WO2013099365A1 - Apparatus for refining semiconductor or metal - Google Patents

Apparatus for refining semiconductor or metal Download PDF

Info

Publication number
WO2013099365A1
WO2013099365A1 PCT/JP2012/073283 JP2012073283W WO2013099365A1 WO 2013099365 A1 WO2013099365 A1 WO 2013099365A1 JP 2012073283 W JP2012073283 W JP 2012073283W WO 2013099365 A1 WO2013099365 A1 WO 2013099365A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor
metal
immersion
cooling body
silicon
Prior art date
Application number
PCT/JP2012/073283
Other languages
French (fr)
Japanese (ja)
Inventor
貴博 中野
健司 和田
佳彦 永田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013099365A1 publication Critical patent/WO2013099365A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/037Purification
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/02Refining by liquating, filtering, centrifuging, distilling, or supersonic wave action including acoustic waves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a semiconductor or metal purification apparatus.
  • CZ Czochralski
  • FZ Floating Zone
  • the production of a polycrystalline silicon wafer includes a casting method in which a large polycrystalline lump is grown from molten silicon and then sliced to obtain a wafer, and a ribbon method in which a polycrystalline silicon wafer is directly grown from molten silicon.
  • the ribbon method includes both a method using a substrate and a method not using a substrate.
  • silicon particles that are used as base materials for solar cells are produced by dropping silicon droplets in vacuum or in an inert gas. There is a spherical silicon method.
  • silicon is not an example of the above-described metal element, and a method for purifying it inexpensively is required.
  • impurities in silicon are classified into the following three types.
  • Group III elements such as boron (hereinafter referred to as the first class).
  • Group V elements such as phosphorus (referred to as the second class).
  • Metal elements such as iron (referred to as the third class).
  • the impurities are removed by oxidation treatment or vacuum heat treatment.
  • the third type of impurities it is possible to reduce the impurity concentration basically by utilizing segregation at grain boundaries or segregation at the solid liquid interface.
  • the conductivity type (P type or N type) of the solar cell it is necessary to add both elements in an appropriate ratio in order to determine the conductivity type (P type or N type) of the solar cell.
  • the 3rd type metal impurity in order to prevent the fall of the photoelectric conversion efficiency of a solar cell, it is necessary to suppress as low a density
  • Patent Document 1 JP-A-2006-27940
  • JP-A-60-190531 disclose prior art documents that disclose a method or apparatus for removing a third type of impurity having an extremely small segregation coefficient such as metal.
  • Patent Document 2 JP-A-2006-27940
  • a rotary cooling device for a high-purity aluminum production apparatus described in Patent Document 2 includes a cylindrical hollow rotary cooling body attached to the lower end of a hollow rotary shaft, a cooling fluid supply pipe disposed in the hollow rotary shaft, And a hollow cylindrical cooling fluid blowing member disposed in the hollow rotary cooling body and communicated with the cooling fluid supply pipe.
  • the thickness of the bottom wall of the hollow rotary cooling body is made thicker than the thickness of the peripheral wall, so that the amount of heat transfer inside and outside through the bottom wall is reduced.
  • Aluminum is not deposited on the outer surface, and a large number of cooling fluid outlets are uniformly distributed on the peripheral wall of the cooling fluid outlet member.
  • the impurity concentration of the purified metal deposited on the cooling body may be significantly lower than the impurity concentration of the molten metal before purification by solidification segregation. it can.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a purification apparatus capable of pulling up and collecting more refined semiconductors or refined metals.
  • a semiconductor or metal refining apparatus includes a crucible for melting a semiconductor or metal therein, and cooling in a state of being rotationally driven by being immersed in the molten semiconductor or molten metal melted in the crucible. And a hollow cooling body that precipitates a refined semiconductor or refined metal in which impurities are reduced by solidifying and segregating the melted semiconductor or melted metal on the outer surface.
  • the cooling body has a hollow rotating shaft portion and a hollow immersion portion that is in contact with the rotating shaft portion and is immersed in the molten semiconductor or molten metal.
  • a pipe for passing a cooling fluid for cooling the cooling body is provided inside the rotating shaft.
  • a blowout part having a plurality of outlets that communicate with the piping and blow out the cooling fluid toward the inner surface of the immersion part.
  • the plurality of air outlets are located on the side surface and the bottom surface of the air outlet.
  • the distance between the upper end position of the uppermost blower outlet located at the uppermost position and the lower end position of the immersion part among the plurality of outlets located on the side surface of the blowout part is the upper end position of the immersion part and the lower end position of the immersion part. Is less than half compared to the distance between.
  • the semiconductor or metal refining device includes a crucible for melting the semiconductor or metal therein, and cooling in a rotationally driven state immersed in the molten semiconductor or molten metal melted in the crucible. And a cooling body for precipitating a refined semiconductor or refined metal in which impurities are reduced by solidifying and segregating the melted semiconductor or melted metal on the outer surface.
  • the cooling body has a rotating shaft portion and an immersion portion that is in communication with the rotating shaft portion and is immersed in a molten semiconductor or a molten metal.
  • the immersion part is composed of a cylindrical peripheral side surface and a curved bottom surface that is continuous with the peripheral side surface.
  • a semiconductor or metal refining device includes a crucible for melting a semiconductor or metal therein, and cooling in a rotationally driven state immersed in the molten semiconductor or molten metal melted in the crucible. And a hollow cooling body that precipitates a refined semiconductor or refined metal in which impurities are reduced by solidifying and segregating the melted semiconductor or melted metal on the outer surface.
  • the cooling body has a hollow rotating shaft portion and a hollow immersion portion that is in communication with the rotating shaft portion and is immersed in the molten semiconductor or molten metal.
  • the immersion part is composed of a cylindrical peripheral side surface and a curved bottom surface that is continuous with the peripheral side surface.
  • a pipe for passing a cooling fluid for cooling the cooling body is provided inside the rotating shaft.
  • a blowout part having a plurality of outlets that communicate with the piping and blow out the cooling fluid toward the inner surface of the immersion part.
  • the plurality of air outlets are located on the side surface and the bottom surface of the air outlet.
  • the distance between the upper end position of the uppermost blower outlet located at the uppermost position and the lower end position of the immersion part among the plurality of outlets located on the side surface of the blowout part is the upper end position of the immersion part and the lower end position of the immersion part. Is less than half compared to the distance between.
  • the bottom face of the immersion part is comprised by a part of spherical surface.
  • the semiconductor or the metal is silicon.
  • the cooling body is made of graphite.
  • more refined semiconductors or refined metals can be pulled up and collected.
  • FIG. 10 is a partial cross-sectional view illustrating a configuration of a cooling body according to Comparative Example 2.
  • FIG. 4 is a side view showing the shape of precipitated purified silicon in the silicon purification apparatus according to Comparative Example 1.
  • Comparative Example 1 of a semiconductor or metal purification apparatus performed using a cooling body having a structure equivalent to that of the rotary cooling apparatus described in Patent Document 2 will be described.
  • silicon was used as an example of a semiconductor or metal.
  • FIG. 5 is a partial cross-sectional view showing a state in which a cooling body is immersed in molten silicon in the silicon purification apparatus according to Comparative Example 1. In addition, in FIG. 5, the inside of the cooling body 300 is not illustrated.
  • the silicon purification apparatus according to Comparative Example 1 includes a crucible 20 that melts silicon inside and a hollow cooling body 300.
  • various materials such as graphite, silica, quartz, silicon carbide, alumina, mullite, iron, stainless steel, or copper can be used as the material of the crucible 20.
  • the semiconductor or metal to be purified is silicon
  • graphite, silica, quartz, silicon carbide, alumina, mullite, or the like can be used.
  • graphite, silica, quartz, or silicon carbide is preferable as the material of the crucible 20 in order to suppress the entry of impurities from the crucible 20 into the silicon.
  • the cooling body 300 has a hollow rotating shaft portion 320 and a hollow immersion portion 310 that is in communication with the rotating shaft portion 320 and is immersed in the molten silicon 10.
  • the immersion part 310 has a tapered outer shape with a tapered tip and a flat surface at the tip.
  • the material of the cooling body 300 must be selected according to the semiconductor or metal to be purified, and graphite is preferable when the semiconductor or metal to be purified is silicon.
  • a pipe (not shown) through which a cooling fluid for cooling the cooling body 300 flows is provided inside the rotary shaft portion 320.
  • a blow-out part (not shown) that communicates with the pipe and has a plurality of outlets for blowing a cooling fluid toward the inner surface of the immersion part 310.
  • the plurality of outlets are uniformly positioned on the side surface of the outlet.
  • graphite can be used as the material of the pipe and the blowout part.
  • the crucible 20 is accommodated in the chamber 30.
  • An opening 32 that allows the cooling body 300 to move in and out of the chamber 30 is provided in the upper portion of the chamber 30.
  • the inner space 31 of the chamber 30 is filled with an inert gas such as helium, argon or nitrogen.
  • a heater (not shown) is disposed around the crucible 20 in the chamber 30.
  • FIG. 6 is a cross-sectional view showing a state in which purified silicon is deposited on the surface of a cooling body immersed in molten silicon in the silicon purification apparatus according to Comparative Example 1.
  • the cooling body 300 is immersed in the molten silicon 10 melted in the crucible 20 and cooled in a rotationally driven state, so that the molten silicon 10 is solidified and segregated to reduce impurities.
  • Purified silicon 40 is deposited on the outer surface.
  • the cooling body 300 is cooled by blowing an inexpensive refrigerant having a high thermal conductivity such as nitrogen as a cooling fluid from the outlet of the outlet through the pipe. Since the blower outlet is provided uniformly on the side surface of the blowout part, the entire side surface of the immersion part 310 is cooled. On the other hand, since the blowout port is not provided on the bottom surface of the immersion part 310, the bottom surface of the immersion part 310 is not cooled compared to the side surface.
  • an inexpensive refrigerant having a high thermal conductivity such as nitrogen as a cooling fluid
  • cooling body 300 is rotationally driven around a line 300 a that is orthogonal to the horizontal section of the immersion part 310 and passes through the center of the outer shape of the immersion part 310.
  • FIG. 7 is a cross-sectional view showing a state in which the cooling body is pulled up from the molten silicon in the silicon purification apparatus according to Comparative Example 1. As shown in FIG. 7, the cooling body 300 with the purified silicon 40 deposited on the surface is pulled up above the molten silicon 10.
  • FIG. 8 is a side view showing the shape of precipitated purified silicon in the silicon purification apparatus according to Comparative Example 1.
  • the purified silicon 40 deposited on the surface of the cooling body of Comparative Example 1 has a wide portion 41 formed so as to protrude at the upper end portion, and a corner portion around the tip of the immersion portion 310 at the lower end portion. And the formed thin portion 42. The thickness of the thin portion 42, and W s.
  • the reason why the wide portion 41 is formed is that the temperature near the liquid surface of the molten silicon 10 is lower than the temperature inside the molten silicon 10, and the precipitation rate of the purified silicon near the liquid surface of the molten silicon 10 is different. This is probably because it is faster than the part.
  • the reason why the thin-walled portion 42 is formed is that the bottom surface of the immersion portion 310 is not provided with an air outlet, so that the temperature of the bottom surface of the immersion portion 310 is higher than that of the side surface, and the purified silicon 40 is deposited on the bottom surface of the immersion portion 310. This is because the speed is slower than the deposition speed of the purified silicon 40 deposited on the side surface of the immersion part 310.
  • the amount of the purified silicon 40 recovered is reduced.
  • the amount of recovered purified silicon 40 per hour is further reduced.
  • Study plan 1 is to shorten the deposition time of the purified silicon 40.
  • Study plan 2 is to keep the temperature of the molten silicon 10 high.
  • the inventors of the present invention can reduce the above-described dropping phenomenon by changing the arrangement of the outlet in the outlet and the outer shape of the immersion part of the cooling body. I found.
  • the precipitation rate of the purified silicon 40 in the vicinity of the liquid surface of the molten silicon 10 is reduced and the formation of the wide part 41 is suppressed.
  • the present inventors have found that the formation rate of the thin-walled portion 42 can be suppressed by increasing the deposition rate of the purified silicon 40 deposited on the bottom surface of the immersion portion 310.
  • the outer shape of the immersion part of the cooling body from a cylindrical peripheral side surface and a curved bottom surface that is continuous with the peripheral side surface, the formation of the thin portion 42 around the corner of the tip of the immersion part is suppressed. I found out that I can do it.
  • FIG. 1 is a partial cross-sectional view showing a configuration of a cooling body in a semiconductor or metal purification apparatus according to an embodiment of the present invention.
  • the piping 130 and the blowing part 140 which flow a cooling fluid have shown the state of side view.
  • the cooling body 100 has a hollow rotary shaft portion 120 and a hollow immersion portion 110 that is in communication with the rotary shaft portion 120 and is immersed in a molten semiconductor or molten metal. is doing.
  • the immersion part 110 is composed of a cylindrical peripheral side surface and a curved bottom surface that is continuous with the peripheral side surface.
  • the bottom surface of the immersion part 110 is constituted by a part of a spherical surface.
  • a pipe 130 for allowing a cooling fluid for cooling the cooling body 100 to flow is provided inside the rotating shaft portion 120 .
  • a blowing part 140 having a plurality of outlets 141 that communicate with the pipe 130 and blow the cooling fluid toward the inner surface of the immersion part 110.
  • the cooling fluid sprayed on the inner surface of the immersion part 110 flows between the pipe 130 and the rotary shaft part 120 and is collected.
  • the blow-out part 140 has a cylindrical outer shape whose bottom is closed. As shown in FIG. 1, chamfering may be performed on a corner portion on the lower end side of the blowing portion 140. Moreover, the blowing part 140 may have a tapered part on the peripheral side surface that gradually becomes larger in diameter from the lower end in a cross-sectional view.
  • the plurality of air outlets 141 are located on the side surface and the bottom surface of the air outlet 140.
  • the distance L 2 between the upper end position of the uppermost upper outlet located among the plurality of outlets 141 located on the side surface of the outlet part 140 and the lower end position of the immersion part 110 is the upper end position of the immersion part 110. Compared to the distance L 1 between the lower end position of the immersion part 110 and less than half.
  • the shape of the outlet 141 various shapes such as a circular shape, an elliptical shape, a polygonal shape, or a slit shape can be adopted, but in the present embodiment, the shape is a circular shape.
  • the opening area per one outlet 141 is preferably 0.5% or more and 2% or less with respect to the flow area of the cross section of the pipe 130, for example.
  • the outlets 141 are arranged so that the position distribution is not locally biased.
  • the divided piece obtained by dividing the blowing portion 140 into two planes in an arbitrary plane that includes the rotation center axis of the cooling body 100 and is parallel to the rotation axis direction of the cooling body 100, the divided piece having the smaller outlet 141. It is desirable that the opening areas of all the outlets 141 occupy in the range of 1/3 or more and 1 ⁇ 2 or less of the opening areas of all the outlets 141 occupying the entire blowing part 140.
  • the refined semiconductor or refined metal deposited on the bottom surface of the immersion part 110 is suppressed by reducing the deposition rate of the refined semiconductor or refined metal in the vicinity of the liquid surface of the melted semiconductor or melted metal to suppress the formation of the wide portion 41. It is possible to suppress the formation rate of the thin-walled portion 42 around the corner portion at the tip of the immersion portion 110 by increasing the deposition rate.
  • the refined semiconductor or refined metal deposited on the surface of the cooling body 100 can be recovered while suppressing reduction due to falling, and the recovered weight of the refined semiconductor or refined metal can be increased.
  • the immersion part 110 has a cylindrical peripheral side surface.
  • a tapered part having a gradually increasing diameter from the lower part to the upper part in a sectional view is provided on the peripheral side surface. You may have.
  • the bottom surface of the immersion part 110 may be a flat surface instead of a curved surface.
  • the structure of the cooling body 100 is not limited to the above.
  • the cooling body may be cooled by bringing a cooling component such as a water cooling plate into contact with the upper side of the solid cooling body. Also in this case, the formation of the wide portion 41 can be suppressed, and the recovered weight of the purified semiconductor or purified metal can be increased.
  • the air outlet 141 may be evenly disposed on the entire side surface and bottom surface of the air outlet 140. In this case, the formation of the thin portion 42 can be suppressed, and the recovered weight of the purified semiconductor or purified metal can be increased.
  • silicon is purified in the embodiments, the present invention is not limited to silicon and can be applied to the purification of semiconductors or metals.
  • Example 1 In Example 1, 430 kg of silicon was charged into a crucible 20 made of isotropic graphite having an outer diameter of 630 mm and melted. The temperature of the molten silicon 10 was kept at the melting point of silicon + 10 ° C.
  • the cooling body 100 of the present embodiment has a rotating shaft portion 120 and an immersion portion 110
  • the immersion portion 110 has a cylindrical peripheral side surface and a spherical surface continuous with the peripheral side surface. It is comprised from the bottom face comprised from the part.
  • the size of the immersion part 110 was such that the cylindrical diameter on the peripheral side surface was 200 mm, and the distance L 1 between the upper end position of the immersion part 110 and the lower end position of the immersion part 110 was 500 mm.
  • outlets 141 having a hole diameter of 5 mm were provided on the side surface of the outlet 140 and 9 locations on the bottom surface. The intervals between the adjacent outlets 141 were all equal. A distance L 2 between the upper end position of the uppermost outlet and the lower end position of the immersion part 110 among the plurality of outlets 141 located on the side surface of the outlet part 140 was set to 250 mm.
  • the blowing part 140 was formed from isotropic graphite.
  • the molten silicon is rotated for 17 minutes while rotating the cooling body 100 at a rotation speed of 30 rotations / minute with nitrogen gas flowing through the pipe 130 at a flow rate of 6000 L / minute.
  • the immersion part 110 was immersed in 10 and the purified silicon 40 was deposited.
  • the purified silicon 40 was peeled off from the cooling body 100, and the purified silicon 40 was recovered.
  • purification operations a series of operations from precipitation to collection of the purified silicon 40 will be referred to as purification operations.
  • This purification operation was performed a plurality of times, and each time the recovered amount of the purified silicon 40 reached 160 kg, the same amount of solid silicon was replenished into the crucible 20 and melted. The above refining operation was repeated 229 times while appropriately replenishing the solid silicon.
  • FIG. 2 is a partial cross-sectional view showing the configuration of the cooling body according to the second embodiment of the present invention.
  • the piping 130 and the blowing part 140 which flow a cooling fluid have shown the state of side view.
  • the cooling body 200 includes a rotating shaft part 220 and an immersion part 210, and the immersion part 210 includes a cylindrical peripheral side surface and a bottom surface formed of a flat surface continuous with the peripheral side surface. Has been. The thickness of the bottom surface of the immersion part 210 was doubled compared to the thickness of the side surface.
  • FIG. 3 is a partial cross-sectional view showing the configuration of the cooling body according to the third embodiment of the present invention.
  • the piping 230 and the blowing part 240 which flow a cooling fluid have shown the state of side view.
  • the plurality of outlets 241 are located only on the entire side surface of the blowing unit 240.
  • the distance L 3 between the upper end position of the uppermost outlet and the lower end position of the immersion part 210 among the plurality of outlets 241 located on the side surface of the outlet part 240 is the upper end position of the immersion part 210.
  • the distance L 3 was 400 mm.
  • the blowing part 240 was formed from isotropic graphite.
  • Example 2 The other conditions were the same as in Example 1, and the refining operation was repeated 165 times while appropriately replenishing solid silicon.
  • FIG. 4 is a partial cross-sectional view illustrating a configuration of a cooling body according to Comparative Example 2.
  • the piping 230 and the blowing part 240 which flow a cooling fluid have shown the state of side view.
  • the cooling body 200 has the rotating shaft part 220 and the immersion part 210, and the immersion part 210 is a flat surface continuous with the cylindrical peripheral side surface and the peripheral side surface. It is comprised from the bottom which consists of. The thickness of the bottom surface of the immersion part 210 was doubled compared to the thickness of the side surface.
  • the plurality of outlets 241 are located only on the entire side surface of the blowing part 240.
  • the distance L 3 between the upper end position of the uppermost outlet and the lower end position of the immersion part 210 among the plurality of outlets 241 located on the side surface of the outlet part 240 is the upper end position of the immersion part 210.
  • the distance L 3 was set to 400 mm.
  • the blowing part 240 was formed from isotropic graphite.
  • Example 2 The other conditions were the same as in Example 1, and the refining operation was repeated 87 times while appropriately replenishing solid silicon.
  • Example 2 compared with Comparative Example 2, in Example 2 and Example 3, the difference in average thickness of purified silicon 40 deposited on the peripheral side surface and the bottom surface of the immersion part was reduced. . That is, the local thickness change of the purified silicon 40 was reduced. Moreover, the incidence rate of the dropping phenomenon of the purified silicon 40 was also reduced. From this result, formation of the wide part 41 or the thin part 42 is suppressed by having either the arrangement of the outlet 141 in the outlet part 140 according to this embodiment and the outer shape of the immersion part 110, and purified silicon. It was confirmed that a recovery weight of 40 could be increased.
  • Example 1 compared with Comparative Example 2, the difference in average thickness of the purified silicon 40 deposited on the peripheral side surface and the bottom surface of the immersion part is further reduced, and the occurrence rate of the dropping phenomenon of the purified silicon 40 is further increased. It was reduced. Therefore, by having both the arrangement of the outlet 141 in the outlet 140 and the outer shape of the immersion part 110 according to the present embodiment, the formation of the wide part 41 and the thin part 42 is suppressed, and the purified silicon 40 is made efficient. It was confirmed that it could be purified well.
  • Example 2 and Comparative Example 2 the Fe concentration in the purified silicon on the bottom surface is higher than that on the peripheral side surface of the immersion part, whereas in Example 1 and Example 3, the peripheral side surface of the immersion part is It was confirmed that there was no difference in Fe concentration in the purified silicon between the bottom surface and the bottom surface.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

