WO2013100237A1 - 태양광을 이용한 광생물 반응기 - Google Patents

태양광을 이용한 광생물 반응기 Download PDF

Info

Publication number
WO2013100237A1
WO2013100237A1 PCT/KR2011/010361 KR2011010361W WO2013100237A1 WO 2013100237 A1 WO2013100237 A1 WO 2013100237A1 KR 2011010361 W KR2011010361 W KR 2011010361W WO 2013100237 A1 WO2013100237 A1 WO 2013100237A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical fiber
unit
reaction vessel
guide plate
Prior art date
Application number
PCT/KR2011/010361
Other languages
English (en)
French (fr)
Inventor
정상화
박종락
안동규
김종태
Original Assignee
조선대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 조선대학교산학협력단 filed Critical 조선대학교산학협력단
Publication of WO2013100237A1 publication Critical patent/WO2013100237A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus
    • C12M3/02Tissue, human, animal or plant cell, or virus culture apparatus with means providing suspensions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/04Flat or tray type, drawers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/44Multiple separable units; Modules
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M31/00Means for providing, directing, scattering or concentrating light
    • C12M31/02Means for providing, directing, scattering or concentrating light located outside the reactor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M31/00Means for providing, directing, scattering or concentrating light
    • C12M31/08Means for providing, directing, scattering or concentrating light by conducting or reflecting elements located inside the reactor or in its structure
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor

