WO2013099405A1 - Palm kernel shell charcoal manufacturing method and system - Google Patents

Palm kernel shell charcoal manufacturing method and system Download PDF

Info

Publication number
WO2013099405A1
WO2013099405A1 PCT/JP2012/076317 JP2012076317W WO2013099405A1 WO 2013099405 A1 WO2013099405 A1 WO 2013099405A1 JP 2012076317 W JP2012076317 W JP 2012076317W WO 2013099405 A1 WO2013099405 A1 WO 2013099405A1
Authority
WO
WIPO (PCT)
Prior art keywords
coconut husk
secondary combustion
boiler
exhaust gas
husk charcoal
Prior art date
Application number
PCT/JP2012/076317
Other languages
French (fr)
Japanese (ja)
Inventor
中山 道夫
昭 北村
福井 雅康
Original Assignee
スチールプランテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スチールプランテック株式会社 filed Critical スチールプランテック株式会社
Publication of WO2013099405A1 publication Critical patent/WO2013099405A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B47/00Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion
    • C10B47/28Other processes
    • C10B47/30Other processes in rotary ovens or retorts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/02Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of cellulose-containing material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/44Solid fuels essentially based on materials of non-mineral origin on vegetable substances
    • C10L5/445Agricultural waste, e.g. corn crops, grass clippings, nut shells or oil pressing residues
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/44Solid fuels essentially based on materials of non-mineral origin on vegetable substances
    • C10L5/447Carbonized vegetable substances, e.g. charcoal, or produced by hydrothermal carbonization of biomass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2900/00Special features of, or arrangements for incinerators
    • F23G2900/70Incinerating particular products or waste
    • F23G2900/7012Incinerating rice or grain husks, hulls or bran
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the present invention relates to a method and system for producing coconut husk charcoal by carbonizing oil palm coconut shell (PKS: PalmhellKernel Shell), and in particular, coconut husk for efficiently producing coconut husk charcoal by reducing the production cost of coconut husk charcoal.
  • PPS PalmhellKernel Shell
  • the present invention relates to a method and system for producing charcoal.
  • Palm Kernel Shell waste from the palm oil industry, has properties similar to low-grade coal, and is used as a biomass fuel instead of coal. Moreover, the coconut husk charcoal obtained by carbonizing this coconut husk is valuable as a substitute for the raw material of coconut husk activated carbon and the metallurgical coke. Table 1 shows examples of industrial analysis of coconut shells and coconut shell charcoal.
  • coconut husk charcoal As the method for producing coconut husk charcoal as described above, for example, as disclosed in Patent Document 1, coconut husk is dry-distilled by a self-combustion direct heating rotary kiln.
  • coconut husk the raw material for coconut husk charcoal, was regarded as worthless until about five to six years ago, and the boiler was positioned as an incinerator for coconut husk as waste.
  • the calorific value of coconut husk is higher than that of low-grade coal even on a wet basis, and has less sulfur and ash than coal, making it a valuable fuel for simple combustion.
  • coconut husk charcoal is used as a raw material for coconut husk activated carbon and as a substitute for coke for metallurgical use, and its price is about 350 US $ / ton.
  • the percentage of volatile matter in coconut shells is high, and 4 to 5 tons of coconut shells are required to produce 1 ton of coconut shell charcoal, so the yield is about 20 to 25%. is there.
  • 225 US $ coconut husk is required to produce 350 US $ coconut husk charcoal, and the share of raw material costs in the coconut husk charcoal price reaches 64%. Therefore, in the production of coconut husk charcoal, reducing raw material costs directly leads to improved profitability.
  • Patent Document 1 various methods have been proposed for a method for producing coconut husk charcoal.
  • the present invention proposes a method and a system for producing coconut husk charcoal using coconut husk which has been rising rapidly as a raw material at a reduced raw material cost.
  • coconut oil factory that generates a large amount of coconut shells.
  • Many coconut oil factories are equipped with biomass boilers that use coconut shells and fibers (oil squeezed residue) as fuel, and steam obtained from these biomass boilers is used as process steam for coconut oil production or as a turbine drive for power generation We use for.
  • FIG. 4 shows an explanatory diagram of the utilization status of the biomass boiler in the coconut oil factory.
  • FIG. 4 shows each process data in addition to the configuration of the equipment and the like.
  • the equipment in the coconut oil factory includes a biomass boiler 21, a turbine 23, a generator 25, and a coconut oil production plant 27.
  • the biomass boiler 21 is cooked using fiber 6 ton / h (normal temperature) and PKS (coconut shell) 4 ton / h (normal temperature) as fuel, and 20 tons of steam is generated at 25 ton / h.
  • the generator 25 is driven to obtain 8,000 KW of power, which is used as power for the palm oil production plant 27.
  • the scale of the palm oil factory of FIG. 4 is a standard size of 50 ton / h of fruit fruit (FFB: Fresh Fruit Bunches) processing amount and 12 ton / h of palm oil production.
  • coconut husk is a waste, and this waste is effectively used as a fuel.
  • looking at coconut husk as a raw material for coconut husk charcoal it is not possible to say that it is an effective use because the raw material that has been rising recently is simply used as fuel.
  • FIG. 5 is a diagram showing an outline of the coconut shell charcoal manufacturing apparatus. Based on FIG. 5, a coconut husk charcoal manufacturing apparatus and method are outlined.
  • the coconut husk charcoal manufacturing apparatus 31 includes a rotary kiln 33, a raw material charging port 35 for charging the rotary kiln 33 with coconut husk as a raw material, a pit 38 for storing coconut husk charcoal discharged from an outlet 37 of the rotary kiln 33, and a pit 38.
  • a high-temperature conveyor 39 for transporting the accumulated coconut charcoal and a secondary combustion tower 41 for secondary combustion of exhaust gas discharged from the rotary kiln 33 are provided.
  • the coconut husk charcoal manufacturing method by the coconut husk charcoal manufacturing apparatus 31 comprised as mentioned above is demonstrated below.
  • the raw material coconut husk is supplied to the rotary kiln 33 from the raw material charging port 35 and conveyed toward the outlet side. During the conveyance process, the volatile matter in the coconut shells is mainly burned by the combustion air. In the rotary kiln 33, combustible volatile components are generated and burned, and the combustion heat is transmitted to the coconut shells in the kiln by radiant heat transfer, so that dry distillation of the coconut shells proceeds.
  • the residence time in the kiln is about 1 hour.
  • the heat required for dry distillation does not need to be applied from outside except when the kiln is activated.
  • coconut charcoal which is a product after dry distillation, is discharged from a discharge port 37 to a pit 38 and further conveyed to a predetermined place by a high-temperature conveyor 39. Since the exhaust gas discharged from the raw material input side in the rotary kiln 33 still contains unburned components, the secondary combustion air is supplied in the secondary combustion tower 41 and burned, and is diffused into the atmosphere after combustion.
  • coconut oil manufacturing process it is necessary to cook a boiler, but coconut husk is used as fuel, but coconut husk is not necessarily an effective use when viewed as an expensive coconut husk charcoal raw material.
  • a large amount of combustion gas is exhausted wastefully.
  • the inventor pays attention to the present situation of such a palm oil factory and a palm palm charcoal manufacturing factory, and obtains the idea that by eliminating waste in both, it is possible to realize a reduction in the manufacturing cost of palm palm charcoal, and further
  • the present invention has been completed through intensive studies, and specifically comprises the following configuration.
  • the method for producing coconut husk charcoal according to the present invention produces coconut husk charcoal by dry-distilling coconut husk with a boiler that can use coconut husk as fuel and introduce high-temperature gas from the outside, and a self-burning direct heating kiln.
  • a method for producing coconut husk charcoal using a coconut husk charcoal manufacturing apparatus wherein secondary combustion air is supplied to an exhaust gas containing unburned gas discharged from the self-combustion direct heating kiln and burned to form a high-temperature gas, The hot gas is conveyed to the boiler and introduced.
  • the coconut husk charcoal manufacturing system which concerns on this invention manufactures coconut husk charcoal by dry-distilling coconut husk with the boiler which can use coconut husk as a fuel and introduces high temperature gas from the outside, and a self-combustion direct heating kiln.
  • a secondary combustion air for secondary combustion of exhaust gas containing unburned components discharged from the self-combustion direct heating kiln is supplied to the coconut husk charcoal production apparatus and burned to form a high temperature gas.
  • a high-temperature gas transfer / introduction device that is transferred to a boiler for introduction is provided.
  • the high-temperature gas conveyance / introduction device has an inlet for secondary combustion air in a flow path for guiding the high-temperature gas to the boiler, Secondary combustion air is introduced so as to exert an ejector effect, and the high temperature gas is sucked and introduced into the boiler by the ejector effect of the secondary combustion air.
  • the coconut husk charcoal manufacturing system which concerns on this invention can use coconut husk by the boiler which can use coconut husk as a fuel and can introduce
  • a secondary combustion burner for secondary combustion of the exhaust gas introduced into the boiler, and the secondary combustion burner includes a secondary combustion air introduction section for introducing secondary combustion air so as to exert an ejector effect. The exhaust gas in the exhaust gas duct is drawn into the secondary combustion burner by the ejector effect of the secondary combustion air. That.
  • a boiler that can use coconut husk as fuel and introduce and use high-temperature gas from the outside, and a coconut husk charcoal manufacturing apparatus that produces coconut husk charcoal by dry distillation of coconut husk by a self-combustion direct heating kiln are used.
