WO2013100427A1 - Magnesium deactivating agent and method for preparing a magnesium-alloy using the magnesium deactivating agent - Google Patents

Magnesium deactivating agent and method for preparing a magnesium-alloy using the magnesium deactivating agent Download PDF

Info

Publication number
WO2013100427A1
WO2013100427A1 PCT/KR2012/010547 KR2012010547W WO2013100427A1 WO 2013100427 A1 WO2013100427 A1 WO 2013100427A1 KR 2012010547 W KR2012010547 W KR 2012010547W WO 2013100427 A1 WO2013100427 A1 WO 2013100427A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium
alloy
weight
deactivator
added
Prior art date
Application number
PCT/KR2012/010547
Other languages
French (fr)
Korean (ko)
Inventor
김영민
김하식
유봉선
임창동
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Publication of WO2013100427A1 publication Critical patent/WO2013100427A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/007Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/02Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
    • B22D21/04Casting aluminium or magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/06Alloys based on magnesium with a rare earth metal as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C24/00Alloys based on an alkali or an alkaline earth metal

Definitions

  • the present invention relates to a magnesium deactivator, and more particularly, to a magnesium deactivator input to suppress activation reaction of magnesium when preparing a magnesium alloy, and a method of preparing magnesium using the magnesium deactivator.
  • Magnesium alloy is the lightest alloy with high specific strength and can be applied to various casting and processing processes. It is applicable to almost all fields requiring the weight reduction of automotive parts or electromagnetic parts and has a wide range of applications. Magnesium alloys, however, are electrochemically low-potential, highly active metals, and exhibit strong activity when contacted with oxygen or water. In commercial alloys, the ignition temperature does not exceed 550 ° C. There are still limitations in terms of stability and reliability. Because of this, the scope of use is still limited compared to its potential, and cannot be used especially for applications requiring safety.
  • the present invention solves the above-mentioned problems, and when activating an alloy containing magnesium as an active metal as a main component, the activation reaction of magnesium can be suppressed as much as possible.
  • the purpose is to provide a method.
  • an object of the present invention is to provide a method for producing a magnesium alloy that enables an environmentally friendly manufacturing process that does not use a protective gas that is an environmental pollutant such as SF 6 .
  • an object of the present invention is to provide a method for producing a magnesium alloy that can provide economical and safety by lowering the temperature of the molten metal as much as possible when producing an alloy containing magnesium as an active metal.
  • the present invention provides a configuration in which a magnesium deactivator is added to suppress activation reaction of magnesium in the manufacturing step of magnesium alloy.
  • the magnesium deactivator according to the present invention is added to suppress the activation reaction of magnesium in the manufacturing step of the magnesium alloy, 6% to 41.6% by weight of Ca, 6% to 45% by weight of Y, balance Including Mg and other unavoidable impurities, the content of Ca and Y is characterized by the following equation.
  • the magnesium deactivator contains 6% by weight to 33.8% by weight of Ca, 6% by weight to 42.2% by weight of Y, the balance of Mg and other unavoidable impurities, the content of Ca and Y is It is preferable to follow.
  • the present invention is a method for producing a magnesium alloy using a magnesium, deactivator:
  • the magnesium deactivator comprises 6% by weight to 41.6% by weight of Ca, 6% by weight to 45% by weight of Y, the balance of Mg and other unavoidable impurities, the content of Ca and Y according to the following equation It is characterized by.
  • the magnesium deactivator contains 6% by weight to 33.8% by weight of Ca, 6% by weight to 42.2% by weight of Y, the balance of Mg and other unavoidable impurities, the content of Ca and Y is It is preferable to follow.
  • the reason for limiting the content of each component in the magnesium alloy according to the present invention is as follows.
  • Ca is preferably contained at least 6% by weight.
  • Ca of the magnesium deactivator is preferably contained in 41.6% by weight, preferably 33.8% by weight or less.
  • the amount of magnesium deactivator added to obtain a magnesium alloy of a desired composition is increased, and the alloy to be added is calcified, so that Y is preferably contained by 6 wt% or more.
  • the Y content is preferably contained in 45% by weight, preferably 42.2% by weight or less.
  • the present invention prepared magnesium deactivation to effectively alloy calcium and yttrium in the magnesium alloy melt while maintaining the existing equipment and process conditions in the general melting and casting site.
  • Figure 3 at 700 ° C Mg-Al-Ca state diagram (Fig. 3) to add a magnesium and yttrium in the grayed out area to prepare a magnesium deactivator, and the magnesium deactivator magnesium When added to the alloy, it can be easily alloyed even at about 700 ° C.
  • the equation obtained from the straight line 1 is as follows.
  • the addition amount of the yttrium is preferably controlled within the range in which the equation 1 is satisfied according to the calcium addition amount. For example, when 30% by weight of calcium is added, the yttrium should be controlled to within 22% by weight.
  • the aluminum element when added to the magnesium deactivator having the composition of Mg-Ca— Y, coarse A1 2 Y (melting point: 1490 ° C) may be formed in a large amount, thus inactivating magnesium. It is preferable not to add aluminum to a topic.
  • the magnesium deactivator according to the present invention may include impurities that are inevitably incorporated in the raw material or manufacturing process of the alloy, and especially iron (Fe), silicon ( Si) and nickel (Ni) are components that play a role in deteriorating the corrosion resistance of the final magnesium alloy product. Therefore, the Fe content is 0.004% by weight or less, Si content is 0.04% by weight, Ni content is preferably maintained to 0.001% by weight or less.
  • the magnesium deactivator according to the present invention forms a dense complex oxide layer acting as a protective film on the surface of the molten metal by simply adding it to all kinds of magnesium alloy molten metal, thereby greatly improving the flame retardancy of the magnesium alloy, thereby increasing the flame resistance of the magnesium alloy in the atmosphere or general inert atmosphere (Ar, N 2 ) can be melted, cast and processed, and can suppress spontaneous ignition of chips accumulated in the machining process.
  • the magnesium deactivator according to the present invention does not need to use the SF 6 floating gas when added to the existing commercial magnesium alloy, it is suitable for reducing the manufacturing cost, worker health protection, environmental pollution prevention.
  • the magnesium deactivator according to the present invention can greatly improve the corrosion resistance of the magnesium alloy when added to the magnesium alloy.
  • the magnesium deactivator according to the present invention additional equipment or process conditions It is possible to improve flame retardancy and corrosion resistance at the same time just by adding it to the molten metal without changing.
  • the magnesium alloy containing the magnesium deactivator according to the present invention is extruded, plate, forging material, casting material that can be practically applied to the next-generation automobile, high-speed railway, urban railway, etc. requiring safety with excellent flame resistance and corrosion resistance Can be prepared.
  • 1 is a view showing a state diagram of the Mg—Ca binary alloy.
  • FIG. 2 is a view showing a state diagram of an Mg—Y binary alloy.
  • Figure 3 is a diagram showing the Mg-Ca—Y state diagram at 700 ° C.
  • Figure 4 is a photograph showing the actual appearance of the Mg-30Ca-15Y (% by weight) deactivator prepared according to a preferred embodiment of the present invention.
  • FIG. 5 is a diagram showing the results of EPMA analysis of the molten metal oxide surface layer after Mg-6Zn—ICa-Y (wt%) alloy prepared in accordance with a preferred embodiment of the present invention for 10 minutes at 670 ° C.
  • Figure 6 is a photograph showing the surface change after the immersion test for 8 hours in the AZ31 alloy, AZ31-0.7Ca alloy and AZ31—0.5Ca-0.25Y alloy prepared in accordance with a preferred embodiment of the present invention in a 3.5% NaCl solution.
  • Thread A method of preparing a magnesium alloy using a magnesium deactivator and a magnesium deactivator according to a preferred embodiment of the present invention will be described in detail below. Thread The examples are illustrative only and do not limit the invention.
  • the inventors of the present invention have prepared a magnesium deactivator having a variety of compositions to solve the problems of the prior art described above and to achieve the object of the present invention, the method of manufacturing a magnesium deactivator according to a preferred embodiment of the present invention is as follows. First, Comparative Examples 1 to 3 of Table 1 are commercially available magnesium mother alloys, and the chemical compositions shown in Table 1 are used in this experiment as they are. In Examples 1 to 3 of Table 1, after preparing a raw material of Mg (99.9%), Ca (99.5 or more), and Y (99.5 or more), the raw materials were dissolved and the strength casting method was performed. A magnesium deactivator having the composition described in Examples 1 to 3 was prepared.
  • Magnesium deactivator according to a preferred embodiment of the present invention having the composition Because it contains a large amount of Ca and Y, it is brittle enough to be broken even with a small lamination. In general, the smaller the size of the additive, the better the dissolution and the shorter the time for alloying. As shown in FIG. 4, the small amount of the magnesium deactivator crushed into the small size can be rapidly alloyed when the magnesium alloy is added to the molten metal to be added. have.
  • SF 6 and CO 2 mixed gas was applied to the upper part of the molten metal to prevent oxidation of the molten metal to prevent contact between the molten metal and the atmosphere.
  • the die was cast without using a protective gas using a steel mold (steel mould), a cylindrical billet having a diameter of 55mm, length 100mm for the ignition experiment of the alloy casting material was prepared.
  • Sample 6 Mg-2Sr alloy was prepared by adding 6.7% by weight of Mg-30Sr master alloy of Comparative Example 2 to pure magnesium, and Sample 9 Mg-3Al-0.8Zn-0.22Mn-0.7Ca alloy silver AZ31 alloy. It is manufactured by adding 2.4 weight% of Mg '30Ca master alloy of the comparative example 3 to (Sample 3).
  • sample 10 Mg-6Al-0.7Ca alloy was obtained by adding 2.4 wt% of the Mg-30Ca master alloy of Comparative Example 3 to the Mg ⁇ 6A1 alloy (Sample 2), and the sample 11 Mg-6Al-0.7Ca alloy contained the Mg- It is prepared by adding 1.0% by weight of CaO powder of Comparative Example 4 to 6A1 alloy.
  • sample 11 is distinguished from sample 10 in that some of the added CaO powder is contained in the casting material without being dissolved.
  • Sample 14 Mg-lCa-YY alloy is prepared by adding 5% by weight of XW-B deactivator of Example 2 to pure magnesium
  • Sample 15 Mg-6Al-lCa-LY alloy is carried out in the Mg-6A1 alloy It was prepared by adding 5% by weight of the XW-B deactivator of Example 2.
  • the sample 18, Mg— 8Sn-lAKLZn-0.3Ca-l.0Y alloy is an Mg-8Sn-lAKLZn alloy (sample ) was prepared by adding 3.4% by weight of the XW-C deactivator of Example 3.
  • a chip of a predetermined size was obtained by chip-processing the outer shell of the cylindrical billet manufactured at a constant speed of 0.5 mm depth, pitch 0.1 mm, and 350 rpm.
  • the chip o.ig obtained by the above method was put into a heating furnace maintained at loarc and heated up at a constant speed. In the temperature rising process, the silver started to rise rapidly due to the ignition of the sample was measured by the ignition temperature, and the results are shown in Table 3.
  • the ignition temperature was very low at 373 ° C.
  • the deactivator of Example 3 the ignition temperature was increased to 583 ° C.
  • the reason for this result is that homogenization treatment should be performed at the temperature of about 500 ° C for extrusion or rolling of Mg-8Sn-lAl— ⁇ alloy, which is a processing alloy.
  • the reason for the increase in the ignition temperature of the magnesium alloy through the addition of a magnesium deactivator is as shown in the Electron-Probe Micro- Analyzer (EPMA) results for the surface oxide layer of Mg-6Zn—ICa-lY alloy in Fig. This is because a dense oxide layer composed of CaO and Y 2 O 3 is formed on the surface of Y in contact with the molten metal, and this oxide layer effectively suppresses the continuous reaction of oxygen infiltrating into the molten metal.
  • EPMA Electron-Probe Micro- Analyzer
  • FIG. 6 shows the surface condition after AZ31 alloy, AZ31-0.7Ca alloy and AZ31—0.5Ca-0.25Y alloy were immersed in 3.5% NaCl solution for 8 hours. It can be seen that the corrosion resistance of the AZ31-0.7Ca alloy to which Comparative Example 3 is added is improved compared to the AZ31 alloy having a high corrosion degree on the surface. Generally corrosion is added when 1% or less of calcium is added It is known that the resistance is improved, and the same result can be obtained in this immersion test. On the other hand, in the case of the AZ31-0.5Ca—0.25Y alloy to which the XW-C deactivator of Example 3 was added, it was confirmed that almost no corrosion occurred on the surface. Compared to the AZ31-0.7Ca alloy containing an increase in%, as shown in Example 3, the addition of the deactivator means that the corrosion resistance of the magnesium alloy can be further improved.
  • the magnesium inactivator should be selected differently according to the magnesium alloy composition, and in particular, the optimal inactivator should be selected in consideration of the reactivity between the major elements and Ca and Y in the magnesium alloy.
  • the optimal inactivator should be selected in consideration of the reactivity between the major elements and Ca and Y in the magnesium alloy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Continuous Casting (AREA)

