WO2013100541A1 - Method and apparatus for controlling transmission power in wireless communication system - Google Patents

Method and apparatus for controlling transmission power in wireless communication system Download PDF

Info

Publication number
WO2013100541A1
WO2013100541A1 PCT/KR2012/011434 KR2012011434W WO2013100541A1 WO 2013100541 A1 WO2013100541 A1 WO 2013100541A1 KR 2012011434 W KR2012011434 W KR 2012011434W WO 2013100541 A1 WO2013100541 A1 WO 2013100541A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
reference signal
uplink
uplink channel
priority
Prior art date
Application number
PCT/KR2012/011434
Other languages
French (fr)
Korean (ko)
Inventor
김종남
리지안준
Original Assignee
주식회사 팬택
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 팬택 filed Critical 주식회사 팬택
Publication of WO2013100541A1 publication Critical patent/WO2013100541A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/281TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission taking into account user or data type priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range

Definitions

  • the present invention relates to wireless communications, and more particularly, to a method and apparatus for controlling transmission power in a wireless communication system.
  • MIMO Multiple Input Multiple Output
  • CoMP Cooperative Multiple Point Transmission
  • relay the most basic and stable solution is to increase the bandwidth.
  • a wireless communication system intends to support broadband
  • one or more carriers having a bandwidth smaller than the target broadband may be collected to form a broadband.
  • one or more component carriers are aggregated to support broadband. For example, if one component carrier corresponds to a bandwidth of 5 MHz, four carriers are aggregated to support a maximum bandwidth of 20 MHz.
  • Such a system using carrier aggregation is called a multiple component carrier system.
  • a terminal can simultaneously transmit or receive one or a plurality of carriers according to its capacity.
  • Each independent operating band is defined as a component carrier (CC).
  • CC component carrier
  • a UE transmits a physical uplink control channel (PUCCH), a physical uplink shared channel (PUSCH), or a sounding reference signal through a plurality of CCs.
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • SRS sounding reference signal
  • the UE transmits a PUCCH, PUSCH or SRS on each of a plurality of CCs
  • the transmit power of the PUCCH, PUSCH or SRS may be limited by the maximum transmit power of the UE.
  • the UE should be able to efficiently allocate and / or control the power for the PUCCH, PUSCH, and SRS.
  • the present invention provides a method and apparatus for controlling transmission power in a wireless communication system.
  • Another object of the present invention is to provide an apparatus and a method for performing power scaling when an SRS and another uplink signal are transmitted on a band-served aggregated serving cell.
  • Another technical problem of the present invention is to provide an apparatus and method for performing power scaling according to priority between an SRS and another uplink signal.
  • a power control method by a terminal in a multi-component carrier system belongs to a band different from the first serving cell at a point of time overlapping with a transmission time of a sounding reference signal (SRS), which is a reference signal used to estimate a state of an uplink on the first serving cell.
  • SRS sounding reference signal
  • the sounding reference signal when the sounding reference signal has a higher priority than the uplink channel, power is first assigned to the sounding reference signal and the remaining power is allocated to the uplink channel, and the sounding reference signal is assigned to the uplink channel. If the priority is lower than the link channel, power may be allocated to the uplink channel first, and the remaining power may be allocated to the sounding reference signal.
  • power can be efficiently controlled by sequentially assigning power according to priority, thereby improving performance of a multi-component carrier system. Can be.
  • FIG. 1 is a block diagram showing a wireless communication system to which the present invention is applied.
  • FIGS. 2 and 3 schematically show the structure of a radio frame to which the present invention is applied.
  • FIG. 5 is a diagram illustrating states of serving cells configured in a terminal in a multi-component carrier system according to an embodiment of the present invention.
  • FIG. 7 is a flowchart illustrating an uplink power control operation by a terminal according to an embodiment of the present invention.
  • FIG. 8 is an explanatory diagram illustrating a method of performing power scaling based on priorities according to an embodiment of the present invention.
  • FIG. 9 is an explanatory diagram illustrating a method of performing power scaling based on priorities according to another embodiment of the present invention.
  • FIG. 10 is an explanatory diagram illustrating a method of performing power scaling based on priority according to another example of the present invention.
  • FIG. 11 is an explanatory diagram illustrating a method of performing power scaling based on priority according to another example of the present invention.
  • FIG. 12 is a flowchart illustrating an uplink power control operation by a terminal according to another embodiment of the present invention.
  • FIG. 13 is a configuration diagram of a terminal according to an embodiment of the present invention.
  • the present specification describes a communication network, and the work performed in the communication network is performed in the process of controlling the network and transmitting data in a system (for example, a base station) that manages the communication network, or a terminal linked to the network. Work can be done in a system (for example, a base station) that manages the communication network, or a terminal linked to the network. Work can be done in a system (for example, a base station) that manages the communication network, or a terminal linked to the network. Work can be done in a system (for example, a base station) that manages the communication network, or a terminal linked to the network. Work can be done in a system (for example, a base station) that manages the communication network, or a terminal linked to the network. Work can be done in a system (for example, a base station) that manages the communication network, or a terminal linked to the network. Work can be done in a system (for example, a base station) that manages the communication network, or a terminal linked to
  • the term 'transmitting a channel' may be interpreted to mean that information mapped through the channel or mapped to the channel is transmitted.
  • the channel may be, for example, a physical downlink control channel (PDCCH), a physical downlink shared channel (PDSCH), a physical uplink control channel (PUCCH) or a physical channel. It may include a physical uplink shared channel (PUSCH).
  • FIG. 1 is a block diagram showing a wireless communication system to which the present invention is applied.
  • the wireless communication system 10 is widely deployed to provide various communication services such as voice and packet data.
  • the wireless communication system 10 includes at least one base station (BS) 11.
  • Each base station 11 provides a communication service for a particular geographic area or frequency area (generally called a cell) 15a, 15b, 15c.
  • Cells 15a, 15b, and 15c may in turn be divided into a number of regions (called sectors).
  • the user equipment (UE) 12 may be fixed or mobile, and may include a mobile station (MS), a mobile terminal (MT), a user terminal (UT), a subscriber station (SS), a wireless device, and a PDA. (personal digital assistant), wireless modem (wireless modem), a handheld device (handheld device) may be called other terms.
  • the base station 11 generally refers to a station that communicates with the terminal 12, and includes an evolved-NodeB (eNB), a base transceiver system (BTS), an access point, an femto eNB, and a home. It may be referred to by other terms such as a base station (HeNB), a relay, a remote radio head (RRH), and the like.
  • eNB evolved-NodeB
  • BTS base transceiver system
  • HeNB base station
  • RRH remote radio head
  • Cells 15a, 15b, and 15c should be interpreted in a comprehensive sense indicating some areas covered by the base station 11, and encompass all of the various coverage areas such as megacells, macrocells, microcells, picocells, and femtocells. to be.
  • downlink refers to a communication or communication path from the base station 11 to the terminal 12
  • uplink refers to a communication or communication path from the terminal 12 to the base station 11.
  • the transmitter may be part of the base station 11 and the receiver may be part of the terminal 12.
  • the transmitter may be part of the terminal 12 and the receiver may be part of the base station 11.
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier-FDMA
  • OFDM-FDMA OFDM-FDMA
  • OFDM-FDMA OFDM-FDMA
  • OFDM-TDMA OFDM-FDMA
  • the uplink transmission and the downlink transmission may use a time division duplex (TDD) scheme transmitted using different times or a frequency division duplex (FDD) scheme transmitted using different frequencies.
  • TDD time division duplex
  • FDD frequency division duplex
  • the layers of the radio interface protocol between the terminal and the base station are based on the lower three layers of the Open System Interconnection (OSI) model, which is well known in the communication system. It may be divided into a second layer L2 and a third layer L3. Among them, the physical layer belonging to the first layer provides an information transfer service using a physical channel.
  • OSI Open System Interconnection
  • the PDCCH includes a resource allocation and transmission format of a downlink shared channel (DL-SCH), resource allocation information of an uplink shared channel (UL-SCH), a random access response message transmitted on a PDSCH, Resource allocation of the same upper layer control message, a set of transmission power control (TPC) commands for individual terminals in a certain terminal group, etc. may be carried.
  • DL-SCH downlink shared channel
  • UL-SCH uplink shared channel
  • TPC transmission power control
  • a plurality of PDCCHs may be transmitted in the control region, and the terminal may monitor the plurality of PDCCHs.
  • DCI downlink control information
  • the DCI may include an uplink or downlink resource allocation field, an uplink transmission power control command field, a control field for paging, a control field for indicating a random access response (RA response), and the like.
  • DCI has different uses according to its format, and fields defined in DCI are also different.
  • Table 1 shows DCIs according to various formats.
  • Table 1 DCI format Explanation 0 Used for scheduling of PUSCH (Uplink Grant) One Used for scheduling one PDSCH codeword in one cell 1A Used for simple scheduling of one PDSCH codeword in one cell and random access procedure initiated by PDCCH command 1B Used for simple scheduling of one PDSCH codeword in one cell using precoding information 1C Used for brief scheduling of one PDSCH codeword and notification of MCCH change 1D Used for simple scheduling of one PDSCH codeword in one cell containing precoding and power offset information 2 Used for PDSCH scheduling for UE configured in spatial multiplexing mode 2A Used for PDSCH scheduling of UE configured in long delay CDD mode 2B Used in transmission mode 8 (double layer transmission) 2C Used in transmission mode 9 (multi-layer transmission) 3 Used to transmit TPC commands for PUCCH and PUSCH with power adjustment of 2 bits 3A Used to transmit TPC commands for PUCCH and PUSCH with single bit power adjustment 4 Used for scheduling of PUSCH (Uplink Grant). In particular, it is used for PUSCH scheduling for a
  • DCI format 0 is uplink scheduling information, format 1 for scheduling one PDSCH codeword, format 1A for compact scheduling of one PDSCH codeword, and very simple of DL-SCH.
  • Format 1C for scheduling format 2 for PDSCH scheduling in closed-loop spatial multiplexing mode, format 2A for PDSCH scheduling in open-loop spatial multiplexing mode, and uplink channel Formats 3 and 3A for transmission of a transmission power control (TPC) command.
  • TPC transmission power control
  • Each field of the DCI is sequentially mapped to n information bits a 0 to a n-1 . For example, if DCI is mapped to information bits of a total of 44 bits in length, each DCI field is sequentially mapped to a 0 to a 43 .
  • DCI formats 0, 1A, 3, and 3A may all have the same payload size.
  • DCI format 0 may be called an uplink grant.
  • FIGS. 2 and 3 schematically show the structure of a radio frame to which the present invention is applied.
  • a radio frame includes 10 subframes.
  • One subframe includes two slots.
  • the time (length) of transmitting one subframe is called a transmission time interval (TTI).
  • TTI transmission time interval
  • one subframe may have a length of 1 ms
  • one slot may have a length of 0.5 ms.
  • One slot may include a plurality of symbols in the time domain.
  • the symbol in the case of a wireless system using Single Carrier-Frequency Division Multiple Access (SC-FDMA) in uplink, the symbol may be an Orthogonal Frequency Division Multiplexing Access (SC-FDMA) symbol.
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • the representation of the symbol period in the time domain is not limited by the multiple access scheme or the name.
  • the plurality of symbols in the time domain may be orthogonal frequency division multiple access (OFDMA) symbols, symbol intervals, etc. in addition to the SC-FDMA symbols.
  • OFDMA orthogonal frequency division multiple access
  • One slot includes a plurality of subcarriers in the frequency domain and seven SC-FDMA symbols in the time domain.
  • a resource block (RB) is a resource allocation unit. If a resource block includes 12 subcarriers in the frequency domain, one resource block may include 7 ⁇ 12 resource elements (REs).
  • the resource element represents the smallest frequency-time unit to which the modulation symbol of the data channel or the modulation symbol of the control channel is mapped. If there are M subcarriers on one SC-FDMA symbol, and one slot includes N SC-FDMA symbols, one slot includes MxN resource elements.
  • a wireless communication system it is necessary to estimate an uplink channel or a downlink channel for data transmission / reception, system synchronization acquisition, channel information feedback, and the like.
  • the process of restoring a transmission signal by compensating for distortion of a signal caused by a sudden change in channel environment is called channel estimation.
  • a reference signal (RS) known to a terminal and a transceiver is mutually used for channel estimation or channel state measurement.
  • the terminal Since the terminal knows the information of the reference signal, the terminal can estimate the channel based on the received reference signal and compensate the channel value to accurately obtain the data sent from the transmission / reception point.
  • a reference signal is the channel information h
  • the reference signal p is already known by the terminal, when the LS (Least Square) method is used, channel information ( ) Can be estimated.
  • the channel estimate estimated using the reference signal p Is Depends on the value, so to get an accurate estimate of You need to converge to zero.
  • the channel can be estimated by minimizing the effects of
  • the reference signal may be allocated to all subcarriers or may be allocated between data subcarriers for transmitting data.
  • a signal of a specific transmission timing is composed of only a reference signal such as a preamble in order to obtain a gain of channel estimation performance.
  • a data transmission amount can be increased.
  • a cell-specific RS CRS
  • a UE-specific RS CRS
  • a positioning reference signal PRS
  • CSI-RS channel state information reference signal
  • the CRS is a reference signal transmitted to all terminals in a cell and used for channel estimation.
  • the CRS may be transmitted in all downlink subframes in a cell supporting PDSCH transmission.
  • the UE specific reference signal is a reference signal received by a specific terminal or a specific terminal group in a cell, and is mainly used for data demodulation of a specific terminal or a specific terminal group, and thus may be called a demodulation RS (DMRS).
  • the PRS may be used for location measurement of the terminal.
  • the PRS may be transmitted only through resource blocks in a downlink subframe allocated for PRS transmission.
  • CSI-RS may be used for estimation of channel state information.
  • the CSI-RS is placed in the frequency domain or time domain.
  • Channel quality indicator CQI
  • PMI precoding matrix indicator
  • RI rank indicator rank information
  • CQI channel quality indicator
  • the CSI-RS may be transmitted on one or more antenna ports.
  • DMRS demodulation reference signal
  • SRS sounding reference signal
  • DMRS is associated with transmission of PUSCH or PUCCH
  • SRS is not correlated with PUSCH or PUCCH
  • SRS is a signal that the base station receives from the terminal for use in uplink scheduling.
  • SRS is used in the physical layer and does not carry information originating from higher layers.
  • the SRS may be transmitted in the last symbol of each subframe. With respect to the transmission of the SRS may be configured specifically for the terminal, the SRS may be transmitted periodically (periodic) or aperiodic (aperiodic).
  • the uplink subframe includes two slots on the time axis, and each slot includes seven SC-FDMA symbols.
  • the uplink subframe includes a PUCCH and a PUSCH using different frequencies.
  • the uplink subframe may be divided into a region to which a PUCCH is allocated and a region to which a PUSCH is allocated.
  • UCI uplink control information
  • SR scheduling request
  • ACK / NACK acknowledgment / non-acknowledgement
  • CQI channel quality indicator
  • PMI precoding matrix indicator
  • RI rank indicator
  • PUCCH carries various kinds of control information according to a format. For example, uplink control information having a different number of bits per subframe may be transmitted according to a modulation scheme.
  • 1-bit uplink control information can be transmitted on PUCCH
  • QPSK Quadrature Phase Shift Keying
  • 2-bit uplink control information is PUCCH. Can be sent over the air.
  • PUCCH for one UE uses one resource block occupying a different frequency in each of two slots in a subframe.
  • Two slots use different resource blocks (or subcarriers) in a subframe.
  • Two resource blocks allocated to the PUCCH are said to be frequency hopping at a slot boundary.
  • SRS can be transmitted in the last SC-FDMA symbol interval, the PUCCH in the last SC-FDMA symbol is puncturing.
  • the UE transmits data using 13 SC-FDMA symbols, and performs a preprocessing process such as rate matching for the remaining SC-FDMA symbols and transmits a sounding reference signal.
  • FIG. 5 is a diagram illustrating states of serving cells configured in a terminal in a multi-component carrier system according to an embodiment of the present invention.
  • the system bandwidth includes bands A and B
  • band A includes a main serving cell (PCell) and a first secondary serving cell (SCell 1)
  • band B includes a second secondary serving. It includes a cell (SCell 2) and a third secondary serving cell (SCell 3).
  • the terminal may be configured with any one of the first secondary serving cell and the third secondary serving cell, including a main serving cell.
  • Carrier aggregation of the primary serving cell and the first secondary serving cell is intra-band aggregation.
  • the carrier aggregation of the second secondary serving cell and the third secondary serving cell is the aggregation in the B band.
  • carrier aggregation between the main serving cell and the second secondary serving cell and carrier aggregation between the primary serving cell and the third secondary serving cell are inter-band aggregation.
  • Carrier aggregation between the first secondary serving cell and the second secondary serving cell, and carrier aggregation between the first secondary serving cell and the third secondary serving cell are inter-band aggregation.
  • the system bandwidth includes bands A and B
  • band A includes a main serving cell (PCell) and a first secondary serving cell (SCell 1)
  • band B includes a second secondary serving. It includes a cell (SCell 2) and a third secondary serving cell (SCell 3).
  • a timing difference Td may exist between a band A and a band B in terms of frequency characteristics or a transmission path for a base station.
  • the base station receives a signal of the first secondary serving cell by Td later than a signal of the second secondary serving cell due to a timing difference. . Therefore, the UE should transmit the signal of the first secondary serving cell earlier by Td. This is called timing alignment (TA) to accelerate or lag the uplink transmission.
  • TA timing alignment
  • the SRS in the first secondary serving cell is determined by the second secondary serving cell due to the timing difference. SRS is sent at different times.
  • the SRS in the first secondary serving cell may be transmitted simultaneously with the PUSCH or the PUCCH in the second secondary serving cell, and the PUSCH or the PUCCH in the first secondary serving cell and the SRS in the second secondary serving cell are simultaneously transmitted.
  • the terminal should be able to set the transmission power of the uplink channel and the transmission power of the SRS within the maximum value. This is manifested by uplink power control which sets the amount of power to be allocated to the uplink channel or SRS.
  • FIG. 7 is a flowchart illustrating an uplink power control operation by a terminal according to an embodiment of the present invention.
  • the terminal calculates a transmit power P SRS of an SRS , a transmit power P UL of an uplink channel, and a transmit power P DMRS of a DMRS (S700). It is assumed that an aggregated multi-component carrier is configured in the terminal, and a timing difference exists between the multi-component carriers.
  • the uplink channel includes at least one of a PUCCH and a PUSCH.
  • the terminal is the maximum transmission power of the sum of the total uplink transmission power of the terminal P SRS , P UL and P DMRS It is determined whether to exceed (S705). Where i is the subframe index. If the total uplink transmission power of the terminal is the maximum transmission power If exceeded, the terminal performs power scaling (S710). Increasing or decreasing the transmit power of the uplink channel, the transmit power of the DMRS, or the transmit power of the SRS by a certain ratio is called power scaling. One example of power scaling is to multiply the original transmit power by a scaling factor w. For example, power scaling of P SRS , P UL, and P DMRS results in wP SRS , wP UL, and wP DMRS , respectively.
  • w may have a value of 0 ⁇ w ⁇ 1, and power scaling may be called uplink power control.
  • the power scaling scales the transmit power of one uplink channel, the transmit power of a DMRS, or the transmit power of an SRS, and the transmit power of another uplink channel, the transmit power of a DMRS, or the transmit power of an SRS. It does not scale.
  • the transmit power P SRS of the SRS may be scaled to wP SRS or the transmit power P PUSCH of the PUSCH may be scaled to wP PUSCH .
  • Priority provides a criterion for efficiently allocating limited uplink power to uplink channels, DMRSs, and SRSs.
  • the terminal Scaling the power of the uplink channel, DMRS or SRS based on the priority, the terminal scales the transmission power of the lower priority uplink channel, the transmission power of the DMRS or the transmission power of the SRS, the priority is higher It does not scale the transmission power of the high uplink channel, the transmission power of the DMRS or the transmission power of the SRS. That is, the terminal maintains the first transmission power of the uplink channel having the higher priority, the first transmission power of the DMRS, or the first transmission power of the SRS. And the second transmission power remaining at the maximum transmission power except for the first transmission power is greater than the third transmission power of the uplink channel having the lower priority, the third transmission power of the DMRS, or the third transmission power of the SRS.
  • power is allocated to an uplink channel having a low priority, DMRS or SRS.
  • the terminal allocates zero power to the uplink channel, DMRS or SRS having a lower priority. That is, the UE does not transmit or drop the uplink channel, DMRS or SRS having a lower priority.
  • Priority may be defined in SC-FDMA symbol units or dimensions, or may be defined in subframe units or dimensions.
  • priority is defined based on the type of information transmitted by the SC-FDMA symbol.
  • the type of information transmitted by the SC-FDMA symbol includes data, DMRS, SRS, and the like.
  • the priority in the SC-FDMA symbol dimension may be DMRS> SRS> data.
  • priority is defined based on the type of information transmitted by each subframe.
  • the type of information transmitted in the subframe includes PUSCH, PUCCH, SRS, and the like.
  • the priority may be PUCCH> SRS> PUSCH.
  • the power scaling includes scaling transmission power of all uplink channels and transmission power of SRS by a predetermined ratio.
  • power scaling may be independent of priority. This power scaling is called power scaling based on reduction sharing.
  • the terminal generates an SRS sequence and multiplies the generated sequence of SRS by an amplitude scaling factor ⁇ SRS to conform to the scaled SRS transmission power wP SRS , and multiplies the ⁇ SRS by the SRS.
  • ⁇ SRS amplitude scaling factor
  • a method of scaling the transmission power or the SRS of the uplink channel at a constant rate may be applied.
  • the priority is defined in the SC-FDMA symbol dimension, it is equivalent to the concept that the transmission power is allocated in SC-FDMA symbol units.
  • Types of information transmitted by the SC-FDMA symbol include data, DMRS, SRS, and the like.
  • the priority may be determined based on the reliability of the data transmission.
  • the priority of the SC-FDMA symbol to which DMRS is transmitted is higher than the SC-FDMA symbol to which data is transmitted.
  • the priority in the SC-FDMA symbol dimension may be DMRS> SRS> data. Equations 2 and 3 express power allocation in consideration of priorities in the SC-FDMA symbol dimension.
  • Equation 2 Denotes a linear value of x. therefore, Is the linear value of P CMAX .
  • c is the index of the serving cell
  • P PUCCH PUCCH
  • DMRS is the power of the PUCCH including the DMRS
  • P PUSCH PUCCH
  • DMRS is the power of the PUSCH including the DMRS.
  • the first allocation for the uplink power allocation of the UE and the next for the DMRS of the PUSCH, the next allocation for the DMRS of the PUSCH, the remaining power is scaled by the scaling factor w to the SRS transmission power of each serving cell c Is assigned.
  • SC-FDMA symbols transmitting data not including DMRS are allotted power to data including DMRS and SC-FDMA symbols transmitting SRS, and the remaining power is scaled by a scaling factor w. And is allocated to transmission of PUSCH or PUCCH of each serving cell.
  • the UE may allocate resources independently for each SC-FDMA symbol that is a unit of FFT. Therefore, in a situation where the timing difference between serving cells occurs, in order to use the power available to the UE more efficiently, the unit of power allocation should be defined in symbol units. 8 and 9 are examples of power allocation when Equation 2 and Equation 3 are actually applied.
  • FIG. 8 is an explanatory diagram illustrating a method of performing power scaling based on priorities according to an embodiment of the present invention.
  • a first secondary serving cell SCell 1 and a second secondary serving cell SCell 2 are configured by carrier aggregation in a terminal, and Td is divided between the first secondary serving cell and the second secondary serving cell.
  • Td is divided between the first secondary serving cell and the second secondary serving cell.
  • the SC-FDMA symbol i in which the SRS is transmitted in the first secondary serving cell overlaps the SC-FDMA symbol j in which the PUSCH or PUCCH not including the DMRS is transmitted in the first secondary serving cell.
  • the UE sets the transmit power of the SRS to PSRS and sets the remaining power to the transmit power P DATA of PUSCH or PUCCH.
  • the SC-FMDA symbols j-1, j + 1, etc. which are not transmitted simultaneously with the SRS, the UE sets the transmission power of the PUSCH or the PUCCH to P DATA .
  • One limitation may be applied when allocating remaining power for transmission of the SRS and allocating the remaining power for transmission of the PUSCH or the PUCCH.
  • the modulation scheme of the PUSCH is QPSK
  • the remaining power after transmitting the SRS is allocated to the data transmission of the PUSCH.
  • the modulation scheme of the PUSCH is 16QAM or 64QAM
  • the SRS is allocated and the remaining power is not allocated to the transmission of the PUSCH. Do not.
  • the reason for this is as follows. If the modulation scheme of the PUSCH is QPSK, information is transmitted through the phase and amplitude (magnitude) does not affect the information. As a result, the signal size may be reduced when transmitting with less power, but may not affect information detection.
  • FIG. 9 is an explanatory diagram illustrating a method of performing power scaling based on priorities according to another embodiment of the present invention.
  • the SC-FDMA symbol i in which the SRS is transmitted in the first secondary serving cell overlaps the SC-FDMA symbol j in which the DMRS is transmitted through the PUSCH or the PUCCH in the second secondary serving cell.
  • the UE preferentially allocates power PDMRS to DMRS according to priority and does not allocate power for transmission of SRS. That is, the SRS is punctured or dropped or muted by rate matching or zero power is allocated.
  • FIG. 10 is an explanatory diagram illustrating a method of performing power scaling based on priority according to another example of the present invention.
  • a first secondary serving cell SCell 1 and a second secondary serving cell SCell 2 are configured in one terminal by carrier aggregation, and the first secondary serving cell and the second secondary serving cell are configured. There is a timing difference in uplink time.
  • the index of the last SC-FDMA symbol of subframe n in the first secondary serving cell is i, and this SC-FDMA symbol is located between j-1 and j SC-FDMA symbols of subframe n in the second secondary serving cell. do.
  • the transmission start point of each serving cell is determined in consideration of the transmission delay of the terminal. If the serving cells are configured with carrier aggregation between bands in one terminal, the transmission delay in each band may be different. As shown in FIG. 10, the transmission start point may not match.
  • the priority for example, DMRS> SRS> data
  • the SC-FDMA symbol dimension may be equally applied.
  • the SRS is transmitted in the SC-FDMA symbol i and the DM-1 is not present in the j-1 and j SC-FDMA symbols of the second secondary serving cell which overlaps with the SC-FDMA symbol i simultaneously (PUCCH or PUSCH). ) Is sent.
  • the UE performs power scaling in consideration of the PUSCH required power of the SC-FDMA symbol i-1 of the first secondary serving cell and the PUSCH required power of the SC-FDMA symbol j-1 of the second secondary serving cell
  • the transmission power P j-1 in the SC-FDMA symbol of j-1 is obtained (0 ⁇ w (i) ⁇ 1).
  • the transmission power P j-1 in the SC-FDMA symbol of j-1 is expressed by the following equation.
  • FIG. 11 is an explanatory diagram illustrating a method of performing power scaling based on priority according to another example of the present invention.
  • an SRS is transmitted in an SC-FDMA symbol i in the first secondary serving cell and SC-1 in the second secondary serving cell overlapping with an SC-FDMA symbol i simultaneously.
  • data without a DMRS PUCCH or PUSCH
  • data including a DMRS are transmitted, respectively.
  • the UE performs power scaling in consideration of the PUSCH required power of the SC-FDMA symbol i-1 of the first secondary serving cell and the PUSCH required power of the SC-FDMA symbol j-1 of the second secondary serving cell
  • the transmission power w (i) P 3 of the SC-FDMA symbol of j-1 is obtained (0 ⁇ w (i) ⁇ 1).
  • the UE obtains the scaled SRS transmission power P ′ SRS in consideration of simultaneous transmission of the SRS in the first secondary serving cell and the DMRS in the second secondary serving cell. This is the same as Equation 5.
  • P SRS means the SRS transmission power set before scaling.
  • the transmit power P j-1 in the SC-FDMA symbol of j-1 is represented by the following equation.
  • the priority is defined in the subframe dimension, it is equivalent to the concept that the transmission power is allocated in subframe units. Since data is transmitted in units of one subframe, transmission power is also allocated in units of subframes. Therefore, power scaling should be defined even if the priority is defined in the subframe dimension.
  • power is allocated according to the priority by dividing the SRS and the PUSCH or the SRS and the PUCCH.
  • the transmission of the PUSCH may determine whether the base station receives data transmitted by the terminal through reception of a physical HARQ indicator channel (PHICH), and the terminal may retransmit if the base station does not receive the data.
  • PHICH physical HARQ indicator channel
  • the transmission priority of the SRS may be determined by assigning a higher priority to the PUSCH and then lowering the PUCCH. Accordingly, the power allocation priority between SRS, PUCCH, and PUSCH may be PUSCH ⁇ SRS ⁇ PUCCH.
  • the power allocated to the SRS and PUSCH or PUCCH according to the priority when the different serving cells are maintained in symbol synchronization is It is defined by the following equation.
  • Equations 7 and 8 there is no change in power during one subframe, which is a transmission unit of the channel, in a method according to the priority between the SRS and the channel (PUSCH or PUCCH). That is, when the power required for SRS transmission is allocated in consideration of the priority between the PUCCH and the SRS (Equation 7), and the transmission power of the PUSCH is scaled and allocated according to the remaining power (Equation 8), one sub-sub is maintained. Constant power is maintained during the frame.
  • P subframe n represents the transmission power of subframe n of the second secondary serving cell.
  • the UE since the PUSCH has a lower priority than the SRS, the UE corresponds to the required power of the subframe n of the first secondary serving cell and the subframe n of the second secondary serving cell.
  • w 1 (i) P 1 is a scaling factor that is equally applied to two subframes.
  • w 2 (i) P 2 is calculated according to the required power of subframe n + 1 of the first secondary serving cell and subframe n of the second secondary serving cell.
  • the SRS when SRS and PUSCH or SRS and PUCCH are simultaneously transmitted on different serving cells, the SRS according to the priority when the different serving cells do not maintain symbol synchronization as shown in FIG. 10 or 11
  • power allocated to PUSCH or PUCCH is defined by the following equation.
  • Power scaling based on reduced sharing includes an operation of scaling the transmission power of all uplink channels and the transmission power of SRS by a predetermined ratio. That is, it means that all uplink channels and SRS are shared to participate in power reduction.
  • the terminal prioritizes power allocation to the PUCCH, and the remaining power is allocated to the SRS and the PUSCH at a constant rate by power scaling. This is to give priority to the PUCCH because it requires transmission of higher reliability than SRS and PUSCH. This is expressed as the following equation.
  • the SRS when SRS and PUSCH or SRS and PUCCH are simultaneously transmitted on different serving cells, the SRS is based on a reduced sharing when the different serving cells do not maintain symbol synchronization as shown in FIG. 10 or 11.
  • power allocated to PUSCH or PUCCH is defined by the following equation.
  • the transmission power is allocated in subframe units, and P subframe n represents the transmission power of subframe n of the second secondary serving cell.
  • the UE determines w 1 (i) P 1 according to the required power of subframe n of the first secondary serving cell and subframe n of the second secondary serving cell.
  • w 1 (i) is a scaling factor that is equally applied to two subframes.
  • w 2 (i) P 2 is calculated according to the required power of subframe n + 1 of the first secondary serving cell and subframe n of the second secondary serving cell.
  • the terminal obtains w SRS (i) P SRS according to the required power of the SRS and subframe n of the second secondary serving cell.
  • FIG. 12 is a flowchart illustrating an uplink power control operation by a terminal according to another embodiment of the present invention. This is power scaling based on priority.
  • the terminal recognizes a difference in uplink transmission and timing (S1200).
  • the terminal may be configured with a plurality of serving cells located in different bands, and the plurality of serving cells may be configured by carrier aggregation.
  • the uplink transmission includes a PUSCH or PUCCH transmission that does not include DMRS (called data transmission), a PUSCH or PUCCH transmission that includes DMRS, and an SRS transmission.
  • the terminal determines whether simultaneous transmission of the SRS and another uplink channel occurs (S1205). If the SRS and the other uplink transmission occurs at the same time, the terminal determines whether the other uplink transmission is DMRS (S1210). If the other uplink transmission is DMRS, the terminal preferentially allocates power to DMRS (S1215), for example, allocates power to SRS as shown in Equation 2 (S1220), for example, As described above, power is allocated to the PUSCH or the PUCCH not including the DMRS (S1225).
  • step S1210 if the other uplink transmission is not DMRS, this indicates that the other uplink transmission is data transmission, and thus, the UE preferentially allocates power to the SRS as shown in Equation 2 (S1220), For example, as shown in Equation 3, power is allocated to the PUSCH or the PUCCH not including the DMRS (S1225).
  • step S1205 if simultaneous transmission of the SRS and another uplink channel does not occur, the terminal determines whether data transmission exists (S1230). If data transmission exists, the terminal allocates power to data (S1225). ). If there is no data transmission, the terminal terminates the procedure.
  • FIG. 13 is a configuration diagram of a terminal according to an embodiment of the present invention.
  • the terminal 1400 includes a receiver 1305, a terminal processor 1310, and a transmitter 1320.
  • the terminal processor includes a power controller 1311 and a signal generator 1312.
  • the receiver 1305 receives a downlink signal received from a base station (not shown).
  • the downlink signal includes RRC configuration information related to transmission of DCI and SRS, which are physical layer signals.
  • the power control unit 1311 has a maximum transmission power in which the sum of the total uplink transmission power P SRS , P UL, and P DMRS is added. It is determined whether to exceed the total uplink transmission power of the terminal is the maximum transmission power When exceeding, the terminal performs power scaling.
  • An example of power scaling is as follows.
  • the power controller 1311 may perform power scaling of the SRS, PUSCH, or PUCCH based on the priority.
  • the power control unit 1311 may perform power scaling of the SRSs, PUSCHs, or PUCCHs based on a reduction sharing.
  • the power control unit 1311 may determine the SRS, PUSCH, or PUCCH according to Equation 2 to Equation 6, for example. Perform power scaling.
  • the power control unit 1311 When the power control unit 1311 performs power scaling based on the priority defined in the subframe dimension, the power control unit 1311 performs power scaling of the SRS, PUSCH, or PUCCH according to, for example, Equations 7 to 9 below. Do this.
  • the power control unit 1311 When the power control unit 1311 performs power scaling based on the reduction sharing, the power control unit 1311 performs power scaling of the SRS, PUSCH, or PUCCH, for example, according to Equation 10 or Equation 11.
  • the signal generator 1312 generates an SRS sequence, multiplies the generated sequence of SRSs by a magnitude scaling factor ⁇ SRS to match the SRS transmission power wP SRS scaled by the power controller 1311, and ⁇ ⁇ SRS is After the sequence of the multiplied SRS is sequentially mapped to the resource elements on the antenna port p from r P SRS (0), an SC-FDMA symbol is generated and sent to the transmitter 1320.
  • the transmitter 1320 transmits SC-FDMA symbols generated on the plurality of serving cells to the base station with a timing difference between the serving cells.