  • a method for producing coconut husk charcoal in which secondary combustion air is supplied to the exhaust gas containing unburned components discharged from the self-combustion direct heating kiln and burned to form a high-temperature gas, and the high-temperature gas is conveyed to the boiler.
  • a coconut husk charcoal manufacturing system 1 which implements the coconut husk charcoal manufacturing method of the present invention will be described with reference to FIG. In FIG. 1, the same parts as those in FIGS. 4 and 5 are denoted by the same reference numerals.
  • a coconut husk charcoal manufacturing system 1 according to an embodiment of the present invention can use coconut husk as fuel and a boiler 3 that can be used by introducing high-temperature gas from the outside, and a self-combustion direct heating kiln.
  • the secondary kiln is supplied to the exhaust gas containing unburned matter discharged from the self-burning direct heating kiln and the coconut husk charcoal manufacturing apparatus 31 for producing coconut husk charcoal by dry distillation of the coconut husk by the rotary kiln 33. And a high-temperature gas transport / introduction device 5 for transporting and introducing the high-temperature gas into the boiler 3.
  • the boiler 3 can use coconut husk as fuel and can be used by introducing high-temperature gas from the outside. That is, it has a burner (not shown) for burning coconut shells as fuel and a high-temperature gas introduction part 7 for introducing a high-temperature gas from the outside, both of the introduced high-temperature gas and the combustion gas generated by the combustion of the burner Gas can be introduced into the heat transfer section to heat the feed water.
  • a burner not shown
  • a high-temperature gas introduction part 7 for introducing a high-temperature gas from the outside
  • both of the introduced high-temperature gas and the combustion gas generated by the combustion of the burner Gas can be introduced into the heat transfer section to heat the feed water.
  • the turbine 23 using steam generated in the boiler 3, the generator 25 driven by the turbine 23, the electric power of the generator 25 and the turbine
  • a coconut oil production plant 27 that uses the steam that has been supplied to 23 is provided.
  • the coconut husk charcoal manufacturing apparatus 31 produces coconut husk charcoal by dry-distilling coconut husk by a self-combustion direct heating kiln.
  • a rotary kiln 33 similar to that shown in FIG. 5 can be used as the self-combustion direct heating kiln.
  • the coconut husk of raw material is supplied to the rotary kiln 33 from the raw material inlet 35, and the primary combustion air is introduced from the side facing the raw material inlet 35 in the rotary kiln 33.
  • coconut husks are dry-distilled while moving in the rotary kiln 33 toward the discharge port 37.
  • the exhaust gas discharged from the raw material input side of the rotary kiln 33 still contains unburned components, and this exhaust gas is discharged to the high temperature gas transfer / introduction device 5 side.
  • a swing kiln, a shaft kiln, or the like may be used as an example of the self-combustion direct heating kiln.
  • the high-temperature gas transport / introduction device 5 supplies secondary combustion air to the exhaust gas containing unburned components discharged from the rotary kiln 33 and burns it into a high-temperature gas, and introduces the high-temperature gas into the boiler 3.
  • the main configuration of the high-temperature gas transfer / introduction device 5 is a high-temperature gas flow path 9 (duct) that connects the rotary kiln 33 and the boiler 3 and a pump that is provided in the flow path 9 and transfers high-temperature gas to the boiler 3 side. It is the ejector apparatus 10 which functions.
  • the ejector device 10 is provided in the middle of the flow path 9 and introduces the secondary combustion air into the flow path 9 and introduces the secondary combustion air into the introduction port 11 so as to exert the ejector effect.
  • a blower (not shown) such as a blower.
  • the ejector device 10 configured as described above sends secondary combustion air from the introduction port 11 as a high-speed jet into the flow path 9 and uses the attracting action of the sent secondary combustion air. Then, the exhaust gas and the high-temperature gas combusted with the exhaust gas are pumped to the boiler 3 side.
  • the exhaust gas discharged into the flow path 9 (duct) of the high-temperature gas transfer / introduction device 5 is mixed with the secondary combustion air blown from the ejector device 10 and burned to become high-temperature gas, and at the same time, ejector by the secondary combustion air Due to the effect, the inside of the flow path 9 is pumped to the boiler 3 side and introduced into the boiler 3.
  • steam is generated by heating the water in the heat transfer section with the combustion gas obtained by burning the burner using fiber and PKS (coconut shell) as fuel and the high-temperature gas introduced from the high-temperature gas transport / introduction device 5. generate.
  • the turbine 23 is rotated by this steam to drive the generator 25 to obtain electric power, which is used as electric power for the coconut oil production plant 27.
  • the steam after turning the turbine 23 is also used in the palm oil production plant 27.
  • the exhaust gas from the boiler 3 is sent to a dust collector and discharged to the atmosphere after dust collection.
  • the process data in the coconut husk charcoal manufacturing system 1 of this Embodiment comprised as mentioned above is shown.
  • the data shown below is when steam equivalent to that of the boiler 3 shown in FIG. 4 is generated to produce the same amount of coconut husk charcoal as that shown in FIG.
  • PKS (palm palm) 2ton / h (normal temperature) is introduced into the rotary kiln 33, primary combustion air is introduced at 3,200m3N / h (normal temperature), and dry distillation in the kiln, exhaust gas (CO: 9.7%, H2: 10.5%) ) (5,050m3n / h, 860 °C).
  • the generated exhaust gas is discharged to the hot gas transfer / introduction device 5.
  • the amount of secondary combustion air required to burn exhaust gas at 860 °C 5,050m3N / h is 6,850m3N / h.
  • the boiler 3 is supplied to the boiler 3.
  • the flow velocity of the introduced secondary combustion air is 36 m.
  • the pressure rise due to the ejector effect is 2,600 Pa, and the high-temperature gas can be sufficiently conveyed to the boiler 3 by the ejector effect of the secondary combustion air.
  • the boiler 3 is cooked using fiber 6 ton / h (room temperature) and PKS (coconut shell) 3 ton / h (room temperature) as fuel, and 20MPa of steam is generated 25ton / h. To obtain an electric power of 8,000 KW, which is used as electric power for the palm oil production plant 27. Further, steam (0.4 MPa, 25 ton / h) after turning the turbine 23 is also used in the palm oil production plant 27.
  • the exhaust gas (300 ° C.) of the boiler 3 is sent to a dust collector and discharged to the atmosphere after dust collection.
  • the amount of coconut husk as fuel required is 4 ton / h. Reduced to 3ton / h.
  • 1 ton / h of coconut husk which is the decrease, is turned into coconut husk charcoal
  • the raw coconut husk 2 ton / h which was originally required for coconut husk charcoal production, is halved to 1 ton / h.
  • the raw material cost in the coconut husk charcoal price 350 US $ / ton has been halved, and as such, the raw material cost is 112.5 US $, the ratio of the raw material cost to the product price is 32%, and the profit rises To do.
  • Product prices can also be lowered by increasing profits.
  • the price of coke for metallurgical use and the price of coconut husk charcoal are almost in competition, but if the price of coconut husk charcoal is reduced to 300 US $ / ton or less, competitiveness can be secured.
  • the coconut husk used as the fuel in the conventional example can be used as the coconut husk charcoal raw material. It becomes possible to manufacture at a reduced cost.
  • the high temperature gas is conveyed to the boiler 3 side by the ejector device 10 provided in the high temperature gas conveyance / introduction device 5. For this reason, the effect that it becomes possible to pump hot gas to the boiler 3 side by a simple means is acquired.
  • the device As a device for pumping high-temperature gas to the boiler 3 side in the high-temperature gas transport / introduction device 5, the device has heat resistance so that high-temperature gas around 1000 ° C. handled in the coconut shell charcoal manufacturing system 1 of the present embodiment can be pumped. Any device other than the ejector device 10 may be used.
  • the coconut husk charcoal manufacturing system which concerns on Embodiment 2 of this invention is demonstrated based on FIG. 3, the same parts as those in FIG. 1 are denoted by the same reference numerals.
  • the coconut husk charcoal manufacturing system 13 of the present embodiment can dry coconut husks by using a boiler 3 that can use coconut husks as fuel and introduce exhaust gas containing unburned components from the outside, and can be used as fuel.
  • the secondary combustion burner 17 includes a secondary combustion air introduction unit 19 that introduces secondary combustion air so as to exert an ejector effect.
  • the exhaust gas in the exhaust gas introduction duct 15 is drawn into the secondary combustion burner 17 by the ejector effect of the secondary combustion air.
  • the exhaust gas containing unburned matter generated in the rotary kiln 33 is combusted in the flow path 9 (duct) of the high-temperature gas transport / introduction device 5 to form a high-temperature gas, and this high-temperature gas is supplied to the boiler 3. I was trying to do it.
  • the exhaust gas is supplied to the boiler 3 side without being burned in the flow path 9 (duct), and burned by the secondary combustion burner 17 provided on the boiler 3 side.
  • a secondary combustion air introduction unit 19 that introduces secondary combustion air so as to exhibit the ejector effect is provided, and exhaust gas is discharged by the ejector effect of the secondary combustion air.
  • the secondary combustion burner 17 is drawn and combusted.
  • the exhaust gas generated in the rotary kiln 33 is not burned in the flow path 9 (duct) and is drawn in by the secondary combustion burner 17, so that the device that connects the rotary kiln 33 and the boiler 3 is
  • the rotary kiln does not require the function of supplying the secondary combustion air to the exhaust gas for combustion as in the high temperature gas transfer / introduction device 5 of the first embodiment and transferring the generated high temperature gas to the boiler 3 side.
  • An exhaust gas introduction duct 15 which is a mere duct is installed in a flow path connecting 33 and the boiler 3.
  • the coconut husk used as fuel in the conventional example can be used as the raw material for the coconut husk charcoal. Can be manufactured at a reduced raw material cost.

