브래그 격자부에서 반사된 반사광의 광세기의 비에 기초하여 상기 광섬유 센서부에서 변화된 상기 특정 물리량을 감지하는 모니터링부;를 포함한다. <7> To achieve the above object . According to one embodiment of the present invention, an optical fiber sensor device includes a light source for generating light; An optical fiber to which light generated by the light source is incident; The light A first optical fiber Bragg grating portion disposed in the fiber and reflecting a portion of the light generated by the light source; An optical fiber sensor unit disposed in the optical fiber and changing an intensity of light passing through the first optical fiber Bragg grating unit based on a specific physical quantity; A two-fiber Bragg grating portion disposed in the optical fiber and reflecting a portion of the light passing through the optical fiber sensor portion; And a monitoring unit configured to sense the specific physical quantity changed in the optical fiber sensor unit based on a ratio of the light intensity of the reflected light reflected by the first optical fiber Bragg grating unit and the reflected light reflected by the second optical fiber Bragg grating unit. .
<8> 그리고, 상기 모니터링부는, 상기 제 1 광섬유 브래그 격자부에서 반사된 제 1 반사광과 상기 제 2 광섬유 브래그 격자부에서 반사된 제 2 반사광을 선택적으로 통 과시키는 필터부; 상기 필터부를 통과한 제 1 반사광 및 제 2 반사광을 각각 제 1 전 기신호 및 게 2 전기신호로 변환하는 광전변환소자; 및 상기 제 1 전기신호 및 상기 제 2 전기신호를 이용하여, 상기 제 1 반사광과 상기 제 2 반사광의 광세기의 비를 산 출하고 상기 광세기의 비에 기초하여 상기 광섬유 센서부에서 변화된 상기 특정 물 리량을 감지하는 신호 처리부;를 포함할 수도 있다.  The monitoring unit may include: a filter unit configured to selectively pass first reflected light reflected from the first optical fiber Bragg grating unit and second reflected light reflected from the second optical fiber Bragg grating unit; A photoelectric conversion element converting the first reflected light and the second reflected light passing through the filter into a first electric signal and a second electric signal, respectively; And calculating the ratio of the light intensity of the first reflected light and the second reflected light using the first electric signal and the second electric signal, and changing the specificity changed in the optical fiber sensor unit based on the ratio of the light intensity. It may include a signal processor for detecting the physical quantity.
<9> 또한, 상기 필터부는, 바이어스 전압에 따라 특정 파장의 광을 선택적으로 통과시키는 가변 Fabry-Perot(F-P) 필터일 수도 있다.  In addition, the filter unit may be a variable Fabry-Perot (F-P) filter for selectively passing light having a specific wavelength according to a bias voltage.
<ιο> 그리고, 상기 광전변환소자는, 광을 전기 신호로 변환하는 포토 다이오드  <ιο> And the photoelectric conversion element, a photodiode that converts light into an electrical signal
(photo diode)일 수도 있다.  (photo diode) may be used.
<ιι> 또한, 상기 제 1 광섬유 브래그 격자부 및 상기 제 2 광섬유 브래그 격자부는, 브래그 (Bragg) 반사 파장 특성이 서로 다를 수도 있다.  <ιι> Further, the Bragg reflection wavelength characteristics may be different from each other in the first optical fiber Bragg grating portion and the second optical fiber Bragg grating portion.
<12> 그리고, 상기 광섬유 센서부는, 특정 물리량에 따라 입사된 광의 세기를 변 화시켜 출력시키는 세기형 광섬유 센서일 수도 있다.  In addition, the optical fiber sensor unit may be an intensity-type optical fiber sensor that changes and outputs the intensity of incident light according to a specific physical quantity.
<13> 또한, 상기 광섬유는, n개 (n은 자연수)의 광섬유 브래그 격자부를 포함하고, 상기 n개의 광섬유 브래그 격자부 각각의 사이에 배치되는 n-1개의 광섬유 센서부 를 포함하고, 상기 모니터링부는, 상기 광섬유내의 이웃하는 2개의 광섬유 브래그 격자부에서 반사되는 2개의 반사광의 광세기의 비에 기초하여, 상기 이웃하는 2개 의 광섬유 브래그 격자부 사이에 배치된 광섬유 센서부에서 변화된 상기 특정 물리 량을 감지할 수도 있다.  In addition, the optical fiber, n (n is a natural number) of the optical fiber Bragg grating portion, and includes n-1 optical fiber sensor unit disposed between each of the n optical fiber Bragg grating portion, the monitoring The specific physics changed in the optical fiber sensor section disposed between the two neighboring optical fiber Bragg grating sections based on the ratio of the light intensities of the two reflected light reflected by the two neighboring optical fiber Bragg grating sections in the optical fiber. Volume can be detected.
<|4> 그리고, 상기 광섬유는 m개 (m은 자연수)이고, 상기 광원에서 입사되는 광을 파장별로 분할하여 상기 m개의 광섬유에 각각 입사하는 파장분할 다중화기;를 더 포함할 수도 있다.  <| 4> The optical fiber may have m pieces (m is a natural number), and may further include a wavelength division multiplexer that splits the light incident from the light source into wavelengths and enters the m optical fibers, respectively.
<15> 【유리한 효과】 <15> Advantageous Effects
