WO2013100587A1 - Resource mapping method of base station and e-pdcch reception method of terminal in wireless communication system, base station thereof, and terminal thereof - Google Patents

Resource mapping method of base station and e-pdcch reception method of terminal in wireless communication system, base station thereof, and terminal thereof Download PDF

Info

Publication number
WO2013100587A1
WO2013100587A1 PCT/KR2012/011500 KR2012011500W WO2013100587A1 WO 2013100587 A1 WO2013100587 A1 WO 2013100587A1 KR 2012011500 W KR2012011500 W KR 2012011500W WO 2013100587 A1 WO2013100587 A1 WO 2013100587A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdcch
base station
transmission
terminal
port
Prior art date
Application number
PCT/KR2012/011500
Other languages
French (fr)
Korean (ko)
Inventor
박경민
Original Assignee
주식회사 팬택
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 팬택 filed Critical 주식회사 팬택
Publication of WO2013100587A1 publication Critical patent/WO2013100587A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • H04L1/0038Blind format detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present specification provides a mapping method of E-PDCCH and DM-RS and an apparatus for implementing the same.
  • MIMO Multiple Input Multiple Output
  • CA Carrier Aggregation
  • CoMP Coordinated Multiple Point
  • Wireless Relay Node improve data transmission speed. Is being considered for.
  • MIMO Multiple Input Multiple Output
  • CA Carrier Aggregation
  • CoMP Coordinated Multiple Point
  • Wireless Relay Node improve data transmission speed.
  • the mapping method of the E-PDCCH and the DM-RS according to an embodiment of the present invention and an apparatus for implementing the same may support the E-PDCCH multiplexing more smoothly without increasing the blind detection complexity of the E-PDCCH.
  • the present invention provides a DM-RS port (Demodulation Reference Signal Port) according to a transmission scheme and aggregation level used for E-PDCCH transmission for each data area available for E-PDCCH (Extended PDCCH) transmission. It provides a resource mapping method of the base station comprising the step of determining and mapping the E-PDCCH and DM-RS to the determined DM-RS port.
  • DM-RS port Demodulation Reference Signal Port
  • the present invention provides a DM-RS port (Demodulation Reference Signal) determined according to a transmission scheme and aggregation level used for E-PDCCH transmission for each data area available for E-PDCCH transmission from a base station.
  • a radio signal including an E-PDCCH mapped to a port
  • a demodulation reference signal DM-RS
  • It provides an E-PDCCH receiving method of a terminal.
  • the present invention provides a DM-RS port (Demodulation Reference Signal port) determined for each data region available for E-PDCCH (Extended PDCCH) transmission according to the transmission scheme and aggregation level used for E-PDCCH transmission. It provides a base station including a mapping unit for mapping the E-PDCCH and DM-RS and a transceiver for transmitting a radio signal including the E-PDCCH and the DM-RS.
  • DM-RS port Demodulation Reference Signal port
  • the present invention provides a DM-RS port (Demodulation Reference) determined for each data area available for E-PDCCH transmission from a base station according to a transmission scheme and aggregation level used for E-PDCCH transmission.
  • 1 is a block diagram of a base station.
  • FIG. 2 is a block diagram of the steps of DM-RS transmission and reception required for PDSCH transmission.
  • 3 is a conceptual diagram of a subframe.
  • FIG. 4 is a diagram illustrating a process of allocating an E-PDCCH, transmitting the same, and blindly detecting the E-PDCCH.
  • FIG. 5 is a diagram illustrating distributed resource allocation and localized resource allocation, which are methods of allocating resources according to an embodiment of the present specification.
  • FIG. 6 is a diagram illustrating spatial division multiplexing during E-PDCCH multiplexing.
  • FIG. 7 illustrates Time Code Division Multiplexing (TCDM) during E-PDCCH multiplexing. It shows that E-PDCCH is mapped by code division to each E-PDCCH resource allocated region.
  • TCDM Time Code Division Multiplexing
  • FIG. 8 is a flowchart illustrating a resource mapping method of a base station according to an embodiment.
  • FIG. 9 is a conceptual diagram of using different DM-RS resources according to an aggregation level and a transmission scheme.
  • FIG. 11 illustrates an example of DM-RS resource allocation using different DM-RS resources according to a search space or an E-PDCCH region and an aggregation level.
  • FIG. 12 is a diagram illustrating a process performed between a base station and a terminal in order to implement the embodiments described with reference to FIG. 8.
  • FIG. 13 illustrates a process of blind detection of an E-PDCCH by a UE in a process between a base station and a terminal in order to implement the embodiments described with reference to FIG. 8.
  • FIG. 14 illustrates a configuration of an apparatus for transmitting a radio signal by mapping an E-PDCCH to a resource in combination with a base station or a base station according to another embodiment.
  • FIG. 15 is a diagram illustrating a configuration of an apparatus for receiving an E-PDCCH mapped wireless signal in combination with a terminal or a terminal according to another embodiment.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution Advanced
  • a communication system using a multiple-input multiple-output antenna may be used at both the transmitting and receiving ends, and may be a single UE (SU) or multiple UEs.
  • MUs share the same radio resource capacity and receive or transmit a signal to one base station or the like.
  • the terminal can adaptively optimize the system by feeding back channel state information for each physical channel to the base station.
  • Signals of Channel Status Information-Reference Signal (CSI-RS), Channel Quality Indicator (CQI), and Precoding Matrix Index (PMI) may be used, and the base station may provide such channel status information. Channels can be scheduled.
  • CSI-RS Channel Status Information-Reference Signal
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Index
  • CRS cell-specific reference signal
  • SRS sounding reference signal
  • DM-RS demodulation reference signal
  • the CSI-RS is transmitted by the base station, and the PMI and the CQI are information reported by the terminal.
  • the wireless communication system is widely deployed to provide various communication services such as voice and packet data
  • the wireless communication system includes a user equipment (UE) and a base station (base station, BS, or eNB) and a remote radio head (RRH). And a unit that assists in the behavior of the base station.
  • a terminal in the present specification is a comprehensive concept of a terminal in a wireless communication, WCDMA and UE (User Equipment) in the LTE, HSPA, etc., as well as MS (Mobile Station), UT (User Terminal), SS (SS) in GSM It should be interpreted as a concept that includes both a subscriber station and a wireless device.
  • a base station or a cell generally refers to a station that communicates with a terminal, and includes a Node-B, an evolved Node-B, an Sector, a Site, and a BTS. It may be called other terms such as a transceiver system, an access point, a relay node, and an RRH.
  • a base station or a cell should be interpreted in a comprehensive sense indicating some areas or functions covered by a base station controller (BSC) in CDMA, a NodeB in WCDMA, an eNB or a sector (site) in LTE, and the like. It is meant to encompass various coverage areas such as megacell, macrocell, microcell, picocell, femtocell and relay node communication range.
  • BSC base station controller
  • the terminal and the base station are two transmitting and receiving entities used in implementing the technology or the technical idea described in the present specification and are used in a comprehensive sense and are not limited by the terms or words specifically referred to.
  • the terminal and the base station are two types of uplink or downlink transmitting / receiving subjects used to implement the technology or the technical idea described in the present invention, and are used in a generic sense and are not limited by the terms or words specifically referred to.
  • the uplink (Uplink, UL, or uplink) means a method for transmitting and receiving data to the base station by the terminal
  • the downlink (Downlink, DL, or downlink) means a method for transmitting and receiving data to the terminal by the base station Means.
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • OFDM-FDMA OFDM-FDMA
  • OFDM-TDMA OFDM-TDMA
  • OFDM-CDMA OFDM-CDMA
  • the uplink transmission and the downlink transmission may use a time division duplex (TDD) scheme that is transmitted using different times, or may use a frequency division duplex (FDD) scheme that is transmitted using different frequencies.
  • TDD time division duplex
  • FDD frequency division duplex
  • One embodiment of the present invention can be applied to resource allocation in the fields of asynchronous wireless communication evolving to LTE and LTE-advanced through GSM, WCDMA, HSPA, and synchronous wireless communication evolving to CDMA, CDMA-2000 and UMB.
  • the present invention should not be construed as being limited or limited to a specific wireless communication field, but should be construed as including all technical fields to which the spirit of the present invention can be applied.
  • Uplink and downlink transmit control information through control channels such as Physical Downlink Control CHannel (PDCCH), Physical Control Format Indicator CHannel (PCFICH), Physical Hybrid ARQ Indicator CHannel (PHICH), and Physical Uplink Control CHannel (PUCCH).
  • a data channel is configured such as PDSCH (Physical Downlink Shared CHannel), PUSCH (Physical Uplink Shared CHannel) and the like to transmit data.
  • LTE-A a standard based on a single carrier in LTE is discussed, and a combination of several bands having a band smaller than 20 MHz is discussed, while a component carrier band having a band of 20 MHz or more is being discussed.
  • multi-carrier aggregation hereinafter referred to as 'CA'
  • 'CA' multi-carrier aggregation
  • Up to five component carriers are considered in the link. Of course, five component carriers can be increased or decreased according to the environment of the system, and the present invention is not limited thereto.
  • the CC set refers to a set of two or more CCs configured for use in a corresponding system.
  • uplink ACK / NACK ACKnowledgement / Negative ACKnowledgement
  • CQI channel quality indicator
  • PMI precoding matrix indicators
  • RI Rank Indicator
  • LTE-A is basically considering backward compatibility of 3GPP LTE Rel-8 for the configuration of CA.
  • CQI / PMI / RI information determined as a standard in LTE Rel-8 is performed by various methods through a physical uplink control channel (PUCCH) and a physical uplink shared channel (PUSCH) which are uplink control channels.
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • a wireless communication system to which an embodiment of the present specification is applied may support uplink and / or downlink HARQ.
  • the number of terminals in the base station increases, and also requires more resources to transmit the control signal.
  • the number of terminals is divided into a case where the number of terminals is gradually increased in a cell managed by the base station and a case where the number of terminals is increased by using various multiplexing methods.
  • a coordinated multi-point transmission / reception system or a coordinated multi-antenna transmission system in which two or more transmitters cooperate to transmit a signal A cooperative multi-cell communication system (hereinafter referred to as "cooperative multi-cell communication system" or "CoMP").
  • Het-Net Het-Net
  • DM-RS reception precoder and channel estimation are performed through DM-RS reception, and PDSCH demodulation is performed according to the channel information.
  • the base station transmits information necessary for DM-RS reception, that is, DM-RS port number and information about DM-RS sequence scrambling, through the PDCCH, and the terminal acquires the above information through PDCCH reception and uses the same.
  • DM-RS reception and PDSCH demodulation are performed.
  • 1 is a block diagram for transmission of a DM-RS of a base station.
  • Closed loop MIMO technique is used to increase the capacity of wireless communication.
  • a receiving end or a terminal transmits channel information measured through a reference signal to a transmitting end and a transmitting end or base station (hereinafter referred to as 'base station').
  • the terminal should grasp the information and channel information of the precoder used.
  • channel estimation and precoder information estimation are simultaneously performed by transmitting and receiving DM-RS (DM-RS 0, ..., DM-RS K-1).
  • FIG. 2 is a block diagram for DM-RS reception required for PDSCH transmission.
  • the terminal determines (receives) a cell ID through system information broadcast (S210), and identifies (acquires) a DM-RS base sequence generated by the cell ID (S212).
  • the UE receives the PDCCH with blind detection (S214), identifies the band where the DM-RS is received through the band information and other information used for 'PDSCH transmission of the received PDCCH (S216), and is required for receiving the DM-RS.
  • Information (DM-RS ports, DM-RS scrambling use, DM-RS index, etc.) is identified (acquired) (S218).
  • the terminal acquires the UE specific DM-RS sequence using the scrambling index and the DM-RS base sequence among the information required for receiving the DM-RS (S220).
  • the UE performs DM-RS reception of a band where a DM-RS is received through band information used for PDSCH transmission (S222), and performs channel estimation by using a UE-specific DM-RS sequence and DM-RS ports ( S224).
  • the terminal demodulates the PDSCH transmission information through the estimated channel information and the used precoder information (S226).
  • E-PDCCH and R-PDCCH (Relay) as a method of transmitting the control information using a radio resource shared with the PDSCH (radio resources that can be used for PDSCH transmission or other data channel transmission) -PDCCH) is present. These are all characterized in that they are transmitted in a PDSCH or a data region rather than a control region.
  • the E-PDCCH or R-PDCCH may perform resource allocation and transmission on the basis of a control channel element (CCE) or a resource block (RB).
  • CCE control channel element
  • RB resource block
  • R-PDCCH and E-PDCCH are similar techniques in that they transmit control information in the PDSCH region.
  • the R-PDCCH is transmitted in the channel between the base station and the relay (relay)
  • the E-PDCCH is transmitted in the channel between the base station and the terminal.
  • the channel between the base station and the relay to which the R-PDCCH is transmitted has a very high probability of line of sight, low frequency selectivity, and low propagation loss, that is, a propagation characteristic. Good channel is organized.
  • the channel between the base station and the terminal on which the E-PDCCH is transmitted fluctuates in transmission loss due to various environmental factors, and also shows high frequency selectivity.
  • the PDCCH existing in the existing control region can be newly defined and simply implemented, or a part of the data region including PDSCH can be used for control information. have.
  • a newly designed PDCCH for transmitting more PDCCHs is referred to as an extended PDCCH (E-PDCCH) hereinafter.
  • the E-PDCCH transmits control information transmitted through the existing PDCCH or control information transmitted through another channel through the existing PDSCH region (or data region) or through a band allocated to each terminal. Used as a generic term for the delivery technique.
  • the implementation manner of the E-PDCCH may vary, and the invention described herein is not limited to the implementation manner of a specific E-PDCCH.
  • FIG. 4 is a diagram illustrating resource allocation of an E-PDCCH, a process of transmitting the same, and blind detection of the E-PDCCH at the receiving end.
  • the base station allocates a resource for transmitting the E-PDCCH (Resource Allocation) (S410). Then, the receiving end, for example, the terminal which is the receiving end is notified about the allocated resources (S420). In operation S430, the E-PDCCH is transmitted through an allocated resource.
  • Resource Allocation Resource Allocation
  • each UE measures channel information through the DM-RS as in the case of PDSCH transmission and reception shown in FIG. Based on the E-PDCCH reception.
  • channel information measurement through DM-RS must be preceded. Therefore, the DM-RS port (physical location and OCC) and scrambling information (scrambling index) used for E-PDCCH transmission are blinded through blind detection.
  • the above information should be obtained through estimation or semi-static signaling such as RRC signaling.
  • the receiving end may check the E-PDCCH by performing blind detection in the allocated resource using the acquired information (S440).
  • FIG. 5 is a description of distributed resource allocation (distributed resource allocation or distributed mapping, distributed transmission) and localized resource allocation (localized resource allocation or local mapping, local transmission).
  • FIG. 5 is a diagram illustrating resource allocation when control information, such as R-PDCCH or E-PDCCH, is included in a PDSCH region and transmitted. It also shows an example of allocating resources in RB as a basic unit.
  • an E-PDCCH resource block is a resource block (RB) that may be used for E-PDCCH transmission, and some or all of the RBs may be used for E-PDCCH transmission.
  • an E-PDCCH is transmitted through distributed resource blocks.
  • 520 is a local resource allocation scheme in which the E-PDCCH is transmitted through adjacent resource blocks.
  • a local resource allocation scheme and a UE specific precoder may be selected.
  • a distributed resource allocation method using random precoding or non-precoding may be selected.
  • E-PDCCH E-PDCCH multiplexing for a plurality of terminals within the same frequency in order to maximize the control channel capacity can be supported in two ways.
  • multiplexed E-PDCCHs are mapped to different ports, or DM-RSs used for transmission of each E-PDCCH have different scrambling indexes.
  • FIG. 6 is a diagram illustrating spatial division multiplexing during E-PDCCH multiplexing.
  • 610 is an E-PDCCH region of UE 0
  • 620 is an E-PDCCH region of UE 1
  • 630 is an E-PDCCH region of UE 2.
  • 640 shows an example of mapping the E-PDCCH regions of UE 0, UE 1, and UE 2, and 650 shows that the E-PDCCH regions of UE 0 and UE 1 are multiplexed by SDM (Spatial Division Multiplexing). . This can be applied when UE 0 and UE 1 can spatially partition by beamforming.
  • FIG. 7 illustrates Time Code Division Multiplexing (TCDM) during E-PDCCH multiplexing. It shows that E-PDCCH is mapped by code division to each E-PDCCH resource allocated region.
  • FIG. 7 shows a wideband or wideband E-PDCCH transmission and TCDM for obtaining frequency diversity gain.
  • TCDM Time Code Division Multiplexing
  • the base station delivers or predetermines the information on the region (E-PDCCH region) to be confirmed when receiving the E-PDCCH to the terminal through RRC signaling. Thereafter, information on the DM-RS to be used for E-PDCCH reception is separately transmitted or the DM-RS is received through blind detection. Specifically, the following three methods can be used.
  • the base station transmits information on the use of the DM-RS port and scrambling to be used when transmitting the E-PDCCH for each terminal to the RRC. Since the DM-RS port and scrambling are pre-selected for each UE, the flexibility of E-PDCCH multiplexing is reduced.
  • E-PDCCH When transmitting E-PDCCH, it transmits information on DM-RS used for E-PDCCH transmission by transmitting a separate PDCCH together. Dynamic DM-RS allocation is possible, but separate PDCCH transmission and reception may be required, resulting in an increase in PDCCH payload and an increase in UE blind detection complexity.
  • Information about DM-RS is not transmitted separately.
  • the terminal acquires information on the DM-RS port and scrambling through blind detection. This method supports dynamic DM-RS allocation without separate PDCCH transmission. Since the UE independently performs the DM-RS detection, a complexity problem and a detection reliability problem may occur.
  • the present invention sets the DM-RS resource used by each UE differently according to the aggregation level and transmission scheme of the E-PDCCH received by the UE, thereby more smoothly without increasing blind detection complexity.
  • a method and apparatus for supporting E-PDCCH multiplexing are provided.
  • FIG. 8 is a flowchart illustrating a resource mapping method of a base station according to an embodiment.
  • E-PDCCH extended PDCCH
  • S810 resource in a data area
  • DM-RSs demodulation reference signals
  • steps S810 and S820 are conceptually separated and described, but may be performed as one step.
  • DM-RS port Demodulation Reference Signal port
  • the method may further include determining (or setting).
  • DM-RS port determination may be to determine the index or DM-RS port number of the DM-RS port.
  • the E-PDCCH and the DM-RS are mapped to the DM-RS port determined (or configured) in steps S810 and S810.
  • the E-PDCCH may be mapped to the same port as the previous DM-RS port.
  • the resource of the data region may perform resource allocation and transmission using a CCE (Resource Channel Element) or a RB (Resource Block) as a basic unit. That is, the E-PDCCH to be transmitted to the UE is mapped to the radio resources shared with the PDSCH, and the DM-RS is assigned to the resource of the data area by using different DM-RS ports according to the coupling level or transmission scheme applied to the mapped E-PDCCH. Mapping the E-PDCCH to the same DM-RS port.
  • the base station divides the E-PDCCH region for the data region and provides information on the divided region to the terminal. Since the allocation of such an area may be maintained semi-persistent, information about the area may be provided to the terminal through higher layer signaling or system information provision.
  • the base station uses the channel state information reported by the terminal to determine the region to include the E-PDCCH to be transmitted to the terminal and multiplexing in the region.
  • the E-PDCCH is mapped to the resource of the determined region.
  • the information about the determined region and the transmission scheme can be provided to the terminal, which is transmitted through higher layer signaling, system information, or information on the corresponding region of the control region. It can be included in the control information.
  • this information may be transmitted with the E-PDCCH.
  • FIG. 9 is a conceptual diagram of using different DM-RS resources according to an aggregation level and a transmission scheme.
  • the base station maps the DM-RS to use different DM-RS resources according to an aggregation level, a transmission scheme, and the like used for E-PDCCH transmission.
  • DM-RS is mapped using a DM-RS resource differently according to at least one of an aggregation level or a transmission scheme of an E-PDCCH to a resource of two or more regions.
  • this mapping information may be higher layer signaling, for example, RRC signaling.
  • each UE can selectively use one of a plurality of DM-RS resources for the same band or subband, thereby allowing freedom of DM-RS resource allocation or E-PDCCH multiplexing. Increases the degree of freedom.
  • the DM-RS resource may be at least one of a DM-RS port and a scrambling index.
  • FIG. 10 illustrates an example in which UEs 0 to 4 allocated with the same E-PDCCH region use different DM-RS resources according to an aggregation level and a transmission scheme.
  • level 1 or 2 only for localized transmissions, and only for the case where the same DM-RS sequence (same base sequence and same scrambling) is used for each aggregation level, but the present invention is distributed Applicable to all levels of coupling in transmission and distributed transmission.
  • Table 1 shows an example of configuring different antenna ports according to an aggregation level for each terminal.
  • the performance gains are as follows.
  • the resource mapping method 800 of the base station provides an E-PDCCH region with a best band at each UE as shown in Table 3 below.
  • the DM-RS port for each terminal is specified, an example of E-PDCCH region allocation when the DM-RS port for each terminal is fixed (UE 0,1: port 7, UE 2,3: port 8) As shown in Table 4, a bad band should be allocated to some terminals. This leads to a decrease in reception reliability of the E-PDCCH.
  • the best band and the bed band may be a case where the channel state value of the corresponding band is more than or less than the reference channel state value, respectively, or the channel state value of the corresponding band is more than or less than the reference channel state value, respectively. Can be defined for the case.
  • the base station attempts to allocate SB0 to UEs 0 and 1 and SB1 to UEs 2 and 3.
  • UE 1 and UE 2 are the aggregation level.
  • E-PDCCH is received through 1 and UE 0 and UE 3 receive the E-PDCCH through aggregation level 2 to avoid collision between DM-RSs and transmit the optimal band to each UE.
  • each UE is fixed to one DM-RS port to use for channel estimation (measurement) when receiving the E-PDCCH, for example, UE 0, 1 is port 7, UE 2, 3 is port 8
  • UE 0 and UE 4 receive the E-PDCCH through a band showing a lower channel quality rather than a band guaranteeing an optimal channel.
  • SB0 and UE 0 and UE 1 use the same DM-RS port 7, the band where UE 0 with small CQI guarantees optimal channel for SB 0.
  • SB0 another band SB4 is selected.
  • UE 3 also selects another band SB3 instead of SB1, which is a band that guarantees an optimal channel.
  • each terminal allocates a different DM-RS port for each aggregation level and transmission method. If the E-PDCCH of each UE can be multiplexed using the optimal band according to one CQI, each UE shall fix one DM-RS port to use for channel estimation (measurement) when receiving the E-PDCCH, or Other DM-RS ports may be allocated for each aggregation level and transmission scheme, or one of them may be arbitrarily or dynamically selected.
  • the optimal bands of UEs 0 and 1 using the same DM-RS port are SB 0 and 1, respectively, and the optimal bands of UEs 2 and 3 are SB 0 and 1, respectively, of UEs using the same DM-RS port. Since the optimal bands are different from each other, the same performance can be achieved even if one DM-RS port is fixed for channel estimation (measurement) or a different DM-RS port is assigned to each aggregation level and transmission method. do. Thus, in this case, one of the two may be selected or the base station may select one of them arbitrarily or dynamically (periodically or aperiodically, at certain times of time). Meanwhile, the base station may transmit the related information to the terminal as higher layer signaling or control information.
  • the base station maps a PDSCH to be transmitted to the terminal in resources of two or more regions and other regions, and transmits a radio signal including information through the E-PDCCH, DM-RS, and PDSCH to the terminal.
  • the base station uses the DM-RS using different demodulation reference signal (DM-RS) resources for at least one of the two or more regions and other resources for the at least one region. Map it.
  • DM-RS demodulation reference signal
  • FIG. 11 illustrates an example of DM-RS resource allocation using different DM-RS resources according to a search space or an E-PDCCH region and an aggregation level.
  • the base station uses different DM-RS resources according to a search space for receiving an E-PDCCH or an E-PDCCH.
  • the base station may set / determine the DM-RS using DM-RS resources differently according to an aggregation level or transmission scheme of the E-PDCCH in resources of two or more regions, but the present invention is not limited thereto.
  • UE 0 and UE 1 use different DM-RS resources according to an aggregation level, while UE 2 is the same as UE1 in an E-PDCCH region overlapping with the E-PDCCH region of UE0.
  • DM-RS resource mapping may be used, and DM-RS resource mapping of UE0 may be used in an E-PDCCH region overlapping with the E-PDCCH region of UE1.
  • UE2 uses the same DM-RS resource mapping as UE0 for some areas where the UE receives the E-PDCCH or some of the search spaces where the UE performs blind detection for E-PDCCH reception and for other parts the UE.
  • the DM-RS may be configured using DM-RS resources differently according to an aggregation level or transmission scheme of the E-PDCCH.
  • FIG. 11 illustrates that only the UE2 receives the E-PDCCH or a part of the search spaces that perform blind detection for receiving the E-PDCCH, the DM-RS is configured using the DM-RS resources differently.
  • some of the regions for receiving the E-PDCCH or the search spaces for performing blind detection for receiving the E-PDCCH may be configured differently using the DM-RS resource.
  • E-PDCCH multiplexing can be more smoothly supported.
  • E-PDCCH region used for each UE to receive the E-PDCCH is configured differently, greater scheduling flexibility can be obtained.
  • the base station maps a PDSCH to be transmitted to the terminal in resources of two or more regions and other regions, and transmits a radio signal including information through the E-PDCCH, DM-RS, and PDSCH to the terminal.
  • the base station uses different DM-RS resources according to an area for receiving an E-PDCCH or a search space for receiving an E-PDCCH, but also an aggregation level or transmission scheme of the E-PDCCH.
  • a method for configuring DM-RS using a DM-RS resource has been described, but the present invention is not limited thereto.
  • the base station configures the DM-RS using the same DM-RS resources regardless of the aggregation level or transmission scheme of the E-PDCCH, but searches for an area for receiving the E-PDCCH or for receiving the E-PDCCH.
  • other DM-RS resources may be used.
  • FIG. 12 is a diagram illustrating a process performed between a base station and a terminal in order to implement the embodiments described with reference to FIG. 8.
  • the base station 1300 divides the E-PDCCH region (S1310).
  • operation S1320 information about the divided area is provided to the terminal 1301.
  • the base station 1300 receives the report of the channel state of the terminal 1301 (S1330). This is used to determine which of the divided regions according to the channel state of the UE to include the E-PDCCH or how to implement the multiplexing of the E-PDCCH, the reporting of this channel state can be made selectively.
  • the base station 1300 determines an area to include the E-PDCCH to be transmitted to the terminal and multiplexing in the corresponding area (S1340). In operation S1350, the E-PDCCH is mapped to the resource of the determined region.
  • the base station 1300 uses a different DM-RS resource according to at least one of a coupling level, a transmission scheme, and a search space as described with reference to FIG. 8 in an area to include an E-PDCCH to be transmitted to the UE. It may be mapped (S1355). And, the information on the determined area and the transmission method can be provided to the terminal (S1360), which is transmitted through higher layer signaling, system information (system information) method, or the information about the area control area ( It can be included in the control information of the control region). When included in the control information, this information may be transmitted with the E-PDCCH.
  • system information system information
  • the base station 1300 transmits a radio signal including the mapped E-PDCCH (S1370), and the terminal 1301 performs blind detection in the determined area (S1380).
  • FIG. 13 illustrates a process of blind detection of an E-PDCCH by a UE in a process performed between a BS and a UE in order to implement the embodiments described with reference to FIG. 8.
  • the base station 1400 allocates an E-PDCCH region to each terminal in a terminal specific or common manner (S1410).
  • the base station 1400 allocates a DM-RS port and / or a sequence according to each aggregation level (S1412).
  • the base station 1400 may map the DM-RSs using at least one of the resources of the data area, using a DM-RS (Demodulation Reference Signal) resource differently from other areas (S1414).
  • DM-RS Demodulation Reference Signal
  • the base station 1400 may deliver the information indicating the DM-RS resource according to at least one of the aggregation level, the transmission method, and the E-PDCCH search space to the terminal through higher layer signaling, for example, RRC signaling (S1416).
  • the base station transmits information on whether to use a DM-RS port and scrambling to be used when transmitting an E-PDCCH to each RRC.
  • the base station 1400 transmits a radio signal including information through the E-PDCCH, the DM-RS, and the PDSCH mapped to the corresponding area (S1418).
  • the terminal 1401 receives a radio signal from a base station and selects one subspace of a time-frequency search space (S1420).
  • the subspace means each unit when the search space is composed of one or more units.
  • This unit may be a resource block (RB) or a physical resource block pair (PRB) pair as described above, but is not limited thereto.
  • RB resource block
  • PRB physical resource block pair
  • the terminal 1401 checks the DM-RS resource for the subspace of the selected search space (S1422). At this time, the terminal grasps the DM-RS base sequence generated by the cell ID determined through the broadcasting system information.
  • the terminal 1401 is a basic information on the DM-RS received from the base station with the DM-RS base sequence (DM-RS ports, scrambling use or not) to identify the DM-RS resources for the subspace of the selected search space Etc.).
  • the terminal 1401 estimates a channel based on the DM-RS (S1423).
  • a UE-specific DM-RS sequence is obtained using a DM-RS base sequence and a scrambling index generated by a cell ID.
  • Channel estimation is performed on the areas allocated for the E-PDCCH using the UE-specific DM-RS sequence and DM-RS port information.
  • the UE 1401 attempts E-PDCCH detection according to channel estimation (S1424).
  • the terminal 1401 determines whether the E-PDCCH is detected according to the channel estimation (S1426).
  • the UE 1401 demodulates the detected E-PDCCH and detects the PDSCH using the band and decoding information of the PDSCH (S1428).
  • the UE 1401 determines whether the E-PDCCH is detected for all search spaces (S1430).
  • the process repeats steps S1420 to S1424 and ends when it is determined that the search has been performed.
  • FIG. 14 illustrates a configuration of an apparatus for transmitting a radio signal by mapping an E-PDCCH to a resource in combination with a base station or a base station according to another embodiment.
  • an apparatus for transmitting a radio signal by mapping an E-PDCCH to a resource in combination with a base station or a base station includes a control unit 1500, a mapping unit 1520, a transceiver 1530, and a channel. It includes all or part of the information verification unit 1510.
  • the controller 1500 controls the channel information checker 1510, the mapper 1520, and the transceiver 1530.
  • the mapping unit 1520 maps an extended PDCCH (E-PDCCH) to be transmitted to the UE to a resource of the data region, and is based on at least one of an aggregation level or a transmission scheme of the E-PDCCH to resources of the data region.
  • E-PDCCH extended PDCCH
  • DM-RS Demodulation Reference Signal
  • the E-PDCCH may be mapped to the same port as the previous DM-RS port.
  • the mapping unit 1520 may map DM-RSs using at least one of the resources of the data region using DM-RS (Demodulation Reference Signal) resources differently from other regions when there are two or more resources of the data region. .
  • the mapping unit 1520 is determined (or configured, assigned) DM-RS for each data area available for E-PDCCH (Extended PDCCH) transmission according to the transmission scheme and aggregation level used for E-PDCCH transmission.
  • E-PDCCH and DM-RS may be mapped to a port (Demodulation Reference Signal port).
  • the DM-RS resource is at least one of a DM-RS port and a scrambling index
  • a transmission scheme of the E-PDCCH may be one of a localized mapping, a distributed mapping, and a mixture thereof.
  • the transceiver 1530 transmits a radio signal including the E-PDCCH and the DM-RS to the terminal and provides a function of receiving the radio signal from the terminal.
  • the transceiver 1530 may transmit a radio signal including the PDSCH to the terminal.
  • the transceiver 1530 may transmit information on the DM-RS port to the terminal through higher layer signaling, system information, or in the control information of the control region.
  • the channel information checking unit 1510 checks the state of the channel and the wireless network provided by the terminal or separately measured.
  • FIG. 15 is a diagram illustrating a configuration of an apparatus for receiving an E-PDCCH mapped wireless signal in combination with a terminal or a terminal according to another embodiment.
  • an apparatus for receiving a radio signal to which an E-PDCCH is mapped in combination with a terminal or a terminal may include a controller 1600, a detection unit 1620, a transceiver 1630, and channel information. It includes all or part of the providing unit 1610.
  • the transceiver 1630 receives a radio signal including an extended PDCCH (E-PDCCH) and a DM-RS from the base station, and transmits channel information to the terminal.
  • the transceiver 1630 may receive a radio signal including the PDSCH from the base station.
  • the transceiver 1630 is a DM-RS port (Demodulation Reference) determined for each data area available for E-PDCCH (Extended PDCCH) transmission from the base station according to the transmission scheme and aggregation level used for E-PDCCH transmission
  • a wireless signal including an E-PDCCH and a DM-RS (Demodulation Reference Signal) mapped to a signal port may be received.
  • the detection unit 1620 is configured to set the received radio signal using another DM-RS (Demodulation Reference Signal) resource according to at least one of an aggregation level or transmission scheme of the E-PDCCH in the resource of the data region. Blind detection of the DM-RS (Demodulation Reference Signal), and blind detection of the E-PDCCH in the resource of the data region for the received radio signal using the DM-RS.
  • the detection unit 1620 may blindly detect a demodulation reference signal (DM-RS) set by using a demodulation reference signal (DM-RS) resource for at least one of the resources of the data region unlike another region. Can be.
  • the channel information providing unit 1610 generates information on the channel state checked by the user terminal so that the channel information may be provided to the base station.
  • this information is provided to the base station through the wireless signal transmission process of the transceiver 1630 through the control unit 1600.
  • the controller 1600 controls the transceiver 1630, the detection unit 1620, and the channel information provider 1610.
  • the controller 1600 decodes the E-PDCCH.
  • the blind detection complexity of the E-PDCCH is set because DM-RS resources used by each UE are set differently according to an aggregation level and a transmission scheme of the E-PDCCH received by the UE. It is possible to support E-PDCCH multiplexing more smoothly without increasing the number.

