WO2013099497A1 - Optical module - Google Patents

Optical module Download PDF

Info

Publication number
WO2013099497A1
WO2013099497A1 PCT/JP2012/080644 JP2012080644W WO2013099497A1 WO 2013099497 A1 WO2013099497 A1 WO 2013099497A1 JP 2012080644 W JP2012080644 W JP 2012080644W WO 2013099497 A1 WO2013099497 A1 WO 2013099497A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
sheet
optical module
circuit board
heat generating
Prior art date
Application number
PCT/JP2012/080644
Other languages
French (fr)
Japanese (ja)
Inventor
肇 荒生
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2013099497A1 publication Critical patent/WO2013099497A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4206Optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4249Packages, e.g. shape, construction, internal or external details comprising arrays of active devices and fibres
    • G02B6/425Optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • G02B6/428Electrical aspects containing printed circuit boards [PCB]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4439Auxiliary devices
    • G02B6/4471Terminating devices ; Cable clamps

Definitions

  • the present invention relates to an optical module including a circuit board on which an optical element is mounted.
  • optical modules used in network equipment have been increasing in number of channels, speed, and size.
  • an optical module that supports multi-channel, high-speed, and miniaturization, an optical element that is provided on a circuit board and consists of a light-receiving element and a light-emitting element, and an optical signal from an optical fiber is optically connected
  • an optical module provided with the mirror for doing (refer patent document 1).
  • an optical module having a photoelectric conversion unit that converts an electrical signal into an optical signal it is necessary to design the entire module in consideration of heat generated in the photoelectric conversion unit.
  • electronic components having different sizes and heights must be arranged in a limited design space.
  • an IC chip is provided on the back side near the center of the circuit board, and a spacer having a heat dissipation function is provided on the back side of the region where the support plate is mounted on the circuit board. Yes.
  • the spacer having a heat dissipation function is disposed at a position separated from the IC chip that generates heat, and the heat dissipation path of the IC chip is not secured. If the heat dissipation path of the electronic component that generates heat is not secured, there is a possibility that heat is accumulated inside the optical module, and a partially hot place is generated.
  • An object of the present invention is to provide an optical module capable of preventing heat generated in the optical module from being accumulated inside and becoming a high temperature state.
  • an optical module of the present invention includes a first heat generating element including a waveform shaper, a second heat generating element including a semiconductor element for driving the optical element, and the first heat generating element.
  • a circuit board having a first area on which the second heat generating element is mounted, and a metal housing that houses at least a part of the circuit board,
  • a first heat dissipating sheet mounted on a surface opposite to a surface on which the first heat generating element is mounted in the first region, and a surface on which the second heat generating element is mounted in the second region.
  • a second heat dissipating sheet mounted on the opposite surface, wherein at least a part of the first heat dissipating sheet and the second heat dissipating sheet are in contact with the metal housing.
  • no heat generating component is mounted on the surface of the first region opposite to the surface on which the first heat generating element is mounted, and the second region in the second region. It is preferable that the heat generating component is not mounted on the surface opposite to the surface on which the heat generating element is mounted.
  • the surface on which the first heat generating element is mounted in the first region is opposite to the surface on which the second heat generating element is mounted in the second region. It may be a surface.
  • the direction in which the first heat radiating sheet extends from the first heat generating element is a direction away from the second heat radiating sheet.
  • the first heat generating element is a heat generating element that generates a larger amount of heat than the second heat generating element, and a third region is mounted in the first region where the first heat generating element is mounted.
  • the one on which the heat dissipation sheet is mounted is preferable.
  • the direction in which the third heat radiating sheet extends from the first heat generating element is a direction away from the second heat radiating sheet.
  • the metal housing has a step portion, and at least a part of the third heat radiation sheet mounted in the first region is in contact with the step portion. preferable.
  • the optical module of the present invention it is possible to prevent the heat generated in the optical module from being accumulated inside and becoming a high temperature state.
  • FIG. 4A is a view of the substrate shown in FIG. 3 as viewed from above
  • FIG. 4B is a view of the substrate shown in FIG. 3 as viewed from the side. It is the figure which looked at the circuit board and fixing member shown in FIG. 3 from the side.
  • It is sectional drawing of the optical module shown in FIG. It is a figure which shows the modification 1 of the thermal radiation sheet shown in FIG. It is a figure which shows the modification 2 of the thermal radiation sheet shown in FIG.
  • An optical module 1 shown in FIG. 1 is used for transmission of signals (data) in optical communication technology and the like, and is electrically connected to an electronic device such as a personal computer to be connected to input / output electric signals. An optical signal is transmitted after being converted into a signal.
  • the optical module 1 includes an optical cable 3 and a connector module 5.
  • the optical module 1 is configured by attaching the end of a single-core or multi-core optical cable 3 to a connector module 5.
  • the optical cable 3 includes a plurality (four in this case) of optical fiber cores (optical fibers) 7 and a resin sheath 9 that covers the optical fiber cores 7. And an ultrafine-diameter tensile fiber (Kevlar) 11 interposed between the optical fiber core wire 7 and the jacket 9, and a metal braid 13 interposed between the jacket 9 and the tensile fiber 11. ing. That is, in the optical cable 3, the optical fiber core wire 7, the tensile strength fiber 11, the metal braid 13, and the jacket 9 are arranged in this order from the center toward the outside in the radial direction.
  • optical fiber core wire 7, the tensile strength fiber 11, the metal braid 13, and the jacket 9 are arranged in this order from the center toward the outside in the radial direction.
  • an optical fiber (AGF: All Glass Fiber) whose core and clad are quartz glass, an optical fiber (HPCF: Hard Clad Fiber) whose clad is made of hard plastic, and the like can be used.
  • HPCF Hard Clad Fiber
  • the jacket 9 is made of, for example, PVC (polyvinylchloride) which is a non-halogen flame retardant resin.
  • the outer diameter of the jacket 9 is about 4.2 mm, and the thermal conductivity of the jacket 9 is, for example, 0.17 W / m ⁇ K.
  • the tensile strength fiber 11 is an aramid fiber, for example, and is built in the optical cable 3 in a bundled state.
  • the metal braid 13 is formed of, for example, a tin-plated conductive wire, and has a braid density of 70% or more and a knitting angle of 45 ° to 60 °.
  • the outer diameter of the metal braid 13 is about 0.05 mm.
  • the thermal conductivity of the metal braid 13 is, for example, 400 W / m ⁇ K.
  • the metal braid 13 ⁇ is preferably arranged at a high density in order to ensure good heat conduction.
  • the metal braid 13 is preferably composed of a rectangular tin-plated conductor.
  • the connector module 5 includes a housing 20, an electrical connector 22 provided on the front end (tip) side of the housing 20, and a circuit board 24 accommodated in the housing 20.
  • the housing 20 includes a metal housing (first housing) 26 and a resin housing (second housing) 28.
  • the metal housing 26 includes a housing member 30 and a fixing member 32 that is connected to the rear end portion of the housing member 30 and fixes the optical cable 3.
  • the metal housing 26 is formed of a metal material having high thermal conductivity (preferably 100 W / m ⁇ K or more) such as steel (Fe-based), tin (tin-plated copper), stainless steel, copper, brass, and aluminum.
  • the metal housing 26 constitutes a heat conductor.
  • the housing member 30 is a cylindrical hollow member having a substantially rectangular cross section.
  • the housing member 30 defines a housing space S for housing the circuit board 24 and the like.
  • An electrical connector 22 is provided on the front end side of the housing member 30, and a fixing member 32 is connected to the rear end side of the housing member 30.
  • the housing member 30 has a stepped portion 26 a near the upper portion of the CDR device 50 b mounted on the circuit board 24, and becomes slightly thin toward the electrical connector 22 side. ing.
  • the fixing member 32 includes a plate-like base portion 34, a cylindrical portion 36, a pair of first projecting pieces 38 projecting forward from both sides of the base portion 34, and a pair of second tension members projecting rearward from both sides of the base portion 34. And a protruding piece 40.
  • the pair of first projecting pieces 38 are respectively inserted from the rear part of the housing member 30 and are in contact with and connected to the housing member 30.
  • projection piece 40 is connected with the boot 46 of the resin housing 28 mentioned later.
  • the fixing member 32 includes a base portion 34, a cylindrical portion 36, a first overhanging piece 38, and a second overhanging piece 40 that are integrally formed of sheet metal.
  • the cylindrical portion 36 has a substantially cylindrical shape and is provided so as to protrude rearward from the base portion 34.
  • the cylindrical portion 36 holds the optical cable 3 in cooperation with the caulking ring 42.
  • the optical fiber core wire 7 of the optical cable 3 is inserted into the cylindrical portion 36 and the tensile strength fiber 11 is disposed along the outer peripheral surface of the cylindrical portion 36.
  • the crimping ring 42 is arrange
  • the tensile strength fiber 11 is sandwiched and fixed between the cylindrical portion 36 and the caulking ring 42, and the optical cable 3 is held and fixed to the fixing member 32.
  • the end of the metal braid 13 of the optical cable 3 is joined to the base 34 with solder.
  • the metal braid 13 is disposed so as to cover the outer periphery of the caulking ring 42 (tubular portion 36) in the fixing member 32, and its end is extended to one surface (rear surface) of the base portion 34. Joined by solder.
  • the fixing member 32 and the metal braid 13 are thermally connected.
  • the fixing member 32 is coupled to the rear end portion of the accommodating member 30, whereby the accommodating member 30 and the fixing member 32 are physically and thermally connected. That is, the housing member 30 and the metal braid 13 of the optical cable 3 are thermally connected.
  • the resin housing 28 is made of a resin material such as polycarbonate, and covers the metal housing 26.
  • the resin housing 28 includes an exterior housing 44 and a boot 46 connected to the exterior housing 44.
  • the exterior housing 44 is provided so as to cover the outer surface of the housing member 30.
  • the boot 46 is connected to the rear end portion of the exterior housing 44 and covers the fixing member 32 of the metal housing 26.
  • the rear end portion of the boot 46 and the outer cover 9 of the optical cable 3 are bonded by an adhesive (not shown).
  • the electrical connector 22 is a part that is inserted into a connection target (such as a personal computer) and is electrically connected to the connection target.
  • the electrical connector 22 is disposed on the front end side of the housing 20 and protrudes forward from the housing 20.
  • the electrical connector 22 is electrically connected to the circuit board 24 by a contact 22a.
  • the circuit board 24 is accommodated in the accommodating space S of the metal housing 26 (accommodating member 30).
  • a control semiconductor 50 and a light emitting / receiving element 52 are mounted on the circuit board 24.
  • the circuit board 24 electrically connects the control semiconductor 50 and the light emitting / receiving element 52.
  • the circuit board 24 has a substantially rectangular shape in plan view and has a predetermined thickness.
  • the circuit substrate 24 is an insulating substrate such as a glass epoxy substrate or a ceramic substrate, and circuit wiring is formed on the surface or inside thereof by gold (Au), aluminum (Al), copper (Cu), or the like. .
  • the control semiconductor 50 and the light emitting / receiving element 52 constitute a photoelectric conversion unit.
  • the control semiconductor 50 includes a drive IC (Integrated Circuit) 50a (an example of a second heating element), a CDR (Clock Data Recovery) device 50b (an example of a first heating element), which is a waveform shaper, and the like. .
  • the CDR device 50b may generate a larger amount of heat during operation than the drive IC 50a.
  • the control semiconductor 50 is disposed on the front end side of the surface 24 a in the circuit board 24.
  • the control semiconductor 50 is electrically connected to the electrical connector 22.