Definitions

  • the present invention relates to an optical bioreactor for mass cultivation of microalgae, and more particularly, to an optical bioreactor using solar light having an improved light irradiation structure using solar light and a light emitting diode.
  • Microalgae can play a role in the treatment of wastewater, immobilization of carbon dioxide, etc., due to their various capabilities, and have been used for the production of useful substances such as fuels, cosmetics, feed, food coloring and pharmaceutical raw materials. In the meantime, useful and high value added substances are constantly being discovered and expanding their applications.
  • a device for culturing photosynthetic microalgae for the purpose of immobilizing carbon dioxide can be largely divided into a mass culture (open system) and a photobioreactor (closed system) outdoors.
  • Outdoor mass cultivation apparatus including pond type has been mainly used in the form of reaction facilities such as lakes or large ponds and is commercially available in some countries.
  • this type of cultivation facility has the advantages of low initial investment and easy maintenance, but it is difficult to contaminate, isolate and purify, low cell concentration, high mass (especially nitrogen source), high water quality and quantity demand, and irregular climate. Due to problems such as conditions, expensive labor costs, the installation is extremely limited. In particular, the effective growth of light is not achieved inside the culture apparatus, the growth rate of the cells is low, the growth yield of the cells is low, and a large installation space is required to remove a large amount of carbon dioxide.
  • the light applied while the microalgae is incubated becomes more and more bulky as the microalgae grows, so that the microalgae on the surface of the reactor can continue to receive light, but the microalgae inside the reactor are microalgae on the surface. Because of the shadow effect will not be able to receive enough light to grow.
  • most of the microalgae photobioreactors designed to date do not overcome this point, and thus the production efficiency thereof is lower than that of other microbial bioreactors. To overcome this and to transmit light efficiently.
  • photobioreactors using internal light sources have been studied. Widely used photobioreactors include tubular photoreactors and vertical columnar photobioreactors that use sunlight as an external light source.
  • the reactor has a structure in which the narrow and long rectangular or cylindrical pipes are densely adhered to circulate the culture in order to maximize the irradiation area exposed to sunlight and to shorten the light transmission distance into the culture.
  • Such photobioreactors have advantages and disadvantages in their respective forms.
  • the reactor using the fiber as the internal light source has a good light efficiency, but there is a problem that the cells adhere to the surface of the optical fiber.
  • an artificial light source such as a fluorescent lamp
  • Korean Patent No. 0933741 discloses a photobioreactor for culturing microalgae.
  • the published reactor uses LEDs and flexible LEDs and has a structure in which the light source is directly in contact with the culture solution.
  • micro algae are attached to the surface of the light source, thereby reducing light efficiency.
  • Republic of Korea Patent Publication No. 2009-0055170 discloses a cylindrical photobioreactor
  • Republic of Korea Patent No. 0897019 discloses a photobiological reactor for high efficiency microalgae culture.
  • This reactor has a structure in which sunlight is irradiated to the photobioreactor using a reflective collector and an optical fiber.
  • US Patent Application No. 2009/0211150 discloses a technical configuration for producing biomass and biodiesel by culturing microalgae Gloella in high concentration using a tubular photobioreactor, and US Patent Application No. 2005/0255584 In order to improve the light efficiency, a tubular photobioreactor having a surface area increased while using a partition of a transparent material is disclosed.
  • U.S. Patent No. 595876 discloses a tubular photobioreactor using a complex parabolic concentrator to improve the light collection efficiency of sunlight.
  • the present invention is to solve the above problems, focusing the sunlight using optical elements such as lenses, mirrors, and transmitted using an optical fiber, the reaction vessel for culturing microalgae using a lens unit or a flat light guide plate It is possible to increase the design freedom of equipment for irradiating sunlight to the reaction vessel by irradiating to the reaction vessel, and to provide an optical bioreactor using sunlight that can increase the productivity of microalgae by maximizing light irradiation efficiency and light distribution uniformity. have.
  • Photovoltaic reactor using the solar light of the present invention for achieving the above object is a plate-like reaction vessel is installed at predetermined intervals to allow the microalgae to be cultured therein;
  • An optical fiber unit installed on the reaction vessel and having a condensing unit for condensing sunlight, and an optical fiber unit connected to the condensing unit for irradiating light to the reaction vessel and an optical fiber for irradiating the condensed light to the reaction vessel; It is characterized by one.
  • the optical fiber unit is installed so as to correspond to the plate-shaped reaction vessel, and is provided with a light guide plate for irradiating the reaction vessel with light guided through the optical fiber connected to the optical fiber connected to the light collecting unit, the light guide plate It is installed at the edge of the lamp module for irradiating light to the reaction vessel through the light guide plate.
  • the end of the optical fiber may be further provided with a lens unit for diffusing light.
  • the condensing unit may include condensing lens units for condensing sunlight and a frame for supporting the condensing lens units, and an IR filter may be installed on an upper surface of each condensing lens unit.
  • the photobioreactor may be guided using a fiber and then irradiated to the photobioreactor, thereby increasing the design freedom of the facility. And the photobioreactor collects while tracking the sun, and can be irradiated to the photobioreactor using the concentrated light and the light emitting diode can increase the productivity of the microalgae.
  • FIG. 1 is a perspective view of an optical bioreactor using sunlight according to the present invention
  • FIG. 2 is a perspective view showing another embodiment of an optical bioreactor using sunlight according to the present invention.
  • FIG. 3 is a partial ablation perspective view showing an extracting unit
  • FIG. 4 is a cross-sectional view showing another embodiment of a light collecting unit
  • FIG. 5 is a perspective view showing an extracting light collecting unit and an optical fiber unit
  • FIG. 6 is a perspective view showing another embodiment of a light converging unit and an optical fiber unit
  • FIG. 7 and 8 are plan views showing a state in which an optical fiber and a lamp module are installed on the light guide plate.
  • FIG. 1 to 4 show an optical bioreactor using sunlight according to an embodiment of the present invention.
  • the photobioreactor 10 using the solar light of the present invention is installed at a predetermined interval on the main frame 11, the microalgae and the inlet port 21 through which the culture solution is introduced is provided inside the fine Plate-shaped photobiological reaction vessels 20 having a culture solution storage space therein so that algae can be cultured, a light condensing unit 30 installed on the support frame 11 to condense the sunlight, and the light condensing unit And an optical fiber unit 40 having an optical fiber 41 for irradiating the optical biological reaction vessel 20 with the collected light connected to the condenser lens 31 of 30.
  • a carbon dioxide supply unit 70 and an oxygen supply unit 75 are connected to the photobiological reaction vessel 20 to supply carbon dioxide into the reaction vessel 20.
  • the reaction vessel 20 is connected to a seed culture medium and a seed supply unit for supplying and discharging the culture solution and the microalgae seed, and the reaction vessel is connected to the microalgae reservoir and the microalgae.
  • the reservoir is connected to the microalgal pretreatment tank.
  • the photobiological reaction vessel 20 may be made of tempered glass or acrylic-based material which is substantially excellent in light transmission and mechanical strength, and is provided with a culture space (not shown) for culturing microalgae therein.
  • the culture space may be composed of a plurality of chambers, the chambers are interconnected structure.
  • the surface of the plate-shaped reaction vessel 20 may have irregularities to widen the surface area, and a predetermined pattern may be formed to focus and scatter light.
  • the inner surface of the reaction vessel 20 on the plate may be a coating film made of titanium oxide (TiO2) or the like in order to prevent the microalgae adhere to the inside of the reaction vessel.
  • the partition plate partitioning the plate-shaped reaction vessel 20 into a plurality of chambers is preferably formed in the shape of an inclined braid so that the water in the reaction vessel can be circulated by the lifting force of the bubbles.
  • the condensing unit 30 has a condensing lens 31 installed on the support frame 11, which condenses the light through the optical fiber to the photobioreactor with negative power. It can be configured by combining a lens and a lens with positive power.
  • the condenser lens may be formed of a cylindrical Fresnel lens (cylindrical type fresnel) or a TIR-concentrator, but the present invention is not limited thereto, and condenses sunlight to an optical fiber side. Any structure can be used.
  • An IR filter is installed between the condenser lens or the optical fiber and the optical fiber or at the inlet side of the optical fiber to block infrared rays, which do not contribute to photosynthesis, and which can degrade the optical fiber through heat generation.
  • the condensing lens 31 of the condensing unit 30 is supported by a hopper shaped housing 32 as shown in FIG. 3, and the light condensed from the condensing lens 31 below the housing 32.