Abstract

The present invention provides a magnesium deactivating agent to be added for improving the flame retardancy and corrosion resistance of magnesium and a magnesium alloy, and more particularly, a magnesium deactivating agent which forms a stable protective film on the surface of magnesium by simply being added into most types of molten magnesium alloy, thus enabling melting and casting in air or a general inert atmosphere, thereby preventing the spontaneous ignition of a chip by significantly improving ignition resistance, and also improving the corrosion resistance and mechanical properties of an alloy. The magnesium deactivating agent according to the present invention is characterized by comprising 60 wt% to 41.6 wt% of Ca, 6 wt% to 45 wt% of Y, and Mg as the remainder, along with other inevitable impurities, wherein the contents of Ca and Y in the magnesium deactivating agent follow the mathematical equation: Y ≤ 64.3 - 1.4 Ca (wt %).

Description

【명세세  [Specifications
【발명의 명칭】  [Name of invention]
마그네슘 비활성화제 및 마그네슘 비활성화제를 이용한 마그네슘 합금의 제조방법  Method of manufacturing magnesium alloy using magnesium deactivator and magnesium deactivator
[기술분야】  [Technical Field]
본 발명은 마그네슘 비활성화제, 더욱 구체적으로, 마그네슘 합금을 제조할 때 마그네슘의 활성화 반웅을 억제하기 위하여 투입되는 마그네슘 비활성화제, 및 상기 마그네슘 비활성화제를 이용하여 마그네슘을 제조하는 방법에 관한 것이다. 【배경기술】  The present invention relates to a magnesium deactivator, and more particularly, to a magnesium deactivator input to suppress activation reaction of magnesium when preparing a magnesium alloy, and a method of preparing magnesium using the magnesium deactivator. Background Art
마그네슘 합금은 높은 비강도를 갖는 최경량의 합금으로서 다양한 주조 및 가공 공정에 적용이 가능하며 자동차 부품이나 전자기 부품 둥 경량화가 요구되는 거의 모든 분야에 적용 가능하고 웅용범위가 넓다. 하지만 마그네슘 합금은 전기화 학적으로 전위가 낮고 상당히 활성적인 금속으로서 산소 혹은 물과 접촉 시 강한 활성반웅을 보이며 상용 합금의 경우 발화온도가 대부분 550 °C를 넘지 않아 때로는 화재를 일으키기도 하는 등 재료의 안정성 및 신뢰성 측면에서 아직 한계를 가진다. 이 때문에 그 용용 잠재력에 비해서 아직 웅용범위가 제한적이며, 특히 안전성을 요 구하는 응용분야에는 사용할 수 없다. Magnesium alloy is the lightest alloy with high specific strength and can be applied to various casting and processing processes. It is applicable to almost all fields requiring the weight reduction of automotive parts or electromagnetic parts and has a wide range of applications. Magnesium alloys, however, are electrochemically low-potential, highly active metals, and exhibit strong activity when contacted with oxygen or water. In commercial alloys, the ignition temperature does not exceed 550 ° C. There are still limitations in terms of stability and reliability. Because of this, the scope of use is still limited compared to its potential, and cannot be used especially for applications requiring safety.
마그네슘 합금의 이러한 활성반웅으로 인해 용해 시에는 플럭스 (flux)나 CO2 + SF6 둥의 불활성 혼합가스를 사용하여 비활성 분위기를 만들어 주어야 한다. 용해 및 정련 시 사용되는 플력스는 염화계이기 때문에, 용탕 처리 조건이 맞지 않을 경 우 잔류 염소가 소재 내부에 잔존하여 내식성을 크게 떨어뜨리는 문제가 있었다. 이러한 단점을 해결하기 위해 플럭스를 사용하는 대신, SF6, CO2 및 Air를 흔합한 분위기에서 용해 및 주조하는 방법이 효과적이다. 하지만, SF6는 지구온실효과가 C02의 23,900배나 되는 지구온실유발 물질로 분류되어 향후 사용규제가 될 것으로 예상된다. Due to this active reaction of the magnesium alloy, it is necessary to use an inert mixed gas of flux or CO 2 + SF 6 to produce an inert atmosphere during dissolution. The melt force used for melting and refining is chlorinated. There was a problem that residual chlorine remained inside the material and greatly degraded the corrosion resistance. Instead of using fluxes to solve these shortcomings, a method of melting and casting SF 6 , CO 2 and Air in a mixed atmosphere is effective. However, SF 6 is classified as a global greenhouse-induced substance with a global greenhouse effect of 23,900 times C0 2 , and is expected to be regulated in the future.
이러한 문제를 보다 근본적으로 해결하기 위하여 마그네슘 합금 자체의 내산 화성을 향상시키기 위한 연구로서 특히 Ca, Be, 희토류금속 첨가를 통한 마그네슘 합금의 발화온도를 향상시키고자 하는 연구들이 진행되어 왔다. 종래에는 내산화 마그네슘 합금에 첨가되는 합금원소 가운데 Ca이 주로 이용되었는데, 그 이유는 Ca 원소의 가격이 회토류 금속에 비해 저렴하고, 독성이 없으며 첨가량 대비 발화온도 상승이 크기 때문이다. 하지만 마그네슘 합금 제조 시 용탕에 Ca을 넣어 용해시키기 위해서는 용탕의 온도를 800 °C 이상의 고온으로 유지해야 하는데, 이 때 융점이 낮 은 마그네슘이 발화 등 활성화 반웅을 일으킬 수 있다. 또한, 용탕의 온도를 고온 으로 유지하기 위해서는 많은 비용이 요구되므로 용탕의 은도를 크게 높일 수 없는 작은 규모의 생산업체의 경우 마그네슘 합금을 제조하는 것이 매우 곤란하고, 설령 제조가 가능하다고 하더라도 많은 비용이 소요되어 경제성이 떨어지는 원인이 된다.In order to solve this problem more fundamentally, researches to improve the oxidation resistance of magnesium alloy itself have been conducted to improve the firing temperature of magnesium alloy, especially by adding Ca, Be and rare earth metals. Conventionally, Ca is mainly used among the alloying elements added to the magnesium oxide alloy, because the price of the Ca element is lower than that of the rare earth metal, it is not toxic, and the ignition temperature is increased with respect to the amount added. However, in order to dissolve Ca by dissolving Ca in the molten alloy, the temperature of the molten metal must be maintained at a high temperature of 800 ° C. or higher. At this time, magnesium having a low melting point may cause activation reaction such as ignition. In addition, it is very expensive to keep the temperature of the melt at a high temperature, so it is very difficult to manufacture magnesium alloys for small scale manufacturers that cannot greatly increase the silver content of the molten metal. This will cause the economy to fall.
【발명의 상세한 설명】 [Detailed Description of the Invention]
[기술적 과제】  [Technical Challenges]
따라서, 본 발명은 상기 종래의 문제점을 해결하고, 활성금속인 마그네슘을 주성분으로 하는 합금을 제조할 때, 마그네슘의 활성화 반웅을 최대한 억제할 수 있 는 방법을 제공하는 것을 목적으로 한다. Therefore, the present invention solves the above-mentioned problems, and when activating an alloy containing magnesium as an active metal as a main component, the activation reaction of magnesium can be suppressed as much as possible. The purpose is to provide a method.
또한, 본 발명은 SF6와 같은 환경오염 유발 물질인 보호가스를 사용하지 않 는 친환경 제조공정을 가능하게 하는 마그네슘 합금의 제조 방법을 제공하는 것을 목적으로 한다. In addition, an object of the present invention is to provide a method for producing a magnesium alloy that enables an environmentally friendly manufacturing process that does not use a protective gas that is an environmental pollutant such as SF 6 .