Abstract

In order to obtain a method and a device for manufacturing palm kernel shell charcoal that uses palm kernel shell as a starting material at reduced starting material cost, this palm kernel shell charcoal manufacturing method uses a boiler (3) in which palm kernel shell can be used as fuel and high-temperature gas can be introduced from outside and used, and a palm kernel shell charcoal manufacturing device (31) for manufacturing palm kernel shell charcoal by carbonizing the palm kernel shell by a spontaneous combustion-type direct heating kiln (33), the palm kernel shell charcoal manufacturing method being characterized in that secondary combustion air is supplied to exhaust gas including an unburned combustible content and discharged from the spontaneous combustion-type direct heating kiln (33) to burn the exhaust gas to thereby produce high-temperature gas, and the high-temperature gas is conveyed and introduced into the boiler.

Description

ヤシガラ炭の製造方法及びシステムCoconut charcoal manufacturing method and system
 本発明は、アブラヤシのヤシガラ(PKS:Palm Kernel Shell)を乾留してヤシガラ炭を製造するヤシガラ炭の製造方法及びシステムに関し、特にヤシガラ炭の製造コストを下げてヤシガラ炭を効率的に製造するヤシガラ炭の製造方法及びシステムに関する。 TECHNICAL FIELD The present invention relates to a method and system for producing coconut husk charcoal by carbonizing oil palm coconut shell (PKS: PalmhellKernel Shell), and in particular, coconut husk for efficiently producing coconut husk charcoal by reducing the production cost of coconut husk charcoal. The present invention relates to a method and system for producing charcoal.
 ヤシ油産業の廃棄物であるヤシガラ(PKS : Palm Kernel Shell)は低品位石炭に似た性状を有し、石炭代替のバイオマス燃料として利用される。
 また、このヤシガラを乾留して得られるヤシガラ炭は、ヤシガラ活性炭の原料や冶金用コークスの代替として価値がある。
 表1にヤシガラとヤシガラ炭の工業分析の例を示す。
Palm Kernel Shell (PKS), waste from the palm oil industry, has properties similar to low-grade coal, and is used as a biomass fuel instead of coal.
Moreover, the coconut husk charcoal obtained by carbonizing this coconut husk is valuable as a substitute for the raw material of coconut husk activated carbon and the metallurgical coke.
Table 1 shows examples of industrial analysis of coconut shells and coconut shell charcoal.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記のようなヤシガラ炭を製造するヤシガラ炭製造方法にとしては、例えば特許文献1に開示されるように、自燃式の直接加熱型ロータリーキルンによってヤシガラを乾留して行われる。 As the method for producing coconut husk charcoal as described above, for example, as disclosed in Patent Document 1, coconut husk is dry-distilled by a self-combustion direct heating rotary kiln.
WO2011/142001WO2011 / 142001
 ヤシガラ炭の原料となるヤシガラは、5~6年ほど前までは無価値なものとされ、ボイラは廃棄物であるヤシガラの焼却炉としても位置付けられていた。
 しかし、昨今のバイオマスエネルギー利用の普及により、現在では低品位炭よりも高価格の燃料として、45US$/ton程度で取引されている。ヤシガラの発熱量は湿ベースでも低品位炭より高く、硫黄分や灰分は石炭より少ないため、単純燃焼用としても価値のある燃料である。
 一方、ヤシガラ炭はヤシガラ活性炭の原料や冶金用コークス代替物として利用され、その価格は350US$/ton程度である。
Coconut husk, the raw material for coconut husk charcoal, was regarded as worthless until about five to six years ago, and the boiler was positioned as an incinerator for coconut husk as waste.
However, due to the recent widespread use of biomass energy, it is now traded at a price of about 45 US $ / ton as a higher price fuel than low-grade coal. The calorific value of coconut husk is higher than that of low-grade coal even on a wet basis, and has less sulfur and ash than coal, making it a valuable fuel for simple combustion.
On the other hand, coconut husk charcoal is used as a raw material for coconut husk activated carbon and as a substitute for coke for metallurgical use, and its price is about 350 US $ / ton.
 表1にも示されるように、ヤシガラ中には揮発分の割合が高く、ヤシガラ炭1トンを製造するには、ヤシガラは4~5トンほど必要であるため、歩留りは20~25%程度である。特に揮発分の少ない冶金用ヤシガラ炭の歩留りは20%程度であるため、ヤシガラ炭1トンを製造するには5トンのヤシガラが必要であり、原料費は45×5=225US$/tonに達する。すなわち350US$のヤシガラ炭を製造するのに、225US$のヤシガラが必要であり、ヤシガラ炭価格に占める原料費の割合は64%に達する。
 したがって、ヤシガラ炭製造において、原料費を低減することは採算性向上に直結する。
As shown in Table 1, the percentage of volatile matter in coconut shells is high, and 4 to 5 tons of coconut shells are required to produce 1 ton of coconut shell charcoal, so the yield is about 20 to 25%. is there. Especially, the yield of coconut husk charcoal for metallurgy with a low volatile content is about 20%. Therefore, tonnage of coconut husk charcoal requires 5 tons of coconut husk, and the raw material cost reaches 45 × 5 = 225 US $ / ton. . In other words, 225 US $ coconut husk is required to produce 350 US $ coconut husk charcoal, and the share of raw material costs in the coconut husk charcoal price reaches 64%.
Therefore, in the production of coconut husk charcoal, reducing raw material costs directly leads to improved profitability.
 しかしながら、ヤシガラ炭の製造方法については、特許文献1に開示されるように、種々の方法が提案されているが、原料費を削減して、ヤシガラ炭製造コストを低減する方法や装置、システムについては、何らの提案もされていないのが現状である。 However, as disclosed in Patent Document 1, various methods have been proposed for a method for producing coconut husk charcoal. However, a method, an apparatus, and a system for reducing coconut husk charcoal production cost by reducing raw material costs. Currently, no proposal has been made.
 そこで、本発明においては、最近高騰しているヤシガラを原料とするヤシガラ炭を、原料費を低減して製造する方法及びシステムを提案するものである。 Therefore, the present invention proposes a method and a system for producing coconut husk charcoal using coconut husk which has been rising rapidly as a raw material at a reduced raw material cost.
 発明者は、上記課題を解決するために、ヤシガラを多量に発生させるヤシ油工場に着目した。
 ヤシ油工場の多くには、ヤシガラやファイバー(油絞りかす)を燃料とするバイオマスボイラが設置され、このバイオマスボイラによって得られた蒸気をヤシ油製造用のプロセス蒸気として、あるいは発電用のタービン駆動用に利用している。
In order to solve the above-mentioned problems, the inventor has focused on a coconut oil factory that generates a large amount of coconut shells.
Many coconut oil factories are equipped with biomass boilers that use coconut shells and fibers (oil squeezed residue) as fuel, and steam obtained from these biomass boilers is used as process steam for coconut oil production or as a turbine drive for power generation We use for.
 ヤシ油工場におけるバイオマスボイラの利用状況の説明図を図4に示す。図4には機器等の構成に加えて各プロセスデータを示している。
 図4に示されるように、ヤシ油工場における設備としては、バイオマスボイラ21と、タービン23と、発電機25と、ヤシ油製造プラント27を備えている。
 図4における設備では、ファイバー6ton/h(常温)とPKS(ヤシガラ)4ton/h(常温)を燃料としてバイオマスボイラ21を炊き、20MPaの蒸気を25ton/h発生させ、この蒸気でタービン23を回し発電機25を駆動して8,000KWの電力を得て、これをヤシ油製造プラント27の電力として使用する。また、タービン23を回した後の蒸気(0.4MPa、25ton/h)もヤシ油製造プラント27において利用する。
 バイオマスボイラ21の排ガス(300℃)は、集塵機へ送られて集塵後に大気に排出される。
 なお、図4のヤシ油工場の規模は、果房(FFB:Fresh Fruit Bunches)処理量50ton/h、ヤシ油製造量12ton/hの標準的なサイズである。
FIG. 4 shows an explanatory diagram of the utilization status of the biomass boiler in the coconut oil factory. FIG. 4 shows each process data in addition to the configuration of the equipment and the like.
As shown in FIG. 4, the equipment in the coconut oil factory includes a biomass boiler 21, a turbine 23, a generator 25, and a coconut oil production plant 27.
In the equipment shown in FIG. 4, the biomass boiler 21 is cooked using fiber 6 ton / h (normal temperature) and PKS (coconut shell) 4 ton / h (normal temperature) as fuel, and 20 tons of steam is generated at 25 ton / h. The generator 25 is driven to obtain 8,000 KW of power, which is used as power for the palm oil production plant 27. Further, steam (0.4 MPa, 25 ton / h) after turning the turbine 23 is also used in the palm oil production plant 27.
The exhaust gas (300 ° C.) of the biomass boiler 21 is sent to a dust collector and discharged to the atmosphere after dust collection.
In addition, the scale of the palm oil factory of FIG. 4 is a standard size of 50 ton / h of fruit fruit (FFB: Fresh Fruit Bunches) processing amount and 12 ton / h of palm oil production.
 ヤシ油工場においては、ヤシガラはいわば廃棄物であり、この廃棄物を燃料として有効利用しているのである。
 しかし、ヤシガラをヤシガラ炭の原料として見ると、最近高騰している原料を単に燃料としているので有効利用とは言えない面もある。
In the coconut oil factory, coconut husk is a waste, and this waste is effectively used as a fuel.
However, looking at coconut husk as a raw material for coconut husk charcoal, it is not possible to say that it is an effective use because the raw material that has been rising recently is simply used as fuel.
 また、発明者は、ヤシガラ炭の製造プロセスにも着目した。図5は、ヤシガラ炭製造装置の概要を示す図である。
 図5に基づいてヤシガラ炭製造装置及び方法を概説する。
 ヤシガラ炭製造装置31は、ロータリーキルン33と、ロータリーキルン33に原料であるヤシガラを装入する原料投入口35と、ロータリーキルン33の排出口37から排出されるヤシガラ炭を貯留するピット38と、ピット38に堆積したヤシガラ炭を搬送する高温用コンベア39と、ロータリーキルン33から排出される排ガスを2次燃焼させる2次燃焼塔41を備えている。
The inventor also paid attention to the manufacturing process of coconut shell charcoal. FIG. 5 is a diagram showing an outline of the coconut shell charcoal manufacturing apparatus.
Based on FIG. 5, a coconut husk charcoal manufacturing apparatus and method are outlined.
The coconut husk charcoal manufacturing apparatus 31 includes a rotary kiln 33, a raw material charging port 35 for charging the rotary kiln 33 with coconut husk as a raw material, a pit 38 for storing coconut husk charcoal discharged from an outlet 37 of the rotary kiln 33, and a pit 38. A high-temperature conveyor 39 for transporting the accumulated coconut charcoal and a secondary combustion tower 41 for secondary combustion of exhaust gas discharged from the rotary kiln 33 are provided.
 上記のように構成されるヤシガラ炭製造装置31によるヤシガラ炭製造方法を以下において説明する。
 原料のヤシガラは原料投入口35からロータリーキルン33に供給され、出口側に向って搬送される。搬送過程において、燃焼空気により、ヤシガラ中の揮発分が主に燃焼する。ロータリーキルン33内においては、可燃揮発分が発生して燃焼し、燃焼熱が放射伝熱でキルン内のヤシガラに伝えられてヤシガラの乾留が進行する。
 キルン内滞留時間は1時間程度である。揮発分の発熱量が高いため、乾留に必要な熱は、キルン起動時を除いて外部から加える必要がない。
 乾留後の製品であるヤシガラ炭は排出口37からピット38に排出され、さらに高温用コンベア39で所定の場所に搬送される。
 ロータリーキルン33における原料投入側から排出される排ガスにはまだ未燃分が含まれるため、2次燃焼塔41で2次燃焼空気が供給されて燃焼し、燃焼後に大気放散される。