  • a first optical fiber fixing module 33 is provided to support one end of the optical fiber 41, that is, each end of the optical fibers on the side corresponding to the condensing lens.
  • An auxiliary reflecting plate (not shown) may be installed on the inner surface of the housing 32 to collect the scattered light collected from the condenser lens 31 and injected into the inner wall of the housing to an end of the optical fiber.
  • the light collecting unit 30 collects the light reflecting member 35 installed around the optical fiber 41 and the light collected by the light reflecting member 35. It is provided with a unit reflecting member 36 for reflecting to the optical fiber 41 located on the () side. The light irradiated from the unit reflecting member may be directly irradiated to the photobioreactor.
  • the light converging unit 30 is not limited to the above-described embodiment, and may be any structure that can condense sunlight and irradiate the end of the optical fiber.
  • the tracking unit 50 may be further provided on the support frame 11 to track the light collecting unit 30 along the sun.
  • the tracking unit 50 is for tracking the light converging unit in the east-west and north-south direction along the sun, and as shown in FIG. 1, one side (front side, south side) of the support frame 11 is hinge shaft 51.
  • the sub-frame 52 coupled to and rotatably installed, and on the support frame 11 on the other side (back side, north side direction) corresponding to the hinge shaft 51 to raise and lower the sub-frame 52.
  • a first actuator 53 for adjusting the angle of the subframe 52 is provided.
  • the first actuator 53 may be formed of a screw jack or a lead screw driven by a motor.
  • the rotation frame 54 is rotatably installed in the sub-frame 52 in the north-south direction.
  • the condensing frame 54 is provided with the condensing unit, that is, the condensing lens 30.
  • a link 55 is installed on each of the rotation shafts 54a of the rotation frames 54 rotatably installed in the subframe 52, and the links 55 are hinged by the connecting link 56 and the hinge pin.
  • a second actuator 57 is installed at one end of the connection link 56 so that the light collecting lens, which is the light collecting unit 30 installed on the rotating frame, can be moved in the east-west direction.
  • the second actuator may be made of a jackscrew having a lead screw which is rotated forward and backward by a motor as described above.
  • the tracking unit is not limited to the above-described embodiment, and may be any structure as long as the tracking unit 30 can be tracked along the sun.
  • the optical fiber unit 40 is capable of irradiating the light biological reaction vessel 20 through the optical fiber 41 to the light collected by the light collecting unit, as shown in Figure 5 at the end of the optical fiber 41
  • a lens unit 43 may be installed to diffuse and collect the collected light onto the photobioreactor.
  • the lens unit 43 includes a lens housing 43a provided at an end of the optical fiber, and lenses 43b provided to the lens housing for focusing or diffusing light guided through the optical fiber.
  • the end of the optical fiber 41 of the optical fiber unit 40 is connected to the edge of the light guide plate 45 which is installed to correspond to the optical bioreaction vessel 20 as shown in FIG.
  • the optical fibers may be further provided with a shutter for controlling the amount of light passing therethrough.
  • the shutter is configured so that lenses having different transmittances are installed in a rotatable body rotatably installed inside the main body to adjust the amount of light according to the selected lens.
  • the lamp module 60 which is a light source, is installed at an edge of the light guide plate 45 to increase light quantity or irradiate light regardless of the weather.
  • a diffusion pattern 46 is formed on at least one side of the light guide plate 45 to scatter or reflect the optical fiber or the light emitted from the lamp module 60 to the front side.
  • the diffusion pattern 46 may be formed on a rear surface of the light guide plate 45 using a reflective pattern formed using ink or may be formed on the rear surface of the light guide plate 45 by a laser beam or mechanical processing.
  • the diffusion pattern 46 may be formed by forming a groove (eg, a V-shaped groove) in a predetermined pattern on a rear surface of the light guide plate 45.
  • the groove forming pattern may include a scroll shape, a grid shape, a shape of an overlapping polygon, and horizontal or vertical grooves having different pitches.
  • the diffusion pattern 46 formed on the light guide plate 45 is formed in a lattice form (formed to increase the pattern of the lattice) from the edge formed in the lattice shape and the center portion, i.e., the edge where the lamp module 60 is installed. desirable.
  • a reflecting plate 47 may be installed on the rear surface of the light guide plate 45 to reflect the light irradiated from the optical fiber and the lamp module 60 onto the rear surface of the light guide plate 45, and the front surface of the light guide plate 45 may be provided.
  • a diffusion plate (not shown) may be attached.
  • the light guide plate may be made of transparent synthetic resin, glass, quartz, and the like.
  • the lamp module 60 is installed on the edge of the light guide plate 45 is installed on both sides of the light guide plate 45, as shown in Figure 6, the first lamp module (installed on the side of the light guide plate 45 ( 61 and a second lamp module 62 installed at an edge or a lower surface thereof.
  • the first and second lamp modules 61 and 62 have substantially the same structure, and each of the circuit boards 61a and 62a having the same width as that of the side or bottom surface of the light guide plate 51, and
  • the light emitting diodes 61b and 62b are provided on the circuit boards 61a and 62a at predetermined intervals to irradiate light from the edge of the light guide plate 51.
  • the inlet grooves 54 are formed in the side and the lower surface of the light guide plate 51 corresponding to the light emitting diodes 61b and 62b so that the light emitting diodes 61b and 62b are inserted into the inlet grooves 54. It is preferable not to scatter to the periphery of the edge of this light guide plate, and it is preferable to form the unevenness
  • the lamp module for irradiating light to the light guide plate 45 is not limited to the above-described embodiment and may use cold cathode fluorescent lamps (CCFL).
  • CCFL cold cathode fluorescent lamps
  • a cold cathode fluorescent lamp in close contact with the edge of the light guide plate 45 and a reflective member may be provided to surround the edge of the light guide plate to prevent light emitted from the cold cathode fluorescent lamp from being irradiated to a region other than the light guide plate.
  • a plurality of light guide plates 45 may be installed to be irradiated to each photobiological reactor 20.
  • Diffusion lens portions may be formed to diverge.
  • the photobiological reaction vessel 10 of the present invention configured as described above has the light irradiated to the light collecting unit 30 installed on the upper side of the reaction vessel 20 from the sunrise time to the sunset time, that is, when the sun is floating. After the light is collected by the light collecting unit 30, the light is irradiated to the photoreaction vessel 41 through the optical fiber 41 or through the edge of the light guide plate 45. The light irradiated onto the light guide plate 45 through the optical fiber 41 is guided through the light guide plate 51 and is reflected by the light guide pattern formed on the light guide plate and diffused to the reaction vessel side. In particular, since a reflecting plate is provided on the rear surface of the light guide plate 45, light loss can be reduced by reflecting the light irradiated to the rear surface of the light guide plate toward the front side.
  • the photobiological reaction vessel 41 may be irradiated directly through the lens unit 43 installed at the end of the optical fiber, in this case, the light to each portion of the photobiological reaction vessel 20 through the lens unit 43. Can be irradiated uniformly.
  • the light emitting diode of the lamp module 60 installed on the side of the light guide plate 45 emits light, and the light irradiated from the light emitting diode is transferred through the light guide plate 45. 20). Therefore, irrespective of external conditions, light can be irradiated continuously to the photobiological reaction vessel 20 so that the microalgae can be cultured using the reaction vessel 20.
  • the light is irradiated to the photobiological reaction vessel 20 by using a light collecting unit and a light guide plate during the day when the sun is normal, and in the absence of the sun, the light guide plate 51 side of the light irradiation unit 50 is provided.
  • the first and second lamp modules 61 and 62 installed in the light irradiate light to the photoreaction vessel 20.
  • the light collecting unit 30, the optical fiber, and the light guide plate 45 are irradiated with light.
  • the lamp module 60 installed on the side of the light guide plate can always supply constant light energy to the reaction vessel 20 inside the reaction vessel.
  • the light converging unit 30 may adjust or slide the angle according to the altitude of the sun by the tracking means, thereby preventing the focusing position from the light guide plate according to the altitude of the sun.
  • the light collected by the light collecting unit 30 can be irradiated through the optical fiber, it can be designed and constructed without being restricted by the installation position of the photobioreactor.
  • the photobiological reactor using solar light focuses sunlight, and irradiates the photobioreaction vessel with the focused light through an optical fiber, thereby freeing the installation position of the photobioreaction vessel and irradiating sunlight.
  • the light distribution uniformity can be maximized by irradiating the photobioreactor using a lens unit or a light guide plate, and the amount of light irradiated to the photobiological reaction vessel can be easily controlled, so that the production of the microalgae at high concentration can be easily controlled.
  • the spatial efficiency can be increased.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Clinical Laboratory Science (AREA)
  • Cell Biology (AREA)
  • Virology (AREA)
  • Molecular Biology (AREA)
  • Botany (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