Abstract

The present invention provides a resource mapping method of a base station, an E-PDCCH transmission and reception method, and a device therefor, the resource mapping method including the steps of: determining a demodulation reference signal (DM-RS) port according to a transmission method and a set level, which are used in extended PDCCH (E-PDCCH) transmission, with respect to each of data regions usable for E-PDCCH transmission; and mapping an E-PDCCH and a DM-RS to the determined DM-RS port.

Description

무선 통신 시스템에서 기지국의 리소스 매핑방법 및 단말의 E-PDCCH 수신방법, 그 기지국, 그 단말Resource mapping method of base station and E-PCCCH reception method of terminal in wireless communication system, base station, terminal thereof
본 명세서는 E-PDCCH 및 DM-RS의 매핑(mapping) 방법 및 이를 구현하는 장치를 제공한다.The present specification provides a mapping method of E-PDCCH and DM-RS and an apparatus for implementing the same.
무선 통신 시스템에서 데이터 전송 속도를 높이기 위해 다양한 기술이 고려되고 있다. 예를 들면, 다중 입출력(Multiple Input Multiple Output, MIMO), 반송파 집적(Carrier Aggregation, CA), 협력형 다중 통신(Coordinated Multiple Point, CoMP), 무선 중계기(Relay node) 등의 기술이 데이터 전송 속도 향상을 위해 고려되고 있다. 이러한 기술들을 이용하기 위해서는 전송단이 단말로 더 많은 제어 정보를 전송하는 것이 필요할 수 있다. Various techniques are being considered to increase the data transmission speed in a wireless communication system. For example, technologies such as Multiple Input Multiple Output (MIMO), Carrier Aggregation (CA), Coordinated Multiple Point (CoMP), and Wireless Relay Node improve data transmission speed. Is being considered for. In order to use these techniques, it may be necessary for the transmitting end to transmit more control information to the terminal.
현재, 더 많은 제어 정보의 전송을 가능하도록 하기 위해, 제어 정보가 아닌 데이터 등이 전송되는 무선 자원에 제어 정보를 전송시키는 방식에 대해 제시되고 있다. Currently, in order to enable more control information to be transmitted, a method of transmitting control information to a radio resource through which data, rather than control information, is transmitted has been proposed.
본 발명의 실시예에 따른 E-PDCCH 및 DM-RS의 매핑(mapping) 방법 및 이를 구현하는 장치는 E-PDCCH의 블라인드 디텍션 복잡도의 증가 없이 보다 원활하게 E-PDCCH 멀티플렉싱을 지원할 수 있다. The mapping method of the E-PDCCH and the DM-RS according to an embodiment of the present invention and an apparatus for implementing the same may support the E-PDCCH multiplexing more smoothly without increasing the blind detection complexity of the E-PDCCH.
일측면에 따르면 본 발명은 E-PDCCH (Extended PDCCH) 전송에 사용 가능한 각각의 데이터 영역에 대하여, E-PDCCH 전송에 사용되는 전송 방식 및 집합레벨에 따라 DM-RS 포트(Demodulation Reference Signal port)를 결정하는 단계 및 결정된 DM-RS 포트에 E-PDCCH와 DM-RS를 매핑하는 단계를 포함하는 기지국의 리소스 매핑방법을 제공한다. According to an aspect, the present invention provides a DM-RS port (Demodulation Reference Signal Port) according to a transmission scheme and aggregation level used for E-PDCCH transmission for each data area available for E-PDCCH (Extended PDCCH) transmission. It provides a resource mapping method of the base station comprising the step of determining and mapping the E-PDCCH and DM-RS to the determined DM-RS port.
다른 측면에 따르면 본 발명은 기지국으로부터 E-PDCCH (Extended PDCCH) 전송에 사용 가능한 각각의 데이터 영역에 대하여, E-PDCCH 전송에 사용되는 전송 방식 및 집합레벨에 따라 결정된 DM-RS 포트(Demodulation Reference Signal port)에 매핑된 E-PDCCH 및 DM-RS(Demodulation Reference Signal)가 포함된 무선 신호를 수신하는 단계 및 상기 수신된 무선신호로부터 상기 DM-RS를 사용하여 상기 E-PDCCH를 디텍션하는 단계를 포함하는 단말의 E-PDCCH 수신 방법을 제공한다. According to another aspect, the present invention provides a DM-RS port (Demodulation Reference Signal) determined according to a transmission scheme and aggregation level used for E-PDCCH transmission for each data area available for E-PDCCH transmission from a base station. receiving a radio signal including an E-PDCCH mapped to a port) and a demodulation reference signal (DM-RS), and detecting the E-PDCCH using the DM-RS from the received radio signal. It provides an E-PDCCH receiving method of a terminal.
또 다른 측면에 따르면 본 발명은 E-PDCCH (Extended PDCCH) 전송에 사용 가능한 각각의 데이터 영역에 대하여, E-PDCCH 전송에 사용된 전송 방식 및 집합레벨에 따라 결정된 DM-RS 포트(Demodulation Reference Signal port)에 E-PDCCH와 DM-RS를 매핑하는 매핑부 및 상기 E-PDCCH 및 상기 DM-RS가 포함된 무선 신호를 송신하는 송수신부를 포함하는 기지국을 제공한다.According to another aspect, the present invention provides a DM-RS port (Demodulation Reference Signal port) determined for each data region available for E-PDCCH (Extended PDCCH) transmission according to the transmission scheme and aggregation level used for E-PDCCH transmission. It provides a base station including a mapping unit for mapping the E-PDCCH and DM-RS and a transceiver for transmitting a radio signal including the E-PDCCH and the DM-RS.
또 다른 측면에 따르면 본 발명은 기지국으로부터 E-PDCCH (Extended PDCCH) 전송에 사용 가능한 각각의 데이터 영역에 대하여, E-PDCCH 전송에 사용된 전송 방식 및 집합레벨에 따라 결정된 DM-RS 포트(Demodulation Reference Signal port)에 매핑된 E-PDCCH 및 DM-RS(Demodulation Reference Signal)가 포함된 무선 신호를 수신하는 송수신부 및 상기 수신된 무선신호로부터 상기 DM-RS를 사용하여 상기 E-PDCCH를 디텍션하는 디텍션부를 포함하는 단말을 제공한다. According to another aspect, the present invention provides a DM-RS port (Demodulation Reference) determined for each data area available for E-PDCCH transmission from a base station according to a transmission scheme and aggregation level used for E-PDCCH transmission. A transceiver for receiving a radio signal including an E-PDCCH mapped to a signal port) and a DM-RS (Demodulation Reference Signal) and a detection for detecting the E-PDCCH using the DM-RS from the received radio signal. It provides a terminal comprising a unit.
도 1은 기지국의 블록도이다.1 is a block diagram of a base station.
도 2는 PDSCH 전송에 필요한 DM-RS 전송 및 수신의 단계들에 대한 블록도이다. 2 is a block diagram of the steps of DM-RS transmission and reception required for PDSCH transmission.
도 3은 서브프레임의 개념도이다.3 is a conceptual diagram of a subframe.
도 4는 E-PDCCH의 자원 할당 및 이를 전송하고 수신단에서 이를 블라인드 디텍션 하는 과정을 보여주는 도면이다. 4 is a diagram illustrating a process of allocating an E-PDCCH, transmitting the same, and blindly detecting the E-PDCCH.
도 5는 본 명세서의 일 실시예에 의한, 자원을 할당하는 방식인 분산 자원 할당(distributed resource allocation)과 로컬 자원 할당(localized resource allocation)에 대한 설명이다.FIG. 5 is a diagram illustrating distributed resource allocation and localized resource allocation, which are methods of allocating resources according to an embodiment of the present specification.
도 6은 E-PDCCH 멀티플렉싱 중 공간적 분할 멀티플렉싱(Spatial Division Multiplexing)을 보여주는 도면이다.FIG. 6 is a diagram illustrating spatial division multiplexing during E-PDCCH multiplexing.
도 7은 E-PDCCH 멀티플렉싱 중 TCDM(Time Code Division Multiplexing)을 보여주는 도면이다. 각 E-PDCCH 리소스 할당된 영역에 코드분할로 E-PDCCH가 매핑되어 있음을 보여준다.FIG. 7 illustrates Time Code Division Multiplexing (TCDM) during E-PDCCH multiplexing. It shows that E-PDCCH is mapped by code division to each E-PDCCH resource allocated region.
도 8은 일실시예에 따른 기지국의 리소스 매핑방법의 흐름도이다.8 is a flowchart illustrating a resource mapping method of a base station according to an embodiment.
도 9는 결합 레벨(aggregation level) 및 전송 방식에 따라 다른 DM-RS 자원을 사용하는 단계의 개념도이다.9 is a conceptual diagram of using different DM-RS resources according to an aggregation level and a transmission scheme.
도 10은 다수의 단말에 결합 레벨(aggregation level) 및 전송 방식 별 다른 DM-RS 포트를 할당하는 경우의 예(AL= 1/2에 대한 예시)이다.FIG. 10 illustrates an example of assigning different DM-RS ports to an aggregation level and a transmission scheme to a plurality of UEs (example for AL = 1/2).
도 11은 검색 공간 또는 E-PDCCH 영역 및 결합 레벨(aggregation level)에 따라 다른 DM-RS 자원을 사용하는 DM-RS 리소스 할당 예를 도시하고 있다. FIG. 11 illustrates an example of DM-RS resource allocation using different DM-RS resources according to a search space or an E-PDCCH region and an aggregation level.
도 12는 도 8을 참조하여 설명한 실시예들을 구현하기 위하여, 기지국과 단말간에 이루어지는 프로세스를 보여주는 도면이다. FIG. 12 is a diagram illustrating a process performed between a base station and a terminal in order to implement the embodiments described with reference to FIG. 8.
도 13은 도 8을 참조하여 설명한 실시예들을 구현하기 위하여, 기지국과 단말간에 이루어지는 프로세스에서 단말이 E-PDCCH를 블라인드 디텍션하는 과정을 상세히 도시한다. FIG. 13 illustrates a process of blind detection of an E-PDCCH by a UE in a process between a base station and a terminal in order to implement the embodiments described with reference to FIG. 8.
도 14는 또 다른 실시예에 의한 기지국 또는 기지국과 결합하여 E-PDCCH를 리소스에 매핑하여 무선 신호를 송신하는 장치의 구성을 보여주는 도면이다.FIG. 14 illustrates a configuration of an apparatus for transmitting a radio signal by mapping an E-PDCCH to a resource in combination with a base station or a base station according to another embodiment.
도 15는 또 다른 실시예에 의한 단말 또는 단말과 결합하여 E-PDCCH가 매핑된 무선 신호를 수신하는 장치의 구성을 보여주는 도면이다. FIG. 15 is a diagram illustrating a configuration of an apparatus for receiving an E-PDCCH mapped wireless signal in combination with a terminal or a terminal according to another embodiment.
이하, 본 발명의 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, some embodiments of the present invention will be described in detail through exemplary drawings. In adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are assigned to the same components as much as possible even though they are shown in different drawings. In addition, in describing the present invention, when it is determined that the detailed description of the related well-known configuration or function may obscure the gist of the present invention, the detailed description thereof will be omitted.
또한 이하에서 설명되는 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념으로 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.In addition, the terms or words used in the specification and claims described below should not be construed as being limited to the ordinary or dictionary meanings, the inventors should use the concept of terms in order to explain their own invention in the best way. It should be interpreted as meanings and concepts corresponding to the technical idea of the present invention based on the principle that it can be properly defined.
현재의 3GPP, LTE(Long Term Evolution), LTE-A(LTE Advanced)등의 이동 통신 시스템에서는 음성 위주의 서비스를 벗어나 영상, 무선 데이터 등의 다양한 데이터를 송수신 할 수 있는 고속 대용량의 통신 시스템으로서, 유선 통신 네트워크에 준하는 대용량 데이터를 전송할 수 있는 기술 개발이 요구되고 있을 뿐 아니라, 정보 손실의 감소를 최소화하고, 시스템 전송 효율을 높임으로써 시스템 성능을 향상시킬 수 있는 적절한 오류검출 방식이 필수적인 요소가 되었다.In the current mobile communication systems such as 3GPP, Long Term Evolution (LTE), LTE-A (LTE Advanced), etc., it is a high-speed, high-capacity communication system that can transmit and receive various data such as video and wireless data beyond voice-oriented services. Not only is the development of technology capable of transmitting large amounts of data comparable to wired communication networks, but also the proper error detection method to improve system performance by minimizing the reduction of information loss and increasing system transmission efficiency has become an essential element. .
한편, 송수신단 모두에서 다중입력 다중출력 안테나(Multiple-Input Multiple-Output, 이하 "MIMO"라 한다)를 이용하는 통신시스템을 사용할 수 있으며, 단일의 UE(single UE; SU) 또는 여러 UE(Multiple UE, MU)가 동일한 무선 자원 용량을 공유하여 하나의 기지국 등에 신호를 수신 또는 송신하는 구조이다.Meanwhile, a communication system using a multiple-input multiple-output antenna (hereinafter referred to as "MIMO") may be used at both the transmitting and receiving ends, and may be a single UE (SU) or multiple UEs. MUs share the same radio resource capacity and receive or transmit a signal to one base station or the like.
MIMO을 사용하는 시스템에서는 여러 참조신호 또는 기준 신호 등을 이용하여 채널 상태를 파악하고, 파악한 결과를 전송단(다른 장치)으로 피드백하는 과정이 필요하다.In a system using MIMO, it is necessary to process a channel state by using various reference signals or reference signals, and feed back the result to a transmission terminal (another device).
즉, 하나의 단말이 다수의 하향링크 물리채널을 할당 받는 경우, 단말은 각 물리채널에 대한 채널상태 정보를 기지국에 피드백 함으로써 적응적으로 시스템을 최적화할 수 있으며, 이를 위하여 채널상태 지시 참조신호(CSI-RS (Channel Status Information-Reference Signal)), 채널품질 지시자(CQI: Channel Quality Indicator) 및 프리코딩 매트릭스 인덱스(PMI: Precoding Matrix Index)의 신호들이 사용될 수 있으며, 기지국은 그러한 채널상태 관련 정보를 이용하여 채널을 스케줄링할 수 있다. 또한, 다운링크 서브프레임 전체에서 송신되는 셀특이적 참조신호(Cell-specific Reference Signal, CRS) 역시 기지국이 해당 셀 내의 단말들에게 전송하게 된다. 한편, 단말의 채널의 상태를 확인하기 위한 사운딩 참조신호(Sounding Reference Signal, SRS)와 복조를 위한 참조 신호(Demodulation Reference Signal, DM-RS)도 이용된다. 보다 상세하게, CSI-RS은 기지국이 전송하며, PMI 및 CQI는 단말이 보고하는 정보이다. That is, when one terminal is assigned a plurality of downlink physical channels, the terminal can adaptively optimize the system by feeding back channel state information for each physical channel to the base station. Signals of Channel Status Information-Reference Signal (CSI-RS), Channel Quality Indicator (CQI), and Precoding Matrix Index (PMI) may be used, and the base station may provide such channel status information. Channels can be scheduled. In addition, a cell-specific reference signal (CRS) transmitted in the entire downlink subframe is also transmitted by the base station to the terminals in the cell. Meanwhile, a sounding reference signal (SRS) for checking the state of the channel of the terminal and a demodulation reference signal (DM-RS) for demodulation are also used. In more detail, the CSI-RS is transmitted by the base station, and the PMI and the CQI are information reported by the terminal.
무선통신시스템은 음성, 패킷 데이터 등과 같은 다양한 통신 서비스를 제공하기 위해 널리 배치되며, 무선통신시스템은 단말(User Equipment, UE) 및 기지국(Base Station, BS, 또는 eNB) 그리고 RRH(Remote Radio Head) 등 기지국의 행동을 보조하는 유닛(unit)을 포함한다. 본 명세서에서의 단말은 무선 통신에서의 단말을 의미하는 포괄적 개념으로서, WCDMA 및 LTE, HSPA 등에서의 UE(User Equipment)는 물론, GSM에서의 MS(Mobile Station), UT(User Terminal), SS(Subscriber Station), 무선기기(wireless device) 등을 모두 포함하는 개념으로 해석되어야 할 것이다.The wireless communication system is widely deployed to provide various communication services such as voice and packet data, and the wireless communication system includes a user equipment (UE) and a base station (base station, BS, or eNB) and a remote radio head (RRH). And a unit that assists in the behavior of the base station. A terminal in the present specification is a comprehensive concept of a terminal in a wireless communication, WCDMA and UE (User Equipment) in the LTE, HSPA, etc., as well as MS (Mobile Station), UT (User Terminal), SS (SS) in GSM It should be interpreted as a concept that includes both a subscriber station and a wireless device.
기지국 또는 셀(cell)은 일반적으로 단말과 통신하는 지점(station)을 말하며, 노드-B(Node-B), eNB(evolved Node-B), 섹터(Sector), 싸이트(Site), BTS(Base Transceiver System), 액세스 포인트(Access Point), 릴레이 노드(Relay Node), RRH 등 다른 용어로 불릴 수 있다.A base station or a cell generally refers to a station that communicates with a terminal, and includes a Node-B, an evolved Node-B, an Sector, a Site, and a BTS. It may be called other terms such as a transceiver system, an access point, a relay node, and an RRH.
즉, 본 명세서에서 기지국 또는 셀은 CDMA에서의 BSC(Base Station Controller), WCDMA의 NodeB, LTE에서의 eNB 또는 섹터(싸이트) 등이 커버하는 일부 영역 또는 기능을 나타내는 포괄적인 의미로 해석되어야 하며, 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀 및 릴레이 노드(relay node) 통신범위 등 다양한 커버리지 영역을 모두 포괄하는 의미이다. That is, in the present specification, a base station or a cell should be interpreted in a comprehensive sense indicating some areas or functions covered by a base station controller (BSC) in CDMA, a NodeB in WCDMA, an eNB or a sector (site) in LTE, and the like. It is meant to encompass various coverage areas such as megacell, macrocell, microcell, picocell, femtocell and relay node communication range.
본 명세서에서 단말과 기지국은 본 명세서에서 기술되는 기술 또는 기술적 사상을 구현하는데 사용되는 두 가지 송수신 주체로 포괄적인 의미로 사용되며 특정하게 지칭되는 용어 또는 단어에 의해 한정되지 않는다. 단말과 기지국은, 본 발명에서 기술되는 기술 또는 기술적 사상을 구현하는데 사용되는 두 가지(Uplink 또는 Downlink) 송수신 주체로 포괄적인 의미로 사용되며 특정하게 지칭되는 용어 또는 단어에 의해 한정되지 않는다. 여기서, 상향링크(Uplink, UL, 또는 업링크)는 단말에 의해 기지국으로 데이터를 송수신하는 방식을 의미하며, 하향링크(Downlink, DL, 또는 다운링크)는 기지국에 의해 단말로 데이터를 송수신하는 방식을 의미한다.In the present specification, the terminal and the base station are two transmitting and receiving entities used in implementing the technology or the technical idea described in the present specification and are used in a comprehensive sense and are not limited by the terms or words specifically referred to. The terminal and the base station are two types of uplink or downlink transmitting / receiving subjects used to implement the technology or the technical idea described in the present invention, and are used in a generic sense and are not limited by the terms or words specifically referred to. Here, the uplink (Uplink, UL, or uplink) means a method for transmitting and receiving data to the base station by the terminal, the downlink (Downlink, DL, or downlink) means a method for transmitting and receiving data to the terminal by the base station Means.