<16> 본 발명의 다양한 실시예에 따르면, 광섬유 내에 배치된 두개의 광섬유 브래 그 격자부 및 그 사이에 배치된 광섬유 센서부를 이용하여 물리량의 변화를 감지하 는 광섬유 센서장치를 제공할 수 있게 되어, 기준 FBG가 필요없는 저가의 단순한 구조의 광섬유 격자 센서를 구현할 수 있게 된다.  According to various embodiments of the present disclosure, it is possible to provide an optical fiber sensor device for detecting a change in physical quantity using two optical fiber Bragg grating portions disposed in an optical fiber and an optical fiber sensor portion disposed therebetween. Also, it is possible to implement a low cost, simple structure fiber grating sensor that does not require a reference FBG.
【도면의 간단한 설명】  [Brief Description of Drawings]
<17> 도 1은 본 발명의 일 실시예에 따른, 광섬유 센서장치를 도시한 도면, 1 is a view showing an optical fiber sensor device according to an embodiment of the present invention;
<18> 도 2는 본 발명의 일 실시예에 따른, 측정부에 복수개의 광섬유 브래그 격자 및 다수의 광섬유 센서부가 포함된 광섬유 센서장치의 경우를 도시한 도면이다.FIG. 2 is a diagram illustrating a case of an optical fiber sensor device including a plurality of optical fiber Bragg gratings and a plurality of optical fiber sensor units according to an embodiment of the present invention.
<19> <19>
【발명의 실시를 위한 형태】  [Form for implementation of invention]
<20> 이하에서는 도면을 참조하여 본 발명을 보다 상세하게 설명한다 .  Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.
<2i> 도 1은 본 발명의 일 실시예에 따른, 광섬유 센서장치 (100)를 도시한 도면이 다. 도 1에 도시된 바와 같이, 광섬유 센서장치 (100)는 광원 (110), 제 1 광섬유 브 래그 격자 (120), 게 2 광섬유 브래그 격자 (125), 광섬유 센서부 (130), 및 모니터링 부 (140)를 포함한다.  1 is a diagram illustrating an optical fiber sensor device 100 according to an embodiment of the present invention. As shown in FIG. 1, the optical fiber sensor device 100 includes a light source 110, a first optical fiber Bragg grating 120, a second optical fiber Bragg grating 125, an optical fiber sensor unit 130, and a monitoring unit ( 140).
<22> 광원 (110)은 광섬유 센서장치 (100)에 포함된 모든 광섬유 브래그 격자 (FBG :  The light source 110 includes all optical fiber Bragg gratings (FBG) included in the optical fiber sensor device 100.
Fiber Bragg Grating)의 반사 파장 대역을 모두 포함하는 광대역의 광을 생성한다. 그리고, 광원 (110)은 생성된 광을 서클레이터 (150)(drculator)를 통해 광섬유 (115)로 입사시킨다.  Fiber Bragg Grating) generates a wide band of light that includes all of the reflected wavelength band. Then, the light source 110 injects the generated light into the optical fiber 115 through the circler 150 (drculator).
<23> 광섬유 (115)는 광원 (110)에서 생성된 광이 입사된다. 그리고, 광섬유 (115)  The light generated by the light source 110 is incident to the optical fiber 115. And Fiber Optics (115)
내에는 게 1 광섬유 브래그 격자부 (120), 제 2 광섬유 브래그 격자부 (125) 및 광섬유 센서부 (130)가 배치된다.  The crab 1 optical fiber Bragg grating part 120, the 2nd optical fiber Bragg grating part 125, and the optical fiber sensor part 130 are arrange | positioned inside.
<24> 제 1 광섬유 브래그 격자부 (120)는 광섬유 (115) 내에 배치되고, 광원 (110)에 서 생성된 광의 일부를 반사시킨다. 제 1 광섬유 브래그 격자부 (120)에서 반사된 제 1 반사광은 서클레이터 (150)를 통해 모니터링부 (140)로 입사된다.  The first optical fiber Bragg grating portion 120 is disposed in the optical fiber 115 and reflects a part of the light generated by the light source 110. The first reflected light reflected by the first optical fiber Bragg grating unit 120 is incident to the monitoring unit 140 through the circler 150.
<25> 광섬유 센서부 (130)는 광섬유 (115) 내에 배치되고, 특정 물리량에 기초하여 거 U광섬유 브래그 격자부를 통과한 광의 세기를 변화시킨다. 구체적으로, 광섬유 센서부 (130)는 특정 물리량에 따라 입사된 광의 세기를 변화시켜 출력시키는 세기 형 광섬유 센서이다. 따라서, 광섬유 센서부 (130)에 특정 물리량이 가해지면 광섬 유 센서는 입사된 광의 세기를 변화시켜 출력하게 된다. 구체적으로, 광섬유 센서 부 (130)는 인가되는 전압, 전류, 온도, 압력, 스트레인, 회전율, 음향, 가스 농도 등에 따라 입사된 광의 세기를 변화시켜 출력하게 된다. The optical fiber sensor unit 130 is disposed in the optical fiber 115 and changes the intensity of light passing through the giant U optical fiber Bragg grating portion based on the specific physical quantity. Specifically, the optical fiber sensor unit 130 is an intensity type optical fiber sensor that changes and outputs the intensity of incident light according to a specific physical quantity. Therefore, when a specific physical quantity is applied to the optical fiber sensor unit 130, the optical fiber sensor changes the intensity of the incident light and outputs the light. Specifically, the optical fiber sensor unit 130 is applied voltage, current, temperature, pressure, strain, turnover, sound, gas concentration The intensity of the incident light is varied according to the output.
<26> 제 2 광섬유 브래그 격자부 (135)는 광섬유 (115) 내에 배치되고, 광섬유 센서 부 (130)를 통과한 광의 일부를 반사시킨다. 그리고, 제 2 광섬유 브래그 격자부 (135)에서 반사된 제 2 반사광은 다시 광섬유 센서부 (130), 제 1 광섬유 브래그 격자 부 (120)를 거치고 서클레이터 (150)를 통해 모니터링부 (140)로 입사된다.  The second optical fiber Bragg grating part 135 is disposed in the optical fiber 115 and reflects a part of the light passing through the optical fiber sensor part 130. The second reflected light reflected from the second optical fiber Bragg grating unit 135 passes through the optical fiber sensor unit 130 and the first optical fiber Bragg grating unit 120 to the monitoring unit 140 through the circler 150. Incident.
