WO2013099148A1 - Hdd glass substrate manufacturing method - Google Patents

Hdd glass substrate manufacturing method Download PDF

Info

Publication number
WO2013099148A1
WO2013099148A1 PCT/JP2012/008057 JP2012008057W WO2013099148A1 WO 2013099148 A1 WO2013099148 A1 WO 2013099148A1 JP 2012008057 W JP2012008057 W JP 2012008057W WO 2013099148 A1 WO2013099148 A1 WO 2013099148A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
polishing
cerium oxide
ion
dispersant
Prior art date
Application number
PCT/JP2012/008057
Other languages
French (fr)
Japanese (ja)
Inventor
葉月 中江
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2013099148A1 publication Critical patent/WO2013099148A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8404Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • B24B37/044Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor characterised by the composition of the lapping agent
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions

Definitions

  • the present invention relates to a method for manufacturing a glass substrate for HDD.
  • a magnetic disk device for example, a hard disk drive: HDD
  • a magnetic recording medium for example, a hard disk drive: HDD
  • the required quality has become more sophisticated.
  • demands for higher density and improved impact resistance of magnetic disks have been advanced.
  • the quality required for the glass substrate for HDD is becoming more sophisticated, and high smoothness and excellent impact resistance are required.
  • the surface of the HDD glass substrate is chemically strengthened by being immersed in a chemical strengthening treatment solution containing nitrate (KNO 3 or NaNO 3 ) or the like at about 360 ° C., from the ion exchange layer and the compressive stress layer.
  • a chemical strengthening treatment solution containing nitrate (KNO 3 or NaNO 3 ) or the like at about 360 ° C.
  • Patent Document 1 discloses a method in which precision polishing is performed after a chemical strengthening step in order to keep a compressive stress layer on the surface of a glass substrate for HDD and maintain the smoothness of the substrate surface.
  • An object of the present invention is to provide a method for producing a glass substrate for HDD having excellent impact resistance even in a high temperature and high humidity environment.
  • One aspect of the present invention is a polishing material containing cerium oxide as a main component, a dispersant containing an anionic polymer having a carboxyl group in the molecule, and an ionic radius of 80 to 160 pm in terms of hexacoordination.
  • a method of manufacturing a glass substrate for HDD wherein the content of the cation is 0.05 to 5 mmol / kg with respect to the content of cerium oxide. It is.
  • FIG. 1 is a manufacturing process diagram illustrating a process in a method for manufacturing a glass substrate for HDD.
  • FIG. 2 is a diagram illustrating the overall configuration of the glass substrate.
  • the glass substrate for HDD obtained by performing the chemical strengthening process such as the manufacturing method described in Patent Document 1 deteriorates in impact resistance when placed in a high temperature and high humidity environment. There was a case.
  • the present invention has been made in view of such circumstances, and stably performs the chemical strengthening step by preventing ion elution of the glass substrate in the rough polishing step, and is excellent in impact resistance even in a high temperature and high humidity environment. It aims at providing the manufacturing method of the glass substrate for HDD.
  • the present inventors have intensively studied and found that a glass substrate for HDD having high impact resistance can be obtained by the manufacturing method having the following constitution, and have completed the present invention.
  • the manufacturing method of the glass substrate for HDD includes an abrasive mainly composed of cerium oxide, a dispersant containing an anionic polymer having a carboxyl group in the molecule, and an ionic radius in terms of hexacoordinate.
  • the process for manufacturing the glass substrate for HDD according to the present embodiment may employ a chemical strengthening process after the rough polishing process.
  • the manufacturing method of the glass substrate for HDD which concerns on this embodiment, for example, as FIG. 1 shows, the washing
  • the polishing process is divided into two processes in terms of smoothness and the like, and is divided into a rough polishing process for performing rough polishing and a precision polishing process for performing precise polishing.
  • a rough polishing process for performing rough polishing
  • a precision polishing process for performing precise polishing.
  • the manufacturing method shown in FIG. 1 is divided into a first grinding step and a second grinding step.
  • the polishing slurry refers to an abrasive (also referred to as abrasive grains) that has a polishing action on a substrate that is an object to be polished, and a solvent that is a dispersion medium (also referred to as a polishing liquid).
  • the polishing slurry is referred to as an abrasive.
  • the order of the processes is not particularly limited.
  • a magnetic recording medium is obtained by forming a magnetic film on the glass substrate for HDD obtained by the above manufacturing method, and is mounted on the HDD.
  • the chemical strengthening process is generally performed after the precision polishing process, but the smoothness deteriorates when the chemical strengthening process is performed. Therefore, in recent years, in a glass substrate for hard disk having a density of 500 GB / P or higher, higher smoothness is required. Therefore, by performing a polishing process after the chemical strengthening process, The compatibility with high smoothness is achieved while leaving the compressive stress layer.
  • the abrasive particle size of the abrasive contained in the polishing slurry used is relatively large at 0.5 to 1.5 ⁇ m in D50 value.
  • a polishing slurry containing cations that can suppress ion elution is used in the polishing step.
  • an ionic component (particularly alkali metal) in a glass composition is gradually dissolved in an aqueous solution, but the dissolution rate is slow, and the amount of elution during polishing is not so large.
  • the dispersant when a dispersant is added to the polishing slurry, the component eluted from the glass is trapped by the dispersant, so that the speed of ion elution is greatly increased.
  • the dispersant preferentially captures cations and does not trap ions eluted from the glass substrate so much, thereby suppressing the ion elution rate from the glass substrate. be able to. As a result, ion elution from the glass substrate during polishing can be prevented, and excellent impact resistance can be imparted to the glass substrate.
  • a dispersant is required to maintain the dispersibility of the abrasive.
  • the dispersing agent generally serves to attach a polymer around the abrasive grains and impart a dispersing action by utilizing the repulsive force (for example, electrostatic force) between the polymers.
  • a nonionic dispersant for example, polyoxyalkylene glycol or the like
  • the rough polishing step in the present embodiment is a step of reducing the surface roughness while eliminating scratches generated on the glass substrate in the grinding step described later.
  • the main surface of the glass substrate from which large waviness and the like have been removed by the grinding process can be made into a mirror surface.
  • polishing slurry used in the rough polishing step according to the present embodiment will be described in detail.
  • the polishing slurry used in the present embodiment has an abrasive mainly composed of cerium oxide, a dispersant containing an anionic polymer, and an ionic radius (hexacoordinate ionic radius) of 80 to 80 in terms of six coordination. It contains a cation of a Group 1 element or a Group 2 element that is 160 pm.
  • the cation of the group 1 element or the group 2 element having an ionic radius of 80 to 160 pm in terms of hexacoordinate refers to an alkali metal ion, magnesium ion having an ionic radius of 80 to 160 pm in terms of hexacoordination, Alkaline earth metal ions.
  • lithium ions (6-coordinate ion radius: 90 pm), sodium ions (6-coordinate ion radius: 116 pm), potassium ions (6-coordinate ion radius: 152 pm), magnesium ions (6-coordinate) Ionic radius: 86 pm), calcium ions (6-coordinate ion radius: 114 pm), strontium ions (6-coordinate ion radius: 132 pm), and barium ions (6-coordinate ion radius: 149 pm).
  • the polishing slurry used in the present embodiment contains cerium oxide used as an abrasive such as optical glass and various glass substrates.
  • the cerium oxide is not particularly limited as long as it is usually used as an abrasive for a glass substrate.
  • the content of cerium oxide is preferably 1 to 10% by mass, more preferably 3 to 5% by mass, based on the total amount of the polishing slurry. If the content of cerium oxide is too small, the polishing rate tends to decrease, and the shape of the polished substrate tends to deteriorate. Moreover, when there is too much content of cerium oxide, there exists a tendency for productivity to worsen.
  • cerium oxide is a main component of the abrasive.
  • the abrasive may be made of cerium oxide, and even if it contains other components, the content of cerium oxide is 80% by mass with respect to the abrasive. The above is preferable. That is, the content of cerium oxide is preferably 80 to 100% by mass in the abrasive.
  • the average particle diameter (D 50 ) of the cerium oxide is preferably 0.5 to 1.5 ⁇ m, and more preferably 0.7 to 1.2 ⁇ m.
  • the average particle diameter (D 50 ) of cerium oxide is too small, the polishing rate tends to decrease.
  • the average particle diameter (D 50 ) of cerium oxide is too large, scratches on the glass substrate tend to increase.
  • the average particle diameter (D 50 ) is 50% (D 50 ) based on JIS R 1629-1997 “Method for measuring particle size distribution of fine ceramic raw material by laser diffraction / scattering method”.
  • 50 means a particle diameter corresponding to 50 ), and is generally used as an average particle diameter of ultrafine metal powder.
  • the polishing slurry used by this embodiment contains the anionic polymer which has a carboxyl group in a molecule
  • the polishing slurry contains the anionic polymer as a dispersant, it is possible to appropriately capture the eluted ions of the glass substrate and improve the dispersibility of the abrasive.
  • the dispersant contains the anionic polymer, and preferably contains the anionic polymer as a main component. Specifically, it is preferable to contain 80 to 100% by mass of the anionic polymer in the dispersant. By containing the anionic polymer in such a range, the effect of the present invention can be further enhanced.
  • examples of what can be included in the dispersant include a pH adjuster and a reducing agent.
  • the anionic polymer having a carboxyl group in the molecule include acrylic acid / maleic acid copolymer, polyacrylic acid, polymethacrylic acid, polystyrene carboxylic acid, and copolymers thereof.
  • Carboxylic acid is mentioned.
  • the polycarboxylic acid include those obtained by polymerizing a polymerizable carboxylic acid such as polyacrylic acid or polymethacrylic acid.
  • the polycarboxylic acid is not only such a polymer, but also a polymerizable carboxylic acid such as a copolymer of acrylic acid / methyl acrylate, and other single quantities copolymerizable with the carboxylic acid.
  • copolymers with the body In this case, the copolymerization ratio of carboxylic acid is preferably 50% by weight or more.
  • the dispersant is most preferably an acrylic acid / maleic acid copolymer. This is because the carboxylic acid in the acrylic acid / maleic acid copolymer can most efficiently disperse the abrasive.
  • an anionic polymer that does not have a carboxyl group in the molecule such as a polystyrene sulfonate polymer, it will trap too much ions eluted from the glass substrate or dispersibility of the abrasive. May be damaged.