무선통신시스템에 적용되는 다중 접속 기법에는 제한이 없다. CDMA(Code Division Multiple Access), TDMA(Time Division Multiple Access), FDMA(Frequency Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), OFDM-FDMA, OFDM-TDMA, OFDM-CDMA와 같은 다양한 다중 접속 기법을 사용할 수 있다. There is no limitation on the multiple access scheme applied to the wireless communication system. Various multiple access techniques such as Code Division Multiple Access (CDMA), Time Division Multiple Access (TDMA), Frequency Division Multiple Access (FDMA), Orthogonal Frequency Division Multiple Access (OFDMA), OFDM-FDMA, OFDM-TDMA, OFDM-CDMA Can be used.
상향링크 전송 및 하향링크 전송은 서로 다른 시간을 사용하여 전송되는 TDD(Time Division Duplex) 방식이 사용될 수 있고, 또는 서로 다른 주파수를 사용하여 전송되는 FDD(Frequency Division Duplex) 방식이 사용될 수 있다.The uplink transmission and the downlink transmission may use a time division duplex (TDD) scheme that is transmitted using different times, or may use a frequency division duplex (FDD) scheme that is transmitted using different frequencies.
본 발명의 일 실시예는 GSM, WCDMA, HSPA를 거쳐 LTE 및 LTE-advanced로 진화하는 비동기 무선통신과, CDMA, CDMA-2000 및 UMB로 진화하는 동기식 무선 통신 분야 등의 자원할당에 적용될 수 있다. 본 발명은 특정한 무선통신 분야에 한정되거나 제한되어 해석되어서는 아니 되며, 본 발명의 사상이 적용될 수 있는 모든 기술분야를 포함하는 것으로 해석되어야 할 것이다.One embodiment of the present invention can be applied to resource allocation in the fields of asynchronous wireless communication evolving to LTE and LTE-advanced through GSM, WCDMA, HSPA, and synchronous wireless communication evolving to CDMA, CDMA-2000 and UMB. The present invention should not be construed as being limited or limited to a specific wireless communication field, but should be construed as including all technical fields to which the spirit of the present invention can be applied.
한편, LTE에서는 하나의 반송파 또는 반송파 쌍을 기준으로 상향링크와 하향링크를 구성하여 규격을 구성한다. 상향링크와 하향링크는, PDCCH(Physical Downlink Control CHannel), PCFICH(Physical Control Format Indicator CHannel), PHICH(Physical Hybrid ARQ Indicator CHannel), PUCCH(Physical Uplink Control CHannel) 등과 같은 제어채널을 통하여 제어정보를 전송하고, PDSCH(Physical Downlink Shared CHannel), PUSCH(Physical Uplink Shared CHannel) 등과 같은 데이터채널로 구성되어 데이터를 전송한다. Meanwhile, in LTE, a standard is configured by configuring uplink and downlink based on one carrier or a pair of carriers. Uplink and downlink transmit control information through control channels such as Physical Downlink Control CHannel (PDCCH), Physical Control Format Indicator CHannel (PCFICH), Physical Hybrid ARQ Indicator CHannel (PHICH), and Physical Uplink Control CHannel (PUCCH). A data channel is configured such as PDSCH (Physical Downlink Shared CHannel), PUSCH (Physical Uplink Shared CHannel) and the like to transmit data.
LTE-A에서는 LTE에서 단일 반송파에 의한 규격이 기본을 이루고, 20MHz보다 작은 대역을 가진 몇 개의 대역의 결합에 대해서 논의되고 있는 반면에 20MHz이상의 대역을 가지는 요소 반송파 대역에 대한 논의를 진행하고 있다. LTE-A에서 다중 반송파 집합화(Carrier Aggregation, 이하 'CA'라 칭함)에 대한 논의는 기본적으로 LTE의 기본규격을 근거로 백워드 컴패터빌러티(Backward Compatibility)를 최대한 고려해 이루어지고 상향링크 및 하향링크에서는 최대 5개의 요소 반송파가 고려되고 있다. 물론, 5개의 요소 반송파는 시스템의 환경에 따라 증감할 수 있으며, 본 발명은 이에 한정되지 않는다. 이하 요소 반송파 집합은 해당 시스템에서 사용하도록 설정된(configured) 둘 이상의 요소 반송파들로 이루어진 집합을 의미한다.In LTE-A, a standard based on a single carrier in LTE is discussed, and a combination of several bands having a band smaller than 20 MHz is discussed, while a component carrier band having a band of 20 MHz or more is being discussed. In LTE-A, multi-carrier aggregation (hereinafter referred to as 'CA') is basically discussed in consideration of backward compatibility based on LTE's basic specifications. Up to five component carriers are considered in the link. Of course, five component carriers can be increased or decreased according to the environment of the system, and the present invention is not limited thereto. Hereinafter, the CC set refers to a set of two or more CCs configured for use in a corresponding system.
CA에 있어서, 제어 채널 설계와 관련되어 여러 가지 고려되고 있는 사항 중에 상향링크 ACK/NACK(ACKnowledgement/Negative ACKnowledgement) 전송과, CQI(Channel Quality Indicator, 이하 "CQI"라 칭함), PMI(Precoding Matrix Indicators, 이하 "PMI"이라 칭함) 및 RI(Rank Indicator, 이하 "RI"라 칭함)를 포함하는 상향링크 채널정보 전송에 관한 사항이 있다.In CA, uplink ACK / NACK (ACKnowledgement / Negative ACKnowledgement) transmission, channel quality indicator (CQI), and precoding matrix indicators (PMI) are considered among various considerations related to control channel design. , Which is referred to as " PMI ") and RI (Rank Indicator (hereinafter, referred to as " RI ")).
LTE-A에서는 CA의 구성을 위해서 기본적으로 3GPP LTE Rel-8의 백워드 컴패터빌러티(Backward Compatibility) 사항을 고려하고 있다. LTE Rel-8에서 표준으로 정해진 CQI/PMI/RI정보는 상향 제어 채널인 PUCCH(Physical Uplink Control Channel)와 PUSCH(Physical Uplink Shared Channel)를 통하여 다양한 방식에 의해 이루어진다. LTE-A is basically considering backward compatibility of 3GPP LTE Rel-8 for the configuration of CA. CQI / PMI / RI information determined as a standard in LTE Rel-8 is performed by various methods through a physical uplink control channel (PUCCH) and a physical uplink shared channel (PUSCH) which are uplink control channels.
본 명세서의 실시예가 적용되는 무선통신 시스템은 상향링크 및/또는 하향링크 HARQ를 지원할 수 있다. A wireless communication system to which an embodiment of the present specification is applied may support uplink and / or downlink HARQ.
한편, 기지국 내에서의 단말의 수가 증가할 경우, 단말에게 제공하는 제어 신호는 증가하게 되며, 제어 신호가 송신될 자원 역시 더 많이 필요로 하게 된다. 단말의 수가 증가하는 일 실시예로, 해당 기지국이 관리하는 셀(Cell) 내에 단말의 수가 점진적으로 늘어나는 경우와 다양한 다중 전송 방식을 사용하여 단말의 수가 증가하는 경우로 나뉘어진다. 후자의 경우의 통신 시스템으로는 둘 이상의 전송단이 협력하여 신호를 전송하는 다중 포인트 협력형 송수신 시스템(Coordinated multi-point transmission/reception System) 또는 협력형 다중 안테나 전송방식(Coordinated multi-antenna transmission system), 협력형 다중 셀 통신시스템(이하, "협력형 다중 셀 통신시스템" 또는 "CoMP"라 )이 있다. 특히, 이러한 다중 셀 통신 시스템 중에서, 하나의 매크로 기지국의 셀 반경 내에는 위치하는 펨토 셀(Femto cell), 피코 셀(Pico cell), 릴레이(Relay), 핫스팟(Hot spot)과 같은 다양한 형태의 마이크로 또는 로컬 기지국들(Remote Radio Head, 이하 RRH라 한다)일 수도 있다. 다양한 형태의 기지국들로 구성된 네트워크를 헤테로지니어스 네트워크(Heterogenous network, 이하 Het-Net이라 한다)라고 한다. On the other hand, when the number of terminals in the base station increases, the control signal provided to the terminal increases, and also requires more resources to transmit the control signal. In an embodiment of increasing the number of terminals, the number of terminals is divided into a case where the number of terminals is gradually increased in a cell managed by the base station and a case where the number of terminals is increased by using various multiplexing methods. In the latter case, a coordinated multi-point transmission / reception system or a coordinated multi-antenna transmission system in which two or more transmitters cooperate to transmit a signal , A cooperative multi-cell communication system (hereinafter referred to as "cooperative multi-cell communication system" or "CoMP"). In particular, in such a multi-cell communication system, various types of micros such as femto cells, pico cells, relays, hot spots, etc., located within a cell radius of one macro base station Or it may be local base stations (Remote Radio Head, hereinafter referred to as RRH). A network composed of various types of base stations is called a heterogenous network (hereinafter referred to as Het-Net).
LTE Rel-10 PDSCH 전송의 경우, DM-RS 수신을 통해 프리코더 및 채널 추정을 수행하고 상기의 채널 정보에 따라 PDSCH 복조를 수행한다. 기지국은 각 단말에게 DM-RS 수신에 필요한 정보 즉, DM-RS 포트 넘버와 DM-RS 시퀀스 스크램블링에 대한 정보를 PDCCH을 통해 전달하며, 단말은 PDCCH 수신을 통해 상기의 정보를 습득하고 이를 사용하여 DM-RS 수신 및 PDSCH 복조를 수행한다. In case of LTE Rel-10 PDSCH transmission, precoder and channel estimation are performed through DM-RS reception, and PDSCH demodulation is performed according to the channel information. The base station transmits information necessary for DM-RS reception, that is, DM-RS port number and information about DM-RS sequence scrambling, through the PDCCH, and the terminal acquires the above information through PDCCH reception and uses the same. DM-RS reception and PDSCH demodulation are performed.
도 1은 기지국의 DM-RS의 전송에 대한 블록도이다.1 is a block diagram for transmission of a DM-RS of a base station.
무선 통신의 용량 증대를 위해 폐루프 MIMO(closed loop MIMO) 기법이 사용된다. 폐루프 MIMO(Closed loop MIMO) 기법에서, 수신단 또는 단말(이하, '단말이라 함)은 참조신호를 통해 측정한 채널 정보를 전송단에 전달하며, 전송단 또는 기지국(100, 이하 '기지국'이라 함)은 채널 정보에 기반하여 적절한 프리코더(110)를 선정하고 상기의 프리코더(110)를 사용하여 정보(스트림 0,...,스트림 K-1)를 전송한다. 단말 정보 복원을 위해서는 사용된 프리코더의 정보 및 채널 정보를 단말이 파악하여야 한다. LTE Rel-10 및 이후의 시스템에서는 DM-RS(DM-RS 0,...,DM-RS K-1) 전송 및 수신을 통해 채널 추정 및 프리코더 정보 추정을 동시에 수행하도록 한다.Closed loop MIMO technique is used to increase the capacity of wireless communication. In a closed loop MIMO technique, a receiving end or a terminal (hereinafter, referred to as a 'terminal') transmits channel information measured through a reference signal to a transmitting end and a transmitting end or base station (hereinafter referred to as 'base station'). Selects an appropriate precoder 110 based on channel information and transmits information (stream 0, ..., stream K-1) using the precoder 110. In order to recover the terminal information, the terminal should grasp the information and channel information of the precoder used. In LTE Rel-10 and later systems, channel estimation and precoder information estimation are simultaneously performed by transmitting and receiving DM-RS (DM-RS 0, ..., DM-RS K-1).
도 2는 PDSCH 전송에 필요한 DM-RS 수신에 대한 블록도이다. 2 is a block diagram for DM-RS reception required for PDSCH transmission.
단말은 브로드캐스팅되는 시스템 정보(system information)를 통해 cell ID을 판별(수신)하고(S210), cell ID에 의해 생성되는 DM-RS 베이스 시퀀스를 파악(획득)한다(S212). 단말은 블라인드 디텍션으로 PDCCH를 수신하고(S214), 수신된 PDCCH의 'PDSCH 전송에 사용된 대역 정보 및 기타 정보를 통해 DM-RS가 수신되는 대역을 파악하며(S216), DM-RS 수신에 필요한 정보(DM-RS 포트들, DM-RS 스크램블링의 사용 유무, DM-RS 인덱스 등)를 파악(획득)한다(S218). 단말은 DM-RS 수신에 필요한 정보 중 스크램블링 인덱스와 DM-RS 베이스 시퀀스를 이용하여 UE 특정 DM-RS 시퀀스를 획득한다(S220). 단말은 PDSCH 전송에 사용되는 대역 정보를 통해 DM-RS가 수신되는 대역의 DM-RS 수신을 수행하고(S222), UE 특정 DM-RS 시퀀스와 DM-RS 포트들을 이용하여 채널 추정을 수행한다(S224). 단말은 추정된 채널 정보와 사용된 프리코더 정보를 통해 PDSCH 전송 정보를 복조한다(S226). The terminal determines (receives) a cell ID through system information broadcast (S210), and identifies (acquires) a DM-RS base sequence generated by the cell ID (S212). The UE receives the PDCCH with blind detection (S214), identifies the band where the DM-RS is received through the band information and other information used for 'PDSCH transmission of the received PDCCH (S216), and is required for receiving the DM-RS. Information (DM-RS ports, DM-RS scrambling use, DM-RS index, etc.) is identified (acquired) (S218). The terminal acquires the UE specific DM-RS sequence using the scrambling index and the DM-RS base sequence among the information required for receiving the DM-RS (S220). The UE performs DM-RS reception of a band where a DM-RS is received through band information used for PDSCH transmission (S222), and performs channel estimation by using a UE-specific DM-RS sequence and DM-RS ports ( S224). The terminal demodulates the PDSCH transmission information through the estimated channel information and the used precoder information (S226).
한편, 도 3에 도시한 바와 같이 제어 정보를 PDSCH와 공유되는 무선 자원(PDSCH 전송 또는 다른 data channel 전송을 위해 사용될 수 있는 무선 자원)을 사용하여 전송하는 방법으로 E-PDCCH와 R-PDCCH(Relay-PDCCH)가 존재한다. 이들은 모두 제어영역(Control region)이 아니라 PDSCH 또는 데이터 영역(Data region)에 포함되어 전송된다는 특징을 가지고 있다. 이러한 E-PDCCH 또는 R-PDCCH는 CCE(Control Channel Element) 또는 RB(Resource Block)를 기본 단위로 하여 자원 할당 및 전송을 수행할 수 있다. On the other hand, as shown in Figure 3 E-PDCCH and R-PDCCH (Relay) as a method of transmitting the control information using a radio resource shared with the PDSCH (radio resources that can be used for PDSCH transmission or other data channel transmission) -PDCCH) is present. These are all characterized in that they are transmitted in a PDSCH or a data region rather than a control region. The E-PDCCH or R-PDCCH may perform resource allocation and transmission on the basis of a control channel element (CCE) or a resource block (RB).
R-PDCCH와 E-PDCCH는 PDSCH 영역에서 제어 정보를 전송한다는 점에서 유사한 기술이다. 다만, R-PDCCH는 기지국과 릴레이(relay)간 채널에서 전송이 이루어지며, E-PDCCH는 기지국과 단말 간 채널에서 전송이 이루어진다. R-PDCCH가 전송되는 기지국과 릴레이간 채널은 매우 높은 확률로 LoS(line of sight)가 존재하며, 주파수 선택도(frequency selectivity)가 작고, 전송 손실(propagation loss)이 작은, 즉 전파 특성이 매우 좋은 채널이 구성된다. 반면, E-PDCCH가 전송되는 기지국과 단말 간 채널은 다양한 환경 요소에 의해 전송 손실에 변동이 심하며, 또한 높은 주파수 선택도(high frequency selectivity)를 보이게 된다. R-PDCCH and E-PDCCH are similar techniques in that they transmit control information in the PDSCH region. However, the R-PDCCH is transmitted in the channel between the base station and the relay (relay), the E-PDCCH is transmitted in the channel between the base station and the terminal. The channel between the base station and the relay to which the R-PDCCH is transmitted has a very high probability of line of sight, low frequency selectivity, and low propagation loss, that is, a propagation characteristic. Good channel is organized. On the other hand, the channel between the base station and the terminal on which the E-PDCCH is transmitted fluctuates in transmission loss due to various environmental factors, and also shows high frequency selectivity.
MIMO, CoMP, Het-Net의 무선 통신 시스템의 성능을 향상시키기 위해, 기존 제어 영역에 존재하는 PDCCH를 새롭게 정의하여 간략하게 구현하거나, PDSCH등이 포함되는 데이터 영역의 일부를 제어 정보를 위하여 이용할 수 있다. 이렇게, 기존의 PDCCH 구성과 달리, 더 많은 PDCCH의 전송을 위해 새로이 고안된 PDCCH를 이하 E-PDCCH(Extended PDCCH)라고 한다. 본 발명에서 E-PDCCH은, 기존의 PDCCH가 전달하는 제어 정보 또는 그 이외의 채널을 통해 전달되는 제어 정보를 기존의 PDSCH 영역(또는 데이터 영역)을 통해 전달하거나 또는 각 단말 별 할당되는 대역을 통해 전달하는 기법의 통칭으로 사용된다. E-PDCCH의 구현 방식은 다양할 수 있으며, 본 명세서에서 설명하는 발명은 특정한 E-PDCCH의 구현 방식에 한정되지 않는다.In order to improve the performance of MIMO, CoMP, Het-Net wireless communication system, the PDCCH existing in the existing control region can be newly defined and simply implemented, or a part of the data region including PDSCH can be used for control information. have. Thus, unlike the existing PDCCH configuration, a newly designed PDCCH for transmitting more PDCCHs is referred to as an extended PDCCH (E-PDCCH) hereinafter. In the present invention, the E-PDCCH transmits control information transmitted through the existing PDCCH or control information transmitted through another channel through the existing PDSCH region (or data region) or through a band allocated to each terminal. Used as a generic term for the delivery technique. The implementation manner of the E-PDCCH may vary, and the invention described herein is not limited to the implementation manner of a specific E-PDCCH.
도 4는 E-PDCCH의 자원 할당 및 이를 전송하고 수신단에서 이를 블라인드 디텍션하는 과정을 보여주는 도면이다. 4 is a diagram illustrating resource allocation of an E-PDCCH, a process of transmitting the same, and blind detection of the E-PDCCH at the receiving end.
기지국은 E-PDCCH가 전송될 자원을 할당한다(Resource Allocation)(S410). 그리고, 할당된 자원에 대해 수신단, 예를 들어 수신단인 단말에게 통보한다(S420). 그리고, 할당된 자원(Allocated Resource)을 통해 E-PDCCH를 전송한다(S430). The base station allocates a resource for transmitting the E-PDCCH (Resource Allocation) (S410). Then, the receiving end, for example, the terminal which is the receiving end is notified about the allocated resources (S420). In operation S430, the E-PDCCH is transmitted through an allocated resource.