또한, 본 발명은 활성금속인 마그네슘을 주성분으로 하는 합금을 제조할 때 용탕의 온도를 최대한 낮춤으로써 경제성 및 안전성올 제공할 수 있는 마그네슘 합 금의 제조방법을 제공하는 것을 목적으로 한다.  In addition, an object of the present invention is to provide a method for producing a magnesium alloy that can provide economical and safety by lowering the temperature of the molten metal as much as possible when producing an alloy containing magnesium as an active metal.
【기술적 해결방법】  Technical Solution
상기 목적을 달성하기 위하여 본 발명은 마그네슘 합금의 제조 단계에서 마 그네슘의 활성화 반웅을 억제하기 위하여 마그네슘 비활성화제를 첨가하는 구성을 제시한다.  In order to achieve the above object, the present invention provides a configuration in which a magnesium deactivator is added to suppress activation reaction of magnesium in the manufacturing step of magnesium alloy.
본 발명에 따른 마그네슘 비활성화제는 마그네슘 합금의 제조 단계에서 마그 네슘의 활성화 반응을 억제하기 위하여 첨가되며, 6중량 % 내지 41.6중량 %의 Ca과, 6증량 % 내지 45중량 %의 Y와, 잔부인 Mg 및 기타 불가피한 불순물을 포함하고, Ca 과 Y의 함량은 아래의 수학식을 따르는 것을 특징으로 한다.  The magnesium deactivator according to the present invention is added to suppress the activation reaction of magnesium in the manufacturing step of the magnesium alloy, 6% to 41.6% by weight of Ca, 6% to 45% by weight of Y, balance Including Mg and other unavoidable impurities, the content of Ca and Y is characterized by the following equation.
수학식: Y ≤ 64.3 - 1.4Ca (중량 %)  Equation: Y ≤ 64.3-1.4Ca (% by weight)
또한, 상기 마그네슘 비활성하제는 6중량 % 내지 33.8중량 %의 Ca과, 6중량 % 내지 42.2중량 %의 Y와, 잔부인 Mg 및 기타 불가피한 불순물을 포함하고, Ca과 Y의 함량은 아래의 수학식을 따르는 것이 바람직하다.  In addition, the magnesium deactivator contains 6% by weight to 33.8% by weight of Ca, 6% by weight to 42.2% by weight of Y, the balance of Mg and other unavoidable impurities, the content of Ca and Y is It is preferable to follow.
수학식 : Y < 50.0 - 1.3Ca (중량 %) 또한, 본 발명은 마그네슘、비활성화제를 이용한 마그네슘 합금의 제조 방법 으로서: Equation: Y <50.0-1.3Ca (wt%) In addition, the present invention is a method for producing a magnesium alloy using a magnesium, deactivator:
750 °C 이하에서 용해가능한 마그네슘 비활성화제를 형성하는 단계; Forming a magnesium deactivator soluble at 750 ° C. or lower;
적어도 마그네슘을 포함하는 마그네슘 합금 용탕을 형성하는 단계;  Forming a magnesium alloy melt containing at least magnesium;
상기 마그네슘 합금 용탕에 상기 750 °C 이하에서 용해가능한 마그네슘 비활 성화제를 투입하는 단계; Injecting a magnesium inactivator soluble in the magnesium alloy melt at 750 ° C or less;
상기 마그네슘 비활성화제가 포함된 용탕을 소정의 주조 방법을 이용하여 마 그네슘 합금 주조재를 제조항는 단계를 포함하고,  Manufacturing a molten magnesium alloy casting material by using a predetermined casting method for the molten metal including the magnesium deactivator,
상기 마그네슘 비활성화제는 6중량 % 내지 41.6증량 %의 Ca과, 6중량 % 내지 45중량 %의 Y와, 잔부인 Mg 및 기타 불가피한 불순물을 포함하고, Ca과 Y의 함량 은 아래의 수학식을 따르는 것을 특징으로 한다.  The magnesium deactivator comprises 6% by weight to 41.6% by weight of Ca, 6% by weight to 45% by weight of Y, the balance of Mg and other unavoidable impurities, the content of Ca and Y according to the following equation It is characterized by.
수학식: Y < 64.3― 1.4Ca (중량 %)  Equation: Y <64.3― 1.4Ca (wt%)
또한, 상기 마그네슘 비활성하제는 6중량 % 내지 33.8중량 %의 Ca과, 6중량 % 내지 42.2중량 %의 Y와, 잔부인 Mg 및 기타 불가피한 불순물을 포함하고, Ca과 Y의 함량은 아래의 수학식을 따르는 것이 바람직하다.  In addition, the magnesium deactivator contains 6% by weight to 33.8% by weight of Ca, 6% by weight to 42.2% by weight of Y, the balance of Mg and other unavoidable impurities, the content of Ca and Y is It is preferable to follow.
수학식: Y < 50.0 - 1.3Ca (증량 %)  Equation: Y <50.0-1.3Ca (increase%)
본 발명에 따른 마그네슘 합금에서 각 성분의 함량을 한정한 이유는 각각 다 음과 같다.  The reason for limiting the content of each component in the magnesium alloy according to the present invention is as follows.
칼습 (Ca)  Calp (Ca)
Ca의 함량이 작을 경우 원하는 조성의 마그네슘 합금을 얻기 위해서 첨가되 는 마그네슘 비활성화제의 양이 많아지고 첨가하고자 하는 합금을 회석화하게 되므 로, Ca은 6중량 % 이상 함유되는 것이 바람직하다. 또한, Ca의 함량이 너무 많을 경우 마그네슘 비활성화제의 용융 온도가 높아져서 마그네슘 합금의 제조 시 용탕 의 은도를 낮추려는 목적을 달성하기 곤랜해진다. 따라서, 마그네슘 비활성화제의 Ca은 41.6증량 %, 바람직하게는 33.8중량 % 이하로 포함되는 것이 바람직하다. When the content of Ca is small, it is added to obtain a magnesium alloy of the desired composition. Since the amount of magnesium deactivator increases and the alloy to be added is calcified, Ca is preferably contained at least 6% by weight. In addition, when the content of Ca is too high, the melting temperature of the magnesium deactivator becomes high, which makes it difficult to achieve the purpose of lowering the silver content of the molten metal in the manufacture of the magnesium alloy. Therefore, Ca of the magnesium deactivator is preferably contained in 41.6% by weight, preferably 33.8% by weight or less.
이트륨 (Y)  Yttrium (Y)
γ의 함량이 작을 경우 원하는 조성의 마그네슘 합금을 얻기 위해서 첨가되 는 마그네슘 비활성화제의 양이 많아지고 첨가하고자 하는 합금을 회석화하게 되므 로, Y은 6중량 % 이상 함유되는 것이 바람직하다. 또한 Y의 함량이 너무 많을 경 우 마그네슘 비활성화제의 용융 온도가 높아져서 마그네슘 합금의 제조 시 용탕의 온도를 낮추려는 목적을 달성하기 곤랜해진다. 따라서, 마그네슘 비활성화제의 Y은 45중량 %, 바람직하게는 42.2증량 % 이하로 포함되는 것이 바람직하다.  When the content of γ is small, the amount of magnesium deactivator added to obtain a magnesium alloy of a desired composition is increased, and the alloy to be added is calcified, so that Y is preferably contained by 6 wt% or more. In addition, when the Y content is too high, the melting temperature of the magnesium deactivator becomes high, which makes it difficult to achieve the purpose of lowering the temperature of the molten metal in the manufacture of the magnesium alloy. Therefore, the Y of the magnesium deactivator is preferably contained in 45% by weight, preferably 42.2% by weight or less.
Ca-Y의 합산 함량  Total content of Ca-Y
칼슘과 이트름이 복합첨가되면 칼슘과 이트륨이 개별적으로 첨가된 합금보다 난연성과 내식성이 크게 향상된다. 이것은 칼슘 산화물과 이트름 산화물이 고상 및 액상의 마그네슘 합금 표면에 치밀한 보호막을 형성하여 외부 산소와의 반웅을 효 과적으로 억제시켜 주기 때문이다. 또한 칼슘이 단독으로 첨가된 합금에 비해 칼슘 과 이트름이 소량 복합첨가되면 내식성 또한 향상시킬 수 있다. 한편, 도 1과 도 2 에서 칼슘과 이트륨의 융점은 각각 840°C 와 1522°C로 마그네슘에 비해 상대적으로 매우 높은 편아라 마그네슘 합금에 칼슘과 이트륨을 첨가하기 위해서는 약 840°C 이상의 은도로 올려야 한다. 일반 용해 및 주조 업체의 경우 대용량의 용탕을 84 0°C 이상으로 가열하는 것은 제조비용의 큰 상승을 의미하므로 칼슘과 이트륨을 직접 용탕에 투입하는 방법은 바람직하지 않다. 따라서 본 발명은 일반 용해 및 주 조 현장에서 기존 장비 및 공정조건을 그대로 유지하면서 마그네슘 합금 용탕에 칼 슘과 이트륨을 효과적으로 합금화할 수 있도록 마그네슘 비활성화를 제조하였다. 또한, 도 3에서 볼 수 있듯이, 700°C에서 Mg-Al-Ca 상태도 (도 3)에서 회색 으로 표시된 영역에서 칼슘과 이트름을 첨가하여 마그네슘 비활성화제를 제조하고, 이 마그네슘 비활성화제를 마그네슘 합금에 첨가할 경우 약 700°C 정도의 용해 은 도에서도 쉽게 합금화가 가능하다. 도 3에서 직선 1로부터 구해지는 수학식은 다음 과 같으며 이트름의 첨가량은 칼슘 첨가량에 따라 수학식 1이 만족되는 범위 내에 서 제어하는 것이 바람직하다. 