  • the content of the dispersant is preferably 0.01 to 2% by mass and more preferably 0.1 to 1% by mass with respect to the content of the cerium oxide.
  • the content of the dispersant is preferably 0.01 to 2% by mass and more preferably 0.1 to 1% by mass with respect to the content of the cerium oxide.
  • the weight average molecular weight (Mw) of the acrylic acid / maleic acid copolymer is preferably 100 to 10,000, and more preferably 1,000 to 5,000. If the molecular weight (Mw) is too low, the dispersibility of the abrasive tends to deteriorate and the polishing processability tends to deteriorate. On the other hand, when the molecular weight (Mw) is too high, the viscosity of the polishing slurry increases and the polishing characteristics tend to deteriorate.
  • the ionic radius of the cation in terms of six coordination is 80 to 160 pm, preferably 80 to 120 pm.
  • the ion radius is less than 80 pm, ion elution of the glass substrate cannot be sufficiently suppressed, and when the ion radius exceeds 160 pm, the cation does not sufficiently contribute to suppression of ion elution. Therefore, when the polishing slurry containing a cation of a Group 1 element or a Group 2 element having an ionic radius of 80 to 160 pm in terms of hexacoordination is used, ion elution of the glass substrate is suitably suppressed. be able to. Therefore, elution of ions during rough polishing is suppressed, and a glass substrate for HDD having excellent impact resistance even at high temperature and high humidity can be obtained.
  • the cation is preferably at least one cation selected from the group consisting of magnesium ion, calcium ion, sodium ion, and potassium ion.
  • magnesium ion, calcium ion, sodium ion, and potassium ion When these cations are used, ion elution from the glass substrate during the polishing process can be further suppressed, and a highly dispersible polishing slurry can be obtained.
  • chloride ion or carbonate ion can be used as the anion as the counter ion of the cation.
  • the salt which consists of the said cation and an anion is used suitably as a component of the grinding
  • magnesium chloride, magnesium sulfate, calcium sulfate, calcium carbonate, potassium iodide, sodium carbonate, and the like are preferable because the pH change of the solution is small and the paired ions do not affect the polishing.
  • the content of the cation is 0.05 to 5 mmol / kg, preferably 0.2 to 1 mmol / kg, relative to the content of cerium oxide. That is, when adding the salt to the polishing slurry, it is preferable to add the cation so that the cation content is in the range of 0.05 to 5 mmol / kg with respect to the cerium oxide content. If the cation concentration is less than 0.05 mmol / kg, the ion elution cannot be suppressed because the contribution to the dispersant is small, and if it exceeds 5 mmol / kg, the dispersibility of the abrasive is adversely affected. Aggregation of abrasives occurs.
  • a solvent used with the polishing slurry used in the present embodiment for example, water can be used.
  • the water include distilled water, ion exchange water, pure water, and ultrapure water.
  • the content of the solvent in the polishing slurry used in the present embodiment is preferably 55% by mass or more, and more preferably 75% by mass or more because the handling of the polishing slurry becomes easier.
  • the polishing slurry used in this embodiment may further contain an acid, an oxidizing agent, a bactericidal agent, an antibacterial agent, a thickener, a dispersant, a rust preventive agent, a basic substance, a pH adjuster, and the like.
  • the polishing slurry used in this embodiment can be used in any polishing process in the substrate manufacturing method, and among these, is suitable for use in the rough polishing process in the substrate manufacturing method.
  • polishing process In the rough polishing step, the shape of the glass substrate after the grinding step described later is adjusted, and the surface roughness is removed more precisely. And it grind
  • the double-side polishing machine includes a disk-shaped upper surface plate and a lower surface plate that are arranged vertically so as to be parallel to each other, and rotate in opposite directions.
  • a plurality of diamond pellets for grinding the main surface of the glass substrate are attached to the opposing surfaces of the upper and lower surface plates.
  • the carrier is provided with a plurality of holes, and a glass substrate is fitted into the holes.
  • the upper and lower surface plates, the internal gear and the sun gear can be operated by separate driving.
  • the operation of the double-side polishing machine is such that the upper and lower surface plates rotate in opposite directions, and the carrier sandwiched between the surface plates via the diamond pellets rotates while maintaining a plurality of glass substrates. Revolves in the same direction as the lower surface plate with respect to the center of rotation.
  • polishing of glass polishing can be performed by supplying the above-described polishing slurry between the upper surface plate and the glass substrate, and the lower surface plate and the glass substrate.
  • the supply rate of the polishing slurry is preferably 1 to 10 L / min. By supplying the polishing slurry in this range, a stable polishing process can be performed on the glass substrate.
  • the polishing pad is a hard pad having a hardness A of about 80 to 90, and for example, urethane foam is preferably used.
  • urethane foam is preferably used.
  • the machining allowance in the rough polishing step is preferably 10 to 30 ⁇ m. If it is less than 10 ⁇ m, scratches and defects cannot be sufficiently removed, and the remaining ion exchange layer cannot be removed. If it exceeds 30 ⁇ m, the surface roughness can be in the range of 2 to 60 nm for Rmax and 0.2 to 0.4 nm for Ra, but the polishing is performed more than necessary and the production efficiency is lowered. .
  • the weight applied to the glass substrate by the surface plate is preferably 90 to 110 g / cm 2 .
  • the load applied to the glass substrate by the surface plate greatly affects the shape of the outer peripheral edge. As the weight is increased, the inner side of the outer peripheral end portion tends to decrease and increase toward the outer side. Further, when the weight is reduced, the outer peripheral end portion tends to be close to a plane and the surface sagging increases. The weight can be determined while observing these trends.
  • the rotation speed of the surface plate is 25 to 50 rpm, and the rotation speed of the upper surface plate is 30 to 40% slower than the rotation speed of the lower surface plate.
  • the chemical strengthening step according to the present embodiment include a method of immersing a glass substrate in a chemical strengthening treatment solution.
  • a compressive stress layer can be formed on the surface of the glass substrate, for example, in a region of 5 ⁇ m from the glass substrate surface.
  • the ion exchange layer can be formed on the outer side of the compressive stress layer. And by forming a compressive stress layer, impact resistance, vibration resistance, heat resistance, etc. can be improved.
  • alkali metal ions such as lithium ions and sodium ions contained in the glass substrate are replaced with alkali metal ions such as potassium ions having a larger ion radius. Performed by ion exchange. Due to the strain caused by the difference in ion radius, compressive stress is generated in the ion-exchanged region, and the surface of the glass substrate is strengthened.
  • salts used for the treatment liquid in the chemical strengthening step known salts can be used.
  • the salt include nitrate, carbonate, sulfate and the like.
  • ions to be ion exchanged include sodium and potassium. Of these, potassium nitrate is the best. Since potassium nitrate has a low melting point, it is easy to handle, and ion exchange can be performed without variation by exchange of potassium ions.
  • alkali metal ions such as lithium ions and sodium ions contained in the glass substrate are converted into alkali ions such as potassium ions having a larger ion radius. This is performed by the ion exchange method for substitution. Compressive stress is generated in the ion-exchanged region due to the distortion caused by the difference in ion radius, and the surface of the glass substrate is strengthened.
  • the chemical strengthening treatment liquid is heated to a temperature higher than the temperature at which the above components melt.
  • the heating temperature of the chemical strengthening treatment liquid is preferably lower than the glass transition point (Tg) of the glass substrate, more preferably lower than the glass transition point ⁇ 50 ° C.
  • the precision polishing step is a step of further precisely polishing the surface of the glass substrate after the rough polishing step.
  • a polishing machine similar to the double-side polishing machine used in the rough polishing process can be used.
  • polishing slurry used in the precision polishing step it is preferable to use a slurry containing an abrasive having a finer particle size and less variation in order to make the surface of the glass substrate smoother.
  • a polishing slurry containing colloidal silica having an average particle size of 20 to 40 nm it is preferable to use a polishing slurry containing colloidal silica having an average particle size of 20 to 40 nm.
  • the machining allowance in this precision polishing step is preferably 0.3 to 3 ⁇ m.
  • the polishing amount is within this range, minute defects such as minute roughness and undulation generated on the surface and minute scratches generated in the process so far can be efficiently removed.
  • the machining allowance in the precision polishing step is smaller than 0.3 ⁇ m, scratches in the rough polishing step remain, and if it is larger than 3 ⁇ m, the end face shape is destroyed.
  • the pad used in the precision polishing step is a soft pad having a hardness of about 65 to 80 (Asker-C), which is softer than the pad used in the rough polishing step.
  • Asker-C a soft pad having a hardness of about 65 to 80
  • urethane foam or suede is preferably used.
  • the weight applied to the glass substrate by the surface plate is preferably 90 to 110 g / cm 2 .
  • the weight applied to the glass substrate by the surface plate greatly affects the shape of the outer peripheral edge as in the rough polishing step, the shape cannot be changed as efficiently as the rough polishing step because the polishing speed is slow.
  • the change in the shape of the outer peripheral end due to the increase / decrease of the weight is the same as in the rough polishing step, and when the weight is increased, the inner periphery of the outer peripheral end tends to decrease and increase toward the outer side. Further, when the weight is reduced, the outer peripheral end portion tends to be close to a plane and the surface sagging increases.
  • the rotation speed of the surface plate is preferably 15 to 35 rpm, and the rotation speed of the upper surface plate is preferably 30 to 40% slower than the rotation speed of the lower surface plate.
  • the surface roughness of the main surface of the glass substrate after performing the precision polishing step can be set such that Rmax is 2 to 6 nm and Ra is 0.2 to 0.4 nm.
  • a through-hole 5 is formed in the central portion so that the inner periphery and the outer periphery are concentric as shown in FIG. Is a step of processing into a disk-shaped glass substrate 1 on which is formed.
  • Glass melting process First, a glass material is melted as a glass melting step.
  • the material for the glass substrate is not particularly limited.
  • a glass material that can be generally used can be used as the material of the glass substrate for HDD. More specifically, a glass material having a composition shown in Table 1 below can be used.
  • the disk-shaped glass substrate precursor may be produced by cutting a sheet glass formed by, for example, a downdraw method or a float method with a grinding stone, without using press molding.
  • the size of the glass substrate there is no limitation on the size of the glass substrate.