<27> 이 때, 게 1 광섬유 브래그 격자부 (120)와 제 2 광섬유 브래그 격자부 (125)는 브래그 (Bragg) 반사 파장 특성이. 서로 다르다. 따라서 , 제 1 반사광과 제 2 반사광은 서로 파장이 다르게 된다. At this time, the first optical fiber Bragg grating portion 120 and the second optical fiber Bragg grating portion 125 have a Bragg reflection wavelength characteristic . Are different. Therefore, the first reflected light and the second reflected light are different in wavelength from each other.
<28> 모니터링부 (140)는 제 1 광섬유 브래그 격자부 (120)에서 반사된 제 1 반사광과 상기 제 2 광섬유 브래그 격자부 (125)에서 반사된 게 2 반사광의 광세기의 비에 기초 하여 광섬유 센서부 (130)에서 변화되거나 인가된 특정 물리량을 감지하게 된다. 도 1에 도시된 바와 같이, 모니터링부 (140)는 필터부 (142), 광전변환소자 (144), 및 신 호처리부 (146)를 포함한다.  The monitoring unit 140 is based on the ratio of the light intensity of the first reflected light reflected by the first optical fiber Bragg grating unit 120 and the second reflected light reflected by the second optical fiber Bragg grating unit 125. The sensor unit 130 detects a specific physical quantity changed or applied. As shown in FIG. 1, the monitoring unit 140 includes a filter unit 142, a photoelectric conversion element 144, and a signal processing unit 146.
<29> 필터부 (142)는 제 1 광섬유 브래그 격자부 (120)에서 반사된 제 1 반사광과 제 2  The filter unit 142 may include the first reflected light and the second reflected light from the first optical fiber Bragg grating unit 120.
광섬유 브래그 격자부 (125)에서 반사된 제 2 광을 선택적으로 통과시킨다. 이를 위 해, 필터부 (142)는 바이어스 전압에 따라 특정 파장의 광을 선택적으로 통과시키는 가변 Fabry-Perot(F-P) 필터가 이용된다. 따라서, 제 1 반사광과 제 2 반사광은 서로 다른 파장을 가지기 때문에, 필터부 (142)는 제 1 반사광과 게 2 반사광을 구분하여 통과시킬 수 있게 된다.  The second light reflected by the optical fiber Bragg grating portion 125 is selectively passed. To this end, the filter unit 142 is used a variable Fabry-Perot (F-P) filter that selectively passes the light of a specific wavelength in accordance with the bias voltage. Therefore, since the first reflected light and the second reflected light have different wavelengths, the filter unit 142 can pass the first reflected light and the second reflected light separately.
<30> 광전변환소자 (144)는 필터부 (142)를 통과한 제 1 반사광 및 제 2 반사광을 각 각 제 1 전기신호 및 제 2 전기신호로 변환한다. 이를 위해, 광전변환소자 (144)는 광 을 전기 신호로 변환하는 포토 다이오드 (photo diode)가 이용된다.  The photoelectric conversion element 144 converts the first and second reflected light passing through the filter unit 142 into first and second electric signals, respectively. To this end, a photodiode for converting light into an electrical signal is used as the photoelectric conversion element 144.
<3i> 신호 처리부 (146)는 제 1 전기신호 및 게 2 전기신호를 수신한다. 그리고, 신 호 처리부 (146)는 전기신호 및 제 2 전기신호를 이용하여, 제 1 반사광과 게 2 반사광 의 광세기의 비를 산출하고 광세기의 비에 기초하여 광섬유 센서부 (130)에서 변화 된 특정 물리량을 감지하게 된다.  The signal processor 146 receives the first electrical signal and the crab 2 electrical signal. Then, the signal processing unit 146 calculates the ratio of the light intensity of the first reflected light and the second reflected light using the electric signal and the second electric signal, and changes the optical signal at the optical fiber sensor unit 130 based on the ratio of the light intensity. Detected specific physical quantity.
<32> 이와 같은 구조의 광섬유 센서장치 (100)는 두 개의 광섬유 브래그 격자에서 반사된 광의 비율을 이용함으로써 광원이 단시간 또는 장시간에 걸쳐 출력 변화를 일으키더라도 측정 가능한 자기기준 특성을 가지게 된다. 이러한 자기기준 특성은 고가의 기준 광섬유 브래그 격자를 필요로 하지 않으며 비교적 구조가 간단한 광세 기 기반 광섬유 센서장치 (100)의 구현을 가능하게 한다.  The optical fiber sensor device 100 having such a structure has a measurable self-reference characteristic even when the light source generates output change over a short time or a long time by using a ratio of light reflected from two optical fiber Bragg gratings. This self-reference property does not require an expensive reference fiber Bragg grating and enables the implementation of the optical fiber-based optical fiber sensor device 100 having a relatively simple structure.
<33> 신호처리부 (146)가 제 1 광섬유 브래그 격자부 (120)에서 반사된 제 1 반사광과 제 2 광섬유 브래그 격자부 (125)에서 반사된 제 2 반사광의 비를 이용하여 광섬유 센 서부 (130)서 변화된 물리량을 감지하는 과정에 대해 이하에서 설명한다. The signal processing unit 146 and the first reflected light reflected from the first optical fiber Bragg grating unit 120 and A process of sensing the physical quantity changed in the optical fiber sensor unit 130 using the ratio of the second reflected light reflected by the second optical fiber Bragg grating unit 125 will be described below.
