WO2013100141A1 - Cylindrical stretched label and container with label - Google Patents
Cylindrical stretched label and container with label Download PDFInfo
- Publication number
- WO2013100141A1 WO2013100141A1 PCT/JP2012/084140 JP2012084140W WO2013100141A1 WO 2013100141 A1 WO2013100141 A1 WO 2013100141A1 JP 2012084140 W JP2012084140 W JP 2012084140W WO 2013100141 A1 WO2013100141 A1 WO 2013100141A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cylindrical
- stretch label
- label
- cylindrical stretch
- container
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D23/00—Details of bottles or jars not otherwise provided for
- B65D23/08—Coverings or external coatings
- B65D23/0842—Sheets or tubes applied around the bottle with or without subsequent folding operations
- B65D23/0871—Stretched over the bottle
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F3/00—Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps
- G09F3/04—Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps to be fastened or secured by the material of the label itself, e.g. by thermo-adhesion
- G09F3/06—Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps to be fastened or secured by the material of the label itself, e.g. by thermo-adhesion by clamping action
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F3/00—Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps
- G09F3/02—Forms or constructions
- G09F2003/0272—Labels for containers
- G09F2003/0273—Labels for bottles, flasks
Definitions
- the present invention relates to a cylindrical stretch label and a labeled container.
- the stretch label is attached to the container in the form of a cylindrical body, like the shrink label.
- the cylindrical stretch label is fitted in the container in a state of being stretched by being pulled in the circumferential direction, and then contracts and follows the container when the pulling force is removed. For this reason, the cylindrical stretch label is required to be excellent in stretchability and restoration property (also referred to as stretchability).
- Patent Document 1 discloses a thickness of a linear low-density polyethylene polymerized using a single-site metallocene catalyst and having a density of 0.905 to 0.940 g / cm 3. It is a 30-150 ⁇ m film, deformed in the transverse direction at a speed of 300 mm / min, the stress 0 strain obtained by measuring a hysteresis curve of 25% or less does not exceed 7%, and the permanent strain is 1.5% Stretch label films formed from films that do not exceed.
- Cited Document 1 a state in which the cylindrical stretch label is attached to the cylindrical body of the container is illustrated.
- the conventional cylindrical stretch label can be attached only to a portion where there is no difference in diameter of the container.
- a printing layer is formed on at least one surface of the elongated body in a state of the elongated body before being formed into a cylindrical shape.
- the printing layer is continuously formed while conveying the long body in the longitudinal direction.
- the long body greatly expands and contracts in the longitudinal direction during the conveyance process, it becomes difficult to form the printing layer at an appropriate position.
- an object of the present invention is to provide a cylindrical stretch label having excellent stretchability and good design and manufacturability, and a labeled container equipped with the stretch label. More preferably, it is to provide a cylindrical stretch label that can be attached to a portion of a container having a diameter difference.
- a cylindrical stretch label according to the present invention includes a film base material formed into a cylindrical shape and a printed layer formed on at least one surface of the film base material, and stretches at least 60% in the circumferential direction.
- a cylindrical stretch label in which an instantaneous strain (50 mm / min) after stretching 60% in the circumferential direction is 13% or less, and the film substrate has a density of 0.880 to 0.930 g.
- the main component is linear low density polyethylene of / cm 3 , and the refractive index in the height direction is larger than the refractive index in the thickness direction and is 1.507 to 1.528.
- the refractive index in the circumferential direction of the film substrate is equal to or smaller than the refractive index in the height direction and is 1.500 to 1.528. It is preferable that According to the said structure, it becomes further easy to improve manufacturing aptitude, such as printing, maintaining the outstanding stretch property with respect to the circumferential direction of a label, for example, mounting compatibility with a container and manufacturing aptitude are made compatible more highly. be able to.
- the cylindrical stretch label which concerns on this invention is suitable for the cylindrical stretch label which concerns on this invention to have the following stretch characteristics.
- the tensile stress (F10 value) when stretched by 10% in the circumferential direction is 1 to 10 N / mm 2 .
- the elongation (50 mm / min) in the height direction when the tensile stress is 4.3 N / mm 2 is 9% or less.
- Instantaneous strain (6000 mm / min) after 60% expansion in the circumferential direction is 30% or less.
- a labeled container includes the above-described cylindrical stretch label and a container, and the cylindrical stretch label is attached to the container in a state of being stretched in the circumferential direction.
- the ratio of the maximum diameter portion to the minimum diameter portion of the portion where the cylindrical stretch label is attached is 1.05 to 1.75, and the cylindrical stretch label has the maximum diameter portion and the minimum diameter portion. It can be mounted following the part.
- the cylindrical stretch label according to the present invention is excellent in stretchability and has good design and manufacturing suitability. Even if this cylindrical stretch label is a container with a large diameter difference, for example, it is possible to realize a good wearability following the shape and easily form a printed layer with no misalignment.
- 1 and 2 include a film substrate 11 formed into a cylindrical shape and a printed layer 12 formed on at least one surface of the film substrate 11, and the film substrate 11 has a density of 0.880. It is composed mainly of linear low density polyethylene having a refractive index of ⁇ 0.930 g / cm 3 , and its refractive index in the height direction is larger than its refractive index in the thickness direction and is 1.507 to 1.528. It is a figure which shows the cylindrical stretch label.
- the cylindrical stretch label 10 includes a film substrate 11 formed in a cylindrical shape and a printing layer 12. That is, the cylindrical stretch label 10 can be said to be a cylindrical body of the film substrate 11 on which the printing layer 12 is formed.
- the printing layer 12 is formed on the surface of the film base 11 facing the inside of the cylindrical body.
- the surface facing the inner side of the cylindrical body of the film substrate 11 is referred to as an “inner surface”
- the surface facing the outer side of the cylindrical body is referred to as an “outer surface”.
- the term which shows directions such as a "height direction”, a “circumferential direction”, and a “thickness direction”, is used.
- “Height direction” means a direction (axial direction) connecting the one end side opening and the other end side opening of the cylindrical body.
- the “circumferential direction” means a direction along the outer periphery (the same applies to the inner periphery) of the cylindrical body in a plane orthogonal to the height direction
- the thickness direction means a direction orthogonal to the outer periphery and the inner periphery. means.
- the cylindrical stretch label 10 is formed into a cylindrical body by overlapping and joining the edges of the film base material 11 to form a seal portion 13 (center seal portion).
- the seal portion 13 has an inner surface of the film base 11 positioned outside the cylindrical body and a film base positioned inside the cylindrical body. It can be formed by heat sealing the outer surface of the material 11. Instead of heat sealing, laser sealing, ultrasonic sealing, adhesive sealing, and the like are also possible.
- a non-joining portion extends from the seal portion 13 to the edge of the film substrate 11 located inside the cylindrical body.
- Such an unbonded portion does not exist at the edge of the film base 11 located outside the cylindrical body, and the end portion is heat-sealed.
- the non-joining portion may be provided only on the film base 11 side located on the outer side of the cylindrical body.
- the form extended from both the inside and the outside, that is, the end of the overlapping film base 11 It is good also as a form which formed the seal part 13 in the center part of the width direction of edges.
- the film substrate 11 is composed mainly of linear low density polyethylene (LLDPE).
- the film base material 11 can also be made into a laminated structure using multiple types of linear low density polyethylene. Moreover, the single layer structure formed using a kind of linear low density polyethylene may be sufficient.
- the thickness of the film substrate 11 is not particularly limited, but is preferably 10 to 100 ⁇ m, more preferably 15 to 80 ⁇ m, particularly preferably 20 to 60 ⁇ m, and most preferably 25 to 50 ⁇ m.
- the linear low density polyethylene is preferably a copolymer of ethylene and ⁇ -olefin.
- the ⁇ -olefin is preferably an ⁇ -olefin having 3 to 20 carbon atoms, and an ⁇ -olefin having 4 to 8 carbon atoms (for example, 1-butene, 1-pentene, 4-methyl-1-pentene, 1- Particularly preferred are hexene, 1-heptene, 1-octene and the like.
- the content of the ⁇ -olefin component is preferably 1 to 20% by weight, more preferably 2 to 15% by weight, and particularly preferably 5 to 10% by weight, based on the total weight of the monomer component.
- the linear low density polyethylene is particularly preferably polymerized using a metallocene catalyst. These linear low density polyethylene may be used independently and may use 2 or more types together.
- the content of the linear low density polyethylene in the film substrate 11 is preferably 80% by weight or more, more preferably 90% by weight or more, and particularly preferably 95% by weight or more.
- the density of the linear low density polyethylene is 0.880 to 0.930 g / cm 3 . If the density is within this range, good stretch properties can be obtained.
- the density of the linear low density polyethylene more preferably 0.890 ⁇ 0.925g / cm 3, particularly preferably from 0.900 ⁇ 0.920g / cm 3, 0.905 ⁇ 0 Most preferred is 915 g / cm 3 .
- the MFR (190 ° C., 2.16 kg) of the linear low density polyethylene is preferably 1 to 30 g / 10 minutes. If the MFR is within this range, the productivity will be good.
- the MFR of the linear low density polyethylene is more preferably 1 to 20 g / 10 minutes, and particularly preferably 1 to 10 g / 10 minutes.
- linear low density polyethylene Commercially available products can be used as the linear low density polyethylene.
- “Umerit (registered trademark) 715FT, 1540F, 0540F” manufactured by Ube Maruzen Polyethylene Co., Ltd. can be exemplified.
- Linear low density polyethylene is a monomer component other than ethylene and the above ⁇ -olefin, for example, vinyl carboxylate such as vinyl acetate (VA), unsaturated carboxylic acid such as acrylic acid (AA), methyl methacrylate (MMA), etc. (Meth) acrylic acid ester etc. may be contained.
- the “main component” means that a resin other than the linear low-density polyethylene and additives (for example, a lubricant and an antistatic agent) may be included within a range not impairing the object of the present invention.
- the linear low density polyethylene may be 70% by weight (70% by weight or more) with respect to the total weight of the resin constituting the film substrate 11. Particularly preferably, the linear low density polyethylene is contained in an amount of 90% by weight or more.
- the film substrate 11 has a refractive index in the height direction larger than that in the thickness direction and is 1.507 to 1.528.
- the refractive index in the height direction is preferably 1.510 to 1.525.
- the refractive index in the circumferential direction of the film substrate 11 is preferably equal to or smaller than the refractive index in the height direction and 1.500 to 1.528. Preferably it is 1.503 to 1.520.
- the refractive index of the circumferential direction of the film base material 11 is equivalent to the refractive index of the thickness direction, or larger than the refractive index of the thickness direction.
- the refractive index in the thickness direction of the film substrate 11 is preferably 1.500 to 1.515, more preferably 1.500 to 1.510.
- the refractive index in the circumferential direction of the film substrate 11 is the thickness of the film substrate 11 so as not to impair the stretchability (stretch characteristics) of the film substrate 11 and to prevent partial distortion of the film substrate 11 when stretched. It is preferable that the refractive index is larger than the refractive index in the direction and equal to or smaller than the refractive index in the height direction.
- the ratio (Rh / Rt) of the refractive index (Rh) in the height direction to the refractive index (Rt) in the thickness direction of the film substrate 11 is preferably 1.001 to 1.030. 002 to 1.020 is more preferable, and 1.003 to 1.015 is particularly preferable.
- the ratio (Rc / Rt) of the refractive index (Rc) in the circumferential direction to the refractive index (Rt) in the thickness direction of the film substrate 11 is preferably 1.000 to 1.030, preferably 1.001 to 1.020. Is more preferable, and 1.002 to 1.015 is particularly preferable.
- the ratio (Rc / Rh) of the refractive index (Rc) in the circumferential direction to the refractive index (Rh) in the height direction of the film substrate 11 is preferably 0.980 to 1.005, and preferably 0.985 to 1.000. More preferred is 0.990 to 0.999.
- the refractive index of the film substrate 11 can be realized by controlling the composition of the linear low density polyethylene which is the main component of the film substrate 11 and the stretching of the film substrate 11.
- the difference in refractive index between the height direction, the circumferential direction, and the thickness direction can be realized by controlling the stretching direction and stretching ratio of the film substrate 11.
- the thermal contraction rate of the film substrate 11 is preferably ⁇ 5% or more and less than 10% (minus signifies expansion) in the circumferential direction, from ⁇ 3% to 8% is more preferable, and -2% to 5% is particularly preferable. Further, it is preferably ⁇ 5% or more and less than 10% with respect to the height direction, more preferably ⁇ 1 to 8%, particularly preferably more than 0% and 6% or less.
- the printing layer 12 is a layer for displaying, for example, product names, illustrations, usage precautions, and the like, and is formed on the inner surface of the film substrate 11 as described above.
- the print layer 12 is provided on the entire inner surface excluding the seal portion 13 in consideration of the adhesiveness of the seal portion 13.
- the thickness of the printing layer 12 is not particularly limited, but is preferably 0.1 to 10 ⁇ m.
- the print layer 12 may be provided on the outer surface of the film base 11, and for example, in this case, the print layer 12 is provided over the entire region except the seal portion 13.
- the printing layer 12 is provided in at least one of an inner surface or an outer surface, it may be provided not only in the whole area except the seal part 13, but partially. Further, the printing layer 12 may be provided on the entire inner surface or outer surface including the seal portion 13 as long as the adhesion of the seal portion 13 is not impaired.
- the printing layer 12 may be provided on both the inner surface and the outer surface.
- the printing layer 12 is formed by applying a printing ink on the inner surface of the cylindrical body and solidifying it by drying or UV irradiation before the film substrate 11 is formed into a cylindrical shape.
- color materials such as desired pigments and dyes, binder resins such as acrylic resins and urethane resins, organic solvents, and various additives (for example, plasticizers, lubricants, waxes, antistatic agents) ), Or a desired colorant, a photopolymerizable resin such as an acrylic resin, a photopolymerization initiator, and an ultraviolet curable ink containing the above-described various additives.
- the printing layer 12 can be formed by performing gravure printing, flexographic printing, letterpress printing, etc. using this printing ink.
- the cylindrical stretch label 10 may be provided with a layer other than the printing layer 12 as long as it does not affect the stretchability and the like.
- a protective layer may be provided on the inner surface side of the printing layer 12.
- a protective layer for the printing layer 12 may be provided on the outer surface side.
- a transparent overcoat layer may be provided on the outer surface of the film substrate 11 except for the seal portion 13 for the purpose of imparting slipperiness or preventing scratches.
- the protective layer and the overcoat layer can be formed by printing using a well-known and commonly used ink. For example, the ink obtained by removing the coloring material from the constituent material of the printing layer 12 or the ink containing the coloring material that does not impair the transparency is used. Can be formed.
- a series of manufacturing steps of the cylindrical stretch label 10 is a step of manufacturing a first elongated body which is a first manufacturing intermediate mainly composed of the linear low density polyethylene (hereinafter referred to as a step (a)).
- step (c) a step of producing a third elongated body as a third production intermediate
- the third elongated body is formed into a cylindrical shape and cut into individual label sizes.
- a step of producing the cylindrical stretch label 10 hereinafter referred to as step (d)).
- the second long body is a long body of the film base 11 before being formed into a cylindrical shape.
- the first elongated body can be produced by a melt extrusion method.
- a melt-extrusion method a casting drum in which the raw material mainly composed of the above-described linear low density polyethylene is put into an extruder and melted, the melted resin is supplied to a T die, and the thin melt resin is cooled from the die slit. It is extruded and cooled to solidify into a film.
- the extrusion temperature is not particularly limited, but is preferably about 180 ° C to 240 ° C, and more preferably 200 ° C to 220 ° C. In this way, a 1st elongate body is produced.
- a laminate type film substrate 11 can be produced by using a plurality of types of linear low density polyethylene as the raw material.
- a lamination method for example, either a feed block method in which a feed block is installed immediately before a T die and each molten resin is supplied to the T die in a laminar flow state, or a multi manifold method using a multi-layer manifold is applied. Good.
- step (b) the unstretched first elongated body produced in the step (a) is stretched.
- a 1st elongate body is extended
- the elongated body is also stretched in the width direction (hereinafter referred to as TD direction) orthogonal to the MD direction. That is, in the step (b), the first elongated body is uniaxially stretched at least in the MD direction, and preferably biaxially stretched in the MD direction and the TD direction.
- the stretching method a roll method, a tenter method, or the like can be applied.
- the MD direction corresponds to the height direction of the tubular stretch label 10
- the TD direction corresponds to the circumferential direction of the tubular stretch label 10.
- the first elongated body can be stretched in the MD direction and then in the TD direction.
- a biaxially stretched second elongated body is produced by stretching the first elongated body in the MD direction and the TD direction while winding it with a winder installed downstream in the MD direction.
- the stretching procedure is not particularly limited, and may be performed sequentially or simultaneously. Moreover, after extending
- the draw ratio is 1.01 to 1.40 times in both the height direction (MD direction) and the circumferential direction (TD direction) of the cylindrical stretch label 10 from the viewpoint of achieving both stretch characteristics and production suitability, preferably 1.03 to 1.35 times, particularly preferably 1.05 to 1.30 times.
- the cylindrical stretch label 10 may not be stretched in the circumferential direction, but is preferably stretched at a magnification equal to or less than that in the height direction. In particular, it is preferable that the film is stretched at the same magnification in the circumferential direction and the height direction in a range of 1.05 to 1.30.
- the temperature at the time of stretching is less than the melting point of the resin composition constituting the first elongate body, preferably 45 ° C. or higher, particularly preferably 50 ° C. or higher.
- the temperature may be set to the same level at the time of heat stretching in the MD direction and at the time of heat stretching in the TD direction, but when the stretching process is performed sequentially, the stretching temperature in the TD direction is set higher than the MD direction. It is preferable.
- step (c) the second elongated body that has been heat-stretched is supplied to a printing machine or the like in the form of a roll, and the printing layer 12 is formed on one surface of the second elongated body while being continuously conveyed in the MD direction.
- the printing layer 12 can be formed by a gravure printing method or the like.
- step (c) the printing layer 12 can be stably formed without the third elongated body being greatly expanded during the transport process. That is, it is easy to form the printing layer 12 at an appropriate position.
- This good printability is caused by adjusting the stretchability of the first long body by stretching the first long body in the MD direction.
- the third elongated body on which the printing layer 12 is formed is formed into a cylindrical shape.
- the cylindrical third elongated body is produced by forming the seal portion 13 by overlapping both ends in the TD direction so that the TD direction is the circumferential direction.
- the seal part 13 can be formed by heat sealing, for example.
- the seal portion 13 is formed so that the printed layer 12 faces the inside of the cylindrical body.
- the cylindrical stretch label 10 is produced by cutting the third elongated body formed into a cylindrical shape into individual label sizes.
- the cylindrical third elongated body is cut into individual label sizes while being continuously conveyed in the MD direction, but also exhibits good cut aptitude in the cutting process.
- the stretch characteristics of the cylindrical stretch label 10 can be expressed by tensile stress and instantaneous strain in a tensile test.
- the tensile stress is a force acting on the tensile tester when the evaluation sample is pulled and stretched at a predetermined speed. That is, the force resists stretching, and the smaller the tensile stress, the easier the label is stretched and the higher the stretchability.
- the instantaneous strain (%) indicates the degree to which the evaluation sample is deformed without returning to the original length after the tensile test, and is measured immediately after the load is removed.
- the speed at which the evaluation sample is pulled and stretched in the tensile test is “50 mm / min” or “6000 mm / min” (hereinafter, “50 mm / min” when the speed is not specified). It means that the smaller the instantaneous distortion, the higher the recoverability of the label. That is, the smaller the tensile stress and the instantaneous strain, the better the stretch characteristics.
- the cylindrical stretch label 10 can be stretched 60% or more in at least the circumferential direction, and the preferred one can stretch 75% or more.
- the cylindrical stretch label 10 has an instantaneous strain (50 mm / min) after stretching 60% in the circumferential direction of 13% or less, preferably 11.5% or less, more preferably 10.5% or less, and most preferably. The thing is 10% or less.
- the instantaneous strain (6000 mm / min) after stretching 60% in the circumferential direction is preferably 30% or less, more preferably 20% or less, further preferably 18% or less, and particularly preferably 15% or less.
- the cylindrical stretch label 10 preferably has an instantaneous strain (50 mm / min) after stretching 75% in the circumferential direction of 13% or less, more preferably 11.5% or less, and even more preferably 10.5%.