  • glass substrates of various sizes such as an outer diameter of 2.5 inches, 1.8 inches, 1 inch, and 0.8 inches.
  • the thickness of the glass substrate is not limited, and there are glass substrates having various thicknesses such as 2 mm, 1 mm, and 0.63 mm.
  • the press-molded glass substrate precursor is pierced at the center in the coring process.
  • a hole is drilled in the center by grinding with a core drill or the like equipped with a diamond grindstone or the like in the cutter part.
  • the outer peripheral end surface and the inner peripheral end surface of the glass substrate precursor are ground with an abrasive wheel such as a drum-shaped diamond to process the inner / outer diameter, thereby producing a glass substrate.
  • an abrasive wheel such as a drum-shaped diamond
  • ⁇ Inner diameter polishing process> A plurality of glass substrates that have been subjected to the inner / outer diameter precision processing step are stacked and stacked, and in this state, the inner peripheral surface is polished using an end surface polishing machine.
  • the grinding process can remove large undulations, chips, cracks, and the like on the surface of the glass substrate.
  • the grinding step preferably has two steps, a first grinding step and a second grinding step, from the viewpoint that the parallelism and flatness of the glass substrate can be precisely adjusted.
  • Outside diameter polishing process In the outer diameter polishing step, a plurality of glass substrates are stacked and laminated, and in this state, the outer peripheral end surface is polished using an end surface polishing machine or a polishing brush.
  • a known apparatus can be used for the end face polishing machine.
  • First grinding process As the first grinding step, both surfaces of the glass substrate are ground, and the overall shape of the glass substrate, that is, the parallelism, flatness and thickness of the glass substrate are preliminarily adjusted. In the first grinding step, it is preferable to use fixed abrasive grains.
  • both surfaces of the glass substrate are ground again to finely adjust the parallelism, flatness and thickness of the glass substrate.
  • a polishing machine similar to the double-side polishing machine used in the polishing process can be used.
  • the surface roughness of the main surface of the glass substrate is about 2 to 4 ⁇ m for Rmax and about 0.2 to 0.4 ⁇ m for Ra. Is preferable.
  • the surface roughness at the time when the first grinding step is completed is preferably set such that Rmax is about 4 to 8 ⁇ m and Ra is about 0.4 to 0.8 ⁇ m.
  • polishing machines used in the first grinding process and the second grinding process have the same configuration, but it is preferable to perform grinding using different polishing machines prepared for each process. This is because the dedicated diamond pellets are pasted, so that the replacement is a large-scale operation, and complicated operations such as resetting the polishing conditions are required, resulting in a reduction in manufacturing efficiency.
  • the cleaning step is a step of cleaning the glass substrate that has been subjected to the grinding step or the polishing step.
  • the glass substrate after the grinding step and the glass substrate after the polishing step are preferably washed by a washing step each time.
  • the washing process is not particularly limited. Specifically, for example, the following washing steps are mentioned.
  • the glass substrate is washed with an alkaline detergent having a pH of 13 or more, and the glass substrate is rinsed.
  • the glass substrate is washed with an acid detergent having a pH of 1 or less, and the glass substrate is rinsed.
  • a rinse tank after each washing.
  • a surfactant, a dispersing agent, a chelating agent, a reducing material, and the like may be added to these detergents.
  • the glass substrate is taken out, rinsed with pure water, and dried IPA.
  • the glass substrate is preferably cleaned so that the amount of cerium oxide on the surface of the glass substrate is 0.125 ng / cm 2 or less.
  • the amount of cerium oxide on the surface of the glass substrate is too large, there is a tendency that the flatness of the glass substrate cannot be improved.
  • One aspect of the present invention is a polishing material containing cerium oxide as a main component, a dispersant containing an anionic polymer having a carboxyl group in the molecule, and an ionic radius of 80 to 160 pm in terms of hexacoordination.
  • a method of manufacturing a glass substrate for HDD wherein the content of the cation is 0.05 to 5 mmol / kg with respect to the content of cerium oxide. It is.
  • the elution of ions during rough polishing can be suppressed, and a glass substrate for HDD having excellent impact resistance even at high temperature and high humidity can be obtained.
  • the cation preferably has an ionic radius of 80 to 120 pm in terms of six coordination.
  • the cation is preferably at least one cation selected from the group consisting of magnesium ion, calcium ion, sodium ion, and potassium ion.
  • the dispersant is an acrylic acid / maleic acid copolymer having a weight average molecular weight (Mw) of 100 to 10,000.
  • the effect of improving the dispersibility of the abrasive by the dispersant can be further exhibited, and the aggregation of the abrasive can be further prevented.
  • the content of the dispersant is preferably 0.01 to 2% by mass with respect to the content of cerium oxide.
  • the effect of enhancing the dispersibility of the abrasive by the dispersant can be more exerted, so that cerium oxide, which is the main component of the abrasive, exists more stably in the polishing slurry. Can do. Therefore, aggregation of the abrasive can be further prevented.
  • Example 1 A glass substrate before the polishing step produced by the following steps was prepared.
  • Disc machining process As the glass material, a glass material (see Table 1 for the composition) was used, and the molten glass material was press-molded to produce disc-shaped blanks having an outer diameter of about 66 mm. The thickness of the blanks was 1.05 mm.
  • polishing is performed using a polishing slurry containing colloidal silica having an average particle diameter of 20 nm as polishing abrasive grains, and the surface of the glass substrate is reduced to 2 mm. Finished.
  • the machining allowance was 1 ⁇ m.
  • the glass substrate subjected to the precision polishing step was scrubbed.
  • a cleaning liquid a liquid obtained by diluting KOH and NaOH mixed at a mass ratio of 1: 1 with ultrapure water (DI water) and adding a nonionic surfactant to enhance the cleaning performance is obtained.
  • DI water ultrapure water
  • the cleaning liquid was supplied by spraying. After scrub cleaning, in order to remove the cleaning liquid remaining on the surface of the glass substrate, a water rinse cleaning process is performed in an ultrasonic bath for 2 minutes, an IPA cleaning process is performed in an ultrasonic bath for 2 minutes, and finally the glass substrate is cleaned with IPA vapor. The surface of was dried.
  • A The maximum value is 1200 G or more.
  • The maximum value is 1100G or more and less than 1200G.
  • X The maximum value is less than 1100G.
  • Examples 2 to 13 In Examples 2 to 4, as shown in Table 2 below, the polishing slurry was prepared such that the magnesium ions were 0.05 mmol / kg, 5 mmol / kg, and 1 mmol / kg with respect to cerium oxide, respectively. Polishing slurries 2 to 4 were prepared in the same manner as in Example 1.
  • polishing was performed in the same manner as in Example 1 except that a polishing slurry was prepared using calcium carbonate having calcium ions having an ionic radius of 80 to 160 pm and potassium chloride having potassium ions. Slurries 5-6 were obtained.
  • Example 7 the molecular weight of the acrylic acid / maleic acid copolymer as a dispersant was set to 700, 5000, and 10,000, respectively, and magnesium ions were added to 1 mmol / kg, 2 mmol / kg of cerium oxide, respectively. Polishing slurries 7 to 9 were made in the same manner as in Example 1 except that the polishing slurry was prepared to 3 kg / kg.
  • Example 10 was the same as Example 4 except that a polishing slurry was prepared using a styrene / maleic acid copolymer having a weight average molecular weight (Mw) of 1000 as a dispersant. Was prepared.
  • Mw weight average molecular weight
  • the blending amount of the acrylic acid / maleic acid copolymer as the dispersant is 0.01% by mass, 2% by mass, and 0.005% by mass with respect to cerium oxide, respectively.
  • Polishing slurries 11 to 13 were prepared in the same manner as in Example 1 except that the polishing slurry was prepared.
  • a polishing slurry was prepared using an aqueous solution having iron (III) ions (iron (III) phosphate dissolved and neutralized in hydrochloric acid) and cesium chloride having cesium ions.
  • Abrasive slurries 14 to 15 were prepared in the same manner as in Example 4 except that the slurry was prepared.
  • a polishing slurry 16 was prepared in the same manner as in Example 4 except that a polishing slurry was prepared using a polystyrene sulfonic acid polymer as a dispersant.
  • polishing slurries 17 to 18 were prepared in the same manner as in Example 1 except that the polishing slurry was prepared so that the magnesium ions were 0.04 mmol / kg and 6 mmol / kg with respect to cerium oxide, respectively. Prepared.
  • Example 1 An impact resistance test was performed in the same manner as in Example 1 except that the polishing slurries 2 to 18 according to Examples 2 to 13 and Comparative Examples 1 to 5 were used as described above, and the above evaluation was performed. went.
  • a dispersant containing an anionic polymer having a carboxyl group in the molecule, and a positive ion of a Group 1 or Group 2 element having an ionic radius of 80 to 160 in terms of hexacoordination When polishing is performed using a polishing slurry (polishing slurry 1 to 13) containing 0.05 to 5 mmol / kg of ions with respect to cerium oxide (Examples 1 to 13), a glass substrate having excellent impact resistance is used. I was able to get it. It is considered that this is because the cation suppresses ion elution and the dispersing agent can maintain the dispersing effect.
  • the molecular weight of the acrylic acid / maleic acid copolymer contained as a dispersant is 5000 (Example 8), or 0.01% by mass of acrylic acid / maleic acid copolymer as a dispersant. Even in the case of containing in mass% (Examples 11 and 12), it was possible to obtain a glass substrate further excellent in impact resistance.
  • the obtained glass substrate was inferior in impact resistance. This is considered to be because the ion elution preventing effect by the cation and the dispersing agent is low and ions are eluted from the glass substrate.
  • the obtained glass substrate was inferior in impact resistance. This is considered to be caused by the following. First, the dispersibility of the abrasive decreased, and the glass substrate was damaged by processing. Therefore, it is considered that the cause is that the cracks originated from scratches even after chemical strengthening.
  • a method for producing a glass substrate for HDD having excellent impact resistance even in a high temperature and high humidity environment is provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Surface Treatment Of Glass (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

This HDD glass substrate manufacturing method is characterized by involving: a rough polishing step, in which a glass substrate is polished using an abrasive slurry containing an abrasive agent, wherein said abrasive agent contains an abrasive material with cerium oxide as a main component, a dispersant containing anionic polymers having a carboxyl group inside the molecule, and first group element or second group element positive ions having an 80-160pm ionic radius in six-coordinate conversion; a chemical strengthening step performed after the rough polishing step; and a precision polishing step in which the rough-polished glass substrate undergoes precision polishing, wherein the content of the positive ions is 0.05-5 mmol/kg relative to the content of the cerium oxide.