  • the light emitting / receiving element 52 includes a plurality (here, two) of light emitting elements 52a and a plurality (here, two) of light receiving elements 52b.
  • the light emitting element 52a and the light receiving element 52b are disposed on the rear end side of the surface 24a in the circuit board 24.
  • a light emitting diode LED: Light Emitting Diode
  • LD Laser Diode
  • VCSEL Vertical Cavity Surface Emitting LASER
  • a photodiode PD: Photo Diode
  • the light emitting / receiving element 52 is optically connected to the optical fiber core wire 7 of the optical cable 3.
  • a lens array component 55 is arranged on the circuit board 24 so as to cover the light emitting / receiving element 52 and the driving IC 50a.
  • the lens array component 55 is provided with a reflective film 55a that reflects and bends the light emitted from the light emitting element 52a or the light emitted from the optical fiber core wire 7.
  • a connector part 54 is attached to the end of the optical fiber core 7, and the connector part 54 and the lens array part 55 are positioned and coupled by a positioning pin, whereby the optical fiber core 7 and the light receiving and emitting element 52 are connected.
  • the lens array component 55 includes collimating lenses that convert the incident light into parallel light and collect and emit the parallel light at the light incident portion and the light emission portion.
  • Such a lens array component 55 can be integrally formed by resin injection molding.
  • a first heat radiation sheet 56 is disposed between the back surface 24b of the circuit board 24 and the housing member 30 (metal housing 26).
  • the first heat radiating sheet 56 is mounted on the surface opposite to the surface on which the CDR device 50b is mounted in the first region A1 illustrated in FIG. 4 (see FIG. 4).
  • the first heat radiation sheet 56 is in contact with the back surface 24 b of the circuit board 24 and the housing member 30.
  • the first heat radiation sheet 56 extends toward the electrical connector 22 starting from the CDR device 50b. That is, it extends in a direction away from the second heat radiation sheet 57 described later.
  • a second heat dissipating sheet 57 is disposed between the back surface 24 b of the circuit board 24 and the housing member 30.
  • the second heat radiating sheet 57 is mounted on the surface opposite to the surface on which the drive IC 50a is mounted in the second region A2 illustrated in FIG.
  • the second heat radiation sheet 57 is in contact with the back surface 24 b of the circuit board 24 and the housing member 30.
  • a third heat dissipation sheet 58 is disposed between the surface 24 a of the circuit board 24 and the housing member 30.
  • a part of the third heat radiation sheet 58 is mounted on the upper surface of the CDR device 50b and is in contact with the housing member 30 and the CDR device 50b. Further, the third heat radiation sheet 58 mounted on the CDR device 50 b is in contact with the entire step portion 26 a of the housing member 30.
  • the third heat radiation sheet 58 extends toward the electrical connector 22 with the CDR device 50b as a starting point, and is in contact with the surface 24a of the circuit board 24.
  • the first heat radiating sheet 56, the second heat radiating sheet 57, and the third heat radiating sheet 58 are heat conductors formed of a material having thermal conductivity and flexibility. Further, the upper surface of the first heat radiation sheet 56 is physically and thermally connected to the back surface 24 b of the circuit board 24, and the lower surface is physically and thermally connected to the inner surface of the housing member 30. ing. The circuit board 24 and the metal housing 26 are thermally connected by the first heat radiation sheet 56. That is, the heat generated from the CDR device 50 b mounted on the surface 24 a of the circuit board 24 is transmitted to the housing member 30 via the circuit board 24 and the first heat dissipation sheet 56.
  • the upper surface of the second heat radiation sheet 57 is physically and thermally connected to the back surface 24 b of the circuit board 24, and the lower surface is physically and thermally connected to the inner surface of the housing member 30. It is connected.
  • the circuit board 24 and the metal housing 26 are thermally connected by the second heat radiation sheet 57. That is, heat generated from the driving IC 50 a mounted on the surface 24 a of the circuit board 24 is transmitted to the housing member 30 through the circuit board 24 and the second heat dissipation sheet 57.
  • a part of the upper surface of the third heat radiation sheet 58 is physically and thermally connected to the inner surface near the step portion 26a of the housing member 30, and the lower surface thereof is connected to the upper surface of the CDR device 50b and the circuit board. It is physically and thermally connected to 24 surfaces 24a.
  • the circuit board 24 and the metal housing 26 are thermally connected by the third heat dissipation sheet 58. Further, the CDR device 50b and the metal housing 26 are thermally connected. That is, the heat generated from the CDR device 50 b is transmitted to the accommodation member 30 through the third heat dissipation sheet 58.
  • thermally connected here means that a path capable of transferring heat is established by physical connection. Therefore, in the present embodiment, heat transfer through a medium such as air is not thermally connected.
  • an electrical signal is input from the electrical connector 22, and the control semiconductor 50 inputs an electrical signal via the wiring of the circuit board 24.
  • the electrical signal input to the control semiconductor 50 is output from the control semiconductor 50 to the light emitting / receiving element 52 via the wiring of the circuit board 24 after the level is adjusted and the waveform shaping is performed by the CDR device 50b.
  • the light emitting / receiving element 52 that receives the electric signal converts the electric signal into an optical signal, and emits the optical signal from the light emitting element 52 a to the optical fiber core wire 7.
  • the optical signal transmitted through the optical cable 3 is incident on the light receiving element 52b.
  • the light emitting / receiving element 52 converts the incident optical signal into an electrical signal and outputs the electrical signal to the control semiconductor 50 via the wiring of the circuit board 24.
  • the electrical signal is output to the electrical connector 22 after predetermined processing is performed on the electrical signal.
  • the heat generated by the CDR device 50b, the drive IC 50a, and the light emitting / receiving element 52 mounted on the circuit board 24 is first transmitted to the circuit board 24.
  • the heat transmitted to the circuit board 24 is transmitted to the housing member 30 via the first heat dissipation sheet 56 and the second heat dissipation sheet 57.
  • heat is transferred from the housing member 30 to the electrical connector 22 and the fixing member 32 connected thereto.
  • the heat transmitted to the electrical connector 22 is radiated to an external device to which the electrical connector 22 is connected.
  • the heat transmitted to the fixing member 32 is transmitted to the metal braid 13 of the optical cable 3 connected to the fixing member 32.
  • the heat transmitted to the metal braid 13 is radiated to the outside through the outer cover 9 of the optical cable 3.
  • the heat generated in the control semiconductor 50 and the light emitting / receiving element 52, which are heating elements, is released to the outside.
  • the heat generated in the CDR device 50 b is transmitted to the first heat radiating sheet 56 mounted on the back side of the circuit board 24, and is transmitted from the first heat radiating sheet 56 to the metal housing 26.
  • the heat generated in the drive IC 50 a and the light emitting / receiving element 52 is transmitted to the second heat radiating sheet 57 on the back side of the circuit board 24, and is transmitted from the second heat radiating sheet 57 to the metal housing 26.
  • a heat dissipation path for escaping the heat generated inside the optical module 1 to the metal housing 26 is secured, it is possible to prevent heat from being accumulated inside the optical module 1.
  • the first heat radiation sheet 56 and the second heat radiation sheet 57 are provided as separate components, the lens array component 55 and the CDR device 50b are not easily thermally connected.
  • the first heat dissipation sheet 56 is in direct contact with the circuit board 24. A large area is secured, and heat dissipation efficiency is improved.
  • an electronic component that generates heat is not mounted on a portion of the circuit board 24 on the back side of the region where the driving IC 50a is mounted, a large area where the second heat dissipation sheet 57 directly contacts the circuit board 24 is secured, Heat dissipation efficiency is improved.
  • first heat radiation sheet 56 and the second heat radiation sheet 57 are provided as separate components.
  • Modification 1 shown in FIG. The functions of the first heat dissipation sheet 56 and the second heat dissipation sheet 57 may be ensured.
  • one heat radiating sheet 59 is used, the number of parts can be reduced and the cost can be reduced.
  • the CDR device 50b and the drive IC 50a are provided on the same surface of the circuit board 24.
  • the CDR device 50b and the drive IC 50a may be provided on different surfaces of the circuit board 24.
  • the CDR device 50 b may be provided on the back surface 24 b of the circuit board 24, and the first heat dissipation sheet 56 may be provided on the front surface 24 a of the circuit board 24.
  • the lower surface of the first heat dissipation sheet 56 is in contact with the surface 24 a of the circuit board 24, and the upper surface of the first heat dissipation sheet 56 is in contact with the inner surface of the housing member 30.
  • a third heat dissipation sheet 58 is provided between the CDR device 50 b and the housing member 30.
  • the upper surface of the third heat radiation sheet 58 is in contact with the CDR device 50 b and the back surface 24 b of the circuit board 24. Further, the lower surface of the third heat dissipation sheet 58 is in contact with the inner surface of the housing member 30.
  • the region where the CDR device 50b is mounted and the region where the drive IC 50a is mounted are easily thermally separated.
  • the first heat radiation sheet 56 extends toward the electrical connector 22 from the CDR device 50b as a starting point. That is, since the first heat radiating sheet 56 extends in a direction away from the second heat radiating sheet 57, the heat generated in the CDR device 50 b is not easily transmitted to the second heat radiating sheet 57.
  • the CDR device 50b is an electronic component that generates a larger amount of heat than the drive IC 50a.
  • a third heat dissipation sheet 58 is provided between the CDR device 50b and the housing member 30.
  • the CDR device 50b and the housing member 30 are physically and thermally connected. Therefore, the heat generated from the CDR device 50b is radiated to the electrical connector 22 side through the third heat radiating sheet 58 in addition to the first heat radiating sheet 56, and is hardly transmitted to the drive IC 50a.
  • the third heat radiation sheet 58 extends toward the electrical connector 22 from the CDR device 50b as a starting point. That is, since the third heat radiating sheet 58 extends in a direction away from the second heat radiating sheet 57, the heat generated in the CDR device 50 b is not easily transmitted to the second heat radiating sheet 57.
  • the metal housing 26 has a stepped portion 26a, and a part of the third heat radiation sheet 58 is in contact with the stepped portion 26. Therefore, it is possible to secure a heat radiation path through which the heat generated in the CDR device 50 b is released to the metal housing 26 through the third heat radiation sheet 58.
  • a positioning pin for positioning the optical coupling member (lens array component 55) and the optical fiber holding member (connector component 54) is provided on the optical fiber holding member side in addition to the configuration provided on the optical coupling member side. May be. That is, as long as the positioning structure is formed on both, the specific form is not limited. At this time, if the mounting direction of the positioning structure is substantially parallel to the surface direction of the circuit board, the optical fiber holding member can be connected along the circuit board, so that the efficiency of assembly work (workability) is improved. To do.
  • the configuration in which the optical coupling member optically couples the light receiving and emitting elements having different optical axes and the optical fiber is not limited to the form of the lens array component 55. That is, it is not essential to provide the reflective film 55a, and a depressed portion having an inclined surface having the same angle as the reflective surface is formed at a position corresponding to the reflective film 55a of the lens array component, and the material of the lens array component 55 and the air A reflective surface using the difference in refractive index at the interface with the surface may be formed.
  • an optical ferrule member having an arc-shaped optical fiber holding hole that can bend the optical fiber toward the optical axis direction of the light receiving and emitting element is used to transmit light from the optical fiber holding member side.
  • a configuration may be adopted in which a fiber is inserted and the optical axis of the optical fiber is bent so as to coincide with the optical axis of the light receiving and emitting element. That is, it is not essential to provide the reflective film 55a in the optical coupling member.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