예를 들어 칼슘이 30증량 % 첨가될 시 이트름은 22 중량 % 이내로 제어해야 한다. When calcium and yttrium are added in combination, flame retardancy and corrosion resistance are significantly improved compared to alloys in which calcium and yttrium are separately added. This is because calcium oxide and yttrium oxide effectively form a dense protective film on the surface of the solid and liquid magnesium alloy to effectively suppress reaction with external oxygen. In addition, when a small amount of calcium and yttrium is added in combination with an alloy added with calcium alone, corrosion resistance may also be improved. Meanwhile, the melting points of calcium and yttrium in FIGS. 1 and 2 are 840 ° C and 1522 ° C, respectively, which are relatively high compared to magnesium, and are about 840 ° C to add calcium and yttrium to the magnesium alloy. Should be raised to the above silver. In the case of general melting and casting companies, heating large amounts of molten metal to 84 0 ° C or higher means a large increase in manufacturing costs, so the method of directly injecting calcium and yttrium into the molten metal is undesirable. Therefore, the present invention prepared magnesium deactivation to effectively alloy calcium and yttrium in the magnesium alloy melt while maintaining the existing equipment and process conditions in the general melting and casting site. In addition, as can be seen in Figure 3, at 700 ° C Mg-Al-Ca state diagram (Fig. 3) to add a magnesium and yttrium in the grayed out area to prepare a magnesium deactivator, and the magnesium deactivator magnesium When added to the alloy, it can be easily alloyed even at about 700 ° C. In FIG. 3, the equation obtained from the straight line 1 is as follows. The addition amount of the yttrium is preferably controlled within the range in which the equation 1 is satisfied according to the calcium addition amount. For example, when 30% by weight of calcium is added, the yttrium should be controlled to within 22% by weight.
수학식 1  Equation 1
Y(wt.%) < 64.3 - 1.4 Ca(wt.%)  Y (wt.%) <64.3-1.4 Ca (wt.%)
더욱 바람직하게는, 액상 단상 영역에 해당되는 직선 2로부터 구해지는 식 2 에 따라 칼슘과 이트륨의 함량을 제어하는 것이 바람직하다.  More preferably, it is preferable to control the content of calcium and yttrium according to equation (2) obtained from straight line 2 corresponding to the liquid single phase region.
수학식 2  Equation 2
Y(wt. ) < 50.0 - 1.3 Ca(wt.%)  Y (wt.) <50.0-1.3 Ca (wt.%)
한편, Mg-Ca— Y의 조성을 갖는 마그네슘 비활성화제에 알루미늄 원소가 첨 가될 경우 조대한 A12Y (융점: 1490°C)가 다량 형성될 수 있으므로 마그네슘 비활성 화제에 알루미늄은 첨가하지 않는 것이 바람직하다. On the other hand, when the aluminum element is added to the magnesium deactivator having the composition of Mg-Ca— Y, coarse A1 2 Y (melting point: 1490 ° C) may be formed in a large amount, thus inactivating magnesium. It is preferable not to add aluminum to a topic.
기타 불가피한 불순물  Other unavoidable impurities
본 발명에 따른 마그네슘 비활성화제에는 합금의 원료 또는 제조과정에서 불 가피하게 혼입되는 불순물을 포함할 수 있으며, 본 발명에 따른 마그네슘 비활성화 제에 포함될 수 있는 볼순물 증에서 특히 철 (Fe), 실리콘 (Si) 및 니켈 (Ni)은 최종 마 그네슘 합금 제품의 내식성을 악화시키는 역할을 하는 성분이다. 따라서 Fe의 함량 은 0.004증량 % 이하, Si의 함량은 0.04증량 %, Ni의 함량은 0.001중량 % 이하를 유지 하도록 하는 것이 바람직하다.  The magnesium deactivator according to the present invention may include impurities that are inevitably incorporated in the raw material or manufacturing process of the alloy, and especially iron (Fe), silicon ( Si) and nickel (Ni) are components that play a role in deteriorating the corrosion resistance of the final magnesium alloy product. Therefore, the Fe content is 0.004% by weight or less, Si content is 0.04% by weight, Ni content is preferably maintained to 0.001% by weight or less.
【유리한 효과】  Advantageous Effects
본 발명에 따른 마그네슘 비활성화제는 모든 종류의 마그네슘 합금 용탕에 첨가하는 것만으로 용탕 표면에 보호피막으로 작용하는 치밀한 복합 산화층을 형성 하여 마그네슘 합금의 난연성을 크게 향상시킴으로써 대기 중이나 일반적인 불활성 분위기 (Ar, N2)에서 용해, 주조 및 가공이 가능하고, 기계가공 공정에서 쌓이는 칩의 자연발화를 억제할 수 있다. The magnesium deactivator according to the present invention forms a dense complex oxide layer acting as a protective film on the surface of the molten metal by simply adding it to all kinds of magnesium alloy molten metal, thereby greatly improving the flame retardancy of the magnesium alloy, thereby increasing the flame resistance of the magnesium alloy in the atmosphere or general inert atmosphere (Ar, N 2 ) can be melted, cast and processed, and can suppress spontaneous ignition of chips accumulated in the machining process.
또한, 본 발명에 따른 마그네슘 비활성화제는 기존 상용 마그네슘 합금에 첨 가될 경우 SF6 둥의 가스를 사용할 필요가 없어 제조비용 감소, 작업자 건강보호, 환경오염방지에 적합하다. In addition, the magnesium deactivator according to the present invention does not need to use the SF 6 floating gas when added to the existing commercial magnesium alloy, it is suitable for reducing the manufacturing cost, worker health protection, environmental pollution prevention.
또한, 본 발명에 따른 마그네슘 비활성화제는 마그네슘 합금에 첨가될 경우 추가적으로 마그네슘 합금의 내식성을 크게 향상시킬 수 있다.  In addition, the magnesium deactivator according to the present invention can greatly improve the corrosion resistance of the magnesium alloy when added to the magnesium alloy.
또한, 본 발명에 따른 마그네슘 비활성화제는 추가적인 설비 혹은 공정조건 의 변경 없이 용탕에 첨가하는 것만으로 난연성과 내식성을 동시에 향상시킬 수 있 다. In addition, the magnesium deactivator according to the present invention additional equipment or process conditions It is possible to improve flame retardancy and corrosion resistance at the same time just by adding it to the molten metal without changing.
또한, 본 발명에 따른 마그네슘 비활성화제를 첨가한 마그네슘 합금은 난연 성 및 내식성이 우수하여 안전성을 요구하는 차세대 자동차, 고속철도, 도심철도 등 에 실제적 적용이 가능한 압출재, 판재, 단조재, 주조재 둥으로 제조될 수 있다.  In addition, the magnesium alloy containing the magnesium deactivator according to the present invention is extruded, plate, forging material, casting material that can be practically applied to the next-generation automobile, high-speed railway, urban railway, etc. requiring safety with excellent flame resistance and corrosion resistance Can be prepared.
[도면의 간단한 설명】  [Brief Description of Drawings]
도 1은 Mg— Ca이원계 합금의 상태도를 보여주는 도면이다.  1 is a view showing a state diagram of the Mg—Ca binary alloy.
도 2는 Mg— Y 이원계 합금의 상태도를 보여주는 도면이다.  2 is a view showing a state diagram of an Mg—Y binary alloy.
도 3은 700 °C에서의 Mg-Ca— Y상태도를 보여주는 도면이다.  Figure 3 is a diagram showing the Mg-Ca—Y state diagram at 700 ° C.
도 4는 본 발명의 바람직한 실시예에 따라 제조한 Mg— 30Ca— 15Y (중량 %) 비 활성화제의 실제 모습을 보여주는 사진이다.  Figure 4 is a photograph showing the actual appearance of the Mg-30Ca-15Y (% by weight) deactivator prepared according to a preferred embodiment of the present invention.