E-PDCCH 전송 및 수신의 경우, E-PDCCH가 PDSCH와 공유되는 무선 자원을 사용하므로 도 2에 도시한 PDSCH 전송 및 수신의 경우와 동일하게 DM-RS을 통해 각 단말은 채널 정보를 측정하고 이를 근거로 E-PDCCH 수신을 수행한다. E-PDCCH 수신의 경우, DM-RS을 통한 채널 정보 측정이 선행되어야 하므로, 블라인드 디텍션을 통해 E-PDCCH 전송에 사용된 DM-RS 포트(물리적인 위치 및 OCC) 및 스크램블링 정보(스크램블링 인덱스)를 추정하거나, 또는 RRC 시그널링 등 반정적(semi-static) 시그널링을 통해 상기의 정보를 습득하여야 한다. In the case of E-PDCCH transmission and reception, since the E-PDCCH uses a radio resource shared with the PDSCH, each UE measures channel information through the DM-RS as in the case of PDSCH transmission and reception shown in FIG. Based on the E-PDCCH reception. In the case of E-PDCCH reception, channel information measurement through DM-RS must be preceded. Therefore, the DM-RS port (physical location and OCC) and scrambling information (scrambling index) used for E-PDCCH transmission are blinded through blind detection. The above information should be obtained through estimation or semi-static signaling such as RRC signaling.
수신단에서는 습득한 정보를 사용하여 할당된 자원 내에서 블라인드 디텍션(Blind detection)을 수행하여 E-PDCCH를 확인할 수 있다(S440).The receiving end may check the E-PDCCH by performing blind detection in the allocated resource using the acquired information (S440).
도 5는 자원을 할당하는 방식인 분산 자원 할당(distributed resource allocation 또는 분산 매핑, 분산 전송)과 로컬 자원 할당(localized resource allocation 또는 로컬 매핑, 로컬 전송)에 대한 설명이다. 도 5에서는 R-PDCCH 또는 E-PDCCH와 같이 제어 정보가 PDSCH의 영역에 포함되어 전송되는 경우의 자원 할당을 보여주는 도면이다. 또한 RB를 기본 단위로 자원을 할당한 예를 보여준다. FIG. 5 is a description of distributed resource allocation (distributed resource allocation or distributed mapping, distributed transmission) and localized resource allocation (localized resource allocation or local mapping, local transmission). FIG. 5 is a diagram illustrating resource allocation when control information, such as R-PDCCH or E-PDCCH, is included in a PDSCH region and transmitted. It also shows an example of allocating resources in RB as a basic unit.
도 5에 도시한 바와 같이 E-PDCCH RB(resource block)은 E-PDCCH 전송을 위해 사용될 수 있는 리소스 블록(RB)이며, RB 중 일부, 또는 모두가 E-PDCCH 전송에 사용될 수 있다. 510은 분산 자원 할당 방식으로, 분산된 리소스 블록들을 통해 E-PDCCH가 전송된다. 520은 로컬 자원 할당 방식으로, 인접한 리소스 블록들을 통해 E-PDCCH가 전송된다. As shown in FIG. 5, an E-PDCCH resource block (RB) is a resource block (RB) that may be used for E-PDCCH transmission, and some or all of the RBs may be used for E-PDCCH transmission. In 510, an E-PDCCH is transmitted through distributed resource blocks. 520 is a local resource allocation scheme in which the E-PDCCH is transmitted through adjacent resource blocks.
각 단말 별 DM-RS 포트 및 스크램블링이 다를 것이 요구되는 환경에서는 로컬 자원할당 방식 및 UE 특정 프리코더가 선택될 수 있다. 한편, 각 단말 별 DM-RS 포트 또는 스크램블링이 같을 것이 요구되는 환경에서는 임의 프리코딩이 사용되거나 프리코딩하지 않는 분산 자원할당방식이 선택될 수 있다. In an environment where DM-RS ports and scrambling for each terminal are required to be different, a local resource allocation scheme and a UE specific precoder may be selected. On the other hand, in an environment where DM-RS ports or scrambling for each terminal are required to be the same, a distributed resource allocation method using random precoding or non-precoding may be selected.
한편, E-PDCCH의 경우, 제어 채널 용량의 극대화를 위하여 동일 주파수 내에서 다수의 단말에 대한 E-PDCCH 멀티플렉싱은 두 가지 방식으로 지원 가능하다. On the other hand, in the case of the E-PDCCH, E-PDCCH multiplexing for a plurality of terminals within the same frequency in order to maximize the control channel capacity can be supported in two ways.
단말 특정 프리코딩을 사용하는 경우, 멀티플렉싱 되는 E-PDCCH가 각각 다른 포트에 매핑되도록 하거나 또는 각 E-PDCCH 전송에 사용되는 DM-RS가 다른 스크램블링 인덱스를 가지도록 한다.In case of using UE-specific precoding, multiplexed E-PDCCHs are mapped to different ports, or DM-RSs used for transmission of each E-PDCCH have different scrambling indexes.
한편 임의 프리코딩(random precoding)이 사용되거나 또는 프리코딩없이 E-PDCCH가 전송되는 경우, 즉 공간적 분할(spatial division) 방식과는 다른 방식의 멀티플렉싱(예를 들어 CDM)이 사용되는 경우, 각 E-PDCCH가 동일 포트를 통해 전송되도록 한다. 즉, E-PDCCH가 DM-RS 포트 및 스크램블링 인덱스를 공유하도록 한다. On the other hand, when random precoding is used or E-PDCCH is transmitted without precoding, i.e., when multiplexing (e.g. CDM) different from the spatial division method is used, each E Allow the PDCCH to be transmitted on the same port. That is, the E-PDCCH allows the DM-RS port and the scrambling index to be shared.
도 6은 E-PDCCH 멀티플렉싱 중 공간적 분할 멀티플렉싱(Spatial Division Multiplexing)을 보여주는 도면이다. FIG. 6 is a diagram illustrating spatial division multiplexing during E-PDCCH multiplexing.
610은 UE 0의 E-PDCCH 영역이며, 620은 UE 1의 E-PDCCH 영역, 그리고, 630은 UE 2의 E-PDCCH 영역이다. 640은 이러한 UE 0, UE 1, UE 2의 E-PDCCH 영역을 매핑한 일 예이며, 650은 UE 0와 UE 1의 E-PDCCH 영역이 SDM(Spatial Division Multiplexing) 방식으로 멀티플렉싱 되는 것을 보여주고 있다. 이는 UE 0와 UE 1이 빔포밍에 의해 공간적 분할이 가능한 경우 적용할 수 있다. 610 is an E-PDCCH region of UE 0, 620 is an E-PDCCH region of UE 1, and 630 is an E-PDCCH region of UE 2. 640 shows an example of mapping the E-PDCCH regions of UE 0, UE 1, and UE 2, and 650 shows that the E-PDCCH regions of UE 0 and UE 1 are multiplexed by SDM (Spatial Division Multiplexing). . This can be applied when UE 0 and UE 1 can spatially partition by beamforming.
E-PDCCH가 전송되는 각 대역에 대한 정확한 채널 정보를 기지국이 습득하는 경우, 도 6과 같은 공간적 분할(spatial division)이 가능하다.When the base station acquires accurate channel information for each band in which the E-PDCCH is transmitted, spatial division as shown in FIG. 6 is possible.
도 7은 E-PDCCH 멀티플렉싱 중 TCDM(Time Code Division Multiplexing)을 보여주는 도면이다. 각 E-PDCCH 리소스 할당된 영역에 코드분할로 E-PDCCH가 매핑되어 있음을 보여준다. 도 7은 주파수 다이버시티 이익(frequency diversity gain)을 얻기 위한 광대역 또는 와이드 밴드(wideband) E-PDCCH 전송과 TCDM을 보여주고 있다. FIG. 7 illustrates Time Code Division Multiplexing (TCDM) during E-PDCCH multiplexing. It shows that E-PDCCH is mapped by code division to each E-PDCCH resource allocated region. FIG. 7 shows a wideband or wideband E-PDCCH transmission and TCDM for obtaining frequency diversity gain.
기지국은 단말에 E-PDCCH 수신 시 확인하여야 하는 영역(E-PDCCH 영역)에 대한 정보를 RRC 시그널링을 통해 전달하거나 또는 미리 정해놓는다. 그 후, E-PDCCH 수신을 위해 사용하여야 하는 DM-RS에 대한 정보를 별도로 전달하거나 또는 블라인드 디텍션을 통해 DM-RS을 수신하도록 한다. 구체적으로는 아래의 세 가지 방법을 사용할 수 있다. The base station delivers or predetermines the information on the region (E-PDCCH region) to be confirmed when receiving the E-PDCCH to the terminal through RRC signaling. Thereafter, information on the DM-RS to be used for E-PDCCH reception is separately transmitted or the DM-RS is received through blind detection. Specifically, the following three methods can be used.
1. 기지국은 각 단말에 대하여 E-PDCCH 전송 시 사용될 DM-RS 포트 및 스크램블링의 사용 여부에 대한 정보를 RRC로 전달한다. DM-RS 포트 및 스크램블링이 각 단말에 대해 미리 선정됨으로, E-PDCCH 멀티플렉싱의 유연성(flexibility)이 감소한다.1. The base station transmits information on the use of the DM-RS port and scrambling to be used when transmitting the E-PDCCH for each terminal to the RRC. Since the DM-RS port and scrambling are pre-selected for each UE, the flexibility of E-PDCCH multiplexing is reduced.
2. E-PDCCH 전송 시 별도의 PDCCH을 함께 전송하여 E-PDCCH 전송에 사용되는 DM-RS에 대한 정보를 전달한다. 동적 DM-RS 할당이 가능하나, 별도의 PDCCH 전송 및 수신이 요구되어 PDCCH 페이로드 증가 및 단말 블라인드 디텍션 복잡도(complexity) 증가가 발생할 수 있다. 2. When transmitting E-PDCCH, it transmits information on DM-RS used for E-PDCCH transmission by transmitting a separate PDCCH together. Dynamic DM-RS allocation is possible, but separate PDCCH transmission and reception may be required, resulting in an increase in PDCCH payload and an increase in UE blind detection complexity.
3. DM-RS에 대한 정보를 별도로 전달하지 않는다. 단말은 블라인드 디텍션을 통해 DM-RS 포트 및 스크램블링에 대한 정보를 습득한다. 별도의 PDCCH 전송 없이 동적 DM-RS 할당을 지원하는 방법이다. 단말이 DM-RS 디텍션을 독자적으로 수행하므로 복잡도(complexity) 문제 및 디텍션 신뢰도 문제가 발생할 수 있다. 3. Information about DM-RS is not transmitted separately. The terminal acquires information on the DM-RS port and scrambling through blind detection. This method supports dynamic DM-RS allocation without separate PDCCH transmission. Since the UE independently performs the DM-RS detection, a complexity problem and a detection reliability problem may occur.
이하 본 발명은 각 단말이 사용하는 DM-RS 자원을 단말이 수신하는 E-PDCCH의 결합 레벨(aggregation level) 및 전송 방식에 따라 다르게 설정하는 방식으로 블라인드 디텍션 복잡도(complexity)의 증가 없이 보다 원활하게 E-PDCCH 멀티플렉싱을 지원하는 방법 및 장치를 제시한다.Hereinafter, the present invention sets the DM-RS resource used by each UE differently according to the aggregation level and transmission scheme of the E-PDCCH received by the UE, thereby more smoothly without increasing blind detection complexity. A method and apparatus for supporting E-PDCCH multiplexing are provided.
도 8은 일실시예에 따른 기지국의 리소스 매핑방법의 흐름도이다.8 is a flowchart illustrating a resource mapping method of a base station according to an embodiment.
도 8을 참조하면, 일실시예에 따른 기지국의 리소스 매핑방법(800)은 데이터 영역의 자원에 단말에게 전송할 E-PDCCH(Extended PDCCH)를 매핑하는 단계(S810), E-PDCCH의 결합 레벨(Aggregation Level) 또는 전송 방식 중 적어도 하나에 따라 서로 다른 DM-RS(Demodulation Reference Signal)를 DM-RS 포트에 매핑하는 단계(S820)를 포함한다. Referring to FIG. 8, in the resource mapping method 800 of the base station according to an embodiment, mapping an extended PDCCH (E-PDCCH) to be transmitted to a UE to a resource in a data area (S810), and a coupling level of the E-PDCCH ( And mapping different demodulation reference signals (DM-RSs) to DM-RS ports according to at least one of an aggregation level or a transmission scheme (S820).
일실시예에 따른 기지국의 리소스 매핑방법(800)에서 S810단계와 S820단계를 개념적으로 분리하여 설명하나 하나의 단계로 수행될 수 있다. 이때 S810단계와 S820단계 이전에 E-PDCCH (Extended PDCCH) 전송에 사용 가능한 각각의 데이터 영역에 대하여, E-PDCCH 전송에 사용된 전송 방식 및 집합레벨에 따라 DM-RS 포트(Demodulation Reference Signal port)를 결정(또는 설정)하는 단계를 추가로 포함할 수 있다. 여기서, DM-RS 포트 결정은 DM-RS 포트의 인덱스 혹은 DM-RS 포트 넘버를 결정하는 것일 수 있다. 이후에 S810단계 및 S810단계에서 결정(또는 설정)된 DM-RS 포트에 E-PDCCH와 DM-RS를 매핑하게 된다.In the resource mapping method 800 of the base station according to an embodiment, steps S810 and S820 are conceptually separated and described, but may be performed as one step. At this time, for each data area available for E-PDCCH (Extended PDCCH) transmission before step S810 and step S820, DM-RS port (Demodulation Reference Signal port) according to the transmission method and aggregation level used for E-PDCCH transmission The method may further include determining (or setting). Here, DM-RS port determination may be to determine the index or DM-RS port number of the DM-RS port. Thereafter, the E-PDCCH and the DM-RS are mapped to the DM-RS port determined (or configured) in steps S810 and S810.
이때 E-PDCCH를 앞의 DM-RS 포트와 동일한 포트에 매핑할 수 있다. 여기서 데이터 영역의 자원은 도 3에서 설명한 바와 같이 CCE(Control Channel Element) 또는 RB(Resource Block)를 기본 단위로 하여 자원 할당 및 전송을 수행할 수 있다. 즉, PDSCH와 공유되는 무선자원에 단말에게 전송할 E-PDCCH를 매핑하고, 매핑된 E-PDCCH에 적용된 결합 레벨 또는 전송 방식에 따라 서로 다른 DM-RS 포트를 사용하여 데이터 영역의 자원에 DM-RS를 매핑하고, E-PDCCH를 동일한 DM-RS 포트에 매핑하는 단계를 포함한다.In this case, the E-PDCCH may be mapped to the same port as the previous DM-RS port. As described above with reference to FIG. 3, the resource of the data region may perform resource allocation and transmission using a CCE (Resource Channel Element) or a RB (Resource Block) as a basic unit. That is, the E-PDCCH to be transmitted to the UE is mapped to the radio resources shared with the PDSCH, and the DM-RS is assigned to the resource of the data area by using different DM-RS ports according to the coupling level or transmission scheme applied to the mapped E-PDCCH. Mapping the E-PDCCH to the same DM-RS port.
기지국은 데이터 영역에 대해 E-PDCCH 영역을 분할하고 이렇게 분할된 영역에 대한 정보를 단말에게 제공한다. 이러한 영역의 할당은 반정적으로(semi-persistent) 유지될 수 있으므로, 이러한 영역에 대한 정보는 상위 계층 시그널링 또는 시스템 정보 제공 방식 등으로 단말에게 제공할 수 있다. The base station divides the E-PDCCH region for the data region and provides information on the divided region to the terminal. Since the allocation of such an area may be maintained semi-persistent, information about the area may be provided to the terminal through higher layer signaling or system information provision.
단말이 보고한 채널 상태 정보를 이용하여, 기지국은 단말에 전송할 E-PDCCH를 포함시킬 영역과 해당 영역에서의 멀티플렉싱을 결정한다. E-PDCCH를 결정된 영역의 자원에 매핑한다. 그리고, 이러한 결정된 영역과 전송 방식에 대한 정보는 단말에게 제공할 수 있는데, 이는 상위계층 시그널링을 통하거나, 시스템 정보(system information) 방식으로 전달하거나 해당 영역에 대한 정보를 제어영역(Control region)의 제어 정보 내에 포함시킬 수 있다. 제어영역(Control region)의 제어 정보 내에 포함시킬 경우, 이 정보는 E-PDCCH와 함께 전송될 수 있다. Using the channel state information reported by the terminal, the base station determines the region to include the E-PDCCH to be transmitted to the terminal and multiplexing in the region. The E-PDCCH is mapped to the resource of the determined region. And, the information about the determined region and the transmission scheme can be provided to the terminal, which is transmitted through higher layer signaling, system information, or information on the corresponding region of the control region. It can be included in the control information. When included in the control information of the control region (Control region), this information may be transmitted with the E-PDCCH.
도 9는 결합 레벨(aggregation level) 및 전송 방식에 따라 다른 DM-RS 자원을 사용하는 단계의 개념도이다.9 is a conceptual diagram of using different DM-RS resources according to an aggregation level and a transmission scheme.
도 8 및 도 9를 참조하면, 기지국은 E-PDCCH 전송에 사용되는 결합 레벨(aggregation level), 전송 방식 등에 따라 다른 DM-RS 자원을 사용하도록 하는 DM-RS를 매핑한다. 다시 말해 둘 이상의 영역들의 리소스에 E-PDCCH의 결합 레벨(Aggregation Level) 또는 전송 방식 중 적어도 하나에 따라 다르게 DM-RS 자원을 사용하여 DM-RS를 매핑한다. 8 and 9, the base station maps the DM-RS to use different DM-RS resources according to an aggregation level, a transmission scheme, and the like used for E-PDCCH transmission. In other words, DM-RS is mapped using a DM-RS resource differently according to at least one of an aggregation level or a transmission scheme of an E-PDCCH to a resource of two or more regions.
도 9에서는 기지국이 결합 레벨(aggregation level) 및 전송 방식에 따라 다른 DM-RS 자원을 사용하여 DM-RS를 매핑하는 것을 도시하고 있다. 다시 말해 결합 레벨(aggregation level)=4인 경우 기지국은 E-PDCCH 전송에 사용되는 결합 레벨(aggregation level)을 동일하게 하더라도 전송 방식을 로컬전송 또는 분할전송 중 하나에 따라 다른 DM-RS 자원을 사용하여 DM-RS를 매핑할 수도 있다In FIG. 9, a base station maps DM-RSs using different DM-RS resources according to an aggregation level and a transmission scheme. In other words, if aggregation level = 4, the base station uses different DM-RS resources according to one of local transmission or split transmission, even if the aggregation level used for E-PDCCH transmission is the same. DM-RS can be mapped
이때 이 매핑 정보는 상위계층 시그널링, 예를 들어 RRC 시그널링 될 수 있다. 상기의 방식으로 DM-RS 자원을 매핑할 경우, 각 단말이 동일한 대역 또는 서브밴드에 대하여 다수의 DM-RS 자원 중 하나를 선택적으로 사용할 수 있어 DM-RS 자원 할당의 자유도 또는 E-PDCCH 멀티플렉싱의 자유도가 증가한다. 여기서 DM-RS자원은 DM-RS 포트 및 스크램블링 인덱스 중 적어도 하나 일 수 있다.In this case, this mapping information may be higher layer signaling, for example, RRC signaling. When the DM-RS resources are mapped in the above manner, each UE can selectively use one of a plurality of DM-RS resources for the same band or subband, thereby allowing freedom of DM-RS resource allocation or E-PDCCH multiplexing. Increases the degree of freedom. The DM-RS resource may be at least one of a DM-RS port and a scrambling index.
도 10은 다수의 단말에 결합 레벨(aggregation level) 및 전송 방식 별 다른 DM-RS 포트를 할당하는 경우의 예(AL= 1/2에 대한 예시)이다.FIG. 10 illustrates an example of assigning different DM-RS ports to an aggregation level and a transmission scheme to a plurality of UEs (example for AL = 1/2).
도 10에는 동일 E-PDCCH 영역을 할당 받은 단말 UE 0~4이 결합 레벨(aggregation level) 및 전송 방식에 따라 다른 DM-RS 자원을 사용하는 경우의 일실시예로써, 단순화를 위하여 결합 레벨(aggregation level) = 1 또는 2로 로컬(localized) 전송에 대해서만, 그리고 각 결합 레벨(aggregation level)에 대하여 동일한 DM-RS 시퀀스(동일한 베이스 시퀀스 및 동일한 스크램블링)가 사용된 경우에 대해서만 표시하였으나 본 발명은 분산 전송 및 분산 전송시 다양한 결합 레벨에 모두 적용 가능하다. FIG. 10 illustrates an example in which UEs 0 to 4 allocated with the same E-PDCCH region use different DM-RS resources according to an aggregation level and a transmission scheme. level = 1 or 2 only for localized transmissions, and only for the case where the same DM-RS sequence (same base sequence and same scrambling) is used for each aggregation level, but the present invention is distributed Applicable to all levels of coupling in transmission and distributed transmission.
표 1은 단말 별 결합 레벨(aggregation level)에 따라 다른 안테나 포트를 설정하는 예이다.Table 1 shows an example of configuring different antenna ports according to an aggregation level for each terminal.