One purpose of the present invention is to provide an optical module which can prevent heat generated inside the optical module from heating said module to a high-temperature state. This optical module is provided with a CDR device (50b), a drive IC (50a) which drives a light emitting and receiving element (52), a circuit substrate (24) having a first area (A1) where the CDR device (50b) is mounted and a second area (A2) where the drive IC (50a) is mounted, and a metal housing (28) which houses at least a portion of the circuit substrate (24). The optical module further has a first heat dissipation sheet (56) which is mounted on the surface opposite of the surface where the CDR device (50b) is mounted in the first area (A1), and a second heat dissipation sheet (57) which is mounted on the surface opposite of the surface where the drive IC (50a) is mounted in the second area (A2), wherein at least a portion of the first heat dissipation sheet (56) and the second heat dissipation sheet (57) contact the metal housing (28).

Description

光モジュールOptical module
 本発明は、光素子が搭載された回路基板を備える光モジュールに関するものである。 The present invention relates to an optical module including a circuit board on which an optical element is mounted.
 近年、ネットワーク機器に用いられる光モジュールにおいて、多チャンネル化・高速化・小型化が進んでいる。多チャンネル化・高速化・小型化に対応した光モジュールの一例として、回路基板に設けられ、受光素子と発光素子とからなる光素子と、光ファイバからの光信号を光素子に光学的に接続するためのミラーを備える光モジュールがある(特許文献1参照)。 In recent years, optical modules used in network equipment have been increasing in number of channels, speed, and size. As an example of an optical module that supports multi-channel, high-speed, and miniaturization, an optical element that is provided on a circuit board and consists of a light-receiving element and a light-emitting element, and an optical signal from an optical fiber is optically connected There exists an optical module provided with the mirror for doing (refer patent document 1).
日本国特開2010-010254号公報Japanese Unexamined Patent Publication No. 2010-010254
 電気信号を光信号に変換する光電変換部を有する光モジュールにおいては、光電変換部で発生する熱を考慮してモジュール全体を設計する必要がある。また、限られた設計空間の中で、異なる大きさ・高さを有する電子部品を配置しなければならない。特許文献1に開示される光モジュールでは、回路基板の中心付近の裏側にICチップが設けられ、また、回路基板上において支え板が搭載される領域の裏側に放熱機能を有するスペーサが設けられている。 In an optical module having a photoelectric conversion unit that converts an electrical signal into an optical signal, it is necessary to design the entire module in consideration of heat generated in the photoelectric conversion unit. In addition, electronic components having different sizes and heights must be arranged in a limited design space. In the optical module disclosed in Patent Document 1, an IC chip is provided on the back side near the center of the circuit board, and a spacer having a heat dissipation function is provided on the back side of the region where the support plate is mounted on the circuit board. Yes.
 しかしながら、上述の特許文献1の構成では、放熱機能を有するスペーサは、発熱するICチップとは分離した位置に配置されており、ICチップの放熱経路が確保されていない。発熱をする電子部品の放熱経路が確保されていないと、光モジュールの内部で熱がこもり部分的に高温な場所が発生してしまうおそれがある。 However, in the configuration of Patent Document 1 described above, the spacer having a heat dissipation function is disposed at a position separated from the IC chip that generates heat, and the heat dissipation path of the IC chip is not secured. If the heat dissipation path of the electronic component that generates heat is not secured, there is a possibility that heat is accumulated inside the optical module, and a partially hot place is generated.
 本発明は、光モジュールの中で発生する熱が内部にこもって高温状態になってしまうのを防ぐことができる光モジュールを提供することを目的とする。 An object of the present invention is to provide an optical module capable of preventing heat generated in the optical module from being accumulated inside and becoming a high temperature state.
 上記の目的を達成するために、本発明の光モジュールは、波形整形器を含む第1の発熱素子と、光素子を駆動する半導体素子を含む第2の発熱素子と、前記第1の発熱素子が搭載される第1の領域と、前記第2の発熱素子が搭載される第2の領域と、を有する回路基板と、前記回路基板の少なくとも一部を収容する金属ハウジングと、を備え、前記第1の領域において前記第1の発熱素子が搭載される面とは反対側の面に搭載される第1の放熱シートと、前記第2の領域において前記第2の発熱素子が搭載される面とは反対側の面に搭載される第2の放熱シートとを有し、前記第1の放熱シートと前記第2の放熱シートの少なくとも一部は前記金属ハウジングと接触しているものである。 In order to achieve the above object, an optical module of the present invention includes a first heat generating element including a waveform shaper, a second heat generating element including a semiconductor element for driving the optical element, and the first heat generating element. A circuit board having a first area on which the second heat generating element is mounted, and a metal housing that houses at least a part of the circuit board, A first heat dissipating sheet mounted on a surface opposite to a surface on which the first heat generating element is mounted in the first region, and a surface on which the second heat generating element is mounted in the second region. And a second heat dissipating sheet mounted on the opposite surface, wherein at least a part of the first heat dissipating sheet and the second heat dissipating sheet are in contact with the metal housing.
 本発明の光モジュールにおいて、前記第1の領域において前記第1の発熱素子が搭載される面とは反対側の面には、発熱部品が搭載されず、前記第2の領域において前記第2の発熱素子が搭載される面とは反対側の面には、発熱部品が搭載されないものが好ましい。 In the optical module of the present invention, no heat generating component is mounted on the surface of the first region opposite to the surface on which the first heat generating element is mounted, and the second region in the second region. It is preferable that the heat generating component is not mounted on the surface opposite to the surface on which the heat generating element is mounted.
 また、本発明の光モジュールにおいて、前記第1の領域において前記第1の発熱素子が搭載される面は、前記第2の領域において前記第2の発熱素子が搭載される面とは反対側の面であるものでも良い。 In the optical module of the present invention, the surface on which the first heat generating element is mounted in the first region is opposite to the surface on which the second heat generating element is mounted in the second region. It may be a surface.
 また、本発明の光モジュールにおいて、前記第1の発熱素子を起点として前記第1の放熱シートが延伸する方向は、前記第2の放熱シートから離れる方向であるものが好ましい。 Further, in the optical module of the present invention, it is preferable that the direction in which the first heat radiating sheet extends from the first heat generating element is a direction away from the second heat radiating sheet.
 また、本発明の光モジュールにおいて、前記第1の発熱素子は、前記第2の発熱素子より発熱量が大きい発熱素子であり、前記第1の発熱素子が搭載された第1の領域に第3の放熱シートが搭載されているものが好ましい。 In the optical module of the present invention, the first heat generating element is a heat generating element that generates a larger amount of heat than the second heat generating element, and a third region is mounted in the first region where the first heat generating element is mounted. The one on which the heat dissipation sheet is mounted is preferable.
 また、本発明の光モジュールにおいて、前記第1の発熱素子を起点として前記第3の放熱シートが延伸する方向は、前記第2の放熱シートから離れる方向であるものが好ましい。 In the optical module of the present invention, it is preferable that the direction in which the third heat radiating sheet extends from the first heat generating element is a direction away from the second heat radiating sheet.
 また、本発明の光モジュールにおいて、前記金属ハウジングは段差部を有し、前記第1の領域に搭載された前記第3の放熱シートの少なくとも一部は、前記段差部に接触しているものが好ましい。 In the optical module of the present invention, the metal housing has a step portion, and at least a part of the third heat radiation sheet mounted in the first region is in contact with the step portion. preferable.
 本発明の光モジュールによれば、光モジュールの中で発生する熱が内部にこもって高温状態になってしまうのを防ぐことができる。 According to the optical module of the present invention, it is possible to prevent the heat generated in the optical module from being accumulated inside and becoming a high temperature state.
本実施形態に係る光モジュールを示す斜視図である。It is a perspective view which shows the optical module which concerns on this embodiment. 樹脂ハウジングを外した状態を示す斜視図である。It is a perspective view which shows the state which removed the resin housing. 金属ハウジングを外した状態を示す斜視図である。It is a perspective view which shows the state which removed the metal housing. 図4中の(a)は、図3に示す基板を上から見た図であり、図4中の(b)は、図3に示す基板を横から見た図である。4A is a view of the substrate shown in FIG. 3 as viewed from above, and FIG. 4B is a view of the substrate shown in FIG. 3 as viewed from the side. 図3に示す回路基板及び固定部材を横から見た図である。It is the figure which looked at the circuit board and fixing member shown in FIG. 3 from the side. 図1に示す光モジュールの断面図である。It is sectional drawing of the optical module shown in FIG. 図6に示す放熱シートの変形例1を示す図である。It is a figure which shows the modification 1 of the thermal radiation sheet shown in FIG. 図6に示す放熱シートの変形例2を示す図である。It is a figure which shows the modification 2 of the thermal radiation sheet shown in FIG.
 以下、添付図面を参照して、本発明の好適な実施形態について詳細に説明する。なお、図面の説明において同一又は相当要素には同一符号を付し、重複する説明は省略する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same or equivalent elements will be denoted by the same reference numerals, and redundant description will be omitted.
 図1に示す光モジュール1は、光通信技術などにおいて信号(データ)の伝送に用いられるものであり、接続先のパソコンなどといった電子機器に電気的に接続され、入出力される電気信号を光信号に変換して光信号を伝送するものである。 An optical module 1 shown in FIG. 1 is used for transmission of signals (data) in optical communication technology and the like, and is electrically connected to an electronic device such as a personal computer to be connected to input / output electric signals. An optical signal is transmitted after being converted into a signal.
 図1に示すように、光モジュール1は、光ケーブル3と、コネクタモジュール5とを備えている。光モジュール1では、単芯或いは多芯の光ケーブル3の末端がコネクタモジュール5に取り付けられて構成されている。 As shown in FIG. 1, the optical module 1 includes an optical cable 3 and a connector module 5. The optical module 1 is configured by attaching the end of a single-core or multi-core optical cable 3 to a connector module 5.
 光ケーブル3は、図1から図3に示されるように、複数本(ここでは4本)の光ファイバ心線(光ファイバ)7と、この光ファイバ心線7を被覆する樹脂製の外被9と、光ファイバ心線7と外被9との間に介在された極細径の抗張力繊維(ケブラー)11と、外被9と抗張力繊維11との間に介在された金属編組13とを有している。つまり、光ケーブル3では、光ファイバ心線7、抗張力繊維11、金属編組13及び外被9が、その中心から径方向の外側に向けてこの順に配置されている。 As shown in FIGS. 1 to 3, the optical cable 3 includes a plurality (four in this case) of optical fiber cores (optical fibers) 7 and a resin sheath 9 that covers the optical fiber cores 7. And an ultrafine-diameter tensile fiber (Kevlar) 11 interposed between the optical fiber core wire 7 and the jacket 9, and a metal braid 13 interposed between the jacket 9 and the tensile fiber 11. ing. That is, in the optical cable 3, the optical fiber core wire 7, the tensile strength fiber 11, the metal braid 13, and the jacket 9 are arranged in this order from the center toward the outside in the radial direction.
