WO2013100229A1 - 수자원 관리용 무인 보트 운용 시스템 및 그 운용 방법 - Google Patents
수자원 관리용 무인 보트 운용 시스템 및 그 운용 방법 Download PDFInfo
- Publication number
- WO2013100229A1 WO2013100229A1 PCT/KR2011/010292 KR2011010292W WO2013100229A1 WO 2013100229 A1 WO2013100229 A1 WO 2013100229A1 KR 2011010292 W KR2011010292 W KR 2011010292W WO 2013100229 A1 WO2013100229 A1 WO 2013100229A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- unmanned boat
- water
- hull
- unmanned
- information
- Prior art date
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 116
- 238000000034 method Methods 0.000 title claims abstract description 46
- 238000004891 communication Methods 0.000 claims abstract description 31
- 238000005259 measurement Methods 0.000 claims abstract description 8
- 239000003344 environmental pollutant Substances 0.000 claims description 5
- 231100000719 pollutant Toxicity 0.000 claims description 5
- 238000011017 operating method Methods 0.000 claims description 4
- 238000005096 rolling process Methods 0.000 claims description 4
- 238000003911 water pollution Methods 0.000 claims description 4
- 238000007689 inspection Methods 0.000 claims description 3
- 230000004308 accommodation Effects 0.000 claims description 2
- 238000003306 harvesting Methods 0.000 claims description 2
- 238000005070 sampling Methods 0.000 claims 1
- 238000007726 management method Methods 0.000 description 9
- 230000008859 change Effects 0.000 description 8
- 230000008569 process Effects 0.000 description 5
- 238000011109 contamination Methods 0.000 description 4
- 230000000007 visual effect Effects 0.000 description 4
- 230000005484 gravity Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 241000195493 Cryptophyta Species 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001141 propulsive effect Effects 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/0206—Control of position or course in two dimensions specially adapted to water vehicles
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
Definitions
- the present invention relates to a system for operating an unmanned boat that operates without a person, and more particularly, to an unmanned boat operating system capable of performing unattended management of water resources such as water quality measurement, and an unmanned boat operating method using the same. It is about.
- water resource management refers to a series of processes that monitor information such as water quality, depth, and temperature of rivers and reservoirs, and establish and implement management measures based on them.
- the remote control method that the remote control method by floating the unmanned boat for water quality inspection on the water has been attracting attention.
- This is a way for the manipulator to remotely control and move the unmanned boat near the observation point and to obtain the information necessary for monitoring the water resources with the equipment mounted on the unmanned boat.
- this can be observed only in a limited area that does not fall outside the operator's field of view, there is a limit in obtaining accurate and smooth information for a wider area.
- the unmanned boat operating system of the present invention for achieving the above object is an unmanned boat capable of obtaining automatic operation and water resource information in an unmanned state; And a control station communicating with the unmanned boat through a communication network and controlling the unmanned operation and the acquisition of water resource information.
- the unmanned boat, boat hull A propulsion unit for propelling the hull; A navigation unit providing information for setting a moving direction of the hull; An observation unit detecting water resource information at a desired point of the moving path of the hull; And a communication control unit which controls the respective units and transmits and receives the observed information with a control station.
- the propulsion unit may include a pair of propellers that provide symmetrical propulsion force on the left and right sides of the hull in water.
- the navigation unit includes a DGPS for providing position information of the hull, an IMU for grasping the pitch, rolling, and heading information of the hull, and a laser scanner for detecting obstacle information present on the water surface in front of the hull. Can be.
- the laser scanner may be provided with an angle adjusting unit for keeping the laser emitted parallel to the water surface.
- the navigation unit may further include an ultrasonic sensor for obstacle recognition installed in the front bumper of the hull, and an echo sounder for detecting underwater obstacles and water depths using sound waves.
- the observation unit may include a water quality sensor for directly measuring the water quality at the site while sailing on the hull, and a water intake unit for taking a sample at the site.
- the water quality sensor is lifted in the water by a winch, the water intake unit is tied to the water quality sensor and the water intake drain hose, the suction pump for sucking the sample through the drain hose, a plurality of housings for holding the suction sample
- the balancing of the hull may include a water distributor for dispensing the sample to the water bottle.
- the observation unit may further include a side scan sonar for measuring the underwater terrain using the reflected wave of the sound wave.
- the communication control unit may include a control device for controlling each unit, and a wireless communication module for communicating with the control station.
- the communication control unit can communicate with a short range remote controller, and can be configured to selectively communicate with either the control station or the remote controller.
- the hull is a catamaran structure in which the receiving spaces are symmetrically provided on the left and right sides, and may be configured to balance left and right while selectively filling water in the receiving space.
- the DB server may further include a DB server configured to communicate with the unmanned boat through a communication network to store data and provide an environment in which the user may access the stored information.
- a remote control system capable of remotely controlling the unmanned boat may be further provided.
- the unmanned boat operating method of the present invention for achieving the above object comprises the steps of preparing an unmanned boat capable of automatic operation and water resource acquisition in an unmanned state; Wirelessly instructing the unmanned boat with observation points and observations; And acquiring information by operating the unmanned boat according to the instruction.
- the indicating step may be selectively performed by transmitting a corresponding instruction from a control station connected to the unmanned boat through a communication network and adjusting the short range remote controller.
- the observation point indication may be indicated by one of a multiple point indication indicating a plurality of points to be observed, a basic point setting indicating only a starting point and an arrival point, and an observation range setting indicating a viewing range rather than a point.
- the unmanned boat may move in a zigzag range.
- Coordinates may be automatically corrected by the unmanned boat when obstacles are detected during the operation of the unmanned boat.
- the water resource acquisition may include selecting one of the steps of directly measuring the water resource information at the site and a collecting step of collecting a sample for future inspection.
- the storage location may be distributed in consideration of the balancing of the unmanned boat when storing the sample collected in the harvesting step.
- the water resource information acquisition can be obtained at a plurality of locations at different depths at one point.
- the field measurement can be switched to the tracking mode of the source of contamination when water pollution is found.
- the method may further include measuring the flow rate by drifting the unmanned boat.
- the method may further include balancing left and right by selectively filling water in the accommodation spaces symmetrically provided on the left and right sides of the unmanned boat.
- the unmanned boat operating system and operation method of the above configuration enables accurate and smooth acquisition of water resource information in an unmanned automatic state even in a large area beyond the visual observation range of the operator. Can be maximized and, as a result, it can greatly contribute to the improvement of water resources.
- FIG. 1 is a view showing an unmanned boat operating system according to the present invention.
- FIG. 2 to 4 is a view showing a detailed structure of the unmanned boat shown in FIG.
- 5A and 5C are views illustrating a water quality measurement process of the unmanned boat shown in FIG. 1.
- FIG. 6 is a diagram illustrating an information processing flow of the unmanned boat operating system shown in FIG. 1.
- 7A to 11 are views illustrating a process of moving the unmanned boat by the unmanned boat operating system.
- 12A and 12B illustrate a laser sensor angle compensation process of the unmanned boat shown in FIG. 1.
- FIG. 13A and 13B are diagrams illustrating a balancing process of the unmanned boat shown in FIG. 1.
- FIG. 1 is a view showing an unmanned boat and its operating system according to an embodiment of the present invention.
- the unmanned boat operating system of the present embodiment is an unmanned boat 100 capable of operating a water resource information acquisition destination such as a river 10 in an unmanned state, and the unmanned boat 100 through a communication network 300. And a control system 200 that communicates with and transmits and receives information, and a remote control system 400 that can be manipulated while observing the unmanned boat 100 with the naked eye at close range.
- the unmanned boat 100 which is not occupied by a person, can be manipulated as desired at a short distance or at a distance, and configured to acquire water resource information.
- the range of observation is considerably wider because it can be operated.
- the communication network 300 connecting the control system 200 may include a public network network 310 or a wireless communication network 320 such as the Internet, and the remote control system 400 may include a remote controller 410 or a PC device. 420 may be included.
- the control system 200 gives an instruction to the unmanned boat 100 and receives the information from the control station 210, and the user connects through the various terminals 31 and 32 to receive the received information.