표 1
Figure PCTKR2012011500-appb-T000001
Table 1
Figure PCTKR2012011500-appb-T000001
각 단말이 E-PDCCH 수신 시 채널 추정(측정)을 위해 사용할 DM-RS 포트가 한 가지로 고정된 경우와 도 8을 참조하여 설명한 일실시예에 따른 기지국의 리소스 매핑방법(800)에 따라 각 단말에 결합 레벨(aggregation level) 및 전송 방식 별 다른 DM-RS 포트를 할당하는 경우의 성능 이득을 비교하면 아래와 같다. According to the resource mapping method 800 of the base station according to the embodiment described with reference to FIG. 8 and the case where the fixed DM-RS port is used for channel estimation (measurement) when the UE receives the E-PDCCH. Comparing the performance gain when allocating different DM-RS ports for each aggregation level and transmission scheme to the UE, the performance gains are as follows.
단말이 표 2와 같이 CQI가 보고된 경우, 도 8을 참조하여 설명한 일실시예에 따른 기지국의 리소스 매핑방법(800)은 표 3과 같이 각 단말에 베스트 밴드(best band)를 E-PDCCH 영역으로 설정 가능한 반면, 단말 별 DM-RS 포트가 지정되어 있는 경우 각 단말 별 DM-RS 포트가 고정일 때 E-PDCCH 영역 할당의 예(UE 0,1: 포트 7, UE 2,3: 포트 8 )인 표 4와 같이 베드 밴드(bad band)를 일부 단말에 할당하여야 한다. 이는 E-PDCCH의 수신 신뢰도 감소로 이어진다. 여기서, 상기 베스트 밴드 및 베드 밴드는 해당 밴드의 채널 상태값이 기준 채널 상태값보다 각각 이상이거나 미만일 경우가 되거나, 해당 밴드의 채널 상태값이 기준 채널 상태값보다 각각 초과하거나 이하일 경우가 되는 등 다양한 경우에 대해서 정의될 수 있다.When the UE reports a CQI as shown in Table 2, the resource mapping method 800 of the base station according to the embodiment described with reference to FIG. 8 provides an E-PDCCH region with a best band at each UE as shown in Table 3 below. On the other hand, if the DM-RS port for each terminal is specified, an example of E-PDCCH region allocation when the DM-RS port for each terminal is fixed (UE 0,1: port 7, UE 2,3: port 8) As shown in Table 4, a bad band should be allocated to some terminals. This leads to a decrease in reception reliability of the E-PDCCH. Here, the best band and the bed band may be a case where the channel state value of the corresponding band is more than or less than the reference channel state value, respectively, or the channel state value of the corresponding band is more than or less than the reference channel state value, respectively. Can be defined for the case.
표 2
Figure PCTKR2012011500-appb-T000002
TABLE 2
Figure PCTKR2012011500-appb-T000002
표 3
Figure PCTKR2012011500-appb-T000003
TABLE 3
Figure PCTKR2012011500-appb-T000003
표 4
Figure PCTKR2012011500-appb-T000004
Table 4
Figure PCTKR2012011500-appb-T000004
보다 구체적으로 살펴보면, 표 2와 같이 단말에 의해 기지국에 CQI가 보고된 경우, 기지국은 UE 0, 1에 SB0을, UE 2, 3에 SB1의 할당을 시도한다. 표 1의 예시에서 제시한 각 단말이 결합 레벨(aggregation level) 별 E-PDCCH 수신 시 측정하여야 하는 DM-RS 포트를 고려하면, 표 3과 같이, UE 1 및 UE 2가 결합 레벨(aggregation level) 1을 통해 E-PDCCH을 수신하도록 하고 UE 0 및 UE 3가 결합 레벨(aggregation level) 2을 통해 E-PDCCH을 수신하도록 하여 DM-RS 간 충돌을 피하고 각 단말에 최적의 대역을 E-PDCCH 전송에 할당할 수 있다. In more detail, when the CQI is reported to the base station by the terminal as shown in Table 2, the base station attempts to allocate SB0 to UEs 0 and 1 and SB1 to UEs 2 and 3. Considering the DM-RS port that each UE presented in the example of Table 1 should measure when receiving the E-PDCCH for each aggregation level, as shown in Table 3, UE 1 and UE 2 are the aggregation level. E-PDCCH is received through 1 and UE 0 and UE 3 receive the E-PDCCH through aggregation level 2 to avoid collision between DM-RSs and transmit the optimal band to each UE. Can be assigned to
반면, 각 단말이 E-PDCCH 수신 시 채널 추정(측정)을 위해 사용할 DM-RS 포트가 한 가지로 고정되어 있다면, 예를 들어 UE 0, 1은 포트 7을, UE 2, 3은 포트 8을 사용하도록 선정되어 있다면, 표 4와 같이 UE 0 및 UE 4은 최적의 채널을 보장하는 대역이 아닌 보다 낮은 채널 퀄러티를 보이는 대역을 통해 E-PDCCH를 수신하게 된다. 왜냐하면 UE 0의 베스트 밴드는 SB0이나 UE 1의 베스트 밴드도 SB0이면서 UE 0와 UE 1이 동일한 DM-RS 포트 7을 사용하므로, SB 0에 대해 CQI가 작은 UE 0가 최적의 채널을 보장하는 대역인 SB0 대신에 다른 대역인 SB4를 선택하게 된다. UE 3도 동일한 이유로 최적의 채널을 보장하는 대역인 SB1 대신에 다른 대역인 SB3을 선택하게 된다.On the other hand, if each UE is fixed to one DM-RS port to use for channel estimation (measurement) when receiving the E-PDCCH, for example, UE 0, 1 is port 7, UE 2, 3 is port 8 If selected to use, as shown in Table 4, UE 0 and UE 4 receive the E-PDCCH through a band showing a lower channel quality rather than a band guaranteeing an optimal channel. Because UE 0's best band is SB0 or UE 1's best band, SB0 and UE 0 and UE 1 use the same DM-RS port 7, the band where UE 0 with small CQI guarantees optimal channel for SB 0. Instead of SB0, another band SB4 is selected. UE 3 also selects another band SB3 instead of SB1, which is a band that guarantees an optimal channel.
이는 E-PDCCH의 수신 신뢰도를 감소시키며, 또한 UE 0 및 UE 3에 전송되는 E-PDCCH의 결합 레벨(aggregation level)을 증가시킨다. 표 3과 표 4를 비교하면, 두 경우 모두 단말 UE 0 및 UE 3에 대한 E-PDCCH을 높은 결합 레벨(aggregation level)을 통해 전송하여야 한다는 공통점이 있다. 이때 모두 단말 UE 0및 UE 3에 대한 높은 결합 레벨을 통해 전송하는 것은 표 4에 표시한 바와 같이 UE 0 및 UE 3 각각에 대해 선택된 대역의 CQI들이 낮기 때문에 E-PDCCH의 수신 신뢰도를 유지하기 위해 결합 레벨을 높여야 하기 때문이다.This reduces the reception reliability of the E-PDCCH and also increases the aggregation level of the E-PDCCH transmitted to UE 0 and UE 3. Comparing Table 3 and Table 4, in both cases, the E-PDCCH for UEs UE 0 and UE 3 must be transmitted through a high aggregation level. At this time, all of the transmission through the high coupling level for the UE UE 0 and UE 3 is to maintain the reception reliability of the E-PDCCH because the CQIs of the selected band for each UE 0 and UE 3 is low as shown in Table 4 This is because the coupling level needs to be increased.
그러나 표 3의 경우 모든 E-PDCCH가 높은 채널 퀄러티를 보이는 대역을 통해 전달됨으로 절반의 단말에 대한 E-PDCCH가 낮은 채널 퀄러티의 대역을 통해 전송되는 표 4의 경우에 비해 E-PDCCH 수신이 용이함을 알 수 있다.However, in the case of Table 3, since all E-PDCCHs are transmitted through a band showing high channel quality, E-PDCCH reception is easier than in the case of Table 4 where E-PDCCHs for half of terminals are transmitted through a band of low channel quality. It can be seen.
이상 도 8을 참조하여 설명한 일실시예에 따른 기지국의 리소스 매핑방법(800)에 따라 각 단말에 결합 레벨(aggregation level) 및 전송 방식 별 다른 DM-RS 포트를 할당하는 것을 설명하였으나 각 단말이 보고한 CQI에 따라 최적의 대역을 사용하여 각 단말의 E-PDCCH를 멀티플렉싱할 수 있다면 각 단말이 E-PDCCH 수신 시 채널 추정(측정)을 위해 사용할 DM-RS 포트를 한 가지로 고정하거나 각 단말에 결합 레벨(aggregation level) 및 전송 방식 별 다른 DM-RS 포트를 할당하거나 이들 중 하나를 임의로 또는 동적으로 선택할 수도 있다. As described above, according to the resource mapping method 800 of the base station according to the exemplary embodiment described with reference to FIG. 8, it has been described that each terminal allocates a different DM-RS port for each aggregation level and transmission method. If the E-PDCCH of each UE can be multiplexed using the optimal band according to one CQI, each UE shall fix one DM-RS port to use for channel estimation (measurement) when receiving the E-PDCCH, or Other DM-RS ports may be allocated for each aggregation level and transmission scheme, or one of them may be arbitrarily or dynamically selected.
예를 들어 표 5와 같이 각 단말에 의해 기지국에 채널 퀄러티인 CQI가 보고된 경우, 표 6 및 단말 별 DM-RS 포트 고정의 예(UE 0,1: 포트 7, UE 2,3: 포트 8)인 표7과 같이 DM-RS 포트를 한 가지로 고정한 경우와 각 단말에 결합 레벨(aggregation level) 및 전송 방식 별 다른 DM-RS 포트를 할당한 경우 동일할 성능을 보일 수 있다.For example, when the CQI, which is the channel quality, is reported to the base station by each terminal as shown in Table 5, Table 6 and examples of DM-RS port fixing for each terminal (UE 0,1: port 7, UE 2,3: port 8 As shown in Table 7, when the DM-RS port is fixed to one type and a different DM-RS port for each aggregation level and transmission method is assigned to each terminal, the same performance can be obtained.
표 5
Figure PCTKR2012011500-appb-T000005
Table 5
Figure PCTKR2012011500-appb-T000005
표 6
Figure PCTKR2012011500-appb-T000006
Table 6
Figure PCTKR2012011500-appb-T000006
표 7
Figure PCTKR2012011500-appb-T000007
TABLE 7
Figure PCTKR2012011500-appb-T000007
왜냐하면 동일한 DM-RS 포트를 사용하는 UE 0 및 1의 최적의 대역이 각각 SB 0 및 1이고 UE 2 및 3의 최적의 대역도 각각 SB 0 및 1로, 동일한 DM-RS 포트를 사용하는 단말들의 최적의 대역들이 서로 다르기 때문에 채널 추정(측정)을 위해 사용할 DM-RS 포트를 한 가지로 고정하거나 각 단말에 결합 레벨(aggregation level) 및 전송 방식 별 다른 DM-RS 포트를 할당하더라도 동일한 성능을 보이게 된다. 따라서, 이 경우 둘 중에 하나를 선택하거나 기지국이 이들 중 하나를 임의로 또는 동적(주기 또는 비주기적으로 특정한 시간마다 유동적)으로 선택할 수도 있다. 한편, 이와 관련된 정보를 기지국은 상위계층 시그널링 또는 제어 정보로 단말에 전달할 수 있다.Because the optimal bands of UEs 0 and 1 using the same DM-RS port are SB 0 and 1, respectively, and the optimal bands of UEs 2 and 3 are SB 0 and 1, respectively, of UEs using the same DM-RS port. Since the optimal bands are different from each other, the same performance can be achieved even if one DM-RS port is fixed for channel estimation (measurement) or a different DM-RS port is assigned to each aggregation level and transmission method. do. Thus, in this case, one of the two may be selected or the base station may select one of them arbitrarily or dynamically (periodically or aperiodically, at certain times of time). Meanwhile, the base station may transmit the related information to the terminal as higher layer signaling or control information.
다만 전술한 상황에서 도 8을 참조하여 설명한 일실시예에 따라 기지국의 리소스 매핑방법에 따라 각 단말에 결합 레벨(aggregation level) 및 전송 방식 별 다른 DM-RS 포트를 할당하는 방법만을 수행하더라도 표 2 내지 표 4와 같은 상황이나 표 5 내지 표 7과 같은 상황에도 유연하게 멀티플렉싱할 수 있는 장점이 있다.However, in the above-described situation, even if only the method of allocating different DM-RS ports for each aggregation level and transmission method is performed according to the resource mapping method of the base station according to the embodiment described with reference to FIG. 8. There is an advantage that can be flexibly multiplexed even in the situation as shown in Table 4 or in Tables 5 to 7.
마지막으로 기지국은 둘 이상의 영역들과 다른 영역의 리소스에 단말에게 전송할 PDSCH를 매핑하고, E-PDCCH 및 DM-RS, PDSCH를 통해 정보가 포함된 무선신호를 단말에 전송한다. Finally, the base station maps a PDSCH to be transmitted to the terminal in resources of two or more regions and other regions, and transmits a radio signal including information through the E-PDCCH, DM-RS, and PDSCH to the terminal.
다시 도 8을 참조하면 기지국은 전술한 바와 같이 둘 이상의 영역들의 리소스에 둘 이상의 영역들 중 적어도 하나 영역에 대해 다른 나머지 영역과는 다른 DM-RS(Demodulation Reference Signal) 자원을 사용하여 DM-RS를 매핑한다.Referring back to FIG. 8, as described above, the base station uses the DM-RS using different demodulation reference signal (DM-RS) resources for at least one of the two or more regions and other resources for the at least one region. Map it.
도 11은 검색 공간 또는 E-PDCCH 영역 및 결합 레벨(aggregation level)에 따라 다른 DM-RS 자원을 사용하는 DM-RS 리소스 할당 예를 도시하고 있다.FIG. 11 illustrates an example of DM-RS resource allocation using different DM-RS resources according to a search space or an E-PDCCH region and an aggregation level.
도 8 및 도 11을 참조하면, 기지국은 E-PDCCH을 수신하는 영역 또는 E-PDCCH 수신을 위해 검색 공간에 따라 다른 DM-RS 자원을 사용한다. 이때 기지국은 둘 이상의 영역들의 리소스에 E-PDCCH의 결합 레벨(Aggregation Level) 또는 전송 방식에 따라 다르게 DM-RS 자원을 사용하여 DM-RS를 설정/결정할 수도 있으나 본 발명은 이에 제한되지 않는다.8 and 11, the base station uses different DM-RS resources according to a search space for receiving an E-PDCCH or an E-PDCCH. In this case, the base station may set / determine the DM-RS using DM-RS resources differently according to an aggregation level or transmission scheme of the E-PDCCH in resources of two or more regions, but the present invention is not limited thereto.
도 11에 도시한 바와 같이 UE 0 및 UE 1은 결합 레벨(aggregation level)에 따라 다른 DM-RS 자원을 사용하는 반면, UE 2는 UE0의 E-PDCCH 영역과 겹치는 E-PDCCH 영역에서는 UE1과 동일한 DM-RS 자원 매핑을 사용하고, UE1의 E-PDCCH 영역과 겹치는 E-PDCCH 영역에서는 UE0의 DM-RS 자원 매핑을 사용할 수 있다.As shown in FIG. 11, UE 0 and UE 1 use different DM-RS resources according to an aggregation level, while UE 2 is the same as UE1 in an E-PDCCH region overlapping with the E-PDCCH region of UE0. DM-RS resource mapping may be used, and DM-RS resource mapping of UE0 may be used in an E-PDCCH region overlapping with the E-PDCCH region of UE1.
예를 들어 UE2는 단말이 E-PDCCH을 수신하는 영역 또는 단말이 E-PDCCH 수신을 위해 블라인드 디텍션을 수행하는 검색 공간들의 일부에 대해서는 UE0와 동일한 DM-RS 자원 매핑을 사용하고 다른 일부에 대해서는 UE과 동일한 DM-RS 자원 매핑을 사용할 수 있다. 이때 E-PDCCH의 결합 레벨(Aggregation Level) 또는 전송 방식에 따라 다르게 DM-RS 자원을 사용하여 DM-RS를 설정할 수도 있다. 도 11에는 UE2만이 E-PDCCH을 수신하는 영역 또는 E-PDCCH 수신을 위해 블라인드 디텍션을 수행하는 검색 공간들의 일부가 다르게 DM-RS 자원을 사용하여 DM-RS를 설정하는 것으로 설명하였으나 UE0 또는 UE1도 동일하게 E-PDCCH을 수신하는 영역 또는 E-PDCCH 수신을 위해 블라인드 디텍션을 수행하는 검색 공간들의 일부가 다르게 DM-RS 자원을 사용하여 DM-RS를 설정할 수도 있다.For example, UE2 uses the same DM-RS resource mapping as UE0 for some areas where the UE receives the E-PDCCH or some of the search spaces where the UE performs blind detection for E-PDCCH reception and for other parts the UE. The same DM-RS resource mapping as can be used. In this case, the DM-RS may be configured using DM-RS resources differently according to an aggregation level or transmission scheme of the E-PDCCH. Although FIG. 11 illustrates that only the UE2 receives the E-PDCCH or a part of the search spaces that perform blind detection for receiving the E-PDCCH, the DM-RS is configured using the DM-RS resources differently. Similarly, some of the regions for receiving the E-PDCCH or the search spaces for performing blind detection for receiving the E-PDCCH may be configured differently using the DM-RS resource.
전술한 바와 같이 검색공간에 따라 다른 DM-RS 자원을 사용하여 DM-RS를 매핑하므로 보다 원활히 E-PDCCH 멀티플렉싱을 지원할 수 있다. 또한 각 단말이 E-PDCCH 수신 시 사용하는 E-PDCCH 영역이 각기 다르게 설정되는 경우, 보다 큰 스케줄링 유연성을 얻을 수 있다.As described above, since DM-RSs are mapped using different DM-RS resources according to the search space, E-PDCCH multiplexing can be more smoothly supported. In addition, when the E-PDCCH region used for each UE to receive the E-PDCCH is configured differently, greater scheduling flexibility can be obtained.
마지막으로 기지국은 둘 이상의 영역들과 다른 영역의 리소스에 단말에게 전송할 PDSCH를 매핑하고, E-PDCCH 및 DM-RS, PDSCH를 통해 정보가 포함된 무선신호를 단말에 전송한다.Finally, the base station maps a PDSCH to be transmitted to the terminal in resources of two or more regions and other regions, and transmits a radio signal including information through the E-PDCCH, DM-RS, and PDSCH to the terminal.
이상 도 8 및 도 11를 참조하여 기지국은 E-PDCCH을 수신하는 영역 또는 E-PDCCH 수신을 위한 검색 공간에 따라 다른 DM-RS 자원을 사용하면서도 E-PDCCH의 결합 레벨(Aggregation Level) 또는 전송 방식에 따라 다르게 DM-RS 자원을 사용하여 DM-RS를 설정할 수 있는 방법을 설명하였으나 본 발명은 이에 제한되지 않는다. 예를 들어 기지국은 E-PDCCH의 결합 레벨(Aggregation Level) 또는 전송 방식에 무관하게 동일한 DM-RS 자원을 사용하여 DM-RS를 설정하되 E-PDCCH을 수신하는 영역 또는 E-PDCCH 수신을 위한 검색 공간에 따라 다른 DM-RS 자원을 사용할 수도 있다. Referring to FIGS. 8 and 11, the base station uses different DM-RS resources according to an area for receiving an E-PDCCH or a search space for receiving an E-PDCCH, but also an aggregation level or transmission scheme of the E-PDCCH. According to the present invention, a method for configuring DM-RS using a DM-RS resource has been described, but the present invention is not limited thereto. For example, the base station configures the DM-RS using the same DM-RS resources regardless of the aggregation level or transmission scheme of the E-PDCCH, but searches for an area for receiving the E-PDCCH or for receiving the E-PDCCH. Depending on space, other DM-RS resources may be used.
도 12는 도 8을 참조하여 설명한 실시예들을 구현하기 위하여, 기지국과 단말간에 이루어지는 프로세스를 보여주는 도면이다. FIG. 12 is a diagram illustrating a process performed between a base station and a terminal in order to implement the embodiments described with reference to FIG. 8.
기지국(1300)은 E-PDCCH 영역을 분할한다(S1310). 그리고 이렇게 분할된 영역에 대한 정보를 단말(1301)에게 제공한다(S1320). 이러한 영역의 분할은 반정적으로(semi-persistent) 유지될 수 있으므로, 이러한 영역에 대한 정보는 상위 계층 시그널링 또는 시스템 정보 제공 방식 등으로 단말에게 제공할 수 있다.The base station 1300 divides the E-PDCCH region (S1310). In operation S1320, information about the divided area is provided to the terminal 1301. FIG. Since the division of the region can be maintained semi-persistent, the information about the region can be provided to the terminal through higher layer signaling or system information provision.
이후 상기 기지국(1300)은 단말(1301)의 채널 상태를 보고받는다(S1330). 이는 단말의 채널 상태에 따라 분할된 영역들 중 어디에 E-PDCCH를 포함시킬 것인지, 혹은 E-PDCCH의 멀티플렉싱을 어떻게 구현할 것인지를 결정하는데 이용되며, 이러한 채널 상태에 대한 보고는 선택적으로 이루어질 수 있다.Thereafter, the base station 1300 receives the report of the channel state of the terminal 1301 (S1330). This is used to determine which of the divided regions according to the channel state of the UE to include the E-PDCCH or how to implement the multiplexing of the E-PDCCH, the reporting of this channel state can be made selectively.