Abstract

The present invention relates to a method and an apparatus for controlling transmission power in a wireless communication system. To that end, a method for controlling power is disclosed in the present specification comprising the steps of: determining whether an uplink channel, which is transmitted from a second server cell belonging to a different band than a first serving cell, has priority over a sounding reference signal (SRS) for power allocation at a point in time overlapping with a transmission time of an SRS, the SRS being a reference signal used for estimating the status of an uplink in the first serving cell; and scaling the power for the SRS or the uplink channel in accordance with the determination regarding priority. In an environment of simultaneous transmission of SRS and PUSCH or PUCCH from multiple uplink component carriers, the uplink power is effectively controlled by allocating power sequentially according to priority, and thus the performance of the multiple component carrier is improved.

Description

무선 통신 시스템에서 전송 전력 제어 방법 및 장치Method and apparatus for controlling transmission power in wireless communication system
본 발명은 무선 통신에 관한 것으로, 보다 상세하게는 무선 통신 시스템에서 전송 전력 제어 방법 및 장치에 관한 것이다.The present invention relates to wireless communications, and more particularly, to a method and apparatus for controlling transmission power in a wireless communication system.
차세대 무선통신 시스템의 요구조건 중 가장 중요한 조건 중 하나는 높은 데이터 전송율 요구량을 지원할 수 있는 것이다. 이를 위하여 다중 입력 다중 출력(Multiple Input Multiple Output: MIMO), CoMP(Cooperative Multiple Point transmission), 릴레이(relay) 등 다양한 기술들이 연구되고 있으나 가장 기본적이고 안정적인 해결 방안은 대역폭을 늘리는 것이다. One of the most important requirements of the next generation wireless communication system is that it can support high data rate requirements. To this end, various technologies such as Multiple Input Multiple Output (MIMO), Cooperative Multiple Point Transmission (CoMP), and relay are being studied, but the most basic and stable solution is to increase the bandwidth.
무선 통신 시스템이 광대역을 지원하려고 할 때 목표로 하는 광대역보다 작은 대역폭을 가지는 1개 이상의 반송파를 모아서 광대역을 구성할 수 있다. 이 경우 하나 또는 그 이상의 요소 반송파를 집성하여 광대역을 지원한다. 예를 들어, 하나의 요소 반송파가 5MHz의 대역폭에 대응된다면, 4개의 반송파를 집성함으로써 최대 20MHz의 대역폭을 지원하는 것이다. 이처럼 반송파 집성을 이용하는 시스템을 다중 요소 반송파 시스템(multiple component carrier system)이라 칭한다. 다중 요소 반송파 시스템에서 단말은 용량에 따라서 하나 또는 복수의 반송파를 동시에 전송 또는 수신할 수 있다. 각각의 독립적인 운용이 가능한 대역을 요소 반송파(component carrier: CC)라고 정의한다. When a wireless communication system intends to support broadband, one or more carriers having a bandwidth smaller than the target broadband may be collected to form a broadband. In this case, one or more component carriers are aggregated to support broadband. For example, if one component carrier corresponds to a bandwidth of 5 MHz, four carriers are aggregated to support a maximum bandwidth of 20 MHz. Such a system using carrier aggregation is called a multiple component carrier system. In a multi-component carrier system, a terminal can simultaneously transmit or receive one or a plurality of carriers according to its capacity. Each independent operating band is defined as a component carrier (CC).
다중 요소 반송파 시스템에서 단말은 복수의 요소 반송파를 통해 물리 상향링크 제어 채널(Physical Uplink Control Channel: PUCCH), 물리 상향링크 공용 채널(Physical Uplink Shared CHannel: PUSCH) 또는 사운딩 기준 신호(sounding reference signal: SRS)를 전송할 수 있다. 단말이 복수의 요소 반송파 각각에서 PUCCH, PUSCH 또는 SRS를 전송할 때, 단말의 최대 전송 전력에 의해 PUCCH, PUSCH 또는 SRS의 전송 전력이 제한될 수 있다. 단말은 PUCCH, PUSCH, SRS에 대한 전력을 효율적으로 할당 및/또는 제어할 수 있어야 한다. In a multi-component carrier system, a UE transmits a physical uplink control channel (PUCCH), a physical uplink shared channel (PUSCH), or a sounding reference signal through a plurality of CCs. SRS) may be transmitted. When the UE transmits a PUCCH, PUSCH or SRS on each of a plurality of CCs, the transmit power of the PUCCH, PUSCH or SRS may be limited by the maximum transmit power of the UE. The UE should be able to efficiently allocate and / or control the power for the PUCCH, PUSCH, and SRS.
본 발명의 기술적 과제는 무선 통신 시스템에서 전송 전력 제어 방법 및 장치를 제공함에 있다.The present invention provides a method and apparatus for controlling transmission power in a wireless communication system.
본 발명의 다른 기술적 과제는 SRS와 다른 상향링크 신호가 밴드간 집성된 서빙셀상으로 전송되는 경우 전력 스케일링을 수행하는 장치 및 방법을 제공함에 있다.Another object of the present invention is to provide an apparatus and a method for performing power scaling when an SRS and another uplink signal are transmitted on a band-served aggregated serving cell.
본 발명의 또 다른 기술적 과제는 SRS와 다른 상향링크 신호간에 우선순위에 따라 전력 스케일링을 수행하는 장치 및 방법을 제공함에 있다. Another technical problem of the present invention is to provide an apparatus and method for performing power scaling according to priority between an SRS and another uplink signal.
본 발명의 일 양태에 따르면, 다중 요소 반송파 시스템에서 단말에 의한 전력 제어방법을 제공한다. 상기 방법은 제1 서빙셀상에서 상향링크의 상태를 추정하는데 사용되는 기준신호인 사운딩 기준신호(Sounding Reference Signal: SRS)의 전송시점과 겹치는 시점에, 상기 제1 서빙셀과는 다른 밴드에 속하는 제2 서빙셀상에서 전송되는 상향링크 채널이, 상기 사운딩 기준신호보다 전력할당에 있어서 우선순위를 가지는지 판단하는 단계, 및 상기 우선순위의 판단결과에 기반하여 상기 사운딩 기준신호 또는 상기 상향링크 채널에 대한 전력 스케일링(power scaling)을 수행하는 단계를 포함한다. According to an aspect of the present invention, there is provided a power control method by a terminal in a multi-component carrier system. The method belongs to a band different from the first serving cell at a point of time overlapping with a transmission time of a sounding reference signal (SRS), which is a reference signal used to estimate a state of an uplink on the first serving cell. Determining whether an uplink channel transmitted on a second serving cell has a higher priority in power allocation than the sounding reference signal, and based on the determination result of the priority, the sounding reference signal or the uplink Performing power scaling on the channel.
상기 전력 스케일링은, 상기 사운딩 기준신호가 상기 상향링크 채널보다 우선순위가 높으면 상기 사운딩 기준신호에 먼저 전력을 할당하고 남은 전력으로 상기 상향링크 채널에 할당하고, 상기 사운딩 기준신호가 상기 상향링크 채널보다 우선순위가 낮으면 상기 상향링크 채널에 먼저 전력을 할당하고 남은 전력으로 상기 사운딩 기준신호에 할당할 수 있다.In the power scaling, when the sounding reference signal has a higher priority than the uplink channel, power is first assigned to the sounding reference signal and the remaining power is allocated to the uplink channel, and the sounding reference signal is assigned to the uplink channel. If the priority is lower than the link channel, power may be allocated to the uplink channel first, and the remaining power may be allocated to the sounding reference signal.
다수의 상향링크 요소 반송파에서 동시에 SRS와 PUSCH 또는 PUCCH를 전송하는 상황에서 우선순위에 따라 전력을 순차적으로 할당해줌으로써 상향링크 전력을 효율적으로 제어할 수 있고, 이로써 다중 요소 반송파 시스템의 성능을 향상시킬 수 있다. In the situation where a plurality of uplink component carriers simultaneously transmit SRS, PUSCH or PUCCH, power can be efficiently controlled by sequentially assigning power according to priority, thereby improving performance of a multi-component carrier system. Can be.
도 1은 본 발명이 적용되는 무선통신 시스템을 나타낸 블록도이다. 1 is a block diagram showing a wireless communication system to which the present invention is applied.
도 2 및 도 3은 본 발명이 적용되는 무선 프레임의 구조를 개략적으로 나타낸 것이다. 2 and 3 schematically show the structure of a radio frame to which the present invention is applied.
도 4는 상향링크 서브프레임의 구조를 나타낸다. 4 shows a structure of an uplink subframe.
도 5는 본 발명의 일 예에 따른 다중 요소 반송파 시스템에서 단말에 구성되는 서빙셀들의 상태를 설명하는 도면이다. 5 is a diagram illustrating states of serving cells configured in a terminal in a multi-component carrier system according to an embodiment of the present invention.
도 6은 요소 반송파들의 전송 타이밍(transmission timing)을 나타낸다. 6 shows transmission timing of component carriers.
도 7은 본 발명의 일 예에 따른 단말에 의한 상향링크 전력제어 동작을 설명하는 순서도이다. 7 is a flowchart illustrating an uplink power control operation by a terminal according to an embodiment of the present invention.
도 8은 본 발명의 일 예에 따른 우선순위에 기반한 전력 스케일링의 수행방법을 설명하는 설명도이다. 8 is an explanatory diagram illustrating a method of performing power scaling based on priorities according to an embodiment of the present invention.
도 9는 본 발명의 다른 예에 따른 우선순위에 기반한 전력 스케일링의 수행방법을 설명하는 설명도이다. 9 is an explanatory diagram illustrating a method of performing power scaling based on priorities according to another embodiment of the present invention.
도 10은 본 발명의 또 다른 예에 따른 우선순위에 기반한 전력 스케일링의 수행방법을 설명하는 설명도이다. 10 is an explanatory diagram illustrating a method of performing power scaling based on priority according to another example of the present invention.
도 11은 본 발명의 또 다른 예에 따른 우선순위에 기반한 전력 스케일링의 수행방법을 설명하는 설명도이다. 11 is an explanatory diagram illustrating a method of performing power scaling based on priority according to another example of the present invention.
도 12는 본 발명의 다른 예에 따른 단말에 의한 상향링크 전력제어 동작을 설명하는 순서도이다. 12 is a flowchart illustrating an uplink power control operation by a terminal according to another embodiment of the present invention.
도 13은 본 발명의 일 예에 따른 단말의 구성도이다. 13 is a configuration diagram of a terminal according to an embodiment of the present invention.
이하, 본 명세서에서는 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성 요소들에 참조 부호를 부가함에 있어서, 동일한 구성 요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 본 명세서는 통신 네트워크를 대상으로 설명하며, 통신 네트워크에서 이루어지는 작업은 해당 통신 네트워크를 관할하는 시스템(예를 들어 기지국)에서 네트워크를 제어하고 데이터를 송신하는 과정에서 이루어지거나, 해당 네트워크에 링크된 단말에서 작업이 이루어질 수 있다. Hereinafter, some embodiments will be described in detail with reference to the accompanying drawings. In adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are used as much as possible even though they are shown in different drawings. The present specification describes a communication network, and the work performed in the communication network is performed in the process of controlling the network and transmitting data in a system (for example, a base station) that manages the communication network, or a terminal linked to the network. Work can be done in
본 발명의 실시예들에 따르면, '채널을 전송한다'라는 의미는 상기 채널을 통해 또는 상기 채널에 맵핑된(mapped) 정보가 전송되는 의미로 해석될 수 있다. 여기서, 상기 채널은 일례로 물리 하향링크 제어채널(Physical Downlink Control Channel: PDCCH), 물리 하향링크 공용채널(Physical Downlink Shared CHannel: PDSCH), 물리 상향링크 제어채널(Physical Uplink Control Channel: PUCCH) 또는 물리 상향링크 공용채널(Physical Uplink Shared Channel: PUSCH)를 포함할 수 있다. According to the embodiments of the present invention, the term 'transmitting a channel' may be interpreted to mean that information mapped through the channel or mapped to the channel is transmitted. Here, the channel may be, for example, a physical downlink control channel (PDCCH), a physical downlink shared channel (PDSCH), a physical uplink control channel (PUCCH) or a physical channel. It may include a physical uplink shared channel (PUSCH).
도 1은 본 발명이 적용되는 무선통신 시스템을 나타낸 블록도이다. 1 is a block diagram showing a wireless communication system to which the present invention is applied.
도 1을 참조하면, 무선통신 시스템(10)은 음성, 패킷 데이터 등과 같은 다양한 통신 서비스를 제공하기 위해 널리 배치된다. 무선통신 시스템(10)은 적어도 하나의 기지국(11; Base Station, BS)을 포함한다. 각 기지국(11)은 특정한 지리적 영역 또는 주파수 영역(일반적으로 셀(cell)이라고 함)(15a, 15b, 15c)에 대해 통신 서비스를 제공한다. 셀(15a, 15b, 15c)은 다시 다수의 영역들(섹터라고 함)로 나누어질 수 있다. Referring to FIG. 1, the wireless communication system 10 is widely deployed to provide various communication services such as voice and packet data. The wireless communication system 10 includes at least one base station (BS) 11. Each base station 11 provides a communication service for a particular geographic area or frequency area (generally called a cell) 15a, 15b, 15c. Cells 15a, 15b, and 15c may in turn be divided into a number of regions (called sectors).
단말(12; User Equipment, UE)은 고정되거나 이동성을 가질 수 있으며, MS(mobile station), MT(mobile terminal), UT(user terminal), SS(subscriber station), 무선기기(wireless device), PDA(personal digital assistant), 무선 모뎀(wireless modem), 휴대기기(handheld device) 등 다른 용어로 불릴 수 있다. 기지국(11)은 일반적으로 단말(12)과 통신하는 지점(station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point), 펨토 기지국(femto eNB), 가내 기지국(Home eNB: HeNB), 릴레이(relay), 원격 무선 헤드(Remote Radio Head: RRH)등 다른 용어로 불릴 수 있다. 셀(15a, 15b, 15c)은 기지국(11)이 커버하는 일부 영역을 나타내는 포괄적인 의미로 해석되어야 하며, 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀 등 다양한 커버리지 영역을 모두 포괄하는 의미이다.The user equipment (UE) 12 may be fixed or mobile, and may include a mobile station (MS), a mobile terminal (MT), a user terminal (UT), a subscriber station (SS), a wireless device, and a PDA. (personal digital assistant), wireless modem (wireless modem), a handheld device (handheld device) may be called other terms. The base station 11 generally refers to a station that communicates with the terminal 12, and includes an evolved-NodeB (eNB), a base transceiver system (BTS), an access point, an femto eNB, and a home. It may be referred to by other terms such as a base station (HeNB), a relay, a remote radio head (RRH), and the like. Cells 15a, 15b, and 15c should be interpreted in a comprehensive sense indicating some areas covered by the base station 11, and encompass all of the various coverage areas such as megacells, macrocells, microcells, picocells, and femtocells. to be.
이하에서 하향링크(downlink)는 기지국(11)에서 단말(12)로의 통신 또는 통신 경로를 의미하며, 상향링크(uplink)는 단말(12)에서 기지국(11)으로의 통신 또는 통신 경로를 의미한다. 하향링크에서 송신기는 기지국(11)의 일부분일 수 있고, 수신기는 단말(12)의 일부분일 수 있다. 상향링크에서 송신기는 단말(12)의 일부분일 수 있고, 수신기는 기지국(11)의 일부분일 수 있다. 무선통신 시스템(10)에 적용되는 다중 접속 기법에는 제한이 없다. CDMA(Code Division Multiple Access), TDMA(Time Division Multiple Access), FDMA(Frequency Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), SC-FDMA(Single Carrier-FDMA), OFDM-FDMA, OFDM-TDMA, OFDM-CDMA와 같은 다양한 다중 접속 기법을 사용할 수 있다. 이들 변조 기법들은 통신 시스템의 다중 사용자들로부터 수신된 신호들을 복조하여 통신 시스템의 용량을 증가시킨다. 상향링크 전송 및 하향링크 전송은 서로 다른 시간을 사용하여 전송되는 TDD(Time Division Duplex) 방식 또는 서로 다른 주파수를 사용하여 전송되는 FDD(Frequency Division Duplex) 방식이 사용될 수 있다.Hereinafter, downlink refers to a communication or communication path from the base station 11 to the terminal 12, and uplink refers to a communication or communication path from the terminal 12 to the base station 11. . In downlink, the transmitter may be part of the base station 11 and the receiver may be part of the terminal 12. In uplink, the transmitter may be part of the terminal 12 and the receiver may be part of the base station 11. There is no limitation on the multiple access scheme applied to the wireless communication system 10. Code Division Multiple Access (CDMA), Time Division Multiple Access (TDMA), Frequency Division Multiple Access (FDMA), Orthogonal Frequency Division Multiple Access (OFDMA), Single Carrier-FDMA (SC-FDMA), OFDM-FDMA, OFDM-TDMA For example, various multiple access schemes such as OFDM-CDMA may be used. These modulation techniques demodulate signals received from multiple users of a communication system to increase the capacity of the communication system. The uplink transmission and the downlink transmission may use a time division duplex (TDD) scheme transmitted using different times or a frequency division duplex (FDD) scheme transmitted using different frequencies.