- DB server 220 may be provided to provide an environment for viewing.
- Reference numeral 11 denotes a home position which is a point at which the unmanned boat 100 is launched.
- the unmanned boat 100 is provided with various units for enabling unmanned operation and observation. That is, the propulsion unit 140 for propelling the hull 101 on the water, and the navigation unit 110 for adjusting the direction is provided, the observation unit 120 and the control system 200 for observing the water resource information Also equipped with a communication control unit 130 for communication with.
- the propulsion unit 140 is provided with a pair of propellers 141 symmetrically provided on the lower surface of the hull 101. Therefore, when the pair of propellers 141 are driven in water, the hull 101 moves forward while water currents are driven, and the direction change is also possible by driving only one of the pair of left and right propellers 141. That is, by driving the propeller 141 it is possible to control the forward and the direction change.
- Reference numeral 142 denotes a support to which the propeller 141 is coupled, and adjusting the angle of the support 142 may adjust the propulsive force action direction of the propeller 141.
- the navigation unit 110 is an element that enables to determine the position of the unmanned boat 100 and determine the direction of travel, the DGPS (111) for providing the position information of the hull 101, the hull 101 And an IMU 113 for grasping posture change information such as pitch, rolling, and heading, and a laser scanner 112 for detecting obstacle information present on the water surface in front of the hull 101.
- the DGPS 111 is a device that provides more accurate position information than commercial GPS using various correction signals
- the IMU is a sensor mainly used for an aircraft, and uses the three-axis angular velocity, geomagnetic, and acceleration sensors of the hull 101.
- the pitch is used to grasp the pitch, which is the athlete's up and down movement information, the rolling, which is the left and right movement information, and the heading, which is the direction information.
- the laser scanner 112 is used to detect the position and distance of the obstacle present on the water surface in the traveling direction by using the laser emitted in the planar direction.
- the navigation unit 110 is provided with an ultrasonic sensor 114 for obstacle recognition installed in the front bumper 102, and an echo sounder 115 for detecting underwater obstacles and water depth using sound waves. Therefore, it is possible to continuously observe whether there are any obstacles to the operation of the unmanned boat 100 in the water as well as in the water.
- the echo sounder 115 shoots sound waves directly down the hull 101 when measuring the depth, and shoots sound waves slightly forward and downward from the bottom when the underwater obstacle is observed.
- the observation unit 120 as shown in Figure 3 and 4, the water quality sensor 121 mounted on the bracket (121a) of the bottom surface of the hull 101, the side mounted to the left and right sides of the hull 101
- the scan sonar 122 is provided.
- Reference numeral 103 denotes a tail light.
- the side scan sonar 122 is a device that analyzes and reflects the reflected wave after shooting sound waves, and is useful for identifying the topography of the seabed or the seabed.
- the water quality sensor 121 is a sensor that detects the water quality of the water when the water enters through the slit in the front portion, it is used to determine the components of the water and the degree of contamination.
- the water quality sensor 121 may be used fixed to the bracket 121a as shown in FIGS. 3 and 4, but as shown in FIGS. 5A to 5C, the water quality sensor 121 is elevated in the water by the winch 121b and the water depth is increased. It may be configured to obtain the star information.
- a water collecting part for collecting a sample through the drain hose 123 and analyzing the component later may be further provided. That is, when the suction pump 123b of the water collecting unit is operated at the position to obtain the water resource information, water at the corresponding position is sucked through the drain hose 123, and the water is discharged into the hull 101 from the water distributor 123c. It is to be distributed to a number of prepared water collecting bottles (123d). The sample containing the 123d is analyzed later in a separate analysis room.
- the collection distributor 123c is distributed in consideration of the balancing of the hull 101.
- the center of gravity of the hull 101 may be severely disturbed, which may cause trouble even in the operation of the unmanned boat 100, so that the hull bottle 123d is hulled.
- Dispersion arrangement is made in consideration of the center of gravity of 101, and the sample holding is also distributed in consideration of balancing. Then, stable collection and operation are possible.
- the drain hose 123 can also be taken by the winch (123a) while taking the sample for each depth, it is preferable to be configured to be elevated with the water quality sensor 121 is tied to the water quality sensor 121. Because, if only the drain hose 123 is elevated, since the hose 123 is likely to leave the correct position by the algae, it is fixed to the water quality sensor 121 so that the water quality sensor 121 serves as a weight. .
- the communication control unit 130 communicates with the control system 200 through a wireless communication module (see FIG. 6) and controls each unit.
- Reference numeral 132 in FIG. 2 denotes a power battery.
- the communication control unit 130 may communicate with the short range remote control system 400, and is configured to selectively communicate with one of the control system 200 and the remote control system 400. . That is, when connected to the control system 200 is terminated the connection to the remote control system 400, on the contrary, when connected to the remote control system 400 may be configured such that the connection to the control system 200 is terminated. .
- FIG. 6 schematically illustrates the connection relationship between the unmanned boat 100, the control system 200, and the remote control system 400.
- the communication control unit 130 of the unmanned boat 100 controls the navigation unit 110, the propulsion unit 140, the observation unit 120, and the like, and stores information obtained therefrom to control the system 200.
- the control system 200 gives the navigation and observation instructions while monitoring the transmitted information.
- the communication with the control system 200 may be interrupted and the near visual adjustment may be performed using the remote control system 400.
- the navigation information can be set by the method shown in FIGS. 7A to 7C.
- FIG. 7A shows a plurality of observation points P1 to P11 set by the control system 200 and transmits the coordinates to the unmanned boat 100. Then, the unmanned boat 100 calculates the route to the corresponding observation point (P1 ⁇ P11) using the DGPS (111), and operates the navigation unit 110 and the propulsion unit 140 according to the river 10 above Operate. Each time the respective observation points P1 to P11 are reached, the water quality sensor 121 of the observation unit 120 is operated to acquire depth information, or the collection unit is operated to collect samples for each depth. The information thus obtained is transmitted back to the control system 200 through the communication network 300, the control station 210 analyzes the transmitted information, DB server 220 is a user of the various terminals (31, 32) It provides an environment to view the information through.
- DGPS DGPS
- 7B illustrates a method of autonomously determining an observation path in the unmanned boat 100 when only the starting point P1 and the arrival point P2 of the unmanned boat 100 in the control system 200 are provided as basic information.
- 7C illustrates a method of autonomously determining the detailed observation path in the unmanned boat 100 when the observation area R is designated by the control system 200. That is, only the basic information is provided by the control system 200 and the detailed observation path is determined by the communication controller 130 of the unmanned boat 100.
- the observation path of the unmanned boat 100 may be set as shown in FIGS. 8A and 8B.
- the unmanned boat 100 does not pass the observation path as the shortest path but in a zigzag manner. Set and operate. This makes it possible to more precisely acquire the water resource information in the region, thereby increasing the reliability of the information.
- the unmanned boat 100 immediately sets a bypass path to avoid the obstacle 10a. For example, if the observation path is set up from the point P1 to the point P9 as shown in FIG. 9A, and the unmanned boat 100 detects an obstacle 10a in front of the point P8 while the unmanned boat 100 is in operation, the route is turned 90 degrees immediately to P9. Change to point -1. Then, after switching 90 degrees from the P9-1 point to the P9-2 point that can bypass the obstacle 10a again, if there is no obstacle to the originally scheduled P9 point, the route to the P9 point is reset there.
- the obstacle is detected by the navigation unit 110 described above, the rerouting is performed by the communication control unit 130, and the direction change driving accordingly is performed by the propulsion unit 140.
- the two propellers 141 of the above-mentioned propulsion unit 140 may be differentially driven to change directions, and may be configured to change direction by adding a control key (not shown) separately.
- the source of contamination may be tracked by the unmanned boat 100. That is, as shown in FIG. 10, if the unmanned boat 100 starting the observation from the point P1 and moving to the point P7 detects the water pollution at the point P6, the observation mode is switched to the pollutant tracking mode from that point. Can be. Then, the unmanned boat 100 measures the water pollution while circulating the pollutant discovery point at a certain radius, and sets a progress path in the direction where the pollution is most severe. In this way, if you set the trace route from E1 to E6, you will eventually find the source of contamination. Therefore, not only the measurement of water quality but also the tracking of pollutants can be performed.