- the most preferable one is 10% or less.
- the instantaneous strain (6000 mm / min) after stretching 75% in the circumferential direction is preferably 30% or less, more preferably 20% or less, further preferably 18% or less, and particularly preferably 15% or less.
- the lower limit of the instantaneous strain of the cylindrical stretch label 10 is theoretically zero, but there are few cases where it is actually zero. For this reason, the lower limit of the instantaneous strain of the cylindrical stretch label 10 exceeds 0%, preferably 1% or more.
- the stretch characteristic of the cylindrical stretch label 10 can also be expressed by permanent set.
- Permanent strain (%) indicates the degree to which the evaluation sample deformed without returning to its original length after the tensile test, similar to the instantaneous strain, but differs from the instantaneous strain in that it is measured 4 weeks after the load is removed.
- the extension speed of the evaluation sample in the tensile test when measuring permanent set is “50 mm / min”. The smaller the permanent set, the higher the recoverability of the label and the better the stretch characteristics.
- the permanent set after stretching 60% in the circumferential direction (50 mm / min) is preferably 11% or less, more preferably 8% or less, still more preferably 7% or less, and particularly preferably 6% or less.
- the elongation in the height direction (50 mm / min) when the tensile stress in the height direction tensile test is 4.3 N / mm 2 is 9% or less. (For example, 1 to 9%) is preferable, 4 to 9% is more preferable, and 5 to 8% is particularly preferable.
- the tubular stretch label 10 has a tensile stress (hereinafter referred to as F10 value) of at least 10% when stretched at least 10% in the circumferential direction, preferably 1 to 10 N / mm 2 , more preferably 2 to 8 N / mm 2 , particularly preferably 3 to 7 N / mm 2 .
- the tensile stress (hereinafter referred to as F60 value) when stretched at least 60% in the circumferential direction is preferably 1 to 12 N / mm 2 , more preferably 2 to 10 N / mm 2 , and particularly preferably 3 ⁇ 9 N / mm 2 .
- the lower limit value of the F10 value and the F60 value is too low, the tightening force of the container becomes too weak in the stretched state, and a good-looking wearing state may not be obtained.
- the cylindrical stretch label 10 has a high stretch rate of 60% or more in the circumferential direction, an instantaneous strain (50 mm / min) after 60% stretch in the circumferential direction is 13% or less, and an F10 value in the circumferential direction. Is 10 N / mm 2 or less, both of which are small values. That is, the cylindrical stretch label 10 has excellent stretch characteristics that are not found in conventional stretch labels. Furthermore, the cylindrical stretch label 10 has good manufacturing aptitude as described above while having excellent stretch characteristics.
- FIG. 3 is a perspective view showing a labeled container 20 that is provided with a cylindrical stretch label 10 having the above-described configuration and a container 21 and that is attached to the container 21 in a state where the cylindrical stretch label 10 extends in the circumferential direction. It is.
- the labeled container 20 includes a cylindrical stretch label 10 and a container 21.
- the cylindrical stretch label 10 is attached following the container 21 in a state of being stretched in the circumferential direction. That is, the circumferential length of the cylindrical stretch label 10 before being attached to the container 21 is set to be smaller than the circumferential length of the container 21 where the cylindrical stretch label 10 is attached, and the label is in an extended state. It is installed.
- the container 21 is positioned between the barrel 22 having a substantially circular cross section cut in the radial direction, a neck 23 having a smaller diameter than the barrel 22, and the barrel 22 and the neck 23.
- the container includes a shoulder portion 24 that is a portion to be reduced in diameter and a cap portion 25 that is attached to the neck portion 23.
- the container 21 is a so-called PET bottle filled with a beverage, for example.
- the cylindrical stretch label 10 is not limited to a beverage container such as a PET bottle illustrated in FIG. 3, and can be mounted in a variety of ways such as a seasoning container, a sanitary container such as a shampoo, a detergent container, a cosmetic container, and a pharmaceutical container. .
- a plurality of ribs 26 a and 26 b are formed on the body portion 22.
- the ribs 26 a are formed at the upper part of the body part 22, and the ribs 26 b are formed at the lower part of the body part 22.
- the ribs 26 a and 26 b are concave portions formed in a ring shape in the circumferential direction of the body portion 22, and have a function of increasing the rigidity of the body portion 22.
- the body portion 22 has a constricted shape in the center in the vertical direction.
- the body portion 22 is divided into the upper and lower portions of the constricted portion, and the body portion 22 has a maximum body portion dm having a maximum circumference.
- the said narrow part becomes the minimum trunk
- the labeled container 20 including the maximum body part dm and the minimum body part ds, near the intermediate position between the upper end of the body part 22 (the boundary position between the body part 22 and the shoulder part 24) and the lower end of the body part 22.
- a cylindrical stretch label 10 is attached so as to cover the above.
- the maximum circumference is indicated at the maximum trunk dm
- the minimum circumference is indicated at the minimum trunk ds.
- the portion where the cylindrical stretch label 10 is attached, if the portion where the circumference is maximum is defined as the maximum diameter portion Dm and the portion where the circumference is minimum is defined as the minimum diameter portion Ds,
- the portion attached to the maximum body portion dm is the maximum diameter portion Dm
- the portion attached to the minimum body portion ds is the minimum diameter portion Ds.
- the maximum body portion dm and the maximum diameter portion Dm coincide with each other
- the minimum body portion ds and the minimum diameter portion Ds coincide with each other.
- the mounting form of the cylindrical stretch label 10 is not limited to this. .
- the cylindrical stretch label 10 including the shoulder portion 24 may be attached, and the shoulder portion 24 may be the minimum diameter portion Ds.
- the cylindrical stretch label 10 can not be attached with a good appearance with a conventional stretch label, and even if the label is attached so as to include a portion having a diameter difference, it can be attached with a good appearance following its shape.
- the ratio of the circumference of the maximum diameter portion Dm to the minimum diameter portion Ds is 1.05 to 1.75, or 1.10 to 1.60, or 1.20. Even if it is ⁇ 1.50, the tubular stretch label 10 is mounted with a good appearance as shown in FIG.
- the cylindrical stretch label 10 can be suitably used for a portion having no diameter difference. Since the cylindrical stretch label 10 is attached in a stretched state in the circumferential direction, the tubular stretch label 10 can be attached to the container in a stretched state so as to have excellent stretch characteristics. For this reason, since the label excellent in a stretch characteristic can manufacture a labeled container using the cylindrical stretch label 10 with a small perimeter, material cost can be reduced. Therefore, when the cylindrical stretch label 10 is attached to a portion having no diameter difference (for example, a container body portion having no diameter difference), it is preferably attached in a state of being stretched 1.2 times or more in the circumferential direction. However, the present invention is not limited to this, and it may be attached in a state of being expanded by about 1.01 to 1.05 times.
- the cylindrical stretch label 10 is attached in the stretched state as described above, a stress that tightens the container 21 is generated. By tightening the entire container with such stress, the container is prevented from being deformed by an external force, and the reinforcing effect of the container is exhibited.
- the cylindrical stretch label 10 is attached to a container such as a squeeze container or a tube container, the label follows the container shape even when the amount of the contents is reduced, The effect that favorable integrity can be secured is recognized. This is particularly effective for an olefin-based container that easily undergoes thermal expansion.
- the label will be reduced to the space where the cap was placed if the cap is removed while the cylindrical stretch label 10 is attached. A tampering effect is found that makes it difficult to enter the diameter and attach the cap again.
- the cylindrical stretch label 10 is attached to the container 21 using, for example, a stretch labeler.
- the stretch labeler is externally fitted to the container 21 in a state where the cylindrical stretch label 10 is stretched in the circumferential direction.
- the label is elastically contracted and attached to follow the container 21.
- the cylindrical stretch label 10 is preferably attached in a state of being stretched in the circumferential direction by at least about 2%, and can be attached in a state of being stretched by about 60%.
- the cylindrical stretch label 10 can be attached without heating. Since the container does not undergo thermal deformation when attached, the weight of the container can be reduced, and the contents can be decomposed and separated by heat. Can also be suppressed.
- the design of the above embodiment can be changed within a range that does not impair the object of the present invention.
- sticker part 13 formed by heat sealing is illustrated, a design change can be suitably carried out besides this.
- the cylindrical stretch label 10 can strongly bind a plurality of containers, and is also suitable for an integrated sales application.
- 4 to 6 are cross-sectional views showing seal portions 13x, 13y, and 13z having different joining forms. 4 to 6, the same components as those in the above embodiment are denoted by the same reference numerals, and redundant description is omitted.
- the seal portion 13x illustrated in FIG. 4 is a so-called envelope-bonded joining form in which the inner surface of the edge 10xa located outside the cylindrical stretch label 10x and the outer surface of the edge 10xb located inside are joined by an adhesive 14. It is.
- the adhesive 14 is not particularly limited, and a thermoplastic resin-based or elastomer-based adhesive can be applied. Since the cylindrical stretch label 10x is sealed using the adhesive 14, the printing layer 12 can be formed on the entire inner surface of the film base 11.
- a non-joining portion that is not joined to the edge 10xb is extended from the seal portion 13x and provided with a knob 15 at the end of the edge 10xa located outside the cylindrical body.
- the non-joined portion does not exist at the edge 10xb located inside the cylindrical body.
- pick part 15 is a part utilized when peeling the cylindrical stretch label 10x from the container 21, Comprising: It has a size which can be picked with a fingertip at least.
- the perforation line does not have to be provided as the peeling means, so that the label is not easily broken during the mounting process and the distribution process, and the cylindrical stretch is disposed at the time of disposal.
- the label 10x can be easily peeled from the container 21.
- the seal portion 13x may have a configuration in which the entire area of the overlapping portion of the end edge 10xa and the end edge 10xb is joined except for the knob portion 15, but within a range that does not peel when stress is applied, such as when a label is attached.
- the adhesive strength may be weakened by applying the adhesive 14 in a predetermined pattern (for example, a stripe shape, a lattice shape, a dot shape, or the like). Or in order to weaken adhesive strength, you may apply the ink for glue suppression containing a silicone type resin etc. on the layer which consists of the adhesive agent 14 with a predetermined pattern.
- the seal portion 13x is broken when the knob portion 15 is picked and the cylindrical stretch label 10x is peeled off. Thus, the peelability of the label is further improved by appropriately suppressing the adhesive strength.
- the seal portion 13y illustrated in FIG. 5 is a so-called joint-bonded joining form in which the inner surfaces of one end edge 10ya and the other end edge 10yb of the cylindrical stretch label 10y are joined together.
- the inner surfaces of the seal portion 13y are joined by heat sealing. For this reason, the printed layer 12 is not formed on the seal portion 13y in order to ensure heat sealability.
- the seal portion 13z illustrated in FIG. 6 is a so-called joint-bonded joining form in which the outer surfaces of one end edge 10za and the other end edge 10zb of the cylindrical stretch label 10z are joined together.
- the seal portion 13z is formed by heat sealing similarly to the seal portion 13y.
- the seal portion 13z is a heat seal between the outer surfaces, the printing layer 12 can be formed on the entire inner surface of the film base 11 including the seal portion 13z. For this reason, if the printing layer 12 has coloring property, even if the film base material 11 is transparent, a clear part cannot be seen.
- the seal portions 13y and 13z may be formed using the adhesive 14.
- Tables 1 and 2 show the resins constituting the stretch labels of Examples and Comparative Examples, the stretch ratio of the film substrate, the evaluation results of the obtained stretch labels, and the like.
- linear low density polyethylene (“Umerit 715FT” manufactured by Ube Maruzen Polyethylene Co., Ltd.) was used as a resin component constituting the film base material.
- an extruder having a merging method of feed block type 2 and 3 layer type was used for the production of the film substrate.
- the above-mentioned linear low density polyethylene is put into an extruder heated to 210 ° C., the molten resin is supplied to a T-die, and extruded from a slit onto a casting drum cooled to 25 ° C. in one type and three layers, and rapidly solidified.
- an elongated body of a single-layer unstretched film substrate was obtained.
- the long body of the unstretched film substrate is stretched by heating at a stretching ratio of 1.06 times in the MD direction and a stretching temperature of 52 ° C., and then, at a stretching ratio of 1.06 times in the TD direction.
- the film was stretched by heating at a stretching temperature of 85 ° C. to obtain a long body of a biaxially stretched film substrate having a thickness of 50 ⁇ m.
- the stretching method was a roll method in the MD direction and a tenter method in the TD direction. Five colors of black, indigo, red, yellow, and white are printed on one surface of the long body of the biaxially stretched film substrate by gravure printing using solvent-based ink while transporting the long body in the MD direction.
- a cylindrical elongated label was obtained by sealing the elongated body on which the printed layer was formed into a cylindrical shape, and obtaining the tubular elongated body by cutting it into individual label sizes.
- the seal portion is an inner surface of the film base located on the outer side of the cylindrical body and a film base located on the inner side of the cylindrical body. It is formed by heat-sealing with the outer surface.
- a stress-strain curve showing the relationship between the tensile stress and the elongation (strain) of the sample piece is obtained. From the obtained stress strain curve, the F10 value, which is the tensile stress when the sample piece is extended by 10%, and the F60 value, which is the tensile stress when the sample piece is extended by 60%, were obtained. Further, the instantaneous strain (%) was measured at a test speed of 6000 ⁇ 600 mm / min in the 60% tensile test.
- the stretch characteristics shown in Table 1 were evaluated using the above-described instantaneous strain at 60% elongation (50 ⁇ 5 mm / min (condition 1) and 6000 ⁇ 600 mm / min (condition 2)).
- the evaluations of ⁇ , ⁇ , ⁇ , and ⁇ are based on the following criteria.
- A Stretched 60% or more in the circumferential direction, and the instantaneous strain of condition 1 is 13% or less, The instantaneous strain under condition 2 is less than 7%.
- ⁇ Stretched 60% or more in the circumferential direction, and the instantaneous strain under condition 1 is 13% or less.
- the instantaneous strain of condition 2 is 7% or more and less than 14%.
- condition 1 is 60% or more in the circumferential direction
- condition 2 instantaneous strain is 14% or more and less than 21% ⁇ : Cannot stretch 60% or more in the circumferential direction, or Condition 1 instantaneous strain is 13% or more, or Condition 2 instantaneous strain is 21% or more
- a rectangular sample piece having a length of 15 ⁇ 0.1 mm in the circumferential direction and a length of 200 mm in the height direction (distance between marked lines 100 ⁇ 2 mm) is prepared from the cylindrical stretch label, and the long side of the sample piece Tensile test (50 ⁇ 5 mm / min) is performed with the direction (height direction of the cylindrical stretch label) as the measurement direction, and the elongation (%) of the sample piece when the tensile stress is 4.3 N from the stress strain curve obtained by the test ) was measured.
- the refractive index was measured based on JIS K 7105,7142 using the film base material before forming the printed layer. The refractive index was measured using a polarizing filter in the height direction, the circumferential direction, and the thickness direction when the film substrate was a cylindrical body. Details are given below.
- Test method Conforms to JIS K 7142 method A Measuring device: Abbe refractometer ("Abbe refractometer NAR-2T" manufactured by Atago Co., Ltd.) Light source: Na white light source (589 nm)
- Example 2 In Example 1, except that the film was heat-drawn at a draw ratio of 1.30 times and a draw temperature of 75 ° C. in the MD direction, and then heat-drawn at a draw ratio of 1.30 times and a draw temperature of 88 ° C. in the TD direction. Obtained a cylindrical stretch label in the same manner as in Example 1. Then, the stretch properties and the like were evaluated in the same manner as in Example 1 (the same applies hereinafter).
- Example 3 Two types of linear low density polyethylene (“Umerit 715FT” (A) and “Umerit 0540F” (B)) manufactured by Ube Maruzen Polyethylene Co., Ltd.) are used as the resin component constituting the film substrate.
- Umerit 715FT A
- Umerit 0540F B
- the stretching conditions are the same as in Example 2.
- Example 4 A cylindrical stretch label was obtained in the same manner as in Example 1 except that linear low density polyethylene (“Umerit 1540F” manufactured by Ube Maruzen Polyethylene Co., Ltd.) was used as the resin component constituting the film substrate.
- linear low density polyethylene (“Umerit 1540F” manufactured by Ube Maruzen Polyethylene Co., Ltd.) was used as the resin component constituting the film substrate.
- Example 5 A cylindrical stretch label was obtained in the same manner as in Example 1 except that linear low density polyethylene (“Umerit 0540F” manufactured by Ube Maruzen Polyethylene Co., Ltd.) was used as the resin component constituting the film substrate.
- linear low density polyethylene (“Umerit 0540F” manufactured by Ube Maruzen Polyethylene Co., Ltd.) was used as the resin component constituting the film substrate.
- Example 6 Two types of linear low density polyethylene (“Umerit 2540F” (A) and “Umerit 715FT” (B)) manufactured by Ube Maruzen Polyethylene Co., Ltd.) are used as the resin component constituting the film substrate. And the cylindrical stretch label which has a layer structure of A / B / A whose layer ratio is 1/13/1 was obtained. The stretching conditions are the same as in Example 1.
- Example 7 Two types of linear low density polyethylene (“Umerit 2540F” (A) and “Umerit 0540F” (B)) manufactured by Ube Maruzen Polyethylene Co., Ltd.) are used as the resin component constituting the film substrate. And the cylindrical stretch label which has a layer structure of A / B / A whose layer ratio is 1/13/1 was obtained. The stretching conditions are the same as in Example 1.
- Example 1 the cylindrical stretch label was obtained like Example 1 except not having extended
- Example 3 As in Example 1, except that a 60 ⁇ m-thick vinyl acetate stretch film (“Suzuron LE E-800F” manufactured by Aicero Chemical Co., Ltd.) was used as the long film substrate (stretch film). A cylindrical stretch label was obtained.
- Example 4 As in Example 1, except that a 80 ⁇ m-thick vinyl acetate stretch film (“Suzuron LE E-800F” manufactured by Aicero Chemical Co., Ltd.) was used as the long body of the film substrate (stretch film). A cylindrical stretch label was obtained.
- a 80 ⁇ m-thick vinyl acetate stretch film (“Suzuron LE E-800F” manufactured by Aicero Chemical Co., Ltd.) was used as the long body of the film substrate (stretch film).
- a cylindrical stretch label was obtained.
- each of the cylindrical stretch labels of the Examples stretches 60% or more, F10 value is 6.4 N / mm 2 or less, F60 value is 8.8 N / mm 2 or less, 60% stretch.
- the instantaneous strain at time (50 mm / min) was 10.3% or less and the instantaneous strain at 60% elongation (6000 mm / min) was 13.9% or less, indicating excellent stretch characteristics. Further, the positional deviation of the print layer could not be confirmed, and the printability was good.
- the cylindrical stretch labels of Comparative Examples 2 to 4 have an instantaneous strain (6000 mm / min) at 60% elongation of 32.3% or more. Compared to stretchability. Further, the label of Comparative Example 1 had good stretch properties but poor printability.
- the refractive index in the height direction is larger than the refractive index in the thickness direction, and 1.507 to
- good printability can be realized even with a highly flexible film material having excellent stretch characteristics.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Details Of Rigid Or Semi-Rigid Containers (AREA)
Abstract
A cylindrical stretched label (10) includes a cylindrically formed film base material (11) and a print layer (12) which is formed on at least one surface of the film base material (11). The label is extendable at least by 60 % or more in the circumferential direction and has an instantaneous strain (50 mm/min) of 13% or less after an extension of 60% in the circumferential direction. The film base material (11) comprises as a principal component linear low-density polyethylene with a density of 0.880 to 0.930 g/cm3 and has a refractive index of 1.507 to 1.528 in the height direction, which is greater than the refractive index in the thickness direction.
Description
本発明は、筒状ストレッチラベル及びラベル付き容器に関する。
The present invention relates to a cylindrical stretch label and a labeled container.
ストレッチラベルは、シュリンクラベルと同様に、筒状体の形態で容器に装着される。筒状ストレッチラベルは、周方向に引っ張られて伸張した状態で容器に被嵌され、その後、引っ張り力が取り除かれると収縮して容器に追従する。このため、筒状ストレッチラベルには、伸張性及び復元性(ストレッチ性とも称する)に優れることが要求される。
The stretch label is attached to the container in the form of a cylindrical body, like the shrink label. The cylindrical stretch label is fitted in the container in a state of being stretched by being pulled in the circumferential direction, and then contracts and follows the container when the pulling force is removed. For this reason, the cylindrical stretch label is required to be excellent in stretchability and restoration property (also referred to as stretchability).