단말과 기지국 사이의 무선 인터페이스 프로토콜(radio interface protocol)의 계층들은 통신시스템에서 널리 알려진 개방형 시스템간 상호접속 (Open System Interconnection; OSI) 모델의 하위 3개 계층을 바탕으로 제1 계층(L1), 제2 계층(L2), 제3 계층(L3)으로 구분될 수 있다. 이 중에서 제1 계층에 속하는 물리계층은 물리채널(physical channel)을 이용한 정보 전송 서비스(information transfer service)를 제공한다.The layers of the radio interface protocol between the terminal and the base station are based on the lower three layers of the Open System Interconnection (OSI) model, which is well known in the communication system. It may be divided into a second layer L2 and a third layer L3. Among them, the physical layer belonging to the first layer provides an information transfer service using a physical channel.
물리계층에서 사용되는 몇몇 물리채널들이 있다. PDCCH는 하향링크 공용채널(Downlink Shared Channel: DL-SCH)의 자원 할당 및 전송 포맷, 상향링크 공용채널(Uplink Shared Channel: UL-SCH)의 자원 할당 정보, PDSCH상으로 전송되는 랜덤 액세스 응답 메시지와 같은 상위 계층 제어 메시지의 자원 할당, 임의의 단말 그룹내 개별 단말들에 대한 전송 전력 제어(transmission power control: TPC) 명령(command)의 집합 등을 나를 수 있다. 복수의 PDCCH가 제어영역 내에서 전송될 수 있으며, 단말은 복수의 PDCCH를 모니터링할 수 있다. There are several physical channels used in the physical layer. The PDCCH includes a resource allocation and transmission format of a downlink shared channel (DL-SCH), resource allocation information of an uplink shared channel (UL-SCH), a random access response message transmitted on a PDSCH, Resource allocation of the same upper layer control message, a set of transmission power control (TPC) commands for individual terminals in a certain terminal group, etc. may be carried. A plurality of PDCCHs may be transmitted in the control region, and the terminal may monitor the plurality of PDCCHs.
PDCCH에 맵핑되는 물리계층의 제어정보를 하향링크 제어정보(downlink control information; 이하 DCI)라고 한다. 즉, DCI는 PDCCH을 통해 전송된다. DCI는 상향링크 또는 하향링크 자원할당필드, 상향링크 전송전력제어 명령 필드, 페이징을 위한 제어필드, 랜덤 액세스 응답(RA response)을 지시(indicate)하기 위한 제어필드 등을 포함할 수 있다. Control information of the physical layer mapped to the PDCCH is referred to as downlink control information (DCI). That is, DCI is transmitted through the PDCCH. The DCI may include an uplink or downlink resource allocation field, an uplink transmission power control command field, a control field for paging, a control field for indicating a random access response (RA response), and the like.
DCI는 그 포맷(format)에 따라 사용용도가 다르고, DCI내에서 정의되는 필드(field)도 다르다. 표 1은 여러가지 포맷에 따른 DCI를 나타낸다. DCI has different uses according to its format, and fields defined in DCI are also different. Table 1 shows DCIs according to various formats.
표 1
DCI 포맷 설명
0 PUSCH(상향링크 그랜트)의 스케줄링에 사용됨
1 1개 셀에서의 1개의 PDSCH 코드워드(codeword)의 스케줄링에 사용됨
1A 1개 셀에서의 1개의 PDSCH 코드워드의 간략한 스케줄링 및 PDCCH 명령에 의해 초기화되는 랜덤 액세스 절차에 사용됨
1B 프리코딩 정보를 이용한 1개 셀에서의 1개의 PDSCH 코드워드의 간략한 스케줄링에 사용됨
1C 1개의 PDSCH 코드워드의 간략한 스케줄링 및 MCCH 변경의 통지를 위해 사용됨
1D 프리코딩 및 전력 오프셋 정보를 포함하는 1개 셀에서의 1개의 PDSCH 코드워드의 간략한 스케줄링에 사용됨
2 공간 다중화 모드로 구성되는 단말에 대한 PDSCH 스케줄링에 사용됨
2A 긴 지연(large delay)의 CDD 모드로 구성된 단말의 PDSCH 스케줄링에 사용됨
2B 전송모드 8(이중 레이어(layer) 전송)에서 사용됨
2C 전송모드 9(다중 레이어(layer) 전송)에서 사용됨
3 2비트의 전력 조정을 포함하는 PUCCH와 PUSCH를 위한 TPC 명령의 전송에 사용됨
3A 단일 비트 전력 조정을 포함하는 PUCCH와 PUSCH를 위한 TPC 명령의 전송에 사용됨
4 PUSCH(상향링크 그랜트)의 스케줄링에 사용됨. 특히 공간 다중화 모드로 구성되는 단말에 대한 PUSCH 스케줄링에 사용됨
Table 1
DCI format Explanation
0 Used for scheduling of PUSCH (Uplink Grant)
One Used for scheduling one PDSCH codeword in one cell
1A Used for simple scheduling of one PDSCH codeword in one cell and random access procedure initiated by PDCCH command
1B Used for simple scheduling of one PDSCH codeword in one cell using precoding information
1C Used for brief scheduling of one PDSCH codeword and notification of MCCH change
1D Used for simple scheduling of one PDSCH codeword in one cell containing precoding and power offset information
2 Used for PDSCH scheduling for UE configured in spatial multiplexing mode
2A Used for PDSCH scheduling of UE configured in long delay CDD mode
2B Used in transmission mode 8 (double layer transmission)
2C Used in transmission mode 9 (multi-layer transmission)
3 Used to transmit TPC commands for PUCCH and PUSCH with power adjustment of 2 bits
3A Used to transmit TPC commands for PUCCH and PUSCH with single bit power adjustment
4 Used for scheduling of PUSCH (Uplink Grant). In particular, it is used for PUSCH scheduling for a terminal configured in a spatial multiplexing mode.
표 1을 참조하면, DCI 포맷 0은 상향링크 스케줄링 정보이고, 하나의 PDSCH 코드워드의 스케줄링을 위한 포맷 1, 하나의 PDSCH 코드워드의 간단한(compact) 스케줄링을 위한 포맷 1A, DL-SCH의 매우 간단한 스케줄링을 위한 포맷 1C, 폐루프(Closed-loop) 공간 다중화(spatial multiplexing) 모드에서 PDSCH 스케줄링을 위한 포맷 2, 개루프(Open-loop) 공간 다중화 모드에서 PDSCH 스케줄링을 위한 포맷 2A, 상향링크 채널을 위한 TPC(Transmission Power Control) 명령의 전송을 위한 포맷 3 및 3A 등이 있다. Referring to Table 1, DCI format 0 is uplink scheduling information, format 1 for scheduling one PDSCH codeword, format 1A for compact scheduling of one PDSCH codeword, and very simple of DL-SCH. Format 1C for scheduling, format 2 for PDSCH scheduling in closed-loop spatial multiplexing mode, format 2A for PDSCH scheduling in open-loop spatial multiplexing mode, and uplink channel Formats 3 and 3A for transmission of a transmission power control (TPC) command.
DCI의 각 필드는 n개의 정보비트(information bit) a0 내지 an-1에 순차적으로 맵핑된다. 예를 들어, DCI가 총 44비트 길이의 정보비트에 맵핑된다고 하면, DCI 각 필드가 순차적으로 a0 내지 a43에 맵핑된다. DCI 포맷 0, 1A, 3, 3A는 모두 동일한 페이로드(payload) 크기를 가질 수 있다. DCI 포맷 0은 상향링크 그랜트(uplink grant)라 불릴 수도 있다. Each field of the DCI is sequentially mapped to n information bits a 0 to a n-1 . For example, if DCI is mapped to information bits of a total of 44 bits in length, each DCI field is sequentially mapped to a 0 to a 43 . DCI formats 0, 1A, 3, and 3A may all have the same payload size. DCI format 0 may be called an uplink grant.
도 2 및 도 3은 본 발명이 적용되는 무선 프레임의 구조를 개략적으로 나타낸 것이다. 2 and 3 schematically show the structure of a radio frame to which the present invention is applied.
도 2 및 도 3을 참조하면, 무선 프레임(radio frame)은 10개의 서브프레임(subframe)을 포함한다. 하나의 서브프레임은 2개의 슬롯(slot)을 포함한다. 하나의 서브 프레임을 전송하는 시간(길이)을 전송 시간 구역(Transmission Time Interval: TTI)라 한다. 예컨대, 한 서브프레임(1 subframe)의 길이는 1ms 이고, 한 슬롯(1 slot)의 길이는 0.5ms 일 수 있다. 2 and 3, a radio frame includes 10 subframes. One subframe includes two slots. The time (length) of transmitting one subframe is called a transmission time interval (TTI). For example, one subframe may have a length of 1 ms, and one slot may have a length of 0.5 ms.
한 슬롯은 시간 영역에서 복수의 심벌(symbol)들을 포함할 수 있다. 예컨대, 상향링크에서 SC-FDMA(Single Carrier-Frequency Division Multiple Access)를 사용하는 무선 시스템의 경우에 상기 심벌은 SC-FDMA(Orthogonal Frequency Division Multiplexing Access) 심벌일 수 있다. 한편, 시간 영역의 심벌 구간(symbol period)에 대한 표현이 다중 접속 방식이나 명칭에 의해 제한되는 것은 아니다. 예를 들어, 시간 영역에 있어서 복수의 심벌은 SC-FDMA 심벌 외에 OFDMA(Orthogonal Frequency Division Multiple Access) 심벌, 심벌 구간 등일 수도 있다.One slot may include a plurality of symbols in the time domain. For example, in the case of a wireless system using Single Carrier-Frequency Division Multiple Access (SC-FDMA) in uplink, the symbol may be an Orthogonal Frequency Division Multiplexing Access (SC-FDMA) symbol. Meanwhile, the representation of the symbol period in the time domain is not limited by the multiple access scheme or the name. For example, the plurality of symbols in the time domain may be orthogonal frequency division multiple access (OFDMA) symbols, symbol intervals, etc. in addition to the SC-FDMA symbols.
하나의 슬롯은 주파수 영역에서 복수의 부반송파를 포함하고, 시간 영역에서 7개의 SC-FDMA 심벌을 포함한다. 자원 블록(Resource Block, RB)은 자원 할당 단위로, 자원 블록이 주파수 영역에서 12개의 부반송파를 포함한다면, 하나의 자원 블록은 7×12개의 자원 요소(Resource Element, RE)를 포함할 수 있다.One slot includes a plurality of subcarriers in the frequency domain and seven SC-FDMA symbols in the time domain. A resource block (RB) is a resource allocation unit. If a resource block includes 12 subcarriers in the frequency domain, one resource block may include 7 × 12 resource elements (REs).
자원 요소는 데이터 채널의 변조 심벌 또는 제어 채널의 변조 심벌이 매핑되는 가장 작은 주파수-시간 단위를 나타낸다. 한 SC-FDMA 심벌 상에 M개의 부반송파가 있고, 한 슬롯이 N개의 SC-FDMA 심벌을 포함한다면, 한 슬롯은 MxN 개의 자원요소를 포함한다. The resource element represents the smallest frequency-time unit to which the modulation symbol of the data channel or the modulation symbol of the control channel is mapped. If there are M subcarriers on one SC-FDMA symbol, and one slot includes N SC-FDMA symbols, one slot includes MxN resource elements.
무선 통신 시스템에서는 데이터의 송/수신, 시스템 동기 획득, 채널 정보 피드백 등을 위하여 상향링크 채널 또는 하향링크의 채널을 추정할 필요가 있다. 급격한 채널환경의 변화에 의하여 생기는 신호의 왜곡(distortion)을 보상하여 전송 신호를 복원하는 과정을 채널추정(channel estimation)이라고 한다. 일반적으로 채널 추정 또는 채널 상태 측정을 위해서 단말과 송수신점이 상호 간에 알고 있는 기준 신호(RS: Reference Signal)를 이용하게 된다. In a wireless communication system, it is necessary to estimate an uplink channel or a downlink channel for data transmission / reception, system synchronization acquisition, channel information feedback, and the like. The process of restoring a transmission signal by compensating for distortion of a signal caused by a sudden change in channel environment is called channel estimation. In general, a reference signal (RS) known to a terminal and a transceiver is mutually used for channel estimation or channel state measurement.
단말은 기준 신호의 정보를 알고 있기 때문에 수신된 기준 신호를 기반으로 채널을 추정하고 채널 값을 보상해서 송수신점에서 보낸 데이터를 정확히 얻어낼 수 있다. 송수신점(transmission and reception point)에서 보내는 기준 신호를 p, 기준 신호가 전송 중에 겪게 되는 채널 정보를 h, 단말에서 발생하는 열 잡음을 n, 단말이 수신한 신호를 y라 하면 y = h·p + n과 같이 나타낼 수 있다. 이때 기준 신호 p는 단말이 이미 알고 있기 때문에 LS(Least Square) 방식을 이용할 경우 수학식 1과 같이 채널 정보(
Figure PCTKR2012011434-appb-I000001
)를 추정할 수 있다.
Since the terminal knows the information of the reference signal, the terminal can estimate the channel based on the received reference signal and compensate the channel value to accurately obtain the data sent from the transmission / reception point. When the reference signal from the reception point (transmission and reception point) p, a reference signal is the channel information h, the thermal noises generated in a terminal n, y to the signal terminal receives experienced during transmission La y = h · p can be expressed as: + n In this case, since the reference signal p is already known by the terminal, when the LS (Least Square) method is used, channel information (
Figure PCTKR2012011434-appb-I000001
) Can be estimated.
수학식 1
Figure PCTKR2012011434-appb-M000001
Equation 1
Figure PCTKR2012011434-appb-M000001
여기서, 기준 신호 p를 이용하여 추정한 채널 추정값
Figure PCTKR2012011434-appb-I000002
Figure PCTKR2012011434-appb-I000003
값에 의존하게 되므로, 정확한 h값의 추정을 위해서는
Figure PCTKR2012011434-appb-I000004
이 0에 수렴시킬 필요가 있다. 많은 개수의 기준 신호를 이용함으로써
Figure PCTKR2012011434-appb-I000005
의 영향을 최소화하여 채널을 추정할 수 있다.
Here, the channel estimate estimated using the reference signal p
Figure PCTKR2012011434-appb-I000002
Is
Figure PCTKR2012011434-appb-I000003
Depends on the value, so to get an accurate estimate of
Figure PCTKR2012011434-appb-I000004
You need to converge to zero. By using a large number of reference signals
Figure PCTKR2012011434-appb-I000005
The channel can be estimated by minimizing the effects of
기준 신호는 모든 부반송파에 할당될 수도 있고, 데이터를 전송하는 데이터 부반송파 사이에 할당될 수도 있다. 기준 신호가 모든 부반송파에 할당되는 방식에서는 채널 추정 성능의 이득을 얻기 위하여 특정 전송 타이밍의 신호가 프리앰블(preamble)와 같은 기준 신호만으로 이루어진다. 데이터 부반송파 사이에 기준 신호가 할당되는 방식에 의하면 데이터의 전송량을 증대시킬 수 있다. The reference signal may be allocated to all subcarriers or may be allocated between data subcarriers for transmitting data. In a method in which a reference signal is allocated to all subcarriers, a signal of a specific transmission timing is composed of only a reference signal such as a preamble in order to obtain a gain of channel estimation performance. According to a method in which a reference signal is allocated between data subcarriers, a data transmission amount can be increased.
하향링크에서는 셀 특정 기준 신호(CRS: Cell-specific RS), 단말 특정 기준 신호(UE-specific RS), 포지셔닝 기준 신호(PRS: Positioning RS) 및 CSI(Channel State Information) 기준 신호(CSI-RS)등이 정의된다. In downlink, a cell-specific RS (CRS), a UE-specific RS, a positioning reference signal (PRS) and a channel state information (CSI) reference signal (CSI-RS) Etc. are defined.
CRS는 셀 내 모든 단말에게 전송되는 기준 신호로 채널 추정에 사용된다. CRS는 PDSCH 전송을 지원하는 셀 내의 모든 하향링크 서브프레임에서 전송될 수 있다. 단말 특정 기준 신호는 셀 내 특정 단말 또는 특정 단말 그룹이 수신하는 기준 신호로, 특정 단말 또는 특정 단말 그룹의 데이터 복조(demodulation)에 주로 사용되므로 복조 기준 신호(Demodulation RS: DMRS)라 불릴 수 있다. PRS는 단말의 위치 측정을 위해서 사용될 수 있다. PRS는 PRS 전송을 위하여 할당된 하향링크 서브프레임 내의 자원 블록을 통해서만 전송될 수 있다. CSI-RS는 채널 상태 정보의 추정을 위해 사용될 수 있다. CSI-RS는 주파수 영역 또는 시간 영역에서 배치된다. CSI-RS를 이용한 채널 상태의 추정을 통해 필요한 경우에 채널 품질 지시자(CQI: Channel Quality Indicator), 프리코딩 행렬 지시자(PMI: Precoding Matrix Indicator) 및 랭크 지시자(RI: Rank Indicator) 등이 채널 상태 정보로서 단말로부터 보고될 수 있다. CSI-RS는 하나 이상의 안테나 포트상에서 전송될 수 있다. The CRS is a reference signal transmitted to all terminals in a cell and used for channel estimation. The CRS may be transmitted in all downlink subframes in a cell supporting PDSCH transmission. The UE specific reference signal is a reference signal received by a specific terminal or a specific terminal group in a cell, and is mainly used for data demodulation of a specific terminal or a specific terminal group, and thus may be called a demodulation RS (DMRS). The PRS may be used for location measurement of the terminal. The PRS may be transmitted only through resource blocks in a downlink subframe allocated for PRS transmission. CSI-RS may be used for estimation of channel state information. The CSI-RS is placed in the frequency domain or time domain. Channel quality indicator (CQI), precoding matrix indicator (PMI) and rank indicator (RI) rank information such as channel quality indicator (CQI), if necessary through the estimation of the channel state using the CSI-RS As reported from the terminal. The CSI-RS may be transmitted on one or more antenna ports.
상향링크에서는 복조 기준 신호(Demodulation Reference Signal; DMRS) 및 사운딩 기준 신호(Sounding Reference Signal: SRS)가 정의된다. DMRS는 PUSCH 또는 PUCCH의 전송과 상관된(associated with) 것이고, SRS는 PUSCH 또는 PUCCH와 상관되지 않는 것이다. SRS는 기지국이 상향링크 스케줄링에 사용하기 위해 단말로부터 수신하는 신호이다. SRS는 물리계층에서 사용되며 상위계층으로부터 비롯되는(originating) 정보를 나르지 않는다. SRS는 각 서브프레임의 가장 마지막 심볼에서 송신될 수 있다. SRS의 전송에 관하여 단말에 특정하게 설정될 수 있으며, SRS는 주기적(periodic) 또는 비주기적(aperiodic)으로 전송될 수 있다. In uplink, a demodulation reference signal (DMRS) and a sounding reference signal (SRS) are defined. DMRS is associated with transmission of PUSCH or PUCCH, and SRS is not correlated with PUSCH or PUCCH. SRS is a signal that the base station receives from the terminal for use in uplink scheduling. SRS is used in the physical layer and does not carry information originating from higher layers. The SRS may be transmitted in the last symbol of each subframe. With respect to the transmission of the SRS may be configured specifically for the terminal, the SRS may be transmitted periodically (periodic) or aperiodic (aperiodic).
도 4는 상향링크 서브프레임의 구조를 나타낸다. 4 shows a structure of an uplink subframe.
도 4를 참조하면, 상향링크 서브프레임은 시간축상에서 2개의 슬롯을 포함하며, 각 슬롯은 7개의 SC-FDMA 심벌을 포함한다. 상향링크 서브프레임은 서로 다른 주파수를 사용하는 PUCCH와 PUSCH를 포함한다. 상향링크 서브프레임은 PUCCH가 할당되는 영역(region)과 PUSCH가 할당되는 영역으로 나눌 수 있다. Referring to FIG. 4, the uplink subframe includes two slots on the time axis, and each slot includes seven SC-FDMA symbols. The uplink subframe includes a PUCCH and a PUSCH using different frequencies. The uplink subframe may be divided into a region to which a PUCCH is allocated and a region to which a PUSCH is allocated.