- the flow rate of the river 10 may be measured using the unmanned boat 100.
- the power of the unmanned boat 100 is turned off and drifted, and the flow rate is measured by measuring the time that passes a certain distance. That is, as illustrated in FIG. 11, when the power of the unmanned boat 100 is turned off and drifted at the point P1, the unmanned boat 100 flows to the point P2 by riding a bird. In this case, it is assumed that the edge of the stream 10 is set to measure the flow velocity only in the region indicated by the dotted line in the drawing because the flow velocity is different. Then, at the point P2, power is again applied to move the unmanned boat 100 to the point P3, which is the central portion.
- the unmanned boat 100 of the present invention may be provided with additional elements such as FIGS. 12A to 13B in addition to the above-described elements.
- an angle adjusting unit may further include an angle adjusting unit for compensating an inclination of the laser scanner 112 of the navigation unit 110. Since the laser scanner 112 detects an obstacle on the surface of the water, the output direction of the laser must go out parallel to the surface of the water as shown in FIG. 12A. However, when the unmanned boat 100 is operated, the athlete may be tilted up and down. Then, when the laser scanner 112 is inclined as shown in FIG. 12B such that the emission direction of the laser is parallel to the surface of the laser, the laser scanner 112 is parallel again.
- the angle adjusting part of the laser scanner 112 may employ
- a balancing mechanism as shown in FIGS. 13A and 13B may be further provided. That is, the hull 101 of the unmanned boat 100 of the present embodiment is a catamaran structure in which spaces are provided in left and right symmetry, and when necessary, the space is filled to balance water. If the hull 101 is inclined to the right due to the baggage as shown in FIG. 13A, the water inlet valve 101a on the left side is opened to balance the water, and at the same time, the air valve 101b is opened to discharge the air filling the space. . Then, when the level is horizontal, the inlet valve 101a and the air valve 101b are closed to maintain the level. Therefore, the hull 101 may be configured to regain the center of gravity by operating such emergency means if the baggage is inclined severely.
- the unmanned boat operating system and its operation method according to the present invention described above it is possible to accurately and smoothly obtain the water resource information in the unattended automatic state even in a large area beyond the visual observation range of the operator,
- the efficiency of water resource management can be maximized, and as a result, it can greatly contribute to water resource improvement.
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Testing Or Calibration Of Command Recording Devices (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
본 발명은 수질 측정과 같은 수자원 관리를 무인 상태로 수행할 수 있는 무인 보트 운용 시스템 및 그것을 이용한 무인 보트 운용 방법을 개시한다. 개시된 무인 보트 운용 시스템은 항행과 관측 및 통신제어유닛을 각각 구비하여 무인 상태로 자동 운항 및 수자원 정보 획득이 가능한 무인 보트와, 통신망을 통해 그 무인 보트와 통신하며 무인 운항과 수자원 정보 획득을 제어를 수행하는 관제국을 구비한다. 이러한 구성의 무인 보트 운용 시스템 및 운용 방법은 조종자의 육안 관측 범위를 벗어나는 넓은 지역에 대해서도 수자원 정보를 무인 자동 상태에서 정확하고 원활하게 얻어낼 수 있게 해주며, 이를 이용할 경우 수자원 관리의 효율성을 극대화할 수 있고 결과적으로 수자원 개선에 크게 기여할 수 있게 된다.
Description
본 발명은 사람이 탑승하지 않은 채로 운항하는 무인 보트를 운용하는 시스템에 관한 것으로서, 더 상세하게는 수질 측정과 같은 수자원 관리를 무인 상태로 수행할 수 있는 무인 보트 운용 시스템 및 그것을 이용한 무인 보트 운용 방법에 관한 것이다.
일반적으로 수자원 관리는 하천이나 저수지 등의 수질, 수심, 수온과 같은 정보를 모니터링하고, 이를 근거로 관리 대책을 수립하여 시행하는 일련의 과정을 말한다.
따라서, 수자원 관리의 성패는 관리의 시작에 해당되는 수자원 정보 획득이 얼마나 정확하고 원활하게 효율적으로 이루어지는가에 달렸다고도 볼 수 있다.
그런데, 지금까지의 수자원 관리 방식은 대부분 인력이 직접 투입되는 수동 관측이거나 또는 무인 방식이라고 해도 특정 위치에서만 측정이 이루어지는 고정식 관측이 대부분이었기 때문에, 원활한 모니터링이 어려워 사실상 효율적인 관리가 불가능한 상태였다. 그나마 무인관측에는 비용이 많이 들기 때문에 주요 하천이나 댐에서만 운용이 되고, 대부분의 하천이나 저수지 등에서는 직접 인력이 투입되는 수동 관측이 주를 이루고 있는 실정이다. 따라서, 당연히 수자원 관리가 효율적으로 이루어지지 못하고 있다. 또한, 고정식 관측의 경우는 관측 장비가 정수되지 않은 물속에 장기간 잠겨 있게 되므로 장비의 고장이 빈발하는 문제도 생긴다.
한편, 최근에는 이러한 고정식 관측이나 수동 관측의 단점을 감안하여, 수질 검사를 위한 무인보트를 물 위에 띄워 조종자가 원격으로 조종하는 리모트 컨트롤 방식이 주목받고 있다. 이것은 조종자가 관측지 인근에서 무인 보트를 원격으로 조종하여 이동시키며 무인 보트에 탑재된 각종 장비로 수자원 모니터링에 필요한 정보를 얻는 방식이다. 그런데, 이 역시 조종자의 시야를 벗어나지 않는 제한된 영역에 대해서만 관측이 가능하기 때문에, 보다 넓은 지역에 대해 정확하고 원활한 정보를 얻어내는 데에는 한계가 있다.
따라서, 이러한 기존의 단점들을 해소할 수 있는 새로운 방식의 수자원 관리 방안이 요구되고 있다.
본 발명의 상기의 필요성을 감안하여 창출된 것으로, 조종자의 육안 관측 범위를 벗어나는 넓은 지역에 대해서도 자동으로 해당 지역의 수자원 관리 정보를 얻어낼 수 있도록 개선된 무인 보트 운용 시스템 및 운용 방법을 제공하는데 그 목적이 있다.
상기의 목적을 달성하기 위한 본 발명의 무인 보트 운용 시스템은 무인 상태에서 자동 운항 및 수자원 정보 획득이 가능한 무인 보트; 및 상기 무인 보트와 통신망을 통해 통신하며 상기 무인 운항과 수자원 정보 획득을 제어를 수행하는 관제국;을 포함한다.
상기 무인 보트는, 보트 선체; 상기 선체를 추진시키는 추진유닛; 상기 선체의 이동 방향을 설정하기 위한 정보를 제공하는 항행유닛; 상기 선체의 이동 경로 중 원하는 지점에 대해 수자원 정보를 검출하는 관측유닛; 상기 각 유닛들을 제어하며 상기 관측된 정보를 관제국과 송수신하는 통신제어유닛;을 구비할 수 있다.
상기 추진유닛은 수중에서 상기 선체의 좌우측에 대칭된 추진력을 제공하는 한 쌍의 프로펠러를 포함할 수 있다.
상기 항행유닛은, 상기 선체의 위치 정보를 제공하는 DGPS와, 상기 선체의 피치, 롤링, 헤딩 정보를 파악하는 IMU와, 상기 선체 전방의 수면상에 존재하는 장애물 정보를 검출하는 레이저 스캐너를 포함할 수 있다.
상기 레이저 스캐너에는 출사되는 레이저를 상기 수면과 평행하게 유지시키기 위한 각도조정부가 구비될 수 있다.
상기 항행유닛은, 상기 선체의 전방 범퍼에 설치된 장애물 인식용 초음파센서와, 음파를 이용해 수중 장애물과 수심을 감지하는 에코사운더를 더 포함할 수 있다.