Description

HDD用ガラス基板の製造方法Manufacturing method of glass substrate for HDD
 本発明は、HDD用ガラス基板の製造方法に関する。 The present invention relates to a method for manufacturing a glass substrate for HDD.
 近年、磁気記録媒体を搭載した磁気ディスク装置(例えば、ハードディスクドライブ:HDD)は、様々な用途で使用されており、要求される品質も、より高度化されている。具体的には、磁気ディスクの高密度化や耐衝撃性向上等の要求が高度化されている。これに伴いHDD用ガラス基板に要求される品質も、より高度化しており、高平滑性や優れた耐衝撃性が求められている。 In recent years, a magnetic disk device (for example, a hard disk drive: HDD) equipped with a magnetic recording medium has been used for various purposes, and the required quality has become more sophisticated. Specifically, demands for higher density and improved impact resistance of magnetic disks have been advanced. Along with this, the quality required for the glass substrate for HDD is becoming more sophisticated, and high smoothness and excellent impact resistance are required.
 ここで、HDD用ガラス基板の耐衝撃性を向上させる方法としては、HDD用ガラス基板中に存在するアルカリイオンを、よりイオン半径の大きなアルカリイオンにイオン交換する化学強化処理を行う方法がある。具体的には、例えば、HDD用ガラス基板の表面を360℃程度で硝酸塩(KNOやNaNO)等を含有する化学強化処理液に浸漬させて化学強化し、イオン交換層及び圧縮応力層からなる強化層を形成する方法が知られている。 Here, as a method of improving the impact resistance of the glass substrate for HDD, there is a method of performing chemical strengthening treatment in which alkali ions existing in the glass substrate for HDD are ion-exchanged to alkali ions having a larger ion radius. Specifically, for example, the surface of the HDD glass substrate is chemically strengthened by being immersed in a chemical strengthening treatment solution containing nitrate (KNO 3 or NaNO 3 ) or the like at about 360 ° C., from the ion exchange layer and the compressive stress layer. A method for forming a reinforcing layer is known.
 前記方法によってHDD用ガラス基板の表面に圧縮応力層を設けることにより、仮にHDD用ガラス基板の表面に傷が入ったとしても、傷を基点として生じる引っ張り応力に対抗することができる。その結果、傷が伸展せず、HDD用ガラス基板の破損を防止することができる。 By providing a compressive stress layer on the surface of the HDD glass substrate by the above method, even if the surface of the HDD glass substrate is scratched, the tensile stress generated from the scratch can be countered. As a result, scratches do not extend and damage to the glass substrate for HDD can be prevented.
 例えば、特許文献1には、HDD用ガラス基板の表面に圧縮応力層に残しつつ、かつ基板表面の平滑性を保持させるために、化学強化工程の後に精密研磨を行う方法が開示されている。 For example, Patent Document 1 discloses a method in which precision polishing is performed after a chemical strengthening step in order to keep a compressive stress layer on the surface of a glass substrate for HDD and maintain the smoothness of the substrate surface.
特開2009-104703号公報JP 2009-104703 A
 本発明は、高温高湿の環境下でも耐衝撃性に優れたHDD用ガラス基板の製造方法を提供することを目的とする。 An object of the present invention is to provide a method for producing a glass substrate for HDD having excellent impact resistance even in a high temperature and high humidity environment.
 本発明の一局面は、酸化セリウムを主成分とする研磨材と、分子内にカルボキシル基を有するアニオン性高分子を含有する分散剤と、六配位換算におけるイオン半径が80~160pmである第1族元素又は第2族元素の陽イオンと、を含む研磨スラリーを用いてガラス基板を研磨する粗研磨工程と、前記粗研磨工程後に行われる化学強化工程と、前記粗研磨されたガラス基板を精密研磨する精密研磨工程と、を有し、前記陽イオンの含有量は、酸化セリウムの含有量に対して、0.05~5mmol/kgであることを特徴とするHDD用ガラス基板の製造方法である。 One aspect of the present invention is a polishing material containing cerium oxide as a main component, a dispersant containing an anionic polymer having a carboxyl group in the molecule, and an ionic radius of 80 to 160 pm in terms of hexacoordination. A rough polishing step of polishing a glass substrate using a polishing slurry containing a cation of a group 1 element or a group 2 element; a chemical strengthening step performed after the rough polishing step; and the rough polished glass substrate. A method of manufacturing a glass substrate for HDD, wherein the content of the cation is 0.05 to 5 mmol / kg with respect to the content of cerium oxide. It is.
 本発明の目的、特徴、局面、及び利点は、以下の詳細な記載と添付図面によって、より明白となる。 The objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description and the accompanying drawings.
図1は、HDD用ガラス基板の製造方法における工程を説明する製造工程図である。FIG. 1 is a manufacturing process diagram illustrating a process in a method for manufacturing a glass substrate for HDD. 図2は、ガラス基板の全体構成を示す図である。FIG. 2 is a diagram illustrating the overall configuration of the glass substrate.
 本発明者の検討によれば、特許文献1に記載の製造方法のような化学強化工程を行って得られたHDD用ガラス基板は、高温高湿の環境下に置くと、耐衝撃性が悪化する場合があった。 According to the study of the present inventor, the glass substrate for HDD obtained by performing the chemical strengthening process such as the manufacturing method described in Patent Document 1 deteriorates in impact resistance when placed in a high temperature and high humidity environment. There was a case.
 この原因を調査すると、耐衝撃性が悪化したガラス基板では、前記ガラス基板の化学強化工程においてイオン交換が不充分な箇所が生じ、基板の一部において圧縮応力層が薄い箇所が存在することが分かった。さらに、調査を進めると、耐衝撃性が悪化したガラス基板では、化学強化工程の前に行う粗研磨工程においてガラス基板の一部からイオン溶出が発生することにより、後の化学強化工程にてイオン交換が不充分な箇所が生じ、その結果、基板の一部において圧縮応力層が薄い箇所が存在するようになるため、落下衝撃性が劣ることになることがわかった。 When investigating the cause, in a glass substrate having deteriorated impact resistance, there are places where ion exchange is insufficient in the chemical strengthening process of the glass substrate, and there are places where the compressive stress layer is thin in a part of the substrate. I understood. Furthermore, as a result of further investigation, in a glass substrate having deteriorated impact resistance, ions are eluted from a part of the glass substrate in the rough polishing step performed before the chemical strengthening step, so that ions are generated in the subsequent chemical strengthening step. It has been found that there are places where the exchange is insufficient, and as a result, there are places where the compressive stress layer is thin in a part of the substrate, resulting in inferior drop impact properties.
 本発明は、かかる事情に鑑みてなされたものであり、粗研磨工程におけるガラス基板のイオン溶出を防ぐことにより化学強化工程を安定して行い、高温高湿の環境下でも耐衝撃性に優れたHDD用ガラス基板の製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and stably performs the chemical strengthening step by preventing ion elution of the glass substrate in the rough polishing step, and is excellent in impact resistance even in a high temperature and high humidity environment. It aims at providing the manufacturing method of the glass substrate for HDD.
 前記課題を解決するために、本発明者は鋭意検討を行った結果、下記構成の製造方法によって耐衝撃性の高いHDD用ガラス基板を得られることを見出し、本発明を完成するに至った。 In order to solve the above-mentioned problems, the present inventors have intensively studied and found that a glass substrate for HDD having high impact resistance can be obtained by the manufacturing method having the following constitution, and have completed the present invention.
 以下、本発明に係る実施形態について説明するが、本発明は、これらに限定されるものではない。 Hereinafter, embodiments according to the present invention will be described, but the present invention is not limited thereto.
 <HDD用ガラス基板の製造方法>
 本実施形態に係るHDD用ガラス基板の製造方法は、酸化セリウムを主成分とする研磨材と、分子内にカルボキシル基を有するアニオン性高分子を含有する分散剤と、六配位換算におけるイオン半径が80~160pmである第1族元素又は第2族元素の陽イオンと、を含む研磨スラリーを用いてガラス基板を研磨する粗研磨工程と、前記粗研磨工程後に行われる化学強化工程と、前記粗研磨されたガラス基板を精密研磨する精密研磨工程と、を有し、前記陽イオンの含有量は、酸化セリウムの含有量に対して0.05~5mmol/kgであることを特徴とする。
<Method for producing glass substrate for HDD>
The manufacturing method of the glass substrate for HDD according to this embodiment includes an abrasive mainly composed of cerium oxide, a dispersant containing an anionic polymer having a carboxyl group in the molecule, and an ionic radius in terms of hexacoordinate. A rough polishing step of polishing a glass substrate using a polishing slurry containing a cation of a Group 1 element or a Group 2 element having a valence of 80 to 160 pm, a chemical strengthening step performed after the rough polishing step, A precision polishing step of precisely polishing the roughly polished glass substrate, wherein the cation content is 0.05 to 5 mmol / kg with respect to the cerium oxide content.
 本実施形態に係るHDD用ガラス基板を製造する工程は、粗研磨工程の後に化学強化工程を採用すればよい。また、本実施形態に係るHDD用ガラス基板の製造方法は、例えば、図1に示されるように、研磨工程によって付着した研磨材を除去する洗浄工程や、ガラス基板の外周端面および内周端面の面取り加工を行う内・外径精密加工、ガラス基板の大きなうねり、欠け、ひび等を除去する研削工程等を有していてもよい。 The process for manufacturing the glass substrate for HDD according to the present embodiment may employ a chemical strengthening process after the rough polishing process. Moreover, the manufacturing method of the glass substrate for HDD which concerns on this embodiment, for example, as FIG. 1 shows, the washing | cleaning process which removes the abrasives adhering by the grinding | polishing process, and the outer peripheral end surface and inner peripheral end surface of a glass substrate. It may have a chamfering inner / outer diameter precision processing, a grinding process for removing large waviness, chipping, cracks and the like of the glass substrate.