A cooling body (100) has a hollow rotating shaft section (120), and a hollow immersion section (110), which is a portion communicated with the rotating shaft section (120), and immersed in a molten semiconductor or a molten metal. The immersion section (110) is configured of a cylindrical circumferential side surface, and a bent bottom surface continuous from the circumferential side surface. Piping (130) for circulating a cooling fluid that cools the cooling body (100) is provided inside of the rotating shaft section (120). An outlet section (140), which is communicated with the piping (130), and which has a plurality of outlet ports (141) for blowing out the cooling fluid toward the inner surface of the immersion section (110), is provided on the inner side of the immersion section (110). The outlet ports (141) are positioned on the side surface and the bottom surface of the outlet section (140). A distance (L2) between an upper end position of an upper end outlet port positioned at the top among the outlet ports (141) positioned on the side surface of the outlet section (140), and a lower end position of the immersion section (110) is equal to or shorter than half a distance (L1) between an upper end position of the immersion section (110) and a lower end position of the immersion section (110).

Description

半導体または金属の精製装置Semiconductor or metal purification equipment
 本発明は、半導体または金属の精製装置に関する。 The present invention relates to a semiconductor or metal purification apparatus.
 さまざまな種類の材料が工業的に利用されている。酸素および窒素など自然界に単体で豊富に存在する材料もあるが、シリコンなどの金属材料のほとんどは、酸化物または硫化物などの化合物の状態で存在しており、自然界に単体で存在することは稀である。 Various types of materials are used industrially. Some materials exist in nature alone, such as oxygen and nitrogen, but most metal materials such as silicon exist in the form of compounds such as oxides or sulfides, and they exist in nature alone. It is rare.
 したがって、特定の金属元素を得るために、酸化物または硫化物の還元を行なうとともに、不純物の除去が必要になる。各種金属元素はさまざまな用途に用いられるため、金属元素を廉価に高純度化する方法が必要とされている。 Therefore, in order to obtain a specific metal element, it is necessary to reduce oxides or sulfides and remove impurities. Since various metal elements are used in various applications, a method for purifying the metal elements at low cost is required.
 一方、環境問題から、石油など化石燃料エネルギーの代替として自然エネルギーの利用が注目されている。自然エネルギーを利用して発電する太陽電池は、大きな設備を必要とせず、また、稼働時の騒音が発生しないことなどの理由により、日本および欧州などで積極的に導入されている。 On the other hand, due to environmental problems, the use of natural energy is attracting attention as an alternative to fossil fuel energy such as oil. Solar cells that generate power using natural energy are actively introduced in Japan and Europe because they do not require large facilities and do not generate noise during operation.
 太陽電池においては、カドミウムテルルなどの化合物半導体からなる新たな太陽電池の開発が進んでいる。しかし、物質自体の安全性、これまでの使用実績および価格の面から、結晶シリコンを基板として用いた太陽電池が現在大きなシェアを占めている。その中でも、多結晶シリコンウエハ(以下、単にウエハとも称する)から作製された多結晶シリコン太陽電池が占める割合が大きい。 In solar cells, new solar cells made of compound semiconductors such as cadmium tellurium are being developed. However, solar cells using crystalline silicon as a substrate currently occupy a large share in terms of the safety of the substance itself, past use results and price. Among them, the proportion of polycrystalline silicon solar cells manufactured from a polycrystalline silicon wafer (hereinafter also simply referred to as a wafer) is large.
 結晶シリコン太陽電池に用いられるウエハには、大きく分けて単結晶シリコンウエハと多結晶シリコンウエハとの2つがある。単結晶シリコンウエハの作製には、CZ(Czochralski)法およびFZ(Floating Zone)法が一般的に用いられている。 There are roughly two types of wafers used for crystalline silicon solar cells: single crystal silicon wafers and polycrystalline silicon wafers. CZ (Czochralski) method and FZ (Floating Zone) method are generally used for the production of a single crystal silicon wafer.
 多結晶シリコンウエハの作製には、溶融シリコンから大きな多結晶塊を成長させた後スライスしてウエハを得るキャスト法、および、溶融シリコンから多結晶シリコンウエハを直接成長させるリボン法がある。リボン法には、基板を用いる方法と、基板を用いない方法との両方がある。また、多結晶シリコンの作製には、ウエハとは形状が異なるが、ウエハと同様に太陽電池などの基材となるシリコン粒を、真空中または不活性ガス中にシリコン液滴を落下させて作製する球状シリコン法などがある。 The production of a polycrystalline silicon wafer includes a casting method in which a large polycrystalline lump is grown from molten silicon and then sliced to obtain a wafer, and a ribbon method in which a polycrystalline silicon wafer is directly grown from molten silicon. The ribbon method includes both a method using a substrate and a method not using a substrate. In addition, for the production of polycrystalline silicon, the shape is different from that of wafers, but as with wafers, silicon particles that are used as base materials for solar cells are produced by dropping silicon droplets in vacuum or in an inert gas. There is a spherical silicon method.
 結晶シリコンウエハ、リボンおよび球状シリコンの作製においては、ほとんどの場合溶融シリコンが必要となり、かつ、金属などの不純物のほとんどは電子デバイスの特性に悪影響を与える。したがって、シリコンも上述の金属元素の例にもれず、廉価に高純度化する方法が必要とされている。 In the production of crystalline silicon wafers, ribbons and spherical silicon, molten silicon is almost always required, and most impurities such as metals adversely affect the characteristics of electronic devices. Therefore, silicon is not an example of the above-described metal element, and a method for purifying it inexpensively is required.
 シリコンを高純度化する方法の1つとして、不純物の凝固偏析などを利用した冶金学的方法がある。この方法は、シーメンス法および流動床法などの気相法と比較して廉価に不純物の除去を行なえる可能性があるため注目されている。 As one of the methods for purifying silicon, there is a metallurgical method using solidification segregation of impurities. This method is attracting attention because it may be able to remove impurities at a lower cost than gas phase methods such as the Siemens method and the fluidized bed method.
 以下、シリコンを例に挙げて、不純物の除去方法について説明する。冶金学的手法においては、シリコン中の不純物は以下の3種類に分類される。
(1)ボロンなどの第III族元素(以下、第1類と称する)。
(2)リンなどの第V族元素(第2類と称する)。
(3)鉄などの金属元素(第3類と称する)。
Hereinafter, a method for removing impurities will be described using silicon as an example. In the metallurgical method, impurities in silicon are classified into the following three types.
(1) Group III elements such as boron (hereinafter referred to as the first class).
(2) Group V elements such as phosphorus (referred to as the second class).
(3) Metal elements such as iron (referred to as the third class).
 上記の第1類および第2類の不純物においては、偏析による不純物除去の効果を得にくいため、酸化処理または真空加熱処理などにより不純物除去が行なわれる。第3類の不純物においては、基本的には粒界への偏析または固体液体界面での偏析などを利用することにより不純物濃度の低減が可能である。 In the above-mentioned first and second types of impurities, since it is difficult to obtain the effect of removing impurities by segregation, the impurities are removed by oxidation treatment or vacuum heat treatment. For the third type of impurities, it is possible to reduce the impurity concentration basically by utilizing segregation at grain boundaries or segregation at the solid liquid interface.
 第1類および第2類の不純物については、太陽電池の導電型(P型またはN型)を決定するために、両元素を適正な割合で配合することが必要である。第3類の金属不純物については、太陽電池の光電変換効率の低下を防ぐため、できる限り低濃度に抑える必要がある。 For the first and second type impurities, it is necessary to add both elements in an appropriate ratio in order to determine the conductivity type (P type or N type) of the solar cell. About the 3rd type metal impurity, in order to prevent the fall of the photoelectric conversion efficiency of a solar cell, it is necessary to suppress as low a density | concentration as possible.
 金属などの偏析係数が極端に小さい第3類の不純物を除去する方法または装置を開示した先行文献として、特開2006-27940号公報(特許文献1)、および、特開昭60-190531号公報(特許文献2)がある。 JP-A-2006-27940 (Patent Document 1) and JP-A-60-190531 disclose prior art documents that disclose a method or apparatus for removing a third type of impurity having an extremely small segregation coefficient such as metal. (Patent Document 2).
 特許文献1に記載された金属の精製方法においては、冷却体の表面に精製金属を析出させて凝固偏析現象を利用して金属を精製している。 In the metal refining method described in Patent Document 1, a refined metal is deposited on the surface of a cooling body, and the metal is refined using a solidification segregation phenomenon.
 特許文献2に記載された高純度アルミニウムの製造装置用回転冷却装置は、中空回転軸の下端に取り付けられた筒状の中空回転冷却体と、中空回転軸内に配置された冷却流体供給管と、中空回転冷却体内に配置されかつ冷却流体供給管に連通せしめられた中空筒状冷却流体吹出部材とよりなる。 A rotary cooling device for a high-purity aluminum production apparatus described in Patent Document 2 includes a cylindrical hollow rotary cooling body attached to the lower end of a hollow rotary shaft, a cooling fluid supply pipe disposed in the hollow rotary shaft, And a hollow cylindrical cooling fluid blowing member disposed in the hollow rotary cooling body and communicated with the cooling fluid supply pipe.
 高純度アルミニウムの製造装置用回転冷却装置においては、中空回転冷却体の底壁の肉厚は周壁の肉厚よりも厚くされて、底壁を通っての内外の伝熱量を少なくして底壁外面にアルミニウムが析出しないようになされ、冷却流体吹出部材の周壁に多数の冷却流体吹出口が均一に分布するように形成されている。 In the rotary cooling device for high-purity aluminum manufacturing equipment, the thickness of the bottom wall of the hollow rotary cooling body is made thicker than the thickness of the peripheral wall, so that the amount of heat transfer inside and outside through the bottom wall is reduced. Aluminum is not deposited on the outer surface, and a large number of cooling fluid outlets are uniformly distributed on the peripheral wall of the cooling fluid outlet member.
特開2006-27940号公報JP 2006-27940 A 特開昭60-190531号公報JP-A-60-190531
 特許文献1,2に記載された金属の精製方法または装置においては、冷却体に析出させた精製金属の不純物濃度を、凝固偏析によって精製前の溶融金属の不純物濃度よりも大幅に低くすることができる。 In the metal refining method or apparatus described in Patent Documents 1 and 2, the impurity concentration of the purified metal deposited on the cooling body may be significantly lower than the impurity concentration of the molten metal before purification by solidification segregation. it can.
 半導体または金属の精製は、短時間でより多くの重量を精製することが望まれる。そのため、精製半導体または精製金属のさらなる回収重量の増大が求められていた。 In the purification of semiconductors or metals, it is desired to purify more weight in a short time. Therefore, further increase in the recovered weight of the purified semiconductor or purified metal has been demanded.
 本発明は上記の問題点に鑑みてなされたものであって、より多くの精製半導体または精製金属を引き上げて回収できる精製装置を提供することを目的とする。 The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a purification apparatus capable of pulling up and collecting more refined semiconductors or refined metals.