단말(1301)이 보고한 채널 상태 정보를 이용하여, 기지국(1300)은 단말에 전송할 E-PDCCH를 포함시킬 영역과 해당 영역에서의 멀티플렉싱을 결정한다(S1340). 그리고 E-PDCCH를 결정된 영역의 리소스에 매핑한다(S1350).Using the channel state information reported by the terminal 1301, the base station 1300 determines an area to include the E-PDCCH to be transmitted to the terminal and multiplexing in the corresponding area (S1340). In operation S1350, the E-PDCCH is mapped to the resource of the determined region.
다음으로 기지국(1300)은 단말에 전송할 E-PDCCH를 포함시킬 영역에 도 8을 참조하여 설명한 바와 같이 결합 레벨 또는 전송 방식, 검색 공간 중 적어도 하나에 따라 다른 DM-RS 자원을 사용하여 DM-RS를 매핑할 수 있다(S1355). 그리고, 이러한 결정된 영역과 전송 방식에 대한 정보는 단말에게 제공할 수 있는데(S1360), 이는 상위계층 시그널링을 통하거나, 시스템 정보(system information) 방식으로 전달하거나, 해당 영역에 대한 정보를 제어영역(Control region)의 제어 정보 내에 포함시킬 수 있다. 제어 정보 내에 포함시킬 경우, 이 정보는 E-PDCCH와 함께 전송될 수 있다. Next, the base station 1300 uses a different DM-RS resource according to at least one of a coupling level, a transmission scheme, and a search space as described with reference to FIG. 8 in an area to include an E-PDCCH to be transmitted to the UE. It may be mapped (S1355). And, the information on the determined area and the transmission method can be provided to the terminal (S1360), which is transmitted through higher layer signaling, system information (system information) method, or the information about the area control area ( It can be included in the control information of the control region). When included in the control information, this information may be transmitted with the E-PDCCH.
기지국(1300)은 매핑된 E-PDCCH가 포함된 무선신호를 송신하고(S1370), 단말(1301)은 결정된 영역 내에서 블라인드 디텍션을 수행한다(S1380).The base station 1300 transmits a radio signal including the mapped E-PDCCH (S1370), and the terminal 1301 performs blind detection in the determined area (S1380).
도 13은 도 8을 참조하여 설명한 실시예들을 구현하기 위하여, 기지국과 단말간에 이루어지는 프로세스에서 단말이 E-PDCCH를 블라인드 디텍션하는 과정을 상세히 도시한다.FIG. 13 illustrates a process of blind detection of an E-PDCCH by a UE in a process performed between a BS and a UE in order to implement the embodiments described with reference to FIG. 8.
도 13을 참조하면, 기지국(1400)은 각 단말에 대해 단말 특이적으로 또는 공통적으로 E-PDCCH 영역을 할당한다(S1410).Referring to FIG. 13, the base station 1400 allocates an E-PDCCH region to each terminal in a terminal specific or common manner (S1410).
다음으로 기지국(1400)은 각 집합 레벨에 따라 DM-RS 포트 및/또는 시퀀스를 할당한다(S1412). Next, the base station 1400 allocates a DM-RS port and / or a sequence according to each aggregation level (S1412).
다음으로 기지국(1400)은 데이터 영역의 자원들 중 적어도 하나에 대해 다른 영역과 다르게 DM-RS(Demodulation Reference Signal) 자원을 사용하여 DM-RS를 매핑할 수 있다(S1414).Next, the base station 1400 may map the DM-RSs using at least one of the resources of the data area, using a DM-RS (Demodulation Reference Signal) resource differently from other areas (S1414).
기지국(1400)은 집합 레벨 및 전송방법, E-PDCCH 검색공간 중 적어도 하나에 따른 DM-RS 자원을 표시하는 정보를 상위계층 시그널링, 예를 들어 RRC 시그널링을 통해 단말에 전달할 수 있다(S1416). 구체적으로 기지국은 각 단말에 대하여 E-PDCCH 전송 시 사용될 DM-RS 포트 및 스크램블링의 사용 여부에 대한 정보를 RRC로 전달한다.The base station 1400 may deliver the information indicating the DM-RS resource according to at least one of the aggregation level, the transmission method, and the E-PDCCH search space to the terminal through higher layer signaling, for example, RRC signaling (S1416). In more detail, the base station transmits information on whether to use a DM-RS port and scrambling to be used when transmitting an E-PDCCH to each RRC.
기지국(1400)은 해당 영역에 매핑된 E-PDCCH 및 DM-RS, PDSCH를 통해 정보가 포함된 무선신호를 단말에 전송한다(S1418).The base station 1400 transmits a radio signal including information through the E-PDCCH, the DM-RS, and the PDSCH mapped to the corresponding area (S1418).
단말(1401)은 무선신호를 기지국으로부터 수신하고 시간-주파수의 검색공간 중 하나의 서브공간을 선택한다(S1420). 서브공간이란, 검색공간이 하나 이상의 유닛으로 구성된 경우 각 유닛을 의미한다. 이 유닛은 전술한 바와 같이 RB(Resource Block) 또는 PRB 페어(Physiclal Resource Block Pair)일 수 있으나 이에 제한되지 않는다.The terminal 1401 receives a radio signal from a base station and selects one subspace of a time-frequency search space (S1420). The subspace means each unit when the search space is composed of one or more units. This unit may be a resource block (RB) or a physical resource block pair (PRB) pair as described above, but is not limited thereto.
단말(1401)은 선택된 검색공간의 서브공간에 대해 DM-RS 자원을 확인한다(S1422). 이때 단말은 브로드캐스팅되는 시스템 정보를 통해 판별한 cell ID에 의해 생성되는 DM-RS 베이스 시퀀스를 파악한다. 단말(1401)은 선택된 검색공간의 서브공간에 대해 DM-RS 자원을 확인하기 위해 DM-RS 베이스 시퀀스와 함께 기지국으로부터 수신한 DM-RS에 대한 기본 정보(DM-RS 포트들, 스크램블링의 사용 유무 등)를 사용한다.The terminal 1401 checks the DM-RS resource for the subspace of the selected search space (S1422). At this time, the terminal grasps the DM-RS base sequence generated by the cell ID determined through the broadcasting system information. The terminal 1401 is a basic information on the DM-RS received from the base station with the DM-RS base sequence (DM-RS ports, scrambling use or not) to identify the DM-RS resources for the subspace of the selected search space Etc.).
단말(1401)은 DM-RS에 기초하여 채널을 추정한다(S1423). 구체적으로 cell ID에 의해 생성된 DM-RS 베이스 시퀀스와 스크램블링 인덱스를 이용하여 단말 특정 DM-RS 시퀀스를 획득한다. 이 단말 특정 DM-RS 시퀀스와 DM-RS 포트 정보를 이용하여 E-PDCCH에 대해 할당된 영역들에 대해 채널 추정을 수행한다.The terminal 1401 estimates a channel based on the DM-RS (S1423). In more detail, a UE-specific DM-RS sequence is obtained using a DM-RS base sequence and a scrambling index generated by a cell ID. Channel estimation is performed on the areas allocated for the E-PDCCH using the UE-specific DM-RS sequence and DM-RS port information.
단말(1401)은 채널 추정에 따라 E-PDCCH 디텍션을 시도한다(S1424).The UE 1401 attempts E-PDCCH detection according to channel estimation (S1424).
단말(1401)은 채널 추정에 따라 E-PDCCH가 디텍션되었는지 판단한다(S1426).The terminal 1401 determines whether the E-PDCCH is detected according to the channel estimation (S1426).
단말(1401)이 채널 추정에 따라 E-PDCCH가 디텍션되었다면, 디텍션된 E-PDCCH를 복조하여 PDSCH의 대역 및 복호 정보를 이용하여 PDSCH를 디텍션한다(S1428).If the E-PDCCH is detected according to channel estimation, the UE 1401 demodulates the detected E-PDCCH and detects the PDSCH using the band and decoding information of the PDSCH (S1428).
만약 단말(1401)이 채널 추정에 따라 E-PDCCH가 디텍션되지 않았다면 모든 검색공간에 대해 E-PDCCH의 디텍션을 수행하였는지 판단한다(S1430).If the E-PDCCH is not detected according to channel estimation, the UE 1401 determines whether the E-PDCCH is detected for all search spaces (S1430).
모든 검색공간에 대해 E-PDCCH의 디텍션을 수행하지 않았다고 판단한 경우 다시 S1420 내지 S1424단계를 반복하고 수행하였다고 판단된 경우 종료한다.If it is determined that the detection of the E-PDCCH has not been performed for all the search spaces, the process repeats steps S1420 to S1424 and ends when it is determined that the search has been performed.
도 14는 또 다른 실시예에 의한 기지국 또는 기지국과 결합하여 E-PDCCH를 리소스에 매핑하여 무선 신호를 송신하는 장치의 구성을 보여주는 도면이다.FIG. 14 illustrates a configuration of an apparatus for transmitting a radio signal by mapping an E-PDCCH to a resource in combination with a base station or a base station according to another embodiment.
도 14를 참조하면, 다른 실시예에 의한 기지국 또는 기지국과 결합하여 E-PDCCH를 리소스에 매핑하여 무선 신호를 송신하는 장치는 제어부(1500), 매핑부(1520), 송수신부(1530)와 채널 정보 확인부(1510) 전부 또는 일부를 포함한다. Referring to FIG. 14, an apparatus for transmitting a radio signal by mapping an E-PDCCH to a resource in combination with a base station or a base station according to another embodiment includes a control unit 1500, a mapping unit 1520, a transceiver 1530, and a channel. It includes all or part of the information verification unit 1510.
제어부(1500)는 채널 정보 확인부(1510) 및 매핑부(1520), 송수신부(1530)를 제어한다.The controller 1500 controls the channel information checker 1510, the mapper 1520, and the transceiver 1530.
매핑부(1520)는 데이터 영역의 자원에 단말에게 전송할 E-PDCCH(Extended PDCCH)를 매핑하며, 데이터 영역의 자원들의 리소스에 E-PDCCH의 결합 레벨(Aggregation Level) 또는 전송 방식 중 적어도 하나에 따라 다르게 DM-RS(Demodulation Reference Signal) 자원을 사용하여 DM-RS를 매핑한다. 여기서 E-PDCCH는 앞의 DM-RS 포트와 동일한 포트에 매핑할 수 있다. 또한 매핑부(1520)는 데이터 영역의 자원이 둘 이상인 경우, 데이터 영역의 자원들 중 적어도 하나에 대해 다른 영역과 다르게 DM-RS(Demodulation Reference Signal) 자원을 사용하여 DM-RS를 매핑할 수 있다. The mapping unit 1520 maps an extended PDCCH (E-PDCCH) to be transmitted to the UE to a resource of the data region, and is based on at least one of an aggregation level or a transmission scheme of the E-PDCCH to resources of the data region. Differently, DM-RS is mapped using a DM-RS (Demodulation Reference Signal) resource. Here, the E-PDCCH may be mapped to the same port as the previous DM-RS port. In addition, the mapping unit 1520 may map DM-RSs using at least one of the resources of the data region using DM-RS (Demodulation Reference Signal) resources differently from other regions when there are two or more resources of the data region. .
한편 매핑부(1520)는 E-PDCCH (Extended PDCCH) 전송에 사용 가능한 각각의 데이터 영역에 대하여, E-PDCCH 전송에 사용된 전송 방식 및 집합레벨에 따라 결정(또는 설정, 할당)된 DM-RS 포트(Demodulation Reference Signal port)에 E-PDCCH와 DM-RS를 매핑할 수 있다.On the other hand, the mapping unit 1520 is determined (or configured, assigned) DM-RS for each data area available for E-PDCCH (Extended PDCCH) transmission according to the transmission scheme and aggregation level used for E-PDCCH transmission. E-PDCCH and DM-RS may be mapped to a port (Demodulation Reference Signal port).
전술한 바와 같이 DM-RS 자원은 DM-RS 포트 및 스크램블링 인덱스 중 적어도 하나이며, E-PDCCH의 전송 방식은 로컬 매핑(localized mapping) 및 분산 매핑(distributed mapping), 이들의 혼합 중 하나일 수 있다.As described above, the DM-RS resource is at least one of a DM-RS port and a scrambling index, and a transmission scheme of the E-PDCCH may be one of a localized mapping, a distributed mapping, and a mixture thereof. .
그리고, 송수신부(1530)는 E-PDCCH 및 DM-RS가 포함된 무선 신호를 단말에 송신하고, 단말로부터 무선신호를 수신하는 기능을 제공한다. 송수신부(1530)는 PDSCH가 포함된 무선 신호를 단말에 송신할 수 있다.The transceiver 1530 transmits a radio signal including the E-PDCCH and the DM-RS to the terminal and provides a function of receiving the radio signal from the terminal. The transceiver 1530 may transmit a radio signal including the PDSCH to the terminal.
또한 송수신부(1530)는 DM-RS 포트에 대한 정보를 상위계층 시그널링을 통하거나, 시스템 정보(system information)을 통하거나 제어영역(Control region)의 제어 정보 내에 포함하여 단말에 전송할 수 있다.In addition, the transceiver 1530 may transmit information on the DM-RS port to the terminal through higher layer signaling, system information, or in the control information of the control region.
채널 정보 확인부(1510)는 단말이 제공한, 또는 별도로 측정한 채널과 무선 네트워크의 상태를 확인한다.The channel information checking unit 1510 checks the state of the channel and the wireless network provided by the terminal or separately measured.
도 15는 또 다른 실시예에 의한 단말 또는 단말과 결합하여 E-PDCCH가 매핑된 무선 신호를 수신하는 장치의 구성을 보여주는 도면이다. FIG. 15 is a diagram illustrating a configuration of an apparatus for receiving an E-PDCCH mapped wireless signal in combination with a terminal or a terminal according to another embodiment.
도 15를 참조하면, 또 다른 실시예에 의한 단말 또는 단말과 결합하여 E-PDCCH가 매핑된 무선 신호를 수신하는 장치는 제어부(1600), 디텍션부(1620), 송수신부(1630)와 채널 정보 제공부(1610) 전부 또는 일부를 포함한다. Referring to FIG. 15, an apparatus for receiving a radio signal to which an E-PDCCH is mapped in combination with a terminal or a terminal according to another embodiment may include a controller 1600, a detection unit 1620, a transceiver 1630, and channel information. It includes all or part of the providing unit 1610.
송수신부(1630)는 기지국으로부터 E-PDCCH(Extended PDCCH) 및 DM-RS가 포함된 무선 신호를 수신하고, 단말에게 채널 정보를 송신한다. 송수신부(1630)는 기지국으로부터 PDSCH가 포함된 무선 신호를 수신할 수 있다.The transceiver 1630 receives a radio signal including an extended PDCCH (E-PDCCH) and a DM-RS from the base station, and transmits channel information to the terminal. The transceiver 1630 may receive a radio signal including the PDSCH from the base station.
한편, 송수신부(1630)는 기지국으로부터 E-PDCCH (Extended PDCCH) 전송에 사용 가능한 각각의 데이터 영역에 대하여, E-PDCCH 전송에 사용된 전송 방식 및 집합레벨에 따라 결정된 DM-RS 포트(Demodulation Reference Signal port)에 매핑된 E-PDCCH 및 DM-RS(Demodulation Reference Signal)가 포함된 무선 신호를 수신할 수 있다.On the other hand, the transceiver 1630 is a DM-RS port (Demodulation Reference) determined for each data area available for E-PDCCH (Extended PDCCH) transmission from the base station according to the transmission scheme and aggregation level used for E-PDCCH transmission A wireless signal including an E-PDCCH and a DM-RS (Demodulation Reference Signal) mapped to a signal port may be received.
그리고, 디텍션부(1620)는 수신된 무선신호를 데이터 영역의 자원에서 E-PDCCH의 결합 레벨(Aggregation Level) 또는 전송 방식 중 적어도 하나에 따라 다른 DM-RS(Demodulation Reference Signal) 자원을 사용하여 설정된 DM-RS(Demodulation Reference Signal) 를 블라인드 디텍션하며, DM-RS를 사용하여 수신된 무선신호를 데이터 영역의 자원에서 E-PDCCH 을 블라인드 디텍션한다. 디텍션부(1620)는 수신된 무선신호를 데이터 영역의 자원들 중 적어도 하나에 대해 다른 영역과 다르게 DM-RS(Demodulation Reference Signal) 자원을 사용하여 설정된 DM-RS(Demodulation Reference Signal) 를 블라인드 디텍션할 수 있다.In addition, the detection unit 1620 is configured to set the received radio signal using another DM-RS (Demodulation Reference Signal) resource according to at least one of an aggregation level or transmission scheme of the E-PDCCH in the resource of the data region. Blind detection of the DM-RS (Demodulation Reference Signal), and blind detection of the E-PDCCH in the resource of the data region for the received radio signal using the DM-RS. The detection unit 1620 may blindly detect a demodulation reference signal (DM-RS) set by using a demodulation reference signal (DM-RS) resource for at least one of the resources of the data region unlike another region. Can be.
채널 정보 제공부(1610)는 앞서 살펴본 바와 같이 사용자 단말이 확인한 채널 상태에 대한 정보를 생성하여 기지국으로 제공될 수 있도록 한다. 물론, 이러한 정보는 제어부(1600)를 통하여 송수신부(1630)의 무선 신호 송신 과정을 통하여 기지국에 제공된다. 그리고 제어부(1600)는 송수신부(1630), 디텍션부(1620), 채널 정보 제공부(1610)를 제어한다. 또한, 제어부(1600)는 블라인드 디텍션이 완료하면, E-PDCCH를 디코딩하게 된다.As described above, the channel information providing unit 1610 generates information on the channel state checked by the user terminal so that the channel information may be provided to the base station. Of course, this information is provided to the base station through the wireless signal transmission process of the transceiver 1630 through the control unit 1600. The controller 1600 controls the transceiver 1630, the detection unit 1620, and the channel information provider 1610. In addition, when the blind detection is completed, the controller 1600 decodes the E-PDCCH.
전술한 실시예들에 따르면 단말이 수신하는 E-PDCCH의 집합레벨(aggregation level) 및 전송 방식(transmission scheme)에 따라 다르게 각 단말이 사용하는 DM-RS 자원을 설정하므로 E-PDCCH의 블라인드 디텍션 복잡도의 증가없이 보다 원활하게 E-PDCCH 멀티플렉싱을 지원할 수 있다.According to the above embodiments, the blind detection complexity of the E-PDCCH is set because DM-RS resources used by each UE are set differently according to an aggregation level and a transmission scheme of the E-PDCCH received by the UE. It is possible to support E-PDCCH multiplexing more smoothly without increasing the number.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다. The above description is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains may make various modifications and changes without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited thereto. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.
CROSS-REFERENCE TO RELATED APPLICATIONCROSS-REFERENCE TO RELATED APPLICATION
본 특허출원은 2011년 12월 30일 한국에 출원한 특허출원번호 제 10-2011-0147335 호에 대해 미국 특허법 119(a)조 (35 U.S.C § 119(a))에 따라 우선권을 주장하며, 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다. 아울러, 본 특허출원은 미국 이외에 국가에 대해서도 위와 동일한 이유로 우선권을 주장하면 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다.This patent application claims priority under Patent Application No. 10-2011-0147335, filed in South Korea on December 30, 2011, under Section 119 (a) (35 USC § 119 (a)). All content is incorporated by reference in this patent application. In addition, if this patent application claims priority for the same reason for countries other than the United States, all its contents are incorporated into this patent application by reference.