도 5는 본 발명의 바람직한 실시예에 따라 제조한 Mg-6Zn— ICa-lY (중량 %) 합금을 670°C에서 10분 간 유지한 후 용탕 표면 산화층의 EPMA 분석 결과를 도시 하는 도면이다. 5 is a diagram showing the results of EPMA analysis of the molten metal oxide surface layer after Mg-6Zn—ICa-Y (wt%) alloy prepared in accordance with a preferred embodiment of the present invention for 10 minutes at 670 ° C.
도 6은 본 발명의 바람직한 실시예에 따라 제조한 AZ31 합금과 AZ31-0.7Ca 합금 및 AZ31— 0.5Ca-0.25Y 합금을 3.5%NaCl 용액에서 8시간 동안 침지시험한 후 표면 변화를 보여주는 사진이다.  Figure 6 is a photograph showing the surface change after the immersion test for 8 hours in the AZ31 alloy, AZ31-0.7Ca alloy and AZ31—0.5Ca-0.25Y alloy prepared in accordance with a preferred embodiment of the present invention in a 3.5% NaCl solution.
【발명을 실시하기 위한 최선의 형태】  [The best form to carry out invention]
본 발명의 바람직한 실시예에 따른 마그네슘 비활성화제 및 마그네슘 비활성 화제를 이용한 마그네슘 합금의 제조방법을 이하에서 상세히 설명한다. 하기의 실 시예는 단지 예시적인 것으로 본 발명을 한정하는 것이 아니다ᅳ A method of preparing a magnesium alloy using a magnesium deactivator and a magnesium deactivator according to a preferred embodiment of the present invention will be described in detail below. Thread The examples are illustrative only and do not limit the invention.
본 발명의 발명자들은 전술한 종래기술의 문제점을 해결하고 본 발명의 목적 을 달성하기 위해 다양한 조성을 갖는 마그네슘 비활성화제를 제조하였는데, 본 발 명의 바람직한 실시예에 따른 마그네슘 비활성화제의 제조방법은 아래와 같다. 먼저, 표 1의 비교예 1 내지 비교예 3은 상업적으로 판매가 되고 있는 마그 네슘 모합금으로서, 표 1에 나타난 화학조성 가지는 모합금 그대로 본 실험에서 사용한다. 표 1의 실시예 1 내지 실시예 3은 Mg(99.9%), Ca(99.5 이상), Y(99.5 이상)의 원료 물질을 준비한 후, 상기 원료를 용해하고 증력 주조방법을 이용하여 하기 표 1의 실시예 1 내지 실시예 3에 기재된 조성을 가지는 마그네슘 비활성화제 를 제조하였다. 특히, 융점이 상대적으로 높은 Ca, Y을 마그네슘 용탕에 투입하여 합금화시키기 위해서, 유도 용해로에서 850°C 내지 900°C까지 용탕의 은도를 을려서 이들 원소를 완전 용해시킨 후, 주조온도까지 서서히 냉각한 후 주조하여 마그네슘 비활성화제를 제조하였다.  The inventors of the present invention have prepared a magnesium deactivator having a variety of compositions to solve the problems of the prior art described above and to achieve the object of the present invention, the method of manufacturing a magnesium deactivator according to a preferred embodiment of the present invention is as follows. First, Comparative Examples 1 to 3 of Table 1 are commercially available magnesium mother alloys, and the chemical compositions shown in Table 1 are used in this experiment as they are. In Examples 1 to 3 of Table 1, after preparing a raw material of Mg (99.9%), Ca (99.5 or more), and Y (99.5 or more), the raw materials were dissolved and the strength casting method was performed. A magnesium deactivator having the composition described in Examples 1 to 3 was prepared. In particular, in order to alloy Ca and Y with a relatively high melting point in a magnesium molten alloy, they are completely dissolved by melting the silver of the molten metal from 850 ° C to 900 ° C in an induction furnace, and then gradually cooled to the casting temperature. After casting, a magnesium deactivator was prepared.
【표 1】 Table 1
Figure imgf000011_0001
상기 조성을 갖는 본 발명의 바람직한 실시예에 따른 마그네슘 비활성화제는 다량의 Ca과 Y이 함유되어 있어 작은 층격으로도 파쇄할 수 있을 정도로 취성이 강 한 편이다. 일반적으로 첨가제의 크기가 작을수록 용해가 잘 되고 합금화를 위한 시간이 단축되므로, 도 4에서 볼 수 있듯이 작은 크기로 파쇄된 마그네슘 비활성화 제는 첨가하고자 하는 마그네슘 합금 용탕에 투입될 시 빠르게 합금화가 진행될 수 있다.
Figure imgf000011_0001
Magnesium deactivator according to a preferred embodiment of the present invention having the composition Because it contains a large amount of Ca and Y, it is brittle enough to be broken even with a small lamination. In general, the smaller the size of the additive, the better the dissolution and the shorter the time for alloying. As shown in FIG. 4, the small amount of the magnesium deactivator crushed into the small size can be rapidly alloyed when the magnesium alloy is added to the molten metal to be added. have.
표 1의 비교예 1 내지 비교예 3의 조성을 가지는 마그네슘 모합금과 비교예 4의 CaO 분말 및 실시예 1 내지 '실시예 3의 조성을 가지는 마그네슘 비활성화제를 순 마그네슘 혹은 다양한 조성을 가지는 마그네슘 합금에 첨가하여 마그네슘 합금 을 제조한 후 첨가 효과를 비교하였으며, 첨가 후 최종 제품의 조성은 표 2에 나타 내었다. 또한, 실시예 및 비교예에 따른 CaO 분말, 마그네슘 모합금 및 마그네슘 비활성화제의 첨가온도는 700°C이고, 마그네슘 용탕에 첨가 후 합금화를 위해 5~20 분 간 유지하였다. 합금화가 마무리되기 전까지는 용탕의 산화를 방지하기 위해 SF6와 C02 혼합가스를 용탕 상부에 도포하여 용탕과 대기가 접촉하는 것을 차단하 였다. 또한, 용해가 완료된 후에는 철계 금형 (steel mould)을 사용하여 보호가스를 사용하지 않고 금형 주조하였으며, 합금 주조재의 발화실험을 위해 직경 55mm, 길 이 100mm의 원통형 빌렛을 제조하였다. Table 1 Comparative Example 1 to Comparative Example 3, the composition and having magnesium added to the parent CaO powder of the alloy of Comparative Example 4 and Examples 1 to 'inactive magnesium having performed the composition of Example 3. The net magnesium or magnesium alloy having different composition of the After the magnesium alloy was prepared, the effects of addition were compared, and the composition of the final product after addition was shown in Table 2. In addition, the addition temperature of the CaO powder, magnesium master alloy and magnesium deactivator according to Examples and Comparative Examples is 700 ° C., and maintained for 5 to 20 minutes for alloying after addition to the magnesium molten metal. Until the alloying was finished, SF 6 and CO 2 mixed gas was applied to the upper part of the molten metal to prevent oxidation of the molten metal to prevent contact between the molten metal and the atmosphere. In addition, after the melting is completed, the die was cast without using a protective gas using a steel mold (steel mould), a cylindrical billet having a diameter of 55mm, length 100mm for the ignition experiment of the alloy casting material was prepared.
【표 2】
Figure imgf000013_0001
표 2에서 시료 6 Mg-2Sr 합금은 순 마그네슘에 비교예 2의 Mg-30Sr 모합 금을 6.7중량 % 첨가하여 제조한 것이며, 시료 9 Mg-3Al-0.8Zn-0.22Mn-0.7Ca 합금 은 AZ31 합금 (시료 3)에 비교예 3의 Mgᅳ 30Ca모합금을 2.4중량 % 첨가하여 제조한 것이다. 마찬가지로, 시료 10 Mg-6Al-0.7Ca 합금은 Mgᅳ 6A1 합금 (시료 2)에 비교예 3의 Mg— 30Ca 모합금을 2.4중량 % 첨가한 것이며, 시료 11 Mg-6Al-0.7Ca 합금은 Mg-6A1 합금에 비교예 4의 CaO 분말을 1.0증량 % 첨가하여 제조한 것이다. 또한, 시료 11은 첨가된 CaO 분말 가운데 일부는 용해되지 않은 채로 주조재에 포함되어 있는 점에서 시료 10과 구분된다.
Table 2
Figure imgf000013_0001
In Table 2, Sample 6 Mg-2Sr alloy was prepared by adding 6.7% by weight of Mg-30Sr master alloy of Comparative Example 2 to pure magnesium, and Sample 9 Mg-3Al-0.8Zn-0.22Mn-0.7Ca alloy silver AZ31 alloy. It is manufactured by adding 2.4 weight% of Mg '30Ca master alloy of the comparative example 3 to (Sample 3). Similarly, the sample 10 Mg-6Al-0.7Ca alloy was obtained by adding 2.4 wt% of the Mg-30Ca master alloy of Comparative Example 3 to the Mg ᅳ 6A1 alloy (Sample 2), and the sample 11 Mg-6Al-0.7Ca alloy contained the Mg- It is prepared by adding 1.0% by weight of CaO powder of Comparative Example 4 to 6A1 alloy. In addition, sample 11 is distinguished from sample 10 in that some of the added CaO powder is contained in the casting material without being dissolved.