 本発明の第1の局面に基づく半導体または金属の精製装置は、内部で半導体または金属を溶融させる坩堝と、坩堝内で溶融された溶融半導体または溶融金属に浸されて回転駆動された状態で冷却されることにより、溶融半導体または溶融金属を凝固偏析させて不純物を低減した精製半導体または精製金属を外表面に析出させる中空状の冷却体とを備える。冷却体は、中空状の回転軸部、および、この回転軸部と連通して溶融半導体または溶融金属に浸される部分である中空状の浸漬部を有する。回転軸部の内側に、冷却体を冷却する冷却流体を通流させる配管が設けられている。浸漬部の内側に、配管と連通し、冷却流体を浸漬部の内表面に向けて吹き出させる複数の吹出口を有する吹出部が設けられている。複数の吹出口は、吹出部の側面および底面に位置している。吹出部の側面に位置する複数の吹出口のうちの最も上方に位置する上端吹出口の上端位置と浸漬部の下端位置との間の距離が、浸漬部の上端位置と浸漬部の下端位置との間の距離に比較して半分以下である。 A semiconductor or metal refining apparatus according to the first aspect of the present invention includes a crucible for melting a semiconductor or metal therein, and cooling in a state of being rotationally driven by being immersed in the molten semiconductor or molten metal melted in the crucible. And a hollow cooling body that precipitates a refined semiconductor or refined metal in which impurities are reduced by solidifying and segregating the melted semiconductor or melted metal on the outer surface. The cooling body has a hollow rotating shaft portion and a hollow immersion portion that is in contact with the rotating shaft portion and is immersed in the molten semiconductor or molten metal. A pipe for passing a cooling fluid for cooling the cooling body is provided inside the rotating shaft. Inside the immersion part, there is provided a blowout part having a plurality of outlets that communicate with the piping and blow out the cooling fluid toward the inner surface of the immersion part. The plurality of air outlets are located on the side surface and the bottom surface of the air outlet. The distance between the upper end position of the uppermost blower outlet located at the uppermost position and the lower end position of the immersion part among the plurality of outlets located on the side surface of the blowout part is the upper end position of the immersion part and the lower end position of the immersion part. Is less than half compared to the distance between.
 本発明の第2の局面に基づく半導体または金属の精製装置は、内部で半導体または金属を溶融させる坩堝と、坩堝内で溶融された溶融半導体または溶融金属に浸されて回転駆動された状態で冷却されることにより、溶融半導体または溶融金属を凝固偏析させて不純物を低減した精製半導体または精製金属を外表面に析出させる冷却体とを備える。冷却体は、回転軸部、および、この回転軸部と連通して溶融半導体または溶融金属に浸される部分である浸漬部を有している。浸漬部は、円筒状の周側面とこの周側面と連続した湾曲面状の底面とから構成されている。 The semiconductor or metal refining device according to the second aspect of the present invention includes a crucible for melting the semiconductor or metal therein, and cooling in a rotationally driven state immersed in the molten semiconductor or molten metal melted in the crucible. And a cooling body for precipitating a refined semiconductor or refined metal in which impurities are reduced by solidifying and segregating the melted semiconductor or melted metal on the outer surface. The cooling body has a rotating shaft portion and an immersion portion that is in communication with the rotating shaft portion and is immersed in a molten semiconductor or a molten metal. The immersion part is composed of a cylindrical peripheral side surface and a curved bottom surface that is continuous with the peripheral side surface.
 本発明の第3の局面に基づく半導体または金属の精製装置は、内部で半導体または金属を溶融させる坩堝と、坩堝内で溶融された溶融半導体または溶融金属に浸されて回転駆動された状態で冷却されることにより、溶融半導体または溶融金属を凝固偏析させて不純物を低減した精製半導体または精製金属を外表面に析出させる中空状の冷却体とを備える。冷却体は、中空状の回転軸部、および、この回転軸部と連通して溶融半導体または溶融金属に浸される部分である中空状の浸漬部を有している。浸漬部は、円筒状の周側面とこの周側面と連続した湾曲面状の底面とから構成されている。回転軸部の内側に、冷却体を冷却する冷却流体を通流させる配管が設けられている。浸漬部の内側に、配管と連通し、冷却流体を浸漬部の内表面に向けて吹き出させる複数の吹出口を有する吹出部が設けられている。複数の吹出口は、吹出部の側面および底面に位置している。吹出部の側面に位置する複数の吹出口のうちの最も上方に位置する上端吹出口の上端位置と浸漬部の下端位置との間の距離が、浸漬部の上端位置と浸漬部の下端位置との間の距離に比較して半分以下である。 A semiconductor or metal refining device according to a third aspect of the present invention includes a crucible for melting a semiconductor or metal therein, and cooling in a rotationally driven state immersed in the molten semiconductor or molten metal melted in the crucible. And a hollow cooling body that precipitates a refined semiconductor or refined metal in which impurities are reduced by solidifying and segregating the melted semiconductor or melted metal on the outer surface. The cooling body has a hollow rotating shaft portion and a hollow immersion portion that is in communication with the rotating shaft portion and is immersed in the molten semiconductor or molten metal. The immersion part is composed of a cylindrical peripheral side surface and a curved bottom surface that is continuous with the peripheral side surface. A pipe for passing a cooling fluid for cooling the cooling body is provided inside the rotating shaft. Inside the immersion part, there is provided a blowout part having a plurality of outlets that communicate with the piping and blow out the cooling fluid toward the inner surface of the immersion part. The plurality of air outlets are located on the side surface and the bottom surface of the air outlet. The distance between the upper end position of the uppermost blower outlet located at the uppermost position and the lower end position of the immersion part among the plurality of outlets located on the side surface of the blowout part is the upper end position of the immersion part and the lower end position of the immersion part. Is less than half compared to the distance between.
 本発明の一形態においては、浸漬部の底面が球面の一部で構成されている。
 本発明の一形態においては、上記半導体または上記金属がシリコンである。
In one form of this invention, the bottom face of the immersion part is comprised by a part of spherical surface.
In one embodiment of the present invention, the semiconductor or the metal is silicon.
 本発明の一形態においては、冷却体が黒鉛から形成されている。 In one embodiment of the present invention, the cooling body is made of graphite.
 本発明によれば、より多くの精製半導体または精製金属を引き上げて回収できる。 According to the present invention, more refined semiconductors or refined metals can be pulled up and collected.
本発明の一実施形態に係る半導体または金属の精製装置における冷却体の構成を示す一部断面図である。It is a partial cross section figure which shows the structure of the cooling body in the refiner | purifier of the semiconductor or metal which concerns on one Embodiment of this invention. 本発明の実施例2に係る冷却体の構成を示す一部断面図である。It is a partial cross section figure which shows the structure of the cooling body which concerns on Example 2 of this invention. 本発明の実施例3に係る冷却体の構成を示す一部断面図である。It is a partial cross section figure which shows the structure of the cooling body which concerns on Example 3 of this invention. 比較例2に係る冷却体の構成を示す一部断面図である。10 is a partial cross-sectional view illustrating a configuration of a cooling body according to Comparative Example 2. FIG. 比較例1に係るシリコンの精製装置において、溶融シリコン中に冷却体を浸漬させる状態を示す一部断面図である。In the silicon | silicone refinement | purification apparatus which concerns on the comparative example 1, it is a partial cross section figure which shows the state which immerses a cooling body in molten silicon. 比較例1に係るシリコンの精製装置において、溶融シリコン中に浸漬させている冷却体の表面上に精製シリコンを析出させている状態を示す断面図である。In the refiner | purifier of the silicon | silicone which concerns on the comparative example 1, it is sectional drawing which shows the state which has refined silicon deposited on the surface of the cooling body immersed in molten silicon. 比較例1に係るシリコンの精製装置において、溶融シリコンから冷却体を引き上げた状態を示す断面図である。In the refiner | purifier of the silicon | silicone which concerns on the comparative example 1, it is sectional drawing which shows the state which pulled up the cooling body from molten silicon. 比較例1に係るシリコンの精製装置において、析出した精製シリコンの形状を示す側面図である。FIG. 4 is a side view showing the shape of precipitated purified silicon in the silicon purification apparatus according to Comparative Example 1.
 本発明者らは、さまざまな評価および考察を行なうことにより、精製半導体または精製金属の回収重量の増大を試みた。以下、特許文献2に記載された回転冷却装置と同等の構造を有する冷却体を用いて行なった半導体または金属の精製装置の比較例1における評価および考察について説明する。なお、比較例1においては、半導体または金属の一例としてシリコンを用いた。 The present inventors tried to increase the recovered weight of the refined semiconductor or refined metal through various evaluations and considerations. Hereinafter, evaluation and consideration in Comparative Example 1 of a semiconductor or metal purification apparatus performed using a cooling body having a structure equivalent to that of the rotary cooling apparatus described in Patent Document 2 will be described. In Comparative Example 1, silicon was used as an example of a semiconductor or metal.
 (比較例1)
 図5は、比較例1に係るシリコンの精製装置において、溶融シリコン中に冷却体を浸漬させる状態を示す一部断面図である。なお、図5においては、冷却体300の内部を図示していない。
(Comparative Example 1)
FIG. 5 is a partial cross-sectional view showing a state in which a cooling body is immersed in molten silicon in the silicon purification apparatus according to Comparative Example 1. In addition, in FIG. 5, the inside of the cooling body 300 is not illustrated.
 図5に示すように、比較例1に係るシリコンの精製装置は、内部でシリコンを溶融させる坩堝20と中空状の冷却体300とを備えている。 As shown in FIG. 5, the silicon purification apparatus according to Comparative Example 1 includes a crucible 20 that melts silicon inside and a hollow cooling body 300.
 坩堝20の材料としては、精製する半導体または金属の種類にもよるが、黒鉛、シリカ、石英、炭化ケイ素、アルミナ、ムライト、鉄、ステンレス、または、銅など様々な材料を使用可能である。精製する半導体または金属がシリコンの場合には、黒鉛、シリカ、石英、炭化ケイ素、アルミナ、または、ムライトなどを使用することができる。ただし、坩堝20からシリコン中への不純物混入を抑制するためには、坩堝20の材料として、黒鉛、シリカ、石英、または、炭化ケイ素が好ましい。 Depending on the type of semiconductor or metal to be purified, various materials such as graphite, silica, quartz, silicon carbide, alumina, mullite, iron, stainless steel, or copper can be used as the material of the crucible 20. When the semiconductor or metal to be purified is silicon, graphite, silica, quartz, silicon carbide, alumina, mullite, or the like can be used. However, graphite, silica, quartz, or silicon carbide is preferable as the material of the crucible 20 in order to suppress the entry of impurities from the crucible 20 into the silicon.
 冷却体300は、中空状の回転軸部320、および、回転軸部320と連通して溶融シリコン10に浸される部分である中空状の浸漬部310を有している。比較例1においては、浸漬部310は、テーパー状に先端が細くなる外形を有し、かつ、先端に平坦面を有している。 The cooling body 300 has a hollow rotating shaft portion 320 and a hollow immersion portion 310 that is in communication with the rotating shaft portion 320 and is immersed in the molten silicon 10. In Comparative Example 1, the immersion part 310 has a tapered outer shape with a tapered tip and a flat surface at the tip.
 冷却体300の材料としては、精製する半導体または金属によって選択する必要があり、精製する半導体または金属がシリコンの場合には黒鉛が好ましい。 The material of the cooling body 300 must be selected according to the semiconductor or metal to be purified, and graphite is preferable when the semiconductor or metal to be purified is silicon.
 回転軸部320の内側に、冷却体300を冷却する冷却流体を通流させる図示しない配管が設けられている。浸漬部310の内側に、上記配管と連通し、冷却流体を浸漬部310の内表面に向けて吹き出させる複数の吹出口を有する図示しない吹出部が設けられている。複数の吹出口は、吹出部の側面に均一に位置している。上記配管および吹出部の材質としては、たとえば、黒鉛を用いることができる。 A pipe (not shown) through which a cooling fluid for cooling the cooling body 300 flows is provided inside the rotary shaft portion 320. Inside the immersion part 310, there is provided a blow-out part (not shown) that communicates with the pipe and has a plurality of outlets for blowing a cooling fluid toward the inner surface of the immersion part 310. The plurality of outlets are uniformly positioned on the side surface of the outlet. For example, graphite can be used as the material of the pipe and the blowout part.