PUCCH에 맵핑되는 물리계층의 제어정보를 상향링크 제어정보(uplink control information: UCI)라 한다. 즉, UCI는 PUCCH을 통해 전송된다. UCI는 스케쥴링 요청(SR; Scheduling Request), HARQ(Hybrid ARQ)를 위한 ACK/NACK(Acknowledgement/Non-Acknowledgement) 신호, CQI(Channel Quality Indicator), PMI(Precoding Matrix Indicator), RI(Rank Indicator) 등의 다양한 종류의 제어정보를 포함할 수 있다. PUCCH는 포맷(format)에 따라서 다양한 종류의 제어 정보를 나른다. 예를 들어, 변조 방식(modualtion scheme)에 따라 서브프레임당 서로 다른 비트 수를 갖는 상향링크 제어정보를 전송할 수 있다. 예를 들어, BPSK(Binary Phase Shift Keying)을 사용하는 경우 1비트의 상향링크 제어정보를 PUCCH 상으로 전송할 수 있으며, QPSK(Quadrature Phase Shift Keying)을 사용하는 경우 2비트의 상향링크 제어정보를 PUCCH 상으로 전송할 수 있다.Control information of the physical layer mapped to the PUCCH is called uplink control information (UCI). That is, the UCI is transmitted through the PUCCH. UCI includes scheduling request (SR), acknowledgment / non-acknowledgement (ACK / NACK) signal for hybrid ARQ (HARQ), channel quality indicator (CQI), precoding matrix indicator (PMI), rank indicator (RI), etc. It may include various kinds of control information. PUCCH carries various kinds of control information according to a format. For example, uplink control information having a different number of bits per subframe may be transmitted according to a modulation scheme. For example, when using BPSK (Binary Phase Shift Keying), 1-bit uplink control information can be transmitted on PUCCH, and when using QPSK (Quadrature Phase Shift Keying), 2-bit uplink control information is PUCCH. Can be sent over the air.
하나의 단말에 대한 PUCCH는 서브프레임에서 2 슬롯들의 각각에서 서로 다른 주파수를 차지하는 하나의 자원블록을 사용한다. 2 슬롯은 서브프레임내에서 서로 다른 자원블록(또는 부반송파)을 사용한다. 이를 PUCCH에 할당되는 2개의 자원블록은 슬롯 경계(slot boundary)에서 주파수 도약(frequency hopping)된다고 한다. PUCCH for one UE uses one resource block occupying a different frequency in each of two slots in a subframe. Two slots use different resource blocks (or subcarriers) in a subframe. Two resource blocks allocated to the PUCCH are said to be frequency hopping at a slot boundary.
마지막 SC-FDMA 심벌구간에서 SRS가 전송될 수 있는데, 마지막 SC-FDMA 심벌에서의 PUCCH는 천공(puncturing)된다. 이때, 단말은 13개의 SC-FDMA 심벌을 이용하여 데이터를 전송하고, 나머지 1개의 SC-FDMA 심벌에 대해 비율정합(rate matching)과 같은 전처리과정을 취하여 사운딩 기준신호를 전송한다.SRS can be transmitted in the last SC-FDMA symbol interval, the PUCCH in the last SC-FDMA symbol is puncturing. At this time, the UE transmits data using 13 SC-FDMA symbols, and performs a preprocessing process such as rate matching for the remaining SC-FDMA symbols and transmits a sounding reference signal.
도 5는 본 발명의 일 예에 따른 다중 요소 반송파 시스템에서 단말에 구성되는 서빙셀들의 상태를 설명하는 도면이다. 5 is a diagram illustrating states of serving cells configured in a terminal in a multi-component carrier system according to an embodiment of the present invention.
도 5를 참조하면, 시스템 대역폭은 밴드(band) A와 B를 포함하고, 밴드 A는 주서빙셀(PCell) 및 제1 부서빙셀(SCell 1)을 포함하며, 밴드 B는 제2 부서빙셀(SCell 2) 및 제3 부서빙셀(SCell 3)을 포함한다. 단말에는 주서빙셀을 포함하여, 제1 부서빙셀 내지 제3 부서빙셀 중 어느 것이든 구성될(configured) 수 있다. 주서빙셀과 제1 부서빙셀의 반송파 집성은 A 밴드 내(intra-band) 집성이다. 마찬가지로 제2 부서빙셀과 제3 부서빙셀의 반송파 집성은 B 밴드 내 집성이다. 반면, 주서빙셀과 제2 부서빙셀간의 반송파 집성, 그리고 주서빙셀과 제3 부서빙셀간의 반송파 집성은 밴드 간(inter-band) 집성이다. 제1 부서빙셀과 제2 부서빙셀간의 반송파 집성, 그리고 제1 부서빙셀과 제3 부서빙셀간의 반송파 집성은 밴드 간(inter-band) 집성이다. Referring to FIG. 5, the system bandwidth includes bands A and B, band A includes a main serving cell (PCell) and a first secondary serving cell (SCell 1), and band B includes a second secondary serving. It includes a cell (SCell 2) and a third secondary serving cell (SCell 3). The terminal may be configured with any one of the first secondary serving cell and the third secondary serving cell, including a main serving cell. Carrier aggregation of the primary serving cell and the first secondary serving cell is intra-band aggregation. Similarly, the carrier aggregation of the second secondary serving cell and the third secondary serving cell is the aggregation in the B band. On the other hand, carrier aggregation between the main serving cell and the second secondary serving cell and carrier aggregation between the primary serving cell and the third secondary serving cell are inter-band aggregation. Carrier aggregation between the first secondary serving cell and the second secondary serving cell, and carrier aggregation between the first secondary serving cell and the third secondary serving cell are inter-band aggregation.
도 6은 요소 반송파들의 전송 타이밍(transmission timing)을 나타낸다. 6 shows transmission timing of component carriers.
도 6을 참조하면, 시스템 대역폭은 밴드(band) A와 B를 포함하고, 밴드 A는 주서빙셀(PCell) 및 제1 부서빙셀(SCell 1)을 포함하며, 밴드 B는 제2 부서빙셀(SCell 2) 및 제3 부서빙셀(SCell 3)을 포함한다. Referring to FIG. 6, the system bandwidth includes bands A and B, band A includes a main serving cell (PCell) and a first secondary serving cell (SCell 1), and band B includes a second secondary serving. It includes a cell (SCell 2) and a third secondary serving cell (SCell 3).
상향링크 전송에 관하여, 밴드 A와 밴드 B간에는 기지국에 대해 주파수 특성상 또는 전송경로상 타이밍 차이(timing difference) Td가 존재할 수 있다. 예를 들어 단말이 제1 부서빙셀과 제2 부서빙셀상으로 동시에 신호를 전송할 경우, 타이밍 차이로 인해 기지국은 제1 부서빙셀의 신호를 제2 부서빙셀의 신호보다 Td만큼 늦게 수신한다. 따라서, 단말은 제1 부서빙셀의 신호를 Td만큼 더 일찍 전송해야 하는데, 이렇게 상향링크 전송을 앞당기거나, 뒤쳐지게 하는 것을 시간정렬(timing alignment: TA)이라 한다. Regarding uplink transmission, a timing difference Td may exist between a band A and a band B in terms of frequency characteristics or a transmission path for a base station. For example, when the UE simultaneously transmits signals on the first secondary serving cell and the second secondary serving cell, the base station receives a signal of the first secondary serving cell by Td later than a signal of the second secondary serving cell due to a timing difference. . Therefore, the UE should transmit the signal of the first secondary serving cell earlier by Td. This is called timing alignment (TA) to accelerate or lag the uplink transmission.
하나의 밴드 내에서는 주파수 특성이나 전송경로에 거의 차이가 없으므로 밴드 내 집성이 이루어지더라도 타이밍 차이가 별로 없다. 그러나, 밴드가 다르면 주파수 특성이나 전송경로에 차이가 있으므로, 밴드 간 집성이 이루어지면 타이밍 차이가 발생할 가능성이 있다. Since there is almost no difference in frequency characteristics or transmission paths within one band, there is little timing difference even if band aggregation is achieved. However, if the bands are different, there are differences in frequency characteristics and transmission paths. Therefore, if band aggregation is achieved, timing differences may occur.
예를 들어, 도 6에서 제1 부서빙셀과 제2 부서빙셀간의 반송파 집성(즉 밴드 간 집성)이 이루어진 경우, 타이밍 차이로 인하여 제1 부서빙셀에서의 SRS는 제2 부서빙셀에서의 SRS와 서로 다른 시간에 전송된다. 다시 말하면 제1 부서빙셀에서의 SRS는 제2 부서빙셀에서의 PUSCH 또는 PUCCH와 동시에 전송될 수 있고, 제1 부서빙셀에서의 PUSCH 또는 PUCCH와 제2 부서빙셀에서의 SRS가 동시에 전송될 수도 있다. 상향링크 채널과 SRS의 동시 전송이 단말의 상향링크 전력의 최대치를 초과하는 경우, 단말은 상향링크 채널의 전송전력과 SRS의 전송전력을 최대치 이내로 설정할 수 있어야 한다. 이는 상향링크 채널 또는 SRS에 할당할 전력의 크기를 설정하는 상향링크 전력제어에 의해 발현된다.For example, in FIG. 6, when carrier aggregation (that is, interband aggregation) is performed between the first secondary serving cell and the second secondary serving cell, the SRS in the first secondary serving cell is determined by the second secondary serving cell due to the timing difference. SRS is sent at different times. In other words, the SRS in the first secondary serving cell may be transmitted simultaneously with the PUSCH or the PUCCH in the second secondary serving cell, and the PUSCH or the PUCCH in the first secondary serving cell and the SRS in the second secondary serving cell are simultaneously transmitted. May be When simultaneous transmission of the uplink channel and the SRS exceeds the maximum value of the uplink power of the terminal, the terminal should be able to set the transmission power of the uplink channel and the transmission power of the SRS within the maximum value. This is manifested by uplink power control which sets the amount of power to be allocated to the uplink channel or SRS.
도 7은 본 발명의 일 예에 따른 단말에 의한 상향링크 전력제어 동작을 설명하는 순서도이다. 7 is a flowchart illustrating an uplink power control operation by a terminal according to an embodiment of the present invention.
도 7을 참조하면, 단말은 SRS의 전송전력 PSRS와 상향링크 채널의 전송전력 PUL 및 DMRS의 전송전력 PDMRS를 계산한다(S700). 상기 단말에는 집성된 다중 요소 반송파가 구성된 상태이고, 상기 다중 요소 반송파간에는 타이밍 차이가 존재하는 것으로 가정한다. 상향링크 채널은 PUCCH와 PUSCH 중 적어도 하나를 포함한다. Referring to FIG. 7, the terminal calculates a transmit power P SRS of an SRS , a transmit power P UL of an uplink channel, and a transmit power P DMRS of a DMRS (S700). It is assumed that an aggregated multi-component carrier is configured in the terminal, and a timing difference exists between the multi-component carriers. The uplink channel includes at least one of a PUCCH and a PUSCH.
단말은 단말의 총 상향링크 전송전력인 PSRS, PUL 및 PDMRS의 합이 최대전송전력
Figure PCTKR2012011434-appb-I000006
를 초과하는지 판단한다(S705). 여기서, i는 서브프레임 인덱스이다. 만약, 단말의 총 상향링크 전송전력이 최대전송전력
Figure PCTKR2012011434-appb-I000007
를 초과하면, 단말은 전력 스케일링(power scaling)을 수행한다(S710). 상향링크 채널의 전송전력, DMRS의 전송전력 또는 SRS의 전송전력을 일정한 비율만큼 늘이거나 줄이는 것을 전력 스케일링이라 한다. 전력 스케일링의 일 예는 원래 전송전력에 스케일링 인자(scaling factor) w를 곱하는 것이다. 예를 들어, PSRS, PUL 및 PDMRS를 각각 전력 스케일링하면 wPSRS, wPUL 및 wPDMRS가 된다. 여기서, w는 0≤w≤1의 값을 가질 수 있으며, 전력 스케일링은 상향링크 전력제어라 불릴 수 있다.
The terminal is the maximum transmission power of the sum of the total uplink transmission power of the terminal P SRS , P UL and P DMRS
Figure PCTKR2012011434-appb-I000006
It is determined whether to exceed (S705). Where i is the subframe index. If the total uplink transmission power of the terminal is the maximum transmission power
Figure PCTKR2012011434-appb-I000007
If exceeded, the terminal performs power scaling (S710). Increasing or decreasing the transmit power of the uplink channel, the transmit power of the DMRS, or the transmit power of the SRS by a certain ratio is called power scaling. One example of power scaling is to multiply the original transmit power by a scaling factor w. For example, power scaling of P SRS , P UL, and P DMRS results in wP SRS , wP UL, and wP DMRS , respectively. Here, w may have a value of 0 ≦ w ≦ 1, and power scaling may be called uplink power control.
일 실시예로서, 전력 스케일링은 어느 상향링크 채널의 전송전력, DMRS의 전송전력 또는 SRS의 전송전력을 스케일링(scaling)하고, 다른 상향링크 채널의 전송전력, DMRS의 전송전력 또는 SRS의 전송전력을 스케일링하지 않는 동작을 포함한다. 예를 들어 SRS의 전송전력 PSRS가 wPSRS로 스케일링되거나, PUSCH의 전송전력 PPUSCH가 wPPUSCH로 스케일링될 수 있다. In one embodiment, the power scaling scales the transmit power of one uplink channel, the transmit power of a DMRS, or the transmit power of an SRS, and the transmit power of another uplink channel, the transmit power of a DMRS, or the transmit power of an SRS. It does not scale. For example, the transmit power P SRS of the SRS may be scaled to wP SRS or the transmit power P PUSCH of the PUSCH may be scaled to wP PUSCH .
스케일링될 것과 그렇지 않은 것은 우선순위(priority)에 기반하여 선택된다. 우선순위는 한정된 상향링크 전력을 상향링크 채널, DMRS와 SRS에 효율적으로 배분하는 기준을 제공한다. What is to be scaled and what is not is selected based on priority. Priority provides a criterion for efficiently allocating limited uplink power to uplink channels, DMRSs, and SRSs.
우선순위에 기반하여 상향링크 채널, DMRS 또는 SRS의 전력을 스케일링함은, 단말이 우선순위가 더 낮은 상향링크 채널의 전송전력, DMRS의 전송전력 또는 SRS의 전송전력을 스케일링하고, 우선순위가 더 높은 상향링크 채널의 전송전력, DMRS의 전송전력 또는 SRS의 전송전력을 스케일링하지 않는 동작을 포함한다. 즉, 단말은 우선순위가 더 높은 상향링크 채널의 제1 전송전력, DMRS의 제1 전송전력 또는 SRS의 제1 전송전력은 그대로 유지한다. 그리고 단말은 최대 전송전력에서 상기 제1 전송전력을 제외하고 남는 제2 전송전력이 우선순위가 낮은 상향링크 채널의 제3 전송전력, DMRS의 제3 전송전력 또는 SRS의 제3 전송전력 보다 큰 경우, 우선순위가 낮은 상향링크 채널, DMRS 또는 SRS에 전력을 할당한다. 반면, 상기 제2 전송전력이 제3 전송전력보다 작은 경우, 단말은 우선순위가 낮은 상향링크 채널, DMRS 또는 SRS에 0 전력을 할당한다. 즉 단말은 우선순위가 낮은 상향링크 채널, DMRS 또는 SRS를 전송하지 않고 드롭(drop) 또는 생략한다. Scaling the power of the uplink channel, DMRS or SRS based on the priority, the terminal scales the transmission power of the lower priority uplink channel, the transmission power of the DMRS or the transmission power of the SRS, the priority is higher It does not scale the transmission power of the high uplink channel, the transmission power of the DMRS or the transmission power of the SRS. That is, the terminal maintains the first transmission power of the uplink channel having the higher priority, the first transmission power of the DMRS, or the first transmission power of the SRS. And the second transmission power remaining at the maximum transmission power except for the first transmission power is greater than the third transmission power of the uplink channel having the lower priority, the third transmission power of the DMRS, or the third transmission power of the SRS. In this case, power is allocated to an uplink channel having a low priority, DMRS or SRS. On the other hand, if the second transmission power is smaller than the third transmission power, the terminal allocates zero power to the uplink channel, DMRS or SRS having a lower priority. That is, the UE does not transmit or drop the uplink channel, DMRS or SRS having a lower priority.
우선순위는 SC-FDMA 심벌 단위(unit) 또는 차원(dimension)에서 정의될 수도 있고, 서브프레임 단위 또는 차원에서 정의될 수도 있다. 먼저, SC-FDMA 심벌 차원에서, 우선순위는 SC-FDMA 심벌이 전송하는 정보의 종류를 기준으로 정의된다. 예를 들어, SC-FDMA 심벌이 전송하는 정보의 종류는 데이터(data), DMRS, SRS등을 포함한다. SC-FDMA 심벌 차원에서의 우선순위는 DMRS > SRS > 데이터일 수 있다. 다음으로, 서브프레임 차원에서, 우선순위는 매 서브프레임이 전송하는 정보의 종류를 기준으로 정의된다. 예를 들어, 서브프레임에서 전송되는 정보의 종류는 PUSCH, PUCCH, SRS등을 포함한다. 서브프레임 차원에서, 우선순위는 PUCCH > SRS > PUSCH일 수 있다. Priority may be defined in SC-FDMA symbol units or dimensions, or may be defined in subframe units or dimensions. First, in the SC-FDMA symbol dimension, priority is defined based on the type of information transmitted by the SC-FDMA symbol. For example, the type of information transmitted by the SC-FDMA symbol includes data, DMRS, SRS, and the like. The priority in the SC-FDMA symbol dimension may be DMRS> SRS> data. Next, in the subframe dimension, priority is defined based on the type of information transmitted by each subframe. For example, the type of information transmitted in the subframe includes PUSCH, PUCCH, SRS, and the like. In the subframe dimension, the priority may be PUCCH> SRS> PUSCH.
다른 실시예로서, 전력 스케일링은 모든 상향링크 채널의 전송전력과 SRS의 전송전력을 일정한 비율만큼 스케일링하는 동작을 포함한다. 이 경우 전력 스케일링은 우선순위와는 무관할 수 있다. 이러한 전력 스케일링을 감소분담(reduction sharing)에 기반한 전력 스케일링이라 한다. In another embodiment, the power scaling includes scaling transmission power of all uplink channels and transmission power of SRS by a predetermined ratio. In this case, power scaling may be independent of priority. This power scaling is called power scaling based on reduction sharing.
이후, 단말이 SRS를 전송하는 과정은 도면에 미표시되었으나, 다음과 같은 절차로 진행된다. 단말은 SRS 시퀀스를 생성하고, 스케일링된 SRS 전송전력 wPSRS에 일치(conform to)시키기 위해 상기 생성된 SRS의 시퀀스에 크기 스케일링 인자(amplitude scaling factor) βSRS를 곱하고, 상기 βSRS가 곱해진 SRS의 시퀀스를 rP SRS(0)부터 순차적으로 안테나 포트 p상의 자원요소에 맵핑한 후, SC-FDMA 심벌을 생성하여 기지국으로 전송한다. Thereafter, the process of transmitting the SRS by the terminal is not shown in the figure, but proceeds to the following procedure. The terminal generates an SRS sequence and multiplies the generated sequence of SRS by an amplitude scaling factor β SRS to conform to the scaled SRS transmission power wP SRS , and multiplies the β SRS by the SRS. After sequentially mapping r P SRS (0) to resource elements on antenna port p, SC-FDMA symbols are generated and transmitted to the base station.
이와 같이 상향링크 채널과 SRS이 서로 다른 요소 반송파상에서 동시에 전송될 때는 상향링크 채널의 전송전력 또는 SRS을 일정한 비율로 스케일링하여 전송하는 방법이 적용될 수 있다. As described above, when the uplink channel and the SRS are simultaneously transmitted on different component carriers, a method of scaling the transmission power or the SRS of the uplink channel at a constant rate may be applied.