 なお、図1に示すように、研磨工程は、平滑性等の点において2工程とされており、それぞれ粗研磨を行う粗研磨工程と、精密研磨を行う精密研磨工程とに分けられている。近年は、平滑性と加工効率の観点から、粗研磨工程においては酸化セリウム、精密研磨工程においてはコロイダルシリカをそれぞれ使用して加工するのが一般的である。また、研削工程においても2工程にすると表面粗さ等の点において好ましいことから、図1に示す製造方法では、第1研削工程と、第2研削工程とに分けられている。なお、本発明において、研磨スラリーとは、被研磨物である基板に対して研磨作用を及ぼす研磨材(研磨砥粒と呼ぶ場合もある)と、その分散媒である溶媒(研磨液という場合もある)を含有する研磨スラリー全体を意味し、研磨スラリーを研磨剤と呼ぶ場合もある。 As shown in FIG. 1, the polishing process is divided into two processes in terms of smoothness and the like, and is divided into a rough polishing process for performing rough polishing and a precision polishing process for performing precise polishing. In recent years, from the viewpoint of smoothness and processing efficiency, it is common to use cerium oxide in the rough polishing step and colloidal silica in the fine polishing step. Further, since two steps in the grinding step are preferable in terms of surface roughness and the like, the manufacturing method shown in FIG. 1 is divided into a first grinding step and a second grinding step. In the present invention, the polishing slurry refers to an abrasive (also referred to as abrasive grains) that has a polishing action on a substrate that is an object to be polished, and a solvent that is a dispersion medium (also referred to as a polishing liquid). In some cases, the polishing slurry is referred to as an abrasive.
 また、本実施形態に係る研磨スラリーを用いて粗研磨工程を行った後、化学強化工程を行っているのであれば、工程の順序は特に限定されず、例えば、図1における製造工程において、研削工程の直後に内径研磨工程を有するものであってもよい。 Moreover, if the chemical strengthening process is performed after performing the rough polishing process using the polishing slurry according to the present embodiment, the order of the processes is not particularly limited. For example, in the manufacturing process in FIG. You may have an internal diameter grinding | polishing process immediately after a process.
 以上の製造方法によって得られたHDD用ガラス基板に対し、磁性膜を形成することによって磁気記録媒体が得られ、HDDに搭載される。 A magnetic recording medium is obtained by forming a magnetic film on the glass substrate for HDD obtained by the above manufacturing method, and is mounted on the HDD.
 従来は、精密研磨工程後に化学強化工程が行われることが一般的であったが、化学強化工程を行うと平滑性が悪化してしまう。そのため、近年、500GB/P以上の高密度化されたハードディスク用のガラス基板においては、より高平滑性が求められていることから化学強化工程後に研磨工程を行うことにより、ガラス基板の主表面の圧縮応力層を残しつつ高平滑性との両立を達成している。 Conventionally, the chemical strengthening process is generally performed after the precision polishing process, but the smoothness deteriorates when the chemical strengthening process is performed. Therefore, in recent years, in a glass substrate for hard disk having a density of 500 GB / P or higher, higher smoothness is required. Therefore, by performing a polishing process after the chemical strengthening process, The compatibility with high smoothness is achieved while leaving the compressive stress layer.
 しかしながら、このような製造方法において製造したガラス基板を高温高湿の環境下において使用した場合、ガラス基板において落下衝撃性等の耐衝撃性が悪化してしまう場合があることが確認された。本発明者は、この原因について考察したところ、耐衝撃性が悪化したガラス基板では、化学強化工程において基板の一部にイオン交換が充分になされていない箇所があることに原因があることを突き止めた。 However, it has been confirmed that when a glass substrate manufactured by such a manufacturing method is used in a high-temperature and high-humidity environment, impact resistance such as drop impact resistance may deteriorate in the glass substrate. The present inventor considered this cause and found out that the glass substrate with a deteriorated impact resistance has a cause that a part of the substrate is not sufficiently ion-exchanged in the chemical strengthening process. It was.
 さらに、分散剤を添加している研磨スラリーを用いて粗研磨工程を行うと、使用する研磨スラリーに含まれる研磨材の砥粒径がD50値で0.5~1.5μmと比較的大きいことが原因となり、ガラス基板の一部からイオンが溶出する。そのため、後に行う化学強化工程にてガラス基板に対してイオン交換が不充分な箇所が生じさせていることがわかった。 Furthermore, when the rough polishing step is performed using a polishing slurry to which a dispersant is added, the abrasive particle size of the abrasive contained in the polishing slurry used is relatively large at 0.5 to 1.5 μm in D50 value. Cause ions to elute from a part of the glass substrate. Therefore, it turned out that the location where ion exchange is inadequate with respect to a glass substrate was produced in the chemical strengthening process performed later.
 このように、イオン溶出した基板を化学強化すると、化学強化が不充分な箇所が発生し、その結果、圧縮応力の強度にばらつきが生じる。このようなガラス基板が高温高湿の環境下に置かれた場合、圧縮応力の弱い部分を中心に応力の緩和が生じる。すなわち、ガラス基板に圧縮応力の強度むらが存在すると、高温高湿時において圧縮応力の強度むらによる応力緩和が大きくなるのである。このようなことが起こると、衝撃を受けた際に圧縮応力層の弱い部分から割れが発生する。つまり耐衝撃性が悪化するのである。 As described above, when the ion-eluting substrate is chemically strengthened, portions where the chemical strengthening is insufficient are generated, and as a result, the strength of the compressive stress varies. When such a glass substrate is placed in a high-temperature and high-humidity environment, stress relaxation occurs mainly in a portion where the compressive stress is weak. In other words, if there is unevenness in the strength of the compressive stress in the glass substrate, stress relaxation due to unevenness in the strength of the compressive stress increases at high temperatures and high humidity. When this occurs, cracks occur from the weak portions of the compressive stress layer when subjected to an impact. That is, the impact resistance is deteriorated.
 以上のような問題を回避するため、分散剤を添加した、酸化セリウムを主成分とする研磨材を含む研磨スラリーを使用する粗研磨工程の後に化学強化工程を行うガラス基板の製造方法において、粗研磨工程にイオン溶出が抑えることのできる陽イオンを含む研磨スラリーを用いる。一般的に、ガラス組成中のイオン成分(特に、アルカリ金属)は、水溶液中に徐々に溶け出すが、溶け出す速度は、遅く、研磨加工中での溶出量としてはそれほど多くない。 In order to avoid the above problems, in a method for producing a glass substrate, in which a chemical strengthening step is performed after a rough polishing step using a polishing slurry containing a polishing agent containing a cerium oxide as a main component, to which a dispersant is added, A polishing slurry containing cations that can suppress ion elution is used in the polishing step. In general, an ionic component (particularly alkali metal) in a glass composition is gradually dissolved in an aqueous solution, but the dissolution rate is slow, and the amount of elution during polishing is not so large.
 しかし、研磨スラリーに分散剤が添加されている場合、ガラスから溶出した成分が分散剤に捕捉されることにより、イオン溶出の速度が大幅に上がる。予め陽イオンを研磨スラリー中に存在させておくことで、分散剤は、優先的に陽イオンを捕捉してガラス基板から溶出したイオンをあまり捕捉しなくなるため、ガラス基板からのイオン溶出速度を抑えることができる。その結果、研磨加工中でのガラス基板からのイオン溶出を防ぐことができ、ガラス基板に優れた耐衝撃性を付与することができる。 However, when a dispersant is added to the polishing slurry, the component eluted from the glass is trapped by the dispersant, so that the speed of ion elution is greatly increased. By preliminarily containing cations in the polishing slurry, the dispersant preferentially captures cations and does not trap ions eluted from the glass substrate so much, thereby suppressing the ion elution rate from the glass substrate. be able to. As a result, ion elution from the glass substrate during polishing can be prevented, and excellent impact resistance can be imparted to the glass substrate.
 また、粗研磨工程で使用する研磨スラリー中の研磨材の砥粒径が、比較的大きいため、研磨材の分散性を維持するために分散剤が必要となる。 Further, since the abrasive particle size of the abrasive in the polishing slurry used in the rough polishing process is relatively large, a dispersant is required to maintain the dispersibility of the abrasive.
 前記分散剤は、一般的に高分子を砥粒周辺に付着させ、その高分子同士の反発力(例えば、静電力)を利用して分散作用を付与させる働きをする。上記のような酸化セリウムを主成分とする研磨材を含む研磨スラリーにおいて、ノニオン型の分散剤(例えば、ポリオキシアルキレングリコール等)を用いると、酸化セリウムを安定して分散させることが難しい。これは、酸化セリウムの等電点が中性付近にあることから、反発が行いにくいためである。よって、分散性を付与するためには、アニオン性の分散剤を使用するのが好ましい。 The dispersing agent generally serves to attach a polymer around the abrasive grains and impart a dispersing action by utilizing the repulsive force (for example, electrostatic force) between the polymers. If a nonionic dispersant (for example, polyoxyalkylene glycol or the like) is used in a polishing slurry containing an abrasive mainly composed of cerium oxide as described above, it is difficult to stably disperse cerium oxide. This is because repulsion is difficult because the isoelectric point of cerium oxide is near neutrality. Therefore, in order to impart dispersibility, it is preferable to use an anionic dispersant.
 まず、本発明の実施形態に係る粗研磨工程及び化学強化工程について説明する。 First, the rough polishing process and the chemical strengthening process according to the embodiment of the present invention will be described.
 <粗研磨工程>
 本実施形態における粗研磨工程は、後述する研削工程においてガラス基板に発生した傷をなくしつつ表面粗さを小さくする工程である。また、粗研磨工程では研削工程によって大きなうねりなどが除去されたガラス基板の主表面を鏡面にすることができる。
<Rough polishing process>
The rough polishing step in the present embodiment is a step of reducing the surface roughness while eliminating scratches generated on the glass substrate in the grinding step described later. In the rough polishing process, the main surface of the glass substrate from which large waviness and the like have been removed by the grinding process can be made into a mirror surface.
 以下に、本実施形態に係る粗研磨工程において用いられる研磨スラリーについて詳述する。 Hereinafter, the polishing slurry used in the rough polishing step according to the present embodiment will be described in detail.