<34> 도 1에 도시된 바와 같이, 제 1 광섬유 브래그 격자부 (120)와 제 2 광섬유 브 래그 격자부 (125)는 각각 반사도 Ru과 R12를 가지며, 광섬유 센서장치 (100)의 조건 에 맞는 브래그 반사파장 특성 (중심파장 및 FWHM(full wavelength at half maximum))을 가진다. As shown in FIG. 1, the first optical fiber Bragg grating portion 120 and the second optical fiber Bragg grating portion 125 have reflectances R u and R 12 , respectively, and the conditions of the optical fiber sensor device 100. Bragg reflection wavelength characteristics (center wavelength and full wavelength at half maximum (FWHM)).
<35> 동작원리를 살펴보면, 광원 (110)에서 나온 광은 광 서클레이터 (150)를 통해 포트①에서 포트②로 진행하며 광섬유 (115)로 입사된다. 입사된 광은 제 1 광섬유 브래그 격자부 (120)에서 브래그 반사파장에 해당하는 제 1 반사광이 반사되고, 나머 지 파장의 광은 게 1 광섬유 브래그 격자부 (120)와 광섬유 센서부 (130)를 통과한 후 제 2 광섬유 브래그 격자부 (125)에 도달한다. 제 2 광섬유 브래그 격자부 (125)의 브 래그 반사파장에 해당하는 파장의 제 2 반사광은 제 2 광섬유 브래그 격자부 (125)에 서 반사되어 다시 광섬유 센서부 (130)를 지나 광 서클레이터 (150)에 의해 포트③으 로 입사한다. 포트③에서 나온 제 2 반사광은 필터부 (142)에 입력되는 바이어스 전 압에 따라 제 1 광섬유 브래그 격자부 (120)에 의해 반사된 제 1 반사광과 제 2 광섬유 브래그 격자부 (125)에 의해 반사된 제 2 반사광으로 구분된다. 그리고, 제 1 반사광 및 제 2 반사광은 광전변환소자 (144)에 의하여 계 1 전기신호 및 제 2 전기신호로 변 환된다.  Looking at the operation principle, the light emitted from the light source 110 proceeds from the port ① to the port ② through the optical circler 150 and is incident to the optical fiber 115. The incident light is reflected from the first optical fiber Bragg grating unit 120 to the first reflected light corresponding to the Bragg reflection wavelength, and the light of the other wavelengths is formed by the first optical fiber Bragg grating unit 120 and the optical fiber sensor unit 130. After passing, the second optical fiber Bragg grating portion 125 is reached. The second reflected light having a wavelength corresponding to the Bragg reflected wavelength of the second optical fiber Bragg grating part 125 is reflected by the second optical fiber Bragg grating part 125 and passes through the optical fiber sensor part 130 to the optical circler 150. Enters port ③ by The second reflected light emitted from the port ③ is reflected by the first reflected light reflected by the first optical fiber Bragg grating part 120 and the second optical fiber Bragg grating part 125 according to the bias voltage input to the filter part 142. Divided into second reflected light. The first reflected light and the second reflected light are converted into a first electrical signal and a second electrical signal by the photoelectric conversion element 144.
<36> 모니터링부 (140)는 근거리에 있으므로 광원 (110)과 광 서클레이터 (150), 광 서클레이터 (150)와 필터부 (142)와 광전변환소자 (144) 사이의 광섬유 손실은 무시한 다. 이러한 가정 하에 제 1 광섬유 브래그 격자부 (120)에서 반사하여 광전변환소자 (144)에 입사한 게 1 반사광의 광파워 Pu은 다음의 식 (1)과 같이 나타낼 수 있다.  Since the monitoring unit 140 is at a short distance, the optical fiber loss between the light source 110, the optical circler 150, the optical circler 150, the filter unit 142, and the photoelectric conversion element 144 is ignored. . Under this assumption, the optical power Pu of the first reflected light reflected by the first optical fiber Bragg grating portion 120 and incident on the photoelectric conversion element 144 may be expressed by Equation (1) below.
2  2
<37> P \ = Pin · ^ -2 · ^fiberl · ^ll · ^62—3 · ^fp (1) <37> P \ = Pin · ^ -2 · ^ fiberl · ^ ll · ^ 62—3 · ^ fp (1)
<38> 여기에서 Ρίπ은 입력 광파워, Kcl-2:광 서클레이터 (150) 포트①에서 포트②로 진행할 때 발생하는 손실, Kfiberl:광 서클레이터 (150) 포트② 와 제 1 광섬유 브래그 격자 (120) 사이의 손실, Ru:제 1 광섬유 브래그 격자 (120)의 반사도, KC2-3:광 서클레 이터 (150) 포트②에서 포트③으로 진행할 때 발생하는 손실, Kfp:가변 F— P 필터부 (142)의 손실이다. Where Ρ ίπ is the input optical power, K cl - 2 : loss that occurs when proceeding from the optical circler 150 port ① to the port ②, K fiberl : the optical circler port 150 and the first optical fiber loss between the Bragg grating (120), R u: first reflectivity of the fiber Bragg grating (120), K C2 - 3 : the light standing Klee data 150 loss that occurs when going from port ② a port ③, K fp: This is a loss of the variable F-P filter portion 142.
<39> 또한 동일한 가정 하에 제 2 광섬유 브래그 격자 (125)에서 반사하여 광전변환 소자 (144)에 입사한 제 2 반사광의 광파워 Ρ12 는 식 (2)와 같이 나타낼 수 있다.
Figure imgf000007_0001
In addition, under the same assumption, the optical power 12 12 of the second reflected light reflected from the second optical fiber Bragg grating 125 and incident on the photoelectric conversion element 144 may be represented by Equation (2).
Figure imgf000007_0001
여기에서 Kfiber2:제 1 광섬유 브래그 격자 (120)와 제 2 광섬유 브래그 격자 (125) 사이의 손실, KFBG11:제 1 광섬유 브래그 격자 (120)의 전달 스펙트럼에 의존하 는 손실, R12:제 2 광섬유 브래그 격자 (125)의 반사도, Hu:광섬유 센서부 (130) Su의 전달함수 이다. Where K fiber2 : loss between the first optical fiber Bragg grating 120 and the second optical fiber Bragg grating 125, K FBG11 : loss depending on the transmission spectrum of the first optical fiber Bragg grating 120, R 12 : 2 reflectance of the optical fiber Bragg grating 125, H u : transfer function of the optical fiber sensor unit 130 S u .