이하에서, 우선순위가 SC-FDMA 심벌 차원에서 정의된 경우, 서브프레임 차원에서 정의된 경우에 있어서 전력 스케일링 방법에 관하여 개시된다. Hereinafter, when priority is defined at the SC-FDMA symbol dimension, a method of scaling power in the case of being defined at the subframe dimension is disclosed.
1. 우선순위가 SC-FDMA 심벌 차원에서 정의된 경우 전력 스케일링1. Power scaling when priorities are defined at the SC-FDMA symbol dimension
우선순위가 SC-FDMA 심볼 차원에서 정의된 경우는, 전송전력이 SC-FDMA 심볼 단위로 할당되는 개념과 동등하다. SC-FDMA 심벌이 전송하는 정보의 종류는 데이터(data), DMRS, SRS등을 포함한다. SC-FDMA 심벌 차원에서의 우선순위를 결정함에 있어서, 예를 들어 데이터 전송의 신뢰성을 기준으로 우선순위를 결정할 수 있다. If the priority is defined in the SC-FDMA symbol dimension, it is equivalent to the concept that the transmission power is allocated in SC-FDMA symbol units. Types of information transmitted by the SC-FDMA symbol include data, DMRS, SRS, and the like. In determining the priority at the SC-FDMA symbol dimension, for example, the priority may be determined based on the reliability of the data transmission.
상향링크 제어정보 또는 데이터(DMRS가 없는 PUCCH 또는 PUSCH)가 전송되는 SC-FDMA 심볼의 경우 부효율(coding rate), 변조(modulation) 또는 다이버시티(diversity) 특성에 따라서 해당 SC-FDMA 심볼에서 전송되는 데이터를 수신하지 못하더라도 다른 SC-FDMA 심볼에서 전송되는 데이터를 통해 어느 정도까지 복구할 수 있다. 따라서 데이터가 전송되는 SC-FDMA 심벌의 우선순위를 다른 상향링크 신호보다 낮게 설정할 수 있다. In case of an SC-FDMA symbol in which uplink control information or data (PUCCH or PUSCH without DMRS) is transmitted, transmission is performed in the corresponding SC-FDMA symbol according to coding rate, modulation, or diversity characteristics. Even if data is not received, data can be recovered to some extent through data transmitted in another SC-FDMA symbol. Accordingly, the priority of the SC-FDMA symbol to which data is transmitted may be set lower than that of other uplink signals.
그러나 DMRS가 전송되는 SC-FDMA 심볼을 수신하지 못했을 경우 해당 상향링크 채널 전체를 수신할 수 없다. 따라서 데이터가 전송되는 SC-FDMA 심볼보다 DMRS가 전송되는 SC-FDMA 심볼의 우선순위가 높은 것이 바람직하다. 이에 따르면, SC-FDMA 심벌 차원에서의 우선순위는 DMRS > SRS > 데이터일 수 있다. 수학식 2와 수학식 3은 상기 SC-FDMA 심벌 차원에서의 우선순위를 고려한 전력할당을 수식으로 표현한 것이다. However, if the DMRS fails to receive the transmitted SC-FDMA symbol, the entire uplink channel cannot be received. Therefore, it is preferable that the priority of the SC-FDMA symbol to which DMRS is transmitted is higher than the SC-FDMA symbol to which data is transmitted. According to this, the priority in the SC-FDMA symbol dimension may be DMRS> SRS> data. Equations 2 and 3 express power allocation in consideration of priorities in the SC-FDMA symbol dimension.
수학식 2
Figure PCTKR2012011434-appb-M000002
Equation 2
Figure PCTKR2012011434-appb-M000002
수학식 3
Figure PCTKR2012011434-appb-M000003
Equation 3
Figure PCTKR2012011434-appb-M000003
수학식 2 및 수학식 3을 참조하면,
Figure PCTKR2012011434-appb-I000008
는 x의 선형값을 의미한다. 따라서,
Figure PCTKR2012011434-appb-I000009
은 PCMAX의 선형 값이다. c는 서빙셀의 인덱스이고, PPUCCH,DMRS는 DMRS를 포함하는 PUCCH의 전력이며, PPUSCH,DMRS는 DMRS를 포함하는 PUSCH의 전력이다. 수학식 2에서, 단말의 상향링크 전력할당을 위해 제일 먼저 PUCCH의 DMRS를 위해 할당하고 다음으로 PUSCH의 DMRS를 위해 할당하며, 남은 전력은 스케일링 인자 w로 스케일링되어 각 서빙셀 c의 SRS 전송전력으로 할당된다. 그리고 수학식 3에서, DMRS를 포함하지 않는 데이터를 전송하는 SC-FDMA 심벌들에는 DMRS를 포함하는 데이터와 SRS를 전송하는 SC-FDMA 심벌들에 전력을 모두 할당하고 남은 전력은 스케일링 인자 w로 스케일링되어 각 서빙셀의 PUSCH나 PUCCH의 전송에 할당된다.
Referring to Equations 2 and 3,
Figure PCTKR2012011434-appb-I000008
Denotes a linear value of x. therefore,
Figure PCTKR2012011434-appb-I000009
Is the linear value of P CMAX . c is the index of the serving cell, P PUCCH, DMRS is the power of the PUCCH including the DMRS, P PUSCH, DMRS is the power of the PUSCH including the DMRS. In Equation 2, the first allocation for the uplink power allocation of the UE and the next for the DMRS of the PUSCH, the next allocation for the DMRS of the PUSCH, the remaining power is scaled by the scaling factor w to the SRS transmission power of each serving cell c Is assigned. In Equation 3, SC-FDMA symbols transmitting data not including DMRS are allotted power to data including DMRS and SC-FDMA symbols transmitting SRS, and the remaining power is scaled by a scaling factor w. And is allocated to transmission of PUSCH or PUCCH of each serving cell.
전력할당은 고속 푸리에 변환(Fast Fourier Transform: FFT) 단위로 이루어지기 때문에, 단말은 FFT의 단위인 SC-FDMA 심볼마다 독립적으로 자원을 할당할 수 있다. 따라서 서빙셀간 타이밍 차이가 발생하는 상황에서, 단말이 사용할 수 있는 전력을 보다 효율적으로 사용하기 위해서는 전력할당의 단위를 심볼단위로 정의할 수 있어야 한다. 도 8과 도 9는 수학식 2와 수학식 3을 실제 적용한 경우 전력할당의 예시이다. Since power allocation is made in fast Fourier transform (FFT) units, the UE may allocate resources independently for each SC-FDMA symbol that is a unit of FFT. Therefore, in a situation where the timing difference between serving cells occurs, in order to use the power available to the UE more efficiently, the unit of power allocation should be defined in symbol units. 8 and 9 are examples of power allocation when Equation 2 and Equation 3 are actually applied.
도 8은 본 발명의 일 예에 따른 우선순위에 기반한 전력 스케일링의 수행방법을 설명하는 설명도이다. 8 is an explanatory diagram illustrating a method of performing power scaling based on priorities according to an embodiment of the present invention.
도 8을 참조하면, 제1 부서빙셀(SCell 1)과 제2 부서빙셀(SCell 2)이 단말에 반송파 집성에 의해 구성되어 있고, 제1 부서빙셀과 제2 부서빙셀간에 Td만큼의 타이밍 차이가 존재한다고 가정한다. 제1 부서빙셀에서 SRS가 전송되는 SC-FDMA 심벌 i는 제1 부서빙셀에서 DMRS를 포함하지 않는 PUSCH 또는 PUCCH가 전송되는 SC-FDMA 심벌 j와 겹친다. 이 구간에서 단말은 SRS의 전송전력을 PSRS로 설정하고, 남은 전력을 PUSCH 또는 PUCCH의 전송전력 PDATA로 설정한다. 반면, SRS와 동시에 전송되지 않는 SC-FMDA 심벌 j-1, j+1등에서는 단말은 PUSCH 또는 PUCCH의 전송전력을 PDATA로 설정한다. Referring to FIG. 8, a first secondary serving cell SCell 1 and a second secondary serving cell SCell 2 are configured by carrier aggregation in a terminal, and Td is divided between the first secondary serving cell and the second secondary serving cell. Assume that there is a timing difference. The SC-FDMA symbol i in which the SRS is transmitted in the first secondary serving cell overlaps the SC-FDMA symbol j in which the PUSCH or PUCCH not including the DMRS is transmitted in the first secondary serving cell. In this interval, the UE sets the transmit power of the SRS to PSRS and sets the remaining power to the transmit power P DATA of PUSCH or PUCCH. On the other hand, in the SC-FMDA symbols j-1, j + 1, etc., which are not transmitted simultaneously with the SRS, the UE sets the transmission power of the PUSCH or the PUCCH to P DATA .
SRS의 전송을 위해 할당하고 남은 전력을 PUSCH 또는 PUCCH의 전송에 할당할 때 한 가지 제약이 가해질 수 있다. 예를 들어, PUSCH의 변조방식이 QPSK일 때는 SRS를 전송하고 남은 전력을 PUSCH의 데이터 전송에 할당하고, PUSCH의 변조방식이 16QAM 또는 64QAM일 때는 SRS를 할당하고 남은 전력을 PUSCH의 전송에 할당하지 않는다. 이러한 근거는 다음과 같다. PUSCH의 변조방식이 QPSK라면 정보는 위상을 통해 전송되고 진폭(크기)는 정보에 영향을 주지 않는다. 따라서 적은 전력으로 전송할 경우 신호의 크기는 줄어들 수 있지만 정보를 검출하는 데는 영향을 주지 않을 수 있다. 반면에 16QAM 또는 64QAM과 같이 위상뿐 아니라 진폭도 정보의 전송에 사용될 때는, 적은 전력으로 전송할 때 왜곡(distortion)현상을 일으킬 수 있으므로 전송하지 않는 것이 바람직하다. One limitation may be applied when allocating remaining power for transmission of the SRS and allocating the remaining power for transmission of the PUSCH or the PUCCH. For example, when the modulation scheme of the PUSCH is QPSK, the remaining power after transmitting the SRS is allocated to the data transmission of the PUSCH. When the modulation scheme of the PUSCH is 16QAM or 64QAM, the SRS is allocated and the remaining power is not allocated to the transmission of the PUSCH. Do not. The reason for this is as follows. If the modulation scheme of the PUSCH is QPSK, information is transmitted through the phase and amplitude (magnitude) does not affect the information. As a result, the signal size may be reduced when transmitting with less power, but may not affect information detection. On the other hand, when not only phases but also amplitudes, such as 16QAM or 64QAM, are used for the transmission of information, it is preferable not to transmit since they may cause distortion when transmitted with less power.
도 9는 본 발명의 다른 예에 따른 우선순위에 기반한 전력 스케일링의 수행방법을 설명하는 설명도이다. 9 is an explanatory diagram illustrating a method of performing power scaling based on priorities according to another embodiment of the present invention.
도 9를 참조하면, 제1 부서빙셀에서 SRS가 전송되는 SC-FDMA 심벌 i는 제2 부서빙셀에서 DMRS가 PUSCH 또는 PUCCH를 통해 전송되는 SC-FDMA 심벌 j와 겹친다. 이 구간에서는 단말은 우선순위에 따라 DMRS에 전력 PDMRS를 우선적으로 할당하고, SRS의 전송을 위해 전력을 할당하지 않는다. 즉, SRS는 비율 정합(rate matching)에 의해 펑쳐링(puncturing)되거나 또는 드롭(drop)되거나 또는 뮤팅(muting)되거나 또는 0전력이 할당된다. Referring to FIG. 9, the SC-FDMA symbol i in which the SRS is transmitted in the first secondary serving cell overlaps the SC-FDMA symbol j in which the DMRS is transmitted through the PUSCH or the PUCCH in the second secondary serving cell. In this interval, the UE preferentially allocates power PDMRS to DMRS according to priority and does not allocate power for transmission of SRS. That is, the SRS is punctured or dropped or muted by rate matching or zero power is allocated.
도 10은 본 발명의 또 다른 예에 따른 우선순위에 기반한 전력 스케일링의 수행방법을 설명하는 설명도이다. 10 is an explanatory diagram illustrating a method of performing power scaling based on priority according to another example of the present invention.
도 10을 참조하면, 제1 부서빙셀(SCell 1)과 제2 부서빙셀(SCell 2)이 반송파 집성에 의해 하나의 단말에 구성되어 있고, 제1 부서빙셀과 제2 부서빙셀의 상향링크 시간에 타이밍 차이가 존재한다. Referring to FIG. 10, a first secondary serving cell SCell 1 and a second secondary serving cell SCell 2 are configured in one terminal by carrier aggregation, and the first secondary serving cell and the second secondary serving cell are configured. There is a timing difference in uplink time.
제1 부서빙셀에서 서브프레임n의 마지막 SC-FDMA 심벌의 인덱스는 i이고, 이 SC-FDMA 심벌은 제2 부서빙셀에서 서브프레임n의 j-1, j번 SC-FDMA 심벌 사이에 위치한다. 반송파 집성 환경에서 각 서빙셀의 전송 시작지점은 단말의 전송지연을 고려하여 결정되는데, 하나의 단말에 밴드간 반송파 집성으로 서빙셀들이 구성되었다면 각 밴드에서의 전송지연이 다를 수 있기 때문에 서빙셀 간에는 도 10과 같이 전송시작지점이 일치하지 않을 수 있다. The index of the last SC-FDMA symbol of subframe n in the first secondary serving cell is i, and this SC-FDMA symbol is located between j-1 and j SC-FDMA symbols of subframe n in the second secondary serving cell. do. In the carrier aggregation environment, the transmission start point of each serving cell is determined in consideration of the transmission delay of the terminal. If the serving cells are configured with carrier aggregation between bands in one terminal, the transmission delay in each band may be different. As shown in FIG. 10, the transmission start point may not match.
이와 같이 서빙셀 간 심볼 타이밍이 일치하지 않을 경우, 각 심볼별 전력할당 방식이 정의되어야 한다. 여기에서도 SC-FDMA 심벌 차원에서 정의된 우선순위(예를 들어, DMRS > SRS > 데이터)가 동일하게 적용될 수 있다. 도 10에서는 i번 SC-FDMA 심벌에서는 SRS가 전송되고, i번 SC-FDMA 심벌과 동시에 겹치는 제2 부서빙셀의 j-1, j번 SC-FDMA 심벌에서는 모두 DMRS가 없는 데이터(PUCCH 또는 PUSCH)가 전송된다. As such, when symbol timings between serving cells do not match, a power allocation scheme for each symbol should be defined. Here, the priority (for example, DMRS> SRS> data) defined in the SC-FDMA symbol dimension may be equally applied. In FIG. 10, the SRS is transmitted in the SC-FDMA symbol i and the DM-1 is not present in the j-1 and j SC-FDMA symbols of the second secondary serving cell which overlaps with the SC-FDMA symbol i simultaneously (PUCCH or PUSCH). ) Is sent.
단말은 제1 부서빙셀의 i-1번 SC-FDMA 심벌에서의 PUSCH 요구 전력과, 제2 부서빙셀의 j-1번 SC-FDMA 심벌에서의 PUSCH 요구 전력을 고려하여 전력 스케일링을 수행하여 j-1번의 SC-FDMA 심벌에서의 전송전력 Pj-1을 구한다(0≤w(i)≤1). 여기서, j-1번의 SC-FDMA 심벌에서의 전송전력 Pj-1은 다음의 수학식과 같다.The UE performs power scaling in consideration of the PUSCH required power of the SC-FDMA symbol i-1 of the first secondary serving cell and the PUSCH required power of the SC-FDMA symbol j-1 of the second secondary serving cell The transmission power P j-1 in the SC-FDMA symbol of j-1 is obtained (0 ≦ w (i) ≦ 1). Here, the transmission power P j-1 in the SC-FDMA symbol of j-1 is expressed by the following equation.
수학식 4
Figure PCTKR2012011434-appb-M000004
Equation 4
Figure PCTKR2012011434-appb-M000004
이후, 단말은 i번과 j번 SC-FDMA 심벌에서도 i-1번, j-1번 SC-FDMA 심벌에서 전력 스케일링을 통해 Pj를 구한다. 만약 SRS의 전송에 전력이 모두 할당되어 P3=0이 되면, 단말은 j-1, j번 SC-FDMA 심벌에서의 데이터를 비율 정합(rate matching)으로 처리한다. Thereafter, the terminal obtains P j through power scaling in SC-1 and j-1 SC-FDMA symbols i-1 and j SC-FDMA symbols. If power is allotted for transmission of the SRS and P 3 = 0, the UE processes data in SC-1 FDMA symbols j-1 and j as rate matching.
도 11은 본 발명의 또 다른 예에 따른 우선순위에 기반한 전력 스케일링의 수행방법을 설명하는 설명도이다. 11 is an explanatory diagram illustrating a method of performing power scaling based on priority according to another example of the present invention.
도 11을 참조하면, 도 10과 달리 제1 부서빙셀에서 i번 SC-FDMA 심벌에서 SRS가 전송되고, i번 SC-FDMA 심벌과 동시에 겹치는 제2 부서빙셀의 j-1, j번 SC-FDMA 심벌에서는 각각 DMRS가 없는 데이터(PUCCH 또는 PUSCH)와 DMRS를 포함하는 데이터가 전송된다. Referring to FIG. 11, unlike in FIG. 10, an SRS is transmitted in an SC-FDMA symbol i in the first secondary serving cell and SC-1 in the second secondary serving cell overlapping with an SC-FDMA symbol i simultaneously. In the -FDMA symbol, data without a DMRS (PUCCH or PUSCH) and data including a DMRS are transmitted, respectively.
단말은 제1 부서빙셀의 i-1번 SC-FDMA 심벌에서의 PUSCH 요구 전력과, 제2 부서빙셀의 j-1번 SC-FDMA 심벌에서의 PUSCH 요구 전력을 고려하여 전력 스케일링을 수행하여 j-1번의 SC-FDMA 심벌에서의 전송전력 w(i)P3을 구한다(0≤w(i)≤1). 그리고 단말은 제1 부서빙셀에서의 SRS와 제2 부서빙셀에서의 DMRS의 동시 전송을 고려하여 스케일링된 SRS 전송 전력 P'SRS를 구한다. 이는 수학식 5와 같다. The UE performs power scaling in consideration of the PUSCH required power of the SC-FDMA symbol i-1 of the first secondary serving cell and the PUSCH required power of the SC-FDMA symbol j-1 of the second secondary serving cell The transmission power w (i) P 3 of the SC-FDMA symbol of j-1 is obtained (0 ≦ w (i) ≦ 1). The UE obtains the scaled SRS transmission power P ′ SRS in consideration of simultaneous transmission of the SRS in the first secondary serving cell and the DMRS in the second secondary serving cell. This is the same as Equation 5.
수학식 5
Figure PCTKR2012011434-appb-M000005
Equation 5
Figure PCTKR2012011434-appb-M000005
여기서, PSRS는 스케일링되기 이전에 설정된 SRS 전송전력을 의미한다. j-1번의 SC-FDMA 심벌에서의 전송전력 Pj-1은 다음의 수학식과 같다.Here, P SRS means the SRS transmission power set before scaling. The transmit power P j-1 in the SC-FDMA symbol of j-1 is represented by the following equation.
수학식 6
Figure PCTKR2012011434-appb-M000006
Equation 6
Figure PCTKR2012011434-appb-M000006
이후, 단말은 i번과 j번 SC-FDMA 심벌에서도 i-1번, j-1번 SC-FDMA 심벌에서 전력 스케일링 방식과 동일한 방식으로 전력 스케일링을 통해 Pj를 구한다. 만약 SRS의 전송에 전력이 모두 할당되어 P3=0이 되면, 단말은 j-1, j번 SC-FDMA 심벌에서의 데이터를 비율 정합(rate matching)으로 처리한다.Subsequently, the UE obtains P j through power scaling in the same manner as the power scaling method in the SC-FDMA symbols i-1 and j-1 in SC-FDMA symbols i and j , respectively. If power is allotted for transmission of the SRS and P 3 = 0, the UE processes data in SC-1 FDMA symbols j-1 and j as rate matching.
2. 우선순위가 서브프레임 차원에서 정의된 경우 전력 스케일링2. Power scaling when priorities are defined in subframe dimensions
우선순위가 서브프레임 차원에서 정의된 경우는, 전송전력이 서브프레임 단위로 할당되는 개념과 동등하다. 데이터의 전송은 한 서브프레임 단위로 이루어지므로, 전송전력도 서브프레임 단위로 할당된다. 따라서, 우선순위가 서브프레임 차원에서 정의된 경우에도 전력 스케일링이 정의되어야 한다. SRS와 상향링크 채널 PUCCH 또는 PUSCH가 서로 다른 서빙셀상에서 동시 전송되는 경우, SRS와 PUSCH 또는 SRS와 PUCCH를 구분하여 우선순위에 따라 전력을 할당한다. If the priority is defined in the subframe dimension, it is equivalent to the concept that the transmission power is allocated in subframe units. Since data is transmitted in units of one subframe, transmission power is also allocated in units of subframes. Therefore, power scaling should be defined even if the priority is defined in the subframe dimension. When the SRS and the uplink channel PUCCH or PUSCH are simultaneously transmitted on different serving cells, power is allocated according to the priority by dividing the SRS and the PUSCH or the SRS and the PUCCH.