 坩堝20は、チャンバー30内に収容されている。チャンバー30の上部には、冷却体300をチャンバー30の内外に移動可能とする開口32が設けられている。チャンバー30の内側空間31は、ヘリウム、アルゴンまたは窒素などの不活性ガスで満たされている。チャンバー30内で坩堝20の周囲に、図示しないヒータが配置されている。 The crucible 20 is accommodated in the chamber 30. An opening 32 that allows the cooling body 300 to move in and out of the chamber 30 is provided in the upper portion of the chamber 30. The inner space 31 of the chamber 30 is filled with an inert gas such as helium, argon or nitrogen. A heater (not shown) is disposed around the crucible 20 in the chamber 30.
 図6は、比較例1に係るシリコンの精製装置において、溶融シリコン中に浸漬させている冷却体の表面上に精製シリコンを析出させている状態を示す断面図である。 FIG. 6 is a cross-sectional view showing a state in which purified silicon is deposited on the surface of a cooling body immersed in molten silicon in the silicon purification apparatus according to Comparative Example 1.
 図6に示すように、冷却体300は、坩堝20内で溶融された溶融シリコン10に浸されて回転駆動された状態で冷却されることにより、溶融シリコン10を凝固偏析させて不純物を低減した精製シリコン40を外表面に析出させる。 As shown in FIG. 6, the cooling body 300 is immersed in the molten silicon 10 melted in the crucible 20 and cooled in a rotationally driven state, so that the molten silicon 10 is solidified and segregated to reduce impurities. Purified silicon 40 is deposited on the outer surface.
 具体的には、冷却流体としてたとえば窒素などの熱伝導率が高く安価な冷媒が、上記配管を通過して吹出部の吹出口から吹き出されることにより、冷却体300が冷却される。吹出口は、吹出部の側面に均一に設けられているため、浸漬部310の側面全体が冷却される。一方、浸漬部310の底面には吹出口が設けられていないため、浸漬部310の底面は側面に比較して冷却されない。 Specifically, the cooling body 300 is cooled by blowing an inexpensive refrigerant having a high thermal conductivity such as nitrogen as a cooling fluid from the outlet of the outlet through the pipe. Since the blower outlet is provided uniformly on the side surface of the blowout part, the entire side surface of the immersion part 310 is cooled. On the other hand, since the blowout port is not provided on the bottom surface of the immersion part 310, the bottom surface of the immersion part 310 is not cooled compared to the side surface.
 また、冷却体300は、浸漬部310の水平断面に直交し、かつ、浸漬部310の外形の円中心を通過する線300aを軸として回転駆動されている。 Further, the cooling body 300 is rotationally driven around a line 300 a that is orthogonal to the horizontal section of the immersion part 310 and passes through the center of the outer shape of the immersion part 310.
 図7は、比較例1に係るシリコンの精製装置において、溶融シリコンから冷却体を引き上げた状態を示す断面図である。図7に示すように、精製シリコン40が表面に析出した冷却体300は、溶融シリコン10の上方に引き上げられる。 FIG. 7 is a cross-sectional view showing a state in which the cooling body is pulled up from the molten silicon in the silicon purification apparatus according to Comparative Example 1. As shown in FIG. 7, the cooling body 300 with the purified silicon 40 deposited on the surface is pulled up above the molten silicon 10.
 図8は、比較例1に係るシリコンの精製装置において、析出した精製シリコンの形状を示す側面図である。図8に示すように、比較例1の冷却体表面に析出した精製シリコン40は、上端部において突出すように形成された幅広部41と、下端部において浸漬部310の先端の角部周辺に形成された薄肉部42とを有する。薄肉部42の厚さは、Wsとする。 FIG. 8 is a side view showing the shape of precipitated purified silicon in the silicon purification apparatus according to Comparative Example 1. As shown in FIG. 8, the purified silicon 40 deposited on the surface of the cooling body of Comparative Example 1 has a wide portion 41 formed so as to protrude at the upper end portion, and a corner portion around the tip of the immersion portion 310 at the lower end portion. And the formed thin portion 42. The thickness of the thin portion 42, and W s.
 幅広部41が形成される理由は、溶融シリコン10の液面近傍における温度が溶融シリコン10の内部の温度より低くなっていることにより、溶融シリコン10の液面近傍における精製シリコンの析出速度が他の部分より速くなっているためと考えられる。 The reason why the wide portion 41 is formed is that the temperature near the liquid surface of the molten silicon 10 is lower than the temperature inside the molten silicon 10, and the precipitation rate of the purified silicon near the liquid surface of the molten silicon 10 is different. This is probably because it is faster than the part.
 薄肉部42が形成される理由は、浸漬部310の底面に吹出口が設けられていないため、浸漬部310の底面の温度が側面より高く、浸漬部310の底面に析出する精製シリコン40の析出速度が、浸漬部310の側面に析出する精製シリコン40の析出速度より遅くなっているためと考えられる。 The reason why the thin-walled portion 42 is formed is that the bottom surface of the immersion portion 310 is not provided with an air outlet, so that the temperature of the bottom surface of the immersion portion 310 is higher than that of the side surface, and the purified silicon 40 is deposited on the bottom surface of the immersion portion 310. This is because the speed is slower than the deposition speed of the purified silicon 40 deposited on the side surface of the immersion part 310.
 幅広部41においては、冷却体300を引き上げる際に開口32と衝突し、その衝撃で精製シリコン40の全体または一部が割れて落下する現象が起きていた。また、薄肉部42においては精製シリコン40の厚さが局所的に大きく変化しているため精製シリコン40に亀裂が発生しやすく、冷却体300を引き上げる際に亀裂が進展して精製シリコン40の全体または一部が落下する現象が起きていた。 In the wide part 41, when the cooling body 300 was pulled up, it collided with the opening 32, and the impact caused a phenomenon that the whole or part of the purified silicon 40 was broken and dropped. Further, since the thickness of the refined silicon 40 is greatly changed locally in the thin portion 42, the refined silicon 40 is liable to crack, and when the cooling body 300 is pulled up, the crack progresses and the refined silicon 40 as a whole. Or there was a phenomenon that a part of it dropped.
 精製シリコン40の全体または一部の落下現象が起きると、回収される精製シリコン40の量は低減する。また、溶融シリコン10中に落下した精製シリコン40を再度溶融させる時間が必要になるため、時間当たりの精製シリコン40の回収量がさらに低減することになる。 When the whole or a part of the purified silicon 40 falls, the amount of the purified silicon 40 recovered is reduced. In addition, since it is necessary to re-melt the purified silicon 40 that has fallen into the molten silicon 10, the amount of recovered purified silicon 40 per hour is further reduced.
 (比較例1に対する検討例)
 上記の落下現象を抑制するために、本発明者らは、検討案1,2を試みた。検討案1は、精製シリコン40の析出時間を短くすることである。検討案2は、溶融シリコン10の温度を高く保持することである。
(Examination example for Comparative Example 1)
In order to suppress the above-described falling phenomenon, the present inventors tried the examination plans 1 and 2. Study plan 1 is to shorten the deposition time of the purified silicon 40. Study plan 2 is to keep the temperature of the molten silicon 10 high.
 検討案1においては、幅広部41の形成が抑制されて、幅広部41と開口32との衝突発生は低減された。しかし、薄肉部42の厚さがさらに薄くなって、薄肉部42における亀裂の発生が増加した。結果として、精製シリコン40の落下発生の頻度は低減しなかった。また、1回の精製で回収できる精製シリコン40の量が少なくなった。 In Study Plan 1, formation of the wide portion 41 was suppressed, and the occurrence of collision between the wide portion 41 and the opening 32 was reduced. However, the thickness of the thin portion 42 is further reduced, and the occurrence of cracks in the thin portion 42 is increased. As a result, the frequency of occurrence of falling purified silicon 40 was not reduced. Further, the amount of purified silicon 40 that can be recovered by one purification is reduced.
 検討案2においても、幅広部41の形成が抑制されて、幅広部41と開口32との衝突発生は低減された。しかし、薄肉部42の厚さがさらに薄くなって、薄肉部42における亀裂の発生が増加した。結果として、精製シリコン40の落下発生の頻度は低減しなかった。また、精製シリコン40の析出時間が長く必要となり、時間当たりの精製シリコン40の回収量が低減した。 Also in the examination plan 2, formation of the wide part 41 was suppressed, and the occurrence of collision between the wide part 41 and the opening 32 was reduced. However, the thickness of the thin portion 42 is further reduced, and the occurrence of cracks in the thin portion 42 is increased. As a result, the frequency of occurrence of falling purified silicon 40 was not reduced. Moreover, the precipitation time of the purified silicon 40 is required to be long, and the recovered amount of the purified silicon 40 per hour is reduced.
 上記の検討結果から、精製シリコンの回収重量を増大させるためには、精製装置のさらなる改善が必要であることが分かった。 From the above examination results, it was found that further improvement of the purification apparatus is necessary in order to increase the recovered weight of the purified silicon.
 (評価および考察)
 本発明者らは、さまざまな評価および考察を行なった結果、吹出部における吹出口の配置、および、冷却体の浸漬部の外形の少なくともいずれかを変更することにより、上記の落下現象を低減できることを見出した。
(Evaluation and discussion)
As a result of various evaluations and considerations, the inventors of the present invention can reduce the above-described dropping phenomenon by changing the arrangement of the outlet in the outlet and the outer shape of the immersion part of the cooling body. I found.
 具体的には、吹出口を吹出部の側面の下方側および底面に配置することにより、溶融シリコン10の液面近傍における精製シリコン40の析出速度を低下させて幅広部41の形成を抑制するとともに、浸漬部310の底面に析出する精製シリコン40の析出速度を増加させて薄肉部42の形成を抑制できることを見出した。 Specifically, by disposing the outlet on the lower side and the bottom surface of the side surface of the blowout part, the precipitation rate of the purified silicon 40 in the vicinity of the liquid surface of the molten silicon 10 is reduced and the formation of the wide part 41 is suppressed. The present inventors have found that the formation rate of the thin-walled portion 42 can be suppressed by increasing the deposition rate of the purified silicon 40 deposited on the bottom surface of the immersion portion 310.
 また、冷却体の浸漬部の外形を円筒状の周側面とこの周側面と連続した湾曲面状の底面とから構成することにより、浸漬部の先端の角部周辺における薄肉部42の形成を抑制できることを見出した。 Further, by forming the outer shape of the immersion part of the cooling body from a cylindrical peripheral side surface and a curved bottom surface that is continuous with the peripheral side surface, the formation of the thin portion 42 around the corner of the tip of the immersion part is suppressed. I found out that I can do it.
 なお、上記の周側面および底面のそれぞれに析出した精製シリコンの不純物濃度を別々に測定して評価した結果、両者の不純物濃度に有意差は認められず、かつ、両者共に十分な凝固偏析効果が得られていることが確認された。 As a result of separately measuring and evaluating the impurity concentration of the purified silicon deposited on each of the peripheral side surface and the bottom surface, there was no significant difference between the impurity concentrations of both, and both had sufficient solidification segregation effects. It was confirmed that it was obtained.
 これは、浸漬部の底面を湾曲面状に形成したことにより、冷却体の回転による周速度が浸漬部の底面においても確保することができたためと考えられる、その結果、冷却体の回転による偏析係数の増大効果を浸漬部の側面と同様に浸漬部の底面においても得ることができたと推察される。 This is thought to be because the peripheral speed due to the rotation of the cooling body could be secured even at the bottom surface of the immersion part by forming the bottom surface of the immersion part into a curved surface. As a result, segregation due to the rotation of the cooling body. It is presumed that the effect of increasing the coefficient could be obtained on the bottom surface of the immersion portion as well as the side surface of the immersion portion.
 本発明は、上記の評価および考察に基づいてなされたものである。