 光ファイバ心線7は、コアとクラッドが石英ガラスである光ファイバ(AGF:All Glass Fiber)、クラッドが硬質プラスチックからなる光ファイバ(HPCF:Hard Plastic Clad Fiber)、等を用いることができる。ガラスのコア径が80μmの細径HPCFを用いると、光ファイバ心線7が小径に曲げられても破断しにくい。外被9は、ノンハロゲン難燃性樹脂である例えばPVC(polyvinylchloride)から形成されている。外被9の外径は、4.2mm程度であり、外被9の熱伝導率は、例えば0.17W/m・Kである。抗張力繊維11は、例えばアラミド繊維であり、束状に集合された状態で光ケーブル3に内蔵されている。 As the optical fiber core 7, an optical fiber (AGF: All Glass Fiber) whose core and clad are quartz glass, an optical fiber (HPCF: Hard Clad Fiber) whose clad is made of hard plastic, and the like can be used. When a thin HPCF having a glass core diameter of 80 μm is used, it is difficult to break even if the optical fiber core wire 7 is bent to a small diameter. The jacket 9 is made of, for example, PVC (polyvinylchloride) which is a non-halogen flame retardant resin. The outer diameter of the jacket 9 is about 4.2 mm, and the thermal conductivity of the jacket 9 is, for example, 0.17 W / m · K. The tensile strength fiber 11 is an aramid fiber, for example, and is built in the optical cable 3 in a bundled state.
 金属編組13は、例えば錫めっき導線から形成されており、編組密度が70%以上、編み角度が45°~60°である。金属編組13の外径は、0.05mm程度である。金属編組13の熱伝導率は、例えば400W/m・Kである。金属編組13 は、熱伝導を良好に確保するために高密度に配置することが好ましく、一例としては平角線の錫めっき導線で構成されていることが好ましい。 The metal braid 13 is formed of, for example, a tin-plated conductive wire, and has a braid density of 70% or more and a knitting angle of 45 ° to 60 °. The outer diameter of the metal braid 13 is about 0.05 mm. The thermal conductivity of the metal braid 13 is, for example, 400 W / m · K. The metal braid 13 編 is preferably arranged at a high density in order to ensure good heat conduction. For example, the metal braid 13 is preferably composed of a rectangular tin-plated conductor.
 コネクタモジュール5は、ハウジング20と、ハウジング20の前端(先端)側に設けられる電気コネクタ22と、ハウジング20に収容される回路基板24とを備えている。 The connector module 5 includes a housing 20, an electrical connector 22 provided on the front end (tip) side of the housing 20, and a circuit board 24 accommodated in the housing 20.
 ハウジング20は、金属ハウジング(第1ハウジング)26と、樹脂ハウジング(第2ハウジング)28とから構成されている。金属ハウジング26は、収容部材30と、収容部材30の後端部に連結され、光ケーブル3を固定する固定部材32とから構成されている。金属ハウジング26は、鋼(Fe系)、ブリキ(錫めっき銅)、ステンレス、銅、真鍮、アルミなどの熱伝導率の高い(好ましくは100W/m・K以上)金属材料により形成されている。金属ハウジング26は、熱伝導体を構成している。 The housing 20 includes a metal housing (first housing) 26 and a resin housing (second housing) 28. The metal housing 26 includes a housing member 30 and a fixing member 32 that is connected to the rear end portion of the housing member 30 and fixes the optical cable 3. The metal housing 26 is formed of a metal material having high thermal conductivity (preferably 100 W / m · K or more) such as steel (Fe-based), tin (tin-plated copper), stainless steel, copper, brass, and aluminum. The metal housing 26 constitutes a heat conductor.
 収容部材30は、断面が略矩形形状を呈する筒状の中空部材である。収容部材30は、回路基板24などを収容する収容空間Sを画成している。収容部材30の前端側には、電気コネクタ22が設けられ、収容部材30の後端側には、固定部材32が連結される。また、図6に示されるように、収容部材30は、回路基板24上に搭載されたCDR装置50bの上方付近に段差部26aを有しており、電気コネクタ22側に向けてやや薄型となっている。 The housing member 30 is a cylindrical hollow member having a substantially rectangular cross section. The housing member 30 defines a housing space S for housing the circuit board 24 and the like. An electrical connector 22 is provided on the front end side of the housing member 30, and a fixing member 32 is connected to the rear end side of the housing member 30. Further, as shown in FIG. 6, the housing member 30 has a stepped portion 26 a near the upper portion of the CDR device 50 b mounted on the circuit board 24, and becomes slightly thin toward the electrical connector 22 side. ing.
 固定部材32は、板状の基部34と、筒部36と、基部34の両側から前方に張り出す一対の第1張出片38と、基部34の両側から後方に張り出す一対の第2張出片40とを有している。一対の第1張出片38は、収容部材30の後部からそれぞれ挿入され、収容部材30に当接して連結される。一対の第2張出片40は、後述する樹脂ハウジング28のブーツ46に連結される。なお、固定部材32は、基部34、筒部36、第1張出片38及び第2張出片40が板金により一体に形成されている。 The fixing member 32 includes a plate-like base portion 34, a cylindrical portion 36, a pair of first projecting pieces 38 projecting forward from both sides of the base portion 34, and a pair of second tension members projecting rearward from both sides of the base portion 34. And a protruding piece 40. The pair of first projecting pieces 38 are respectively inserted from the rear part of the housing member 30 and are in contact with and connected to the housing member 30. A pair of 2nd overhang | projection piece 40 is connected with the boot 46 of the resin housing 28 mentioned later. The fixing member 32 includes a base portion 34, a cylindrical portion 36, a first overhanging piece 38, and a second overhanging piece 40 that are integrally formed of sheet metal.
 筒部36は、略円筒形状をなしており、基部34から後方に突出するように設けられている。筒部36は、カシメリング42との協働により光ケーブル3を保持する。具体的には、外被9を剥いだ後、光ケーブル3の光ファイバ心線7を筒部36の内部に挿通させると共に、抗張力繊維11を筒部36の外周面に沿って配置する。そして、筒部36の外周面に配置された抗張力繊維11上にカシメリング42を配置して、カシメリング42をかしめる。これにより、抗張力繊維11が筒部36とカシメリング42との間に挟持されて固定され、固定部材32に光ケーブル3が保持固定される。 The cylindrical portion 36 has a substantially cylindrical shape and is provided so as to protrude rearward from the base portion 34. The cylindrical portion 36 holds the optical cable 3 in cooperation with the caulking ring 42. Specifically, after the outer sheath 9 is peeled off, the optical fiber core wire 7 of the optical cable 3 is inserted into the cylindrical portion 36 and the tensile strength fiber 11 is disposed along the outer peripheral surface of the cylindrical portion 36. And the crimping ring 42 is arrange | positioned on the tensile strength fiber 11 arrange | positioned at the outer peripheral surface of the cylinder part 36, and the crimping ring 42 is crimped. Thereby, the tensile strength fiber 11 is sandwiched and fixed between the cylindrical portion 36 and the caulking ring 42, and the optical cable 3 is held and fixed to the fixing member 32.
 基部34には、光ケーブル3の金属編組13の端部がはんだにより接合されている。具体的には、金属編組13は、固定部材32においてカシメリング42(筒部36)の外周を覆うように配置されており、その端部が基部34の一面(後面)にまで延ばされてはんだにより接合されている。これにより、固定部材32と金属編組13とは、熱的に接続されている。さらに、収容部材30の後端部に固定部材32が結合することにより、収容部材30と固定部材32とが物理的且つ熱的に接続される。つまり、収容部材30と光ケーブル3の金属編組13とが熱的に接続される。 The end of the metal braid 13 of the optical cable 3 is joined to the base 34 with solder. Specifically, the metal braid 13 is disposed so as to cover the outer periphery of the caulking ring 42 (tubular portion 36) in the fixing member 32, and its end is extended to one surface (rear surface) of the base portion 34. Joined by solder. Thereby, the fixing member 32 and the metal braid 13 are thermally connected. Further, the fixing member 32 is coupled to the rear end portion of the accommodating member 30, whereby the accommodating member 30 and the fixing member 32 are physically and thermally connected. That is, the housing member 30 and the metal braid 13 of the optical cable 3 are thermally connected.
 樹脂ハウジング28は、例えばポリカーボネートなどの樹脂材料から形成されており、金属ハウジング26を覆っている。樹脂ハウジング28は、外装ハウジング44と、外装ハウジング44と連結するブーツ46とを有している。外装ハウジング44は、収容部材30の外面を覆うように設けられている。ブーツ46は、外装ハウジング44の後端部に連結され、金属ハウジング26の固定部材32を覆っている。ブーツ46の後端部と光ケーブル3の外被9とは、接着剤(図示しない)により接着される。 The resin housing 28 is made of a resin material such as polycarbonate, and covers the metal housing 26. The resin housing 28 includes an exterior housing 44 and a boot 46 connected to the exterior housing 44. The exterior housing 44 is provided so as to cover the outer surface of the housing member 30. The boot 46 is connected to the rear end portion of the exterior housing 44 and covers the fixing member 32 of the metal housing 26. The rear end portion of the boot 46 and the outer cover 9 of the optical cable 3 are bonded by an adhesive (not shown).
 電気コネクタ22は、接続対象(パソコンなど)に挿入され、接続対象と電気的に接続される部分である。電気コネクタ22は、ハウジング20の前端側に配置されており、ハウジング20から前方に突出している。電気コネクタ22は、接触子22aにより回路基板24に電気的に接続されている。 The electrical connector 22 is a part that is inserted into a connection target (such as a personal computer) and is electrically connected to the connection target. The electrical connector 22 is disposed on the front end side of the housing 20 and protrudes forward from the housing 20. The electrical connector 22 is electrically connected to the circuit board 24 by a contact 22a.
 回路基板24は、金属ハウジング26(収容部材30)の収容空間Sに収容されている。回路基板24には、制御用半導体50と、受発光素子52(光素子の一例)とが搭載されている。回路基板24は、制御用半導体50と受発光素子52とを電気的に接続している。回路基板24は、平面視で略矩形形状を呈しており、所定の厚みを有している。回路基板24は、例えば、ガラスエポキシ基板、セラミック基板などの絶縁基板であり、その表面又は内部には、金(Au)、アルミ(Al)又は銅(Cu)などにより回路配線が形成されている。制御用半導体50と受発光素子52とは、光電変換部を構成している。 The circuit board 24 is accommodated in the accommodating space S of the metal housing 26 (accommodating member 30). A control semiconductor 50 and a light emitting / receiving element 52 (an example of an optical element) are mounted on the circuit board 24. The circuit board 24 electrically connects the control semiconductor 50 and the light emitting / receiving element 52. The circuit board 24 has a substantially rectangular shape in plan view and has a predetermined thickness. The circuit substrate 24 is an insulating substrate such as a glass epoxy substrate or a ceramic substrate, and circuit wiring is formed on the surface or inside thereof by gold (Au), aluminum (Al), copper (Cu), or the like. . The control semiconductor 50 and the light emitting / receiving element 52 constitute a photoelectric conversion unit.
 制御用半導体50は、駆動IC(Integrated Circuit)50a(第2の発熱素子の一例)や波形整形器であるCDR(Clock Data Recovery)装置50b(第1の発熱素子の一例)などを含んでいる。駆動IC50aと比べて、CDR装置50bは動作時の発熱量が大きい場合がある。制御用半導体50は、回路基板24において、表面24aの前端側に配置されている。制御用半導体50は、電気コネクタ22と電気的に接続されている。 The control semiconductor 50 includes a drive IC (Integrated Circuit) 50a (an example of a second heating element), a CDR (Clock Data Recovery) device 50b (an example of a first heating element), which is a waveform shaper, and the like. . The CDR device 50b may generate a larger amount of heat during operation than the drive IC 50a. The control semiconductor 50 is disposed on the front end side of the surface 24 a in the circuit board 24. The control semiconductor 50 is electrically connected to the electrical connector 22.
 受発光素子52は、複数(ここでは2つ)の発光素子52aと、複数(ここでは2つ)の受光素子52bとを含んで構成されている。発光素子52a及び受光素子52bは、回路基板24において、表面24aの後端側に配置されている。発光素子52aとしては、例えば、発光ダイオード(LED:Light Emitting Diode)、レーザダイオード(LD:Laser Diode)、面発光レーザ(VCSEL:Vertical Cavity Surface Emitting LASER)などを用いることができる。受光素子52bとしては、例えば、フォトダイオード(PD:Photo Diode)などを用いることができる。 The light emitting / receiving element 52 includes a plurality (here, two) of light emitting elements 52a and a plurality (here, two) of light receiving elements 52b. The light emitting element 52a and the light receiving element 52b are disposed on the rear end side of the surface 24a in the circuit board 24. As the light emitting element 52a, for example, a light emitting diode (LED: Light Emitting Diode), a laser diode (LD: Laser Diode), a surface emitting laser (VCSEL: Vertical Cavity Surface Emitting LASER), or the like can be used. As the light receiving element 52b, for example, a photodiode (PD: Photo Diode) can be used.