The coconut husk charcoal manufacturing method by the coconut husk charcoal manufacturing apparatus 31 comprised as mentioned above is demonstrated below.
The raw material coconut husk is supplied to the rotary kiln 33 from the raw material charging port 35 and conveyed toward the outlet side. During the conveyance process, the volatile matter in the coconut shells is mainly burned by the combustion air. In the rotary kiln 33, combustible volatile components are generated and burned, and the combustion heat is transmitted to the coconut shells in the kiln by radiant heat transfer, so that dry distillation of the coconut shells proceeds.
The residence time in the kiln is about 1 hour. Due to the high calorific value of the volatile matter, the heat required for dry distillation does not need to be applied from outside except when the kiln is activated.
Coconut charcoal, which is a product after dry distillation, is discharged from a discharge port 37 to a pit 38 and further conveyed to a predetermined place by a high-temperature conveyor 39.
Since the exhaust gas discharged from the raw material input side in the rotary kiln 33 still contains unburned components, the secondary combustion air is supplied in the secondary combustion tower 41 and burned, and is diffused into the atmosphere after combustion.
 上記のようなヤシガラ炭製造におけるプロセスデータを示すと以下の通りである。
 PKS(ヤシガラ)2ton/h(常温)をロータリーキルン33に投入し、一次燃焼空気を3,200m3N/h(常温)導入し、キルン内で乾留することで、燃焼ガス(CO:9.7%,H2:10.5%)(5,050m3n/h、860℃)が発生する。発生した燃焼ガスは、2次燃焼塔41内に排気され、2次燃焼空気(6,850m3n/h、常温)を供給することで2次燃焼し、高温排ガス(11,000
m3n/h、1000℃)として大気放散される。
It is as follows when the process data in the above coconut shell charcoal manufacture is shown.
PKS (palm palm) 2ton / h (normal temperature) is introduced into the rotary kiln 33, primary combustion air is introduced at 3,200m3N / h (normal temperature), and dry distillation in the kiln, combustion gas (CO: 9.7%, H2: 10.5) %) (5,050m3n / h, 860 ℃). The generated combustion gas is exhausted into the secondary combustion tower 41, and secondary combustion is performed by supplying secondary combustion air (6,850m3n / h, normal temperature) to produce high temperature exhaust gas (11,000
m3n / h, 1000 ℃).
 ヤシガラ炭製造プロセスにおいては、ヤシガラの乾留によって発生する燃焼ガスが発生するが、これが有効利用されていないのが現状である。 In the coconut husk charcoal manufacturing process, combustion gas is generated by dry distillation of coconut husks, but this is not being used effectively.
 以上のように、ヤシ油製造プロセスにおいては、ボイラを炊く必要から、ヤシガラを燃料として利用するものの、ヤシガラを高価なヤシガラ炭の原料とみると必ずしも有効利用とは言えず、他方、ヤシガラ炭製造プロセスにおいては、多量の燃焼ガスが無駄に排気されている。
 発明者は、このようなヤシ油工場とヤシガラ炭製造工場の現状に着目し、両者における無駄をなくすることで、ヤシガラ炭の製造コスト低減を実現できるのではないかとの着想を得て、さらに鋭意検討を重ね本願発明を完成させたものであり、具体的には以下のような構成からなるものである。
As described above, in the coconut oil manufacturing process, it is necessary to cook a boiler, but coconut husk is used as fuel, but coconut husk is not necessarily an effective use when viewed as an expensive coconut husk charcoal raw material. In the process, a large amount of combustion gas is exhausted wastefully.
The inventor pays attention to the present situation of such a palm oil factory and a palm palm charcoal manufacturing factory, and obtains the idea that by eliminating waste in both, it is possible to realize a reduction in the manufacturing cost of palm palm charcoal, and further The present invention has been completed through intensive studies, and specifically comprises the following configuration.
(1)本発明に係るヤシガラ炭製造方法は、ヤシガラを燃料として利用できると共に外部から高温ガスを導入して利用できるボイラと、自燃式直接加熱型キルンによりヤシガラを乾留してヤシガラ炭を製造するヤシガラ炭製造装置とを利用したヤシガラ炭製造方法であって、前記自燃式直接加熱型キルンから排出される未燃分を含む排ガスに2次燃焼空気を供給して燃焼させて高温ガスとし、該高温ガスを前記ボイラに搬送して導入するようにしたことを特徴とするものである。 (1) The method for producing coconut husk charcoal according to the present invention produces coconut husk charcoal by dry-distilling coconut husk with a boiler that can use coconut husk as fuel and introduce high-temperature gas from the outside, and a self-burning direct heating kiln. A method for producing coconut husk charcoal using a coconut husk charcoal manufacturing apparatus, wherein secondary combustion air is supplied to an exhaust gas containing unburned gas discharged from the self-combustion direct heating kiln and burned to form a high-temperature gas, The hot gas is conveyed to the boiler and introduced.
(2)また、上記(1)に記載のものにおいて、前記高温ガスを前記ボイラに搬送するために、前記排ガスを2次燃焼させる2次燃焼空気をエジェクタ効果を発揮する噴流として使用することを特徴とするものである。 (2) Further, in the above described (1), in order to convey the high-temperature gas to the boiler, secondary combustion air for secondary combustion of the exhaust gas is used as a jet that exhibits an ejector effect. It is a feature.
(3)本発明に係るヤシガラ炭製造システムは、ヤシガラを燃料として利用できると共に外部から高温ガスを導入して利用できるボイラと、自燃式直接加熱型キルンによりヤシガラを乾留してヤシガラ炭を製造するヤシガラ炭製造装置と、前記自燃式直接加熱型キルンから排出される未燃分を含む排ガスを2次燃焼させるための2次燃焼空気を供給して燃焼させて高温ガスとし、該高温ガスを前記ボイラに搬送して導入する高温ガス搬送・導入装置とを備えたことを特徴とするものである。 (3) The coconut husk charcoal manufacturing system which concerns on this invention manufactures coconut husk charcoal by dry-distilling coconut husk with the boiler which can use coconut husk as a fuel and introduces high temperature gas from the outside, and a self-combustion direct heating kiln. A secondary combustion air for secondary combustion of exhaust gas containing unburned components discharged from the self-combustion direct heating kiln is supplied to the coconut husk charcoal production apparatus and burned to form a high temperature gas. A high-temperature gas transfer / introduction device that is transferred to a boiler for introduction is provided.
(4)また、上記(3)に記載のものにおいて、前記高温ガス搬送・導入装置は、前記高温ガスを前記ボイラに導く流路に2次燃焼空気の導入口を有し、該導入口に2次燃焼空気をエジェクタ効果を発揮するように導入させ、該2次燃焼空気によるエジェクタ効果によって前記高温ガスを吸引して前記ボイラへ導入することを特徴とするものである。 (4) Further, in the above-described (3), the high-temperature gas conveyance / introduction device has an inlet for secondary combustion air in a flow path for guiding the high-temperature gas to the boiler, Secondary combustion air is introduced so as to exert an ejector effect, and the high temperature gas is sucked and introduced into the boiler by the ejector effect of the secondary combustion air.
(5)また、本発明に係るヤシガラ炭製造システムは、ヤシガラを燃料として利用できると共に外部から未燃分を含む排ガスを導入して燃料として利用できるボイラと、自燃式直接加熱型キルンによりヤシガラを乾留してヤシガラ炭を製造するヤシガラ炭製造装置と、前記自燃式直接加熱型キルンから排出される未燃分を含む排ガスを前記ボイラに導入させるための導入路を構成する排ガス導入ダクトと、前記ボイラに導入される前記排ガスを2次燃焼させる2次燃焼バーナとを有し、該2次燃焼バーナは、エジェクタ効果を発揮するように2次燃焼空気を導入する2次燃焼空気導入部を備えてなり、該2次燃焼空気のエジェクタ効果によって前記排ガスダクト内の排ガスを前記2次燃焼バーナに引き込むようにしたことを特徴とするものである。 (5) Moreover, the coconut husk charcoal manufacturing system which concerns on this invention can use coconut husk by the boiler which can use coconut husk as a fuel and can introduce | transduce the exhaust gas containing an unburned part from the outside, and can use it as a fuel, and a self-combustion direct heating type kiln. A coconut husk charcoal manufacturing apparatus for producing coconut husk charcoal by dry distillation, an exhaust gas introduction duct constituting an introduction path for introducing exhaust gas containing unburned gas discharged from the self-combustion direct heating kiln into the boiler, A secondary combustion burner for secondary combustion of the exhaust gas introduced into the boiler, and the secondary combustion burner includes a secondary combustion air introduction section for introducing secondary combustion air so as to exert an ejector effect. The exhaust gas in the exhaust gas duct is drawn into the secondary combustion burner by the ejector effect of the secondary combustion air. That.
 本発明においては、ヤシガラを燃料として利用できると共に外部から高温ガスを導入して利用できるボイラと、自燃式直接加熱型キルンによりヤシガラを乾留してヤシガラ炭を製造するヤシガラ炭製造装置とを利用したヤシガラ炭製造方法であって、前記自燃式直接加熱型キルンから排出される未燃分を含む排ガスに2次燃焼空気を供給して燃焼させて高温ガスとし、該高温ガスを前記ボイラに搬送して導入するようにしたので、従来においては燃料として使用していたヤシガラをヤシガラ炭の原料に回して利用することができ、その結果、ヤシガラ炭を、原料費を低減して製造することが可能となる。 In the present invention, a boiler that can use coconut husk as fuel and introduce and use high-temperature gas from the outside, and a coconut husk charcoal manufacturing apparatus that produces coconut husk charcoal by dry distillation of coconut husk by a self-combustion direct heating kiln are used. A method for producing coconut husk charcoal, in which secondary combustion air is supplied to the exhaust gas containing unburned components discharged from the self-combustion direct heating kiln and burned to form a high-temperature gas, and the high-temperature gas is conveyed to the boiler. As a result, it is possible to use coconut husks that have been used as fuel in the past as raw material for coconut husk charcoal, and as a result, coconut husk charcoal can be manufactured with reduced raw material costs. It becomes.
本発明の一実施の形態に係るヤシガラ炭製造システムの説明図である。It is explanatory drawing of the coconut husk charcoal manufacturing system which concerns on one embodiment of this invention. 図1に示したヤシガラ炭製造システムの一部の詳細に説明する説明図である。It is explanatory drawing demonstrated in detail one part of the coconut husk charcoal manufacturing system shown in FIG. 本発明の他の実施の形態に係るヤシガラ炭製造システムの説明図である。It is explanatory drawing of the coconut husk charcoal manufacturing system which concerns on other embodiment of this invention. ヤシ油製造工場におけるバイオマスボイラの利用状況の説明図である。It is explanatory drawing of the utilization condition of the biomass boiler in a coconut oil manufacturing factory. ヤシガラ炭製造装置の一例の説明図である。It is explanatory drawing of an example of a coconut husk charcoal manufacturing apparatus.