예를 들어, PUSCH의 전송은 PHICH(Physical HARQ Indicator CHannel)의 수신을 통해 단말이 보낸 데이터를 기지국이 수신했는지의 여부를 확인할 수 있으며 기지국이 수신하지 못한 경우 단말은 재전송을 할 수 있다. 그러나 PUCCH의 경우 단말이 기지국으로부터 전송받은 데이터의 ACK/NACK을 전송하거나 기지국과 단말과의 채널 정보를 전송하는 것이므로, 더 신뢰성 있는 전송이 요구된다. 따라서 SRS의 전송의 우선 순위는 PUSCH 보다는 높은 순위로 할당하고 PUCCH 보다는 낮은 순으로 할당하는 방안으로 결정할 수 있다. 이에 따르면 SRS, PUCCH, PUSCH간의 전력할당 우선순위는 PUSCH < SRS < PUCCH일 수 있다. For example, the transmission of the PUSCH may determine whether the base station receives data transmitted by the terminal through reception of a physical HARQ indicator channel (PHICH), and the terminal may retransmit if the base station does not receive the data. However, in the case of PUCCH, since the terminal transmits ACK / NACK of data received from the base station or transmits channel information between the base station and the terminal, more reliable transmission is required. Therefore, the transmission priority of the SRS may be determined by assigning a higher priority to the PUSCH and then lowering the PUCCH. Accordingly, the power allocation priority between SRS, PUCCH, and PUSCH may be PUSCH <SRS <PUCCH.
일 실시예로서, SRS와 PUSCH 또는 SRS와 PUCCH가 서로 다른 서빙셀상에서 동시에 전송될 때, 상기 서로 다른 서빙셀들이 심볼 동기가 유지되는 경우에 우선순위에 따라 SRS와 PUSCH 또는 PUCCH에 할당되는 전력은 다음의 수학식으로 정의된다.As an embodiment, when SRS and PUSCH or SRS and PUCCH are simultaneously transmitted on different serving cells, the power allocated to the SRS and PUSCH or PUCCH according to the priority when the different serving cells are maintained in symbol synchronization is It is defined by the following equation.
수학식 7
Figure PCTKR2012011434-appb-M000007
Equation 7
Figure PCTKR2012011434-appb-M000007
수학식 8
Figure PCTKR2012011434-appb-M000008
Equation 8
Figure PCTKR2012011434-appb-M000008
수학식 7 및 8을 참조하면, SRS와 채널(PUSCH 또는 PUCCH)간의 우선순위에 따른 방법으로 채널의 전송단위인 한 서브프레임 동안에는 전력의 변화가 없다. 즉 PUCCH와 SRS간의 우선순위를 고려하여 SRS 전송에 필요한 전력을 할당하고(수학식 7), 남은 전력에 맞도록 PUSCH의 전송전력을 스케일링하여 할당하면(수학식 8) PUSCH가 유지되는 하나의 서브프레임 동안에는 일정한 전력이 유지된다. Referring to Equations 7 and 8, there is no change in power during one subframe, which is a transmission unit of the channel, in a method according to the priority between the SRS and the channel (PUSCH or PUCCH). That is, when the power required for SRS transmission is allocated in consideration of the priority between the PUCCH and the SRS (Equation 7), and the transmission power of the PUSCH is scaled and allocated according to the remaining power (Equation 8), one sub-sub is maintained. Constant power is maintained during the frame.
다른 실시예로서, SRS와 PUSCH 또는 SRS와 PUCCH가 서로 다른 서빙셀상에서 동시에 전송될 때, 상기 서로 다른 서빙셀들이 도 10 또는 도 11과 같이 심볼 동기가 유지되지 않는 경우에 우선순위에 따라 SRS와 PUSCH 또는 PUCCH에 할당되는 전력은 다음의 수학식으로 정의된다. In another embodiment, when SRS and PUSCH or SRS and PUCCH are simultaneously transmitted on different serving cells, when different serving cells are not kept in symbol synchronization as shown in FIG. The power allocated to the PUSCH or PUCCH is defined by the following equation.
수학식 9
Figure PCTKR2012011434-appb-M000009
Equation 9
Figure PCTKR2012011434-appb-M000009
Figure PCTKR2012011434-appb-I000010
Figure PCTKR2012011434-appb-I000010
Figure PCTKR2012011434-appb-I000011
Figure PCTKR2012011434-appb-I000011
Figure PCTKR2012011434-appb-I000012
Figure PCTKR2012011434-appb-I000012
수학식 9를 참조하면, Psubframe n은 제2 부서빙셀의 서브프레임 n의 전송전력을 나타낸다. 수학식 9의 설명을 위해 도 10과 도 11을 참조하면, PUSCH는 SRS보다 우선순위가 낮으므로 단말은 제1 부서빙셀의 서브프레임 n과 제2 부서빙셀의 서브프레임 n의 요구전력에 따른 w1(i)P1을 구한다. 이 때 w1(i)는 두 서브프레임에 동일하게 적용되는 스케일링 인자이다. 그리고 제1 부서빙셀의 서브프레임 n+1과 제2 부서빙셀의 서브프레임 n의 요구 전력에 따른 w2(i)P2를 구한다. Referring to Equation 9, P subframe n represents the transmission power of subframe n of the second secondary serving cell. Referring to FIGS. 10 and 11 to explain Equation 9, since the PUSCH has a lower priority than the SRS, the UE corresponds to the required power of the subframe n of the first secondary serving cell and the subframe n of the second secondary serving cell. Obtain w 1 (i) P 1 according to the calculation. In this case, w 1 (i) is a scaling factor that is equally applied to two subframes. Then, w 2 (i) P 2 is calculated according to the required power of subframe n + 1 of the first secondary serving cell and subframe n of the second secondary serving cell.
또 다른 실시예로서, SRS와 PUSCH 또는 SRS와 PUCCH가 서로 다른 서빙셀상에서 동시에 전송될 때, 상기 서로 다른 서빙셀들이 도 10 또는 도 11과 같이 심볼 동기가 유지되지 않는 경우에 우선순위에 따라 SRS와 PUSCH 또는 PUCCH에 할당되는 전력은 다음의 수학식으로 정의된다. As another embodiment, when SRS and PUSCH or SRS and PUCCH are simultaneously transmitted on different serving cells, the SRS according to the priority when the different serving cells do not maintain symbol synchronization as shown in FIG. 10 or 11 And power allocated to PUSCH or PUCCH is defined by the following equation.
3. 감소분담에 기반한 전력 스케일링3. Power Scaling Based on Reduction Sharing
감소분담에 기반한 전력 스케일링은 모든 상향링크 채널의 전송전력과 SRS의 전송전력을 일정한 비율만큼 스케일링하는 동작을 포함한다. 즉, 모든 상향링크 채널과 SRS가 분담하여 전력 감소에 참여한다는 의미이다. Power scaling based on reduced sharing includes an operation of scaling the transmission power of all uplink channels and the transmission power of SRS by a predetermined ratio. That is, it means that all uplink channels and SRS are shared to participate in power reduction.
일 실시예로서, 단말은 PUCCH에 전력할당을 우선으로 하며 남은 전력은 전력 스케일링에 의해 SRS와 PUSCH에 일정한 비율로 할당한다. 이는 PUCCH는 SRS와 PUSCH보다 높은 신뢰도의 전송을 요구하기 때문에 우선순위를 두기 위함이다. 이를 수학식으로 나타내면 다음과 같다. In one embodiment, the terminal prioritizes power allocation to the PUCCH, and the remaining power is allocated to the SRS and the PUSCH at a constant rate by power scaling. This is to give priority to the PUCCH because it requires transmission of higher reliability than SRS and PUSCH. This is expressed as the following equation.
수학식 10
Figure PCTKR2012011434-appb-M000010
Equation 10
Figure PCTKR2012011434-appb-M000010
다른 실시예로서, SRS와 PUSCH 또는 SRS와 PUCCH가 서로 다른 서빙셀상에서 동시에 전송될 때, 상기 서로 다른 서빙셀들이 도 10 또는 도 11과 같이 심볼 동기가 유지되지 않는 경우에 감소분담에 기반하여 SRS와 PUSCH 또는 PUCCH에 할당되는 전력은 다음의 수학식으로 정의된다. In another embodiment, when SRS and PUSCH or SRS and PUCCH are simultaneously transmitted on different serving cells, the SRS is based on a reduced sharing when the different serving cells do not maintain symbol synchronization as shown in FIG. 10 or 11. And power allocated to PUSCH or PUCCH is defined by the following equation.
수학식 11
Figure PCTKR2012011434-appb-M000011
Equation 11
Figure PCTKR2012011434-appb-M000011
Figure PCTKR2012011434-appb-I000013
Figure PCTKR2012011434-appb-I000013
Figure PCTKR2012011434-appb-I000014
Figure PCTKR2012011434-appb-I000014
Figure PCTKR2012011434-appb-I000015
Figure PCTKR2012011434-appb-I000015
수학식 11을 참조하면, 전송전력은 서브프레임 단위로 할당되며, Psubframe n은 제2 부서빙셀의 서브프레임 n의 전송전력을 나타낸다. 수학식 11의 설명을 위해 도 10과 도 11을 참조하면, 단말은 제1 부서빙셀의 서브프레임 n과 제2 부서빙셀의 서브프레임 n의 요구전력에 따른 w1(i)P1을 구한다. 이 때 w1(i)는 두 서브프레임에 동일하게 적용되는 스케일링 인자이다. 그리고 제1 부서빙셀의 서브프레임 n+1과 제2 부서빙셀의 서브프레임 n의 요구 전력에 따른 w2(i)P2를 구한다. 또한, 단말은 SRS와 제2 부서빙셀의 서브프레임 n의 요구전력에 따른 wSRS(i)PSRS를 구한다. Referring to Equation 11, the transmission power is allocated in subframe units, and P subframe n represents the transmission power of subframe n of the second secondary serving cell. Referring to FIGS. 10 and 11 to explain Equation 11, the UE determines w 1 (i) P 1 according to the required power of subframe n of the first secondary serving cell and subframe n of the second secondary serving cell. Obtain In this case, w 1 (i) is a scaling factor that is equally applied to two subframes. Then, w 2 (i) P 2 is calculated according to the required power of subframe n + 1 of the first secondary serving cell and subframe n of the second secondary serving cell. In addition, the terminal obtains w SRS (i) P SRS according to the required power of the SRS and subframe n of the second secondary serving cell.
도 12는 본 발명의 다른 예에 따른 단말에 의한 상향링크 전력제어 동작을 설명하는 순서도이다. 이는 우선순위에 기반한 전력 스케일링이다. 12 is a flowchart illustrating an uplink power control operation by a terminal according to another embodiment of the present invention. This is power scaling based on priority.
도 12를 참조하면, 단말은 상향링크 전송과 타이밍 차이를 인지한다(S1200). 여기서, 상기 단말에는 서로 다른 밴드에 위치하는 복수의 서빙셀이 구성될 수 있으며, 상기 복수의 서빙셀들은 반송파 집성에 의해 구성될 수 있다. 상향링크 전송은 DMRS를 포함하지 않는 PUSCH 또는 PUCCH 전송(데이터 전송이라 칭함), DMRS를 포함하는 PUSCH 또는 PUCCH 전송, SRS 전송을 포함한다. Referring to FIG. 12, the terminal recognizes a difference in uplink transmission and timing (S1200). Here, the terminal may be configured with a plurality of serving cells located in different bands, and the plurality of serving cells may be configured by carrier aggregation. The uplink transmission includes a PUSCH or PUCCH transmission that does not include DMRS (called data transmission), a PUSCH or PUCCH transmission that includes DMRS, and an SRS transmission.
단말은 SRS와 다른 상향링크 채널의 동시 전송이 발생하는지 판단한다(S1205). 만약 SRS와 다른 상향링크 전송이 동시에 발생하면, 단말은 상기 다른 상향링크 전송이 DMRS인지 판단한다(S1210). 만약, 상기 다른 상향링크 전송이 DMRS이면, 단말은 DMRS에 전력을 우선적으로 할당하고(S1215), 예를 들어 수학식 2와 같이 SRS에 전력을 할당하며(S1220), 예를 들어 수학식 3과 같이 DMRS를 포함하지 않는 PUSCH 또는 PUCCH에 전력을 할당한다(S1225). The terminal determines whether simultaneous transmission of the SRS and another uplink channel occurs (S1205). If the SRS and the other uplink transmission occurs at the same time, the terminal determines whether the other uplink transmission is DMRS (S1210). If the other uplink transmission is DMRS, the terminal preferentially allocates power to DMRS (S1215), for example, allocates power to SRS as shown in Equation 2 (S1220), for example, As described above, power is allocated to the PUSCH or the PUCCH not including the DMRS (S1225).
다시 단계 S1210에서, 상기 다른 상향링크 전송이 DMRS가 아니면, 이는 상기 다른 상향링크 전송이 데이터 전송임을 나타내므로, 단말은 예를 들어 수학식 2와 같이 SRS에 전력을 우선적으로 할당하며(S1220), 예를 들어 수학식 3과 같이 DMRS를 포함하지 않는 PUSCH 또는 PUCCH에 전력을 할당한다(S1225). In step S1210, if the other uplink transmission is not DMRS, this indicates that the other uplink transmission is data transmission, and thus, the UE preferentially allocates power to the SRS as shown in Equation 2 (S1220), For example, as shown in Equation 3, power is allocated to the PUSCH or the PUCCH not including the DMRS (S1225).
다시 단계 S1205에서, 만약 SRS와 다른 상향링크 채널의 동시 전송이 발생하지 않으면, 단말은 데이터 전송이 존재하는지 판단하고(S1230), 만약 데이터 전송이 존재하면, 단말은 데이터에 전력을 할당한다(S1225). 만약, 데이터 전송이 존재하지 않으면, 단말은 절차를 종료한다. In step S1205, if simultaneous transmission of the SRS and another uplink channel does not occur, the terminal determines whether data transmission exists (S1230). If data transmission exists, the terminal allocates power to data (S1225). ). If there is no data transmission, the terminal terminates the procedure.
도 13은 본 발명의 일 예에 따른 단말의 구성도이다. 13 is a configuration diagram of a terminal according to an embodiment of the present invention.
도 13을 참조하면, 단말(1400)은 수신부(1305), 단말 프로세서(1310) 및 전송부(1320)를 포함한다. 단말 프로세서는 전력 제어부(1311) 및 신호 생성부(1312)를 포함한다. Referring to FIG. 13, the terminal 1400 includes a receiver 1305, a terminal processor 1310, and a transmitter 1320. The terminal processor includes a power controller 1311 and a signal generator 1312.
수신부(1305)는 기지국(도면에 미도시)으로부터 수신되는 하향링크 신호를 수신한다. 하향링크 신호는 물리계층 신호인 DCI와 SRS의 전송에 관련된 RRC 구성정보를 포함한다. The receiver 1305 receives a downlink signal received from a base station (not shown). The downlink signal includes RRC configuration information related to transmission of DCI and SRS, which are physical layer signals.
전력 제어부(1311)는 총 상향링크 전송전력인 PSRS, PUL 및 PDMRS의 합이 최대전송전력
Figure PCTKR2012011434-appb-I000016
를 초과하는지 판단하고, 단말의 총 상향링크 전송전력이 최대전송전력
Figure PCTKR2012011434-appb-I000017
를 초과하면, 단말은 전력 스케일링(power scaling)을 수행한다. 전력 스케일링의 예는 다음과 같다.
The power control unit 1311 has a maximum transmission power in which the sum of the total uplink transmission power P SRS , P UL, and P DMRS is added.
Figure PCTKR2012011434-appb-I000016
It is determined whether to exceed the total uplink transmission power of the terminal is the maximum transmission power
Figure PCTKR2012011434-appb-I000017
When exceeding, the terminal performs power scaling. An example of power scaling is as follows.
일례로서, 전력 제어부(1311)는 SRS, PUSCH, PUCCH가 서로 다른 밴드에 속하는 복수의 서빙셀상에서 전송되는 경우에 있어서, 우선순위에 기반하여 SRS, PUSCH 또는 PUCCH의 전력 스케일링을 수행할 수 있다. 다른 예로서, 전력 제어부(1311)는 SRS, PUSCH, PUCCH가 서로 다른 밴드에 속하는 복수의 서빙셀상에서 전송되는 경우에 있어서, 감소분담에 기반하여 SRS, PUSCH 또는 PUCCH의 전력 스케일링을 수행할 수 있다. 전력 제어부(1311)가 SC-FDMA 심벌 차원에서 정의된 우선순위에 기반하여 전력 스케일링을 수행하는 경우, 전력 제어부(1311)는 예를 들어 수학식 2 내지 수학식 6에 따라 SRS, PUSCH 또는 PUCCH의 전력 스케일링을 수행한다.As an example, when the SRS, PUSCH, and PUCCH are transmitted on a plurality of serving cells belonging to different bands, the power controller 1311 may perform power scaling of the SRS, PUSCH, or PUCCH based on the priority. As another example, when the SRSs, PUSCHs, and PUCCHs are transmitted on a plurality of serving cells belonging to different bands, the power control unit 1311 may perform power scaling of the SRSs, PUSCHs, or PUCCHs based on a reduction sharing. . When the power control unit 1311 performs power scaling based on the priority defined in the SC-FDMA symbol dimension, the power control unit 1311 may determine the SRS, PUSCH, or PUCCH according to Equation 2 to Equation 6, for example. Perform power scaling.
전력 제어부(1311)가 서브프레임 차원에서 정의된 우선순위에 기반하여 전력 스케일링을 수행하는 경우, 전력 제어부(1311)는 예를 들어 수학식 7 내지 수학식 9에 따라 SRS, PUSCH 또는 PUCCH의 전력 스케일링을 수행한다.When the power control unit 1311 performs power scaling based on the priority defined in the subframe dimension, the power control unit 1311 performs power scaling of the SRS, PUSCH, or PUCCH according to, for example, Equations 7 to 9 below. Do this.
전력 제어부(1311)가 감소분담에 기반하여 전력 스케일링을 수행하는 경우, 전력 제어부(1311)는 예를 들어 수학식 10 또는 수학식 11에 따라 SRS, PUSCH 또는 PUCCH의 전력 스케일링을 수행한다.When the power control unit 1311 performs power scaling based on the reduction sharing, the power control unit 1311 performs power scaling of the SRS, PUSCH, or PUCCH, for example, according to Equation 10 or Equation 11.
신호 생성부(1312)는 SRS 시퀀스를 생성하고, 전력 제어부(1311)에 의해 스케일링된 SRS 전송전력 wPSRS에 일치시키기 위해 상기 생성된 SRS의 시퀀스에 크기 스케일링 인자 βSRS를 곱하고, 상기 βSRS가 곱해진 SRS의 시퀀스를 rP SRS(0)부터 순차적으로 안테나 포트 p상의 자원요소에 맵핑한 후, SC-FDMA 심벌을 생성하여 전송부(1320)로 보낸다. The signal generator 1312 generates an SRS sequence, multiplies the generated sequence of SRSs by a magnitude scaling factor β SRS to match the SRS transmission power wP SRS scaled by the power controller 1311, and β β SRS is After the sequence of the multiplied SRS is sequentially mapped to the resource elements on the antenna port p from r P SRS (0), an SC-FDMA symbol is generated and sent to the transmitter 1320.
전송부(1320)는 다수의 서빙셀상에서 각각 생성되는 SC-FDMA 심벌을 각 서빙셀간의 타이밍 차이를 두고 기지국으로 전송한다. The transmitter 1320 transmits SC-FDMA symbols generated on the plurality of serving cells to the base station with a timing difference between the serving cells.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다. The above description is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains may make various modifications and changes without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited thereto. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.