Claims (12)

  1. E-PDCCH (Extended PDCCH) 전송에 사용 가능한 각각의 데이터 영역에 대하여, E-PDCCH 전송에 사용되는 전송 방식 및 집합레벨에 따라 DM-RS 포트(Demodulation Reference Signal port)를 결정하는 단계; 및 Determining, for each data region available for Extended PDCCH (E-PDCCH) transmission, a DM-RS port (Demodulation Reference Signal Port) according to a transmission scheme and aggregation level used for E-PDCCH transmission; And
    결정된 DM-RS 포트에 E-PDCCH와 DM-RS를 매핑하는 단계를 포함하는 기지국의 리소스 매핑방법.And mapping the E-PDCCH and the DM-RS to the determined DM-RS port.
  2. 제 1항에 있어서,The method of claim 1,
    상기 결합 레벨은 결합 레벨 2, 4, 8 중 적어도 하나인 것을 특징으로 하는 기지국의 리소스 매핑방법.And the coupling level is at least one of coupling levels 2, 4 and 8.
  3. 제 1항에 있어서, The method of claim 1,
    상기 E-PDCCH의 전송 방식은 로컬 매핑(localized mapping) 및 분산 매핑(distributed mapping)중 하나인 것을 특징으로 하는 기지국의 리소스 매핑방법.The transmission method of the E-PDCCH is one of a localized mapping (localized mapping) and distributed mapping (distributed mapping) resource mapping method of the base station.
  4. 제 1항에 있어서,The method of claim 1,
    상기 DM-RS 포트에 대한 정보를 상위계층 시그널링을 통하거나, 시스템 정보(system information)을 통하거나 제어영역(Control region)의 제어 정보 내에 포함하여 상기 단말에 전송하는 것을 특징으로 하는 기지국의 리소스 매핑방법.Resource mapping of the base station characterized in that the information on the DM-RS port is transmitted to the terminal through higher layer signaling, through system information, or included in control information of a control region. Way.
  5. 기지국으로부터 E-PDCCH (Extended PDCCH) 전송에 사용 가능한 각각의 데이터 영역에 대하여, E-PDCCH 전송에 사용되는 전송 방식 및 집합레벨에 따라 결정된 DM-RS 포트(Demodulation Reference Signal port)에 매핑된 E-PDCCH 및 DM-RS(Demodulation Reference Signal)가 포함된 무선 신호를 수신하는 단계;및For each data area available for E-PDCCH (Extended PDCCH) transmission from the base station, E-mapped to a DM-RS port (Demodulation Reference Signal port) determined according to the transmission scheme and aggregation level used for E-PDCCH transmission. Receiving a radio signal including a PDCCH and a demodulation reference signal (DM-RS); and
    상기 수신된 무선신호로부터 상기 DM-RS를 사용하여 상기 E-PDCCH를 디텍션하는 단계를 포함하는 단말의 E-PDCCH 수신 방법. E-PDCCH receiving method of the terminal comprising the step of detecting the E-PDCCH using the DM-RS from the received radio signal.
  6. 제 5 항에 있어서, The method of claim 5,
    상기 결합 레벨은 결합 레벨 2, 4, 8 중 적어도 하나인 것을 특징으로 하는 단말의 E-PDCCH 수신 방법.The coupling level is at least one of the coupling level 2, 4, 8 E-PDCCH receiving method of the terminal.
  7. 제 5 항에 있어서, The method of claim 5,
    상기 E-PDCCH의 전송 방식은 로컬 매핑(localized mapping) 및 분산 매핑(distributed mapping) 중 하나인 것을 특징으로 하는 단말의 E-PDCCH 수신 방법.The E-PDCCH transmission method of the E-PDCCH is one of a localized mapping (localized mapping) and distributed mapping (distributed mapping).
  8. 제 5 항에 있어서,The method of claim 5,
    상기 DM-RS 포트에 대한 정보를 상위계층 시그널링을 통하거나, 시스템 정보(system information)을 통하거나 제어영역(Control region)의 제어 정보 내에 포함되어 상기 기지국으로부터 수신하는 것을 특징으로 하는 단말의 E-PDCCH 수신 방법. The information on the DM-RS port is received from the base station through higher layer signaling, through system information, or included in control information of a control region. How to receive PDCCH.
  9. E-PDCCH (Extended PDCCH) 전송에 사용 가능한 각각의 데이터 영역에 대하여, E-PDCCH 전송에 사용된 전송 방식 및 집합레벨에 따라 결정된 DM-RS 포트(Demodulation Reference Signal port)에 E-PDCCH와 DM-RS를 매핑하는 매핑부; 및For each data area available for E-PDCCH (Extended PDCCH) transmission, E-PDCCH and DM- at the DM-RS port (Demodulation Reference Signal port) determined according to the transmission scheme and aggregation level used for E-PDCCH transmission. A mapping unit for mapping the RS; And
    상기 E-PDCCH 및 상기 DM-RS가 포함된 무선 신호를 송신하는 송수신부를 포함하는 기지국.And a transceiver for transmitting a radio signal including the E-PDCCH and the DM-RS.
  10. 제 9 항에 있어서,The method of claim 9,
    상기 송수신부는,The transceiver unit,
    상기 DM-RS 포트에 대한 정보를 상위계층 시그널링을 통하거나, 시스템 정보(system information)을 통하거나 제어영역(Control region)의 제어 정보 내에 포함하여 상기 단말에 전송하는 것을 특징으로 하는 기지국.And transmitting the information on the DM-RS port to the terminal through higher layer signaling, through system information, or in the control information of a control region.
  11. 기지국으로부터 E-PDCCH (Extended PDCCH) 전송에 사용 가능한 각각의 데이터 영역에 대하여, E-PDCCH 전송에 사용된 전송 방식 및 집합레벨에 따라 결정된 DM-RS 포트(Demodulation Reference Signal port)에 매핑된 E-PDCCH 및 DM-RS(Demodulation Reference Signal)가 포함된 무선 신호를 수신하는 송수신부; 및For each data area available for E-PDCCH (Etended PDCCH) transmission from the base station, E-mapped to a DM-RS port (Demodulation Reference Signal port) determined according to the transmission scheme and aggregation level used for E-PDCCH transmission. A transceiver for receiving a radio signal including a PDCCH and a demodulation reference signal (DM-RS); And
    상기 수신된 무선신호로부터 상기 DM-RS를 사용하여 상기 E-PDCCH를 디텍션하는 디텍션부를 포함하는 단말. And a detection unit for detecting the E-PDCCH using the DM-RS from the received radio signal.
  12. 제 11 항에 있어서,The method of claim 11,
    상기 송수신부는 상기 DM-RS 포트에 대한 정보를 상위계층 시그널링, 시스템 정보(system information) 혹은 제어영역(Control region)의 제어 정보 내에 포함되어 상기 기지국으로부터 수신하는 것을 특징으로 하는 단말.The transceiver unit is characterized in that the information contained in the upper layer signaling, system information (system information) or control region (Control region) to receive information on the DM-RS port from the base station.
PCT/KR2012/011500 2011-12-30 2012-12-26 Resource mapping method of base station and e-pdcch reception method of terminal in wireless communication system, base station thereof, and terminal thereof WO2013100587A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110147335A KR20130078406A (en) 2011-12-30 2011-12-30 Method and apparatus for mapping, transmitting and receiving resource or e-pdcch in wireless communication system
KR10-2011-0147335 2011-12-30