 以下、本発明の一実施形態に係る半導体または金属の精製装置について図を参照して説明する。以下の実施形態の説明においては、図中の同一または相当部分には同一符号を付して、その説明は繰り返さない。
The present invention has been made based on the above evaluation and consideration.
Hereinafter, a semiconductor or metal purification apparatus according to an embodiment of the present invention will be described with reference to the drawings. In the following description of the embodiments, the same or corresponding parts in the drawings are denoted by the same reference numerals, and the description thereof will not be repeated.
 なお、本実施形態に係る半導体または金属の精製装置においては、冷却体の構成のみ上記比較例1と異なるため、他の構成については説明を繰り返さない。 In the semiconductor or metal refining apparatus according to this embodiment, only the configuration of the cooling body is different from that of Comparative Example 1, and therefore, description of other configurations will not be repeated.
 図1は、本発明の一実施形態に係る半導体または金属の精製装置における冷却体の構成を示す一部断面図である。なお、図1においては、冷却流体を流す配管130および吹出部140は側面視の状態を示している。 FIG. 1 is a partial cross-sectional view showing a configuration of a cooling body in a semiconductor or metal purification apparatus according to an embodiment of the present invention. In addition, in FIG. 1, the piping 130 and the blowing part 140 which flow a cooling fluid have shown the state of side view.
 図1に示すように、冷却体100は、中空状の回転軸部120、および、回転軸部120と連通して溶融半導体または溶融金属に浸される部分である中空状の浸漬部110を有している。浸漬部110は、円筒状の周側面とこの周側面と連続した湾曲面状の底面とから構成されている。本実施形態においては、浸漬部110の底面が球面の一部で構成されている。球面の一部で浸漬部110の底面を構成することにより、冷却体100を回転させた際の浸漬部110の底面における溶融シリコン10の攪拌をこの底面全体でより均一に行なうことができる。 As shown in FIG. 1, the cooling body 100 has a hollow rotary shaft portion 120 and a hollow immersion portion 110 that is in communication with the rotary shaft portion 120 and is immersed in a molten semiconductor or molten metal. is doing. The immersion part 110 is composed of a cylindrical peripheral side surface and a curved bottom surface that is continuous with the peripheral side surface. In the present embodiment, the bottom surface of the immersion part 110 is constituted by a part of a spherical surface. By constituting the bottom surface of the immersion part 110 with a part of the spherical surface, the molten silicon 10 can be more uniformly stirred on the bottom surface of the immersion part 110 when the cooling body 100 is rotated.
 回転軸部120の内側に、冷却体100を冷却する冷却流体を通流させる配管130が設けられている。浸漬部110の内側に、配管130と連通し、冷却流体を浸漬部110の内表面に向けて吹き出させる複数の吹出口141を有する吹出部140が設けられている。浸漬部110の内表面に吹き付けられた冷却流体は、配管130と回転軸部120との間を通流して回収される。 Inside the rotating shaft portion 120, a pipe 130 for allowing a cooling fluid for cooling the cooling body 100 to flow is provided. Inside the immersion part 110, there is provided a blowing part 140 having a plurality of outlets 141 that communicate with the pipe 130 and blow the cooling fluid toward the inner surface of the immersion part 110. The cooling fluid sprayed on the inner surface of the immersion part 110 flows between the pipe 130 and the rotary shaft part 120 and is collected.
 吹出部140は、下端が閉じた円筒形状の外形を有している。図1に示すように、吹出部140の下端側の角部に面取りが行なわれていてもよい。また、吹出部140は、断面視おいて、下端から上方に向かって徐々に大径となったテーパー状の部位を周側面に有していてもよい。 The blow-out part 140 has a cylindrical outer shape whose bottom is closed. As shown in FIG. 1, chamfering may be performed on a corner portion on the lower end side of the blowing portion 140. Moreover, the blowing part 140 may have a tapered part on the peripheral side surface that gradually becomes larger in diameter from the lower end in a cross-sectional view.
 本実施形態においては、複数の吹出口141は、吹出部140の側面および底面に位置している。吹出部140の側面に位置する複数の吹出口141のうちの最も上方に位置する上端吹出口の上端位置と浸漬部110の下端位置との間の距離L2が、浸漬部110の上端位置と浸漬部110の下端位置との間の距離L1に比較して半分以下である。 In the present embodiment, the plurality of air outlets 141 are located on the side surface and the bottom surface of the air outlet 140. The distance L 2 between the upper end position of the uppermost upper outlet located among the plurality of outlets 141 located on the side surface of the outlet part 140 and the lower end position of the immersion part 110 is the upper end position of the immersion part 110. Compared to the distance L 1 between the lower end position of the immersion part 110 and less than half.
 吹出口141の形状としては、円形状、楕円形状、多角形状、または、スリット状など様々な形状を採用できるが、本実施形態においては円形状である。 As the shape of the outlet 141, various shapes such as a circular shape, an elliptical shape, a polygonal shape, or a slit shape can be adopted, but in the present embodiment, the shape is a circular shape.
 また、吹出口141の1個当りの開口面積は、たとえば、配管130の横断面の流路面積に対して、0.5%以上2%以下であることが好ましい。 Further, the opening area per one outlet 141 is preferably 0.5% or more and 2% or less with respect to the flow area of the cross section of the pipe 130, for example.
 さらに、吹出口141は局所的に位置分布が偏らないように配置することが望ましい。たとえば、冷却体100の回転中心軸を含み、かつ、冷却体100の回転軸方向に平行な任意の平面で吹出部140を2分割した場合の分割片において、吹出口141の少ない方の分割片に占める全ての吹出口141の開口面積は、吹出部140の全体に占める全ての吹出口141の開口面積に対して、1/3以上1/2以下の範囲であることが望ましい。 Furthermore, it is desirable to arrange the outlets 141 so that the position distribution is not locally biased. For example, in a divided piece obtained by dividing the blowing portion 140 into two planes in an arbitrary plane that includes the rotation center axis of the cooling body 100 and is parallel to the rotation axis direction of the cooling body 100, the divided piece having the smaller outlet 141. It is desirable that the opening areas of all the outlets 141 occupy in the range of 1/3 or more and ½ or less of the opening areas of all the outlets 141 occupying the entire blowing part 140.
 上記の構成により、溶融半導体または溶融金属の液面近傍における精製半導体または精製金属の析出速度を低下させて幅広部41の形成を抑制するとともに、浸漬部110の底面に析出する精製半導体または精製金属の析出速度を増加させて、浸漬部110の先端の角部周辺における薄肉部42の形成を抑制できる。 With the above configuration, the refined semiconductor or refined metal deposited on the bottom surface of the immersion part 110 is suppressed by reducing the deposition rate of the refined semiconductor or refined metal in the vicinity of the liquid surface of the melted semiconductor or melted metal to suppress the formation of the wide portion 41. It is possible to suppress the formation rate of the thin-walled portion 42 around the corner portion at the tip of the immersion portion 110 by increasing the deposition rate.
 その結果、冷却体100の表面に析出させた精製半導体または精製金属を、落下による低減を抑制しつつ回収して、精製半導体または精製金属の回収重量を増大させることができる。 As a result, the refined semiconductor or refined metal deposited on the surface of the cooling body 100 can be recovered while suppressing reduction due to falling, and the recovered weight of the refined semiconductor or refined metal can be increased.
 なお、本実施形態においては、浸漬部110は、円筒状の周側面を有していたが、たとえば、断面視において下部から上部に向けて徐々に大径となったテーパー状の部位を周側面に有してもよい。また、浸漬部110の底面は、湾曲面状ではなく、平坦面であってもよい。さらに、冷却体100の構造は上記に限られず、たとえば、中実の冷却体の上部側に水冷板などの冷却部品を接触させることにより、冷却体を冷却可能にしてもよい。この場合にも、幅広部41の形成を抑制して、精製半導体または精製金属の回収重量の増大を図れる。 In the present embodiment, the immersion part 110 has a cylindrical peripheral side surface. For example, a tapered part having a gradually increasing diameter from the lower part to the upper part in a sectional view is provided on the peripheral side surface. You may have. Further, the bottom surface of the immersion part 110 may be a flat surface instead of a curved surface. Furthermore, the structure of the cooling body 100 is not limited to the above. For example, the cooling body may be cooled by bringing a cooling component such as a water cooling plate into contact with the upper side of the solid cooling body. Also in this case, the formation of the wide portion 41 can be suppressed, and the recovered weight of the purified semiconductor or purified metal can be increased.
 または、吹出口141が吹出部140の側面および底面の全体に均等に配置されていてもよい。この場合、薄肉部42の形成を抑制して、精製半導体または精製金属の回収重量の増大を図れる。 Alternatively, the air outlet 141 may be evenly disposed on the entire side surface and bottom surface of the air outlet 140. In this case, the formation of the thin portion 42 can be suppressed, and the recovered weight of the purified semiconductor or purified metal can be increased.
 以下、本発明の実施例について図を参照して説明する。なお、実施例においてはシリコンの精製を行なっているが、本発明はシリコンに限らず半導体または金属の精製に適用可能である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Although silicon is purified in the embodiments, the present invention is not limited to silicon and can be applied to the purification of semiconductors or metals.
 (実施例1)
 実施例1においては、外径が630mmの等方性黒鉛からなる坩堝20内にシリコンを430kg投入して溶融させた。溶融シリコン10の温度は、シリコンの融点+10℃に保持した。
(Example 1)
In Example 1, 430 kg of silicon was charged into a crucible 20 made of isotropic graphite having an outer diameter of 630 mm and melted. The temperature of the molten silicon 10 was kept at the melting point of silicon + 10 ° C.
 図1に示すように、本実施例の冷却体100は、回転軸部120および浸漬部110を有し、浸漬部110が、円筒状の周側面と、この周側面と連続して球面の一部から構成された底面とから構成されている。浸漬部110の大きさは、周側面における円筒直径を200mm、浸漬部110の上端位置と浸漬部110の下端位置との間の距離L1を500mmとした。 As shown in FIG. 1, the cooling body 100 of the present embodiment has a rotating shaft portion 120 and an immersion portion 110, and the immersion portion 110 has a cylindrical peripheral side surface and a spherical surface continuous with the peripheral side surface. It is comprised from the bottom face comprised from the part. The size of the immersion part 110 was such that the cylindrical diameter on the peripheral side surface was 200 mm, and the distance L 1 between the upper end position of the immersion part 110 and the lower end position of the immersion part 110 was 500 mm.
 また、孔径5mmの吹出口141を吹出部140の側面に48箇所、底面に9箇所設けた。互いに隣接する吹出口141同士の間隔は、全て等間隔にした。吹出部140の側面に位置する複数の吹出口141のうちの最も上方に位置する上端吹出口の上端位置と浸漬部110の下端位置との間の距離L2を250mmとした。吹出部140は、等方性黒鉛から形成した。 Also, 48 outlets 141 having a hole diameter of 5 mm were provided on the side surface of the outlet 140 and 9 locations on the bottom surface. The intervals between the adjacent outlets 141 were all equal. A distance L 2 between the upper end position of the uppermost outlet and the lower end position of the immersion part 110 among the plurality of outlets 141 located on the side surface of the outlet part 140 was set to 250 mm. The blowing part 140 was formed from isotropic graphite.
 図1の矢印50で示すように、配管130内に窒素ガスを6000L/分の流速で通流させた状態で、30回転/分の回転速度で冷却体100を回転させつつ、17分間溶融シリコン10内に浸漬部110を浸漬させて、精製シリコン40を析出させた。 As indicated by an arrow 50 in FIG. 1, the molten silicon is rotated for 17 minutes while rotating the cooling body 100 at a rotation speed of 30 rotations / minute with nitrogen gas flowing through the pipe 130 at a flow rate of 6000 L / minute. The immersion part 110 was immersed in 10 and the purified silicon 40 was deposited.