한편, 시료 14 Mg-lCa-lY 합금은 순 마그네슘에 실시예 2인 XW-B 비활성 화제를 5중량 % 첨가하여 제조한 것이며, 시료 15 Mg-6Al-lCa-lY 합금은 Mg— 6A1 합금에 실시예 2인 XW-B 비활성화제를 5증량 % 첨가하여 제조한 것이다. 마찬가 지로 시료 18인 Mg— 8Sn-lAKLZn-0.3Ca-l.0Y 합금은 Mg-8Sn-lAKLZn 합금 (시료 )에 실시예 3인 XW-C 비활성화제를 3.4증량 % 첨가하여 제조한 것이다. On the other hand, Sample 14 Mg-lCa-YY alloy is prepared by adding 5% by weight of XW-B deactivator of Example 2 to pure magnesium, Sample 15 Mg-6Al-lCa-LY alloy is carried out in the Mg-6A1 alloy It was prepared by adding 5% by weight of the XW-B deactivator of Example 2. Similarly, the sample 18, Mg— 8Sn-lAKLZn-0.3Ca-l.0Y alloy, is an Mg-8Sn-lAKLZn alloy (sample ) Was prepared by adding 3.4% by weight of the XW-C deactivator of Example 3.
마그네슘 합금의 발화온도 측정  Ignition temperature measurement of magnesium alloy
상기 마그네슘 합금의 발화온도를 측정하기 위하여, 앞에서 제조된 원통형 빌렛의 외각을 깊이 0.5mm, 피치 O.lmm, 350rpm의 일정한 속도로 칩 가공하여 일 정한 크기의 칩을 얻었다. 상기 방법으로 얻은 칩 o.ig을 loarc로 유지되는 가열 로 안으로 일정한 속도로 넣어서 승온시켰다. 승온 과정에서 시료의 발화로 인해 급격한 온도 상승이 시작되는 은도를 발화온도로 측정하고, 그 결과를 표 3에 나타 내었다.  In order to measure the ignition temperature of the magnesium alloy, a chip of a predetermined size was obtained by chip-processing the outer shell of the cylindrical billet manufactured at a constant speed of 0.5 mm depth, pitch 0.1 mm, and 350 rpm. The chip o.ig obtained by the above method was put into a heating furnace maintained at loarc and heated up at a constant speed. In the temperature rising process, the silver started to rise rapidly due to the ignition of the sample was measured by the ignition temperature, and the results are shown in Table 3.
【표 3】  Table 3
Figure imgf000014_0001
표 3에서 비교예 1의 Mg-30Zr모합금을 첨가한 시료 13의 발화온도는 577°C 이며, 비교예 1을 첨가하지 않은 시료 4에 비해 발화온도가 불과 31°C 증가하는데 그쳤다. 따라서 비교예 1의 Mg— 30Zr모합금은 마그네슘 합금의 발화저항성을 향상 시키는데 효과적이지 않음을 확인할 수 있다. 반면, 고온용 내열 마그네슘 합금에 주로 첨가되는 Ca와 Sr을 함유하는 비교예 2와 비교예 3의 Mg— 30Sr과 Mg_30Ca 모합금 2 중량 %을 각각 마그네슘에 첨가할 경우, 표 3의 시료 6과 시료 7의 발화온 도에서 확인할 수 있듯이 모합금이 첨가되지 않은 1번의 순 마그네슘에 비해 각각 146°C와 266°C의 발화온도 증가가 있었다. 이로부터, 동일한 첨가량에 대해서 마그 네슘의 발화저항성 향상은 Sr에 비해 Ca이 보다 효과적인 것으로 판단할 수 있다. 또한, Mg-6A1 합금에 Ca이 0.7증량 % 첨가된 시료 11과 Ca와 유사한 효과를 가지 는 비교예 4의 CaO 분말을 Mg-6A1 합금에 첨가한 시료 12번의 발화온도를 표 3에 서 비교하면, 비록 0.7 증량 %로 동일한 양의 Ca을 함유하더라도 비교예 3의 Mg-30Ca모합금을 첨가하는 것이 비교예 4의 CaO 분말을 첨가하는 것보다 발화저 항성 향상에 더 효과적임을 확인할 수 있다.
Figure imgf000014_0001
In Table 3, the ignition temperature of Sample 13 to which the Mg-30Zr mother alloy of Comparative Example 1 was added was 577 ° C, and the ignition temperature increased by only 31 ° C compared to Sample 4 to which Comparative Example 1 was not added. I stopped. Therefore, it can be seen that the Mg-30Zr mother alloy of Comparative Example 1 is not effective in improving the ignition resistance of the magnesium alloy. On the other hand, when 2 wt% of Mg— 30Sr and Mg_30Ca master alloy of Comparative Example 2 and Comparative Example 3 containing Ca and Sr mainly added to the high temperature heat-resistant magnesium alloy were added to magnesium, Sample 6 and Sample in Table 3 As can be seen from the ignition temperature of 7, there was an increase in the ignition temperature of 146 ° C and 266 ° C, respectively, compared with 1 pure magnesium without the master alloy. From this, it can be judged that Ca is more effective than Sr in improving the fire resistance of magnesium for the same amount of addition. In addition, comparing the ignition temperatures of sample 11 in which 0.7% by weight of Ca was added to Mg-6A1 alloy and sample 12 in which CaO powder of Comparative Example 4 having a similar effect to Ca were added to Mg-6A1 alloy, are compared in Table 3. , Even though it contains the same amount of Ca in 0.7% by weight, it can be confirmed that adding the Mg-30Ca master alloy of Comparative Example 3 is more effective in improving the fire resistance than adding the CaO powder of Comparative Example 4.
또한, 표 3에서 시료 6 내지 시료 13의 발화온도와 시료 14 내지 시료 18의 발화온도를 비교하면, 순 마그네슘 혹은 마그네슘 합금에 실시예 1 내지 3의 비활성 화제를 첨가한 경우가 비교예 1 내지 4의 물질을 첨가한 경우에 비해 발화은도가 더욱 증가하는 것을 알 수 있다. 표 3에서 Mg-6Zn 합금에 비교예 1을 1.8 중량 % 첨가한 시료 13에 비해 동일 합금에 실시예 2를 5.0 중량 % 첨가한 시료 17번의 발 화온도가 약 120 °C 더 높으며, AZ31 합금에 비교예 3을 2.4증량 % 첨가한 시료 9에 비해 동일 합금에 실시예 1을 첨가한 시료 16의 발화온도가 n°C 더 높음을 확인할 수 있다. 또한, 순 마그네슘에 비교예 2를 6.7증량 % 첨가한 시료 6에 비해 순 마그 네슘에 실시예 2를 5.0중량 % 첨가한 시료 14의 발화은도가 42°C 더 높은 것을 확인 할 수 있다. In addition, in Table 3, when comparing the ignition temperatures of Samples 6 to 13 and the ignition temperatures of Samples 14 to 18, the case where the inactivating agent of Examples 1 to 3 was added to pure magnesium or magnesium alloy was Comparative Examples 1 to 4. It can be seen that the degree of ignition silver is further increased as compared with the case of adding the substance. In Table 3, the ignition temperature of sample No. 17 with 5.0 wt% of Example 2 added to the same alloy was about 120 ° C higher than that of Sample 13 with 1.8 wt% of Comparative Example 1 added to the Mg-6Zn alloy. It can be confirmed that the ignition temperature of Sample 16, in which Example 1 was added to the same alloy, was higher than n ° C, compared to Sample 9, in which 2.4 wt% of Comparative Example 3 was added. In addition, compared with sample 6 in which 6.7% by weight of Comparative Example 2 was added to pure magnesium, It can be confirmed that the pyrophoric silver of Sample 14, in which 5.0 wt% of Example 2 was added to nedium, was 42 ° C higher.
특히, 표 3에서 5번의 Mg-8Sn-lAl-lZn 합금의 경우 발화온도가 373°C로 매 우 낮은 편인데, 실시예 3의 비활성화제를 첨가함으로써 발화온도가 583°C까지 증가 하였다. 이 결과가 증요한 이유는, 일반적으로 가공용 합금인 Mg-8Sn-lAl— ΙΖη 합 금의 압출 혹은 압연을 위해서 약 500°C의 온도에서 균질화처리를 해야하는데, 균질 화처리 온도가 합금의 발화온도 보다 크게 높아 열처리 과정에서 발화의 위험이 큰 문제가 있었다. 따라서 Mg-8Snᅳ ΙΑΙ-ΙΖη 합금에 실시예 3을 첨가하여 발화온도를 583°C까지 증가시킴으로써 열처리 과정에서 발화의 위험을 제거할 수 있다. Particularly, in the case of Mg-8Sn-lAl-lZn alloy 5 in Table 3, the ignition temperature was very low at 373 ° C. By adding the deactivator of Example 3, the ignition temperature was increased to 583 ° C. The reason for this result is that homogenization treatment should be performed at the temperature of about 500 ° C for extrusion or rolling of Mg-8Sn-lAl—ΙΖη alloy, which is a processing alloy. There was a big problem that the risk of ignition during the heat treatment process significantly higher. Therefore, by adding Example 3 to the Mg-8Sn ᅳ ΙΑΙ-ΙΖη alloy to increase the ignition temperature to 583 ° C it is possible to eliminate the risk of ignition during the heat treatment process.