Publications (1)

Publication Number Publication Date
WO2013100587A1 true WO2013100587A1 (en) 2013-07-04

Family

ID=48697941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/011500 WO2013100587A1 (en) 2011-12-30 2012-12-26 Resource mapping method of base station and e-pdcch reception method of terminal in wireless communication system, base station thereof, and terminal thereof

Country Status (2)

Country Link
KR (1) KR20130078406A (en)
WO (1) WO2013100587A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111052648A (en) * 2017-12-15 2020-04-21 索尼公司 Electronic device, wireless communication method, and computer-readable medium
CN111556571A (en) * 2015-11-11 2020-08-18 华为技术有限公司 Method and device for transmitting scheduling information

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011085195A1 (en) * 2010-01-11 2011-07-14 Research In Motion Limited System and method for control channel interference management and extended pdcch
US20110249633A1 (en) * 2010-04-07 2011-10-13 Samsung Electronics Co., Ltd. Method of transmitting and receiving control information based on spatial-multiplexing gain

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011085195A1 (en) * 2010-01-11 2011-07-14 Research In Motion Limited System and method for control channel interference management and extended pdcch
US20110249633A1 (en) * 2010-04-07 2011-10-13 Samsung Electronics Co., Ltd. Method of transmitting and receiving control information based on spatial-multiplexing gain

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Consideration on transmit diversity scheme for enhanced PDCCH transmission", 3GPP TSG RAN WG1 MEETING #66BIS, R1-113194, 10 October 2011 (2011-10-10) - 14 October 2011 (2011-10-14), ZHUHAI CHINA, XP050538316 *
NEC GROUP: "Performance aspects of DL control channel enhancements for Rel-11", 3GPP TSG RAN WG1 MEETING #66, R1-112136, 22 August 2011 (2011-08-22) - 26 August 2011 (2011-08-26), ATHENS, GREECE, XP050537308 *
RENESAS MOBILE EUROPE LTD.: "Link-level evaluation of E-PDCCH design aspects", 3GPP TSG-RAN WG1 MEETING #66, R1-112317, 22 August 2011 (2011-08-22) - 26 August 2011 (2011-08-26), ATHENS, GREECE, XP050537763 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111556571A (en) * 2015-11-11 2020-08-18 华为技术有限公司 Method and device for transmitting scheduling information
CN111556571B (en) * 2015-11-11 2023-11-14 华为技术有限公司 Method and device for transmitting scheduling information
CN111052648A (en) * 2017-12-15 2020-04-21 索尼公司 Electronic device, wireless communication method, and computer-readable medium
CN111052648B (en) * 2017-12-15 2024-01-23 索尼公司 Electronic device, wireless communication method, and computer-readable medium

Also Published As

Publication number Publication date
KR20130078406A (en) 2013-07-10

Similar Documents

Publication Publication Date Title
JP5981644B2 (en) Uplink sounding reference signal transfer
EP2858265B1 (en) Method and apparatus for receiving control information in wireless communication system
WO2018182383A1 (en) Method for transmitting or receiving uplink signal for terminal supporting short transmission time interval in wireless communication system, and apparatus therefor
WO2013069903A1 (en) E-pdcch mapping, and method and apparatus for transmission and reception in wireless communication system
WO2015160198A1 (en) Method and apparatus for processing aperiodic channel state information in wireless communication system
WO2014189338A1 (en) Method for performing measurement in wireless communication system and apparatus therefor
KR101547052B1 (en) Method and device for allocating a downlink control channel in a wireless communication system
WO2018143621A1 (en) Method for supporting plurality of transmission time intervals, plurality of subcarrier intervals or plurality of processing times in wireless communication system, and device therefor
US20150181568A1 (en) Method and apparatus for receiving control information in wireless communication system
WO2012169716A1 (en) Method for transmitting/receiving control information and apparatus for transmitting/receiving
WO2014116039A1 (en) Method and device for measuring channel between base stations in wireless communication system
US20150146639A1 (en) Method and apparatus for receiving control information through epdcch in wireless communication system
WO2013105821A1 (en) Method and apparatus for receiving signal in wireless communication system
KR20140037232A (en) Method and apparatus for transmitting synchronization signal in wireless communication system
WO2015016567A1 (en) Method and device for performing link adaptation in wireless communication system
WO2014142571A1 (en) Method and device for reporting channel state information in wireless communication system
WO2014133341A1 (en) Method and apparatus for receiving control information in wireless communication system
US9497753B2 (en) Method and apparatus for receiving control information through EPDCCH in wireless communication system
WO2014092364A1 (en) Method and apparatus for receiving downlink signals in wireless communication system
WO2016021969A1 (en) Method and apparatus for supporting amorphous cell in wireless communication system
WO2013125897A1 (en) Methods and apparatuses for receiving or transmitting downlink signal in mbsfn subframe
WO2013048079A1 (en) Method and user equipment for transmitting channel state information and method and base station for receiving channel state information
WO2014123352A1 (en) Method and device for transmitting uplink signal in wireless communication system
EP2882246A1 (en) Wireless communication method, wireless base station, user equipment and wireless communication system
WO2013094958A1 (en) Measuring method and apparatus in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12861455

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12861455

Country of ref document: EP

Kind code of ref document: A1