 冷却体100を溶融シリコン10から引き上げた後、精製シリコン40を冷却体100から剥離して、精製シリコン40を回収した。 After the cooling body 100 was pulled up from the molten silicon 10, the purified silicon 40 was peeled off from the cooling body 100, and the purified silicon 40 was recovered.
 以下、上記の一連の精製シリコン40の析出から回収までの作業を精製作業と称する。この精製作業を複数回行なって、精製シリコン40の回収量が160kgに達するたびに、同量の固体シリコンを坩堝20内に補充して溶融させた。上記固体シリコンの補充を適宜行ないつつ、上記の精製作業を229回繰り返し行なった。 Hereinafter, a series of operations from precipitation to collection of the purified silicon 40 will be referred to as purification operations. This purification operation was performed a plurality of times, and each time the recovered amount of the purified silicon 40 reached 160 kg, the same amount of solid silicon was replenished into the crucible 20 and melted. The above refining operation was repeated 229 times while appropriately replenishing the solid silicon.
 (実施例2)
 図2は、本発明の実施例2に係る冷却体の構成を示す一部断面図である。なお、図2においては、冷却流体を流す配管130および吹出部140は側面視の状態を示している。
(Example 2)
FIG. 2 is a partial cross-sectional view showing the configuration of the cooling body according to the second embodiment of the present invention. In addition, in FIG. 2, the piping 130 and the blowing part 140 which flow a cooling fluid have shown the state of side view.
 図2に示すように、冷却体200は、回転軸部220および浸漬部210を有し、浸漬部210が、円筒状の周側面と、この周側面と連続した平坦面からなる底面とから構成されている。浸漬部210の底面の厚さは、側面の厚さに比較して2倍にした。 As shown in FIG. 2, the cooling body 200 includes a rotating shaft part 220 and an immersion part 210, and the immersion part 210 includes a cylindrical peripheral side surface and a bottom surface formed of a flat surface continuous with the peripheral side surface. Has been. The thickness of the bottom surface of the immersion part 210 was doubled compared to the thickness of the side surface.
 他の条件は実施例1と同様にして、固体シリコンの補充を適宜行ないつつ、精製作業を229回繰り返し行なった。 The other conditions were the same as in Example 1, and the refining operation was repeated 229 times while appropriately replenishing solid silicon.
 (実施例3)
 図3は、本発明の実施例3に係る冷却体の構成を示す一部断面図である。なお、図3においては、冷却流体を流す配管230および吹出部240は側面視の状態を示している。
Example 3
FIG. 3 is a partial cross-sectional view showing the configuration of the cooling body according to the third embodiment of the present invention. In addition, in FIG. 3, the piping 230 and the blowing part 240 which flow a cooling fluid have shown the state of side view.
 図3に示すように、本実施例の吹出部240においては、複数の吹出口241は、吹出部240の側面全体のみに位置している。吹出部240の側面に位置する複数の吹出口241のうちの最も上方に位置する上端吹出口の上端位置と浸漬部210の下端位置との間の距離L3が、浸漬部210の上端位置と浸漬部210の下端位置との間の距離L1に比較して半分より大きい。具体的には、距離L3を400mmとした。 As shown in FIG. 3, in the blowing unit 240 of the present embodiment, the plurality of outlets 241 are located only on the entire side surface of the blowing unit 240. The distance L 3 between the upper end position of the uppermost outlet and the lower end position of the immersion part 210 among the plurality of outlets 241 located on the side surface of the outlet part 240 is the upper end position of the immersion part 210. Compared to the distance L 1 between the lower end position of the immersion part 210 and larger than half. Specifically, the distance L 3 was 400 mm.
 また、孔径5mmの吹出口241を吹出部140の側面に57箇所設けた。互いに隣接する吹出口241同士の間隔は、全て等間隔にした。吹出部240は、等方性黒鉛から形成した。 In addition, 57 outlets 241 with a hole diameter of 5 mm were provided on the side of the outlet 140. The intervals between the adjacent outlets 241 were all equal. The blowing part 240 was formed from isotropic graphite.
 他の条件は実施例1と同様にして、固体シリコンの補充を適宜行ないつつ、精製作業を165回繰り返し行なった。 The other conditions were the same as in Example 1, and the refining operation was repeated 165 times while appropriately replenishing solid silicon.
 (比較例2)
 図4は、比較例2に係る冷却体の構成を示す一部断面図である。なお、図4においては、冷却流体を流す配管230および吹出部240は側面視の状態を示している。
(Comparative Example 2)
FIG. 4 is a partial cross-sectional view illustrating a configuration of a cooling body according to Comparative Example 2. In addition, in FIG. 4, the piping 230 and the blowing part 240 which flow a cooling fluid have shown the state of side view.
 図4に示すように、比較例2においては、冷却体200は、回転軸部220および浸漬部210を有し、浸漬部210が、円筒状の周側面と、この周側面と連続した平坦面からなる底面とから構成されている。浸漬部210の底面の厚さは、側面の厚さに比較して2倍にした。 As shown in FIG. 4, in the comparative example 2, the cooling body 200 has the rotating shaft part 220 and the immersion part 210, and the immersion part 210 is a flat surface continuous with the cylindrical peripheral side surface and the peripheral side surface. It is comprised from the bottom which consists of. The thickness of the bottom surface of the immersion part 210 was doubled compared to the thickness of the side surface.
 吹出部240においては、複数の吹出口241は、吹出部240の側面全体のみに位置している。吹出部240の側面に位置する複数の吹出口241のうちの最も上方に位置する上端吹出口の上端位置と浸漬部210の下端位置との間の距離L3が、浸漬部210の上端位置と浸漬部210の下端位置との間の距離L1に比較して半分より大きい。具体的には、距離L3を400mmとした。 In the blowing part 240, the plurality of outlets 241 are located only on the entire side surface of the blowing part 240. The distance L 3 between the upper end position of the uppermost outlet and the lower end position of the immersion part 210 among the plurality of outlets 241 located on the side surface of the outlet part 240 is the upper end position of the immersion part 210. Compared to the distance L 1 between the lower end position of the immersion part 210 and larger than half. Specifically, the distance L 3 was set to 400 mm.
 また、孔径5mmの吹出口241を吹出部140の側面に57箇所設けた。互いに隣接する吹出口241同士の間隔は、全て等間隔にした。吹出部240は、等方性黒鉛から形成した。 In addition, 57 outlets 241 with a hole diameter of 5 mm were provided on the side of the outlet 140. The intervals between the adjacent outlets 241 were all equal. The blowing part 240 was formed from isotropic graphite.
 他の条件は実施例1と同様にして、固体シリコンの補充を適宜行ないつつ、精製作業を87回繰り返し行なった。 The other conditions were the same as in Example 1, and the refining operation was repeated 87 times while appropriately replenishing solid silicon.
 (各実施例と比較例2との比較)
 上記の実施例1~3および比較例2の各々において、浸漬部の周側面に析出した精製シリコン40の平均厚さ、浸漬部の底面に析出した精製シリコン40の平均厚さ、および、浸漬部の周側面に析出した精製シリコン40の平均厚さと浸漬部の底面に析出した精製シリコン40の平均厚さとの差を求めた。また、精製シリコン40の落下現象の発生率、および、1回の浸漬工程当たりの精製シリコン40の回収量を算出した。また、浸漬部の底面に析出した精製シリコン中のFe濃度、および、浸漬部の周側面に析出した精製シリコン中のFe濃度を測定した。
(Comparison between Examples and Comparative Example 2)
In each of Examples 1 to 3 and Comparative Example 2 above, the average thickness of the purified silicon 40 deposited on the peripheral side surface of the immersion part, the average thickness of the purified silicon 40 deposited on the bottom surface of the immersion part, and the immersion part The difference between the average thickness of the purified silicon 40 deposited on the peripheral side surface and the average thickness of the purified silicon 40 deposited on the bottom surface of the immersion portion was determined. Moreover, the incidence rate of the falling phenomenon of the purified silicon 40 and the recovery amount of the purified silicon 40 per dipping process were calculated. Further, the Fe concentration in the purified silicon deposited on the bottom surface of the immersion part and the Fe concentration in the purified silicon deposited on the peripheral side surface of the immersion part were measured.
 表1は、上記の各データをまとめたものである。 Table 1 summarizes the above data.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、比較例2に比べて、実施例2および実施例3においては、浸漬部の周側面と底面とにそれぞれ析出した精製シリコン40の平均厚さの差が低減されていた。すなわち、精製シリコン40の局所的な厚さ変化が低減されていた。また、精製シリコン40の落下現象の発生率も低減されていた。この結果から、本実施形態に係る吹出部140における吹出口141の配置、および、浸漬部110の外形のいずれかを有することにより、幅広部41または薄肉部42の形成を抑制して、精製シリコン40の回収重量を増大できることが確認された。 As shown in Table 1, compared with Comparative Example 2, in Example 2 and Example 3, the difference in average thickness of purified silicon 40 deposited on the peripheral side surface and the bottom surface of the immersion part was reduced. . That is, the local thickness change of the purified silicon 40 was reduced. Moreover, the incidence rate of the dropping phenomenon of the purified silicon 40 was also reduced. From this result, formation of the wide part 41 or the thin part 42 is suppressed by having either the arrangement of the outlet 141 in the outlet part 140 according to this embodiment and the outer shape of the immersion part 110, and purified silicon. It was confirmed that a recovery weight of 40 could be increased.
 また、実施例1は比較例2と比べて、浸漬部の周側面と底面とにそれぞれ析出した精製シリコン40の平均厚さの差がさらに低減され、精製シリコン40の落下現象の発生率もさらに低減されていた。よって、本実施形態に係る吹出部140における吹出口141の配置、および、浸漬部110の外形の両方を有することにより、幅広部41および薄肉部42の形成を抑制して、精製シリコン40を効率よく精製できることが確認された。 Further, in Example 1, compared with Comparative Example 2, the difference in average thickness of the purified silicon 40 deposited on the peripheral side surface and the bottom surface of the immersion part is further reduced, and the occurrence rate of the dropping phenomenon of the purified silicon 40 is further increased. It was reduced. Therefore, by having both the arrangement of the outlet 141 in the outlet 140 and the outer shape of the immersion part 110 according to the present embodiment, the formation of the wide part 41 and the thin part 42 is suppressed, and the purified silicon 40 is made efficient. It was confirmed that it could be purified well.
 さらに、実施例1~3のいずれにおいても比較例2と比べて、1回の浸漬工程当たりの精製シリコン40の回収量が向上されていることが確認された。また、実施例2および比較例2においては浸漬部の周側面に比べ底面の精製シリコン中のFe濃度が高くなっているのに対し、実施例1および実施例3においては浸漬部の周側面と底面とで精製シリコン中のFe濃度に差が見られないことが確認された。 Furthermore, it was confirmed that in any of Examples 1 to 3, the recovered amount of purified silicon 40 per dipping process was improved as compared with Comparative Example 2. In Example 2 and Comparative Example 2, the Fe concentration in the purified silicon on the bottom surface is higher than that on the peripheral side surface of the immersion part, whereas in Example 1 and Example 3, the peripheral side surface of the immersion part is It was confirmed that there was no difference in Fe concentration in the purified silicon between the bottom surface and the bottom surface.
 今回開示された実施形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments and examples disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 10 溶融シリコン、20 坩堝、30 チャンバー、31 内側空間、32 開口、40 精製シリコン、41 幅広部、42 薄肉部、100,200,300 冷却体、110,210,310 浸漬部、120,220,320 回転軸部、130,230 配管、140,240 吹出部、141,241 吹出口。 10 molten silicon, 20 crucible, 30 chamber, 31 inner space, 32 opening, 40 purified silicon, 41 wide part, 42 thin part, 100, 200, 300 cooling body, 110, 210, 310 immersion part, 120, 220, 320 Rotating shaft, 130, 230 piping, 140, 240 outlet, 141, 241 outlet.