한편, 마그네슘 비활성화제 첨가를 통한 마그네슘 합금의 발화온도 상승에 대한 이유는 도 5에서 Mg-6Zn— ICa-lY 합금의 표면산화층에 대한 EPMA(Electron-Probe Micro- Analyzer) 결과에서 볼 수 있듯이 Ca과 Y에 의해 용 탕과 접하는 표면에 CaO와 Y2O3로 구성된 치밀한 산화층이 형성되었고, 이 산화층 이 대기 증의 산소가 용탕으로 침투하여 연속적으로 반웅하는 것을 효과적으로 억 제하기 때문이다. On the other hand, the reason for the increase in the ignition temperature of the magnesium alloy through the addition of a magnesium deactivator is as shown in the Electron-Probe Micro- Analyzer (EPMA) results for the surface oxide layer of Mg-6Zn—ICa-lY alloy in Fig. This is because a dense oxide layer composed of CaO and Y 2 O 3 is formed on the surface of Y in contact with the molten metal, and this oxide layer effectively suppresses the continuous reaction of oxygen infiltrating into the molten metal.
마그네슴 합금의 부식특성 평가  Evaluation of Corrosion Characteristics of Magnesium Alloys
도 6은 AZ31 합금과 AZ31-0.7Ca 합금 및 AZ31— 0.5Ca-0.25Y 합금을 3.5% NaCl 용액에 8시간 동안 침지 시험한 후의 표면 상태를 보여준다. 표면에 부식 정 도가 심한 AZ31 합금에 비해 비교예 3이 첨가된 AZ31-0.7Ca 합금의 부식저항성이 개선된 것을 확인할 수 있다. 일반적으로 1 증량 % 이하의 칼슘이 첨가될 경우 부식 저항성이 개선된다고 알려져 있으며, 본 침지시험에서도 동일한 결과를 얻을 수 있 었다. 반면, 실시예 3의 XW-C 비활성화제가 첨가된 AZ31-0.5Ca— 0.25Y 합금의 경 우 표면에 부식이 거의 일어나지 않았음을 확인할 수 있는데, 이는 비교예 3의 모합 금 첨가를 통해 칼슘만 0.7증량 % 함유한 AZ31-0.7Ca 합금에 비해 실시예 3에서 보 듯이 비활성화제를 첨가함으로써 마그네슘 합금의 부식저항성이 더욱 크게 향상시 킬 수 있음을 의미한다. FIG. 6 shows the surface condition after AZ31 alloy, AZ31-0.7Ca alloy and AZ31—0.5Ca-0.25Y alloy were immersed in 3.5% NaCl solution for 8 hours. It can be seen that the corrosion resistance of the AZ31-0.7Ca alloy to which Comparative Example 3 is added is improved compared to the AZ31 alloy having a high corrosion degree on the surface. Generally corrosion is added when 1% or less of calcium is added It is known that the resistance is improved, and the same result can be obtained in this immersion test. On the other hand, in the case of the AZ31-0.5Ca—0.25Y alloy to which the XW-C deactivator of Example 3 was added, it was confirmed that almost no corrosion occurred on the surface. Compared to the AZ31-0.7Ca alloy containing an increase in%, as shown in Example 3, the addition of the deactivator means that the corrosion resistance of the magnesium alloy can be further improved.
한편, 마그네슘 합금 조성에 따라 마그네슘 비활성화제의 선택은 달리하여야 하며, 특히 마그네슘 합금 내 주요 원소와 Ca, Y 간의 반응성을 고려해서 최적의 비 활성화제를 선택해야 한다. Mg-Al계 합금의 경우 Y의 함량이 증가함에 따라 A1과 Y의 반웅에 의해 AI2Y상이 용탕 내에서 생성되기 때문에 Υ 함량을 제한하는 것이 바람직하며, 이럴 경우 Ca/Y가 큰 실시예 1 혹은 실시예 2와 같은 비활성화제를 선 택하는 것이 바람직하다. 반면, Mg-Sn계 합금의 경우 Sn과 Ca의 반응에 의해 Ca2Sn 상이 용탕에서 생성되므로 Ca의 첨가량을 제한할 필요가 있기 때문에 Ca/Y 가 작은 실시예 3과 같은 비활성화제를 선택하는 것이 바람직하다. Meanwhile, the magnesium inactivator should be selected differently according to the magnesium alloy composition, and in particular, the optimal inactivator should be selected in consideration of the reactivity between the major elements and Ca and Y in the magnesium alloy. In the case of Mg-Al-based alloys, it is preferable to limit the content of 때문에 because the AI 2 Y phase is generated in the molten metal by the reaction of A1 and Y as the content of Y increases, in which case Ca / Y is large. Alternatively, it is preferable to select the deactivator as in Example 2. On the other hand, in the case of the Mg-Sn-based alloy, since Ca 2 Sn phase is generated in the molten metal by the reaction of Sn and Ca, it is necessary to limit the amount of Ca added, so selecting an inactive agent as in Example 3 having a small Ca / Y is required. desirable.
이상의 발화온도와 부식특성 평가 결과에 따르면, 비교예 1 내지 4에 비해 실시예 1 내지 3에 따른 비활성화제를 이용할 경우, 마그네슘 혹은 마그네슘 합금에 첨가됨으로서 마그네슘 합금의 발화저항성을 더욱 크게 향상시킬 수 있으며, 동시에 부식저항성도 크게 향상시킬 수 있는 장점이 있다. 따라서 본 발명에 따른 마그네 슘 비활성화제를 기존 마그네슘 또는 마그네슘 합금에 소량 첨가하는 것만으로도 마그네슘 합금의 안전성과 신뢰성을 크게 개선하는데 매우 효과적인 것을 확인할 수 있다. 이를 통해 환경문제를 야기하는 고가의 SF6 가스를 사용하지 않고 대기 중에서 조업이 가능하게 됨으로써 친환경 공정을 구축할 수 있고 동시에 제조비용 및 환경비용의 절감을 가져을 수 있다. 더 나아가 마그네슘 합금 제품의 신뢰성을 크게 향상시킴으로써 안전성이 요구되는 보다 다양한 분야에서 마그네슘 합금이 적 용될 수 있다. According to the results of evaluating the ignition temperature and corrosion characteristics, when using the deactivator according to Examples 1 to 3, compared to Comparative Examples 1 to 4, by adding to the magnesium or magnesium alloy can further improve the fire resistance of the magnesium alloy , At the same time, there is an advantage that can greatly improve the corrosion resistance. Therefore, it is confirmed that only a small amount of the magnesium deactivator according to the present invention to the existing magnesium or magnesium alloy is very effective in greatly improving the safety and reliability of the magnesium alloy. Can be. This makes it possible to operate in the air without using expensive SF 6 gas, which causes environmental problems, thereby establishing an eco-friendly process and at the same time reducing manufacturing and environmental costs. Furthermore, magnesium alloys can be applied in a wider range of applications where safety is required by greatly improving the reliability of magnesium alloy products.
이상으로 본 발명의 바람직한 실시예에 따른 마그네슘 비활성화제 및 마그네 슘 비활성화제를 이용한 마그네슘 합금 제조방법을 첨부한 도면을 참고로 상세하게 설명하였다. 하지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 상 기 실시예가 본 발명의 일례를 예시하는 것에 불과하고 다른 다양한 수정 및 변형 이 가능하다는 것을 이해할 것이다. 따라서, 본 발명의 범위는 오직 뒤에서 설명할 특허청구범위에 의해서만 한정된다.  The magnesium alloy manufacturing method using the magnesium deactivator and the magnesium deactivator according to the preferred embodiment of the present invention has been described in detail with reference to the accompanying drawings. However, one of ordinary skill in the art will appreciate that the embodiments are merely illustrative of one example of the present invention and that various other modifications and variations are possible. Accordingly, the scope of the invention is limited only by the claims set forth below.