  1 ヤシガラ炭製造システム(実施の形態1)
  3 ボイラ
  5 高温ガス搬送・導入装置
  7 高温ガス導入部
  9 流路
 10 エジェクタ装置
 12 導入口
 13 ヤシガラ炭製造システム(実施の形態2)
 15 排ガス導入ダクト
 17 2次燃焼バーナ
 19 2次燃焼空気導入部
 21 バイオマスボイラ
 23 タービン
 25 発電機
 27 ヤシ油製造プラント
 31 ヤシガラ炭製造装置
 33 ロータリーキルン
 35 原料投入口
 37 排出口
 38 ピット
 39 高温用コンベア
 41 2次燃焼塔
1 Coconut Charcoal Production System (Embodiment 1)
DESCRIPTION OF SYMBOLS 3 Boiler 5 High temperature gas conveyance and introduction apparatus 7 High temperature gas introduction part 9 Flow path 10 Ejector apparatus 12 Inlet 13 Coconut charcoal manufacturing system (Embodiment 2)
DESCRIPTION OF SYMBOLS 15 Exhaust gas introduction duct 17 Secondary combustion burner 19 Secondary combustion air introduction part 21 Biomass boiler 23 Turbine 25 Generator 27 Palm oil production plant 31 Coconut husk charcoal production apparatus 33 Rotary kiln 35 Raw material inlet 37 Outlet 38 Pit 39 High temperature conveyor 41 Secondary combustion tower
[実施の形態1]
 本発明のヤシガラ炭製造方法を実現するヤシガラ炭製造システムを、図1に基づいて説明する。なお、図1において、図4、図5と同一部分には同一の符号が付してある。
 本発明の一実施の形態に係るヤシガラ炭製造システム1は、図1に示すように、ヤシガラを燃料として利用できると共に外部から高温ガスを導入して利用できるボイラ3と、自燃式直接加熱型キルンであるロータリーキルン33によりヤシガラを乾留してヤシガラ炭を製造するヤシガラ炭製造装置31と、前記自燃式直接加熱型キルンから排出される未燃分を含む排ガスに2次燃焼空気を供給して燃焼させて高温ガスとし、該高温ガスを前記ボイラ3に搬送して導入する高温ガス搬送・導入装置5とを備えている。
 各構成を詳細に説明する。
[Embodiment 1]
The coconut husk charcoal manufacturing system which implements the coconut husk charcoal manufacturing method of the present invention will be described with reference to FIG. In FIG. 1, the same parts as those in FIGS. 4 and 5 are denoted by the same reference numerals.
As shown in FIG. 1, a coconut husk charcoal manufacturing system 1 according to an embodiment of the present invention can use coconut husk as fuel and a boiler 3 that can be used by introducing high-temperature gas from the outside, and a self-combustion direct heating kiln. The secondary kiln is supplied to the exhaust gas containing unburned matter discharged from the self-burning direct heating kiln and the coconut husk charcoal manufacturing apparatus 31 for producing coconut husk charcoal by dry distillation of the coconut husk by the rotary kiln 33. And a high-temperature gas transport / introduction device 5 for transporting and introducing the high-temperature gas into the boiler 3.
Each configuration will be described in detail.
<ボイラ>
 ボイラ3はヤシガラを燃料として利用できると共に外部から高温ガスを導入して利用できるものである。つまり、ヤシガラを燃料として燃焼するためのバーナ(図示なし)と外部から高温ガスを導入する高温ガス導入部7とを有し、導入される高温ガスとバーナの燃焼によって発生する燃焼ガスの両方のガスを伝熱部に導入して給水を加熱できるものである。
 ボイラ3が設置されるヤシ油工場には、前述したように、例えば、ボイラ3で発生した蒸気を利用するタービン23と、タービン23によって駆動される発電機25と、発電機25の電力及びタービン23に供給された後の蒸気を利用するヤシ油製造プラント27が設けられている。
<Boiler>
The boiler 3 can use coconut husk as fuel and can be used by introducing high-temperature gas from the outside. That is, it has a burner (not shown) for burning coconut shells as fuel and a high-temperature gas introduction part 7 for introducing a high-temperature gas from the outside, both of the introduced high-temperature gas and the combustion gas generated by the combustion of the burner Gas can be introduced into the heat transfer section to heat the feed water.
In the coconut oil factory where the boiler 3 is installed, as described above, for example, the turbine 23 using steam generated in the boiler 3, the generator 25 driven by the turbine 23, the electric power of the generator 25 and the turbine A coconut oil production plant 27 that uses the steam that has been supplied to 23 is provided.
<ヤシガラ炭製造装置>
 ヤシガラ炭製造装置31は、自燃式直接加熱型キルンによりヤシガラを乾留してヤシガラ炭を製造する。自燃式直接加熱型キルンは、例えば図5に示したのと同様のロータリーキルン33を用いることができる。
<Coconut shell charcoal production equipment>
The coconut husk charcoal manufacturing apparatus 31 produces coconut husk charcoal by dry-distilling coconut husk by a self-combustion direct heating kiln. For example, a rotary kiln 33 similar to that shown in FIG. 5 can be used as the self-combustion direct heating kiln.
 ヤシガラ炭製造装置31においては、図5に示すように、原料のヤシガラを原料投入口35からロータリーキルン33に供給すると共に、ロータリーキルン33における原料投入口35と対向する側から1次燃焼空気を導入する。ヤシガラはロータリーキルン33内を排出口37に向かって移動しながら乾留される。
 ロータリーキルン33における原料投入側から排出される排ガスにはまだ未燃分が含まれており、この排ガスが高温ガス搬送・導入装置5側に排出される。
 なお、自燃式直接加熱型キルンの例として、ロータリーキルン33の他に、揺動式キルンやシャフトキルンなどでもよい。
In the coconut husk charcoal manufacturing apparatus 31, as shown in FIG. 5, the coconut husk of raw material is supplied to the rotary kiln 33 from the raw material inlet 35, and the primary combustion air is introduced from the side facing the raw material inlet 35 in the rotary kiln 33. . Coconut husks are dry-distilled while moving in the rotary kiln 33 toward the discharge port 37.
The exhaust gas discharged from the raw material input side of the rotary kiln 33 still contains unburned components, and this exhaust gas is discharged to the high temperature gas transfer / introduction device 5 side.
In addition to the rotary kiln 33, a swing kiln, a shaft kiln, or the like may be used as an example of the self-combustion direct heating kiln.
<高温ガス搬送・導入装置>
 高温ガス搬送・導入装置5は、ロータリーキルン33から排出される未燃分を含む排ガスに2次燃焼空気を供給して燃焼させて高温ガスとし、該高温ガスを前記ボイラ3に導入する。
 高温ガス搬送・導入装置5の主な構成は、ロータリーキルン33とボイラ3とを繋ぐ高温ガスの流路9(ダクト)と、流路9に設けられて高温ガスをボイラ3側に搬送するポンプとして機能するエジェクタ装置10である。
<High-temperature gas transfer / introduction device>
The high-temperature gas transport / introduction device 5 supplies secondary combustion air to the exhaust gas containing unburned components discharged from the rotary kiln 33 and burns it into a high-temperature gas, and introduces the high-temperature gas into the boiler 3.
The main configuration of the high-temperature gas transfer / introduction device 5 is a high-temperature gas flow path 9 (duct) that connects the rotary kiln 33 and the boiler 3 and a pump that is provided in the flow path 9 and transfers high-temperature gas to the boiler 3 side. It is the ejector apparatus 10 which functions.
 エジェクタ装置10は、流路9の途中に設けられて2次燃焼空気を流路9内に導入する導入口11と、該導入口11に2次燃焼空気をエジェクタ効果を発揮するように導入するブロワ等の送風装置(図示なし)とを備えている。このように構成されるエジェクタ装置10は、図2に示すように、導入口11から2次燃焼空気を高速の噴流として流路9内に送り込み、送り込まれた2次燃焼空気の誘引作用を利用して排ガス及び排ガスが燃焼した高温ガスをボイラ3側に圧送する。 The ejector device 10 is provided in the middle of the flow path 9 and introduces the secondary combustion air into the flow path 9 and introduces the secondary combustion air into the introduction port 11 so as to exert the ejector effect. And a blower (not shown) such as a blower. As shown in FIG. 2, the ejector device 10 configured as described above sends secondary combustion air from the introduction port 11 as a high-speed jet into the flow path 9 and uses the attracting action of the sent secondary combustion air. Then, the exhaust gas and the high-temperature gas combusted with the exhaust gas are pumped to the boiler 3 side.
 次に、上記のように構成されたヤシガラ炭製造システム1を用いたヤシガラ炭製造方法を説明する。
 PKS(ヤシガラ)をロータリーキルン33に投入し、一次燃焼空気をロータリーキルン33に導入し、キルン内でヤシガラを乾留する。ヤシガラの乾留で発生する未燃分を含む排ガスは、高温ガス搬送・導入装置5側に排出される。
 高温ガス搬送・導入装置5の流路9(ダクト)に排出された排ガスは、エジェクタ装置10から吹き込まれる2次燃焼空気と混合され、燃焼して高温ガスになると共に、2次燃焼空気によるエジェクタ効果によって流路9内をボイラ3側に圧送され、ボイラ3に導入される。
Next, the coconut husk charcoal manufacturing method using the coconut husk charcoal manufacturing system 1 comprised as mentioned above is demonstrated.
PKS (coconut shells) is put into the rotary kiln 33, primary combustion air is introduced into the rotary kiln 33, and the palm shells are dry-distilled in the kiln. Exhaust gas containing unburned matter generated by dry distillation of coconut husk is discharged to the high-temperature gas transport / introduction device 5 side.
The exhaust gas discharged into the flow path 9 (duct) of the high-temperature gas transfer / introduction device 5 is mixed with the secondary combustion air blown from the ejector device 10 and burned to become high-temperature gas, and at the same time, ejector by the secondary combustion air Due to the effect, the inside of the flow path 9 is pumped to the boiler 3 side and introduced into the boiler 3.
 一方、ボイラ3では、ファイバーとPKS(ヤシガラ)を燃料としてバーナを燃焼させた燃焼ガスと、高温ガス搬送・導入装置5から導入される高温ガスとによって伝熱部で水を加熱して蒸気を発生させる。この蒸気でタービン23を回し、発電機25を駆動して電力を得て、これをヤシ油製造プラント27の電力として使用する。また、タービン23を回した後の蒸気もヤシ油製造プラント27において利用する。
 ボイラ3の排ガスは、集塵機へ送られて集塵後に大気に排出される。
On the other hand, in the boiler 3, steam is generated by heating the water in the heat transfer section with the combustion gas obtained by burning the burner using fiber and PKS (coconut shell) as fuel and the high-temperature gas introduced from the high-temperature gas transport / introduction device 5. generate. The turbine 23 is rotated by this steam to drive the generator 25 to obtain electric power, which is used as electric power for the coconut oil production plant 27. The steam after turning the turbine 23 is also used in the palm oil production plant 27.
The exhaust gas from the boiler 3 is sent to a dust collector and discharged to the atmosphere after dust collection.
 上記のように構成された本実施の形態のヤシガラ炭製造システム1におけるプロセスデータを示す。以下に示すデータは、図4に示したボイラ3と同等の蒸気を発生させ、図5に示したものと同量のヤシガラ炭を製造する場合である。 The process data in the coconut husk charcoal manufacturing system 1 of this Embodiment comprised as mentioned above is shown. The data shown below is when steam equivalent to that of the boiler 3 shown in FIG. 4 is generated to produce the same amount of coconut husk charcoal as that shown in FIG.