 受発光素子52は、光ケーブル3の光ファイバ心線7と光学的に接続されている。具体的には、図4(b)に示すように、回路基板24には、受発光素子52及び駆動IC50aを覆うようにレンズアレイ部品55が配置されている。レンズアレイ部品55には、発光素子52aから出射された光、又は、光ファイバ心線7から出射された光を反射して屈曲させる反射膜55aが配置されている。光ファイバ心線7の末端にはコネクタ部品54が取り付けられており、コネクタ部品54とレンズアレイ部品55とが位置決めピンによって位置決めされて結合することにより光ファイバ心線7と受発光素子52とが光学的に接続される。レンズアレイ部品55は、光の入射部および出射部に、入射光を平行光とし、平行光を集光して出射するコリメートレンズを備えることが好ましい。このようなレンズアレイ部品55は、樹脂の射出成形により、一体に構成することができる。 The light emitting / receiving element 52 is optically connected to the optical fiber core wire 7 of the optical cable 3. Specifically, as shown in FIG. 4B, a lens array component 55 is arranged on the circuit board 24 so as to cover the light emitting / receiving element 52 and the driving IC 50a. The lens array component 55 is provided with a reflective film 55a that reflects and bends the light emitted from the light emitting element 52a or the light emitted from the optical fiber core wire 7. A connector part 54 is attached to the end of the optical fiber core 7, and the connector part 54 and the lens array part 55 are positioned and coupled by a positioning pin, whereby the optical fiber core 7 and the light receiving and emitting element 52 are connected. Optically connected. It is preferable that the lens array component 55 includes collimating lenses that convert the incident light into parallel light and collect and emit the parallel light at the light incident portion and the light emission portion. Such a lens array component 55 can be integrally formed by resin injection molding.
 図6に示されるように、回路基板24の裏面24bと収容部材30(金属ハウジング26)との間には、第1の放熱シート56が配置されている。第1の放熱シート56は、図4に図示される第1の領域A1のうち、CDR装置50bが搭載される面とは反対側の面に搭載されている(図4参照)。第1の放熱シート56は、回路基板24の裏面24bと収容部材30に接触している。また、第1の放熱シート56は、CDR装置50bを起点として電気コネクタ22側に延伸している。すなわち、後述する第2の放熱シート57から離れる方向に延伸している。 As shown in FIG. 6, a first heat radiation sheet 56 is disposed between the back surface 24b of the circuit board 24 and the housing member 30 (metal housing 26). The first heat radiating sheet 56 is mounted on the surface opposite to the surface on which the CDR device 50b is mounted in the first region A1 illustrated in FIG. 4 (see FIG. 4). The first heat radiation sheet 56 is in contact with the back surface 24 b of the circuit board 24 and the housing member 30. The first heat radiation sheet 56 extends toward the electrical connector 22 starting from the CDR device 50b. That is, it extends in a direction away from the second heat radiation sheet 57 described later.
 また、図6に示されるように、回路基板24の裏面24bと収容部材30との間には、第2の放熱シート57が配置されている。第2の放熱シート57は、図4に図示される第2の領域A2のうち、駆動IC50aが搭載される面とは反対側の面に搭載されている。第2の放熱シート57は、回路基板24の裏面24bと収容部材30に接触している。 Further, as shown in FIG. 6, a second heat dissipating sheet 57 is disposed between the back surface 24 b of the circuit board 24 and the housing member 30. The second heat radiating sheet 57 is mounted on the surface opposite to the surface on which the drive IC 50a is mounted in the second region A2 illustrated in FIG. The second heat radiation sheet 57 is in contact with the back surface 24 b of the circuit board 24 and the housing member 30.
 また、図6に示されるように、回路基板24の表面24aと収容部材30との間には、第3の放熱シート58が配置されている。第3の放熱シート58の一部はCDR装置50bの上面に搭載され、収容部材30とCDR装置50bに接触している。また、CDR装置50b上に搭載された第3の放熱シート58は、収容部材30の段差部26aの全体に接触している。また、第3の放熱シート58は、CDR装置50bを起点として電気コネクタ22側に延伸し、回路基板24の表面24aに接触している。 Further, as shown in FIG. 6, a third heat dissipation sheet 58 is disposed between the surface 24 a of the circuit board 24 and the housing member 30. A part of the third heat radiation sheet 58 is mounted on the upper surface of the CDR device 50b and is in contact with the housing member 30 and the CDR device 50b. Further, the third heat radiation sheet 58 mounted on the CDR device 50 b is in contact with the entire step portion 26 a of the housing member 30. The third heat radiation sheet 58 extends toward the electrical connector 22 with the CDR device 50b as a starting point, and is in contact with the surface 24a of the circuit board 24.
 第1の放熱シート56、第2の放熱シート57及び第3の放熱シート58は、熱伝導性及び柔軟性を有する材料から形成される熱伝導体である。また、第1の放熱シート56は、その上面が回路基板24の裏面24bに物理的且つ熱的に接続されていると共に、その下面が収容部材30の内側面に物理的且つ熱的に接続されている。この第1の放熱シート56により、回路基板24と金属ハウジング26とが熱的に接続される。すなわち、回路基板24の表面24aに搭載されたCDR装置50bから発生した熱が、回路基板24と第1の放熱シート56とを介して収容部材30に伝達される。 The first heat radiating sheet 56, the second heat radiating sheet 57, and the third heat radiating sheet 58 are heat conductors formed of a material having thermal conductivity and flexibility. Further, the upper surface of the first heat radiation sheet 56 is physically and thermally connected to the back surface 24 b of the circuit board 24, and the lower surface is physically and thermally connected to the inner surface of the housing member 30. ing. The circuit board 24 and the metal housing 26 are thermally connected by the first heat radiation sheet 56. That is, the heat generated from the CDR device 50 b mounted on the surface 24 a of the circuit board 24 is transmitted to the housing member 30 via the circuit board 24 and the first heat dissipation sheet 56.
 また、第2の放熱シート57も同様に、その上面が回路基板24の裏面24bに物理的且つ熱的に接続されていると共に、その下面が収容部材30の内側面に物理的且つ熱的に接続されている。この第2の放熱シート57により、回路基板24と金属ハウジング26とが熱的に接続される。すなわち、回路基板24の表面24aに搭載された駆動IC50aから発生した熱が、回路基板24と第2の放熱シート57とを介して収容部材30に伝達される。 Similarly, the upper surface of the second heat radiation sheet 57 is physically and thermally connected to the back surface 24 b of the circuit board 24, and the lower surface is physically and thermally connected to the inner surface of the housing member 30. It is connected. The circuit board 24 and the metal housing 26 are thermally connected by the second heat radiation sheet 57. That is, heat generated from the driving IC 50 a mounted on the surface 24 a of the circuit board 24 is transmitted to the housing member 30 through the circuit board 24 and the second heat dissipation sheet 57.
 第3の放熱シート58は、その上面の一部が収容部材30の段差部26a付近の内側面に物理的且つ熱的に接続されていると共に、その下面は、CDR装置50bの上面と回路基板24の表面24aとに物理的且つ熱的に接続されている。この第3の放熱シート58により、回路基板24と金属ハウジング26とが熱的に接続される。また、CDR装置50bと金属ハウジング26とが熱的に接続される。すなわち、CDR装置50bから発生した熱が、第3の放熱シート58を介して収容部材30に伝達される。 A part of the upper surface of the third heat radiation sheet 58 is physically and thermally connected to the inner surface near the step portion 26a of the housing member 30, and the lower surface thereof is connected to the upper surface of the CDR device 50b and the circuit board. It is physically and thermally connected to 24 surfaces 24a. The circuit board 24 and the metal housing 26 are thermally connected by the third heat dissipation sheet 58. Further, the CDR device 50b and the metal housing 26 are thermally connected. That is, the heat generated from the CDR device 50 b is transmitted to the accommodation member 30 through the third heat dissipation sheet 58.
 なお、ここで言う熱的に接続されているとは、物理的な接続によって熱を伝達可能な経路が確立されていることを言う。したがって、本実施形態では、空気などの媒体を介して熱が伝達することは、熱的に接続されていることとはならない。 Note that the term “thermally connected” here means that a path capable of transferring heat is established by physical connection. Therefore, in the present embodiment, heat transfer through a medium such as air is not thermally connected.
 上記構成を有する光モジュール1では、電気コネクタ22から電気信号を入力し、回路基板24の配線を介して制御用半導体50が電気信号を入力する。制御用半導体50に入力された電気信号は、レベルの調整やCDR装置50bにより波形整形などが行われた後に、制御用半導体50から回路基板24の配線を介して受発光素子52に出力される。電気信号を入力した受発光素子52では、電気信号を光信号に変換し、発光素子52aから光ファイバ心線7に光信号を出射する。 In the optical module 1 having the above configuration, an electrical signal is input from the electrical connector 22, and the control semiconductor 50 inputs an electrical signal via the wiring of the circuit board 24. The electrical signal input to the control semiconductor 50 is output from the control semiconductor 50 to the light emitting / receiving element 52 via the wiring of the circuit board 24 after the level is adjusted and the waveform shaping is performed by the CDR device 50b. . The light emitting / receiving element 52 that receives the electric signal converts the electric signal into an optical signal, and emits the optical signal from the light emitting element 52 a to the optical fiber core wire 7.
 また、光ケーブル3で伝送された光信号は、受光素子52bにより入射される。受発光素子52では、入射された光信号を電気信号に変換し、この電気信号を回路基板24の配線を介して制御用半導体50に出力する。制御用半導体50では、電気信号に所定の処理を施した後、電気コネクタ22にその電気信号を出力する。 Further, the optical signal transmitted through the optical cable 3 is incident on the light receiving element 52b. The light emitting / receiving element 52 converts the incident optical signal into an electrical signal and outputs the electrical signal to the control semiconductor 50 via the wiring of the circuit board 24. In the control semiconductor 50, the electrical signal is output to the electrical connector 22 after predetermined processing is performed on the electrical signal.
 続いて、光モジュール1における放熱方法について、図6を参照しながら説明する。回路基板24に搭載されたCDR装置50bや駆動IC50aや受発光素子52で発生した熱は、まず回路基板24に伝わる。回路基板24に伝達された熱は、第1の放熱シート56や第2の放熱シート57を介して収容部材30に伝えられる。次に、熱は、収容部材30からこれに連結された電気コネクタ22や固定部材32に伝わる。電気コネクタ22に伝わった熱は、電気コネクタ22が接続される外部機器に放熱される。また、固定部材32に伝わった熱は、固定部材32に接続された光ケーブル3の金属編組13に伝えられる。そして、金属編組13に伝わった熱は、光ケーブル3の外被9を介して外部に放熱される。以上のようにして、光モジュール1では、発熱体である制御用半導体50及び受発光素子52で発生した熱が外部に放出される。 Subsequently, a heat dissipation method in the optical module 1 will be described with reference to FIG. The heat generated by the CDR device 50b, the drive IC 50a, and the light emitting / receiving element 52 mounted on the circuit board 24 is first transmitted to the circuit board 24. The heat transmitted to the circuit board 24 is transmitted to the housing member 30 via the first heat dissipation sheet 56 and the second heat dissipation sheet 57. Next, heat is transferred from the housing member 30 to the electrical connector 22 and the fixing member 32 connected thereto. The heat transmitted to the electrical connector 22 is radiated to an external device to which the electrical connector 22 is connected. The heat transmitted to the fixing member 32 is transmitted to the metal braid 13 of the optical cable 3 connected to the fixing member 32. Then, the heat transmitted to the metal braid 13 is radiated to the outside through the outer cover 9 of the optical cable 3. As described above, in the optical module 1, the heat generated in the control semiconductor 50 and the light emitting / receiving element 52, which are heating elements, is released to the outside.