본 발명의 태양광을 이용한 광생물 반응기는 내부에서 미세조류가 배양될 수 있도록 하는 것으로 소정의 간격으로 설치되는 판상의 반응용기들과; 상기 반응용기 상부에 설치되어 태양광을 집광하기 위한 집광유닛과, 상기 반응용기에 광을 조사하기 위하여 집광유닛과 연결되어 상기 집광된 광을 반응용기에 조사하기 위한 광파이버를 구비한 광파이버 유닛을 구비한다.

Description

태양광을 이용한 광생물 반응기
본 발명은 미세조류의 대량 배양을 위한 광생물 반응기에 관한 것으로, 더 상세하게는 광생물 반응기에 태양광과 발광다이오드를 이용한 광조사 구조가 개선된 태양광을 이용한 광생물 반응기에 관한 것이다.
최근 산업체 배출 CO₂가 지구 온난화의 주범으로 지목됨에 따라 CO₂를 고정화하기 위해 미세조류를 활용하려는 연구가 활발하게 진행되고 있다.
미세조류는 다양한 능력에 기인하여, 폐수의 처리, 이산화탄소의 고정화 등의 역할을 수행할 수 있으며 연료물질, 화장품, 사료, 식용 색소와 의약용 원료 물질 등의 유용 물질을 생산하는 목적으로 사용되어 왔고, 유용한 고부가가치 물질들이 지속적으로 발견되어 그 활용범위를 넓혀 가고 있다.
미세조류의 생체 중량 및 유용생산물 증가에 영향을 미치는 것으로써 배지의 조성, 온도, pH, 광도 등의 많은 요인들이 존재 하지만, 그 중에서도 광합성 미세조류의 특성상 빛이 차지하는 비중이 가장 크다. 일반적으로 이산화탄소 고정화를 목적으로 광합성 미세조류를 배양하는 장치는 크게 옥외에서 대량 배양을 하는 것(open system)과 광생물 반응기를 이용하는 것(closed system)으로 나눌 수 있다. 연못형(pond)을 포함하는 옥외 대량 배양장치의 경우 주로 호수 내지 대형 연못과 같은 형태의 반응시설을 사용하여 오고 있으며 일부 국가에서 상용화되어 있다.
그러나 이러한 형태의 배양시설은 초기 투자비가 적고 유지관리가 용이한 장점은 있으나, 오염, 분리 및 정제의 어려움, 낮은 세포농도, 많은 기질량(특히,질소원), 높은 수질 및 수량의 요구, 불규칙한 기후 조건, 비싼 인건 비 등의 문제들 때문에 그 설치가 극히 제한적일 수 밖에 없다. 특히 배양장치 내부로 효과적인 빛 전달이 이루어 지지 않아 균체의 성장속도가 느리고 균체의 성장 수율이 낮으며, 많은 양의 이산화탄소를 제거하기 위해서는 넓은 설치 공간이 필요한 단점을 가지고 있다.
이러한 옥외 대량 배양장치의 문제점들을 해결하기 위해, 작은 크기의 반응기를 통해 고농도 배양을 함으로써 옥외 대량 배양장치에서의 생산량과 같거나 또는 더 많은 양을 생산하고, 유용 물질의 농도도 더 높은 고품질의 제품을 생산하고자 하였다.
현재 개발되어 있는 형태로는 일반 교반형 반응기, 판형 반응기, 관형 반응기, 칼럼형 반응기 등이 있고, 이러한 모든 종류의 반응기는 빛의 효율적인 전달이 반응기 설계에 있어서 가장 중요한 점이 되고 있다. 미세 조류세포의 농도가 낮을 때에는 배지, 기체 주입 등이 세포의 증식에 가장 중요한 요인이 되지만, 고농도에 도달하면 광도가 가장 중요한 인자가 된다. 왜냐하면 농도가 높아질수록 빛의 투과 길이가 짧아지기 때문이다.
즉, 미세조류가 배양되는 동안 가해지는 빛은 미세조류가 성장하면서 점점 부피가 커지게 되며 이로 인하여 반응기 표면에 있는 미세조류는 빛을 계속 공급 받을 수 있으나 반응기 내부에 있는 미세조류는 표면의 미세조류로 인하여 그림자 효과가 생기므로 성장하는데 필요한 빛의 양을 충분히 공급받을 수 없게 된다. 그러나 현재까지 고안된 대부분의 미세조류용 광생물 반응기들은 이러한 점을 극복하지 못하였고, 그 때문에 여타의 미생물용 생물 반응기에 비하여 그 생산 효율이 떨어졌다. 이를 극복하여 효율적으로 빛을 전달하기 위해. 최근에는 내부광원을 이용한 광생물 반응기가 연구되어지고 있다. 널리 사용되고 있는 광생물 반응기로는 외부광원으로 태양광을 이용하는 관형 광생물 반응기와 수직원주형 광생물 반응기 등이 알려져 있다. 상기 반응기는 태양광에 노출되는 조사 면적을 최대화하고 배양액 내부로의 빛 투과 거리를 짧게 하기 위하여, 좁고 긴 직사각형 또는 원통형 파이프를 조밀하게 밀착시켜 배양액을 순환시키는 구조를 갖는다.
이러한 광생물 반응기는 각각의 형태에 있어서 장단점을 가지고 있다. 특히, 내부광원으로써 섬유를 이용한 반응기는 광효율은 좋으나 세포가 광섬유 표면에 부착하는 문제점이 있다. 또한, 내부광원으로써 형광등 등의 인공광원만을 사용하는 경우, 전기(에너지)를 과도하게 사용하므로 에너지 생산관점에서 효율적이지 못하다는 문제점이 있다.
이러한 문제점을 해결하기 위하여 대한민국 등록특허 제 0933741호에는 미세조류 대량 배양을 위한 광생물 반응기가 게시되어 있다. 게시된 반응기는 엘이디, 플랙시블 엘이디를 이용한 것으로 광원이 직접 배양액에 접촉된 구조를 가진다. 이러한 구조는 광원의 표면에 미세 조류가 부착되어 광효율이 떨어지게 된다.
그리고 대한민국 특허 공개 제 2009-0055170호에는 원통형 광생물 반응기가 게시되어 있으며, 대한민국 등록 특허 제 0897019호에는 고효율 미세조류 배양용 광생물 반응기가 게시되어 있다. 이 반응기는 반사형 집광기와 광섬유를 이용하여 태양광을 광생물 반응기에 조사하는 구조를 가진다. 미국 등록출원 제 2009/0211150호에는 관형 광생물 반응기를 이용하여 미세조류인 글로렐라를 고농도로 배양하여 바이오메스 및 바이오디젤을 생산하는 기술적 구성이 개시되어 있으며, 미국 등록출원 제 2005/0255584호에는 광효율 향상을 위하여 투명소재의 칸막이를 사용함과 아울러 표면적 증가된 관형 광생물 반응기가 개시되어 있다.
미국 특허등록 제 595876호에는 복합 포물형 집속기를 사용하여 태양광의 집광효율을 향상시킨 관형 광생물 반응기가 개시되어 있다.
본 발명은 상기 문제점을 해결하기 위한 것으로서, 태양광을 렌즈, 거울 등의 광학소자를 이용하여 집속하고, 광파이버를 이용하여 전송한 후, 렌즈유닛 또는 평판형 도광판을 이용하여 미세조류 배양용 반응용기에 조사할 수 있도록 함으로써 반응용기에 태양광을 조사시키기 위한 설비의 설계자유도를 높일 수 있으며, 광조사효율과 배광균일도 극대화시켜서 미세조류의 생산성을 높일 수 있는 태양광을 이용한 광생물 반응기를 제공함에 있다.
상기 목적을 달성하기 위한 본 발명의 태양광을 이용한 광생물 반응기는 내부에서 미세조류가 배양될 수 있도록 하는 것으로 소정의 간격으로 설치되는 판상의 반응용기들과; 상기 반응용기 상부에 설치되어 태양광을 집광하기 위한 집광유닛과, 상기 반응용기에 광을 조사하기 위하여 집광유닛과 연결되어 상기 집광된 광을 반응용기에 조사하기 위한 광파이버를 구비한 광파이버 유닛을 구비한 것을 특징으로 한다.
본 발명에 있어서, 상기 광파이버 유닛은 상기 판상의 반응용기와 대응되도록 설치되며, 상기 집광유닛과 연결된 광파이버와 연결되어 광파이버를 통하여 도광된 광을 상기 반응용기에 조사하기 위한 도광판을 구비하며, 상기 도광판의 가장자리에 설치되어 도광판을 통하여 반응용기에 광을 조사하기 위한 램프 모듈을 구비한다.
또한 상기 광파이버의 단부에는 광을 확산시키기 위한 렌즈유닛을 더 구비할 수 있다. 상기 집광유닛은 태양광을 집속하기 위한 집속렌즈 유닛들과, 이 집광렌즈 유닛들을 지지하기 위한 프레임을 구비하며, 상기 각 집속렌즈유닛의 상면에 IR필터가 설치된 것으로 이루어질 수 있으며, 상기 집광유닛은 정열된 상기 광파이버측으로 광을 반사시키기 위한 제 1반사판과, 태양광을 집속하여 상기 제1반사판 측으로 집속하기 위한 제 2반사판을 구비 할 수 있다.