Claims (6)

  1.  内部で半導体または金属を溶融させる坩堝(20)と、
     前記坩堝(20)内で溶融された溶融半導体または溶融金属に浸されて回転駆動された状態で冷却されることにより、溶融半導体または溶融金属を凝固偏析させて不純物を低減した精製半導体または精製金属を外表面に析出させる中空状の冷却体(100,200)と
    を備え、
     前記冷却体(100,200)は、中空状の回転軸部(120,220)、および、該回転軸部(120,220)と連通して溶融半導体または溶融金属に浸される部分である中空状の浸漬部(110,210)を有し、
     前記回転軸部(120,220)の内側に、前記冷却体(100,200)を冷却する冷却流体を通流させる配管(130,230)が設けられ、
     前記浸漬部(110,210)の内側に、前記配管(130,230)と連通し、前記冷却流体を前記浸漬部(110,210)の内表面に向けて吹き出させる複数の吹出口(141,241)を有する吹出部(140,240)が設けられ、
     前記複数の吹出口(141,241)は、前記吹出部(140,240)の側面および底面に位置し、
     前記吹出部(140,240)の前記側面に位置する複数の吹出口(141,241)のうちの最も上方に位置する上端吹出口の上端位置と前記浸漬部(110,210)の下端位置との間の距離が、前記浸漬部(110,210)の上端位置と前記浸漬部(110,210)の下端位置との間の距離に比較して半分以下である、半導体または金属の精製装置。
    A crucible (20) for melting a semiconductor or metal therein;
    A refined semiconductor or refined metal in which impurities are reduced by solidifying and segregating the melted semiconductor or melted metal by being immersed in a molten semiconductor or melted metal melted in the crucible (20) and being driven to rotate. A hollow cooling body (100, 200) that deposits on the outer surface,
    The cooling body (100, 200) is a hollow rotating shaft portion (120, 220) and a hollow portion that is in contact with the rotating shaft portion (120, 220) and is immersed in a molten semiconductor or a molten metal. Having a shaped immersion part (110, 210),
    Pipes (130, 230) for passing a cooling fluid for cooling the cooling body (100, 200) are provided inside the rotating shaft portion (120, 220),
    A plurality of outlets (141, 141) that communicate with the pipe (130, 230) inside the immersion part (110, 210) and blow out the cooling fluid toward the inner surface of the immersion part (110, 210). 241) is provided with outlets (140, 240),
    The plurality of outlets (141, 241) are located on the side and bottom of the outlet (140, 240),
    The upper end position of the uppermost outlet and the lower end position of the immersion part (110, 210) among the plurality of outlets (141, 241) located on the side surface of the outlet (140, 240) The semiconductor or metal purifier is a half or less of the distance between the upper end position of the immersion part (110, 210) and the lower end position of the immersion part (110, 210).
  2.  内部で半導体または金属を溶融させる坩堝(20)と、
     前記坩堝(20)内で溶融された溶融半導体または溶融金属に浸されて回転駆動された状態で冷却されることにより、溶融半導体または溶融金属を凝固偏析させて不純物を低減した精製半導体または精製金属を外表面に析出させる冷却体(100)と
    を備え、
     前記冷却体(100)は、回転軸部(120)、および、該回転軸部(120)と連通して溶融半導体または溶融金属に浸される部分である浸漬部(110)を有し、
     前記浸漬部(110)は、円筒状の周側面と該周側面と連続した湾曲面状の底面とから構成されている、半導体または金属の精製装置。
    A crucible (20) for melting a semiconductor or metal therein;
    A refined semiconductor or refined metal in which impurities are reduced by solidifying and segregating the melted semiconductor or melted metal by being immersed in a molten semiconductor or melted metal melted in the crucible (20) and being driven to rotate. And a cooling body (100) for depositing on the outer surface,
    The cooling body (100) has a rotating shaft portion (120), and an immersion portion (110) that is a portion that is in communication with the rotating shaft portion (120) and is immersed in a molten semiconductor or a molten metal,
    The immersion unit (110) is a semiconductor or metal refining device that includes a cylindrical peripheral side surface and a curved bottom surface that is continuous with the peripheral side surface.
  3.  内部で半導体または金属を溶融させる坩堝(20)と、
     前記坩堝(20)内で溶融された溶融半導体または溶融金属に浸されて回転駆動された状態で冷却されることにより、溶融半導体または溶融金属を凝固偏析させて不純物を低減した精製半導体または精製金属を外表面に析出させる中空状の冷却体(100)と
    を備え、
     前記冷却体(100)は、中空状の回転軸部(120)、および、該回転軸部(120)と連通して溶融半導体または溶融金属に浸される部分である中空状の浸漬部(110)を有し、
     前記浸漬部(110)は、円筒状の周側面と該周側面と連続した湾曲面状の底面とから構成され、
     前記回転軸部(120)の内側に、前記冷却体(100)を冷却する冷却流体を通流させる配管(130)が設けられ、
     前記浸漬部(110)の内側に、前記配管(130)と連通し、前記冷却流体を前記浸漬部(110)の内表面に向けて吹き出させる複数の吹出口(141)を有する吹出部(140)が設けられ、
     前記複数の吹出口(141)は、前記吹出部(140)の側面および底面に位置し、
     前記吹出部(140)の前記側面に位置する複数の吹出口(141)のうちの最も上方に位置する上端吹出口の上端位置と前記浸漬部(110)の下端位置との間の距離が、前記浸漬部(110)の上端位置と前記浸漬部(110)の下端位置との間の距離に比較して半分以下である、半導体または金属の精製装置。
    A crucible (20) for melting a semiconductor or metal therein;
    A refined semiconductor or refined metal in which impurities are reduced by solidifying and segregating the melted semiconductor or melted metal by being immersed in a molten semiconductor or melted metal melted in the crucible (20) and being driven to rotate. A hollow cooling body (100) for depositing on the outer surface,
    The cooling body (100) includes a hollow rotary shaft portion (120) and a hollow immersion portion (110) that is in communication with the rotary shaft portion (120) and is immersed in a molten semiconductor or a molten metal. )
    The immersion part (110) is composed of a cylindrical peripheral side surface and a curved bottom surface continuous with the peripheral side surface,
    A pipe (130) through which a cooling fluid for cooling the cooling body (100) flows is provided inside the rotating shaft portion (120),
    A blowout part (140) having a plurality of outlets (141) that communicate with the pipe (130) and blow out the cooling fluid toward the inner surface of the immersion part (110) inside the immersion part (110). )
    The plurality of outlets (141) are located on the side and bottom of the outlet (140),
    The distance between the upper end position of the uppermost outlet and the lower end position of the immersion part (110) among the plurality of outlets (141) located on the side surface of the outlet (140) is: A semiconductor or metal refining apparatus, which is less than half the distance between the upper end position of the immersion part (110) and the lower end position of the immersion part (110).
  4.  前記浸漬部(110)の前記底面が球面の一部で構成されている、請求項2または3に記載の半導体または金属の精製装置。 The semiconductor or metal purifier according to claim 2 or 3, wherein the bottom surface of the immersion part (110) is constituted by a part of a spherical surface.
  5.  前記半導体または前記金属がシリコンである、請求項1から4のいずれかに記載の半導体または金属の精製装置。 The semiconductor or metal purification apparatus according to any one of claims 1 to 4, wherein the semiconductor or the metal is silicon.
  6.  前記冷却体が黒鉛から形成されている、請求項5に記載の半導体または金属の精製装置。 The semiconductor or metal purifier according to claim 5, wherein the cooling body is formed of graphite.
PCT/JP2012/073283 2011-12-26 2012-09-12 Apparatus for refining semiconductor or metal WO2013099365A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-283260 2011-12-26
JP2011283260A JP5399465B2 (en) 2011-12-26 2011-12-26 Silicon purification equipment