 (研磨スラリー)
 本実施形態で用いる研磨スラリーは、酸化セリウムを主成分とする研磨材と、アニオン性の高分子を含有する分散剤と、六配位換算におけるイオン半径(6配位のイオン半径)が80~160pmである第1族元素又は第2族元素の陽イオンを含むものである。
(Polishing slurry)
The polishing slurry used in the present embodiment has an abrasive mainly composed of cerium oxide, a dispersant containing an anionic polymer, and an ionic radius (hexacoordinate ionic radius) of 80 to 80 in terms of six coordination. It contains a cation of a Group 1 element or a Group 2 element that is 160 pm.
 また、六配位換算におけるイオン半径が80~160pmである第1族元素又は第2族元素の陽イオンとは、六配位換算におけるイオン半径が80~160pmの、アルカリ金属イオン、マグネシウムイオン、アルカリ土類金属イオンである。具体的には、リチウムイオン(6配位のイオン半径:90pm)、ナトリウムイオン(6配位のイオン半径:116pm)、カリウムイオン(6配位のイオン半径:152pm)、マグネシウムイオン(6配位のイオン半径:86pm)、カルシウムイオン(6配位のイオン半径:114pm)、ストロンチウムイオン(6配位のイオン半径:132pm)、バリウムイオン(6配位のイオン半径:149pm)が挙げられる。 Further, the cation of the group 1 element or the group 2 element having an ionic radius of 80 to 160 pm in terms of hexacoordinate refers to an alkali metal ion, magnesium ion having an ionic radius of 80 to 160 pm in terms of hexacoordination, Alkaline earth metal ions. Specifically, lithium ions (6-coordinate ion radius: 90 pm), sodium ions (6-coordinate ion radius: 116 pm), potassium ions (6-coordinate ion radius: 152 pm), magnesium ions (6-coordinate) Ionic radius: 86 pm), calcium ions (6-coordinate ion radius: 114 pm), strontium ions (6-coordinate ion radius: 132 pm), and barium ions (6-coordinate ion radius: 149 pm).
 ・酸化セリウム
 本実施形態で用いる研磨スラリーは、光学ガラス、各種ガラス基板等の研磨材として用いられる酸化セリウムを含むものである。前記酸化セリウムは、通常ガラス基板の研磨材として用いられるものであれば、特に限定されない。
-Cerium oxide The polishing slurry used in the present embodiment contains cerium oxide used as an abrasive such as optical glass and various glass substrates. The cerium oxide is not particularly limited as long as it is usually used as an abrasive for a glass substrate.
 酸化セリウムの含有量は、研磨スラリー全量に対して1~10質量%であることが好ましく、3~5質量%であることがより好ましい。酸化セリウムの含有量が少なすぎると、研磨速度が低下し、研磨した基板の形状が悪くなる傾向がある。また、酸化セリウムの含有量が多すぎると、生産性が悪くなる傾向がある。 The content of cerium oxide is preferably 1 to 10% by mass, more preferably 3 to 5% by mass, based on the total amount of the polishing slurry. If the content of cerium oxide is too small, the polishing rate tends to decrease, and the shape of the polished substrate tends to deteriorate. Moreover, when there is too much content of cerium oxide, there exists a tendency for productivity to worsen.
 また、酸化セリウムは、前記研磨材の主成分である。具体的には、前記研磨材が、酸化セリウムからなっていてもよく、また、他の成分を含有する場合であっても、酸化セリウムの含有量が、前記研磨材に対して、80質量%以上であることが好ましい。すなわち、酸化セリウムの含有量は、前記研磨材において、80~100質量%であることが好ましい。 Further, cerium oxide is a main component of the abrasive. Specifically, the abrasive may be made of cerium oxide, and even if it contains other components, the content of cerium oxide is 80% by mass with respect to the abrasive. The above is preferable. That is, the content of cerium oxide is preferably 80 to 100% by mass in the abrasive.
 前記酸化セリウムの平均粒径(D50)は、0.5~1.5μmであることが好ましく、0.7~1.2μmであることがより好ましい。酸化セリウムの平均粒径(D50)が小さすぎると、研磨速度が低下する傾向がある。また、酸化セリウムの平均粒径(D50)が大きすぎると、ガラス基板の傷等が増える傾向がある。 The average particle diameter (D 50 ) of the cerium oxide is preferably 0.5 to 1.5 μm, and more preferably 0.7 to 1.2 μm. When the average particle diameter (D 50 ) of cerium oxide is too small, the polishing rate tends to decrease. Moreover, when the average particle diameter (D 50 ) of cerium oxide is too large, scratches on the glass substrate tend to increase.
 ここで、前記平均粒径(D50)とは、JIS R 1629-1997「ファインセラミックス原料のレーザー回折・散乱法による粒子径分布測定方法」に倣い、体積基準の積算分率で50%(D50)に相当する粒子径を意味し、金属超微粉の平均粒径を表すものとして一般に用いられている。 Here, the average particle diameter (D 50 ) is 50% (D 50 ) based on JIS R 1629-1997 “Method for measuring particle size distribution of fine ceramic raw material by laser diffraction / scattering method”. 50 ) means a particle diameter corresponding to 50 ), and is generally used as an average particle diameter of ultrafine metal powder.
 ・分散剤
 また、本実施形態で用いる研磨スラリーは、分散剤として、分子内にカルボキシル基を有するアニオン性高分子を含有するものである。研磨スラリーが、分散剤として、前記アニオン性高分子を含有することで、ガラス基板の溶出イオンを適度に捕捉し、かつ研磨材の分散性を高めることができる。
-Dispersant Moreover, the polishing slurry used by this embodiment contains the anionic polymer which has a carboxyl group in a molecule | numerator as a dispersing agent. When the polishing slurry contains the anionic polymer as a dispersant, it is possible to appropriately capture the eluted ions of the glass substrate and improve the dispersibility of the abrasive.
 また前記分散剤は、前記アニオン性高分子を含有するものであり、前記アニオン性高分子を主成分とするものが好ましい。具体的には、分散剤中に前記アニオン性高分子を80~100質量%含有することが好ましい。前記アニオン性高分子をこのような範囲で含有することによって、本発明の効果をより高めることができる。 Further, the dispersant contains the anionic polymer, and preferably contains the anionic polymer as a main component. Specifically, it is preferable to contain 80 to 100% by mass of the anionic polymer in the dispersant. By containing the anionic polymer in such a range, the effect of the present invention can be further enhanced.
 また、前記分散剤に含むことができるものとしては、前記アニオン性高分子の他に、pH調整剤、還元剤等が挙げられる。 In addition to the anionic polymer, examples of what can be included in the dispersant include a pH adjuster and a reducing agent.
 前記分子内にカルボキシル基を有するアニオン性高分子の具体的な例としては、アクリル酸/マレイン酸共重合体、ポリアクリル酸、ポリメタクリル酸、ポリスチレンカルボン酸、及びこれらの共重合体等のポリカルボン酸が挙げられる。ポリカルボン酸は、まず、ポリアクリル酸やポリメタクリル酸等のような、重合可能なカルボン酸を重合させたものが挙げられる。また、ポリカルボン酸は、このような重合体だけではなく、アクリル酸/アクリル酸メチルの共重合体等のような、重合可能なカルボン酸と、前記カルボン酸と共重合可能なその他の単量体との共重合体等も含む。この場合は、カルボン酸の共重合比率が、50重量%以上になるようにすることが好ましい。 Specific examples of the anionic polymer having a carboxyl group in the molecule include acrylic acid / maleic acid copolymer, polyacrylic acid, polymethacrylic acid, polystyrene carboxylic acid, and copolymers thereof. Carboxylic acid is mentioned. Examples of the polycarboxylic acid include those obtained by polymerizing a polymerizable carboxylic acid such as polyacrylic acid or polymethacrylic acid. The polycarboxylic acid is not only such a polymer, but also a polymerizable carboxylic acid such as a copolymer of acrylic acid / methyl acrylate, and other single quantities copolymerizable with the carboxylic acid. Also includes copolymers with the body. In this case, the copolymerization ratio of carboxylic acid is preferably 50% by weight or more.
 また、前記分散剤は、アクリル酸/マレイン酸共重合体が最も好ましい。これは、アクリル酸/マレイン酸共重合体におけるカルボン酸が、研磨材の分散を最も効率的に行わせることができるためである。 The dispersant is most preferably an acrylic acid / maleic acid copolymer. This is because the carboxylic acid in the acrylic acid / maleic acid copolymer can most efficiently disperse the abrasive.
 なお、分散剤として、ポリスチレンスルホン酸重合体のような、分子内にカルボキシル基を有さないアニオン性の高分子を用いた場合、ガラス基板の溶出イオンを捕捉し過ぎたり、研磨材の分散性が損なわれたりすることがある。 If an anionic polymer that does not have a carboxyl group in the molecule, such as a polystyrene sulfonate polymer, is used as the dispersant, it will trap too much ions eluted from the glass substrate or dispersibility of the abrasive. May be damaged.
 前記分散剤の含有量は、前記酸化セリウムの含有量に対して、0.01~2質量%であることが好ましく、0.1~1質量%含有することがより好ましい。前記分散剤の含有量が少なすぎると、研磨材の分散性が悪化する傾向がある。また、前記分散剤の含有量が多すぎると、研磨スラリーの粘性等が変化し研磨に悪影響を及ぼす傾向がある。 The content of the dispersant is preferably 0.01 to 2% by mass and more preferably 0.1 to 1% by mass with respect to the content of the cerium oxide. When there is too little content of the said dispersing agent, there exists a tendency for the dispersibility of an abrasives to deteriorate. Moreover, when there is too much content of the said dispersing agent, there exists a tendency for the viscosity etc. of polishing slurry to change and to have a bad influence on grinding | polishing.
 前記アクリル酸/マレイン酸共重合体の重量平均分子量(Mw)は、100~10000であることが好ましく、1000~5000であることがより好ましい。前記分子量(Mw)が低すぎると、研磨材の分散性が悪化して研磨加工性が悪化する傾向がある。また、前記分子量(Mw)が高すぎると、研磨スラリーの粘性が上がり、研磨特性が悪化する傾向がある。 The weight average molecular weight (Mw) of the acrylic acid / maleic acid copolymer is preferably 100 to 10,000, and more preferably 1,000 to 5,000. If the molecular weight (Mw) is too low, the dispersibility of the abrasive tends to deteriorate and the polishing processability tends to deteriorate. On the other hand, when the molecular weight (Mw) is too high, the viscosity of the polishing slurry increases and the polishing characteristics tend to deteriorate.