 PKS(ヤシガラ)2ton/h(常温)をロータリーキルン33に投入し、一次燃焼空気を3,200m3N/h(常温)導入し、キルン内で乾留することで、排ガス(CO:9.7%,H2:10.5%)(5,050m3n/h、860℃)が発生する。発生した排ガスは、高温ガス搬送・導入装置5に排出される。860℃の排ガス5,050m3N/hを燃焼させるのに必要な2次燃焼空気量は6,850m3N/hであり、このような2次燃焼空気を供給することで排ガス中の未燃分COとH2が燃焼することによりガス温度は1,010℃に上昇してボイラ3に供給される。
 なお、例えばダクト長さの合計距離を50m、流路9の曲りに設けるエルボ数を3個、ダクト系の圧損を1,500Paに達すると想定したとしても、導入する2次燃焼空気の流速を36m/sにとるとエジェクタ効果による圧力上昇は2,600Paとなり、この2次燃焼空気のエジェクタ効果によって高温ガスを十分にボイラ3まで搬送できる。
PKS (palm palm) 2ton / h (normal temperature) is introduced into the rotary kiln 33, primary combustion air is introduced at 3,200m3N / h (normal temperature), and dry distillation in the kiln, exhaust gas (CO: 9.7%, H2: 10.5%) ) (5,050m3n / h, 860 ℃). The generated exhaust gas is discharged to the hot gas transfer / introduction device 5. The amount of secondary combustion air required to burn exhaust gas at 860 ℃ 5,050m3N / h is 6,850m3N / h. By supplying such secondary combustion air, unburned CO and H2 in the exhaust gas can be reduced. By combustion, the gas temperature rises to 1,010 ° C. and is supplied to the boiler 3.
For example, even if it is assumed that the total distance of the duct length is 50 m, the number of elbows provided in the bend of the flow path 9 is 3, and the pressure loss of the duct system reaches 1,500 Pa, the flow velocity of the introduced secondary combustion air is 36 m. When it is / s, the pressure rise due to the ejector effect is 2,600 Pa, and the high-temperature gas can be sufficiently conveyed to the boiler 3 by the ejector effect of the secondary combustion air.
 ボイラ3では、ファイバー6ton/h(常温)とPKS(ヤシガラ)3ton/h(常温)を燃料としてボイラ3を炊き、20MPaの蒸気を25ton/h発生させ、この蒸気でタービン23を回し発電機25を駆動して8,000KWの電力を得て、これをヤシ油製造プラント27の電力として使用する。また、タービン23を回した後の蒸気(0.4MPa、25ton/h)もヤシ油製造プラント27において利用する。
 ボイラ3の排ガス(300℃)は、集塵機へ送られて集塵後に大気に排出される。
In the boiler 3, the boiler 3 is cooked using fiber 6 ton / h (room temperature) and PKS (coconut shell) 3 ton / h (room temperature) as fuel, and 20MPa of steam is generated 25ton / h. To obtain an electric power of 8,000 KW, which is used as electric power for the palm oil production plant 27. Further, steam (0.4 MPa, 25 ton / h) after turning the turbine 23 is also used in the palm oil production plant 27.
The exhaust gas (300 ° C.) of the boiler 3 is sent to a dust collector and discharged to the atmosphere after dust collection.
 以上のように、ボイラ3とロータリーキルン33が別々に存在した場合(図4、図5参照)に必要であった燃料としてのヤシガラの量は4ton/hであったのが、本実施の形態では3ton/hに減少した。この減少分である1ton/hのヤシガラをヤシガラ炭の原料に回すと、元々ヤシガラ炭製造用原料として必要であった原料ヤシガラ2ton/hが1ton/hに半減する。
 このことから、ヤシガラ炭価格350US$/tonに占める原料費が半減したと考えることができ、そう考えると原料費は112.5US$となり、製品価格に占める原料費の割合は32%となり収益が上昇する。
 収益が上昇することで、製品価格を下げることもできる。現在冶金用コークスの価格とヤシガラ炭価格はほぼ拮抗しているが、ヤシガラ炭価格を300US$/ton以下に価格を下げられれば競争力を確保できる。
As described above, when the boiler 3 and the rotary kiln 33 are separately present (see FIGS. 4 and 5), the amount of coconut husk as fuel required is 4 ton / h. Reduced to 3ton / h. When 1 ton / h of coconut husk, which is the decrease, is turned into coconut husk charcoal, the raw coconut husk 2 ton / h, which was originally required for coconut husk charcoal production, is halved to 1 ton / h.
From this, it can be considered that the raw material cost in the coconut husk charcoal price 350 US $ / ton has been halved, and as such, the raw material cost is 112.5 US $, the ratio of the raw material cost to the product price is 32%, and the profit rises To do.
Product prices can also be lowered by increasing profits. Currently, the price of coke for metallurgical use and the price of coconut husk charcoal are almost in competition, but if the price of coconut husk charcoal is reduced to 300 US $ / ton or less, competitiveness can be secured.
 以上のように、本実施の形態のヤシガラ炭製造システム1によれば、従来例においては燃料として使用していたヤシガラをヤシガラ炭の原料に回して利用可能となり、その結果、ヤシガラ炭を、原料費を低減して製造することが可能となる。 As described above, according to the coconut husk charcoal manufacturing system 1 of the present embodiment, the coconut husk used as the fuel in the conventional example can be used as the coconut husk charcoal raw material. It becomes possible to manufacture at a reduced cost.
 上記の実施の形態においては、高温ガス搬送・導入装置5に設けたエジェクタ装置10によって高温ガスをボイラ3側に搬送するようにした。このため、高温ガスを簡易な手段によってボイラ3側に圧送することが可能になるという効果が得られている。
 なお、高温ガス搬送・導入装置5において高温ガスをボイラ3側に圧送する装置としては、本実施の形態のヤシガラ炭製造システム1で扱う1000℃前後の高温ガスを圧送できるような耐熱性のある装置であれば、エジェクタ装置10以外の装置であってもよい。
In the above embodiment, the high temperature gas is conveyed to the boiler 3 side by the ejector device 10 provided in the high temperature gas conveyance / introduction device 5. For this reason, the effect that it becomes possible to pump hot gas to the boiler 3 side by a simple means is acquired.
In addition, as a device for pumping high-temperature gas to the boiler 3 side in the high-temperature gas transport / introduction device 5, the device has heat resistance so that high-temperature gas around 1000 ° C. handled in the coconut shell charcoal manufacturing system 1 of the present embodiment can be pumped. Any device other than the ejector device 10 may be used.
[実施の形態2]
 本発明の実施の形態2に係るヤシガラ炭製造システムを図3に基づいて説明する。図3において、図1と同一部分には同一の符号が付してある。
 本実施の形態のヤシガラ炭製造システム13は、ヤシガラを燃料として利用できると共に外部から未燃分を含む排ガスを導入して燃料として利用できるボイラ3と、ロータリーキルン33によりヤシガラを乾留してヤシガラ炭を製造するヤシガラ炭製造装置31と、前記ロータリーキルン33から排出される未燃分を含む排ガスを前記ボイラ3に導入させるための導入路を構成する排ガス導入ダクト15と、ボイラ3に導入される前記排ガスを2次燃焼させる2次燃焼バーナ17とを有し、2次燃焼バーナ17は、エジェクタ効果を発揮するように2次燃焼空気を導入する2次燃焼空気導入部19を備えてなり、該2次燃焼空気のエジェクタ効果によって前記排ガス導入ダクト15内の排ガスを2次燃焼バーナ17に引き込むようにしたものである。
[Embodiment 2]
The coconut husk charcoal manufacturing system which concerns on Embodiment 2 of this invention is demonstrated based on FIG. 3, the same parts as those in FIG. 1 are denoted by the same reference numerals.
The coconut husk charcoal manufacturing system 13 of the present embodiment can dry coconut husks by using a boiler 3 that can use coconut husks as fuel and introduce exhaust gas containing unburned components from the outside, and can be used as fuel. Coconut husk charcoal manufacturing apparatus 31 to be manufactured, exhaust gas introduction duct 15 constituting an introduction path for introducing exhaust gas containing unburned gas discharged from the rotary kiln 33 into the boiler 3, and the exhaust gas introduced into the boiler 3 The secondary combustion burner 17 includes a secondary combustion air introduction unit 19 that introduces secondary combustion air so as to exert an ejector effect. The exhaust gas in the exhaust gas introduction duct 15 is drawn into the secondary combustion burner 17 by the ejector effect of the secondary combustion air. A.
 実施の形態1においては、ロータリーキルン33で発生した未燃分を含む排ガスを高温ガス搬送・導入装置5の流路9(ダクト)内で燃焼させて高温ガスとし、この高温ガスをボイラ3に供給するようにしていた。
 しかし、本実施の形態では、排ガスを流路9(ダクト)内で燃焼させることなくボイラ3側に供給し、ボイラ3側に設けた2次燃焼バーナ17で燃焼させるようにしたものである。
 本実施の形態では、2次燃焼バーナ17の構成として、エジェクタ効果を発揮するように2次燃焼空気を導入する2次燃焼空気導入部19を備え、該2次燃焼空気のエジェクタ効果によって排ガスを2次燃焼バーナ17に引き込んで燃焼させるようにしている。
In the first embodiment, the exhaust gas containing unburned matter generated in the rotary kiln 33 is combusted in the flow path 9 (duct) of the high-temperature gas transport / introduction device 5 to form a high-temperature gas, and this high-temperature gas is supplied to the boiler 3. I was trying to do it.
However, in the present embodiment, the exhaust gas is supplied to the boiler 3 side without being burned in the flow path 9 (duct), and burned by the secondary combustion burner 17 provided on the boiler 3 side.
In the present embodiment, as the configuration of the secondary combustion burner 17, a secondary combustion air introduction unit 19 that introduces secondary combustion air so as to exhibit the ejector effect is provided, and exhaust gas is discharged by the ejector effect of the secondary combustion air. The secondary combustion burner 17 is drawn and combusted.
 なお、本実施の形態では、ロータリーキルン33で発生する排ガスは流路9(ダクト)内で燃焼させないで、かつ2次燃焼バーナ17によって引き込むようにするので、ロータリーキルン33とボイラ3を繋ぐ装置として、実施の形態1の高温ガス搬送・導入装置5のように排ガスに2次燃焼空気を供給して燃焼させ、かつ発生する高温ガスをボイラ3側に搬送するという機能は不要であることから、ロータリーキルン33とボイラ3を繋ぐ流路は単なるダクトである排ガス導入ダクト15を設置している。 In the present embodiment, the exhaust gas generated in the rotary kiln 33 is not burned in the flow path 9 (duct) and is drawn in by the secondary combustion burner 17, so that the device that connects the rotary kiln 33 and the boiler 3 is The rotary kiln does not require the function of supplying the secondary combustion air to the exhaust gas for combustion as in the high temperature gas transfer / introduction device 5 of the first embodiment and transferring the generated high temperature gas to the boiler 3 side. An exhaust gas introduction duct 15 which is a mere duct is installed in a flow path connecting 33 and the boiler 3.
 本実施の形態のヤシガラ炭製造システム13によれば、実施の形態1と同様に、従来例においては燃料として使用していたヤシガラをヤシガラ炭の原料に回して利用可能となり、その結果、ヤシガラ炭を、原料費を低減して製造することが可能となる。 According to the coconut husk charcoal manufacturing system 13 of the present embodiment, as in the first embodiment, the coconut husk used as fuel in the conventional example can be used as the raw material for the coconut husk charcoal. Can be manufactured at a reduced raw material cost.
 なお、上記の説明では、2次燃焼バーナ17を一基設置した例を示したが、2次燃焼バーナ17の数は1基に限らず、複数基設けるようにしてもよい。 In the above description, an example in which one secondary combustion burner 17 is installed is shown, but the number of secondary combustion burners 17 is not limited to one, and a plurality of secondary combustion burners 17 may be provided.