상기 관측유닛은, 상기 선체에 운항하는 중에 현장에서 직접 수질을 측정하기 위한 수질센서와, 상기 현장에서 샘플을 채취하는 취수부를 포함할 수 있다.
상기 수질센서는 윈치에 의해 수중에서 승강되며, 상기 취수부는 상기 수질센서에 묶여서 함께 승강되는 취수용 드레인호스와, 상기 드레인호스를 통해 샘플을 흡입시키는 흡입펌프, 흡입된 샘플을 담기 위한 다수의 채수병 및, 상기 선체의 밸런싱을 감안하여 상기 채수병에 샘플을 분배하는 채수분배기를 포함할 수 있다.
상기 관측유닛은, 음파의 반사파를 이용하여 수중 지형을 측정하는 사이드 스캔 소나를 더 구비할 수 있다.
상기 통신제어유닛은, 상기 각 유닛을 제어하는 제어장치와, 상기 관제국과 통신을 위한 무선통신모듈을 포함할 수 있다.
상기 통신제어유닛은 근거리 리모트 컨트롤러와도 통신이 가능하며, 상기 관제국과 상기 리모트 컨트롤러 중 한쪽과 선택적으로 통신하도록 구성될 수 있다.
상기 선체는, 좌우측에 수용공간이 대칭으로 마련된 쌍동선 구조로, 그 수용공간에 선택적으로 물을 채우면서 좌우 균형을 맞추도록 구성될 수 있다.
상기 무인 보트와 통신망을 통해 통신하여 데이터를 저장하고 사용자가 접속하여 저장된 정보를 열람할 수 있는 환경을 제공하는 DB서버를 더 구비할 수 있다.
상기 무인 보트를 근거리 원격 조정할 수 있는 리모트 컨트롤 시스템을 더 구비할 수 있다.
상기의 목적을 달성하기 위한 본 발명의 무인 보트 운용 방법은 무인 상태에서 자동 운항 및 수자원 정보 획득이 가능한 무인 보트를 준비하는 단계; 상기 무인 보트에 관측 지점과 관측 내용을 무선으로 지시하는 단계; 상기 지시에 따라 상기 무인 보트가 운항하며 정보를 취득하는 단계;를 포함한다.
상기 지시 단계는 통신망을 통해 상기 무인 보트와 연결된 관제국에서 해당 지시를 전송하는 단계와, 근거리 리모트 컨트롤러로 조정하는 단계 중 한쪽을 선택적으로 수행할 수 있다.
상기 관측 지점 지시는, 관측할 복수 지점을 지시하는 복수 지점 지시와, 출발지점과 도착지점만 지시하는 기본 지점 설정 및, 지점이 아닌 관측 범위를 지시하는 관측 범위 설정 중 하나로 지시할 수 있다.
상기 관측 범위 설정 시 상기 무인 보트는 해당 범위를 지그재그로 이동할 수 있다.
상기 무인 보트의 운항 중 장애물 감지 시 그 무인 보트에서 자동으로 좌표를 수정할 수 있다.
상기 수자원 정보 취득은, 현장에서 수자원 정보를 바로 측정하는 단계와 향후 검사를 위해 샘플을 채취하는 채수 단계 중 한쪽을 선택하는 단계를 포함할 수 있다.
상기 채수단계에서 채취된 샘플의 저장 시 상기 무인 보트의 밸런싱을 고려하여 저장 위치를 분배할 수 있다.
상기 수자원 정보 취득은 한 지점에서 서로 다른 수심의 복수 개소에서 취득할 수 있다.
상기 현장 측정에서 수질 오염 발견시 오염원의 추적 모드로 전환할 수 있다.
상기 무인 보트를 표류시켜서 유속을 측정하는 단계를 더 포함할 수 있다.
상기 무인 보트의 좌우측에 대칭으로 마련된 수용 공간에 선택적으로 물을 채움으로써 좌우 균형을 맞추는 단계를 더 포함할 수 있다.
상기와 같은 구성의 무인 보트 운용 시스템 및 운용 방법은, 조종자의 육안 관측 범위를 벗어나는 넓은 지역에 대해서도 수자원 정보를 무인 자동 상태에서 정확하고 원활하게 얻어낼 수 있게 해주므로, 이를 이용할 경우 수자원 관리의 효율성을 극대화할 수 있으며, 결과적으로 수자원 개선에 크게 기여할 수 있게 된다.
도 1은 본 발명에 따른 무인 보트 운용 시스템을 도시한 도면이다.
도 2 내지 도 4는 도 1에 도시된 무인 보트의 세부 구조를 도시한 도면이다.
도 5a 및 도 5c는 도 1에 도시된 무인 보트의 수질 측정 과정을 묘사한 도면이다.
도 6은 도 1에 도시된 무인 보트 운용 시스템의 정보 처리 플로우를 묘사한 도면이다.
도 7a 내지 도 11은 무인 보트 운용 시스템에 의해 무인 보트가 이동하는 과정을 예시한 도면이다.
도 12a 및 도 12b는 도 1에 도시된 무인 보트의 레이저 센서 각도 보상 과정을 묘사한 도면이다.
도 13a 및 도 13b는 도 1에 도시된 무인 보트의 밸런싱 과정을 묘사한 도면이다.
이하 첨부된 도면을 참조하면서 본 발명의 일 실시예에 따른 무인 보트와 그 운용 시스템을 설명하기로 한다.
도 1은 본 발명의 일 실시예에 따른 무인 보트와 그 운용 시스템을 도시한 도면이다.
도시된 바와 같이 본 실시예의 무인 보트 운용 시스템은, 무인 상태로 하천(10)과 같은 수자원 정보 취득 대상지를 운항할 수 있는 무인 보트(100)와, 통신망(300)을 통해 그 무인 보트(100)와 교신하며 정보를 송수신하는 관제 시스템(200), 그리고 근거리에서 육안으로 무인 보트(100)를 관찰하면서 조종할 수 있는 리모트 컨트롤 시스템(400) 등을 구비하고 있다.
따라서, 사람이 탑승하지 않은 무인 보트(100)를 근거리 또는 원거리에서 원하는 대로 조종하며 수자원 정보를 취득할 수 있도록 구성되어 있으며, 특히 육안 관찰 조정이 아닌 관제시스템(200)의 원거리 지시에 따라서도 자동 운항될 수 있기 때문에 관측 범위가 상당히 넓어진다.
상기 관제시스템(200)을 연결하는 통신망(300)은 인터넷과 같은 공중망 네트워크(310)나 무선통신망(320)이 망라될 수 있고, 상기 리모트 컨트롤 시스템(400)에는 리모트 컨트롤러(410)나 PC장치(420)가 포함될 수 있다. 그리고, 상기 관제시스템(200)에는 상기 무인 보트(100)에 지시를 내리고 정보를 수신하는 관제국(210)과, 사용자가 각종 단말기(31)(32)를 통해 접속한 후 상기 수신된 정보를 열람할 수 있는 환경을 제공하는 DB서버(220)가 포함될 수 있다.
참조부호 11은 무인 보트(100)를 진수시키는 지점인 홈포지션을 나타낸다.
이제, 상기와 같은 원거리 제어가 가능한 무인 보트(100)의 구조부터 상세히 설명하기로 한다.
도 2 내지 도 4는 상기 무인 보트(100)의 외관과 내부 구조를 개략적으로 도시한 도면이다. 도시된 바와 같이 상기 무인 보트(100)에는 무인 운항과 관측을 가능하게 하기 위한 각종 유닛들이 설치되어 있다. 즉, 선체(101)를 물 위에서 추진시키기 위한 추진유닛(140)과, 방향 조정을 위한 항행유닛(110)이 구비되어 있고, 수자원 정보 관측을 위한 관측유닛(120) 및 상기 관제시스템(200)과의 통신을 위한 통신제어유닛(130)도 탑재되어 있다.