식 (1)과 식 (2)를 이용하여 측정 파라미터 工를 다음과 같이 정의할 수 있 다.  Using Equation (1) and Equation (2), we can define the measurement parameters:
Figure imgf000007_0002
으 며, 캘리브레이션 팩터 (calibration factor)이다. Xu을 통해 Hu을 구할 수 있으므 로 광세기의 비 이 변한다면 식 (3) 으로부터 물리적인 양을 계산할 수 있다. 또한 제 1 광섬유 브래그 격자 (120)의 반사파장에 해당하는 파장을 통과시키 는 가변 F-P 필터부 (142)의 바이어스 전압을 Vfpll이라 하고, 제 1 광섬유 브래그 격 자 (120)가 온도 변화에 의해서 반사파장이 변했을 때 가변 F-P 필터부 (142)의 바이 어스 전압 변화를 Α ιι이라 하면, 제 1 광섬유 브래그 격자 (120)의 반사파장이 위 치할 수 있는 모든 가변 F— P 필터부 (142)의 바이어스 전압 l 1 = VPu + A Vu 에서의 최대 출력을 pu으로 측정함으로써 온도 변화에 의한 광섬유 브래그 격자 반 사파장의 변화가 측정 결과에 영향을 미치지 않게 된다. .
Figure imgf000007_0002
It is a calibration factor. Since H u can be obtained from X u , the physical quantity can be calculated from Eq. (3) if the ratio of light intensity changes. In addition, the bias voltage of the variable FP filter unit 142 that passes the wavelength corresponding to the reflected wavelength of the first optical fiber Bragg grating 120 is referred to as V fpll , and the first optical fiber Bragg grating 120 is changed due to temperature change. when the reflection wavelength of the variable byeonhaeteul FP filter 142 when referred to as the bias voltage changes Α ιι, all be located above the reflection wavelength of the first fiber Bragg grating 120, the variable filter FP unit 142 in the By measuring the maximum output at bias voltage l 1 = V P u + A V u as p u , the change in the optical fiber Bragg grating reflection wavelength due to temperature change does not affect the measurement result. .
입력되는 광의 세기가 변하고 온도가 변하여 광섬유 브래그 격자 반사파장이 변화하더라도 식 (1)과 식 (2)로부터 유도된 식 (3)에 의한 Hu은 일정하다. 이와 같은 원리에 의해, 본 실시예에 따른 광섬유 센서장치 (100)는 광섬유 센서부 (130)에서 발생되는 물리량의 변화를 감지할 수 있게 된다. 또한, 본 실시예 에 따른, 광섬유 센서장치 (100)는 종래의 파장 기반 광섬유 브래그 격자 센서 구조 에서 필요했던 고가의 기준 광섬유 브래그 격자가 필요하지 않고 , 입력광의 변화, 온도변화 등에 무관하게 측정할 수 있다는 장점을 가지는 것으로 interrogator 구 현 시 비용을 절감할 수 게 된다. Even if the intensity of the input light is changed and the temperature is changed and the optical fiber Bragg grating reflection wavelength is changed, H u by Equation (3) derived from Equations (1) and (2) is constant. By such a principle, the optical fiber sensor device 100 according to the present embodiment can detect a change in physical quantity generated in the optical fiber sensor unit 130. In addition, according to the present embodiment, the optical fiber sensor device 100 does not require an expensive reference optical fiber Bragg grating, which is required in the conventional wavelength-based fiber Bragg grating sensor structure, and can measure the input light regardless of the change in the input light or the temperature change. This has the advantage of reducing the cost of implementing an interrogator.
이하에서는 도 2를 참고하여, 다수의 광섬유 브래그 격자 및 다수의 광섬유 센서부가 포함된 경우를 설명한다. 도 2는 본 발명의 일 실시예에 따른, 측정부 (410)에 복수개의 광섬유 .브래그 격자 및 다수의 광섬유 센서부가 포함된 광섬유 센서장치의 경우를 도시한 도면이다. 도 2의 광섬유 센서장치 (200)는 도 1에 비하 여, 측정부 (410)에 복수개의 광섬유 브래그 격자 및 다수의 광섬유 센서부가 포함 되어 있고, 이들이 각 광섬유별로 파장분할 다중화기 (420)에 의해 다중화된 것을 확인할 수 있다. Hereinafter, referring to FIG. 2, a plurality of optical fiber Bragg gratings and a plurality of optical fibers The case where the sensor unit is included will be described. FIG. 2 is a diagram illustrating an optical fiber sensor device including a plurality of optical fiber Bragg gratings and a plurality of optical fiber sensor units in the measuring unit 410, according to an exemplary embodiment. Compared to FIG. 1, the optical fiber sensor device 200 of FIG. 2 includes a plurality of optical fiber Bragg gratings and a plurality of optical fiber sensor parts in the measuring unit 410, and the optical fiber sensor device 200 includes a wavelength division multiplexer 420 for each optical fiber. You can see that it is multiplexed.
<49> 구체적으로, 도 2에 도시된 바와 같이, 각 광섬유는 하나의 행을 구성하고  Specifically, as shown in FIG. 2, each optical fiber constitutes one row
있고, n개의 광섬유 브래그 격자부를 포함하고, n개의 광섬유 브래그 격자부 각각 의 사이에 배치되는 nᅳ 1개의 광섬유 센서부를 포함한다. 여기에서 n은 자연수이다.And n n optical fiber Bragg grating parts, and n ᅳ 1 optical fiber sensor parts disposed between each of the n optical fiber Bragg grating parts. Where n is a natural number.