Claims (14)

  1. 다중 요소 반송파 시스템에서 단말에 의한 전력 제어방법에 있어서, In a power control method by a terminal in a multi-component carrier system,
    제1 서빙셀상에서 상향링크의 상태를 추정하는데 사용되는 기준신호인 사운딩 기준신호(Sounding Reference Signal: SRS)의 전송시점과 겹치는 시점에, 상기 제1 서빙셀과는 다른 밴드에 속하는 제2 서빙셀상에서 전송되는 상향링크 채널과, 상기 사운딩 기준신호 간에 전력할당에 있어서 우선순위를 판단하는 단계; 및A second serving belonging to a band different from the first serving cell at a point of time overlapping with a transmission time of a sounding reference signal (SRS), which is a reference signal used to estimate an uplink state on the first serving cell; Determining a priority in power allocation between an uplink channel transmitted on a cell and the sounding reference signal; And
    상기 우선순위의 판단결과에 기반하여 상기 사운딩 기준신호 또는 상기 상향링크 채널에 대한 전력 스케일링(power scaling)을 수행하는 단계를 포함하되, Performing power scaling on the sounding reference signal or the uplink channel based on the determination result of the priority;
    상기 전력 스케일링은, The power scaling is,
    상기 사운딩 기준신호가 상기 상향링크 채널보다 우선순위가 높으면 상기 사운딩 기준신호에 먼저 전력을 할당하고, 남은 전력과 상기 상향링크 채널의 전송전력 중 더 작은 전력을 상기 상향링크 채널에 할당하고, If the sounding reference signal has a higher priority than the uplink channel, power is first allocated to the sounding reference signal, and a smaller power among the remaining power and the transmission power of the uplink channel is allocated to the uplink channel.
    상기 사운딩 기준신호가 상기 상향링크 채널보다 우선순위가 낮으면 상기 상향링크 채널에 먼저 전력을 할당하고 상기 사운딩 기준신호에 0 전력을 할당하는 단계를 포함하는 것을 특징으로 하는, 전력 제어방법. If the sounding reference signal has a lower priority than the uplink channel, allocating power to the uplink channel first and allocating zero power to the sounding reference signal.
  2. 제 1 항에 있어서, 상기 우선순위를 판단하는 단계는,The method of claim 1, wherein the determining of the priority comprises:
    상기 상향링크 채널이 상향링크 데이터 복조에 사용되는 기준 신호인 데이터 복조 기준신호(DMRS)와 함께 전송되는 경우, 상기 상향링크 채널이 상기 사운딩 기준신호보다 상기 우선순위가 높은 것으로 판단함을 포함함을 특징으로 하는, 전력 제어방법. And when the uplink channel is transmitted with a data demodulation reference signal (DMRS), which is a reference signal used for uplink data demodulation, determining that the uplink channel has a higher priority than the sounding reference signal. Characterized in that, the power control method.
  3. 제 1 항에 있어서, 상기 우선순위를 판단하는 단계는,The method of claim 1, wherein the determining of the priority comprises:
    상기 상향링크 채널이 상향링크 데이터 복조에 사용되는 기준 신호인 데이터 복조 기준신호(DMRS)와 함께 전송되지 않는 경우, 상기 상향링크 채널이 상기 사운딩 기준신호보다 상기 우선순위가 낮은 것으로 판단함을 포함함을 특징으로 하는, 전력 제어방법. If the uplink channel is not transmitted with a data demodulation reference signal (DMRS), which is a reference signal used for uplink data demodulation, it is determined that the uplink channel has a lower priority than the sounding reference signal. Characterized in that the power control method.
  4. 제 2 항 또는 제 3 항에 있어서,The method of claim 2 or 3,
    상기 우선순위는 SC-FDMA(Single Carrier-Frequency Division Multiple Access) 심벌(symbol) 단위에서 판단되거나 혹은 서브프레임(subframe) 단위에서 판단됨을 특징으로 하는, 전력 제어방법. The priority is characterized in that the power is determined in units of Single Carrier-Frequency Division Multiple Access (SC-FDMA) symbols or in units of subframes.
  5. 제 1 항에 있어서, 상기 전력 스케일링을 수행하는 단계는, The method of claim 1, wherein performing power scaling comprises:
    상기 사운딩 기준신호의 전송전력이 상기 남은 전력으로 감소되도록 상기 사운딩 기존신호의 전송전력을 스케일링 인자(scaling factor)에 의해 스케일링하거나, 또는 상기 상향링크 채널의 전송전력이 상기 남은 전력으로 감소되도록 상기 상향링크 채널의 전송전력을 상기 스케일링 인자에 의해 스케일링하는 것을 포함함을 특징으로 하는, 전력 제어방법.The transmission power of the sounding existing signal is scaled by a scaling factor so that the transmission power of the sounding reference signal is reduced to the remaining power, or the transmission power of the uplink channel is reduced to the remaining power. And scaling the transmit power of the uplink channel by the scaling factor.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 상향링크 채널의 전송전력과, 상기 사운딩 기준신호의 전송전력의 합이 상향링크 최대 전송전력을 초과하는 경우, 상기 전력 스케일링이 수행됨을 특징으로 하는, 전력 제어방법. And if the sum of the transmission power of the uplink channel and the transmission power of the sounding reference signal exceeds an uplink maximum transmission power, the power scaling is performed.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 상향링크 채널은 물리 상향링크 제어채널(physical uplink control channel: PUCCH) 또는 물리 상향링크 공용채널(physical uplink shared channel: PUSCH)를 포함하는 것을 특징으로 하는, 전력 제어방법.The uplink channel includes a physical uplink control channel (PUCCH) or a physical uplink shared channel (PUSCH), the power control method.
  8. 다중 요소 반송파 시스템에서 전력을 제어하는 단말에 있어서, A terminal for controlling power in a multi-component carrier system,
    제1 서빙셀상에서 상향링크의 상태를 추정하는데 사용되는 기준신호인 사운딩 기준신호의 전송시점과 겹치는 시점에, 상기 제1 서빙셀과는 다른 밴드에 속하는 제2 서빙셀상에서 전송되는 상향링크 채널과, 상기 사운딩 기준신호 간에 전력할당에 있어서 우선순위를 판단하고, 상기 우선순위의 판단결과에 기반하여 상기 사운딩 기준신호 또는 상기 상향링크 채널에 대한 전력 스케일링을 수행하는 전력 제어부를 포함하되, An uplink channel transmitted on a second serving cell belonging to a band different from the first serving cell at a time point when the sounding reference signal, which is a reference signal used for estimating an uplink state, on the first serving cell overlaps with the transmission time point. And a power control unit configured to determine a priority in power allocation between the sounding reference signals and perform power scaling on the sounding reference signal or the uplink channel based on the determination result of the priority.
    상기 전력 제어부가 수행하는 상기 전력 스케일링은, The power scaling performed by the power control unit,
    상기 사운딩 기준신호가 상기 상향링크 채널보다 우선순위가 높으면 상기 사운딩 기준신호에 먼저 전력을 할당하고, 남은 전력과 상기 상향링크 채널의 전송전력 중 더 작은 전력을 상기 상향링크 채널에 할당하고, If the sounding reference signal has a higher priority than the uplink channel, power is first allocated to the sounding reference signal, and a smaller power among the remaining power and the transmission power of the uplink channel is allocated to the uplink channel.
    상기 사운딩 기준신호가 상기 상향링크 채널보다 우선순위가 낮으면 상기 상향링크 채널에 먼저 전력을 할당하고 상기 사운딩 기준신호에 0 전력을 할당하는 것을 특징으로 하는, 단말.If the sounding reference signal has a lower priority than the uplink channel, power is allocated to the uplink channel first, and 0 power to the sounding reference signal, characterized in that the terminal.
  9. 제 8 항에 있어서, 상기 전력 제어부가 상기 우선순위를 판단하는 과정은,The method of claim 8, wherein the determining of the priority by the power control unit comprises:
    상기 상향링크 채널이 상향링크 데이터 복조에 사용되는 기준 신호인 데이터 복조 기준신호(DMRS)와 함께 전송되는 경우, 상기 상향링크 채널이 상기 사운딩 기준신호보다 상기 우선순위가 높은 것으로 판단함을 포함함을 특징으로 하는, 단말.And when the uplink channel is transmitted with a data demodulation reference signal (DMRS), which is a reference signal used for uplink data demodulation, determining that the uplink channel has a higher priority than the sounding reference signal. Characterized in that, the terminal.
  10. 제 8 항에 있어서, 상기 전력 제어부가 상기 우선순위를 판단하는 과정은,The method of claim 8, wherein the determining of the priority by the power control unit comprises:
    상기 상향링크 채널이 상향링크 데이터 복조에 사용되는 기준 신호인 데이터 복조 기준신호(DMRS)와 함께 전송되지 않는 경우, 상기 상향링크 채널이 상기 사운딩 기준신호보다 상기 우선순위가 낮은 것으로 판단함을 포함함을 특징으로 하는, 단말.If the uplink channel is not transmitted with a data demodulation reference signal (DMRS), which is a reference signal used for uplink data demodulation, it is determined that the uplink channel has a lower priority than the sounding reference signal. Terminal, characterized in that.
  11. 제 9 항 또는 제 10 항에 있어서, 상기 전력제어부는, The method of claim 9 or 10, wherein the power control unit,
    SC-FDMA(Single Carrier-Frequency Division Multiple Access) 심벌(symbol) 단위에서 상기 우선순위를 판단하거나 혹은 서브프레임 단위에서 우선순위를 판단함을 특징으로 하는, 단말.Characterized in that the priority is determined in units of a single carrier-frequency division multiple access (SC-FDMA) symbol or in units of subframes.
  12. 제 8 항에 있어서, 상기 전력 제어부가 상기 전력 스케일링을 수행하는 과정은, The method of claim 8, wherein the power controller performs the power scaling.
    상기 사운딩 기준신호의 전송전력이 상기 남은 전력으로 감소되도록 상기 사운딩 기존신호의 전송전력을 스케일링 인자(scaling factor)에 의해 스케일링하거나, 또는 상기 상향링크 채널의 전송전력이 상기 남은 전력으로 감소되도록 상기 상향링크 채널의 전송전력을 상기 스케일링 인자에 의해 스케일링하는 것을 포함함을 특징으로 하는, 단말.The transmission power of the sounding existing signal is scaled by a scaling factor so that the transmission power of the sounding reference signal is reduced to the remaining power, or the transmission power of the uplink channel is reduced to the remaining power. And scaling the transmit power of the uplink channel by the scaling factor.
  13. 제 8 항에 있어서, 전력 제어부는.The power control unit of claim 8, wherein the power control unit.
    상기 상향링크 채널의 전송전력과, 상기 사운딩 기준신호의 전송전력의 합이 상향링크 최대 전송전력을 초과하는 경우, 상기 전력 스케일링을 수행함을 특징으로 하는, 단말. And if the sum of the transmission power of the uplink channel and the transmission power of the sounding reference signal exceeds an uplink maximum transmission power, performing power scaling.
  14. 제 8 항에 있어서,The method of claim 8,
    상기 상향링크 채널은 물리 상향링크 제어채널(physical uplink control channel: PUCCH) 또는 물리 상향링크 공용채널(physical uplink shared channel: PUSCH)를 포함하는 것을 특징으로 하는, 단말.The uplink channel is characterized in that it comprises a physical uplink control channel (PUCCH) or a physical uplink shared channel (PUSCH).
PCT/KR2012/011434 2011-12-29 2012-12-26 Method and apparatus for controlling transmission power in wireless communication system WO2013100541A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110146067A KR20130077387A (en) 2011-12-29 2011-12-29 Method and apparatus of conrtolling transmission power in wireless communication system
KR10-2011-0146067 2011-12-29