먼저, 상기 추진유닛(140)은 선체(101) 하면에 좌우 대칭으로 마련된 한 쌍의 프로펠러(141)를 구비하고 있다. 따라서, 이 한 쌍의 프로펠러(141)가 수중에서 구동되면, 물살을 헤치면서 선체(101)가 전진하게 되며, 좌우 한 쌍의 프로펠러(141)중 하나만 구동시키면 방향 전환도 가능해진다. 즉, 이 프로펠러(141)를 구동하여 전진과 방향전환을 제어할 수 있게 된다. 참조부호 142는 상기 프로펠러(141)가 결합되는 지지대를 나타내며, 이 지지대(142)의 각도를 조정하면 프로펠러(141)의 추진력 작용 방향을 조정할 수도 있다.
다음으로, 상기 항행유닛(110)은 무인 보트(100)의 위치를 파악하고 진행 방향을 결정할 수 있게 해주는 요소로서, 선체(101)의 위치 정보를 제공하는 DGPS(111)와, 선체(101)의 피치, 롤링, 헤딩과 같은 자세 변화 정보를 파악하는 IMU(113)와, 상기 선체(101) 전방의 수면상에 존재하는 장애물 정보를 검출하는 레이저 스캐너(112)를 구비하고 있다. 상기 DGPS(111)는 각종 보정신호를 이용하여 상용 GPS보다 정밀한 위치 정보를 제공하는 장치이고, 상기 IMU는 주로 항공기에 사용되는 센서로서 3축 각속도, 지자기, 가속도센서를 이용하여 선체(101)의 선수 상하 운동정보인 상기 피치와, 좌우 운동정보인 롤링, 그리고 진행방향 정보인 헤딩을 파악하는데 사용된다. 또한, 상기 레이저 스캐너(112)는 평면방향으로 출사되는 레이저를 이용해 진행방향 수면 상에 존재하는 장애물의 위치와 거리를 검출하는데 사용된다.
그리고, 상기 항행유닛(110)에는 전방 범퍼(102)에 설치된 장애물 인식용 초음파센서(114)와, 음파를 이용해 수중 장애물과 수심을 감지하는 에코사운더(115)도 구비되어 있다. 따라서, 수면 위 뿐 아니라 수중 내에서도 무인 보트(100)의 운항에 장애가 되는 물체가 있는지를 계속 관측할 수 있다. 상기 에코사운더(115)는 수심 측정 시에는 선체(101)의 직하방을 향해 음파를 쏘고, 수중 장애물 관측 시에는 직하방에서 약간 전방을 향해 음파를 쏘게 된다.
다음으로, 상기 관측유닛(120)은 도 3 및 도 4에 도시된 바와 같이, 선체(101) 저면의 브라켓(121a)에 장착된 수질센서(121)와, 선체(101) 좌우측에 장착된 사이드 스캔 소나(122)를 구비하고 있다. 참조부호 103은 후미등을 나타낸다.
상기 사이드 스캔 소나(122)는 음파를 쏜 후 그 반사파를 분석하여 영상화해 보여주는 장치로서, 하상이나 해저면의 지형을 파악하는데 유용하다.
상기 수질센서(121)는 전면부에 있는 슬릿을 통해 물이 들어오면 센서 프로브가 그 물에 대한 수질을 검출해내는 센서로서, 물의 성분과 오염 정도 등을 파악하는데 사용된다. 그리고, 이 수질센서(121)는 도 3 및 도 4와 같이 브라켓(121a)에 고정된 상태로 사용될 수도 있지만, 도 5a 내지 도 5c에 도시된 바와 같이 윈치(121b)에 의해 물속에서 승강되며 수심별 정보를 취득하도록 구성될 수도 있다. 그리고, 또 다른 추가 요소로서, 상기 수질센서(121)와 같이 현장에서 바로 수질의 측정 결과를 도출하는 다이렉트 센서 뿐 아니라, 드레인호스(123)를 통해 샘플을 채취해서 나중에 성분을 분석하기 위한 채수부를 더 구비할 수도 있다. 즉, 수자원 정보를 얻고자하는 위치에서 채수부의 흡입펌프(123b)를 가동하면 드레인호스(123)를 통해 해당 위치의 물이 흡입되어 들어오게 되고, 이를 채수분배기(123c)에서 선체(101) 안에 준비된 다수의 채수병(123d)에 분배해서 담는 것이다. 이렇게 채수병(123d) 담긴 샘플은 나중에 별도의 분석실에서 분석하게 된다. 이때, 상기 채수병(123d)에 샘플을 담을 때에는 상기 채수분배기(123c)가 선체(101)의 밸런싱을 고려하여 분배하게 된다. 즉, 선체(101)의 한쪽으로만 치우쳐서 계속 샘플을 담게 되면 선체(101)의 무게 중심이 심하게 흐트러질 수 있어서 무인 보트(100)의 운항에도 지장을 초래할 수 있으므로, 채수병(123d)을 선체(101)의 무게 중심을 고려하여 분산 배치하고, 샘플을 담는 것도 밸런싱을 감안해서 분배한다. 그러면, 안정적인 채수와 운항이 가능해진다. 한편, 상기 드레인호스(123)도 역시 윈치(123a)에 의해 승강되면서 수심별 샘플을 채취할 수 있는데, 상기 수질센서(121)에 묶여서 수질센서(121)와 함께 승강되도록 구성하는 것이 바람직하다. 왜냐하면, 드레인호스(123)만 승강시키면 조류에 의해 호스(123)가 정위치를 벗어날 가능성이 크기 때문에, 상기 수질센서(121)에 고정시켜서 수질센서(121)가 무게추의 역할을 하도록 하는 것이다.
다음으로 상기 통신제어유닛(130)은 무선통신모듈(도 6 참조)을 통해 관제시스템(200)과 통신하며 상기 각 유닛을 제어한다. 도 2의 참조부호 132는 전원배터리를 나타낸다.
상기 통신제어유닛(130)은 도 1에 도시된 바와 같이 근거리 리모트 컨트롤 시스템(400)과도 통신이 가능하며, 상기 관제시스템(200)과 리모트 컨트롤 시스템(400) 중 한쪽과 선택적으로 통신하도록 구성된다. 즉, 관제시스템(200)과 연결되면 리모트 컨트롤 시스템(400)과의 연결이 해지되고, 반대로 리모트 컨트롤 시스템(400)과 연결되면 관제시스템(200)과의 연결이 해지되는 식으로 구성될 수 있다.
도 6이 이러한 무인 보트(100)와 관제시스템(200) 및 리모트 컨트롤 시스템(400)과의 연결 관계를 개략적으로 묘사한 것이다. 도시된 바와 같이 무인 보트(100)의 통신제어유닛(130)이 항행유닛(110)과 추진유닛(140) 및 관측유닛(120) 등을 제어하면서 그로부터 얻은 정보를 저장하여 관제시스템(200)과 통신하고, 관제시스템(200)에서는 전송된 정보를 모니터링하면서 운항과 관측 지시를 내리게 된다. 그리고, 전술한 바와 같이 필요에 따라서는 관제시스템(200)과의 통신을 끊고 리모트 컨트롤 시스템(400)을 이용해서 근거리 육안 조정을 실시할 수도 있다.
이하에는, 이러한 무인 보트(100) 및 관제시스템(200) 등을 이용한 운용 방법에 대해서 설명한다.
일단, 무인 운항이기 때문에 관측을 위한 운항 정보를 정확히 전달하고 이를 효과적으로 수행하도록 하는 것이 무엇보다 중요하다. 운항 정보는 도 7a 내지 도 7c에 도시된 바와 같은 방법으로 설정해줄 수 있다.
도 7a는 복수의 관측 지점(P1~P11)을 관제시스템(200)에서 설정해서 그 좌표를 무인 보트(100)에 전송하는 것이다. 그러면, 무인 보트(100)는 DGPS(111)를 이용해 해당 관측 지점(P1~P11)으로의 경로를 계산하고, 그에 따라 항행유닛(110)과 추진유닛(140)을 가동하여 하천(10) 위를 운항한다. 그리고, 각 관측 지점(P1~P11)에 도달할 때마다 상기 관측유닛(120)의 수질센서(121)를 가동하여 수심별 정보를 취득하거나, 또는 채수부를 가동하여 수심별 샘플을 채취한다. 이렇게 얻어진 정보는 통신망(300)을 통해 상기 관제시스템(200)으로 다시 전송되고, 관제국(210)은 전송된 정보를 분석하며, DB서버(220)는 사용자가 각종 단말기(31)(32)를 통해 상기 정보를 열람할 수 있는 환경을 제공한다.