 以上説明したように、本実施形態では、CDR装置50bで発生した熱は、回路基板24の裏側に搭載された第1の放熱シート56に伝わり、第1の放熱シート56から金属ハウジング26まで伝わる。また、駆動IC50aや受発光素子52で発生した熱は、回路基板24の裏側の第2の放熱シート57に伝わり、第2の放熱シート57から金属ハウジング26まで伝わる。このように、光モジュール1の内部で発生した熱を金属ハウジング26まで逃がす放熱経路が確保されるため、光モジュール1の内部に熱がこもるのを防ぐことができる。また、第1の放熱シート56と第2の放熱シート57が別部品として設けられているため、レンズアレイ部品55とCDR装置50bとを熱的に接続しにくい構造となる。 As described above, in the present embodiment, the heat generated in the CDR device 50 b is transmitted to the first heat radiating sheet 56 mounted on the back side of the circuit board 24, and is transmitted from the first heat radiating sheet 56 to the metal housing 26. . Further, the heat generated in the drive IC 50 a and the light emitting / receiving element 52 is transmitted to the second heat radiating sheet 57 on the back side of the circuit board 24, and is transmitted from the second heat radiating sheet 57 to the metal housing 26. As described above, since a heat dissipation path for escaping the heat generated inside the optical module 1 to the metal housing 26 is secured, it is possible to prevent heat from being accumulated inside the optical module 1. In addition, since the first heat radiation sheet 56 and the second heat radiation sheet 57 are provided as separate components, the lens array component 55 and the CDR device 50b are not easily thermally connected.
 また、本実施形態では、回路基板24のうち、CDR装置50bが搭載される領域の裏側の部分には発熱する電子部品が搭載されないため、第1の放熱シート56が回路基板24に直接接触する面積が広く確保され、放熱効率が向上する。また、回路基板24のうち、駆動IC50aが搭載される領域の裏側の部分には発熱する電子部品が搭載されないため、第2の放熱シート57が回路基板24に直接接触する面積が広く確保され、放熱効率が向上する。 Further, in the present embodiment, since the electronic component that generates heat is not mounted on the portion of the circuit board 24 on the back side of the region where the CDR device 50b is mounted, the first heat dissipation sheet 56 is in direct contact with the circuit board 24. A large area is secured, and heat dissipation efficiency is improved. In addition, since an electronic component that generates heat is not mounted on a portion of the circuit board 24 on the back side of the region where the driving IC 50a is mounted, a large area where the second heat dissipation sheet 57 directly contacts the circuit board 24 is secured, Heat dissipation efficiency is improved.
 なお、本実施形態では、第1の放熱シート56と第2の放熱シート57とを別部品として設ける例を説明したが、図7に示される変形例1のように、一つの放熱シート59で第1の放熱シート56と第2の放熱シート57の機能を確保してもよい。一つの放熱シート59を用いる場合、部品点数を減らしコストを削減することができる。 In the present embodiment, the example in which the first heat radiation sheet 56 and the second heat radiation sheet 57 are provided as separate components has been described. However, as in Modification 1 shown in FIG. The functions of the first heat dissipation sheet 56 and the second heat dissipation sheet 57 may be ensured. When one heat radiating sheet 59 is used, the number of parts can be reduced and the cost can be reduced.
 また、本実施形態では、CDR装置50bと駆動IC50aとを回路基板24の同一の面に設ける例を説明したが、CDR装置50bと駆動IC50aとを回路基板24の異なる面に設ける構成としても良い。例えば、図8に示される変形例2のように、CDR装置50bを回路基板24の裏面24bに設けて、第1の放熱シート56を回路基板24の表面24aに設けても良い。図8に示される変形例2では、第1の放熱シート56の下面が回路基板24の表面24aに接触し、第1の放熱シート56の上面が収容部材30の内側面に接触している。また、CDR装置50bと収容部材30との間には、第3の放熱シート58が設けられている。第3の放熱シート58の上面はCDR装置50bと回路基板24の裏面24bに接触している。また、第3の放熱シート58の下面は収容部材30の内側面に接触している。 In this embodiment, the CDR device 50b and the drive IC 50a are provided on the same surface of the circuit board 24. However, the CDR device 50b and the drive IC 50a may be provided on different surfaces of the circuit board 24. . For example, as in Modification 2 shown in FIG. 8, the CDR device 50 b may be provided on the back surface 24 b of the circuit board 24, and the first heat dissipation sheet 56 may be provided on the front surface 24 a of the circuit board 24. In Modification 2 shown in FIG. 8, the lower surface of the first heat dissipation sheet 56 is in contact with the surface 24 a of the circuit board 24, and the upper surface of the first heat dissipation sheet 56 is in contact with the inner surface of the housing member 30. In addition, a third heat dissipation sheet 58 is provided between the CDR device 50 b and the housing member 30. The upper surface of the third heat radiation sheet 58 is in contact with the CDR device 50 b and the back surface 24 b of the circuit board 24. Further, the lower surface of the third heat dissipation sheet 58 is in contact with the inner surface of the housing member 30.
 CDR装置50bと駆動IC50aとを回路基板24の異なる面に設ける構成とすることで、CDR装置50bが搭載される領域と駆動IC50aが搭載される領域とが熱的に分離されやすくなる。 By providing the CDR device 50b and the drive IC 50a on different surfaces of the circuit board 24, the region where the CDR device 50b is mounted and the region where the drive IC 50a is mounted are easily thermally separated.
 また、本実施形態では、第1の放熱シート56は、CDR装置50bを起点として電気コネクタ22側に延伸している。すなわち、第1の放熱シート56は、第2の放熱シート57から離れる方向に延伸しているため、CDR装置50bで発生する熱は、第2の放熱シート57に伝わりにくくなる。 In the present embodiment, the first heat radiation sheet 56 extends toward the electrical connector 22 from the CDR device 50b as a starting point. That is, since the first heat radiating sheet 56 extends in a direction away from the second heat radiating sheet 57, the heat generated in the CDR device 50 b is not easily transmitted to the second heat radiating sheet 57.
 また、CDR装置50bは駆動IC50aより発熱量が大きい電子部品であるが、本実施形態では、図6に示されるように、CDR装置50bと収容部材30との間に第3の放熱シート58を設け、CDR装置50bと収容部材30とを物理的且つ熱的に接続されている。よって、CDR装置50bから発生する熱は、第1の放熱シート56に加えて、第3の放熱シート58も介して電気コネクタ22側に放熱され、駆動IC50aには伝わりにくい。 The CDR device 50b is an electronic component that generates a larger amount of heat than the drive IC 50a. In the present embodiment, as shown in FIG. 6, a third heat dissipation sheet 58 is provided between the CDR device 50b and the housing member 30. The CDR device 50b and the housing member 30 are physically and thermally connected. Therefore, the heat generated from the CDR device 50b is radiated to the electrical connector 22 side through the third heat radiating sheet 58 in addition to the first heat radiating sheet 56, and is hardly transmitted to the drive IC 50a.
 また、第3の放熱シート58は、CDR装置50bを起点として電気コネクタ22側に延伸している。すなわち、第3の放熱シート58は、第2の放熱シート57から離れる方向に延伸しているため、CDR装置50bで発生する熱は、第2の放熱シート57に伝わりにくくなる。 Further, the third heat radiation sheet 58 extends toward the electrical connector 22 from the CDR device 50b as a starting point. That is, since the third heat radiating sheet 58 extends in a direction away from the second heat radiating sheet 57, the heat generated in the CDR device 50 b is not easily transmitted to the second heat radiating sheet 57.
 本実施形態では、金属ハウジング26は段差部26aを有し、第3の放熱シート58の一部は段差部26に接触している。よって、CDR装置50bで発生した熱を第3の放熱シート58を介して金属ハウジング26まで逃がす放熱経路を確保することができる。 In the present embodiment, the metal housing 26 has a stepped portion 26a, and a part of the third heat radiation sheet 58 is in contact with the stepped portion 26. Therefore, it is possible to secure a heat radiation path through which the heat generated in the CDR device 50 b is released to the metal housing 26 through the third heat radiation sheet 58.
 以上、本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。 While the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
 例えば、光結合部材(レンズアレイ部品55)と光ファイバ保持部材(コネクタ部品54)とを位置決めする位置決めピンは、光結合部材側に設けられている構成の他、光ファイバ保持部材側に設けられていても良い。即ち、両者に位置決め構造が形成されていれば、その具体的形態は限定されない。このとき、位置決め構造の取り付け方向が回路基板の面方向と略平行であれば、光ファイバ保持部材を回路基板に沿わせながら接続することができるので、組立作業の効率性(作業性)が向上する。 For example, a positioning pin for positioning the optical coupling member (lens array component 55) and the optical fiber holding member (connector component 54) is provided on the optical fiber holding member side in addition to the configuration provided on the optical coupling member side. May be. That is, as long as the positioning structure is formed on both, the specific form is not limited. At this time, if the mounting direction of the positioning structure is substantially parallel to the surface direction of the circuit board, the optical fiber holding member can be connected along the circuit board, so that the efficiency of assembly work (workability) is improved. To do.
 また、光結合部材が、異なる光軸を有する受発光素子と光ファイバを光結合する構成は、上記レンズアレイ部品55の形態に限定されない。即ち、反射膜55a設けることは必須ではなく、レンズアレイ部品の反射膜55aに相当する位置に、当該反射面と同じ角度の傾斜面を有する陥没部を形成し、レンズアレイ部品55の材料と空気との界面における屈折率差を利用した反射面を形成しても良い。また、反射面の代わりに、受発光素子の光軸方向へ向けて光ファイバを曲げることが可能な、円弧状の光ファイバ保持孔を有する光フェルール部材を用いて、光ファイバ保持部材側から光ファイバを挿入し、光ファイバの光軸を受発光素子の光軸と一致するように曲げる構成をとっても良い。即ち、光結合部材において反射膜55aを設けることは必須ではない。  In addition, the configuration in which the optical coupling member optically couples the light receiving and emitting elements having different optical axes and the optical fiber is not limited to the form of the lens array component 55. That is, it is not essential to provide the reflective film 55a, and a depressed portion having an inclined surface having the same angle as the reflective surface is formed at a position corresponding to the reflective film 55a of the lens array component, and the material of the lens array component 55 and the air A reflective surface using the difference in refractive index at the interface with the surface may be formed. In addition, instead of the reflective surface, an optical ferrule member having an arc-shaped optical fiber holding hole that can bend the optical fiber toward the optical axis direction of the light receiving and emitting element is used to transmit light from the optical fiber holding member side. A configuration may be adopted in which a fiber is inserted and the optical axis of the optical fiber is bent so as to coincide with the optical axis of the light receiving and emitting element. That is, it is not essential to provide the reflective film 55a in the optical coupling member. *
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2011年12月28日出願の日本特許出願・出願番号2011-289582に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2011-289582 filed on Dec. 28, 2011, the contents of which are incorporated herein by reference.
 1:光モジュール、3:光ケーブル、5:コネクタモジュール、7:光ファイバ心線、9:外被、11:抗張力繊維、13:金属編組、20:ハウジング、24:回路基板、A1:第1の領域、A2:第2の領域、26:金属ハウジング、26a:段差部、28:樹脂ハウジング、30:収容部材、32:固定部材、50:制御用半導体(電子部品)、50a:駆動IC(第2の発熱素子の一例)、50b:CDR装置(第1の発熱素子の一例)、52:受発光素子(光素子の一例)、56:第1の放熱シート、57:第2の放熱シート、58:第3の放熱シート、60:クリップ部材、S:収容空間 1: Optical module, 3: Optical cable, 5: Connector module, 7: Optical fiber core wire, 9: Outer sheath, 11: Tensile fiber, 13: Metal braid, 20: Housing, 24: Circuit board, A1: First Area, A2: second area, 26: metal housing, 26a: stepped portion, 28: resin housing, 30: housing member, 32: fixing member, 50: control semiconductor (electronic component), 50a: drive IC (first IC) 2), 50b: CDR device (example of first heating element), 52: light emitting / receiving element (example of optical element), 56: first heat dissipation sheet, 57: second heat dissipation sheet, 58: Third heat dissipation sheet, 60: Clip member, S: Storage space