 ・陽イオン
 前記陽イオンの六配位換算におけるイオン半径は、80~160pmであり、80~120pmであることが好ましい。前記イオン半径が80pm未満である場合、ガラス基板のイオン溶出を充分に抑えられず、前記イオン半径が160pmを超えると、陽イオンがイオン溶出の抑制に充分に寄与しない。このことから、六配位換算におけるイオン半径は、80~160pmである第1族元素又は第2族元素の陽イオンを含む研磨スラリーを用いて研磨すると、ガラス基板のイオン溶出を好適に抑制することができる。よって、粗研磨中のイオン溶出が抑えられ、高温高湿時においても耐衝撃性に優れたHDD用ガラス基板を得ることができる。
-Cation The ionic radius of the cation in terms of six coordination is 80 to 160 pm, preferably 80 to 120 pm. When the ion radius is less than 80 pm, ion elution of the glass substrate cannot be sufficiently suppressed, and when the ion radius exceeds 160 pm, the cation does not sufficiently contribute to suppression of ion elution. Therefore, when the polishing slurry containing a cation of a Group 1 element or a Group 2 element having an ionic radius of 80 to 160 pm in terms of hexacoordination is used, ion elution of the glass substrate is suitably suppressed. be able to. Therefore, elution of ions during rough polishing is suppressed, and a glass substrate for HDD having excellent impact resistance even at high temperature and high humidity can be obtained.
 また、前記陽イオンとしては、マグネシウムイオン、カルシウムイオン、ナトリウムイオン、及びカリウムイオンからなる群より選択される少なくとも一つの陽イオンであることが好ましい。これらの陽イオンであると、より研磨工程時のガラス基板からのイオン溶出を抑えることができ、分散性の高い研磨スラリーとすることができる。 Further, the cation is preferably at least one cation selected from the group consisting of magnesium ion, calcium ion, sodium ion, and potassium ion. When these cations are used, ion elution from the glass substrate during the polishing process can be further suppressed, and a highly dispersible polishing slurry can be obtained.
 また、前記陽イオンの対イオンとしての陰イオンは、塩化物イオンや炭酸イオン用いることができる。そして、前記陽イオンと陰イオンからなる塩は、研磨工程時のガラス基板からのイオン溶出を抑えることができる研磨スラリーの成分として好適に用いられる。 In addition, as the anion as the counter ion of the cation, chloride ion or carbonate ion can be used. And the salt which consists of the said cation and an anion is used suitably as a component of the grinding | polishing slurry which can suppress the ion elution from the glass substrate at the time of a grinding | polishing process.
 前記塩のうち、溶液のpH変化が小さく、対となるイオンが研磨に影響しない理由から、塩化マグネシウム、硫酸マグネシウム、硫酸カルシウム、炭酸カルシウム、ヨウ化カリウム、炭酸ナトリウム等が好ましい。 Among the salts, magnesium chloride, magnesium sulfate, calcium sulfate, calcium carbonate, potassium iodide, sodium carbonate, and the like are preferable because the pH change of the solution is small and the paired ions do not affect the polishing.
 さらに、前記陽イオンの含有量は、酸化セリウムの含有量に対して、0.05~5mmol/kgであり、0.2~1mmol/kgであることが好ましい。すなわち、研磨スラリーに対し前記塩を添加する際、酸化セリウムの含有量に対して、前記陽イオンの含有量が0.05~5mmol/kgの範囲内になるように添加することが好ましい。前記陽イオン濃度が0.05mmol/kg未満であると、分散剤への寄与が小さいことからイオン溶出を抑えることができなくなり、5mmol/kgを超えると、研磨材の分散性に悪影響を及ぼし、研磨材の凝集が発生する。 Furthermore, the content of the cation is 0.05 to 5 mmol / kg, preferably 0.2 to 1 mmol / kg, relative to the content of cerium oxide. That is, when adding the salt to the polishing slurry, it is preferable to add the cation so that the cation content is in the range of 0.05 to 5 mmol / kg with respect to the cerium oxide content. If the cation concentration is less than 0.05 mmol / kg, the ion elution cannot be suppressed because the contribution to the dispersant is small, and if it exceeds 5 mmol / kg, the dispersibility of the abrasive is adversely affected. Aggregation of abrasives occurs.
 ・溶媒
 本実施形態で用いる研磨スラリーで使用する溶媒として、例えば、水を使用することができる。前記水としては、蒸留水、イオン交換水、純水及び超純水等が挙げられる。本実施形態で用いる研磨スラリー中の溶媒の含有量は、研磨スラリーの取扱いがさらに容易になるため、55質量%以上であることが好ましく、75質量%以上であることがより好ましい。
-Solvent As a solvent used with the polishing slurry used in the present embodiment, for example, water can be used. Examples of the water include distilled water, ion exchange water, pure water, and ultrapure water. The content of the solvent in the polishing slurry used in the present embodiment is preferably 55% by mass or more, and more preferably 75% by mass or more because the handling of the polishing slurry becomes easier.
 本実施形態で用いる研磨スラリーは、さらに、酸、酸化剤、殺菌剤、抗菌剤、増粘剤、分散剤、防錆剤、塩基性物質及びpH調整剤等を含んでもよい。 The polishing slurry used in this embodiment may further contain an acid, an oxidizing agent, a bactericidal agent, an antibacterial agent, a thickener, a dispersant, a rust preventive agent, a basic substance, a pH adjuster, and the like.
 本実施形態で用いる研磨スラリーは、基板の製造方法におけるあらゆる研磨工程に使用できるが、その中でも基板の製造方法における粗研磨工程での使用に適している。 The polishing slurry used in this embodiment can be used in any polishing process in the substrate manufacturing method, and among these, is suitable for use in the rough polishing process in the substrate manufacturing method.
 次に、粗研磨工程における研磨処理について説明する。 Next, the polishing process in the rough polishing process will be described.
 (研磨処理)
 粗研磨工程では、後述する研削工程後のガラス基板の形状を整え、面粗さをより精密に除去する。そして、精密研磨工程で最終的に必要とされる面粗さを効率よく得ることができるように研磨を行う。
(Polishing process)
In the rough polishing step, the shape of the glass substrate after the grinding step described later is adjusted, and the surface roughness is removed more precisely. And it grind | polishes so that the surface roughness finally required at a precision grinding | polishing process can be obtained efficiently.
 粗研磨工程にてガラス基板の表裏の表面を研磨する機械として、両面研磨機と呼ばれる公知の研磨機を使用できる。両面研磨機は、互いに平行になるように上下に配置された円盤状の上定盤と下定盤とを備えており、互いに逆方向に回転する。この上下の定盤の対向するそれぞれの面にガラス基板の主表面を研削するための複数のダイヤモンドペレットが貼り付けられている。 As a machine for polishing the front and back surfaces of the glass substrate in the rough polishing step, a known polishing machine called a double-side polishing machine can be used. The double-side polishing machine includes a disk-shaped upper surface plate and a lower surface plate that are arranged vertically so as to be parallel to each other, and rotate in opposite directions. A plurality of diamond pellets for grinding the main surface of the glass substrate are attached to the opposing surfaces of the upper and lower surface plates.
 上下の定盤の間には、下定盤の外周に円環状に設けてあるインターナルギアと下定盤の回転軸の周囲に設けてあるサンギアとに結合して回転する複数のキャリアがある。このキャリアには、複数の穴が設けてあり、この穴にガラス基板をはめ込んで配置する。上下の定盤、インターナルギア及びサンギアは別駆動で動作することができる。 Between the upper and lower surface plates, there are a plurality of carriers that rotate in combination with an internal gear provided in an annular shape on the outer periphery of the lower surface plate and a sun gear provided around the rotation axis of the lower surface plate. The carrier is provided with a plurality of holes, and a glass substrate is fitted into the holes. The upper and lower surface plates, the internal gear and the sun gear can be operated by separate driving.
 前記両面研磨機の動作は、上下の定盤が互いに逆方向に回転し、ダイヤモンドペレットを介して定盤に挟まれているキャリアは、複数のガラス基板を保持した状態で、自転しながら定盤の回転中心に対して下定盤と同じ方向に公転する。このような動作している研磨機において、上述した研磨スラリーを上定盤とガラス基板及び下定盤とガラス基板との間に供給することでガラス研磨の研磨を行うことができる。 The operation of the double-side polishing machine is such that the upper and lower surface plates rotate in opposite directions, and the carrier sandwiched between the surface plates via the diamond pellets rotates while maintaining a plurality of glass substrates. Revolves in the same direction as the lower surface plate with respect to the center of rotation. In such a working polishing machine, polishing of glass polishing can be performed by supplying the above-described polishing slurry between the upper surface plate and the glass substrate, and the lower surface plate and the glass substrate.
 前記研磨スラリーの供給速度は1~10L/分であることが好ましい。当該範囲で研磨スラリーを供給することによって、ガラス基板に対して安定した研磨処理を行うことができる。 The supply rate of the polishing slurry is preferably 1 to 10 L / min. By supplying the polishing slurry in this range, a stable polishing process can be performed on the glass substrate.
 研磨パッドは、硬度Aで80~90程度の硬質パッドで、例えば、発泡ウレタンを使用するのが好ましい。パッドの硬度が研磨による発熱により柔らかくなると研磨面の形状変化が大きくなるため硬質パッドを用いるのが好ましい。 The polishing pad is a hard pad having a hardness A of about 80 to 90, and for example, urethane foam is preferably used. When the pad hardness becomes soft due to heat generated by polishing, the shape change of the polished surface increases, so it is preferable to use a hard pad.
 粗研磨工程による取り代は、10~30μmとするのが好ましい。10μm未満では、キズや欠陥を十分に除去ができず、残存したイオン交換層を除去できない。また、30μmを超える場合は、面粗さをRmaxが2~60nm、Raが0.2~0.4nmの範囲とすることができるが、必要以上に研磨を行うことになり製造効率が低下する。 The machining allowance in the rough polishing step is preferably 10 to 30 μm. If it is less than 10 μm, scratches and defects cannot be sufficiently removed, and the remaining ion exchange layer cannot be removed. If it exceeds 30 μm, the surface roughness can be in the range of 2 to 60 nm for Rmax and 0.2 to 0.4 nm for Ra, but the polishing is performed more than necessary and the production efficiency is lowered. .