Claims (5)

  1.  ヤシガラを燃料として利用できると共に外部から高温ガスを導入して利用できるボイラと、自燃式直接加熱型キルンによりヤシガラを乾留してヤシガラ炭を製造するヤシガラ炭製造装置とを利用したヤシガラ炭製造方法であって、
     前記自燃式直接加熱型キルンから排出される未燃分を含む排ガスに2次燃焼空気を供給して燃焼させて高温ガスとし、該高温ガスを前記ボイラに搬送して導入するようにしたことを特徴とするヤシガラ炭製造方法。
    A coconut husk charcoal production method that uses coconut husk as fuel and a boiler that can be used by introducing high-temperature gas from the outside and a coconut husk charcoal production device that produces coconut husk charcoal by dry distillation using a self-combustion direct heating kiln. There,
    The secondary combustion air is supplied to the exhaust gas containing unburned components discharged from the self-combustion direct heating kiln and burned to form a high-temperature gas, and the high-temperature gas is conveyed to the boiler and introduced. A method for producing coconut husk charcoal.
  2.  前記高温ガスを前記ボイラに搬送するために、前記排ガスを2次燃焼させる2次燃焼空気をエジェクタ効果を発揮する噴流として使用することを特徴とする請求項1記載のヤシガラ炭製造方法。 The method for producing coconut husk charcoal according to claim 1, wherein secondary combustion air for secondary combustion of the exhaust gas is used as a jet that exhibits an ejector effect in order to convey the high-temperature gas to the boiler.
  3.  ヤシガラを燃料として利用できると共に外部から高温ガスを導入して利用できるボイラと、自燃式直接加熱型キルンによりヤシガラを乾留してヤシガラ炭を製造するヤシガラ炭製造装置と、前記自燃式直接加熱型キルンから排出される未燃分を含む排ガスを2次燃焼させるための2次燃焼空気を供給して燃焼させて高温ガスとし、該高温ガスを前記ボイラに搬送して導入する高温ガス搬送・導入装置とを備えたことを特徴とするヤシガラ炭製造システム。 A boiler that can use coconut husk as fuel and can be used by introducing high-temperature gas from the outside, a coconut husk charcoal manufacturing apparatus that produces coconut husk charcoal by dry distillation of coconut husk by a self-burning direct heating kiln, and the self-burning direct heating kiln High-temperature gas transport / introduction device for supplying secondary combustion air for secondary combustion of exhaust gas containing unburned gas discharged from the fuel to burn it into a high-temperature gas, and transporting and introducing the high-temperature gas to the boiler A coconut husk charcoal manufacturing system characterized by comprising:
  4.  前記高温ガス搬送・導入装置は、前記高温ガスを前記ボイラに導く流路に2次燃焼空気の導入口を有し、該導入口に2次燃焼空気を、エジェクタ効果を発揮するように導入させ、該2次燃焼空気によるエジェクタ効果によって前記高温ガスを吸引して前記ボイラへ導入することを特徴とする請求項3記載のヤシガラ炭製造システム。 The high-temperature gas transfer / introduction device has an inlet for secondary combustion air in a flow path for introducing the high-temperature gas to the boiler, and introduces the secondary combustion air into the inlet so as to exert an ejector effect. The coconut husk charcoal manufacturing system according to claim 3, wherein the hot gas is sucked and introduced into the boiler by an ejector effect of the secondary combustion air.
  5.  ヤシガラを燃料として利用できると共に外部から未燃分を含む排ガスを導入して燃料として利用できるボイラと、自燃式直接加熱型キルンによりヤシガラを乾留してヤシガラ炭を製造するヤシガラ炭製造装置と、前記自燃式直接加熱型キルンから排出される未燃分を含む排ガスを前記ボイラに導入させるための導入路を構成する排ガス導入ダクトと、前記ボイラに導入される前記排ガスを2次燃焼させる2次燃焼バーナとを有し、該2次燃焼バーナは、エジェクタ効果を発揮するように2次燃焼空気を導入する2次燃焼空気導入部を備えてなり、該2次燃焼空気のエジェクタ効果によって前記排ガスダクト内の排ガスを前記2次燃焼バーナに引き込むようにしたことを特徴とするヤシガラ炭製造システム。 A boiler that can use coconut husk as fuel and introduces exhaust gas containing unburned components from the outside and can be used as fuel, a coconut husk charcoal manufacturing apparatus that produces coconut husk charcoal by dry distillation of coconut husk by a self-burning direct heating kiln, An exhaust gas introduction duct constituting an introduction path for introducing exhaust gas containing unburned gas discharged from a self-combustion direct heating kiln into the boiler, and secondary combustion for secondary combustion of the exhaust gas introduced into the boiler The secondary combustion burner includes a secondary combustion air introduction section for introducing secondary combustion air so as to exert an ejector effect, and the exhaust gas duct is formed by the ejector effect of the secondary combustion air. A coconut husk charcoal production system characterized in that the exhaust gas inside is drawn into the secondary combustion burner.
PCT/JP2012/076317 2011-12-28 2012-10-11 Palm kernel shell charcoal manufacturing method and system WO2013099405A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011287204A JP2013136651A (en) 2011-12-28 2011-12-28 Method and system for palm kernel shell charcoal
JP2011-287204 2011-12-28