Claims (7)

  1.  波形整形器を含む第1の発熱素子と、
     光素子を駆動する半導体素子を含む第2の発熱素子と、
     前記第1の発熱素子が搭載される第1の領域と、前記第2の発熱素子が搭載される第2の領域と、を有する回路基板と、
     前記回路基板の少なくとも一部を収容する金属ハウジングと、
    を備え、
     前記第1の領域において前記第1の発熱素子が搭載される面とは反対側の面に搭載される第1の放熱シートと、前記第2の領域において前記第2の発熱素子が搭載される面とは反対側の面に搭載される第2の放熱シートとを有し、
     前記第1の放熱シートと前記第2の放熱シートの少なくとも一部は前記金属ハウジングと接触している光モジュール。
    A first heating element including a waveform shaper;
    A second heating element including a semiconductor element that drives the optical element;
    A circuit board having a first region in which the first heat generating element is mounted and a second region in which the second heat generating element is mounted;
    A metal housing that houses at least a portion of the circuit board;
    With
    A first heat dissipating sheet mounted on a surface opposite to a surface on which the first heat generating element is mounted in the first region, and the second heat generating element is mounted on the second region. A second heat dissipating sheet mounted on the surface opposite to the surface,
    An optical module in which at least a part of the first heat radiation sheet and the second heat radiation sheet is in contact with the metal housing.
  2.  前記第1の領域において前記第1の発熱素子が搭載される面とは反対側の面には、発熱部品が搭載されず、前記第2の領域において前記第2の発熱素子が搭載される面とは反対側の面には、発熱部品が搭載されない請求項1に記載の光モジュール。 A surface on which the first heat generating element is mounted on the surface opposite to the surface on which the first heat generating element is mounted is not mounted with a heat generating component, and the surface on which the second heat generating element is mounted on the second region. The optical module according to claim 1, wherein a heat generating component is not mounted on a surface opposite to the surface.
  3.  前記第1の領域において前記第1の発熱素子が搭載される面は、前記第2の領域において前記第2の発熱素子が搭載される面とは反対側の面である請求項1または2に記載の光モジュール。 The surface on which the first heat generating element is mounted in the first region is a surface opposite to the surface on which the second heat generating element is mounted in the second region. The optical module as described.
  4.  前記第1の発熱素子を起点として前記第1の放熱シートが延伸する方向は、前記第2の放熱シートから離れる方向である請求項1から3のいずれか一項に記載の光モジュール。 The optical module according to any one of claims 1 to 3, wherein a direction in which the first heat dissipation sheet extends from the first heat generating element is a direction away from the second heat dissipation sheet.
  5.  前記第1の発熱素子は、前記第2の発熱素子より発熱量が大きい発熱素子であり、
     前記第1の発熱素子が搭載された第1の領域に第3の放熱シートが搭載されている請求項1から4のいずれか一項に記載の光モジュール。
    The first heating element is a heating element that generates a larger amount of heat than the second heating element,
    5. The optical module according to claim 1, wherein a third heat radiating sheet is mounted in a first region where the first heat generating element is mounted. 6.
  6.  前記第1の発熱素子を起点として前記第3の放熱シートが延伸する方向は、前記第2の放熱シートから離れる方向である請求項5に記載の光モジュール。 The optical module according to claim 5, wherein a direction in which the third heat radiating sheet extends from the first heat generating element is a direction away from the second heat radiating sheet.
  7.  前記金属ハウジングは段差部を有し、前記第1の領域に搭載された前記第3の放熱シートの少なくとも一部は、前記段差部に接触している請求項5または6に記載の光モジュール。 
     