도 7b는 관제시스템(200)에서 무인 보트(100)의 출발지점(P1)과 도착지점(P2) 만을 기본 정보로 제공하면, 무인 보트(100)에서 자율적으로 관측 경로를 결정하는 방식을 예시한 것이고, 도 7c는 관제시스템(200)에서 관측 영역(R)을 지정해주면, 세부적인 관측 경로를 무인 보트(100)에서 자율적으로 결정하는 방식을 예시한 것이다. 즉, 기초 정보만 관제시스템(200)에서 제공하고 세부적인 관측 경로는 무인 보트(100)의 통신제어부(130)에서 결정한다. 이때의 무인 보트(100) 관측 경로는 도 8a 및 도 8b와 같이 설정될 수 있다. 도 8a 처럼 출발지점(P1)과 도착지점(P2)만 설정된 경우와, 도 8b 처럼 관측 영역(R)이 설정된 경우, 무인 보트(100)에서는 관측 경로를 최단 경로로 통과하는 것이 아니라 지그재그식으로 설정하여 운항한다. 이렇게 되면 해당 지역 내의 수자원 정보를 보다 치밀하게 취득할 수 있게 되므로, 정보의 신뢰도를 더욱 높일 수 있게 된다.
그리고, 만일 운항 중에 경로 내에 장애물이 탐지될 경우에는 도 9a 및 도 9b에 도시된 바와 같이 무인 보트(100)에서 우회 경로를 즉시 설정하여 장애물(10a)을 피해간다. 예를 들어 도 9a와 같이 P1 지점에서 출발하여 P9지점까지 관측 경로가 설정되었는데, 무인 보트(100)가 운항하는 중 P8 지점에서 전방에 장애물(10a)을 감지했다면, 즉시 경로를 90도 틀어서 P9-1지점으로 변경한다. 그리고, P9-1지점에서 다시 장애물(10a)을 우회할 수 있는 P9-2지점으로 90도 전환한 후, 원래 예정된 P9지점까지 장애물이 없는 것이 확인되면 그곳에서 P9지점으로 가는 경로를 재설정한다.
또한, 이렇게 장애물(10a) 앞에서 경로를 90도로 급변시켜서 피해가도록 하는 방법도 있지만, 도 9b와 같이 장애물(10a)이 발견된 P10지점에서 수 m 인접 지역인 P10-1지점으로 경로를 변경했다가 P11지점으로 이동시킬 수도 있다.
물론, 장애물은 전술한 항행유닛(110)에서 감지하며, 경로 재설정은 상기 통신제어유닛(130)에서 수행하고, 그에 따른 방향 전환 구동은 추진유닛(140)에서 수행한다. 본 실시예에서는 전술한 추진유닛(140)의 두 프로펠러(141)를 차등 구동하여 방향을 전환시킬 수 있으며, 이와 별도로 조종키(미도시)를 추가해서 방향을 전환시키도록 구성할 수도 있다.
그리고, 상기 무인 보트(100)로 오염원을 추적할 수도 있다. 즉, 도 10에 도시된 바와 같이, P1지점부터 관측을 시작하며 P7 지점으로 이동하던 무인 보트(100)가 만일 P6지점에서 수질 오염을 감지했다면, 그 지점에서부터 오염원 추적 모드로 관측 모드를 전환할 수 있다. 그러면, 무인 보트(100)는 오염원 발견 지점을 일정 반경으로 순회하면서 수질 오염을 측정하고, 오염이 가장 심한 방향으로 진행 경로를 설정한다. 이런 식으로 E1~E6로 추적 경로를 설정하면 결국에는 오염원을 찾아갈 수 있게 된다. 따라서, 단순한 수질 측정 뿐 아니라, 오염원의 추적까지도 수행할 수 있다.
또한, 상기 무인 보트(100)를 이용하여 하천(10)의 유속도 측정할 수 있다. 이때에는 무인 보트(100)의 동력을 끄고 표류시키며 일정 거리를 흘러간 시간을 재서 유속을 측정한다. 즉, 도 11에 예시된 것처럼, P1지점에서 무인 보트(100)의 동력을 끄고 표류시키면, 무인 보트(100)는 조류를 타고 P2지점까지 흘러간다. 이때 하천(10)의 가장자리는 유속이 달라지므로 도면의 점선으로 표시된 영역 안에서만 유속을 측정하도록 설정되었다고 가정한다. 그러면, P2지점에서는 다시 동력을 가동하여 무인 보트(100)를 중앙부인 P3지점으로 이동시킨다. 그리고 다시 동력을 끄고 표류시키며 이동 거리와 시간을 잰다. 이런 식으로 P8 지점까지 배를 표류시켰다가 중앙으로 복귀시키는 작업을 반복하며 이동 거리와 이동 시간을 재면, 하천의 유속을 알아낼 수 있게 된다. 따라서, 수질 정보 취득과 오염원 추적 뿐 아니라, 유속의 측정도 무난하게 수행할 수 있다.
한편, 본 발명의 무인 보트(100)에는 전술한 요소 외에 도 12a 내지 도 13b와 같은 추가적인 요소들이 구비될 수도 있다.
먼저, 도 12a 및 도 12b에 도시된 바와 같이 항행유닛(110)의 레이저 스캐너(112)의 기울기를 보상하는 각도조정부를 더 구비할 수도 있다. 레이저 스캐너(112)는 수면 위의 장애물을 감지하는 것이기 때문에, 레이저의 출사 방향이 도 12a처럼 수면과 평행하게 나가야 한다. 그런데, 무인 보트(100)가 운항하다 보면 선수가 위아래로 기울어질 수가 있다. 그러면 레이저의 출사 방향이 수면과 평행이 되도록 레이저 스캐너(112)를 도 12b와 같이 기울이면 다시 평행이 이루어지게 된다. 레이저 스캐너(112)의 각도조정부는 일반적인 회전기구를 채용하면 된다.
그리고, 도 13a 및 도 13b와 같은 밸런싱 기구를 더 구비할 수도 있다. 즉, 본 실시예의 무인 보트(100) 선체(101)는 좌우 대칭으로 공간이 마련된 쌍동선 구조인데, 필요 시 그 공간에 물을 채워서 균형을 맞추도록 하는 것이다. 만일, 도 13a와 같이 수하물 때문에 선체(101)가 우측으로 기울었다면, 좌측의 입수밸브(101a)를 열어서 물을 채워 균형을 맞추며, 동시에 공기밸브(101b)를 열어서 공간 안을 채우고 있던 에어를 배출한다. 그리고 수평이 되면 입수밸브(101a)와 공기밸브(101b)를 각각 닫고 수평을 유지시킨다. 따라서, 선체(101)가 수하물 때문에 심하게 기울어지면 이러한 비상 수단을 가동하여 무게 중심을 다시 잡을 수 있도록 구성할 수도 있다.
그러므로, 이상에서 설명한 본 발명에 따른 무인 보트 운용 시스템 및 그 운용 방법에 의하면 조종자의 육안 관측 범위를 벗어나는 넓은 지역에 대해서도 수자원 정보를 무인 자동 상태에서 정확하고 원활하게 얻어낼 수 있게 되므로, 이를 이용할 경우 수자원 관리의 효율성을 극대화할 수 있으며, 결과적으로 수자원 개선에 크게 기여할 수 있게 된다.
본 발명은 상기에 설명되고 도면에 예시된 것에 의해 한정되는 것은 아니며, 이하에 기재되는 특허청구범위 내에서 더 많은 변형 및 변용예가 가능한 것임은 물론이다.
Claims (25)
- 무인 상태에서 자동 운항 및 수자원 정보 획득이 가능한 무인 보트;상기 무인 보트와 통신망을 통해 통신하며 상기 무인 운항과 수자원 정보 획득을 제어를 수행하는 관제국;을 포함하는 무인 보트 운용 시스템.