본 발명에 따른 태양광을 이용한 광생물 반응기는 태양광을 집속한 후 이를 파이버를 이용하여 도광시킨 후 광생물 반응기에 조사할 수 있으므로 설비의 설계자유도를 높일 수 있다. 그리고 광생물 반응기는 태양을 추적하면서 집광하고, 이 집광된 광과 발광다이오드를 이용하여 광생물 반응기에 조사할 수 있으므로 미세조류의 생산성을 높일 수 있다.
도 1은 본 발명에 따른 태양광을 이용한 광생물 반응기의 사시도,
도 2는 본 발명에 따른 태양광을 이용한 광생물 반응기의 다른 실시예를 나타내 보인 사시도,
도 3은 집광유닛을 발췌하여 도시한 일부절제 사시도,
도 4는 집광유닛의 다른 실시예를 나타내 보인 단면도,
도 5는 집광유닛과 광파이버 유닛을 발췌하여 도시한 사시도,
도 6은 집광유닛과 광파이버 유닛의 다른 실시예를 나타내 보인 사시도,
도 7 및 도 8은 도광판에 광파이버와 램프 모듈이 설치된 상태를 나타내 보인 평면도.
도 1 내지 도 4에는 본 발명에 일 실시예의 태양광을 이용한 광생물 반응기를 나타내 보였다.
도면을 참조하면, 본 발명의 태양광을 이용한 광생물 반응기(10)는 메인 프레임(11)에 소정의 간격으로 설치되는 것으로, 미세조류 및 배양액이 유입되는 유입구(21)가 구비되며 내부에서 미세조류가 배양될 수 있도록 내부에 배양액 저장공간을 가지는 판상의 광생물 반응용기(20)들과, 지지 프레임(11)에 설치되어 상기 태양광을 집광하기 위한 집광유닛(30)과, 상기 집광유닛(30)의 집광렌즈(31)와 연결된 집광된 광을 상기 광생물 반응용기(20)에 조사하기 위한 광파이버(41)를 가진 광파이버 유닛(40)을 구비한다.
그리고 상기 광생물 반응용기(20)와 연결되어 반응용기(20)의 내부로 이산화탄소를 공급하는 이산화탄소 공급유닛(70)과 산소공급유닛(75)이 설치된다. 또한 도면에는 도시되어 있지 않으나 반응용기(20)에는 배양액과 미세조류 시드(seed)를 공급 및 배출하기 위한 시드 배양액 및 시드 공급부와 연결되고, 상기 반응용기는 미세조류 저장조와 연결되며, 상기 미세조류 저장조는 미세조류 전처리조와 연결된다.
상기 광생물 반응용기(20)는 실질적으로 투광성과 기계적 강도가 뛰어난 강화유리 또는 아크릴 계열의 재질로 이루어질 수 있으며, 내부에 미세조류를 배양할 수 있는 배양공간(미도시)이 설치된다. 이 배양공간은 복수개의 챔버로 이루어질 수 있으며, 이 챔버는 상호 연결되는 구조를 가진다. 그리고 상기 판상의 반응용기(20)의 표면은 표면적을 넓히기 위하여 요철이 형성될 수 있으며, 광의 집속 및 산란을 위하여 소정의 패턴이 형성될 수 있다. 한편, 상기 평판 상의 반응용기(20)의 내면은 반응용기 내부에 미세조류가 부착되지 않도록 하기 위하여 산화티탄(TiO₂)등에 의한 코팅막이 형성될 수 있다. 또한 상기 판상의 반응용기(20)를 복수개의 챔버로 구획하는 구획판은 경사진 브레이드의 형상으로 형성되어 기포의 상승력에 의해 반응용기 내의 물이 순환될 수 있도록 함이 바람직하다.
상기 집광유닛(30)은 지지 프레임(11)에 설치되는 집광렌즈(31)를 구비하는데, 이 집광렌즈(31)는 광파이버를 통하여 태양광을 광생물 반응기에 조사하기 위한 것으로 음의 파워를 가진 렌즈와 양의 파워를 가진렌즈를 조합하여 구성할 수 있다. 상기 집광렌즈는 원형 프리넬렌즈 실린더리컬 타입의 프레넬렌즈(cylindrical type fresnel)로 이루어지거나 타아이아르 컨센트레이터( TIR-concentrator)로 이루어질 수 있는데, 이에 한정되지 않고, 태양광을 광파이버 측으로 집광할 수 있는 구조이면 어느 것이나 가능하다. 그리고 상기 집광렌즈 또는 집광렌즈와 광파이버의 사이 또는 광파이버의 입구측에는 광합성에 기여하지 않고 열발생을 통해 광섬유를 열화시킬 수 있는 파장대인 적외선을 차단하기 위해 IR필터가 설치된다.
상기 집광유닛(30)의 집광렌즈(31)는 도 3에 도시된 바와 같이 호퍼 형상의 하우징(32)에 의해 지지되고, 상기 하우징(32)의 하부에는 상기 집광렌즈(31)로부터 집광된 광이 광파이버(41)의 일측단부 즉, 집광렌즈와 대응되는 측의 광파이버들의 각 단부를 지지하기 위한 제1광파이버 고정모듈(33)을 구비한다. 상기 하우징(32)의 내면에는 집광렌즈(31)로부터 집광되어 하우징의 내벽으로 분사된 분산광을 상기 광파이버의 단부로 집광하기 위한 보조 반사판(미도시)들이 설치될 수 있다.
한편 도 4에 도시된 바와 같이 집광유닛(30)은 광파이버(41)의 주위에 설치되는 집광반사부재(35)와, 상기 집광반사부재(35)에 의해 집광된 광을 상기 집광반사부재(35) 측에 위치되는 광파이버(41)로 반사시키기 위한 단위 반사부재(36)을 구비한다. 여기에서 상기 단위 반사부재로부터 조사된 광은 광생물 반응기에 직접적으로 조사될 수도 있다.
상기 집광유닛(30)은 상술한 실시예에 의해 한정되지 않고, 태양광을 집광하여 광파이버의 단부에 조사할 수 있는 구조이면 가능하다.
그리고, 지지 프레임(11)에 설치되어 집광유닛(30)을 태양을 따라 추적하는 트래킹 유닛(50)을 더 구비할 수 있다. 상기 트래킹 유닛(50)은 집광유닛을 태양을 따라 동서 및 남북 방향으로 트래킹 시키기 위한 것으로, 도 1에 도시된 바와 같이 지지 프레임(11)에 일측(전방측, 남측방향)이 힌지축(51)에 의해 결합되어 회동가능하게 설치되는 서브 프레임(52)과, 힌지축(51)과 대응되는 타측( 후방측, 북측방향)의 지지 프레임(11) 상부에 설치되어 서브 프레임(52)을 승강시켜 서브 프레임(52)의 각도를 조정하기 위한 제1액튜에이터(53)를 구비한다. 상기 제 1액튜에이터(53)는 모터에 의해 구동되는 스크류잭, 또는 리드 스크류로 이루어질 수 있다. 그리고 상기 서브 프레임(52)에는 남북 방향으로 회동프레임(54)들이 회전 가능하게 설치된다. 상기 회동프레임(54)에는 상술한 집광유닛 즉, 집광렌즈(30)가 설치된다.
그리고 서브 프레임(52)에 회전가능하게 설치되는 회동프레임(54)들의 각 회전축(54a)에는 링크(55)가 설치되고, 상기 각 링크(55)들은 연결링크(56)와 힌지핀에 의해 힌지 연결되고, 상기 연결링크(56)의 일측 단부에는 이를 전, 후진시켜 상기 회동 프레임에 설치된 집광유닛(30)인 집광렌즈를 동서 방향으로 추종할 수 있도록 하는 제 2액튜에이터(57)가 설치된다. 상기 제 2액튜에이터는 상술한 바와 같이 모터에 의해 정, 역회전되는 리드 스크류를 가진 잭스크류로 이루어질 수 있다. 상기 트래킹 유닛은 상술한 실시예에 의해 한정되지 않고, 상기 집광유닛(30)을 태양를 따라 추적할 수 있도록 하는 구조이면 어느 것이나 가능하다.
한편, 상기 광파이버유닛(40)은 집광유닛에 의해 집광된 광을 광파이버(41)를 통하여 광생물 반응용기(20)에 조사할 수 있는 것으로, 도 5 도시된 바와 같이 광파이버(41)의 단부에 집광된 광을 광생물 반응기에 확산시켜 조사하기 위한 렌즈 유닛(43)이 설치될 수 있다. 이 렌즈 유닛(43)은 광파이버의 단부에 설치되는 렌즈 하우징(43a)과, 상기 렌즈 하우징에 설치되어 상기 광파이버를 통하여 도광되는 광을 집속 또는 확산시키기 위한 렌즈(43b)들을 구비한다.