Claims

【특허청구범위】 [Patent Claims]
【청구항 1】  [Claim 1]
마그네슘 합금의 제조 단계에서 마그네슘의 활성화 반웅을 억제하기 위하여 첨가되는 마그네슘 비활성화제로서,  As a magnesium deactivator added to suppress the activation reaction of magnesium in the manufacturing step of magnesium alloy,
6중량 % 내지 41.6증량 %의 Ca과, 6중량 % 내지.45중량 %의 Y와, 잔부인 Mg 및 기타 불가피한 불순물을 포함하고, Ca과 Y의 함량은 아래의 수학식을 따르는 것 을 특징으로 하는 마그네슘 비활성화제.  6% to 41.6% by weight of Ca, 6% to 45% by weight of Y, the balance of Mg and other unavoidable impurities, Ca and Y content is characterized by the following equation Magnesium deactivator.
Y < 64. Y <64.
3― 1.4 Ca (중량 %) · 3―1.4 Ca (% by weight)
【청구항 4】  [Claim 4]
청구항 1에 있어서, 상기 마그네슘 비활성화제는 6증량 % 내지 33.8중량 %의 Ca과, 6중량 % 내지 42.2증량 %의 Y와, 잔부인 Mg 및 기타 불가피한 불순물을 포함하고, Ca과 Y의 함량은 아래의 수학식을 따르는 것을 특징으로 하는 마그네슘 비활성화제.  The method of claim 1, wherein the magnesium deactivator comprises 6% by weight to 33.8% by weight of Ca, 6% by weight to 42.2% by weight of Y, the balance Mg and other unavoidable impurities, the content of Ca and Y is Magnesium deactivator, characterized in that following the equation.
Y < 50.0ᅳ 1.3 Ca (중량 %)  Y <50.0 ᅳ 1.3 Ca (% by weight)
[청구항 5】  [Claim 5]
청구항 1 또는 청구항 4에 있어서, 상기 마그네슘 합금은 Mg— Al— Zn 합금인 것을 특징으로 하는 마그네슘 비활성화제.  The magnesium deactivator according to claim 1 or 4, wherein the magnesium alloy is an Mg—Al—Zn alloy.
【청구항 6】  [Claim 6]
750 °C 이하에서 용해가능한 마그네슘 비활성화제를 형성하는 단.계;  Forming a magnesium deactivator soluble at 750 ° C. or lower;
적어도 Mg을 포함하는 마그네슘 합금 용탕을 형성하는 단계; 상기 마그네슘 합금 용탕에 상기 750°C 이하에서 용해가능한 마그네슘 비활 성화제를 투입하는 단계; Forming a molten magnesium alloy containing at least Mg; Injecting a magnesium inactivator soluble in the magnesium alloy melt at 750 ° C or less;
상기 마그네슘 비활성화제가 포함된 용탕을 소정의 주조 방법을 이용하여 마 그네슘 합금 주조재를 제조하는 단계를 포함하고,  Manufacturing a magnesium alloy cast material using the molten metal including the magnesium deactivator using a predetermined casting method,
상기 마그네슘 비활성화제는 6중량 % 내지 41.6중량 %의 Ca과, 6증량 % 내지 45중량 %의 Y와, 잔부인 Mg 및 기타 불가피한 불순물을 포함하고, Ca과 Y의 함량 은 아래의 수학식을 따르는 것을 특징으로 하는 마그네슘 비활성화제를 이용한 마 그네슘 합금의 제조 방법.  The magnesium deactivator comprises 6% by weight to 41.6% by weight of Ca, 6% by weight to 45% by weight of Y, the balance of Mg and other unavoidable impurities, the content of Ca and Y according to the following equation Method for producing a magnesium alloy using a magnesium deactivator, characterized in that.
Y < 64.3 — 1.4 Ca (중량 %)  Y <64.3 — 1.4 Ca (% by weight)
【청구항 9】  [Claim 9]
청구항 6에 있어서, 상기 마그네슘 비활성화제는 6중량 % 내지 33.8중량 %의 Ca과, 6중량 % 내지 42.2증량 %의 Y와, 잔부인 Mg 및 기타 불가피한 불순물을 포함하고, Ca과 Y의 함량은 아래의 수학식을 따르는 것을 특징으로 하는 마그네슘 비활성화제를 이용한 마그네슘 합금의 제조 방법.  The method of claim 6, wherein the magnesium deactivator comprises 6% to 33.8% by weight of Ca, 6% to 42.2% by weight of Y, the balance Mg and other unavoidable impurities, the content of Ca and Y is Method of producing a magnesium alloy using a magnesium deactivator, characterized in that following the equation.
Y < 50.0 ― 1.3 Ca (중량 %)  Y <50.0-1.3 Ca (% by weight)
【청구항 10】  [Claim 10]
청구항 6 또는 청구항 9에 있어서, 상기 적어도 마그네슘을 포함하는 마그네슘 합금 용탕은 Mgᅳ Al— Zn 합금 용탕인 것을 특징으로 하는 마그네슘 비활성화제를 이용한 마그네슘 합금의 제조 방법.  The method for producing a magnesium alloy using a magnesium deactivator according to claim 6 or 9, wherein the magnesium alloy molten metal containing at least magnesium is Mg ᅳ Al—Zn alloy molten metal.
PCT/KR2012/010547 2011-12-29 2012-12-06 Magnesium deactivating agent and method for preparing a magnesium-alloy using the magnesium deactivating agent WO2013100427A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-145359 2011-12-29
KR1020110145359A KR101223045B1 (en) 2011-12-29 2011-12-29 Magnesium inactivating materal and method for manufacturing magnesium alloy using the magnesium inactivating materal

Publications (1)

Publication Number Publication Date
WO2013100427A1 true WO2013100427A1 (en) 2013-07-04

Family

ID=47842010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/010547 WO2013100427A1 (en) 2011-12-29 2012-12-06 Magnesium deactivating agent and method for preparing a magnesium-alloy using the magnesium deactivating agent

Country Status (2)

Country Link
KR (1) KR101223045B1 (en)
WO (1) WO2013100427A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002157979A (en) * 2000-11-20 2002-05-31 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery
KR20100073476A (en) * 2008-12-23 2010-07-01 한국생산기술연구원 High strength alloy including al, ca, re to magnesium alloy
KR101066536B1 (en) * 2010-10-05 2011-09-21 한국기계연구원 Ignition-proof magnesium alloy with excellent mechanical properties and method for manufacturing the ignition-proof magnesium alloy
KR101080164B1 (en) * 2011-01-11 2011-11-07 한국기계연구원 Ignition-proof magnesium alloy with excellent mechanical properties and method for manufacturing the ignition-proof magnesium alloy

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100681539B1 (en) 2005-02-25 2007-02-12 한국생산기술연구원 CaO Added Magnesium and Magnesium Alloys and their Manufacturing Method Thereof
KR100959830B1 (en) 2007-12-28 2010-05-28 한국생산기술연구원 CaX Chemical Compound Added Magnesium and Magnesium Alloys and their Manufacturing Method Thereof
KR101045218B1 (en) 2008-09-18 2011-06-30 한국생산기술연구원 Magnesium alloy and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002157979A (en) * 2000-11-20 2002-05-31 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery
KR20100073476A (en) * 2008-12-23 2010-07-01 한국생산기술연구원 High strength alloy including al, ca, re to magnesium alloy
KR101066536B1 (en) * 2010-10-05 2011-09-21 한국기계연구원 Ignition-proof magnesium alloy with excellent mechanical properties and method for manufacturing the ignition-proof magnesium alloy
KR101080164B1 (en) * 2011-01-11 2011-11-07 한국기계연구원 Ignition-proof magnesium alloy with excellent mechanical properties and method for manufacturing the ignition-proof magnesium alloy

Also Published As

Publication number Publication date
KR101223045B1 (en) 2013-01-17

Similar Documents

Publication Publication Date Title
KR101080164B1 (en) Ignition-proof magnesium alloy with excellent mechanical properties and method for manufacturing the ignition-proof magnesium alloy
CN102712969B (en) Flame retardant magnesium alloy with excellent mechanical properties, and preparation method thereof
KR101367892B1 (en) Magnesium alloy for high temperature and manufacturing method thereof
KR101258470B1 (en) High-Strength High-Ductility Ignition-Proof Magnesium Alloy
US10047426B2 (en) Wrought magnesium alloy capable of being heat treated at high temperature
JP2011021274A (en) Recycled magnesium alloy, method for producing the same and magnesium alloy
JP5595891B2 (en) Method for producing heat-resistant magnesium alloy, heat-resistant magnesium alloy casting and method for producing the same
Yang et al. As-cast microstructures and mechanical properties of Mg–4Zn–xY–1Ca (x= 1.0, 1.5, 2.0, 3.0) magnesium alloys
US10507520B2 (en) Copper-based alloys, processes for producing the same, and products formed therefrom
WO2013100427A1 (en) Magnesium deactivating agent and method for preparing a magnesium-alloy using the magnesium deactivating agent
CN102703786B (en) Heat-resisting anti-corrosion magnesium alloy for automobile engine cylinder
EP2374905B1 (en) Manufacturing method of magnesium based alloy for high temperature
KR101147650B1 (en) Magnesium alloy for high temperature and manufacturing method thereof
EP2374906B1 (en) Manufacturing method of a magnesium alloy for room temperature applications
Castellero et al. Rapid solidification of silver-rich Ag–Cu–Zr–Al alloys
KR20120072094A (en) Magnesium alloy and manufacturing method thereof for superior fuidity and hot-tearing resistance
KR20150090379A (en) Method of manufacturing high strength Mg alloy with good formability

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12861701

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12861701

Country of ref document: EP

Kind code of ref document: A1