Publications (1)

Publication Number Publication Date
WO2013100541A1 true WO2013100541A1 (en) 2013-07-04

Family

ID=48697908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/011434 WO2013100541A1 (en) 2011-12-29 2012-12-26 Method and apparatus for controlling transmission power in wireless communication system

Country Status (2)

Country Link
KR (1) KR20130077387A (en)
WO (1) WO2013100541A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016021992A1 (en) * 2014-08-08 2016-02-11 엘지전자 주식회사 Method and apparatus for transmitting and receiving wireless signal in wireless communication system
WO2016019513A1 (en) * 2014-08-05 2016-02-11 华为技术有限公司 Terminal, network device, and uplink control information processing method
WO2017039167A1 (en) * 2015-09-04 2017-03-09 삼성전자 주식회사 Method and apparatus for controlling uplink transmission power in wireless communication system
CN107801238A (en) * 2016-09-05 2018-03-13 中兴通讯股份有限公司 The method and apparatus of inter-cell power cooperation under LET scenes
EP3267743A3 (en) * 2013-08-02 2018-05-02 BlackBerry Limited Uplink power sharing control
CN109996323A (en) * 2017-12-29 2019-07-09 中兴通讯股份有限公司 Transmission power determining method and device and transmission demodulation method and device
CN110474747A (en) * 2018-05-11 2019-11-19 中兴通讯股份有限公司 A kind of method for transmitting signals and device and terminal
CN112805955A (en) * 2018-10-05 2021-05-14 苹果公司 Transmission of physical uplink channels and signals for new radio beamforming systems
CN113993200A (en) * 2021-12-27 2022-01-28 四川创智联恒科技有限公司 5GNR downlink channel power adjustment method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101407094B1 (en) 2012-10-31 2014-06-16 엘지전자 주식회사 Method and apparatus for transmitting uplink signal
WO2015069013A1 (en) * 2013-11-08 2015-05-14 주식회사 케이티 Method for controlling uplink transmission power and apparatus thereof
KR101611825B1 (en) 2013-11-08 2016-04-14 주식회사 케이티 Methods for controlling transmit power in an uplink and apppartuses thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110007026A (en) * 2009-07-15 2011-01-21 엘지전자 주식회사 Method and apparatus for controlling uplink power in a wireless communication system
KR20110039172A (en) * 2009-10-09 2011-04-15 삼성전자주식회사 Method of power headroom report, resource allocation and power control
KR20110075744A (en) * 2009-12-29 2011-07-06 엘지전자 주식회사 Terminal and method of controlling uplink transmit power
KR20110093725A (en) * 2010-02-12 2011-08-18 엘지전자 주식회사 Method and apparatus of transmitting data in wireless communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110007026A (en) * 2009-07-15 2011-01-21 엘지전자 주식회사 Method and apparatus for controlling uplink power in a wireless communication system
KR20110039172A (en) * 2009-10-09 2011-04-15 삼성전자주식회사 Method of power headroom report, resource allocation and power control
KR20110075744A (en) * 2009-12-29 2011-07-06 엘지전자 주식회사 Terminal and method of controlling uplink transmit power
KR20110093725A (en) * 2010-02-12 2011-08-18 엘지전자 주식회사 Method and apparatus of transmitting data in wireless communication system

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10932205B2 (en) 2013-08-02 2021-02-23 Blackberry Limited Uplink power sharing control
US11910331B2 (en) 2013-08-02 2024-02-20 Malikie Innovations Limited Uplink power sharing control
US11570721B2 (en) 2013-08-02 2023-01-31 Blackberry Limited Uplink power sharing control
EP3267743A3 (en) * 2013-08-02 2018-05-02 BlackBerry Limited Uplink power sharing control
WO2016019513A1 (en) * 2014-08-05 2016-02-11 华为技术有限公司 Terminal, network device, and uplink control information processing method
US10455527B2 (en) 2014-08-08 2019-10-22 Lg Electronics Inc. Method and apparatus for transmitting and receiving wireless signal in wireless communication system
WO2016021992A1 (en) * 2014-08-08 2016-02-11 엘지전자 주식회사 Method and apparatus for transmitting and receiving wireless signal in wireless communication system
US10694471B2 (en) 2015-09-04 2020-06-23 Samsung Electronics Co., Ltd. Method and apparatus for controlling uplink transmission power in wireless communication system
US10219225B2 (en) 2015-09-04 2019-02-26 Samsung Electronics Co., Ltd. Method and apparatus for controlling uplink transmission power in wireless communication system
US10313980B2 (en) 2015-09-04 2019-06-04 Samsung Electronics Co., Ltd. Method and apparatus for controlling uplink transmission power in wireless communication system
WO2017039167A1 (en) * 2015-09-04 2017-03-09 삼성전자 주식회사 Method and apparatus for controlling uplink transmission power in wireless communication system
CN107801238A (en) * 2016-09-05 2018-03-13 中兴通讯股份有限公司 The method and apparatus of inter-cell power cooperation under LET scenes
CN109996323A (en) * 2017-12-29 2019-07-09 中兴通讯股份有限公司 Transmission power determining method and device and transmission demodulation method and device
CN110474747A (en) * 2018-05-11 2019-11-19 中兴通讯股份有限公司 A kind of method for transmitting signals and device and terminal
CN110474747B (en) * 2018-05-11 2022-01-25 中兴通讯股份有限公司 Signal transmission method and device, and terminal
US11627599B2 (en) 2018-05-11 2023-04-11 Zte Corporation Method and apparatus for signal transmission, and terminal
CN112805955A (en) * 2018-10-05 2021-05-14 苹果公司 Transmission of physical uplink channels and signals for new radio beamforming systems
CN113993200B (en) * 2021-12-27 2022-03-18 四川创智联恒科技有限公司 5GNR downlink channel power adjustment method
CN113993200A (en) * 2021-12-27 2022-01-28 四川创智联恒科技有限公司 5GNR downlink channel power adjustment method

Also Published As

Publication number Publication date
KR20130077387A (en) 2013-07-09

Similar Documents

Publication Publication Date Title
WO2013100541A1 (en) Method and apparatus for controlling transmission power in wireless communication system
WO2011031059A2 (en) Method and apparatus for controlling transmit power in wireless communication system
WO2017200307A1 (en) Method for transmitting uplink control information in wireless communication system, and device therefor
WO2018038525A1 (en) Method and device for transmitting and receiving pscch and pssch by terminal in wireless communication system
WO2013002563A2 (en) Channel state information transmitting method and user equipment, and channel state information receiving method and base station
WO2017135745A1 (en) Method for mapping, transmitting, or receiving uplink control information in wireless communication system and device for same
WO2017196065A1 (en) Method for controlling uplink transmission power in wireless communication system and device therefor
WO2018088857A1 (en) Method for transmitting uplink signal in wireless communication system and device therefor
WO2016153253A1 (en) Method for reporting measurement result for determining position in wireless communication system, and device therefor
WO2015065048A1 (en) Method and apparatus of controlling periodic csi reporting
WO2012057579A2 (en) Method and apparatus for adjusting sound reference signal transmission power
WO2016209056A1 (en) Method and apparatus for transceiving signal of device-to-device communication terminal in wireless communication system
WO2014058257A1 (en) Controlling uplink power
WO2013191360A1 (en) Signal transmission/reception method and apparatus therefor
WO2013141595A1 (en) Method for transmitting or receiving uplink signal
WO2013115605A1 (en) Method and device for transmitting and receiving channel state information in downlink coordinated multi-point system
WO2017026777A1 (en) Method for receiving downlink channel or transmitting uplink channel in wireless communication system and device for same
WO2013009043A2 (en) Method and apparatus for transceiving a downlink harq in a wireless communication system
WO2012021041A2 (en) Apparatus and method for transmission of uplink sounding reference signals in a wireless network
WO2016200093A1 (en) Method for receiving or transmitting sounding reference signal for positioning in wireless communication system and apparatus therefor
WO2018143621A1 (en) Method for supporting plurality of transmission time intervals, plurality of subcarrier intervals or plurality of processing times in wireless communication system, and device therefor
WO2013048143A2 (en) A method and appratus for transmission power control for a sounding reference signal
WO2015142125A1 (en) Method for controlling tpc command timing based on consideration of tdd-fdd aggregation and device therefor
WO2017138802A1 (en) Method and apparatus for transmitting receipt acknowledgement in wireless communication system
WO2016190631A1 (en) Channel sensing in wireless communication system, transmission method based on same, and device therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12862746

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12862746

Country of ref document: EP

Kind code of ref document: A1