- 제1항에 있어서,상기 무인 보트는, 보트 선체와, 상기 선체를 추진시키는 추진유닛과, 상기 선체의 이동 방향을 설정하기 위한 정보를 제공하는 항행유닛과, 상기 선체의 이동 경로 중 원하는 지점에 대해 수자원 정보를 검출하는 관측유닛 및, 상기 각 유닛들을 제어하며 상기 관측된 정보를 관제국과 송수신하는 통신제어유닛을 구비한 무인 보트 운용 시스템.
- 제2항에 있어서,상기 추진유닛은 수중에서 상기 선체의 좌우측에 대칭된 추진력을 제공하는 한 쌍의 프로펠러를 포함하는 것을 특징으로 하는 무인 보트 운용 시스템.
- 제2항에 있어서,상기 항행유닛은,상기 선체의 위치 정보를 제공하는 DGPS와,상기 선체의 피치, 롤링, 헤딩 정보를 파악하는 IMU와,상기 선체 전방의 수면상에 존재하는 장애물 정보를 검출하는 레이저 스캐너를 포함하는 것을 특징으로 하는 무인 보트 운용 시스템.
- 제4항에 있어서,상기 레이저 스캐너에는 출사되는 레이저를 상기 수면과 평행하게 유지시키기 위한 각도조정부가 구비된 것을 특징으로 하는 무인 보트 운용 시스템.
- 제4항에 있어서,상기 항행유닛은,상기 선체의 전방 범퍼에 설치된 장애물 인식용 초음파센서와,음파를 이용해 수중 장애물과 수심을 감지하는 에코사운더를 더 포함하는 것을 특징으로 하는 무인 보트 운용 시스템.
- 제2항에 있어서,상기 관측유닛은,상기 선체에 운항하는 중에 현장에서 직접 수질을 측정하기 위한 수질센서와,상기 현장에서 샘플을 채취하는 취수부를 포함하는 것을 특징으로 하는 무인 보트 운용 시스템.
- 제7항에 있어서,상기 수질센서는 윈치에 의해 수중에서 승강되며,상기 취수부는 상기 수질센서에 묶여서 함께 승강되는 취수용 드레인호스와, 상기 드레인호스를 통해 샘플을 흡입시키는 흡입펌프, 흡입된 샘플을 담기 위한 다수의 채수병 및, 상기 선체의 밸런싱을 감안하여 상기 채수병에 샘플을 분배하는 채수분배기를 포함하는 것을 특징으로 하는 무인 보트 운용 시스템.
- 제7항에 있어서,상기 관측유닛은,음파의 반사파를 이용하여 수중 지형을 측정하는 사이드 스캔 소나를 더 구비하는 것을 특징으로 하는 무인 보트 운용 시스템.
- 제2항에 있어서,상기 통신제어유닛은,상기 각 유닛을 제어하는 제어장치와,상기 관제국과 통신을 위한 무선통신모듈을 포함하는 것을 특징으로 하는 무인 보트 운용 시스템.
- 제10항에 있어서,상기 통신제어유닛은 근거리 리모트 컨트롤러와도 통신이 가능하며, 상기 관제국과 상기 리모트 컨트롤러 중 한쪽과 선택적으로 통신하도록 구성된 것을 특징으로 하는 무인 보트 운용 시스템.
- 제2항에 있어서,상기 선체는,좌우측에 수용공간이 대칭으로 마련된 쌍동선 구조로, 그 수용공간에 선택적으로 물을 채우면서 좌우 균형을 맞추도록 구성된 것을 특징으로 하는 무인 보트 운용 시스템.
- 제1항에 있어서,상기 무인 보트와 통신망을 통해 통신하여 데이터를 저장하고 사용자가 접속하여 저장된 정보를 열람할 수 있는 환경을 제공하는 DB서버를 더 구비하는 무인 보트 운용 시스템.
- 제1항에 있어서,상기 무인 보트를 근거리 원격 조정할 수 있는 리모트 컨트롤 시스템을 더 구비하는 무인 보트 운용 시스템.
- 무인 상태에서 자동 운항 및 수자원 정보 획득이 가능한 무인 보트를 준비하는 단계;상기 무인 보트에 관측 지점과 관측 내용을 무선으로 지시하는 단계;상기 지시에 따라 상기 무인 보트가 운항하며 정보를 취득하는 단계;를 포함하는 무인 보트 운용 방법.
- 제15항에 있어서,상기 지시 단계는 통신망을 통해 상기 무인 보트와 연결된 관제국에서 해당 지시를 전송하는 단계와, 근거리 리모트 컨트롤러로 조정하는 단계 중 한쪽을 선택적으로 수행하는 것을 특징으로 하는 무인 보트 운용 방법.
- 제15항에 있어서,상기 관측 지점 지시는, 관측할 복수 지점을 지시하는 복수 지점 지시와, 출발지점과 도착지점만 지시하는 기본 지점 설정 및, 지점이 아닌 관측 범위를 지시하는 관측 범위 설정 중 하나로 지시하는 것을 특징으로 하는 무인 보트 운용 방법.
- 제17항에 있어서,상기 관측 범위 설정 시 상기 무인 보트는 해당 범위를 지그재그로 이동하는 것을 특징으로 하는 무인 보트 운용 방법.
- 제15항에 있어서,상기 무인 보트의 운항 중 장애물 감지 시 그 무인 보트에서 자동으로 좌표를 수정하는 단계를 포함하는 것을 특징으로 하는 무인 보트 운용 방법.
- 제15항에 있어서,상기 수자원 정보 취득은, 현장에서 수자원 정보를 바로 측정하는 단계와 향후 검사를 위해 샘플을 채취하는 채수 단계 중 한쪽을 선택하는 단계를 포함하는 것을 특징으로 하는 무인 보트 운용 방법.
- 제20항에 있어서,상기 채수단계에서 채취된 샘플의 저장 시 상기 무인 보트의 밸런싱을 고려하여 저장 위치를 분배하는 단계를 포함하는 무인 보트 운용 방법.
- 제20항에 있어서,상기 수자원 정보 취득은 한 지점에서 서로 다른 수심의 복수 개소에서 취득하는 것을 특징으로 하는 무인 보트 운용 방법.
- 제20항에 있어서,상기 현장 측정에서 수질 오염 발견시 오염원의 추적 모드로 전환하는 단계를 더 포함하는 무인 보트 운용 방법.
- 제15항에 있어서,상기 무인 보트를 표류시켜서 유속을 측정하는 단계를 더 포함하는 무인 보트 운용 방법.