그리고 상기 광파이버 유닛(40)의 광파이버(41)의 단부는 도 6에 도시된 바와 같이 광생물 반응용기(20)와 대응되도록 설치되는 도광판(45)의 가장자리와 연결되어 광파이버를 통하여 도광된 광이 도광판(45)을 통하여 반응용기(20)를 통하여 조사되도록 한다. 여기에서 상기 광파이버들에는 이를 통과하는 광량을 제어하기 위한 셔터가 더 구비될 수 있다. 이 셔터는 본체의 내부에 회전가능하게 설치된 회전체에 투과율이 다른 렌즈들이 설치되어 선택된 렌즈에 따라 광량을 조절할 수 있도록 구성된다.
상기 도광판(45)의 가장자리에는 도 6 내지 도 8에 도시된 바와 같이 광량을 증가시키거나 날씨에 관계없이 광을 조사할 수 있도록 광원인 램프 모듈(60)이 설치된다. 상기 도광판(45)의 적어도 일측에는 광파이버 또는 상기 램프 모듈(60)로부터 조사되는 광을 전면 측으로 조사될 수 있도록 산란 또는 반사시키기 위한 확산패턴(46)이 형성된다. 상기 확산패턴(46)은 도광판(45)의 배면에 잉크를 이용하여 형성된 반사 패턴으로 이루어지거나 레이저빔 또는 기계적인 가공에 의해 도광판(45)의 배면에 형성될 수 있다. 상기 확산패턴(46)은 도광판(45)의 배면에 그루브(예컨대, 단면 V 형상의 홈)가 소정의 패턴으로 형성되어 이루어질 수 있다. 상기 그루브의 형성패턴는 스크롤 형상, 격자형상, 중첩된 다각형의 형상, 피치가 다른 수평 또는 수직의 홈들로 이루어질 수 있다. 상기 도광판(45)에 형성된 확산패턴(46)이 격자상으로 형성된 가장자리와 나라한 중앙부로부터 가장자리 즉, 램프모듈(60)이 설치된 가장자리로 갈수록 성글계형성(격자의 패턴의 커지도록 형성)함이 바람직하다.
그리고 상기 도광판(45)의 배면에는 광파이버와 램프모듈(60)로부터 조사되어 도광판(45)의 배면으로 조사되는 광을 반시시키기 위하여 반사판(47)이 설치될 수 있으며, 상기 도광판(45)의 전면에는 각 부위에서 조사되는 광의 조도를 일정하게 하기 위하여 확산판(미도시)이 부착될 수도 있다. 상기 도광판은 투명한 합성수지, 유리, 석영 등으로 이루어질 수 있다.
그리고 도광판(45)의 가장자리에 설치되는 램프모듈(60)은 도 6에 도시된 바와 같이 도광판(45)의 양 측면에 각각 설치되는 것으로, 도광판(45)의 측면에 설치되는 제 1램프 모듈(61)과, 이와 대응되는 가장자리 또는 하면에 설치되는 제 2램프 모듈(62)을 구비한다. 상기 제 1,2램프 모듈(61)(62)은 실질적으로 동일한 구조를 가지는 것으로, 각각 도광판(51)의 측면 또는 하면의 폭과 동일한 폭을 가지는 회로기판(61a),(62a)과, 상기 회로기판(61a)(62a)에 소정의 간격으로 설치되어 상기 도광판(51)의 가장자리로부터 광을 조사하기 위한 발광다이오드(61b),(62b)를 구비한다.
여기에서 상기 발광다이오드(61b)(62b)와 대응되는 도광판(51)의 측면과 하면에는 인입홈(54)이 형성되어 발광다이오드(61b)(62b)가 이 인입홈(54)에 삽입됨으로써 광이 도광판 가장자리의 주변으로 산란되지 않도록 함이 바람직하고, 이 인입홈(54)의 내면에는 광을 산란하기 위한 요철(54a)을 형성함이 바람직하다.
상기 도광판(45)에 광을 조사하기 위한 램프 모듈은 상술한 실시예에 의해 한정되지 않고 냉음극형광램프(CCFL;cold cathode fluorescent lamp)들을 사용할 수 있다. 이 경우 도광판(45)의 가장자리에 밀착된 냉음극형광램프와 도광판의 가장자리를 감싸 냉음극형광램프로부터 조사되는 광이 도광판 이외의 영역으로 조사되는 것을 방지하는 반사부재가 설치될 수 있다.
상기 도광판(45)이 상기 광생물 반응용기(20)의 사이에 위치되는 경우, 각각의 광생물 반응기(20)에 조사될 수 있도록 복수개의 도광판(45)을 설치할 수 있다.
상기 광파이버(41)와 결합되는 도광판(45)의 가장자리 또는 램프 모듈(60)과 도광판(45)의 가장자리에는 광파이버(41) 또는 램프 모듈(60)로부터 조사되는 광을 도광판(45)의 내부로 발산시키기 위한 확산렌즈부(미도시)가 형성될 수 있다.
상기와 같이 구성된 본 발명의 광생물 반응용기(10)는 일출 시간부터 일몰 시간 까지는 즉, 태양이 떠 있는 경우, 반응용기(20)의 상부 측에 설치되는 집광유닛(30)으로 조사되는 광이 집광유닛(30)에 의해 집속된 후 광파이버(41)를 통하여 광생물 반응용기(41)에 조사되거나 도광판(45)의 가장자리를 통하여 조사된다. 상기 광파이버(41)를 통하여 도광판(45)에 조사된 광은 상기 도광판(51)을 통하여 도광하게 되며 도광판에 형성된 도광 패턴에 의해 반사되어 반응용기 측으로 확산시켜 조사된다. 특히 도광판(45)의 배면에는 반사판이 설치되어 있으므로 도광판의 배면으로 조사되는 광을 전면측으로 반사시켜 광손실을 줄일 수 있다.
특히, 광생물 반응용기(41)에 광파이버의 단부에 설치된 렌즈유닛(43)들을통하여 직접적으로 조사될 수 있는데, 이 경우 렌즈유닛(43)을 통하여 광생물 반응용기(20)의 각 부위에 광을 균일하게 조사할 수 있다.
그리고 날씨가 흐리거나 장마철에는 태양광이 약하므로 도광판(45)의 측면에 설치된 램프 모듈(60)의 발광다이오드를 발광시켜 이 발광다이오드로부터 조사된 광이 도광판(45)을 통하여 광생물 반응용기(20)에 조사되도록 한다. 따라서 외부조건에 관계없이 지속적으로 광생물 반응용기(20)에 광을 조사할 수 있으므로 반응용기(20)를 이용하여 미세조류가 배양될 수 있도록 한다. 이를 더욱 상세하게 설명하면, 보통 태양이 있는 낮에는 집광유닛과 도광판의 이용하여 광생물 반응용기(20)에 광을 조사하고, 태양이 없는 경우에는 광조사유닛(50)의 도광판(51) 측면에 설치된 제 1,2램프 모듈(61)(62)들을 이용하여 광생물 반응용기(20)에 광을 조사하게 되며, 태양 빛이 약한 낮의 경우에는 집광유닛(30)과 광파이버, 도광판(45) 및 도광판의 측면에 설치된 램프 모듈(60)을 이용하여 반응용기에 항상 일정한 광 에너지를 광생물 반응용기(20) 내부로 공급할 수 있다.
그리고 ,상기 집광유닛(30)은 트랙킹수단에 의해 태양의 고도에 따라 각도를 조정하거나 슬라이딩 시킬 수 있으므로 태양의 고도에 따라 포커싱 위치가 도광판으로부터 벗어나는 것을 방지할 수 있다. 특히 집광유닛(30)에 의해 집광된 광을 광파이버를 통하여 조사할 수 있으므로 광생물 반응기의 설치 위치에 제약을 받지 않고 설계 및 시공할 수 있다.
이상에서 설명한 바와 같이 본 발명에 따른 태양광을 이용한 광생물 반응기는 태양광을 집속하고, 이 집속된 광을 광파이버를 통하여 광생물 반응용기에 조사함으로써 광생물 반응용기의 설치위치가 자유롭고 태양광의 조사를 위한 설계의 자유도를 높일 수 있다. 또한 렌즈유닛 또는 도광판을 이용하여 광생물 반응기를 조사함으로써 배광균일도를 극대화 할 수 있으며, 광생물 반응용기에 조사되는 광량의 조절이 용이하므로 미세 조류에 의한 고농도 배양 시 그 생산량의 조절이 용이하고, 공간적 효율성을 높일 수 있다.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 사람이라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 등록 청구 범위의 기술적 사상에 의해 정해져야 할 것이다.