本発明に関連する技術として、特許文献1には、シングルサイト系メタロセン触媒を用いて重合された、密度が0.905~0.940g/cm3の直鎖状低密度ポリエチレンからなる厚さが30~150μmのフィルムであって、横方向に300mm/分の速度で変形させ、25%以下のヒステリシス曲線の測定により得られる応力0歪みが7%を超えず、さらに永久歪みが1.5%を超えないフィルムから形成されたストレッチラベル用フィルムが開示されている。
As a technique related to the present invention, Patent Document 1 discloses a thickness of a linear low-density polyethylene polymerized using a single-site metallocene catalyst and having a density of 0.905 to 0.940 g / cm 3. It is a 30-150 μm film, deformed in the transverse direction at a speed of 300 mm / min, the stress 0 strain obtained by measuring a hysteresis curve of 25% or less does not exceed 7%, and the permanent strain is 1.5% Stretch label films formed from films that do not exceed.
なお、引用文献1では、筒状ストレッチラベルが容器の円筒状胴部に装着された様子が図示されている。このように、従来の筒状ストレッチラベルは、容器の径差のない部分にしか装着することができなかった。
In Cited Document 1, a state in which the cylindrical stretch label is attached to the cylindrical body of the container is illustrated. As described above, the conventional cylindrical stretch label can be attached only to a portion where there is no difference in diameter of the container.
ところで、筒状ストレッチラベルでは、筒状に成形される前の長尺体の状態で、該長尺体の少なくとも一方の面に印刷層が形成される。印刷層は、長尺体を長手方向に搬送しながら連続的に形成されるが、搬送過程で長尺体が長手方向に大きく伸縮すると印刷層を適切な位置に形成することが困難になる。
By the way, in a cylindrical stretch label, a printing layer is formed on at least one surface of the elongated body in a state of the elongated body before being formed into a cylindrical shape. The printing layer is continuously formed while conveying the long body in the longitudinal direction. However, if the long body greatly expands and contracts in the longitudinal direction during the conveyance process, it becomes difficult to form the printing layer at an appropriate position.
つまり、本発明は、ストレッチ性に優れると共に、良好なデザインと製造適性を有する筒状ストレッチラベル、及び当該ストレッチラベルを装着したラベル付き容器を提供することを目的とするものである。
また、より好ましくは、容器の径差のある部分に装着できる筒状ストレッチラベルを提供することである。 That is, an object of the present invention is to provide a cylindrical stretch label having excellent stretchability and good design and manufacturability, and a labeled container equipped with the stretch label.
More preferably, it is to provide a cylindrical stretch label that can be attached to a portion of a container having a diameter difference.
また、より好ましくは、容器の径差のある部分に装着できる筒状ストレッチラベルを提供することである。 That is, an object of the present invention is to provide a cylindrical stretch label having excellent stretchability and good design and manufacturability, and a labeled container equipped with the stretch label.
More preferably, it is to provide a cylindrical stretch label that can be attached to a portion of a container having a diameter difference.
本発明に係る筒状ストレッチラベルは、筒状に成形されたフィルム基材と、フィルム基材の少なくとも一方の面に形成された印刷層とを備え、少なくとも周方向に対して60%以上の伸張が可能であり、周方向に対して60%伸張後の瞬間歪み(50mm/分)が13%以下である筒状ストレッチラベルであって、フィルム基材は、密度が0.880~0.930g/cm3である線状低密度ポリエチレンを主成分として構成され、高さ方向の屈折率が、厚み方向の屈折率よりも大きく、且つ1.507~1.528であることを特徴とする。
A cylindrical stretch label according to the present invention includes a film base material formed into a cylindrical shape and a printed layer formed on at least one surface of the film base material, and stretches at least 60% in the circumferential direction. A cylindrical stretch label in which an instantaneous strain (50 mm / min) after stretching 60% in the circumferential direction is 13% or less, and the film substrate has a density of 0.880 to 0.930 g. The main component is linear low density polyethylene of / cm 3 , and the refractive index in the height direction is larger than the refractive index in the thickness direction and is 1.507 to 1.528.
上記構成によれば、伸び易く且つ元の形状を復元し易い、優れたストレッチ性を発現できる。さらに、フィルム基材の高さ方向の屈折率を厚み方向の屈折率よりも大きくし、且つ1.507~1.528の範囲内に調整することにより、優れたストレッチ性を維持しながら、印刷等の製造適性が良好なものとなり、良好なデザインのストレッチラベルを得ることができる。
According to the above configuration, it is possible to develop an excellent stretch property that is easy to stretch and easy to restore the original shape. Furthermore, by adjusting the refractive index in the height direction of the film substrate to be larger than the refractive index in the thickness direction and adjusting it within the range of 1.507 to 1.528, printing is performed while maintaining excellent stretchability. Thus, a stretch label with a good design can be obtained.
また、本発明に係る筒状ストレッチラベルにおいて、フィルム基材の周方向の屈折率は、高さ方向の屈折率と同等又は高さ方向の屈折率よりも小さく、且つ1.500~1.528であることが好適である。
当該構成によれば、ラベルの周方向に対する優れたストレッチ性を維持しながら印刷等の製造適性を改良することがさらに容易となり、例えば、容器に対する装着性と、製造適性とをより高度に両立することができる。 In the cylindrical stretch label according to the present invention, the refractive index in the circumferential direction of the film substrate is equal to or smaller than the refractive index in the height direction and is 1.500 to 1.528. It is preferable that
According to the said structure, it becomes further easy to improve manufacturing aptitude, such as printing, maintaining the outstanding stretch property with respect to the circumferential direction of a label, for example, mounting compatibility with a container and manufacturing aptitude are made compatible more highly. be able to.
当該構成によれば、ラベルの周方向に対する優れたストレッチ性を維持しながら印刷等の製造適性を改良することがさらに容易となり、例えば、容器に対する装着性と、製造適性とをより高度に両立することができる。 In the cylindrical stretch label according to the present invention, the refractive index in the circumferential direction of the film substrate is equal to or smaller than the refractive index in the height direction and is 1.500 to 1.528. It is preferable that
According to the said structure, it becomes further easy to improve manufacturing aptitude, such as printing, maintaining the outstanding stretch property with respect to the circumferential direction of a label, for example, mounting compatibility with a container and manufacturing aptitude are made compatible more highly. be able to.
また、本発明に係る筒状ストレッチラベルは、以下のストレッチ特性を有することが好適である。
(1)周方向に対して10%伸張させたときの引っ張り応力(F10値)が1~10N/mm2である。
(2)引っ張り応力が4.3N/mm2であるときの高さ方向の伸び(50mm/分)が9%以下である。
(3)周方向に対して60%伸張後の瞬間歪み(6000mm/分)が30%以下である。 Moreover, it is suitable for the cylindrical stretch label which concerns on this invention to have the following stretch characteristics.
(1) The tensile stress (F10 value) when stretched by 10% in the circumferential direction is 1 to 10 N / mm 2 .
(2) The elongation (50 mm / min) in the height direction when the tensile stress is 4.3 N / mm 2 is 9% or less.
(3) Instantaneous strain (6000 mm / min) after 60% expansion in the circumferential direction is 30% or less.
(1)周方向に対して10%伸張させたときの引っ張り応力(F10値)が1~10N/mm2である。
(2)引っ張り応力が4.3N/mm2であるときの高さ方向の伸び(50mm/分)が9%以下である。
(3)周方向に対して60%伸張後の瞬間歪み(6000mm/分)が30%以下である。 Moreover, it is suitable for the cylindrical stretch label which concerns on this invention to have the following stretch characteristics.
(1) The tensile stress (F10 value) when stretched by 10% in the circumferential direction is 1 to 10 N / mm 2 .
(2) The elongation (50 mm / min) in the height direction when the tensile stress is 4.3 N / mm 2 is 9% or less.
(3) Instantaneous strain (6000 mm / min) after 60% expansion in the circumferential direction is 30% or less.
本発明に係るラベル付き容器は、上記筒状ストレッチラベルと、容器と、を備え、筒状ストレッチラベルが周方向に伸張した状態で容器に装着されていることを特徴とする。
また、容器は、筒状ストレッチラベルが装着される部分の最小径部に対する最大径部の比率が、1.05~1.75であり、筒状ストレッチラベルは、該最大径部及び該最小径部に追従して装着可能である。 A labeled container according to the present invention includes the above-described cylindrical stretch label and a container, and the cylindrical stretch label is attached to the container in a state of being stretched in the circumferential direction.
In the container, the ratio of the maximum diameter portion to the minimum diameter portion of the portion where the cylindrical stretch label is attached is 1.05 to 1.75, and the cylindrical stretch label has the maximum diameter portion and the minimum diameter portion. It can be mounted following the part.
また、容器は、筒状ストレッチラベルが装着される部分の最小径部に対する最大径部の比率が、1.05~1.75であり、筒状ストレッチラベルは、該最大径部及び該最小径部に追従して装着可能である。 A labeled container according to the present invention includes the above-described cylindrical stretch label and a container, and the cylindrical stretch label is attached to the container in a state of being stretched in the circumferential direction.
In the container, the ratio of the maximum diameter portion to the minimum diameter portion of the portion where the cylindrical stretch label is attached is 1.05 to 1.75, and the cylindrical stretch label has the maximum diameter portion and the minimum diameter portion. It can be mounted following the part.
本発明に係る筒状ストレッチラベルは、ストレッチ性に優れると共に、良好なデザインと製造適性を有する。本筒状ストレッチラベルは、例えば、径差が大きな容器であっても、その形状に追従した良好な装着性を実現し、位置ズレのない印刷層を容易に形成することができる。
The cylindrical stretch label according to the present invention is excellent in stretchability and has good design and manufacturing suitability. Even if this cylindrical stretch label is a container with a large diameter difference, for example, it is possible to realize a good wearability following the shape and easily form a printed layer with no misalignment.
図面を用いて、本発明の一実施形態である筒状ストレッチラベル10につき、以下詳細に説明する。また、本発明の一実施形態であるラベル付き容器20につき、以下詳細に説明する。
DETAILED DESCRIPTION Hereinafter, a cylindrical stretch label 10 according to an embodiment of the present invention will be described in detail with reference to the drawings. Moreover, it demonstrates in detail below about the container 20 with a label which is one Embodiment of this invention.
まず、図1及び図2を参照し、筒状ストレッチラベル10の構成について詳説する。
First, the configuration of the cylindrical stretch label 10 will be described in detail with reference to FIGS. 1 and 2.
図1及び図2は、筒状に成形されたフィルム基材11と、フィルム基材11の少なくとも一方の面に形成された印刷層12とを備え、フィルム基材11は、密度が0.880~0.930g/cm3である線状低密度ポリエチレンを主成分として構成され、その高さ方向の屈折率が、その厚み方向の屈折率よりも大きく、且つ1.507~1.528である筒状ストレッチラベル10を示す図である。
1 and 2 include a film substrate 11 formed into a cylindrical shape and a printed layer 12 formed on at least one surface of the film substrate 11, and the film substrate 11 has a density of 0.880. It is composed mainly of linear low density polyethylene having a refractive index of ˜0.930 g / cm 3 , and its refractive index in the height direction is larger than its refractive index in the thickness direction and is 1.507 to 1.528. It is a figure which shows the cylindrical stretch label.
図1及び図2に示すように、筒状ストレッチラベル10は、筒状に成形されたフィルム基材11と、印刷層12とを備える。つまり、筒状ストレッチラベル10は、印刷層12が形成されたフィルム基材11の筒状体といえる。筒状ストレッチラベル10では、フィルム基材11の面のうち筒状体の内側に向いた面上に印刷層12が形成されている。以下、フィルム基材11の筒状体の内側に向いた面を「内面」とし、筒状体の外側に向いた面を「外面」とする。
As shown in FIGS. 1 and 2, the cylindrical stretch label 10 includes a film substrate 11 formed in a cylindrical shape and a printing layer 12. That is, the cylindrical stretch label 10 can be said to be a cylindrical body of the film substrate 11 on which the printing layer 12 is formed. In the cylindrical stretch label 10, the printing layer 12 is formed on the surface of the film base 11 facing the inside of the cylindrical body. Hereinafter, the surface facing the inner side of the cylindrical body of the film substrate 11 is referred to as an “inner surface”, and the surface facing the outer side of the cylindrical body is referred to as an “outer surface”.
なお、筒状ストレッチラベル10及びフィルム基材11について、「高さ方向」、「周方向」、及び「厚み方向」等の方向を示す用語を使用する。「高さ方向」とは、上記筒状体の一端側開口と他端側開口とを結ぶ方向(軸方向)を意味する。「周方向」とは、高さ方向に直交する平面において上記筒状体の外周(内周でも同じ)に沿った方向を意味し、厚み方向とは、当該外周及び内周に直交する方向を意味する。
In addition, about the cylindrical stretch label 10 and the film base material 11, the term which shows directions, such as a "height direction", a "circumferential direction", and a "thickness direction", is used. “Height direction” means a direction (axial direction) connecting the one end side opening and the other end side opening of the cylindrical body. The “circumferential direction” means a direction along the outer periphery (the same applies to the inner periphery) of the cylindrical body in a plane orthogonal to the height direction, and the thickness direction means a direction orthogonal to the outer periphery and the inner periphery. means.
筒状ストレッチラベル10は、フィルム基材11の端縁同士を重ね合わせて接合し、シール部13(センターシール部)を形成することで筒状体とされる。シール部13は、フィルム基材11を筒状にして端縁同士を重ね合わせたときに、筒状体の外側に位置するフィルム基材11の内面と、筒状体の内側に位置するフィルム基材11の外面とをヒートシールすることで形成できる。ヒートシールの代わりに、レーザーによるシールや、超音波によるシール、接着剤によるシール等も可能である。
The cylindrical stretch label 10 is formed into a cylindrical body by overlapping and joining the edges of the film base material 11 to form a seal portion 13 (center seal portion). When the film base 11 is made into a cylindrical shape and the edges are overlapped with each other, the seal portion 13 has an inner surface of the film base 11 positioned outside the cylindrical body and a film base positioned inside the cylindrical body. It can be formed by heat sealing the outer surface of the material 11. Instead of heat sealing, laser sealing, ultrasonic sealing, adhesive sealing, and the like are also possible.
図2に示す例では、筒状体の内側に位置するフィルム基材11の端縁にシール部13から非接合部が延設している。筒状体の外側に位置するフィルム基材11の端縁には、かかる非接合部は存在せず、端部までヒートシールされている。なお、非接合部は、筒状体の外側に位置するフィルム基材11側にのみ設けられている形態としてもよく、内側及び外側の両方から延設した形態、即ち重なり合うフィルム基材11の端縁同士の幅方向中央部にシール部13を形成した形態としてもよい。
In the example shown in FIG. 2, a non-joining portion extends from the seal portion 13 to the edge of the film substrate 11 located inside the cylindrical body. Such an unbonded portion does not exist at the edge of the film base 11 located outside the cylindrical body, and the end portion is heat-sealed. The non-joining portion may be provided only on the film base 11 side located on the outer side of the cylindrical body. The form extended from both the inside and the outside, that is, the end of the overlapping film base 11 It is good also as a form which formed the seal part 13 in the center part of the width direction of edges.
フィルム基材11は、線状低密度ポリエチレン(LLDPE)を主成分として構成される。フィルム基材11は、複数種の線状低密度ポリエチレンを用いて積層構造とすることもできる。また、一種の線状低密度ポリエチレンを用いて形成される単層構造であってもよい。フィルム基材11の厚みとしては、特に限定されないが、10~100μmであることが好ましく、より好ましくは15~80μm、特に好ましくは20~60μm、最も好ましくは25~50μmである。
The film substrate 11 is composed mainly of linear low density polyethylene (LLDPE). The film base material 11 can also be made into a laminated structure using multiple types of linear low density polyethylene. Moreover, the single layer structure formed using a kind of linear low density polyethylene may be sufficient. The thickness of the film substrate 11 is not particularly limited, but is preferably 10 to 100 μm, more preferably 15 to 80 μm, particularly preferably 20 to 60 μm, and most preferably 25 to 50 μm.
上記線状低密度ポリエチレンは、エチレンと、αオレフィンとの共重合体であることが好ましい。αオレフィンとしては、炭素数が3~20のαオレフィンであることが好ましく、炭素数が4~8のαオレフィン(例えば、1‐ブテン、1‐ペンテン、4‐メチル‐1‐ペンテン、1‐ヘキセン、1‐ヘプテン、1‐オクテンなど)であることが特に好ましい。αオレフィン成分の含有量は、単量体成分の全重量に対して、好ましくは1~20重量%であり、より好ましくは2~15重量%であり、特に好ましくは5~10重量%である。また、線状低密度ポリエチレンは、メタロセン系触媒を用いて重合されたものが特に好適である。これら線状低密度ポリエチレンは、単独で用いてもよいし、2種以上を併用してもよい。
The linear low density polyethylene is preferably a copolymer of ethylene and α-olefin. The α-olefin is preferably an α-olefin having 3 to 20 carbon atoms, and an α-olefin having 4 to 8 carbon atoms (for example, 1-butene, 1-pentene, 4-methyl-1-pentene, 1- Particularly preferred are hexene, 1-heptene, 1-octene and the like. The content of the α-olefin component is preferably 1 to 20% by weight, more preferably 2 to 15% by weight, and particularly preferably 5 to 10% by weight, based on the total weight of the monomer component. . The linear low density polyethylene is particularly preferably polymerized using a metallocene catalyst. These linear low density polyethylene may be used independently and may use 2 or more types together.
フィルム基材11中における上記線状低密度ポリエチレンの含有率は、80重量%以上であることが好ましく、90重量%以上であることがより好ましく、95%重量以上であることが特に好ましい。
The content of the linear low density polyethylene in the film substrate 11 is preferably 80% by weight or more, more preferably 90% by weight or more, and particularly preferably 95% by weight or more.
線状低密度ポリエチレンの密度は、上記のように、0.880~0.930g/cm3である。密度がこの範囲内であれば、良好なストレッチ特性が得られる。なお、線状低密度ポリエチレンの密度は、0.890~0.925g/cm3であることがより好ましく、0.900~0.920g/cm3であることが特に好ましく、0.905~0.915g/cm3であることが最も好ましい。
As described above, the density of the linear low density polyethylene is 0.880 to 0.930 g / cm 3 . If the density is within this range, good stretch properties can be obtained. Incidentally, the density of the linear low density polyethylene, more preferably 0.890 ~ 0.925g / cm 3, particularly preferably from 0.900 ~ 0.920g / cm 3, 0.905 ~ 0 Most preferred is 915 g / cm 3 .
線状低密度ポリエチレンのMFR(190℃、2.16kg)は、1~30g/10分であることが好ましい。MFRがこの範囲内であれば、生産性が良好になる。なお、線状低密度ポリエチレンのMFRは、1~20g/10分であることがより好ましく、1~10g/10分であることが特に好ましい。
The MFR (190 ° C., 2.16 kg) of the linear low density polyethylene is preferably 1 to 30 g / 10 minutes. If the MFR is within this range, the productivity will be good. The MFR of the linear low density polyethylene is more preferably 1 to 20 g / 10 minutes, and particularly preferably 1 to 10 g / 10 minutes.
線状低密度ポリエチレンは、市販品を用いることができる。適用可能な市販品としては、例えば、宇部丸善ポリエチレン(株)製の「ユメリット(登録商標)715FT,1540F,0540F」が例示できる。
Commercially available products can be used as the linear low density polyethylene. As an applicable commercial item, “Umerit (registered trademark) 715FT, 1540F, 0540F” manufactured by Ube Maruzen Polyethylene Co., Ltd. can be exemplified.