- 제15항에 있어서,상기 무인 보트의 좌우측에 대칭으로 마련된 수용 공간에 선택적으로 물을 채움으로써 좌우 균형을 맞추는 단계를 더 포함하는 무인 보트 운용 방법.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2011-0144197 | 2011-12-28 | ||
KR1020110144197A KR101184587B1 (ko) | 2011-12-28 | 2011-12-28 | 수자원 관리용 무인 보트 운용 시스템 및 그 운용 방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013100229A1 true WO2013100229A1 (ko) | 2013-07-04 |
Family
ID=47113882
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2011/010292 WO2013100229A1 (ko) | 2011-12-28 | 2011-12-29 | 수자원 관리용 무인 보트 운용 시스템 및 그 운용 방법 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101184587B1 (ko) |
WO (1) | WO2013100229A1 (ko) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106843209A (zh) * | 2017-01-10 | 2017-06-13 | 上海华测导航技术股份有限公司 | 一种基于开源控制系统的无人驾驶船 |
CN109738605A (zh) * | 2019-03-04 | 2019-05-10 | 宁波大学 | 一种便携式无人水面移动水质监测装置 |
CN110096061A (zh) * | 2019-06-04 | 2019-08-06 | 兰州大学 | 一种无人艇集群的抗扰动分布式协同控制方法与装置 |
CN110737272A (zh) * | 2019-10-25 | 2020-01-31 | 集美大学 | 一种智慧港区海事执法无人艇系统及其操作方法 |
CN112947130A (zh) * | 2019-12-10 | 2021-06-11 | 南华大学 | 无人自动污水处理船蜂群控制系统及控制方法 |
CN114449455A (zh) * | 2021-12-16 | 2022-05-06 | 珠海云洲智能科技股份有限公司 | 一种广域集群任务的集成控制系统和广域集群系统 |
CN115791299A (zh) * | 2022-12-16 | 2023-03-14 | 上海博取仪器有限公司 | 一种水质监测用无人艇的水样采集装置 |
CN116489045A (zh) * | 2023-03-22 | 2023-07-25 | 国家海洋技术中心 | 一种小型无人船组网观测系统 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101347839B1 (ko) | 2012-11-08 | 2014-01-06 | 재단법인대구경북과학기술원 | 수질 모니터링 비행체 및 수질 모니터링 시스템 |
CN108052104A (zh) * | 2017-12-15 | 2018-05-18 | 广东华中科技大学工业技术研究院 | 一种室内调试无人船的方法及系统 |
CN109669347B (zh) * | 2018-12-05 | 2024-04-02 | 山东智翼航空科技有限公司 | 无人艇转速差动减摇增稳系统及方法 |
CN109541610A (zh) * | 2019-01-10 | 2019-03-29 | 浙江嘉蓝海洋电子有限公司 | 浅海水声测绘系统 |
KR102197140B1 (ko) * | 2019-04-12 | 2021-01-11 | 주식회사 제이에스산업 | 해저토양 수거장치를 포함하는 자율주행 선박 |
KR102386222B1 (ko) * | 2021-09-02 | 2022-04-15 | 주식회사 에스티엔인포텍 | Ai를 이용한 무인보트 제어를 통한 수변 모니터링 시스템 |
CN114044095A (zh) * | 2021-11-19 | 2022-02-15 | 四方智能(武汉)控制技术有限公司 | 用于流域测量的无人船 |
CN114281083B (zh) * | 2021-12-28 | 2024-05-14 | 江苏大学 | 一种基于混合路径规划自主导航的无人船水质监测物联网控制系统及方法 |
CN117806328B (zh) * | 2023-12-28 | 2024-09-17 | 华中科技大学 | 一种基于基准标记的无人艇靠泊视觉引导控制方法及系统 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20080014103A (ko) * | 2008-01-17 | 2008-02-13 | 대한민국(관리부서:국립수산과학원) | 무인 해양환경 자동측정 장치 및 그 방법 |
KR100883046B1 (ko) * | 2008-06-11 | 2009-02-10 | (주)지오시스템리서치 | 무인원격 수질 및 기상환경 모니터링 선박 및 이의 운영방법 |
KR101074586B1 (ko) * | 2011-03-29 | 2011-10-17 | (주)백년기술 | 농업 저수지용 무인 수질측정 및 시료채취장치 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009250780A (ja) | 2008-04-07 | 2009-10-29 | Matsue Doken Kk | 水質測定システムおよび水質改善システム |
-
2011
- 2011-12-28 KR KR1020110144197A patent/KR101184587B1/ko active IP Right Grant
- 2011-12-29 WO PCT/KR2011/010292 patent/WO2013100229A1/ko active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20080014103A (ko) * | 2008-01-17 | 2008-02-13 | 대한민국(관리부서:국립수산과학원) | 무인 해양환경 자동측정 장치 및 그 방법 |
KR100883046B1 (ko) * | 2008-06-11 | 2009-02-10 | (주)지오시스템리서치 | 무인원격 수질 및 기상환경 모니터링 선박 및 이의 운영방법 |
KR101074586B1 (ko) * | 2011-03-29 | 2011-10-17 | (주)백년기술 | 농업 저수지용 무인 수질측정 및 시료채취장치 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106843209A (zh) * | 2017-01-10 | 2017-06-13 | 上海华测导航技术股份有限公司 | 一种基于开源控制系统的无人驾驶船 |
CN109738605A (zh) * | 2019-03-04 | 2019-05-10 | 宁波大学 | 一种便携式无人水面移动水质监测装置 |
CN110096061A (zh) * | 2019-06-04 | 2019-08-06 | 兰州大学 | 一种无人艇集群的抗扰动分布式协同控制方法与装置 |
CN110096061B (zh) * | 2019-06-04 | 2023-08-01 | 兰州大学 | 一种无人艇集群的抗扰动分布式协同控制方法与装置 |
CN110737272A (zh) * | 2019-10-25 | 2020-01-31 | 集美大学 | 一种智慧港区海事执法无人艇系统及其操作方法 |
CN110737272B (zh) * | 2019-10-25 | 2022-07-05 | 集美大学 | 一种智慧港区海事执法无人艇系统 |
CN112947130A (zh) * | 2019-12-10 | 2021-06-11 | 南华大学 | 无人自动污水处理船蜂群控制系统及控制方法 |
CN112947130B (zh) * | 2019-12-10 | 2022-05-03 | 南华大学 | 无人自动污水处理船蜂群控制系统及控制方法 |
CN114449455A (zh) * | 2021-12-16 | 2022-05-06 | 珠海云洲智能科技股份有限公司 | 一种广域集群任务的集成控制系统和广域集群系统 |
CN115791299A (zh) * | 2022-12-16 | 2023-03-14 | 上海博取仪器有限公司 | 一种水质监测用无人艇的水样采集装置 |
CN115791299B (zh) * | 2022-12-16 | 2023-09-05 | 上海博取仪器有限公司 | 一种水质监测用无人艇的水样采集装置 |
CN116489045A (zh) * | 2023-03-22 | 2023-07-25 | 国家海洋技术中心 | 一种小型无人船组网观测系统 |
Also Published As
Publication number | Publication date |
---|---|
KR101184587B1 (ko) | 2012-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013100229A1 (ko) | 수자원 관리용 무인 보트 운용 시스템 및 그 운용 방법 | |
WO2013100228A1 (ko) | 수자원 관리용 무인 보트 | |
KR102212387B1 (ko) | 원격 수질 모니터링을 위한 채수장치 | |
WO2018070586A1 (ko) | 어군 탐지용 드론 | |
KR100734814B1 (ko) | 자율운항무인선박 | |
WO2017140096A1 (zh) | 一种无人船及系统 | |
KR101779376B1 (ko) | 드론을 이용한 다중 해양 관측 시스템 | |
CN110406638B (zh) | 一种用于监测浅水沼泽湿地水生态的无人监测船及其监测方法 | |
RU2387570C1 (ru) | Малогабаритный телеуправляемый подводный аппарат | |
US9223002B2 (en) | System and method for determining the position of an underwater vehicle | |
CN106719230B (zh) | 水产自动养殖无人机 | |
JP2018176905A (ja) | 無人飛行体を用いた水中調査システム及び水中調査方法 | |
KR20160137773A (ko) | 선박 추진장치를 구비한 수질 검사용 멀티콥터 및 이를 이용한 수질 검사 방법 | |
CN102306025A (zh) | 无线遥控的自动采样监测船 | |
KR20140058877A (ko) | 무인선박을 이용한 수상 이동형 하천 퇴적물 채집 및 채수 멀티플 장치 | |
CN108061577A (zh) | 一种有压输水隧洞智能探测装置 | |
WO2019208757A1 (ja) | 自律型無人潜水機を用いた作業方法 | |
WO2019045180A1 (ko) | 워터젯 보드를 이용한 구호 조사용 수상 드론 | |
CN113511314A (zh) | 机器人的巡航方法和水下检测机器人 | |
CN110536830A (zh) | 多个水下航行器的运用方法以及多个水下航行器的运用系统 | |
KR20180129462A (ko) | 드론 및 이를 이용한 해양 관측 시스템 | |
CN114162322A (zh) | 一种无人机-艇协同立体水生态环境监测系统与使用方法 | |
KR20190089647A (ko) | 수중에서 드론 간 탈착이 가능한 임무 수행 시스템 | |
JP2021136965A (ja) | 養殖管理装置、養殖管理方法及び給餌ロボット | |
CN207622804U (zh) | 一种有压输水隧洞智能探测装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11878934 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11878934 Country of ref document: EP Kind code of ref document: A1 |