Claims (8)

  1. 내부에서 미세조류가 배양될 수 있도록 하는 것으로 소정의 간격으로 설치되는 판상의 반응용기들과; 상기 반응용기 상부에 설치되어 태양광을 집광하기 위한 집광유닛과, 상기 반응용기에 광을 조사하기 위하여 집광유닛과 연결되어 상기 집광된 광을 반응용기에 조사하기 위한 광파이버를 구비한 광파이버 유닛을 구비한 것을 특징으로 하는 태양광을 이용한 광생물 반응기.
  2. 제 1항에 있어서,
    상기 광파이버 유닛은 상기 판상의 반응용기와 대응되도록 설치되며, 상기 집광유닛과 연결된 광파이버와 연결되어 광파이버를 통하여 도광된 광을 상기 반응용기에 조사하기 위한 도광판을 구비한 것을 특징으로 하는 태양광을 이용한 광생물 반응기.
  3. 제 2항에 있어서,
    상기 도광판의 가장자리에 설치되어 도광판을 통하여 반응용기에 광을 조사하기 위한 램프모듈을 구비한 것을 특징으로 하는 태양광을 이용한 광생물 반응기.
  4. 제 2항 또는 3항에 있어서,
    상기 도광판의 전면 또는 배면에 광을 반사시키기 위한 광반사패턴이 형성된 것을 특징으로 하는 태양광을 이용한 광생물 반응기.
  5. 제 1항에 있어서,
    상기 광파이버의 단부에는 광을 확산시키기 위한 렌즈유닛을 더 구비한 것을 특징으로 하는 태양광을 이용한 광생물 반응기.
  6. 제 1항에 있어서,
    상기 집광유닛은 태양광을 속하기 위한 집속렌즈 유닛들과, 이 집광렌즈 유닛들을 지지하기 위한 프레임을 구비하며, 상기 각 집속렌지유닛의 상면에 IR필터가 설치된 것을 특징으로 하는 태양광을 이용한 광생물 반응기.
  7. 제 1항에 있어서,
    상기 집광유닛은 정열된 상기 광파이버측으로 광을 반사시키기 위한 제 1반사판과, 태양광을 집속하여 상기 제1반사판 측으로 집속하기 위한 제 2반사판을 구비한 것을 특징으로 하는 태양광을 이용한 광생물 반응기.
  8. 제 1항에 있어서,
    상기 집광유닛과 광파이버의 사이에 설치되는 IR 필터를 더 구비한 것을 특징으로 하는 태양광을 이용한 광생물 반응기.
PCT/KR2011/010361 2011-12-29 2011-12-30 태양광을 이용한 광생물 반응기 WO2013100237A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0145951 2011-12-29
KR1020110145951A KR101222145B1 (ko) 2011-12-29 2011-12-29 태양광을 이용한 광생물 반응기