線状低密度ポリエチレンは、エチレン及び上記αオレフィン以外の単量体成分、例えば、酢酸ビニル(VA)等のカルボン酸ビニル、アクリル酸(AA)等の不飽和カルボン酸、メタクリル酸メチル(MMA)等の(メタ)アクリル酸エステルなどを含有していてもよい。また、「主成分」とは、本発明の目的を損なわない範囲で上記線状低密度ポリエチレン以外の樹脂や添加剤(例えば、滑剤や帯電防止剤等)などを含んでもよいという意味であって、例えば、フィルム基材11を構成する樹脂の総重量に対して上記線状低密度ポリエチレンが70重量%(70重量%以上)であってもよい。特に好ましくは、上記線状低密度ポリエチレンが90重量%以上含有される。
Linear low density polyethylene is a monomer component other than ethylene and the above α-olefin, for example, vinyl carboxylate such as vinyl acetate (VA), unsaturated carboxylic acid such as acrylic acid (AA), methyl methacrylate (MMA), etc. (Meth) acrylic acid ester etc. may be contained. In addition, the “main component” means that a resin other than the linear low-density polyethylene and additives (for example, a lubricant and an antistatic agent) may be included within a range not impairing the object of the present invention. For example, the linear low density polyethylene may be 70% by weight (70% by weight or more) with respect to the total weight of the resin constituting the film substrate 11. Particularly preferably, the linear low density polyethylene is contained in an amount of 90% by weight or more.
さらに、フィルム基材11は、高さ方向の屈折率が、厚み方向の屈折率よりも大きく、且つ1.507~1.528である。高さ方向の屈折率は、好ましくは1.510~1.525である。また、フィルム基材11の周方向の屈折率は、高さ方向の屈折率と同等又は高さ方向の屈折率よりも小さく、且つ1.500~1.528であることが好適であり、より好ましくは1.503~1.520である。そして、フィルム基材11の周方向の屈折率は、厚み方向の屈折率と同等又は厚み方向の屈折率よりも大きいことが好ましい。フィルム基材11の厚み方向の屈折率は、1.500~1.515が好ましく、1.500~1.510がより好ましい。
Further, the film substrate 11 has a refractive index in the height direction larger than that in the thickness direction and is 1.507 to 1.528. The refractive index in the height direction is preferably 1.510 to 1.525. Further, the refractive index in the circumferential direction of the film substrate 11 is preferably equal to or smaller than the refractive index in the height direction and 1.500 to 1.528. Preferably it is 1.503 to 1.520. And it is preferable that the refractive index of the circumferential direction of the film base material 11 is equivalent to the refractive index of the thickness direction, or larger than the refractive index of the thickness direction. The refractive index in the thickness direction of the film substrate 11 is preferably 1.500 to 1.515, more preferably 1.500 to 1.510.
特に、フィルム基材11の伸張性(ストレッチ特性)を損なうことなく、且つ伸張させたときに部分的なフィルム基材11の歪みを防ぐために、フィルム基材11の周方向の屈折率は、厚み方向の屈折率よりも大きく、且つ高さ方向の屈折率と同等又は高さ方向の屈折率よりも小さいことが好ましい。
In particular, the refractive index in the circumferential direction of the film substrate 11 is the thickness of the film substrate 11 so as not to impair the stretchability (stretch characteristics) of the film substrate 11 and to prevent partial distortion of the film substrate 11 when stretched. It is preferable that the refractive index is larger than the refractive index in the direction and equal to or smaller than the refractive index in the height direction.
また、フィルム基材11の厚み方向の屈折率(Rtとする)に対する高さ方向の屈折率(Rhとする)の比率(Rh/Rt)は、1.001~1.030が好ましく、1.002~1.020がより好ましく、1.003~1.015が特に好ましい。
フィルム基材11の厚み方向の屈折率(Rt)に対する周方向の屈折率(Rcとする)の比率(Rc/Rt)は、1.000~1.030が好ましく、1.001~1.020がより好ましく、1.002~1.015が特に好ましい。
フィルム基材11の高さ方向の屈折率(Rh)に対する周方向の屈折率(Rc)の比率(Rc/Rh)は、0.980~1.005が好ましく、0.985~1.000がより好ましく、0.990~0.999が特に好ましい。 Further, the ratio (Rh / Rt) of the refractive index (Rh) in the height direction to the refractive index (Rt) in the thickness direction of thefilm substrate 11 is preferably 1.001 to 1.030. 002 to 1.020 is more preferable, and 1.003 to 1.015 is particularly preferable.
The ratio (Rc / Rt) of the refractive index (Rc) in the circumferential direction to the refractive index (Rt) in the thickness direction of thefilm substrate 11 is preferably 1.000 to 1.030, preferably 1.001 to 1.020. Is more preferable, and 1.002 to 1.015 is particularly preferable.
The ratio (Rc / Rh) of the refractive index (Rc) in the circumferential direction to the refractive index (Rh) in the height direction of thefilm substrate 11 is preferably 0.980 to 1.005, and preferably 0.985 to 1.000. More preferred is 0.990 to 0.999.
フィルム基材11の厚み方向の屈折率(Rt)に対する周方向の屈折率(Rcとする)の比率(Rc/Rt)は、1.000~1.030が好ましく、1.001~1.020がより好ましく、1.002~1.015が特に好ましい。
フィルム基材11の高さ方向の屈折率(Rh)に対する周方向の屈折率(Rc)の比率(Rc/Rh)は、0.980~1.005が好ましく、0.985~1.000がより好ましく、0.990~0.999が特に好ましい。 Further, the ratio (Rh / Rt) of the refractive index (Rh) in the height direction to the refractive index (Rt) in the thickness direction of the
The ratio (Rc / Rt) of the refractive index (Rc) in the circumferential direction to the refractive index (Rt) in the thickness direction of the
The ratio (Rc / Rh) of the refractive index (Rc) in the circumferential direction to the refractive index (Rh) in the height direction of the
フィルム基材11の上記屈折率は、フィルム基材11の主成分である上記線状低密度ポリエチレンの組成、及びフィルム基材11の延伸を制御することにより実現できる。特に、高さ方向、周方向、及び厚み方向における屈折率の差は、フィルム基材11の延伸方向及び延伸倍率を制御することにより実現できる。
The refractive index of the film substrate 11 can be realized by controlling the composition of the linear low density polyethylene which is the main component of the film substrate 11 and the stretching of the film substrate 11. In particular, the difference in refractive index between the height direction, the circumferential direction, and the thickness direction can be realized by controlling the stretching direction and stretching ratio of the film substrate 11.
フィルム基材11の熱収縮率(80℃の温水に10秒間浸漬)は、周方向に対して-5%以上10%未満(マイナスは膨張を意味する)であることが好ましく、-3%~8%がより好ましく、-2%~5%が特に好ましい。また、高さ方向に対して、-5%以上10%未満であることが好ましく、-1~8%がより好ましく、0%を超え6%以下であることが特に好ましい。
The thermal contraction rate of the film substrate 11 (immersion in hot water at 80 ° C. for 10 seconds) is preferably −5% or more and less than 10% (minus signifies expansion) in the circumferential direction, from −3% to 8% is more preferable, and -2% to 5% is particularly preferable. Further, it is preferably −5% or more and less than 10% with respect to the height direction, more preferably −1 to 8%, particularly preferably more than 0% and 6% or less.
印刷層12は、例えば、商品名やイラスト、使用上の注意等を表示するための層であって、上記のように、フィルム基材11の内面に形成される。印刷層12は、シール部13の接着性を考慮して、シール部13を除く内面全域に設けられている。印刷層12の厚みとしては、特に限定されないが、好ましくは0.1~10μmである。なお、印刷層12は、フィルム基材11の外面に設けられてもよく、例えば、この場合もシール部13を除く全域に設けられる。また、印刷層12は、内面又は外面の少なくとも一方に設けられるが、シール部13を除く全域だけでなく、部分的に設けられてもよい。また、シール部13の接着性が損なわれなければ、シール部13を含む内面又は外面の少なくとも一方の全域に印刷層12を設けてもよい。印刷層12は、内面と外面の両面に設けられていてもよい。
The printing layer 12 is a layer for displaying, for example, product names, illustrations, usage precautions, and the like, and is formed on the inner surface of the film substrate 11 as described above. The print layer 12 is provided on the entire inner surface excluding the seal portion 13 in consideration of the adhesiveness of the seal portion 13. The thickness of the printing layer 12 is not particularly limited, but is preferably 0.1 to 10 μm. Note that the print layer 12 may be provided on the outer surface of the film base 11, and for example, in this case, the print layer 12 is provided over the entire region except the seal portion 13. Moreover, although the printing layer 12 is provided in at least one of an inner surface or an outer surface, it may be provided not only in the whole area except the seal part 13, but partially. Further, the printing layer 12 may be provided on the entire inner surface or outer surface including the seal portion 13 as long as the adhesion of the seal portion 13 is not impaired. The printing layer 12 may be provided on both the inner surface and the outer surface.
印刷層12は、フィルム基材11を筒状に成形する前に、筒状体の内面となる面上に印刷インキを塗布し、乾燥やUV照射によって固化することで形成される。印刷層12の形成には、所望の顔料や染料等の色材、アクリル系樹脂やウレタン系樹脂等のバインダ樹脂、有機溶剤、及び各種添加剤(例えば、可塑剤、滑剤、ワックス、帯電防止剤)等を含む溶剤型インキ、或いは所望の色材、アクリル系樹脂など光重合性樹脂、光重合開始剤、及び上記各種添加剤等を含む紫外線硬化型インキなどが印刷インキとして用いられる。そして、この印刷インキを用いて、グラビア印刷、フレキソ印刷、又は凸版輪転印刷等を行なうことで印刷層12を形成することができる。
The printing layer 12 is formed by applying a printing ink on the inner surface of the cylindrical body and solidifying it by drying or UV irradiation before the film substrate 11 is formed into a cylindrical shape. For the formation of the printing layer 12, color materials such as desired pigments and dyes, binder resins such as acrylic resins and urethane resins, organic solvents, and various additives (for example, plasticizers, lubricants, waxes, antistatic agents) ), Or a desired colorant, a photopolymerizable resin such as an acrylic resin, a photopolymerization initiator, and an ultraviolet curable ink containing the above-described various additives. And the printing layer 12 can be formed by performing gravure printing, flexographic printing, letterpress printing, etc. using this printing ink.
なお、筒状ストレッチラベル10には、ストレッチ性等に影響を与えない範囲で、印刷層12以外の層を設けてもよい。例えば、印刷層12の内面側に保護層を設けてもよい。また、フィルム基材11の外面に印刷層12を形成したときには、かかる印刷層12の保護層を外面側に設けてもよい。また、フィルム基材11の外面上には、シール部13を除いて、滑り性の付与や傷付き防止等を目的として透明なオーバーコート層を設けてもよい。保護層やオーバーコート層は、周知慣用のインキを用いて印刷によって形成でき、例えば、印刷層12の構成材料から色材を除いたインキ、又は透明性を損なわない色材を含有するインキを用いて形成できる。
The cylindrical stretch label 10 may be provided with a layer other than the printing layer 12 as long as it does not affect the stretchability and the like. For example, a protective layer may be provided on the inner surface side of the printing layer 12. Further, when the printing layer 12 is formed on the outer surface of the film substrate 11, a protective layer for the printing layer 12 may be provided on the outer surface side. A transparent overcoat layer may be provided on the outer surface of the film substrate 11 except for the seal portion 13 for the purpose of imparting slipperiness or preventing scratches. The protective layer and the overcoat layer can be formed by printing using a well-known and commonly used ink. For example, the ink obtained by removing the coloring material from the constituent material of the printing layer 12 or the ink containing the coloring material that does not impair the transparency is used. Can be formed.
ここで、筒状ストレッチラベル10の製造方法を例示する。
Here, the manufacturing method of the cylindrical stretch label 10 is illustrated.
筒状ストレッチラベル10の一連の製造工程は、上記線状低密度ポリエチレンを主成分とする第1の製造中間体である第1長尺体を作製する工程(以下、工程(a)とする)、第1長尺体を延伸して第2の製造中間体である第2長尺体を作製する工程(以下、工程(b)とする)、第2長尺体に印刷層12を形成して第3の製造中間体である第3長尺体を作製するする工程(以下、工程(c)とする)と、及び第3長尺体を筒状に成形し、個々のラベルサイズにカットして筒状ストレッチラベル10を作製する工程(以下、工程(d)とする)とを含む。第2長尺体は、換言すると、筒状に成形される前のフィルム基材11の長尺体である。
A series of manufacturing steps of the cylindrical stretch label 10 is a step of manufacturing a first elongated body which is a first manufacturing intermediate mainly composed of the linear low density polyethylene (hereinafter referred to as a step (a)). The step of producing the second elongated body as the second production intermediate by stretching the first elongated body (hereinafter referred to as step (b)), and forming the printing layer 12 on the second elongated body And a step of producing a third elongated body as a third production intermediate (hereinafter referred to as step (c)), and the third elongated body is formed into a cylindrical shape and cut into individual label sizes. And a step of producing the cylindrical stretch label 10 (hereinafter referred to as step (d)). In other words, the second long body is a long body of the film base 11 before being formed into a cylindrical shape.
まず初めに、工程(a)について説明する。
第1長尺体は、溶融押出し法により作製できる。溶融押出し法では、上記線状低密度ポリエチレンを主成分とする原料を押出機に投入して溶融し、溶融した樹脂をTダイに供給し、薄膜状の溶融樹脂をダイスリットから冷却したキャスティングドラム上に押出して冷却固化しフィルム化する。押出し温度は、特に限定されないが、180℃~240℃程度が好ましく、200℃~220℃がより好ましい。こうして、第1長尺体が作製される。 First, the step (a) will be described.
The first elongated body can be produced by a melt extrusion method. In the melt-extrusion method, a casting drum in which the raw material mainly composed of the above-described linear low density polyethylene is put into an extruder and melted, the melted resin is supplied to a T die, and the thin melt resin is cooled from the die slit. It is extruded and cooled to solidify into a film. The extrusion temperature is not particularly limited, but is preferably about 180 ° C to 240 ° C, and more preferably 200 ° C to 220 ° C. In this way, a 1st elongate body is produced.
第1長尺体は、溶融押出し法により作製できる。溶融押出し法では、上記線状低密度ポリエチレンを主成分とする原料を押出機に投入して溶融し、溶融した樹脂をTダイに供給し、薄膜状の溶融樹脂をダイスリットから冷却したキャスティングドラム上に押出して冷却固化しフィルム化する。押出し温度は、特に限定されないが、180℃~240℃程度が好ましく、200℃~220℃がより好ましい。こうして、第1長尺体が作製される。 First, the step (a) will be described.
The first elongated body can be produced by a melt extrusion method. In the melt-extrusion method, a casting drum in which the raw material mainly composed of the above-described linear low density polyethylene is put into an extruder and melted, the melted resin is supplied to a T die, and the thin melt resin is cooled from the die slit. It is extruded and cooled to solidify into a film. The extrusion temperature is not particularly limited, but is preferably about 180 ° C to 240 ° C, and more preferably 200 ° C to 220 ° C. In this way, a 1st elongate body is produced.
工程(a)において、上記原料として複数種の線状低密度ポリエチレンを用いることにより積層タイプのフィルム基材11を作製することもできる。積層方式としては、例えば、Tダイの直前にフィードブロックを設置して各溶融樹脂を層流状態でTダイに供給するフィードブロック法、多層のマニホールドを用いるマルチマニホールド法のいずれを適用してもよい。
In step (a), a laminate type film substrate 11 can be produced by using a plurality of types of linear low density polyethylene as the raw material. As a lamination method, for example, either a feed block method in which a feed block is installed immediately before a T die and each molten resin is supplied to the T die in a laminar flow state, or a multi manifold method using a multi-layer manifold is applied. Good.
次に、工程(b)について説明する。
工程(b)では、工程(a)で作製された未延伸状態の第1長尺体を延伸する。第1長尺体は、少なくとも長尺体の長手方向(以下、MD方向とする)に延伸される。好ましくは、MD方向に直交する長尺体の幅方向(以下、TD方向とする)にも延伸される。つまり、工程(b)では、第1長尺体を少なくともMD方向に一軸延伸し、好ましくはMD方向及びTD方向に二軸延伸する。以下では、二軸延伸する場合を例示する。延伸方式としては、ロール方式、テンター方式等を適用することができる。なお、MD方向は、筒状ストレッチラベル10の高さ方向に相当し、TD方向は、筒状ストレッチラベル10の周方向に相当する。 Next, step (b) will be described.
In the step (b), the unstretched first elongated body produced in the step (a) is stretched. A 1st elongate body is extended | stretched at least in the longitudinal direction (henceforth MD direction) of a elongate body. Preferably, the elongated body is also stretched in the width direction (hereinafter referred to as TD direction) orthogonal to the MD direction. That is, in the step (b), the first elongated body is uniaxially stretched at least in the MD direction, and preferably biaxially stretched in the MD direction and the TD direction. Below, the case where biaxial stretching is illustrated. As the stretching method, a roll method, a tenter method, or the like can be applied. The MD direction corresponds to the height direction of thetubular stretch label 10, and the TD direction corresponds to the circumferential direction of the tubular stretch label 10.
工程(b)では、工程(a)で作製された未延伸状態の第1長尺体を延伸する。第1長尺体は、少なくとも長尺体の長手方向(以下、MD方向とする)に延伸される。好ましくは、MD方向に直交する長尺体の幅方向(以下、TD方向とする)にも延伸される。つまり、工程(b)では、第1長尺体を少なくともMD方向に一軸延伸し、好ましくはMD方向及びTD方向に二軸延伸する。以下では、二軸延伸する場合を例示する。延伸方式としては、ロール方式、テンター方式等を適用することができる。なお、MD方向は、筒状ストレッチラベル10の高さ方向に相当し、TD方向は、筒状ストレッチラベル10の周方向に相当する。 Next, step (b) will be described.
In the step (b), the unstretched first elongated body produced in the step (a) is stretched. A 1st elongate body is extended | stretched at least in the longitudinal direction (henceforth MD direction) of a elongate body. Preferably, the elongated body is also stretched in the width direction (hereinafter referred to as TD direction) orthogonal to the MD direction. That is, in the step (b), the first elongated body is uniaxially stretched at least in the MD direction, and preferably biaxially stretched in the MD direction and the TD direction. Below, the case where biaxial stretching is illustrated. As the stretching method, a roll method, a tenter method, or the like can be applied. The MD direction corresponds to the height direction of the
工程(b)では、第1長尺体をMD方向に延伸してから、TD方向に延伸することができる。例えば、第1長尺体を、MD方向の下流に設置された巻き取り機により巻き取りながら、MD方向及びTD方向に延伸することで、二軸延伸された第2長尺体を作製する。なお、延伸の手順は、特に限定されず、逐次的に行ってもよいし、同時に行ってもよい。また、TD方向に延伸した後、MD方向に延伸してもよい。
In step (b), the first elongated body can be stretched in the MD direction and then in the TD direction. For example, a biaxially stretched second elongated body is produced by stretching the first elongated body in the MD direction and the TD direction while winding it with a winder installed downstream in the MD direction. The stretching procedure is not particularly limited, and may be performed sequentially or simultaneously. Moreover, after extending | stretching to TD direction, you may extend | stretch to MD direction.
延伸倍率は、ストレッチ特性及び製造適性の両立の観点から、筒状ストレッチラベル10の高さ方向(MD方向)、周方向(TD方向)ともに、1.01~1.40倍であり、好ましくは1.03~1.35倍、特に好ましくは1.05~1.30倍である。筒状ストレッチラベル10は、周方向に延伸されていなくてもよいが、高さ方向と同等以下の倍率で延伸されていることが好適である。特に、延伸倍率が1.05~1.30倍の範囲において、周方向及び高さ方向に対して同等の倍率で延伸されていることが好適である。
The draw ratio is 1.01 to 1.40 times in both the height direction (MD direction) and the circumferential direction (TD direction) of the cylindrical stretch label 10 from the viewpoint of achieving both stretch characteristics and production suitability, preferably 1.03 to 1.35 times, particularly preferably 1.05 to 1.30 times. The cylindrical stretch label 10 may not be stretched in the circumferential direction, but is preferably stretched at a magnification equal to or less than that in the height direction. In particular, it is preferable that the film is stretched at the same magnification in the circumferential direction and the height direction in a range of 1.05 to 1.30.