    The optical module according to claim 5 or 6, wherein the metal housing has a step portion, and at least a part of the third heat radiation sheet mounted in the first region is in contact with the step portion.
PCT/JP2012/080644 2011-12-28 2012-11-27 Optical module WO2013099497A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011289582A JP2013140208A (en) 2011-12-28 2011-12-28 Optical module
JP2011-289582 2011-12-28

Publications (1)

Publication Number Publication Date
WO2013099497A1 true WO2013099497A1 (en) 2013-07-04

Family

ID=48696996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080644 WO2013099497A1 (en) 2011-12-28 2012-11-27 Optical module

Country Status (2)

Country Link
JP (1) JP2013140208A (en)
WO (1) WO2013099497A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10200187B2 (en) 2016-03-23 2019-02-05 Avago Technologies International Sales Pte. Limited Methods and systems for dissipating heat in optical communications modules

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6794666B2 (en) * 2016-06-06 2020-12-02 住友電気工業株式会社 Optical module and manufacturing method of optical module
JP6972904B2 (en) * 2017-10-19 2021-11-24 住友電気工業株式会社 Manufacturing method of optical fiber cable, optical connector cable, and optical fiber cable

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002299648A (en) * 2001-03-30 2002-10-11 Hitachi Ltd Optical transmitting/receiving module
JP2010010254A (en) * 2008-06-25 2010-01-14 Hitachi Cable Ltd Electronic apparatus, and photoelectric converting module
JP2010211157A (en) * 2009-03-12 2010-09-24 Hitachi Cable Ltd Optical transmitter-receiver

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002299648A (en) * 2001-03-30 2002-10-11 Hitachi Ltd Optical transmitting/receiving module
JP2010010254A (en) * 2008-06-25 2010-01-14 Hitachi Cable Ltd Electronic apparatus, and photoelectric converting module
JP2010211157A (en) * 2009-03-12 2010-09-24 Hitachi Cable Ltd Optical transmitter-receiver

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10200187B2 (en) 2016-03-23 2019-02-05 Avago Technologies International Sales Pte. Limited Methods and systems for dissipating heat in optical communications modules

Also Published As

Publication number Publication date
JP2013140208A (en) 2013-07-18

Similar Documents

Publication Publication Date Title
JP6131858B2 (en) Optical module
US9110248B2 (en) Connector assembly
JP5983317B2 (en) Electronic device with cable and method of assembling the same
WO2014073347A1 (en) Electronic instrument provided with cable
JP5733284B2 (en) Connector assembly
WO2013099497A1 (en) Optical module
JP5761150B2 (en) Optical module
JP5605382B2 (en) Optical module
JP2013137479A (en) Optical module
JP5910080B2 (en) Optical module
JP5880041B2 (en) Optical module
WO2013099700A1 (en) Optical module
JP5899925B2 (en) Lens parts
JP2013140211A (en) Optical module
JP5861753B2 (en) Optical module
JP2013076921A (en) Connector assembly
JP2013137397A (en) Optical module and method for assembling optical module
JP2015172697A (en) Optical module
JP2015018153A (en) Lens member and optical module
JP2016038486A (en) Optical module
JP2014092716A (en) Clip member and optical module including the same
JP5825099B2 (en) Optical module
WO2013099756A1 (en) Optical-cable terminal structure and optical module
JP2013138066A (en) Optical module
JP2015004860A (en) Optical module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12863906

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12863906

Country of ref document: EP

Kind code of ref document: A1