Publications (1)

Publication Number Publication Date
WO2013100237A1 true WO2013100237A1 (ko) 2013-07-04

Family

ID=47841833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/010361 WO2013100237A1 (ko) 2011-12-29 2011-12-30 태양광을 이용한 광생물 반응기

Country Status (2)

Country Link
KR (1) KR101222145B1 (ko)
WO (1) WO2013100237A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018096107A1 (fr) * 2016-11-25 2018-05-31 Centre National De La Recherche Scientifique (Cnrs) Module pour photobioreacteur et photobioreacteur associe
CN110387314A (zh) * 2019-08-15 2019-10-29 陶玲 一种自调节型光生物反应器
IT201800007965A1 (it) * 2018-08-08 2020-02-08 Biosyntex Srl Concentratore solare
AT522902A1 (de) * 2019-08-21 2021-03-15 Pts Phytotech Solution Ltd Sensor zur Bestimmung der Lichtleistung einer Lichtquelle
IT202100003308A1 (it) * 2021-02-15 2022-08-15 Biosyntex S R L Artificial lighting system per l’illuminazione di un fotobioreattore

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101319241B1 (ko) 2012-12-10 2013-10-16 조선대학교산학협력단 광생물 반응기
KR101381951B1 (ko) * 2013-01-25 2014-04-07 조선대학교산학협력단 평판형 광생물반응기 모듈과 이를 이용한 광생물 배양 시스템
MX369489B (es) * 2013-03-05 2019-11-11 Xiant Technologies Inc Sistema de gestión de modulación de fotones.
EP3670642A4 (en) * 2017-08-16 2021-05-19 Nippon Soda Co., Ltd. MICRO-ORGANISM CULTURE SYSTEM
WO2019064291A1 (en) * 2017-09-26 2019-04-04 Brevel Ltd SYSTEMS AND METHODS FOR CLOSED CULTURE UTILIZING OPTICAL FIBERS TO CANALIZE NATURAL LIGHT

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090047722A1 (en) * 2005-12-09 2009-02-19 Bionavitas, Inc. Systems, devices, and methods for biomass production
KR100897019B1 (ko) * 2007-10-15 2009-05-25 주식회사 바이오트론 고효율 미세조류 배양용 광생물 반응기
US20090148931A1 (en) * 2007-08-01 2009-06-11 Bionavitas, Inc. Illumination systems, devices, and methods for biomass production
KR20090010329U (ko) * 2008-04-07 2009-10-12 컴파운드 쏠라 테크놀로지 컴퍼니 리미티드 오일이 풍부한 미소조류의 배양장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090047722A1 (en) * 2005-12-09 2009-02-19 Bionavitas, Inc. Systems, devices, and methods for biomass production
US20090148931A1 (en) * 2007-08-01 2009-06-11 Bionavitas, Inc. Illumination systems, devices, and methods for biomass production
KR100897019B1 (ko) * 2007-10-15 2009-05-25 주식회사 바이오트론 고효율 미세조류 배양용 광생물 반응기
KR20090010329U (ko) * 2008-04-07 2009-10-12 컴파운드 쏠라 테크놀로지 컴퍼니 리미티드 오일이 풍부한 미소조류의 배양장치

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018096107A1 (fr) * 2016-11-25 2018-05-31 Centre National De La Recherche Scientifique (Cnrs) Module pour photobioreacteur et photobioreacteur associe
FR3059335A1 (fr) * 2016-11-25 2018-06-01 Centre National De La Recherche Scientifique (Cnrs) Module pour photobioreacteur et photobioreacteur associe
IT201800007965A1 (it) * 2018-08-08 2020-02-08 Biosyntex Srl Concentratore solare
WO2020031128A3 (en) * 2018-08-08 2020-03-26 BIOSYNTEX S.r.l. Solar concentrator
CN110387314A (zh) * 2019-08-15 2019-10-29 陶玲 一种自调节型光生物反应器
AT522902A1 (de) * 2019-08-21 2021-03-15 Pts Phytotech Solution Ltd Sensor zur Bestimmung der Lichtleistung einer Lichtquelle
IT202100003308A1 (it) * 2021-02-15 2022-08-15 Biosyntex S R L Artificial lighting system per l’illuminazione di un fotobioreattore
EP4043543A1 (en) * 2021-02-15 2022-08-17 Biosyntex S.R.L. Artificial lighting system for the lighting of a photobioreactor

Also Published As

Publication number Publication date
KR101222145B1 (ko) 2013-01-14

Similar Documents

Publication Publication Date Title
WO2013100237A1 (ko) 태양광을 이용한 광생물 반응기
CN1204244C (zh) 光合成培养系统和集合的光合成培养系统
KR100897019B1 (ko) 고효율 미세조류 배양용 광생물 반응기
WO2012050325A2 (ko) 광생물 반응기
Ogbonna et al. An integrated solar and artificial light system for internal illumination of photobioreactors
US20090291485A1 (en) Apparatus and method for optimizing photosynthetic growth in a photo bioreactor
KR100897018B1 (ko) 미세조류 배양용 광생물 반응기 및 이를 구비한 미세조류생산장치
US20110300624A1 (en) Photobioreactor
CN102459561B (zh) 特别用于光合异养微生物的生长和培养的光生物反应器
Pulzl et al. Light energy supply in plate-type and light diffusing optical fiber bioreactors
Tredici et al. Cultivation of Spirulina (Arthrospira) platensis in flat plate reactors
KR20120073432A (ko) 폐수를 이용한 미세조류 생산장치
KR101319241B1 (ko) 광생물 반응기
JP4523187B2 (ja) 光バイオリアクタ
CN103710255A (zh) 光生物反应器系统
KR101404223B1 (ko) 광생물 배양 시스템
KR101381951B1 (ko) 평판형 광생물반응기 모듈과 이를 이용한 광생물 배양 시스템
Salmean et al. Design and testing of an externally-coupled planar waveguide photobioreactor
KR101415553B1 (ko) 미세 조류 배양 장치
KR101519113B1 (ko) 도광판과 이를 이용한 광생물 반응기
CN220520462U (zh) 一种脉冲光生物反应器
CN219950974U (zh) 一种光伏导光装置的微藻培养系统
CN218596357U (zh) 一种利用太阳光养殖微藻的系统
KR101385940B1 (ko) 광차단 패턴 또는 열전환 패턴을 구비한 광생물 반응기 및 이를 이용한 미세조류 배양방법
CN116731822A (zh) 一种脉冲光生物反应器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11879076

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11879076

Country of ref document: EP

Kind code of ref document: A1