また、延伸処理時には、第1長尺体を加熱することが好ましい。延伸時の温度(延伸温度)は、第1長尺体を構成する樹脂組成物の融点未満であって、45℃以上が好ましく、50℃以上が特に好ましい。MD方向の加熱延伸時とTD方向の加熱延伸時とで温度を同程度に設定してもよいが、逐次的に延伸処理する場合には、MD方向よりもTD方向の延伸温度を高く設定することが好ましい。
Moreover, it is preferable to heat the first elongated body during the stretching treatment. The temperature at the time of stretching (stretching temperature) is less than the melting point of the resin composition constituting the first elongate body, preferably 45 ° C. or higher, particularly preferably 50 ° C. or higher. The temperature may be set to the same level at the time of heat stretching in the MD direction and at the time of heat stretching in the TD direction, but when the stretching process is performed sequentially, the stretching temperature in the TD direction is set higher than the MD direction. It is preferable.
次に、工程(c)について説明する。
工程(c)では、加熱延伸された第2長尺体をロールの形態で印刷機等に供給してMD方向に連続搬送しながら、第2長尺体の一方の面に印刷層12を形成する。印刷層12は、上記のように、グラビア印刷法等により形成できる。このようにして、延伸された第2長尺体の一方の面に、印刷層12が形成された第3長尺体を作製する。 Next, step (c) will be described.
In step (c), the second elongated body that has been heat-stretched is supplied to a printing machine or the like in the form of a roll, and theprinting layer 12 is formed on one surface of the second elongated body while being continuously conveyed in the MD direction. To do. As described above, the printing layer 12 can be formed by a gravure printing method or the like. Thus, the 3rd elongate body by which the printing layer 12 was formed in one surface of the extended 2nd elongate body is produced.
工程(c)では、加熱延伸された第2長尺体をロールの形態で印刷機等に供給してMD方向に連続搬送しながら、第2長尺体の一方の面に印刷層12を形成する。印刷層12は、上記のように、グラビア印刷法等により形成できる。このようにして、延伸された第2長尺体の一方の面に、印刷層12が形成された第3長尺体を作製する。 Next, step (c) will be described.
In step (c), the second elongated body that has been heat-stretched is supplied to a printing machine or the like in the form of a roll, and the
工程(c)では、搬送過程で第3長尺体が大きく伸張することなく、印刷層12を安定して形成することができる。つまり、印刷層12を適切な位置に形成することが容易である。この良好な印刷適性は、第1長尺体をMD方向に延伸して第1長尺体のストレッチ性を調整したことに起因する。
In step (c), the printing layer 12 can be stably formed without the third elongated body being greatly expanded during the transport process. That is, it is easy to form the printing layer 12 at an appropriate position. This good printability is caused by adjusting the stretchability of the first long body by stretching the first long body in the MD direction.
次に、工程(d)について説明する。
工程(d)では、まず、印刷層12が形成された第3長尺体を筒状に成形する。筒状の第3長尺体は、TD方向が周方向となるようにTD方向両端同士を重ね合わせてシール部13を形成することで作製される。シール部13は、例えば、ヒートシールにより形成できる。本実施形態では、印刷層12が筒状体の内側を向くようにしてシール部13を形成する。 Next, process (d) is demonstrated.
In the step (d), first, the third elongated body on which theprinting layer 12 is formed is formed into a cylindrical shape. The cylindrical third elongated body is produced by forming the seal portion 13 by overlapping both ends in the TD direction so that the TD direction is the circumferential direction. The seal part 13 can be formed by heat sealing, for example. In the present embodiment, the seal portion 13 is formed so that the printed layer 12 faces the inside of the cylindrical body.
工程(d)では、まず、印刷層12が形成された第3長尺体を筒状に成形する。筒状の第3長尺体は、TD方向が周方向となるようにTD方向両端同士を重ね合わせてシール部13を形成することで作製される。シール部13は、例えば、ヒートシールにより形成できる。本実施形態では、印刷層12が筒状体の内側を向くようにしてシール部13を形成する。 Next, process (d) is demonstrated.
In the step (d), first, the third elongated body on which the
最後に、筒状に成形された第3長尺体を個々のラベルサイズにカットして筒状ストレッチラベル10を作製する。筒状の第3長尺体は、MD方向に連続搬送されながら、個々のラベルサイズにカットされるが、カット工程においても良好なカット適性を発現する。なお、筒状ストレッチラベル10には、慣用の方法でミシン目線を形成してもよい。
Finally, the cylindrical stretch label 10 is produced by cutting the third elongated body formed into a cylindrical shape into individual label sizes. The cylindrical third elongated body is cut into individual label sizes while being continuously conveyed in the MD direction, but also exhibits good cut aptitude in the cutting process. In addition, you may form a perforation line in the cylindrical stretch label 10 by a conventional method.
ここで、筒状ストレッチラベル10のストレッチ特性について説明する。
Here, the stretch characteristics of the cylindrical stretch label 10 will be described.
筒状ストレッチラベル10のストレッチ特性は、引っ張り試験における引っ張り応力、及び瞬間歪みにより表すことができる。引っ張り応力とは、評価サンプルを所定の速度で引っ張って伸張させたときに、引っ張り試験機に作用する力である。即ち、伸張に抵抗する力であり、引っ張り応力が小さいほど、ラベルは伸ばし易く伸張性が高いことを意味する。瞬間歪み(%)は、引っ張り試験後に評価サンプルが元の長さに戻らずに変形した度合いを示し、荷重を取り除いた直後に測定される。なお、引っ張り試験における評価サンプルを引っ張って伸張させる速度は、「50mm/分」又は「6000mm/分」である(以下、速度を明示しない場合は「50mm/分」である)。
瞬間歪みが小さいほど、ラベルの復元性が高いことを意味する。つまり、引っ張り応力、瞬間歪みともに小さい方が、ストレッチ特性に優れる。 The stretch characteristics of thecylindrical stretch label 10 can be expressed by tensile stress and instantaneous strain in a tensile test. The tensile stress is a force acting on the tensile tester when the evaluation sample is pulled and stretched at a predetermined speed. That is, the force resists stretching, and the smaller the tensile stress, the easier the label is stretched and the higher the stretchability. The instantaneous strain (%) indicates the degree to which the evaluation sample is deformed without returning to the original length after the tensile test, and is measured immediately after the load is removed. Note that the speed at which the evaluation sample is pulled and stretched in the tensile test is “50 mm / min” or “6000 mm / min” (hereinafter, “50 mm / min” when the speed is not specified).
It means that the smaller the instantaneous distortion, the higher the recoverability of the label. That is, the smaller the tensile stress and the instantaneous strain, the better the stretch characteristics.
瞬間歪みが小さいほど、ラベルの復元性が高いことを意味する。つまり、引っ張り応力、瞬間歪みともに小さい方が、ストレッチ特性に優れる。 The stretch characteristics of the
It means that the smaller the instantaneous distortion, the higher the recoverability of the label. That is, the smaller the tensile stress and the instantaneous strain, the better the stretch characteristics.
筒状ストレッチラベル10は、少なくとも周方向に対して60%以上の伸張が可能であり、好ましいものは75%以上の伸張が可能である。そして、筒状ストレッチラベル10は、周方向に60%伸張後の瞬間歪み(50mm/分)が13%以下であり、好ましくは11.5%以下、より好ましくは10.5%以下、最も好ましいものは10%以下である。また、周方向に60%伸張後の瞬間歪み(6000mm/分)は、30%以下が好ましく、20%以下がより好ましく、18%以下がさらに好ましく、15%以下が特に好ましい。
The cylindrical stretch label 10 can be stretched 60% or more in at least the circumferential direction, and the preferred one can stretch 75% or more. The cylindrical stretch label 10 has an instantaneous strain (50 mm / min) after stretching 60% in the circumferential direction of 13% or less, preferably 11.5% or less, more preferably 10.5% or less, and most preferably. The thing is 10% or less. The instantaneous strain (6000 mm / min) after stretching 60% in the circumferential direction is preferably 30% or less, more preferably 20% or less, further preferably 18% or less, and particularly preferably 15% or less.
さらに、筒状ストレッチラベル10は、周方向に75%伸張後の瞬間歪み(50mm/分)が13%以下であることが好ましく、より好ましくは11.5%以下、さらに好ましくは10.5%以下、最も好ましいものは10%以下である。周方向に75%伸張後の瞬間歪み(6000mm/分)は、30%以下が好ましく、20%以下がより好ましく、18%以下がさらに好ましく、15%以下が特に好ましい。
Furthermore, the cylindrical stretch label 10 preferably has an instantaneous strain (50 mm / min) after stretching 75% in the circumferential direction of 13% or less, more preferably 11.5% or less, and even more preferably 10.5%. Hereinafter, the most preferable one is 10% or less. The instantaneous strain (6000 mm / min) after stretching 75% in the circumferential direction is preferably 30% or less, more preferably 20% or less, further preferably 18% or less, and particularly preferably 15% or less.
筒状ストレッチラベル10の瞬間歪みの下限は、理論上では零であるが、実際に零という場合は少ない。このため、筒状ストレッチラベル10の瞬間歪みの下限値は、0%を超え、好ましくは1%以上である。
The lower limit of the instantaneous strain of the cylindrical stretch label 10 is theoretically zero, but there are few cases where it is actually zero. For this reason, the lower limit of the instantaneous strain of the cylindrical stretch label 10 exceeds 0%, preferably 1% or more.
また、筒状ストレッチラベル10のストレッチ特性は、永久歪みによっても表すことができる。永久歪み(%)は、瞬間歪みと同様に、引っ張り試験後に評価サンプルが元の長さに戻らずに変形した度合いを示すが、荷重を取り除いた4週間後に測定する点で瞬間歪みと異なる。永久歪みを測定するときの引っ張り試験における評価サンプルの伸張速度は、「50mm/分」である。
永久歪みが小さいほど、ラベルの復元性が高く、ストレッチ特性に優れる。周方向に60%伸張後の永久歪み(50mm/分)は、11%以下が好ましく、8%以下がより好ましく、7%以下がさらに好ましく、6%以下が特に好ましい。 The stretch characteristic of thecylindrical stretch label 10 can also be expressed by permanent set. Permanent strain (%) indicates the degree to which the evaluation sample deformed without returning to its original length after the tensile test, similar to the instantaneous strain, but differs from the instantaneous strain in that it is measured 4 weeks after the load is removed. The extension speed of the evaluation sample in the tensile test when measuring permanent set is “50 mm / min”.
The smaller the permanent set, the higher the recoverability of the label and the better the stretch characteristics. The permanent set after stretching 60% in the circumferential direction (50 mm / min) is preferably 11% or less, more preferably 8% or less, still more preferably 7% or less, and particularly preferably 6% or less.
永久歪みが小さいほど、ラベルの復元性が高く、ストレッチ特性に優れる。周方向に60%伸張後の永久歪み(50mm/分)は、11%以下が好ましく、8%以下がより好ましく、7%以下がさらに好ましく、6%以下が特に好ましい。 The stretch characteristic of the
The smaller the permanent set, the higher the recoverability of the label and the better the stretch characteristics. The permanent set after stretching 60% in the circumferential direction (50 mm / min) is preferably 11% or less, more preferably 8% or less, still more preferably 7% or less, and particularly preferably 6% or less.
また、印刷層12を位置ずれなく形成するためには、高さ方向の引っ張り試験における引っ張り応力が4.3N/mm2であるときの高さ方向の伸び(50mm/分)が、9%以下(例えば、1~9%)であることが好ましく、4~9%であることがより好ましく、5~8%であることが特に好ましい。
Further, in order to form the printing layer 12 without displacement, the elongation in the height direction (50 mm / min) when the tensile stress in the height direction tensile test is 4.3 N / mm 2 is 9% or less. (For example, 1 to 9%) is preferable, 4 to 9% is more preferable, and 5 to 8% is particularly preferable.
また、筒状ストレッチラベル10は、少なくとも周方向に対して10%伸張させたときの引っ張り応力(以下、F10値とする)が、好ましくは1~10N/mm2、より好ましくは2~8N/mm2、特に好ましくは3~7N/mm2である。また、少なくとも周方向に対して60%伸張させたときの引っ張り応力(以下、F60値とする)は、好ましくは1~12N/mm2、より好ましくは2~10N/mm2、特に好ましくは3~9N/mm2である。なお、F10値及びF60値の下限値が低すぎると伸張した状態で容器の締め付け力が弱くなりすぎ、見栄えの良い装着状態が得られない場合がある。
The tubular stretch label 10 has a tensile stress (hereinafter referred to as F10 value) of at least 10% when stretched at least 10% in the circumferential direction, preferably 1 to 10 N / mm 2 , more preferably 2 to 8 N / mm 2 , particularly preferably 3 to 7 N / mm 2 . The tensile stress (hereinafter referred to as F60 value) when stretched at least 60% in the circumferential direction is preferably 1 to 12 N / mm 2 , more preferably 2 to 10 N / mm 2 , and particularly preferably 3 ~ 9 N / mm 2 . In addition, if the lower limit value of the F10 value and the F60 value is too low, the tightening force of the container becomes too weak in the stretched state, and a good-looking wearing state may not be obtained.
上記のように、筒状ストレッチラベル10は、周方向の伸張率が60%以上と高く、且つ周方向に60%伸張後の瞬間歪み(50mm/分)が13%以下、周方向のF10値が10N/mm2以下といずれも小さな値を示す。つまり、筒状ストレッチラベル10は、従来のストレッチラベルにはない優れたストレッチ特性を有している。さらに、筒状ストレッチラベル10は、優れたストレッチ特性を有しながら、上記のように、良好な製造適性を有する。
As described above, the cylindrical stretch label 10 has a high stretch rate of 60% or more in the circumferential direction, an instantaneous strain (50 mm / min) after 60% stretch in the circumferential direction is 13% or less, and an F10 value in the circumferential direction. Is 10 N / mm 2 or less, both of which are small values. That is, the cylindrical stretch label 10 has excellent stretch characteristics that are not found in conventional stretch labels. Furthermore, the cylindrical stretch label 10 has good manufacturing aptitude as described above while having excellent stretch characteristics.
次に、図3を参照して、ラベル付き容器20の構成について詳説する。
Next, the configuration of the labeled container 20 will be described in detail with reference to FIG.
図3は、上記構成を備えた筒状ストレッチラベル10と、容器21とを備え、筒状ストレッチラベル10が周方向に伸張した状態で容器21に装着されているラベル付き容器20を示す斜視図である。
FIG. 3 is a perspective view showing a labeled container 20 that is provided with a cylindrical stretch label 10 having the above-described configuration and a container 21 and that is attached to the container 21 in a state where the cylindrical stretch label 10 extends in the circumferential direction. It is.
図3に示すように、ラベル付き容器20は、筒状ストレッチラベル10と、容器21とで構成される。筒状ストレッチラベル10は、周方向に伸張した状態で容器21に追従して装着されている。つまり、容器21に装着する前の筒状ストレッチラベル10の周長は、筒状ストレッチラベル10が装着される部分の容器21の周長よりも小さくなるように設定され、ラベルが伸張した状態で装着されている。
As shown in FIG. 3, the labeled container 20 includes a cylindrical stretch label 10 and a container 21. The cylindrical stretch label 10 is attached following the container 21 in a state of being stretched in the circumferential direction. That is, the circumferential length of the cylindrical stretch label 10 before being attached to the container 21 is set to be smaller than the circumferential length of the container 21 where the cylindrical stretch label 10 is attached, and the label is in an extended state. It is installed.
容器21は、径方向に切断した断面が略円形状の胴部22と、胴部22よりも直径が小さな首部23と、胴部22と首部23との間に位置し、首部23に向かって縮径する部分である肩部24と、首部23に取り付けられるキャップ部25とを含む容器である。容器21は、例えば、飲料が充填される所謂ペットボトルである。なお、筒状ストレッチラベル10は、図3に例示するペットボトル等の飲料容器に限られず、調味料容器、シャンプー等のサニタリー容器、洗剤容器、化粧品容器、医薬品容器など多岐に渡り装着可能である。
The container 21 is positioned between the barrel 22 having a substantially circular cross section cut in the radial direction, a neck 23 having a smaller diameter than the barrel 22, and the barrel 22 and the neck 23. The container includes a shoulder portion 24 that is a portion to be reduced in diameter and a cap portion 25 that is attached to the neck portion 23. The container 21 is a so-called PET bottle filled with a beverage, for example. The cylindrical stretch label 10 is not limited to a beverage container such as a PET bottle illustrated in FIG. 3, and can be mounted in a variety of ways such as a seasoning container, a sanitary container such as a shampoo, a detergent container, a cosmetic container, and a pharmaceutical container. .
胴部22には、複数のリブ26a,26bが形成されている。リブ26aは、胴部22の上部に形成され、リブ26bは、胴部22の下部に形成されている。当該リブ26a,26bは、胴部22の周方向にリング状に形成された凹部であり、胴部22の剛性を高める機能を有する。また、胴部22は、その上下方向中央部がくびれた形状を呈しており、くびれ部分の上下に分かれて、胴部22において周長が最大となる最大胴部dmが存在する。なお、当該くびれ部分が胴部22において周長が最小となる最小胴部dsとなる。
A plurality of ribs 26 a and 26 b are formed on the body portion 22. The ribs 26 a are formed at the upper part of the body part 22, and the ribs 26 b are formed at the lower part of the body part 22. The ribs 26 a and 26 b are concave portions formed in a ring shape in the circumferential direction of the body portion 22, and have a function of increasing the rigidity of the body portion 22. The body portion 22 has a constricted shape in the center in the vertical direction. The body portion 22 is divided into the upper and lower portions of the constricted portion, and the body portion 22 has a maximum body portion dm having a maximum circumference. In addition, the said narrow part becomes the minimum trunk | drum ds whose circumference becomes the minimum in the trunk | drum 22.
ラベル付き容器20では、最大胴部dm、最小胴部dsを含んで胴部22の上端(胴部22と肩部24との境界位置)からリブ26bと胴部22の下端との中間位置付近までを覆って筒状ストレッチラベル10が装着されている。本実施形態では、ラベル付き容器20における筒状ストレッチラベル10は、上記のように装着されているため、最大胴部dmにおいて最大周長、最小胴部dsにおいて最小周長を示している。ここで、筒状ストレッチラベル10が装着されている部分において、周長が最大となる部分を最大径部Dm、周長が最小となる部分を最小径部Dsと定義すると、本実施形態では、最大胴部dmに装着された部分が最大径部Dmであり、最小胴部dsに装着された部分が最小径部Dsとなる。なお、本実施形態では、最大胴部dmと最大径部Dmが一致し、最小胴部dsと最小径部Dsとが一致しているが、筒状ストレッチラベル10の装着形態はこれに限定されない。例えば、筒状ストレッチラベル10を肩部24を含めて装着し、その肩部24が最小径部Dsとなる構成であってもよい。
In the labeled container 20, including the maximum body part dm and the minimum body part ds, near the intermediate position between the upper end of the body part 22 (the boundary position between the body part 22 and the shoulder part 24) and the lower end of the body part 22. A cylindrical stretch label 10 is attached so as to cover the above. In this embodiment, since the cylindrical stretch label 10 in the labeled container 20 is mounted as described above, the maximum circumference is indicated at the maximum trunk dm, and the minimum circumference is indicated at the minimum trunk ds. Here, in the portion where the cylindrical stretch label 10 is attached, if the portion where the circumference is maximum is defined as the maximum diameter portion Dm and the portion where the circumference is minimum is defined as the minimum diameter portion Ds, The portion attached to the maximum body portion dm is the maximum diameter portion Dm, and the portion attached to the minimum body portion ds is the minimum diameter portion Ds. In the present embodiment, the maximum body portion dm and the maximum diameter portion Dm coincide with each other, and the minimum body portion ds and the minimum diameter portion Ds coincide with each other. However, the mounting form of the cylindrical stretch label 10 is not limited to this. . For example, the cylindrical stretch label 10 including the shoulder portion 24 may be attached, and the shoulder portion 24 may be the minimum diameter portion Ds.
筒状ストレッチラベル10は、従来のストレッチラベルでは見栄え良く装着することができない、径差がある部分を含むようにラベルを装着しても、その形状に追従して見栄え良く装着できる。ラベル付き容器20は、例えば、最小径部Dsに対する最大径部Dmの周長の比率(Dm/Ds)が、1.05~1.75、又は1.10~1.60、又は1.20~1.50であっても、図3に示すように筒状ストレッチラベル10が見栄え良く装着された形態となる。
The cylindrical stretch label 10 can not be attached with a good appearance with a conventional stretch label, and even if the label is attached so as to include a portion having a diameter difference, it can be attached with a good appearance following its shape. In the labeled container 20, for example, the ratio of the circumference of the maximum diameter portion Dm to the minimum diameter portion Ds (Dm / Ds) is 1.05 to 1.75, or 1.10 to 1.60, or 1.20. Even if it is ˜1.50, the tubular stretch label 10 is mounted with a good appearance as shown in FIG.