<50> 그리고, 모니터링부 (140)는 광섬유내의 이웃하는 2개의 광섬유 브래그 격자 부에서 반사되는 2개의 반사광의 광세기의 비에 기초하여, 이웃하는 2개의 광섬유 브래그 격자부 사이에 배치된 광섬유 센서부에서 변화된 특정 물리량을 감지하게 된다. Then, the monitoring unit 140 is an optical fiber sensor disposed between two neighboring optical fiber Bragg grating portion based on the ratio of the light intensity of the two reflected light reflected by two adjacent optical fiber Bragg grating portion in the optical fiber. The unit detects a specific physical quantity that has changed.
<5i> 또한, 광섬유는 m개 (Hi은 자연수)이고, 파장분할 다중화기 (420)는 광원 (110)  <5i> In addition, m optical fibers (Hi is a natural number), wavelength division multiplexer 420 is a light source 110
에서 입사되는 광을 파장별로 분할하여 m개의 광섬유에 각각 입사하게 된다. 여기 에서, 파장분할 다중화기 (420)는 각 광섬유에 포함된 광섬유 브래그 격자들 전부의 반사 파장 대역에 따라 파장의 분할 단위를 결정하게 된다.  The light incident on the beam is divided into wavelengths and then incident on the m optical fibers. Here, the wavelength division multiplexer 420 determines the division unit of the wavelength according to the reflection wavelength band of all of the optical fiber Bragg gratings included in each optical fiber.
<52> 또한, 측정부 (410)에 포함된 복수개 광섬유 브래그 격자들은 모두 브래그 반 사 특성이 다를 수도 있다.  In addition, all of the plurality of optical fiber Bragg gratings included in the measuring unit 410 may have different Bragg reflection characteristics.
<53> 이와 같이, 복수개의 광섬유 브래그 격자들 및 복수개의 광섬유 측정부가 포 함된 광섬유 센서장치 (200)는 넓은 영역의 물리량 변화를 감지할 수 있게 된다. As such, the optical fiber sensor device 200 including the plurality of optical fiber Bragg gratings and the plurality of optical fiber measuring units may detect a change in physical quantity in a wide area.
<54> 또한, 광섬유 센서장치 (100)는 모니터링부 (140)와 광섬유 센서부 (130)가 광 섬유 (115)를 이용하여 연결됨으로 멀리 떨어져 있을 수 있으며, 파장분할 다중화기 에 의해 분리되어 병렬로 다중화된 각각의 측정지점은 서로 다른 길이를 가질 수 있기 때문에 모니터링지점과 측정지점 사이의 거리의 제약이 없다. In addition, the optical fiber sensor device 100 may be far apart because the monitoring unit 140 and the optical fiber sensor unit 130 are connected by using the optical fiber 115, and are separated and paralleled by a wavelength division multiplexer. Since each measurement point multiplexed by X can have different lengths, there is no restriction of the distance between the monitoring point and the measurement point.
<55> 또한, 도 2에 도시된 바와 같이, 광세기 기반의 광섬유 센서부들은 두 개의 광섬유 브래그 격자 사이에 위치하며, 식 (3)에서와 같이 측정되는 ) 을 통해 각각 의 캘리브레이션 팩터 (calibration factor) 쭈 을 구하여, 광세기 기반의광섬유 센서부에서 발생하는 물리량을 알 수 있으며, 광세기 기반 광섬유 센서부는 m*(n- 1)개가 배치될 수 있으므로 동시에 여러 지점 측정이 가능하다.  In addition, as shown in FIG. 2, the optical intensity-based optical fiber sensor units are located between two optical fiber Bragg gratings, and each calibration factor is measured through Equation (3). ) To obtain the physical quantity generated in the light intensity based optical fiber sensor part, and m * (n-1) light intensity based optical fiber sensor parts can be arranged, so that multiple points can be measured at the same time.
<56> 그리고, 두 개의 광섬유 브래그 격자 사이에 위치한 광세기 기반 광섬유 센 서부의 구조를 측정하고자 하는 물리량에 따라 바꿈으로써, 사용자가 원하는 물리 량에 대해 측정이 가능하고, 민감도를 광섬유 센서부의 구조에 따라 적절하게 조절 할 수 있게 된다. And a light intensity based fiber optic sensor located between the two fiber Bragg gratings. By changing the western structure according to the physical quantity to be measured, the user can measure the desired physical quantity and the sensitivity can be appropriately adjusted according to the structure of the optical fiber sensor unit.
<57> 또한, 두 개의 광섬유 브래그 격자 사이에 위치한 광세기 기반 광섬유 센서 부는 광섬유로 구성되기 때문에 포인트 센서에서 분산 센서까지 측정하고자 하는 부분의 길이에 제약 없이 사용자가 원하는 측정범위로 조절 가능하다.  In addition, since the light intensity-based optical fiber sensor unit located between the two optical fiber Bragg gratings is composed of optical fibers, the user can adjust the measurement range to the desired measurement range without limiting the length of the portion to be measured from the point sensor to the distributed sensor.
<58> 또한 , 이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지 만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어져서는 안될 것이다. 【산업상 이용가능성】  In addition, while the preferred embodiments of the present invention have been shown and described above, the present invention is not limited to the specific embodiments described above, but the present invention without departing from the gist of the present invention claimed in the claims. Various modifications can be made by those skilled in the art, and these modifications should not be individually understood from the technical spirit or the prospect of the present invention. Industrial Applicability
<59> 본 발명은 광섬유 브래그 격자를 이용하여 물리량을 감지하는 센서장치로서 광섬유 센서장치 산업에 이용가능하다 .  The present invention is applicable to the optical fiber sensor device industry as a sensor device for sensing a physical quantity using an optical fiber Bragg grating.
<6()>  <6 ()>