Publications (1)

Publication Number Publication Date
WO2013099405A1 true WO2013099405A1 (en) 2013-07-04

Family

ID=48696910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076317 WO2013099405A1 (en) 2011-12-28 2012-10-11 Palm kernel shell charcoal manufacturing method and system

Country Status (2)

Country Link
JP (1) JP2013136651A (en)
WO (1) WO2013099405A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63207498A (en) * 1987-02-24 1988-08-26 Ebara Corp Pressure adjusting method for screw press and its device
JP2002364816A (en) * 2001-06-12 2002-12-18 Kubota Corp Heating and transfer apparatus for dry-distillation gas
JP2009096943A (en) * 2007-10-19 2009-05-07 Ihi Corp Waste carbonization treatment facility
JP4567100B1 (en) * 2010-05-12 2010-10-20 スチールプランテック株式会社 Coconut charcoal manufacturing method and apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63207498A (en) * 1987-02-24 1988-08-26 Ebara Corp Pressure adjusting method for screw press and its device
JP2002364816A (en) * 2001-06-12 2002-12-18 Kubota Corp Heating and transfer apparatus for dry-distillation gas
JP2009096943A (en) * 2007-10-19 2009-05-07 Ihi Corp Waste carbonization treatment facility
JP4567100B1 (en) * 2010-05-12 2010-10-20 スチールプランテック株式会社 Coconut charcoal manufacturing method and apparatus

Also Published As

Publication number Publication date
JP2013136651A (en) 2013-07-11

Similar Documents

Publication Publication Date Title
CN104830377B (en) The combustion and segmented inverting biological charcoal/steam co-producing technology of biomass pyrogenation gasification
CN101234762B (en) Physical method energy-saving cleaning technique for manufacturing active carbon
US9562204B2 (en) Method and apparatus for pelletizing blends of biomass materials for use as fuel
US20080245052A1 (en) Integrated Biomass Energy System
WO2012088659A1 (en) Preventing slag-bonding stove
CN106918038A (en) A kind of biomass fuel combustion with reduced pollutants system with blower mill powder
CN107055529A (en) Prepare the method and system of activated carbon
CN109578961A (en) A kind of gasification of biomass coupling direct combustion power generation system and method
US20130263501A1 (en) System and method for biomass fuel production and integrated biomass and biofuel production
CN202141309U (en) Integration device of biomass fuel burning and residual-heat utilization
CN205825040U (en) The hot gas power generation system of recirculating fluidized bed rubbish
CN209383704U (en) A kind of gasification of biomass coupling direct combustion power generation system
CN203718753U (en) Composite combustion device
CN106500496A (en) A kind of system and method for utilization high-temperature semi-coke
CN103484164A (en) Biomass waste heat steam gasification heating system
CN203881088U (en) Carbonized rice hull gas drying system
WO2013099405A1 (en) Palm kernel shell charcoal manufacturing method and system
CN105883797A (en) Oxidation and carbonization system and method for flue gas internal circulation
CN206724142U (en) A kind of biomass fuel combustion with reduced pollutants system with blower mill powder
CN202203932U (en) Automatic loading and heat energy recovery device
CN109355103A (en) A kind of biomass gasification device and method
CN207016714U (en) A kind of biomass cracking partial carbonization system
CN105331380A (en) Power generation system and power generation method
CN210564688U (en) Biomass boiler mixes power generation system of burning blue charcoal
EP2912150B1 (en) Method and apparatus for pelletizing blends of biomass materials for use as fuel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12861989

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12861989

Country of ref document: EP

Kind code of ref document: A1