筒状ストレッチラベル10は、径差がない部分に対しても勿論に好適に使用できる。筒状ストレッチラベル10は、周方向に伸張した状態で装着されるため、ストレッチ特性に優れるほど大きく伸張した状態で容器に装着できる。このため、ストレッチ特性に優れたラベルほど、周長の小さな筒状ストレッチラベル10を用いてラベル付き容器を製造できるため、材料コストを低減することができる。したがって、径差のない部分(例えば、径差のない容器胴部)に筒状ストレッチラベル10を装着する場合、周方向に1.2倍以上伸張した状態で装着されることが好ましい。もっとも、これに限定されるわけではなく、1.01~1.05倍程度に伸張した状態で装着させてもよい。
Of course, the cylindrical stretch label 10 can be suitably used for a portion having no diameter difference. Since the cylindrical stretch label 10 is attached in a stretched state in the circumferential direction, the tubular stretch label 10 can be attached to the container in a stretched state so as to have excellent stretch characteristics. For this reason, since the label excellent in a stretch characteristic can manufacture a labeled container using the cylindrical stretch label 10 with a small perimeter, material cost can be reduced. Therefore, when the cylindrical stretch label 10 is attached to a portion having no diameter difference (for example, a container body portion having no diameter difference), it is preferably attached in a state of being stretched 1.2 times or more in the circumferential direction. However, the present invention is not limited to this, and it may be attached in a state of being expanded by about 1.01 to 1.05 times.
また、ラベル付き容器20では、上記の通り筒状ストレッチラベル10が伸張した状態で装着されているため、容器21を締め付ける応力が発生する。かかる応力により容器全体を締め付けることで外力による容器変形が防止され、容器の補強効果が発現する。他にも、スクイーズ容器、チューブ容器のような内容物が押し出される容器に筒状ストレッチラベル10を装着すれば、例えば内容物の量が減少した場合であってもラベルが容器形状に追従し、良好な一体性を確保できるという効果が認められる。特に、熱膨張し易いオレフィン系容器に対して有効である。さらに、容器本体とキャップとに跨って筒状ストレッチラベル10を装着すれば、筒状ストレッチラベル10を装着した状態でキャップが取り外していたずら等をしようとすると、キャップのあった空間にラベルが縮径して入り込み、再びキャップを取り付けることが困難になるタンパー効果が認められる。
Moreover, in the labeled container 20, since the cylindrical stretch label 10 is attached in the stretched state as described above, a stress that tightens the container 21 is generated. By tightening the entire container with such stress, the container is prevented from being deformed by an external force, and the reinforcing effect of the container is exhibited. In addition, if the cylindrical stretch label 10 is attached to a container such as a squeeze container or a tube container, the label follows the container shape even when the amount of the contents is reduced, The effect that favorable integrity can be secured is recognized. This is particularly effective for an olefin-based container that easily undergoes thermal expansion. Furthermore, if the cylindrical stretch label 10 is attached across the container body and the cap, the label will be reduced to the space where the cap was placed if the cap is removed while the cylindrical stretch label 10 is attached. A tampering effect is found that makes it difficult to enter the diameter and attach the cap again.
筒状ストレッチラベル10は、例えば、ストレッチラベラーを用いて容器21に装着される。ストレッチラベラーは、筒状ストレッチラベル10を周方向に引っ張って伸張させた状態で容器21に外嵌する。筒状ストレッチラベル10を容器21に外嵌して引っ張り力を取り除くと、ラベルが弾性的に収縮し容器21に追従して装着される。なお、筒状ストレッチラベル10は、少なくとも2%程度周方向に伸張した状態で装着されていることが好適であり、60%程度伸張した状態で装着することもできる。
The cylindrical stretch label 10 is attached to the container 21 using, for example, a stretch labeler. The stretch labeler is externally fitted to the container 21 in a state where the cylindrical stretch label 10 is stretched in the circumferential direction. When the tubular stretch label 10 is externally fitted to the container 21 and the pulling force is removed, the label is elastically contracted and attached to follow the container 21. The cylindrical stretch label 10 is preferably attached in a state of being stretched in the circumferential direction by at least about 2%, and can be attached in a state of being stretched by about 60%.
筒状ストレッチラベル10は、シュリンクラベルと異なり非加熱で装着可能であり、装着時に容器の熱変形が発生しないため容器の軽量化が可能であったり、熱による内容物の分解、分離といった内容物への影響も抑制可能である。
Unlike the shrink label, the cylindrical stretch label 10 can be attached without heating. Since the container does not undergo thermal deformation when attached, the weight of the container can be reduced, and the contents can be decomposed and separated by heat. Can also be suppressed.
なお、上記実施形態は、本発明の目的を損なわない範囲で設計変更することができる。以下では、ヒートシールにより形成されたシール部13の変形形態を例示するが、これ以外にも適宜設計変更できる。例えば、筒状ストレッチラベル10の高さ方向の両端を任意のパターン(例えば、波形や三角形など)にカットした形態としてもよい。また、1つの筒状ストレッチラベル10を複数の容器の集合体に装着して集積包装体を形成してもよい。筒状ストレッチラベル10は、複数の容器同士を強く結束することができ、集積販売用途にも好適である。
It should be noted that the design of the above embodiment can be changed within a range that does not impair the object of the present invention. Below, although the deformation | transformation form of the seal | sticker part 13 formed by heat sealing is illustrated, a design change can be suitably carried out besides this. For example, it is good also as a form which cut the both ends of the height direction of the cylindrical stretch label 10 in arbitrary patterns (for example, a waveform, a triangle, etc.). Moreover, you may mount | wear with the one cylindrical stretch label 10 to the aggregate | assembly of a some container, and may form an integrated package. The cylindrical stretch label 10 can strongly bind a plurality of containers, and is also suitable for an integrated sales application.
図4~6は、それぞれ異なった接合形態を有するシール部13x,13y,13zを示す断面図である。図4~6では、上記実施形態と同様の構成要素には同じ符号を付して重複する説明を省略する。
4 to 6 are cross-sectional views showing seal portions 13x, 13y, and 13z having different joining forms. 4 to 6, the same components as those in the above embodiment are denoted by the same reference numerals, and redundant description is omitted.
図4に例示するシール部13xは、筒状ストレッチラベル10xの外側に位置する端縁10xaの内面と、内側に位置する端縁10xbの外面とを接着剤14により接合した所謂封筒貼りの接合形態である。接着剤14は、特に限定されず、熱可塑性樹脂系やエラストマー系の接着剤を適用できる。筒状ストレッチラベル10xは、接着剤14を用いてシールされるため、印刷層12をフィルム基材11の内面全域に形成することができる。
The seal portion 13x illustrated in FIG. 4 is a so-called envelope-bonded joining form in which the inner surface of the edge 10xa located outside the cylindrical stretch label 10x and the outer surface of the edge 10xb located inside are joined by an adhesive 14. It is. The adhesive 14 is not particularly limited, and a thermoplastic resin-based or elastomer-based adhesive can be applied. Since the cylindrical stretch label 10x is sealed using the adhesive 14, the printing layer 12 can be formed on the entire inner surface of the film base 11.
図4に例示する形態では、筒状体の外側に位置する端縁10xaの端部に、端縁10xbと接合されない非接合部がシール部13xより延設され摘み部15が設けられている。一方、筒状体の内側に位置する端縁10xbには、かかる非接合部は存在しない。摘み部15は、筒状ストレッチラベル10xを容器21から剥離する際に利用される部分であって、少なくとも指先で摘むことができる程度のサイズを有する。筒状ストレッチラベル10xの剥離手段として摘み部15を有する当該構成によれば、剥離手段としてミシン目線を設けなくてもよいため、装着過程や流通過程でラベルが破断し難く、廃棄時には筒状ストレッチラベル10xを容器21から容易に剥離することができる。
In the form illustrated in FIG. 4, a non-joining portion that is not joined to the edge 10xb is extended from the seal portion 13x and provided with a knob 15 at the end of the edge 10xa located outside the cylindrical body. On the other hand, the non-joined portion does not exist at the edge 10xb located inside the cylindrical body. The knob | pick part 15 is a part utilized when peeling the cylindrical stretch label 10x from the container 21, Comprising: It has a size which can be picked with a fingertip at least. According to the configuration having the knob portion 15 as the peeling means of the cylindrical stretch label 10x, the perforation line does not have to be provided as the peeling means, so that the label is not easily broken during the mounting process and the distribution process, and the cylindrical stretch is disposed at the time of disposal. The label 10x can be easily peeled from the container 21.
シール部13xは、摘み部15を除いて端縁10xaと端縁10xbとの重なり部分の全域が接合される形態であってもよいが、ラベル装着時など応力がかかったときに剥離しない範囲で、接着剤14を所定のパターン(例えば、ストライプ状、格子状、ドット状など)で塗工して接着強度を弱くしてもよい。或いは、接着強度を弱くするために、シリコーン系樹脂等を含む糊抑え用インキを接着剤14からなる層上に所定のパターンで塗工してもよい。シール部13xは、摘み部15を摘んで筒状ストレッチラベル10xを剥離する際に破断されるが、このように適度に接着強度を抑えることでラベルの剥離性がさらに向上する。
The seal portion 13x may have a configuration in which the entire area of the overlapping portion of the end edge 10xa and the end edge 10xb is joined except for the knob portion 15, but within a range that does not peel when stress is applied, such as when a label is attached. The adhesive strength may be weakened by applying the adhesive 14 in a predetermined pattern (for example, a stripe shape, a lattice shape, a dot shape, or the like). Or in order to weaken adhesive strength, you may apply the ink for glue suppression containing a silicone type resin etc. on the layer which consists of the adhesive agent 14 with a predetermined pattern. The seal portion 13x is broken when the knob portion 15 is picked and the cylindrical stretch label 10x is peeled off. Thus, the peelability of the label is further improved by appropriately suppressing the adhesive strength.
図5に例示するシール部13yは、筒状ストレッチラベル10yの一方の端縁10ya及び他方の端縁10ybの内面同士を接合した所謂合掌貼りの接合形態である。シール部13yは、当該内面同士がヒートシールにより接合されている。このため、シール部13yには、ヒートシール性を確保するため、印刷層12が形成されていない。
The seal portion 13y illustrated in FIG. 5 is a so-called joint-bonded joining form in which the inner surfaces of one end edge 10ya and the other end edge 10yb of the cylindrical stretch label 10y are joined together. The inner surfaces of the seal portion 13y are joined by heat sealing. For this reason, the printed layer 12 is not formed on the seal portion 13y in order to ensure heat sealability.
図6に例示するシール部13zは、筒状ストレッチラベル10zの一方の端縁10za及び他方の端縁10zbの外面同士を接合した所謂合掌貼りの接合形態である。シール部13zは、シール部13yと同様にヒートシールにより形成されるが、外面同士のヒートシールであるため、シール部13zを含むフィルム基材11の内面全域に印刷層12を形成できる。このため、印刷層12が着色性を有していれば、フィルム基材11が透明なものであってもクリア部分が見えない。
なお、シール部13y,13zは、接着剤14を用いて形成してもよい。 Theseal portion 13z illustrated in FIG. 6 is a so-called joint-bonded joining form in which the outer surfaces of one end edge 10za and the other end edge 10zb of the cylindrical stretch label 10z are joined together. The seal portion 13z is formed by heat sealing similarly to the seal portion 13y. However, since the seal portion 13z is a heat seal between the outer surfaces, the printing layer 12 can be formed on the entire inner surface of the film base 11 including the seal portion 13z. For this reason, if the printing layer 12 has coloring property, even if the film base material 11 is transparent, a clear part cannot be seen.
The seal portions 13y and 13z may be formed using the adhesive 14.
なお、シール部13y,13zは、接着剤14を用いて形成してもよい。 The
The
以下、実施例により本発明をさらに説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例・比較例のストレッチラベルを構成する樹脂、フィルム基材の延伸倍率、及び得られたストレッチラベルの評価結果等を表1,2に示した。
Hereinafter, the present invention will be further described with reference to examples, but the present invention is not limited to these examples. Tables 1 and 2 show the resins constituting the stretch labels of Examples and Comparative Examples, the stretch ratio of the film substrate, the evaluation results of the obtained stretch labels, and the like.
<実施例1>
表1に示すように、フィルム基材を構成する樹脂成分として、線状低密度ポリエチレン(宇部丸善ポリエチレン(株)製の「ユメリット715FT」)を使用した。フィルム基材の作製には、合流方式がフィードブロック2種3層型の押出し機を用いた。210℃に加熱した押出し機に上記線状低密度ポリエチレンを投入し、溶融した樹脂をTダイに供給して、そのスリットから25℃に冷却したキャスティングドラム上に1種3層で押出して急冷固化し、単層の未延伸フィルム基材の長尺体を得た。
次に、上記未延伸フィルム基材の長尺体を、MD方向に対して延伸倍率1.06倍、延伸温度52℃で加熱延伸し、続いて、TD方向に対して延伸倍率1.06倍、延伸温度85℃で加熱延伸して、厚みが50μmの二軸延伸フィルム基材の長尺体を得た。延伸方式は、MD方向はロール方式、TD方向はテンター方式とした。
上記二軸延伸フィルム基材の長尺体の一方の面に、該長尺体をMD方向に搬送しながら溶剤型インキを用いたグラビア印刷により、黒、藍、赤、黄、白の5色を用いて厚みが5μmの印刷層を形成した。印刷層を形成した長尺体を筒状にしてシールすることにより筒状長尺体を得て、これを個々のラベルサイズにカットすることで筒状ストレッチラベルを得た。なお、シール部は、フィルム基材を筒状にして端縁同士を重ね合わせたときに、筒状体の外側に位置するフィルム基材の内面と、筒状体の内側に位置するフィルム基材の外面とをヒートシールすることで形成される。 <Example 1>
As shown in Table 1, linear low density polyethylene (“Umerit 715FT” manufactured by Ube Maruzen Polyethylene Co., Ltd.) was used as a resin component constituting the film base material. For the production of the film substrate, an extruder having a merging method of feed block type 2 and 3 layer type was used. The above-mentioned linear low density polyethylene is put into an extruder heated to 210 ° C., the molten resin is supplied to a T-die, and extruded from a slit onto a casting drum cooled to 25 ° C. in one type and three layers, and rapidly solidified. Thus, an elongated body of a single-layer unstretched film substrate was obtained.
Next, the long body of the unstretched film substrate is stretched by heating at a stretching ratio of 1.06 times in the MD direction and a stretching temperature of 52 ° C., and then, at a stretching ratio of 1.06 times in the TD direction. The film was stretched by heating at a stretching temperature of 85 ° C. to obtain a long body of a biaxially stretched film substrate having a thickness of 50 μm. The stretching method was a roll method in the MD direction and a tenter method in the TD direction.
Five colors of black, indigo, red, yellow, and white are printed on one surface of the long body of the biaxially stretched film substrate by gravure printing using solvent-based ink while transporting the long body in the MD direction. Was used to form a printed layer having a thickness of 5 μm. A cylindrical elongated label was obtained by sealing the elongated body on which the printed layer was formed into a cylindrical shape, and obtaining the tubular elongated body by cutting it into individual label sizes. In addition, when a film base is made into a cylinder and the edges are overlapped with each other, the seal portion is an inner surface of the film base located on the outer side of the cylindrical body and a film base located on the inner side of the cylindrical body. It is formed by heat-sealing with the outer surface.
表1に示すように、フィルム基材を構成する樹脂成分として、線状低密度ポリエチレン(宇部丸善ポリエチレン(株)製の「ユメリット715FT」)を使用した。フィルム基材の作製には、合流方式がフィードブロック2種3層型の押出し機を用いた。210℃に加熱した押出し機に上記線状低密度ポリエチレンを投入し、溶融した樹脂をTダイに供給して、そのスリットから25℃に冷却したキャスティングドラム上に1種3層で押出して急冷固化し、単層の未延伸フィルム基材の長尺体を得た。
次に、上記未延伸フィルム基材の長尺体を、MD方向に対して延伸倍率1.06倍、延伸温度52℃で加熱延伸し、続いて、TD方向に対して延伸倍率1.06倍、延伸温度85℃で加熱延伸して、厚みが50μmの二軸延伸フィルム基材の長尺体を得た。延伸方式は、MD方向はロール方式、TD方向はテンター方式とした。
上記二軸延伸フィルム基材の長尺体の一方の面に、該長尺体をMD方向に搬送しながら溶剤型インキを用いたグラビア印刷により、黒、藍、赤、黄、白の5色を用いて厚みが5μmの印刷層を形成した。印刷層を形成した長尺体を筒状にしてシールすることにより筒状長尺体を得て、これを個々のラベルサイズにカットすることで筒状ストレッチラベルを得た。なお、シール部は、フィルム基材を筒状にして端縁同士を重ね合わせたときに、筒状体の外側に位置するフィルム基材の内面と、筒状体の内側に位置するフィルム基材の外面とをヒートシールすることで形成される。 <Example 1>
As shown in Table 1, linear low density polyethylene (“Umerit 715FT” manufactured by Ube Maruzen Polyethylene Co., Ltd.) was used as a resin component constituting the film base material. For the production of the film substrate, an extruder having a merging method of feed block type 2 and 3 layer type was used. The above-mentioned linear low density polyethylene is put into an extruder heated to 210 ° C., the molten resin is supplied to a T-die, and extruded from a slit onto a casting drum cooled to 25 ° C. in one type and three layers, and rapidly solidified. Thus, an elongated body of a single-layer unstretched film substrate was obtained.
Next, the long body of the unstretched film substrate is stretched by heating at a stretching ratio of 1.06 times in the MD direction and a stretching temperature of 52 ° C., and then, at a stretching ratio of 1.06 times in the TD direction. The film was stretched by heating at a stretching temperature of 85 ° C. to obtain a long body of a biaxially stretched film substrate having a thickness of 50 μm. The stretching method was a roll method in the MD direction and a tenter method in the TD direction.
Five colors of black, indigo, red, yellow, and white are printed on one surface of the long body of the biaxially stretched film substrate by gravure printing using solvent-based ink while transporting the long body in the MD direction. Was used to form a printed layer having a thickness of 5 μm. A cylindrical elongated label was obtained by sealing the elongated body on which the printed layer was formed into a cylindrical shape, and obtaining the tubular elongated body by cutting it into individual label sizes. In addition, when a film base is made into a cylinder and the edges are overlapped with each other, the seal portion is an inner surface of the film base located on the outer side of the cylindrical body and a film base located on the inner side of the cylindrical body. It is formed by heat-sealing with the outer surface.
上記筒状ストレッチラベルについて、以下の測定方法により、ストレッチ特性、印刷適性、及び屈折率の評価を行い、評価結果を表1に示した。
The above-mentioned cylindrical stretch label was evaluated for stretch properties, printability, and refractive index by the following measurement methods, and the evaluation results are shown in Table 1.
<ストレッチ特性の評価>
上記筒状ストレッチラベルから高さ方向に長さ15±0.1mm、周方向に長さ200mm(標線間距離100±2mm)の長方形のサンプル片を作製した。このサンプル片の長辺方向(筒状ストレッチラベルの周方向)を測定方向として、60%の引っ張り試験を行い、瞬間歪み(%)を測定した。60%の引っ張り試験とは、クロスヘッド速度一定型又は振子型引張試験機(試験速度:50±5mm/分)を用いて、所定の荷重(N)を加えてサンプル片の標線間距離が60%となるまで伸ばす試験であり、該試験後に荷重を除去して0(N)に戻したときの標線間距離を読み取って、以下の計算式で瞬間歪み(%)を算出した。
瞬間歪み(%)=100×ΔL2/L2
L2:試験前のサンプル片の標線間距離(mm)
ΔL2:試験後のサンプル片の標線間距離の増加(mm)
なお、永久歪み(%)は、上記60%の引っ張り試験後、試験機から取り外し、23℃の恒温槽で4週間保管した後に上記標線間距離を読み取って算出した。実施例1では、永久歪みは4.0%であった。 <Evaluation of stretch properties>
A rectangular sample piece having a length of 15 ± 0.1 mm in the height direction and a length of 200 mm in the circumferential direction (distance between marked lines 100 ± 2 mm) was produced from the cylindrical stretch label. A 60% tensile test was performed with the long side direction (circumferential direction of the cylindrical stretch label) of the sample piece as the measurement direction, and instantaneous strain (%) was measured. The 60% tensile test is a constant crosshead speed type or pendulum type tensile tester (test speed: 50 ± 5 mm / min), and a predetermined load (N) is applied to determine the distance between the marked lines of the sample pieces. This test was extended to 60%. After the test, the distance between the marked lines when the load was removed and returned to 0 (N) was read, and the instantaneous strain (%) was calculated by the following formula.