Claims

【청구의 범위】 [Range of request]
【청구항 1】  [Claim 1]
광을 생성시키는 광원;  A light source for generating light;
상기 광원에서 생성된 광이 입사되는 광섬유;  An optical fiber to which light generated by the light source is incident;
상기 광섬유 내에 배치되고, 상기 광원에서 생성된 광의 일부를 반사시키는 제 1 광섬유 브래그 격자부;  A first optical fiber Bragg grating portion disposed in the optical fiber and reflecting a portion of the light generated by the light source;
상기 광섬유 내에 배치되고, 특정 물리량에 기초하여 상기 제 1 광섬유 브래 그 격자부를 통과한 광의 세기를 변화시키는 광섬유 센서부;  An optical fiber sensor unit disposed in the optical fiber and changing an intensity of light passing through the first optical fiber Bragg grating unit based on a specific physical quantity;
상기 광섬유 내에 배치되고, 상기 광섬유 센서부를 통과한 광의 일부를 반사 시키는 제 2 광섬유 브래그 격자부; 및  A second optical fiber Bragg grating part disposed in the optical fiber and reflecting a part of the light passing through the optical fiber sensor part; And
상기 제 1 광섬유 브래그 격자부에서 반사된 반사광과 상기 게 2 광섬유 브래 그 격자부에서 반사된 반사광의 광세기의 비에 기초하여 상기 광섬유 센서부에서 변화된 상기 특정 물리량을 감지하는 모니터링부;를 포함하는 광섬유 센서장치. 【청구항 21  And a monitoring unit configured to sense the specific physical quantity changed in the optical fiber sensor unit based on a ratio of light intensities of the reflected light reflected by the first optical fiber Bragg grating unit and the reflected light reflected by the second optical fiber Bragg grating unit. Fiber optic sensor. [Claim 21]
제 1항에 있어서,  The method of claim 1,
상기 모니터링부는,  The monitoring unit,
상기 제 1 광섬유 브래그 격자부에서 반사된 제 1 반사광과 상기 제 2 광섬유 브래그 격자부에서 반사된 제 2 반사광을 선택적으로 통과시키는 필터부;  A filter unit selectively passing the first reflected light reflected from the first optical fiber Bragg grating unit and the second reflected light reflected from the second optical fiber Bragg grating unit;
상기 필터부를 통과한 제 1 반사광 및 제 2 반사광을 각각 제 1 전기신호 및 제 2 전기신호로 변환하는 광전변환소자; 및  A photoelectric conversion element for converting the first reflected light and the second reflected light passing through the filter unit into a first electric signal and a second electric signal, respectively; And
상기 제 1 전기신호 및 상기 제 2 전기신호를 이용하여, 상기 제 1 반사광과 상기 제 2 반사광의 광세기의 비를 산출하고 상기 광세기의 비에 기초하여 상기 광섬유 센서 부에서 변화된 상기 특정 물리량을 감지하는 신호 처리부;를 포함하는 광섬유 센서 장치 . The ratio of the light intensity between the first reflected light and the second reflected light is calculated using the first electrical signal and the second electrical signal, and the specific physical quantity changed in the optical fiber sensor unit is calculated based on the ratio of the light intensity. And a signal processing unit for sensing.
【청구항 3】  [Claim 3]
제 2항에 있어서,  The method of claim 2,
상기 필터부는  The filter unit
바이어스 전압에 따라 특정 파장의 광을 선택적으로 통과시키는 가변 Fabry- Perot(F-P) 필터인 것을 특징으로 하는 광섬유 센서장치. Optical fiber sensor device, characterized in that the variable Fabry-Perot (F-P) filter for selectively passing light of a specific wavelength in accordance with the bias voltage.
【청구항 4】  [Claim 4]
제 2항에 있어서,  The method of claim 2,
상기 광전변환소자는, 광을 전기 신호로 변환하는 포토 다이오드 (photo diode)인 것을 특징으로 하는 광 섬유 센서장치 . The photoelectric conversion element, An optical fiber sensor device, comprising: a photodiode for converting light into an electrical signal.
【청구항 5]  [Claim 5]
제 1항에 있어서 ,  The method of claim 1,
상기 게 1 광섬유 브래그 격자부 및 상기 제 2 광섬유 브래그 격자부는, 브래그 (Bragg) 반사 파장 특성 이 서로 다른 것을 특징으로 하는 광섬유 센서 【청구항 6】  The first optical fiber Bragg grating portion and the second optical fiber Bragg grating portion, the optical fiber sensor characterized in that the Bragg reflection wavelength characteristics are different from each other.
제 1항에 있어서,  The method of claim 1,
상기 광섬유 센서부는,  The optical fiber sensor unit,
특정 물리량에 따라 입사된 광의 세기를 변화시켜 출력 시 키는 세기 형 광섬유 센서 인 것을 특징으로 하는 광섬유 센서 장치 . Optical fiber sensor device characterized in that the intensity type optical fiber sensor for outputting by changing the intensity of the incident light according to a specific physical quantity.
【청구항 7]  [Claim 7]
저 U항에 있어서,  In that U term,
상기 광섬유는,  The optical fiber,
n개 (n은 자연수)의 광섬유 브래그 격자부를 포함하고, 상기 n개의 광섬유 브 래그 격자부 각각의 사이에 배치되는 n-1개의 광섬유 센서부를 포함하고 ,  n-fiber (n is a natural number) including a fiber Bragg grating portion, and n-1 optical fiber sensor portion disposed between each of the n fiber Bragg grating portion,
상기 모니 터 링부는,  The monitoring unit,
상기 광섬유내의 이웃하는 2개의 광섬유 브래그 격자부에서 반사되는 2개의 반사광 의 광세기의 비에 기초하여 , 상기 이웃하는 2개의 광섬유 브래그 격자부 사이에 배 치된 광섬유 센서부에서 변화된 상기 특정 물리량을 감지하는 것을 특징으로 하는 광섬유 센서장치 . Detecting the specific physical quantity changed in the optical fiber sensor portion disposed between the two neighboring optical fiber Bragg grating portions based on the ratio of the light intensities of the two reflected light reflected by the two neighboring optical fiber Bragg grating portions in the optical fiber; Optical fiber sensor device, characterized in that.
【청구항 8]  [Claim 8]
제 7항에 있어서,  The method of claim 7,
상기 광섬유는 m개 (m은 자연수)이고,  The optical fiber is m (m is a natural number),
상기 광원에서 입사되는 광을 파장별로 분할하여 상기 m개의 광섬유에 각각 입사하는 파장분할 다중화기 ;를 더 포함하는 것을 특징으로 하는 광섬유 센서 장치 .  And a wavelength division multiplexer for dividing the light incident from the light source for each wavelength to be incident on the m optical fibers, respectively.
PCT/KR2012/011861 2011-12-29 2012-12-31 Fiber-optic sensor device WO2013100742A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/352,009 US9170130B2 (en) 2011-12-29 2012-12-31 Fiber-optic sensor device having a second fiber bragg grating unit to reflect light passing through a fiber optic sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0146515 2011-12-29
KR1020110146515A KR101280922B1 (en) 2011-12-29 2011-12-29 Fiber optic sensor apparatus

Publications (1)

Publication Number Publication Date
WO2013100742A1 true WO2013100742A1 (en) 2013-07-04

Family

ID=48698065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/011861 WO2013100742A1 (en) 2011-12-29 2012-12-31 Fiber-optic sensor device

Country Status (3)