Publications (1)

Publication Number Publication Date
WO2013099365A1 true WO2013099365A1 (en) 2013-07-04

Family

ID=48696872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073283 WO2013099365A1 (en) 2011-12-26 2012-09-12 Apparatus for refining semiconductor or metal

Country Status (2)

Country Link
JP (1) JP5399465B2 (en)
WO (1) WO2013099365A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57210932A (en) * 1981-05-18 1982-12-24 Showa Alum Corp Refining method for aluminum
JPH09188512A (en) * 1996-01-11 1997-07-22 Sharp Corp Metal purifier
JP2000053411A (en) * 1998-08-04 2000-02-22 Sharp Corp Apparatus for production of polycrystalline silicon lump

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57210932A (en) * 1981-05-18 1982-12-24 Showa Alum Corp Refining method for aluminum
JPH09188512A (en) * 1996-01-11 1997-07-22 Sharp Corp Metal purifier
JP2000053411A (en) * 1998-08-04 2000-02-22 Sharp Corp Apparatus for production of polycrystalline silicon lump

Also Published As

Publication number Publication date
JP5399465B2 (en) 2014-01-29
JP2013133240A (en) 2013-07-08

Similar Documents

Publication Publication Date Title
KR101697027B1 (en) Lining for surfaces of a refractory crucible for purification of silicon melt and method of purification of the silicon melt using that crucible(s) for melting and further directional solidification
US20200407874A1 (en) Method for purification of silicon
CN102108549B (en) Silicon wafer and method for producing the same
WO2006006436A1 (en) Method for purifying metal
Arnberg et al. State-of-the-art growth of silicon for PV applications
JP4692247B2 (en) Method for producing high-purity polycrystalline silicon
CN102191542B (en) Equipment and method for preparing high-purity directionally crystallized polysilicon
WO2007093082A1 (en) A process of producing silicon wafer employing float method and apparatus thereof
CN104619638A (en) Flux composition useful in directional solidification for purifying silicon
CN102703969A (en) Low-carbon quasi-single crystal ingot furnace and method for adopting low-carbon quasi-single crystal ingot furnace for ingot casting
KR20090048474A (en) Metallic silicon and process for producing the same
JP5399465B2 (en) Silicon purification equipment
Dold Silicon crystallization technologies
JP5512647B2 (en) Silicon purification method, absorption unit, and silicon purification apparatus
JP2008081394A (en) Metallic silicon and process for producing the same
JP5173013B1 (en) Method for refining silicon, method for producing crystalline silicon material, and method for producing solar cell
JP5173014B1 (en) Method for refining silicon, method for producing crystalline silicon material, and method for producing solar cell
CN101762158B (en) Method and device for purifying metallurgy by using liquid filter screen
JP2015532635A (en) Reactive cover glass on molten silicon during directional solidification.
JP5194165B1 (en) Method for inspecting refined metal lump and method for producing high purity metal including the same
JP5118268B1 (en) High purity silicon manufacturing method and high purity silicon
WO2013080575A1 (en) High-purity-silicon manufacturing method and high-purity silicon
WO2013088784A1 (en) Metal purification method, metal, silicon purification method, silicon, crystalline silicon material, and solar cell
JP5223038B1 (en) Silicon, crystalline silicon material, and method of manufacturing silicon solar cell
JP2010168228A (en) Source melt supply device, and apparatus and method for producing polycrystal or single crystal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12862832

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12862832

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 12862832

Country of ref document: EP

Kind code of ref document: A1