Instantaneous strain (%) = 100 × ΔL2 / L2
L2: Distance between marked lines of sample piece before test (mm)
ΔL2: Increase in distance between marked lines of sample piece after test (mm)
Permanent strain (%) was calculated by removing the distance between the marked lines after removing from the testing machine after the 60% tensile test and storing in a thermostatic bath at 23 ° C. for 4 weeks. In Example 1, the permanent set was 4.0%.
上記筒状ストレッチラベルから高さ方向に長さ15±0.1mm、周方向に長さ200mm(標線間距離100±2mm)の長方形のサンプル片を作製した。このサンプル片の長辺方向(筒状ストレッチラベルの周方向)を測定方向として、60%の引っ張り試験を行い、瞬間歪み(%)を測定した。60%の引っ張り試験とは、クロスヘッド速度一定型又は振子型引張試験機(試験速度:50±5mm/分)を用いて、所定の荷重(N)を加えてサンプル片の標線間距離が60%となるまで伸ばす試験であり、該試験後に荷重を除去して0(N)に戻したときの標線間距離を読み取って、以下の計算式で瞬間歪み(%)を算出した。
瞬間歪み(%)=100×ΔL2/L2
L2:試験前のサンプル片の標線間距離(mm)
ΔL2:試験後のサンプル片の標線間距離の増加(mm)
なお、永久歪み(%)は、上記60%の引っ張り試験後、試験機から取り外し、23℃の恒温槽で4週間保管した後に上記標線間距離を読み取って算出した。実施例1では、永久歪みは4.0%であった。 <Evaluation of stretch properties>
A rectangular sample piece having a length of 15 ± 0.1 mm in the height direction and a length of 200 mm in the circumferential direction (distance between marked lines 100 ± 2 mm) was produced from the cylindrical stretch label. A 60% tensile test was performed with the long side direction (circumferential direction of the cylindrical stretch label) of the sample piece as the measurement direction, and instantaneous strain (%) was measured. The 60% tensile test is a constant crosshead speed type or pendulum type tensile tester (test speed: 50 ± 5 mm / min), and a predetermined load (N) is applied to determine the distance between the marked lines of the sample pieces. This test was extended to 60%. After the test, the distance between the marked lines when the load was removed and returned to 0 (N) was read, and the instantaneous strain (%) was calculated by the following formula.
Instantaneous strain (%) = 100 × ΔL2 / L2
L2: Distance between marked lines of sample piece before test (mm)
ΔL2: Increase in distance between marked lines of sample piece after test (mm)
Permanent strain (%) was calculated by removing the distance between the marked lines after removing from the testing machine after the 60% tensile test and storing in a thermostatic bath at 23 ° C. for 4 weeks. In Example 1, the permanent set was 4.0%.
上記引っ張り試験において、引っ張り応力とサンプル片の伸び(歪み)との関係を示す応力歪み曲線が得られる。得られた応力歪み曲線から、サンプル片が10%伸びたときの引っ張り応力であるF10値、サンプル片が60%伸びたときの引っ張り応力であるF60値を求めた。
また、上記60%引っ張り試験における試験速度を6000±600mm/分として、瞬間歪み(%)を測定した。 In the tensile test, a stress-strain curve showing the relationship between the tensile stress and the elongation (strain) of the sample piece is obtained. From the obtained stress strain curve, the F10 value, which is the tensile stress when the sample piece is extended by 10%, and the F60 value, which is the tensile stress when the sample piece is extended by 60%, were obtained.
Further, the instantaneous strain (%) was measured at a test speed of 6000 ± 600 mm / min in the 60% tensile test.
また、上記60%引っ張り試験における試験速度を6000±600mm/分として、瞬間歪み(%)を測定した。 In the tensile test, a stress-strain curve showing the relationship between the tensile stress and the elongation (strain) of the sample piece is obtained. From the obtained stress strain curve, the F10 value, which is the tensile stress when the sample piece is extended by 10%, and the F60 value, which is the tensile stress when the sample piece is extended by 60%, were obtained.
Further, the instantaneous strain (%) was measured at a test speed of 6000 ± 600 mm / min in the 60% tensile test.
表1に示すストレッチ特性の評価は、上記60%伸張時の瞬間歪み(50±5mm/分(条件1とする)、及び6000±600mm/分(条件2とする))を用いて行った。◎、○、△、×の評価は、下記の基準に基づく。
◎;周方向に60%以上伸張し、且つ条件1の瞬間歪みが13%以下、
条件2の瞬間歪みが7%未満
○;周方向に60%以上伸張し、且つ条件1の瞬間歪みが13%以下、
条件2の瞬間歪みが7%以上14%未満
△;周方向に60%以上伸張し、且つ条件1の瞬間歪みが13%以下、
条件2の瞬間歪みが14%以上21%未満
×;周方向に60%以上伸張できない、若しくは条件1の瞬間歪みが
13%以上又は条件2の瞬間歪みが21%以上 The stretch characteristics shown in Table 1 were evaluated using the above-described instantaneous strain at 60% elongation (50 ± 5 mm / min (condition 1) and 6000 ± 600 mm / min (condition 2)). The evaluations of ◎, ○, Δ, and × are based on the following criteria.
A: Stretched 60% or more in the circumferential direction, and the instantaneous strain of condition 1 is 13% or less,
The instantaneous strain under condition 2 is less than 7%. ○: Stretched 60% or more in the circumferential direction, and the instantaneous strain under condition 1 is 13% or less.
The instantaneous strain of condition 2 is 7% or more and less than 14%. Δ; the strain is 60% or more in the circumferential direction, and the instantaneous strain of condition 1 is 13% or less.
Condition 2 instantaneous strain is 14% or more and less than 21% ×: Cannot stretch 60% or more in the circumferential direction, or Condition 1 instantaneous strain is 13% or more, or Condition 2 instantaneous strain is 21% or more
◎;周方向に60%以上伸張し、且つ条件1の瞬間歪みが13%以下、
条件2の瞬間歪みが7%未満
○;周方向に60%以上伸張し、且つ条件1の瞬間歪みが13%以下、
条件2の瞬間歪みが7%以上14%未満
△;周方向に60%以上伸張し、且つ条件1の瞬間歪みが13%以下、
条件2の瞬間歪みが14%以上21%未満
×;周方向に60%以上伸張できない、若しくは条件1の瞬間歪みが
13%以上又は条件2の瞬間歪みが21%以上 The stretch characteristics shown in Table 1 were evaluated using the above-described instantaneous strain at 60% elongation (50 ± 5 mm / min (condition 1) and 6000 ± 600 mm / min (condition 2)). The evaluations of ◎, ○, Δ, and × are based on the following criteria.
A: Stretched 60% or more in the circumferential direction, and the instantaneous strain of condition 1 is 13% or less,
The instantaneous strain under condition 2 is less than 7%. ○: Stretched 60% or more in the circumferential direction, and the instantaneous strain under condition 1 is 13% or less.
The instantaneous strain of condition 2 is 7% or more and less than 14%. Δ; the strain is 60% or more in the circumferential direction, and the instantaneous strain of condition 1 is 13% or less.
Condition 2 instantaneous strain is 14% or more and less than 21% ×: Cannot stretch 60% or more in the circumferential direction, or Condition 1 instantaneous strain is 13% or more, or Condition 2 instantaneous strain is 21% or more
<印刷適性の評価>
表1に示す印刷適性の評価は、印刷層によって形成されたデザインを観察することにより行なった。○、△、×の評価は、下記の基準に基づく。
○;印刷スピード50mm/分で位置ずれなく印刷できた。
△;印刷スピード50mm/分では位置ずれなく印刷することは困難
であるが、50mm/分より低速条件で位置ずれなく印刷できた。
×;印刷スピードを調整しても位置ずれが解消できなかった。 <Evaluation of printability>
Evaluation of printability shown in Table 1 was performed by observing the design formed by the print layer. Evaluation of (circle), (triangle | delta), and x is based on the following reference | standard.
○: Printing was possible without misalignment at a printing speed of 50 mm / min.
Δ: It was difficult to print without misalignment at a printing speed of 50 mm / min, but printing was possible without misalignment at a lower speed than 50 mm / min.
X: Even if the printing speed was adjusted, the misalignment could not be resolved.
表1に示す印刷適性の評価は、印刷層によって形成されたデザインを観察することにより行なった。○、△、×の評価は、下記の基準に基づく。
○;印刷スピード50mm/分で位置ずれなく印刷できた。
△;印刷スピード50mm/分では位置ずれなく印刷することは困難
であるが、50mm/分より低速条件で位置ずれなく印刷できた。
×;印刷スピードを調整しても位置ずれが解消できなかった。 <Evaluation of printability>
Evaluation of printability shown in Table 1 was performed by observing the design formed by the print layer. Evaluation of (circle), (triangle | delta), and x is based on the following reference | standard.
○: Printing was possible without misalignment at a printing speed of 50 mm / min.
Δ: It was difficult to print without misalignment at a printing speed of 50 mm / min, but printing was possible without misalignment at a lower speed than 50 mm / min.
X: Even if the printing speed was adjusted, the misalignment could not be resolved.
また、上記筒状ストレッチラベルから周方向に長さ15±0.1mm、高さ方向に長さ200mm(標線間距離100±2mm)の長方形のサンプル片を作製し、このサンプル片の長辺方向(筒状ストレッチラベルの高さ方向)を測定方向として引っ張り試験(50±5mm/分)を行い、試験により得られる応力歪み曲線から引っ張り応力が4.3Nのときのサンプル片の伸び(%)を測定した。
Further, a rectangular sample piece having a length of 15 ± 0.1 mm in the circumferential direction and a length of 200 mm in the height direction (distance between marked lines 100 ± 2 mm) is prepared from the cylindrical stretch label, and the long side of the sample piece Tensile test (50 ± 5 mm / min) is performed with the direction (height direction of the cylindrical stretch label) as the measurement direction, and the elongation (%) of the sample piece when the tensile stress is 4.3 N from the stress strain curve obtained by the test ) Was measured.
<屈折率の評価>
上記印刷層を形成前のフィルム基材を用いて、JIS K 7105,7142に準拠して屈折率を測定した。屈折率は、当該フィルム基材を筒状体としたときに高さ方向、周方向、厚み方向となる方向について、偏光フィルタを用いてそれぞれ測定した。詳細を下記する。
試験方法;JIS K 7142のA法に準拠
測定装置;アッべ屈折計((株)アタゴ製の「アッべ屈折計NAR-2T」)
光源;Na白色光源(589nm) <Evaluation of refractive index>
The refractive index was measured based on JIS K 7105,7142 using the film base material before forming the printed layer. The refractive index was measured using a polarizing filter in the height direction, the circumferential direction, and the thickness direction when the film substrate was a cylindrical body. Details are given below.
Test method: Conforms to JIS K 7142 method A Measuring device: Abbe refractometer ("Abbe refractometer NAR-2T" manufactured by Atago Co., Ltd.)
Light source: Na white light source (589 nm)
上記印刷層を形成前のフィルム基材を用いて、JIS K 7105,7142に準拠して屈折率を測定した。屈折率は、当該フィルム基材を筒状体としたときに高さ方向、周方向、厚み方向となる方向について、偏光フィルタを用いてそれぞれ測定した。詳細を下記する。
試験方法;JIS K 7142のA法に準拠
測定装置;アッべ屈折計((株)アタゴ製の「アッべ屈折計NAR-2T」)
光源;Na白色光源(589nm) <Evaluation of refractive index>
The refractive index was measured based on JIS K 7105,7142 using the film base material before forming the printed layer. The refractive index was measured using a polarizing filter in the height direction, the circumferential direction, and the thickness direction when the film substrate was a cylindrical body. Details are given below.
Test method: Conforms to JIS K 7142 method A Measuring device: Abbe refractometer ("Abbe refractometer NAR-2T" manufactured by Atago Co., Ltd.)
Light source: Na white light source (589 nm)
<実施例2>
実施例1において、MD方向に対して延伸倍率1.30倍、延伸温度75℃で加熱延伸し、続いて、TD方向に対して延伸倍率1.30倍、延伸温度88℃で加熱延伸した以外は、実施例1と同様にして筒状ストレッチラベルを得た。そして、実施例1と同様にしてストレッチ特性等の評価を行った(以下同様)。 <Example 2>
In Example 1, except that the film was heat-drawn at a draw ratio of 1.30 times and a draw temperature of 75 ° C. in the MD direction, and then heat-drawn at a draw ratio of 1.30 times and a draw temperature of 88 ° C. in the TD direction. Obtained a cylindrical stretch label in the same manner as in Example 1. Then, the stretch properties and the like were evaluated in the same manner as in Example 1 (the same applies hereinafter).
実施例1において、MD方向に対して延伸倍率1.30倍、延伸温度75℃で加熱延伸し、続いて、TD方向に対して延伸倍率1.30倍、延伸温度88℃で加熱延伸した以外は、実施例1と同様にして筒状ストレッチラベルを得た。そして、実施例1と同様にしてストレッチ特性等の評価を行った(以下同様)。 <Example 2>
In Example 1, except that the film was heat-drawn at a draw ratio of 1.30 times and a draw temperature of 75 ° C. in the MD direction, and then heat-drawn at a draw ratio of 1.30 times and a draw temperature of 88 ° C. in the TD direction. Obtained a cylindrical stretch label in the same manner as in Example 1. Then, the stretch properties and the like were evaluated in the same manner as in Example 1 (the same applies hereinafter).
<実施例3>
フィルム基材を構成する樹脂成分として、2種類の線状低密度ポリエチレン(宇部丸善ポリエチレン(株)製の「ユメリット715FT」(Aとする)、及び「ユメリット0540F」(Bとする))を使用し、各層の厚みの比率(層比)が1/13/1のA/B/Aの層構造を有する筒状ストレッチラベルを得た。延伸条件は、実施例2と同じである。 <Example 3>
Two types of linear low density polyethylene ("Umerit 715FT" (A) and "Umerit 0540F" (B)) manufactured by Ube Maruzen Polyethylene Co., Ltd.) are used as the resin component constituting the film substrate. Thus, a cylindrical stretch label having an A / B / A layer structure in which the thickness ratio (layer ratio) of each layer was 1/13/1 was obtained. The stretching conditions are the same as in Example 2.
フィルム基材を構成する樹脂成分として、2種類の線状低密度ポリエチレン(宇部丸善ポリエチレン(株)製の「ユメリット715FT」(Aとする)、及び「ユメリット0540F」(Bとする))を使用し、各層の厚みの比率(層比)が1/13/1のA/B/Aの層構造を有する筒状ストレッチラベルを得た。延伸条件は、実施例2と同じである。 <Example 3>
Two types of linear low density polyethylene ("Umerit 715FT" (A) and "Umerit 0540F" (B)) manufactured by Ube Maruzen Polyethylene Co., Ltd.) are used as the resin component constituting the film substrate. Thus, a cylindrical stretch label having an A / B / A layer structure in which the thickness ratio (layer ratio) of each layer was 1/13/1 was obtained. The stretching conditions are the same as in Example 2.
<実施例4>
フィルム基材を構成する樹脂成分として、線状低密度ポリエチレン(宇部丸善ポリエチレン(株)製の「ユメリット1540F」)を使用した以外は、実施例1と同様にして筒状ストレッチラベルを得た。 <Example 4>
A cylindrical stretch label was obtained in the same manner as in Example 1 except that linear low density polyethylene (“Umerit 1540F” manufactured by Ube Maruzen Polyethylene Co., Ltd.) was used as the resin component constituting the film substrate.
フィルム基材を構成する樹脂成分として、線状低密度ポリエチレン(宇部丸善ポリエチレン(株)製の「ユメリット1540F」)を使用した以外は、実施例1と同様にして筒状ストレッチラベルを得た。 <Example 4>
A cylindrical stretch label was obtained in the same manner as in Example 1 except that linear low density polyethylene (“Umerit 1540F” manufactured by Ube Maruzen Polyethylene Co., Ltd.) was used as the resin component constituting the film substrate.
<実施例5>
フィルム基材を構成する樹脂成分として、線状低密度ポリエチレン(宇部丸善ポリエチレン(株)製の「ユメリット0540F」)を使用した以外は、実施例1と同様にして筒状ストレッチラベルを得た。 <Example 5>
A cylindrical stretch label was obtained in the same manner as in Example 1 except that linear low density polyethylene (“Umerit 0540F” manufactured by Ube Maruzen Polyethylene Co., Ltd.) was used as the resin component constituting the film substrate.
フィルム基材を構成する樹脂成分として、線状低密度ポリエチレン(宇部丸善ポリエチレン(株)製の「ユメリット0540F」)を使用した以外は、実施例1と同様にして筒状ストレッチラベルを得た。 <Example 5>
A cylindrical stretch label was obtained in the same manner as in Example 1 except that linear low density polyethylene (“Umerit 0540F” manufactured by Ube Maruzen Polyethylene Co., Ltd.) was used as the resin component constituting the film substrate.
<実施例6>
フィルム基材を構成する樹脂成分として、2種類の線状低密度ポリエチレン(宇部丸善ポリエチレン(株)製の「ユメリット2540F」(Aとする)、及び「ユメリット715FT」(Bとする))を使用し、層比が1/13/1のA/B/Aの層構造を有する筒状ストレッチラベルを得た。延伸条件は、実施例1と同じである。 <Example 6>
Two types of linear low density polyethylene ("Umerit 2540F" (A) and "Umerit 715FT" (B)) manufactured by Ube Maruzen Polyethylene Co., Ltd.) are used as the resin component constituting the film substrate. And the cylindrical stretch label which has a layer structure of A / B / A whose layer ratio is 1/13/1 was obtained. The stretching conditions are the same as in Example 1.
フィルム基材を構成する樹脂成分として、2種類の線状低密度ポリエチレン(宇部丸善ポリエチレン(株)製の「ユメリット2540F」(Aとする)、及び「ユメリット715FT」(Bとする))を使用し、層比が1/13/1のA/B/Aの層構造を有する筒状ストレッチラベルを得た。延伸条件は、実施例1と同じである。 <Example 6>
Two types of linear low density polyethylene ("Umerit 2540F" (A) and "Umerit 715FT" (B)) manufactured by Ube Maruzen Polyethylene Co., Ltd.) are used as the resin component constituting the film substrate. And the cylindrical stretch label which has a layer structure of A / B / A whose layer ratio is 1/13/1 was obtained. The stretching conditions are the same as in Example 1.
<実施例7>
フィルム基材を構成する樹脂成分として、2種類の線状低密度ポリエチレン(宇部丸善ポリエチレン(株)製の「ユメリット2540F」(Aとする)、及び「ユメリット0540F」(Bとする))を使用し、層比が1/13/1のA/B/Aの層構造を有する筒状ストレッチラベルを得た。延伸条件は、実施例1と同じである。 <Example 7>
Two types of linear low density polyethylene ("Umerit 2540F" (A) and "Umerit 0540F" (B)) manufactured by Ube Maruzen Polyethylene Co., Ltd.) are used as the resin component constituting the film substrate. And the cylindrical stretch label which has a layer structure of A / B / A whose layer ratio is 1/13/1 was obtained. The stretching conditions are the same as in Example 1.
フィルム基材を構成する樹脂成分として、2種類の線状低密度ポリエチレン(宇部丸善ポリエチレン(株)製の「ユメリット2540F」(Aとする)、及び「ユメリット0540F」(Bとする))を使用し、層比が1/13/1のA/B/Aの層構造を有する筒状ストレッチラベルを得た。延伸条件は、実施例1と同じである。 <Example 7>
Two types of linear low density polyethylene ("Umerit 2540F" (A) and "Umerit 0540F" (B)) manufactured by Ube Maruzen Polyethylene Co., Ltd.) are used as the resin component constituting the film substrate. And the cylindrical stretch label which has a layer structure of A / B / A whose layer ratio is 1/13/1 was obtained. The stretching conditions are the same as in Example 1.