Country Link
US (1) US9170130B2 (en)
KR (1) KR101280922B1 (en)
WO (1) WO2013100742A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10161924B2 (en) 2014-03-24 2018-12-25 National Technology & Engineering Solutions Of Sandia, Llc Sensor system that uses embedded optical fibers
KR101529610B1 (en) * 2014-07-04 2015-06-30 한국표준과학연구원 Apparatus and Sensing System for Fiber Bragg Grating Probes Having Controlled Sensitivity and Method for Sensing and Manufacturing thereof
KR101724828B1 (en) 2015-04-13 2017-04-10 한국표준과학연구원 Fiber Optic Interferometric Sensor with FBG for Simultaneous Measurement of Sound, Vibration and Temperature and Method for Sensing thereof
KR101611792B1 (en) 2015-04-13 2016-04-27 한국표준과학연구원 FBG Strain Sensor Probe for Temperature Compensation and Method for Sensing thereof
CN105203226B (en) * 2015-09-09 2019-03-05 飞秒光电科技(西安)有限公司 A kind of fibre optic temperature sensor
KR101953281B1 (en) * 2016-07-19 2019-02-28 (주)파이버피아 Sensing system using optical fiber sensor for without error induced by installation or circumstance
EP3539108B1 (en) 2016-11-11 2020-08-12 Carrier Corporation High sensitivity fiber optic based detection
US11151853B2 (en) 2016-11-11 2021-10-19 Carrier Corporation High sensitivity fiber optic based detection
WO2018089478A1 (en) 2016-11-11 2018-05-17 Carrier Corporation High sensitivity fiber optic based detection
ES2919300T3 (en) 2016-11-11 2022-07-22 Carrier Corp High sensitivity fiber optic based detection
US11127270B2 (en) 2016-11-11 2021-09-21 Carrier Corporation High sensitivity fiber optic based detection
US10957176B2 (en) 2016-11-11 2021-03-23 Carrier Corporation High sensitivity fiber optic based detection
KR101913027B1 (en) * 2017-02-24 2018-10-29 한국산업기술대학교산학협력단 Apparatus for controlling physical quantity using light intensity to wavelength conversion
KR101958403B1 (en) * 2017-08-09 2019-07-04 조선대학교산학협력단 The Metal corrosion monitoring system
GB2579991B (en) 2017-09-19 2023-03-08 Analog Devices Inc Fiber bragg grating interrogation and sensing system and methods
CN110617901A (en) * 2019-09-25 2019-12-27 北京航空航天大学 Sapphire optical fiber F-P high-temperature sensor with inclined reflection surface, preparation method and temperature sensing system
KR102454495B1 (en) 2021-02-08 2022-10-14 부산대학교 산학협력단 System and Method for Measuring Continuous Distribution External Force using Discrete Distributed Fiber Bragg Grating

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6097487A (en) * 1997-02-14 2000-08-01 Optoplan As Device for measurement of optical wavelengths
JP2000283846A (en) * 1999-03-31 2000-10-13 Fuji Electric Co Ltd Wavelength measuring instrument
JP2004233070A (en) * 2003-01-28 2004-08-19 Kyocera Corp Fbg sensing system
JP2006138757A (en) * 2004-11-12 2006-06-01 Showa Electric Wire & Cable Co Ltd Optical fiber type multiple sensor system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO324337B1 (en) * 1999-09-15 2007-09-24 Optoplan As Device for painting optical wavelengths

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6097487A (en) * 1997-02-14 2000-08-01 Optoplan As Device for measurement of optical wavelengths
JP2000283846A (en) * 1999-03-31 2000-10-13 Fuji Electric Co Ltd Wavelength measuring instrument
JP2004233070A (en) * 2003-01-28 2004-08-19 Kyocera Corp Fbg sensing system
JP2006138757A (en) * 2004-11-12 2006-06-01 Showa Electric Wire & Cable Co Ltd Optical fiber type multiple sensor system

Also Published As

Publication number Publication date
US20140299753A1 (en) 2014-10-09
KR101280922B1 (en) 2013-07-02
US9170130B2 (en) 2015-10-27

Similar Documents

Publication Publication Date Title
WO2013100742A1 (en) Fiber-optic sensor device
WO1998053277A1 (en) Distributed sensing system
US10184852B2 (en) Sensor system comprising multiplexed fiber-coupled fabry-perot sensors
NL2015448B1 (en) Fiber Bragg grating interrogator assembly and method for the same.
CN102661755A (en) Fiber Bragg grating-based extensible distributed sensing system
JP5684086B2 (en) Physical quantity measurement system
ATE340352T1 (en) DIFFERENTIAL MEASUREMENT SYSTEM BASED ON THE USE OF PAIRS OF BRAGG GRIDS
KR20130126150A (en) A raman sensor system for fiber distributed temperature measurment
WO2010010527A3 (en) Enhanced sensitivity interferometric sensors
CN102419312B (en) Cascade optical waveguide sensor based on passive resonant cavity and grating demultiplexer
CN206709787U (en) A kind of double chirp gratings strain demodulating system based on piezoelectric ceramics
CN101900575A (en) Opto-sensor based on active resonant cavity and passive resonant cavity cascaded with same
CN103389172A (en) Long-periodic grating based temperature sensor for demodulating ordinary fiber bragg grating
RU2608394C1 (en) Device for measuring parameters of physical fields
KR20000031822A (en) Wavemeter of optical signal, fiber bragg grating sensor and method thereof using wave selection type optical detector
CN202404024U (en) Cascade optical waveguide sensor based on passive resonant cavity and grating demultiplexer
KR101271571B1 (en) Ship monitoring system using fiber bragg grating sensor
KR102028509B1 (en) Apparatus for measuring wavelength using light intensity
CN115003988A (en) System for measuring multiple physical parameters at a measurement point using multimode optical fiber
WO2013054733A1 (en) Fbg strain sensor and strain quantity measurement system
RU2437063C1 (en) Fibre-optic sensor system
JP2669359B2 (en) Distortion measuring method and device
KR102522885B1 (en) Reflected light wavelength scanning device including silicon photonics interrogator
Jeong et al. FBG/Intensity Based Hybrid Fiber Optic Sensor for Simultaneous Measurement of Strain and Temperature
JPH0953999A (en) Optical external force detector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12862350

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14352009

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12862350

Country of ref document: EP

Kind code of ref document: A1