<実施例8>
フィルム基材を構成する樹脂成分として、A層として線状低密度ポリエチレン(宇部丸善ポリエチレン(株)製の「ユメリット2540F」)、B層として2種類の線状低密度ポリエチレン(宇部丸善ポリエチレン(株)製「ユメリット2540F」と「ユメリット715FT」との混合物(重量比で前者:後者=7:3))を使用し、層比が1/13/1のA/B/Aの層構造を有する筒状ストレッチラベルを得た。フィルム基材の厚みは30μmとした。延伸条件は、実施例1と同じである。 <Example 8>
As a resin component constituting the film substrate, linear low density polyethylene ("Umerit 2540F" manufactured by Ube Maruzen Polyethylene Co., Ltd.) is used as the A layer, and two types of linear low density polyethylene (Ube Maruzen Polyethylene Co., Ltd.) are used as the B layer. ) Uses a mixture of “Umerit 2540F” and “Umerit 715FT” (weight ratio: former: latter = 7: 3)) and has a layer structure of A / B / A with a layer ratio of 1/13/1. A cylindrical stretch label was obtained. The thickness of the film substrate was 30 μm. The stretching conditions are the same as in Example 1.
フィルム基材を構成する樹脂成分として、A層として線状低密度ポリエチレン(宇部丸善ポリエチレン(株)製の「ユメリット2540F」)、B層として2種類の線状低密度ポリエチレン(宇部丸善ポリエチレン(株)製「ユメリット2540F」と「ユメリット715FT」との混合物(重量比で前者:後者=7:3))を使用し、層比が1/13/1のA/B/Aの層構造を有する筒状ストレッチラベルを得た。フィルム基材の厚みは30μmとした。延伸条件は、実施例1と同じである。 <Example 8>
As a resin component constituting the film substrate, linear low density polyethylene ("Umerit 2540F" manufactured by Ube Maruzen Polyethylene Co., Ltd.) is used as the A layer, and two types of linear low density polyethylene (Ube Maruzen Polyethylene Co., Ltd.) are used as the B layer. ) Uses a mixture of “Umerit 2540F” and “Umerit 715FT” (weight ratio: former: latter = 7: 3)) and has a layer structure of A / B / A with a layer ratio of 1/13/1. A cylindrical stretch label was obtained. The thickness of the film substrate was 30 μm. The stretching conditions are the same as in Example 1.
<実施例9>
フィルム基材を構成する樹脂成分として、A層として線状低密度ポリエチレン(宇部丸善ポリエチレン(株)製の「ユメリット3540F」)、B層として2種類の線状低密度ポリエチレン(宇部丸善ポリエチレン(株)製の「ユメリット3540F」と「ユメリット715FT」との混合物(重量比で前者:後者=2:8))を使用し、層比が1/13/1のA/B/Aの層構造を有する筒状ストレッチラベルを得た。フィルム基材の厚みは30μmとした。延伸条件は、実施例1と同じである。 <Example 9>
As the resin component constituting the film substrate, linear low density polyethylene ("Umerit 3540F" manufactured by Ube Maruzen Polyethylene Co., Ltd.) is used as the A layer, and two types of linear low density polyethylene (Ube Maruzen Polyethylene Co., Ltd.) are used as the B layer. ) A mixture of “Umerit 3540F” and “Umerit 715FT” (weight ratio: former: latter = 2: 8)) is used, and the layer structure is A / B / A with a layer ratio of 1/13/1. A cylindrical stretch label was obtained. The thickness of the film substrate was 30 μm. The stretching conditions are the same as in Example 1.
フィルム基材を構成する樹脂成分として、A層として線状低密度ポリエチレン(宇部丸善ポリエチレン(株)製の「ユメリット3540F」)、B層として2種類の線状低密度ポリエチレン(宇部丸善ポリエチレン(株)製の「ユメリット3540F」と「ユメリット715FT」との混合物(重量比で前者:後者=2:8))を使用し、層比が1/13/1のA/B/Aの層構造を有する筒状ストレッチラベルを得た。フィルム基材の厚みは30μmとした。延伸条件は、実施例1と同じである。 <Example 9>
As the resin component constituting the film substrate, linear low density polyethylene ("Umerit 3540F" manufactured by Ube Maruzen Polyethylene Co., Ltd.) is used as the A layer, and two types of linear low density polyethylene (Ube Maruzen Polyethylene Co., Ltd.) are used as the B layer. ) A mixture of “Umerit 3540F” and “Umerit 715FT” (weight ratio: former: latter = 2: 8)) is used, and the layer structure is A / B / A with a layer ratio of 1/13/1. A cylindrical stretch label was obtained. The thickness of the film substrate was 30 μm. The stretching conditions are the same as in Example 1.
<比較例1>
実施例1において、フィルム基材を延伸しなかったこと以外は、実施例1と同様にして筒状ストレッチラベルを得た。 <Comparative Example 1>
In Example 1, the cylindrical stretch label was obtained like Example 1 except not having extended | stretched the film base material.
実施例1において、フィルム基材を延伸しなかったこと以外は、実施例1と同様にして筒状ストレッチラベルを得た。 <Comparative Example 1>
In Example 1, the cylindrical stretch label was obtained like Example 1 except not having extended | stretched the film base material.
<比較例2>
MD方向に対する延伸倍率を1.50倍とした以外は、実施例1と同様にして筒状ストレッチラベルを得た。 <Comparative example 2>
A cylindrical stretch label was obtained in the same manner as in Example 1 except that the draw ratio in the MD direction was 1.50.
MD方向に対する延伸倍率を1.50倍とした以外は、実施例1と同様にして筒状ストレッチラベルを得た。 <Comparative example 2>
A cylindrical stretch label was obtained in the same manner as in Example 1 except that the draw ratio in the MD direction was 1.50.
<比較例3>
フィルム基材(ストレッチフィルム)の長尺体として、厚み60μmの酢酸ビニル系ストレッチフィルム(アイセロ化学(株)社製「スズロンL E-800F」)を使用した以外は、実施例1と同様にして筒状ストレッチラベルを得た。 <Comparative Example 3>
As in Example 1, except that a 60 μm-thick vinyl acetate stretch film (“Suzuron LE E-800F” manufactured by Aicero Chemical Co., Ltd.) was used as the long film substrate (stretch film). A cylindrical stretch label was obtained.
フィルム基材(ストレッチフィルム)の長尺体として、厚み60μmの酢酸ビニル系ストレッチフィルム(アイセロ化学(株)社製「スズロンL E-800F」)を使用した以外は、実施例1と同様にして筒状ストレッチラベルを得た。 <Comparative Example 3>
As in Example 1, except that a 60 μm-thick vinyl acetate stretch film (“Suzuron LE E-800F” manufactured by Aicero Chemical Co., Ltd.) was used as the long film substrate (stretch film). A cylindrical stretch label was obtained.
<比較例4>
フィルム基材(ストレッチフィルム)の長尺体として、厚み80μmの酢酸ビニル系ストレッチフィルム(アイセロ化学(株)社製の「スズロンL E-800F」)を使用した以外は、実施例1と同様にして筒状ストレッチラベルを得た。 <Comparative Example 4>
As in Example 1, except that a 80 μm-thick vinyl acetate stretch film (“Suzuron LE E-800F” manufactured by Aicero Chemical Co., Ltd.) was used as the long body of the film substrate (stretch film). A cylindrical stretch label was obtained.
フィルム基材(ストレッチフィルム)の長尺体として、厚み80μmの酢酸ビニル系ストレッチフィルム(アイセロ化学(株)社製の「スズロンL E-800F」)を使用した以外は、実施例1と同様にして筒状ストレッチラベルを得た。 <Comparative Example 4>
As in Example 1, except that a 80 μm-thick vinyl acetate stretch film (“Suzuron LE E-800F” manufactured by Aicero Chemical Co., Ltd.) was used as the long body of the film substrate (stretch film). A cylindrical stretch label was obtained.
表1に示すように、実施例の筒状ストレッチラベルは、いずれも、60%以上伸張し、F10値が6.4N/mm2以下、F60値が8.8N/mm2以下、60%伸張時の瞬間歪み(50mm/min)が10.3%以下及び60%伸張時の瞬間歪み(6000mm/min)が13.9%以下であり、優れたストレッチ特性を示した。また、印刷層の位置ズレは確認できず、印刷適性も良好であった。
As shown in Table 1, each of the cylindrical stretch labels of the Examples stretches 60% or more, F10 value is 6.4 N / mm 2 or less, F60 value is 8.8 N / mm 2 or less, 60% stretch. The instantaneous strain at time (50 mm / min) was 10.3% or less and the instantaneous strain at 60% elongation (6000 mm / min) was 13.9% or less, indicating excellent stretch characteristics. Further, the positional deviation of the print layer could not be confirmed, and the printability was good.
これに対して、表2に示すように、比較例2~4の筒状ストレッチラベルは、60%伸張時の瞬間歪み(6000mm/min)が32.3%以上であり、実施例のラベルに比べてストレッチ性が劣る。また、比較例1のラベルでは、ストレッチ特性は良好であるが印刷適性が不良であった。
On the other hand, as shown in Table 2, the cylindrical stretch labels of Comparative Examples 2 to 4 have an instantaneous strain (6000 mm / min) at 60% elongation of 32.3% or more. Compared to stretchability. Further, the label of Comparative Example 1 had good stretch properties but poor printability.
つまり、密度が0.880~0.930g/cm3である線状低密度ポリエチレンを主成分として構成され、高さ方向の屈折率が、厚み方向の屈折率よりも大きく、且つ1.507~1.528であるフィルム基材を用いることで、優れたストレッチ特性を有する柔軟性の高いフィルム材質でも、良好な印刷適性を実現することができる。
That is, it is composed mainly of linear low density polyethylene having a density of 0.880 to 0.930 g / cm 3 , the refractive index in the height direction is larger than the refractive index in the thickness direction, and 1.507 to By using a film substrate of 1.528, good printability can be realized even with a highly flexible film material having excellent stretch characteristics.
10 筒状ストレッチラベル、11 フィルム基材、12 印刷層、13,13x,13y,13z シール部、14 接着剤、15 摘み部、20 ラベル付き容器、21 容器、22 胴部、23 首部、24 肩部、25 キャップ部、26a,26b リブ、dm 最大胴部、ds 最小胴部、Dm 最大径部、Ds 最小径部。
10 cylindrical stretch label, 11 film base material, 12 printing layer, 13, 13x, 13y, 13z seal part, 14 adhesive, 15 knob part, 20 container with label, 21 container, 22 body part, 23 neck part, 24 shoulder Part, 25 cap part, 26a, 26b rib, dm maximum body part, ds minimum body part, Dm maximum diameter part, Ds minimum diameter part.
Claims (7)
- 筒状に成形されたフィルム基材と、
フィルム基材の少なくとも一方の面に形成された印刷層と、
を備え、少なくとも周方向に対して60%以上の伸張が可能であり、周方向に対して60%伸張後の瞬間歪み(50mm/分)が13%以下である筒状ストレッチラベルであって、
フィルム基材は、
密度が0.880~0.930g/cm3である線状低密度ポリエチレンを主成分として構成され、
高さ方向の屈折率が、厚み方向の屈折率よりも大きく、且つ1.507~1.528であることを特徴とする筒状ストレッチラベル。 A film substrate formed into a cylindrical shape;
A printed layer formed on at least one surface of the film substrate;
A cylindrical stretch label that can stretch at least 60% in the circumferential direction and has an instantaneous strain (50 mm / min) after stretching 60% in the circumferential direction of 13% or less,
The film base is
The main component is linear low density polyethylene having a density of 0.880 to 0.930 g / cm 3 ,
A cylindrical stretch label characterized in that the refractive index in the height direction is larger than the refractive index in the thickness direction and is from 1.507 to 1.528. - 請求項1に記載の筒状ストレッチラベルにおいて、
フィルム基材の周方向の屈折率は、高さ方向の屈折率と同等又は高さ方向の屈折率よりも小さく、且つ1.500~1.528であることを特徴とする筒状ストレッチラベル。 In the cylindrical stretch label according to claim 1,
A cylindrical stretch label characterized in that the refractive index in the circumferential direction of the film substrate is equal to or smaller than the refractive index in the height direction and is 1.500 to 1.528. - 請求項1又は2に記載の筒状ストレッチラベルにおいて、
周方向に対して10%伸張させたときの引っ張り応力(F10値)が1~10N/mm2であることを特徴とする筒状ストレッチラベル。 In the cylindrical stretch label according to claim 1 or 2,
A cylindrical stretch label having a tensile stress (F10 value) of 1 to 10 N / mm 2 when stretched 10% in the circumferential direction. - 請求項1~3のいずれか1項に記載の筒状ストレッチラベルにおいて、
引っ張り応力が4.3N/mm2であるときの高さ方向の伸び(50mm/分)が9%以下であることを特徴とする筒状ストレッチラベル。 In the cylindrical stretch label according to any one of claims 1 to 3,
A cylindrical stretch label characterized by having an elongation in the height direction (50 mm / min) of 9% or less when the tensile stress is 4.3 N / mm 2 . - 請求項1~4のいずれか1項に記載の筒状ストレッチラベルにおいて、
周方向に対して60%伸張後の瞬間歪み(6000mm/分)が30%以下であることを特徴とする筒状ストレッチラベル。 The cylindrical stretch label according to any one of claims 1 to 4,
A cylindrical stretch label characterized by having an instantaneous strain (6000 mm / min) after stretching 60% with respect to the circumferential direction of 30% or less. - 請求項1~5のいずれか1項に記載の筒状ストレッチラベルと、容器と、を備え、
筒状ストレッチラベルが周方向に伸張した状態で容器に装着されていることを特徴とするラベル付き容器。 A cylindrical stretch label according to any one of claims 1 to 5 and a container.
A labeled container, wherein the cylindrical stretch label is attached to the container in a state of being stretched in the circumferential direction. - 請求項6に記載のラベル付き容器において、
容器は、筒状ストレッチラベルが装着される部分の最小径部に対する最大径部の比率が、1.05~1.75であり、
筒状ストレッチラベルは、該最大径部及び該最小径部に追従して装着されていることを特徴とするラベル付き容器。 The labeled container according to claim 6,
In the container, the ratio of the maximum diameter portion to the minimum diameter portion of the portion to which the cylindrical stretch label is attached is 1.05 to 1.75,
A cylindrical stretch label is attached to the label, characterized in that the cylindrical stretch label is attached following the maximum diameter portion and the minimum diameter portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013551862A JP6193763B2 (en) | 2011-12-29 | 2012-12-28 | Cylindrical stretch label and labeled container |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-290268 | 2011-12-29 | ||
JP2011290268 | 2011-12-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013100141A1 true WO2013100141A1 (en) | 2013-07-04 |
Family
ID=48697618
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/084140 WO2013100141A1 (en) | 2011-12-29 | 2012-12-28 | Cylindrical stretched label and container with label |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6193763B2 (en) |
WO (1) | WO2013100141A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3073471A4 (en) * | 2013-11-22 | 2017-08-02 | Fuji Seal International, Inc. | Stretch label and manufacturing method therefor |
WO2022019227A1 (en) * | 2020-07-20 | 2022-01-27 | 株式会社フジシールインターナショナル | Method for manufacturing container with label and container with label |
EP3820339A4 (en) * | 2018-07-11 | 2022-04-13 | Kao USA, Inc. | Container assembly and system and method thereof |
EP4245680A1 (en) * | 2022-03-16 | 2023-09-20 | Henkel AG & Co. KGaA | Stackable plastic bottle with stretch-sleeve |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0847959A (en) * | 1994-08-08 | 1996-02-20 | Tamapori Kk | Film for stretch label |
JPH09109256A (en) * | 1995-10-18 | 1997-04-28 | Fuji Seal Co Ltd | Stretched label |
JP2002127332A (en) * | 2000-10-23 | 2002-05-08 | Tamapori Kk | Film for stretch label |
JP2004195900A (en) * | 2002-12-20 | 2004-07-15 | Idemitsu Unitech Co Ltd | Film and stretch label |
JP2005221982A (en) * | 2004-02-09 | 2005-08-18 | Fuji Seal International Inc | Gas-barriering stretch label and plastic bottle with label |
JP2009511292A (en) * | 2005-10-07 | 2009-03-19 | ダウ グローバル テクノロジーズ インコーポレイティド | Multilayer elastic film structure |
-
2012
- 2012-12-28 WO PCT/JP2012/084140 patent/WO2013100141A1/en active Application Filing
- 2012-12-28 JP JP2013551862A patent/JP6193763B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0847959A (en) * | 1994-08-08 | 1996-02-20 | Tamapori Kk | Film for stretch label |
JPH09109256A (en) * | 1995-10-18 | 1997-04-28 | Fuji Seal Co Ltd | Stretched label |
JP2002127332A (en) * | 2000-10-23 | 2002-05-08 | Tamapori Kk | Film for stretch label |
JP2004195900A (en) * | 2002-12-20 | 2004-07-15 | Idemitsu Unitech Co Ltd | Film and stretch label |
JP2005221982A (en) * | 2004-02-09 | 2005-08-18 | Fuji Seal International Inc | Gas-barriering stretch label and plastic bottle with label |
JP2009511292A (en) * | 2005-10-07 | 2009-03-19 | ダウ グローバル テクノロジーズ インコーポレイティド | Multilayer elastic film structure |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3073471A4 (en) * | 2013-11-22 | 2017-08-02 | Fuji Seal International, Inc. | Stretch label and manufacturing method therefor |
EP3820339A4 (en) * | 2018-07-11 | 2022-04-13 | Kao USA, Inc. | Container assembly and system and method thereof |
WO2022019227A1 (en) * | 2020-07-20 | 2022-01-27 | 株式会社フジシールインターナショナル | Method for manufacturing container with label and container with label |
EP4245680A1 (en) * | 2022-03-16 | 2023-09-20 | Henkel AG & Co. KGaA | Stackable plastic bottle with stretch-sleeve |
Also Published As
Publication number | Publication date |
---|---|
JP6193763B2 (en) | 2017-09-06 |
JPWO2013100141A1 (en) | 2015-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10239294B2 (en) | Heat shrink label film, a heat shrink label and a method for labelling of an item | |
US20200130339A1 (en) | Multilayer film for label and a method for providing such | |
US10232594B2 (en) | Multilayer film for label and a method for providing such | |
US20170174379A1 (en) | Shrinkable face film and a label comprising a shrinkable face film | |
BR112020008005A2 (en) | recyclable film and packaging | |
JP6193763B2 (en) | Cylindrical stretch label and labeled container | |
US20160152010A1 (en) | Multilayer film for label and a method for providing such | |
WO2015004311A1 (en) | A heat shrink label film, a heat shrink label and a method for labelling of an item | |
US20170368811A1 (en) | A shrinkable label film, a shrinkable label and a method for providing a shrinkable film and a label | |
WO2011152171A1 (en) | Container with label | |
WO2015004313A1 (en) | A thermally shrinkable plastic film and an item comprising the same | |
WO2015004312A1 (en) | A heat shrink label film, a heat shrink label and a method for labelling of an item | |
TW201618948A (en) | Polyethylene-type thermally shrinkable multi-layer film for packaging use, packaged product, and method for packaging said packaged product | |
JP5941807B2 (en) | Package | |
JP6404229B2 (en) | Stretch label and manufacturing method thereof | |
JP6177136B2 (en) | Stretch label, manufacturing method thereof, and labeled container | |
CN107921752B (en) | Shrinkable label film and shrinkable label | |
JP2013200491A (en) | Cylindrical label and labeled container | |
JP6230897B2 (en) | Cylindrical stretch label | |
JP6109588B2 (en) | Stretch label and method for producing stretch label | |
JP5896714B2 (en) | Polyethylene heat-shrinkable multilayer film for pack-in-box packaging, pack-in-box package and packaging method thereof. | |
JP6320923B2 (en) | Stretch label | |
JP2015068980A (en) | Stretch label | |
JP2013049486A (en) | Stretch label | |
JP2014194477A (en) | Cylindrical stretch label and container with label |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12863707 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013551862 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12863707 Country of ref document: EP Kind code of ref document: A1 |