 定盤によるガラス基板への加重は、90~110g/cmとするのが好ましい。定盤によるガラス基板への加重は、外周端部の形状に大きく影響する。加重を大きくしていくと、外周端部の内側が下がり外側に向かって上がる傾向を示す。また、加重を小さくしていくと、外周端部は平面に近くなるとともに面ダレが大きくなる傾向を示す。こうした傾向を観察しながら加重を決めることができる。 The weight applied to the glass substrate by the surface plate is preferably 90 to 110 g / cm 2 . The load applied to the glass substrate by the surface plate greatly affects the shape of the outer peripheral edge. As the weight is increased, the inner side of the outer peripheral end portion tends to decrease and increase toward the outer side. Further, when the weight is reduced, the outer peripheral end portion tends to be close to a plane and the surface sagging increases. The weight can be determined while observing these trends.
 また、面粗さを向上させるために、定盤の回転数を25~50rpmとし、上の定盤の回転数を下の定盤回転数より30~40%遅くするのが好ましい。 In order to improve the surface roughness, it is preferable that the rotation speed of the surface plate is 25 to 50 rpm, and the rotation speed of the upper surface plate is 30 to 40% slower than the rotation speed of the lower surface plate.
 <化学強化工程>
 本実施形態に係る化学強化工程として、具体的には、ガラス基板を化学強化処理液に浸漬させる方法等が挙げられる。該方法によって、ガラス基板の表面、例えば、ガラス基板表面から5μmの領域に圧縮応力層を形成することができる。また、該圧縮応力層のうち、外側に前記イオン交換層を形成することができる。そして、圧縮応力層を形成することで耐衝撃性、耐振動性及び耐熱性等を向上させることができる。
<Chemical strengthening process>
Specific examples of the chemical strengthening step according to the present embodiment include a method of immersing a glass substrate in a chemical strengthening treatment solution. By this method, a compressive stress layer can be formed on the surface of the glass substrate, for example, in a region of 5 μm from the glass substrate surface. Further, the ion exchange layer can be formed on the outer side of the compressive stress layer. And by forming a compressive stress layer, impact resistance, vibration resistance, heat resistance, etc. can be improved.
 つまり、加熱された化学強化処理液にガラス基板を浸漬させることによって、ガラス基板に含まれるリチウムイオンやナトリウムイオン等のアルカリ金属イオンをそれよりイオン半径の大きなカリウムイオン等のアルカリ金属イオンに置換するイオン交換法によって行われる。イオン半径の違いによって生じる歪みにより、イオン交換された領域に圧縮応力が発生し、ガラス基板の表面が強化される。 In other words, by immersing the glass substrate in the heated chemical strengthening solution, alkali metal ions such as lithium ions and sodium ions contained in the glass substrate are replaced with alkali metal ions such as potassium ions having a larger ion radius. Performed by ion exchange. Due to the strain caused by the difference in ion radius, compressive stress is generated in the ion-exchanged region, and the surface of the glass substrate is strengthened.
 化学強化工程の処理液に使用した塩は、公知のものを使用することができる。塩としては、硝酸塩、炭酸塩、硫酸塩などがあげられる。またイオン交換されるイオンとしては、ナトリウムやカリウムなどである。その中で、硝酸カリウムが最も良い。硝酸カリウムは融点が低いので扱いやすく、かつカリウムイオンの交換によりばらつきなくイオン交換ができる。 As the salt used for the treatment liquid in the chemical strengthening step, known salts can be used. Examples of the salt include nitrate, carbonate, sulfate and the like. Examples of ions to be ion exchanged include sodium and potassium. Of these, potassium nitrate is the best. Since potassium nitrate has a low melting point, it is easy to handle, and ion exchange can be performed without variation by exchange of potassium ions.
 化学強化工程は、加熱された化学強化処理液にガラス基板を浸漬することによってガラス基板に含まれるリチウムイオン、ナトリウムイオン等のアルカリ金属イオンをそれよりイオン半径の大きなカリウムイオン等のアルカリ金属イオンによって置換するイオン交換法によって行われる。イオン半径の違いによって生じる歪みより、イオン交換された領域に圧縮応力が発生し、ガラス基板の表面が強化される。 In the chemical strengthening step, by immersing the glass substrate in a heated chemical strengthening solution, alkali metal ions such as lithium ions and sodium ions contained in the glass substrate are converted into alkali ions such as potassium ions having a larger ion radius. This is performed by the ion exchange method for substitution. Compressive stress is generated in the ion-exchanged region due to the distortion caused by the difference in ion radius, and the surface of the glass substrate is strengthened.
 化学強化処理液は、上記の成分が融解する温度よりも高温になるように加熱される。一方、化学強化処理液の加熱温度が高すぎると、ガラス基板の温度が上がりすぎ、ガラス基板の変形を招く恐れがある。このため、化学強化処理液の加熱温度はガラス基板のガラス転移点(Tg)よりも低い温度が好ましく、ガラス転移点-50℃よりも低い温度とすることが更に好ましい。 The chemical strengthening treatment liquid is heated to a temperature higher than the temperature at which the above components melt. On the other hand, when the heating temperature of the chemical strengthening treatment liquid is too high, the temperature of the glass substrate is excessively increased, and the glass substrate may be deformed. For this reason, the heating temperature of the chemical strengthening treatment liquid is preferably lower than the glass transition point (Tg) of the glass substrate, more preferably lower than the glass transition point −50 ° C.
 <精密研磨工程>
 精密研磨工程は、粗研磨工程後のガラス基板の表面をさらに精密に研磨する工程である。
<Precision polishing process>
The precision polishing step is a step of further precisely polishing the surface of the glass substrate after the rough polishing step.
 精密研磨工程にてガラス基板を研磨する機械は、前記粗研磨工程で用いる両面研磨機と同様の研磨機を使用することができる。 As the machine for polishing the glass substrate in the precision polishing process, a polishing machine similar to the double-side polishing machine used in the rough polishing process can be used.
 精密研磨工程に用いられる研磨スラリーとしては、ガラス基板の表面をより滑らかにするため、粒径がより細かくばらつきが少ない研磨材を含有するものを用いるのが好ましい。例えば、粒径の平均粒子径が20~40nmのコロイダルシリカを含有する研磨スラリー用いることが好ましい。 As the polishing slurry used in the precision polishing step, it is preferable to use a slurry containing an abrasive having a finer particle size and less variation in order to make the surface of the glass substrate smoother. For example, it is preferable to use a polishing slurry containing colloidal silica having an average particle size of 20 to 40 nm.
 この精密研磨工程における取り代は、0.3~3μmとするのが好ましい。研磨量をこの範囲とすると、表面に発生した微小な荒れやうねり、これまでの工程で生じた微小な傷痕といった微小な欠陥を効率良く除去することができる。しかし、精密研磨工程における取り代が0.3μmより小さいと、粗研磨工程での傷が残存し、3μmより大きいと端面形状が崩れる。 The machining allowance in this precision polishing step is preferably 0.3 to 3 μm. When the polishing amount is within this range, minute defects such as minute roughness and undulation generated on the surface and minute scratches generated in the process so far can be efficiently removed. However, if the machining allowance in the precision polishing step is smaller than 0.3 μm, scratches in the rough polishing step remain, and if it is larger than 3 μm, the end face shape is destroyed.
 精密研磨工程で使用するパッドは、粗研磨工程で使用するパッドより柔らかい硬度65~80(Asker-C)程度の軟質パッドで、例えば発泡ウレタンやスウェードを使用するのが好ましい。 The pad used in the precision polishing step is a soft pad having a hardness of about 65 to 80 (Asker-C), which is softer than the pad used in the rough polishing step. For example, urethane foam or suede is preferably used.
 また、精密研磨工程における、定盤によるガラス基板への加重は、90~110g/cmが好ましい。定盤によるガラス基板への加重は、粗研磨工程と同様に外周端部の形状に大きく影響するが、研磨速度が遅いため粗研磨工程ほど効率的に形状を変化させることはできない。加重の加減による外周端部の形状の変化は、粗研磨工程と同様であり、加重を大きくしていくと、外周端部の内側が下がり外側に向かって上がる傾向を示す。また、加重を小さくしていくと、外周端部は平面に近くなるとともに面ダレが大きくなる傾向を示す。外周端部の形状を得るために、こうした傾向を観察しながら加重を決めることができる。定盤の回転数を15~35rpmとし、上定盤の回転数を下定盤の回転数より30~40%遅くするのが好ましい。 In the precision polishing step, the weight applied to the glass substrate by the surface plate is preferably 90 to 110 g / cm 2 . Although the weight applied to the glass substrate by the surface plate greatly affects the shape of the outer peripheral edge as in the rough polishing step, the shape cannot be changed as efficiently as the rough polishing step because the polishing speed is slow. The change in the shape of the outer peripheral end due to the increase / decrease of the weight is the same as in the rough polishing step, and when the weight is increased, the inner periphery of the outer peripheral end tends to decrease and increase toward the outer side. Further, when the weight is reduced, the outer peripheral end portion tends to be close to a plane and the surface sagging increases. In order to obtain the shape of the outer peripheral edge, the weight can be determined while observing such a tendency. The rotation speed of the surface plate is preferably 15 to 35 rpm, and the rotation speed of the upper surface plate is preferably 30 to 40% slower than the rotation speed of the lower surface plate.
 上記のように精密研磨工程をおこなった後のガラス基板主表面の面粗さは、Rmaxが2~6nm、Raが0.2~0.4nmの範囲とすることができる。 As described above, the surface roughness of the main surface of the glass substrate after performing the precision polishing step can be set such that Rmax is 2 to 6 nm and Ra is 0.2 to 0.4 nm.
 続いて、上述の粗研磨工程、化学強化工程、精密研磨工程以外の製造工程について具体的に説明するが、本実施形態は上記研磨工程及び化学強化工程を有していれば、その他の工程については下記のものに限定されない。 Subsequently, manufacturing processes other than the above-described rough polishing process, chemical strengthening process, and precision polishing process will be described in detail. However, if the present embodiment includes the polishing process and the chemical strengthening process, the other processes will be described. Is not limited to the following.
 <円盤加工工程>
 円盤加工工程は、所定の組成のガラス素材を溶融、プレス成形し板状に成形したガラス基板から、図2に示すように、内周及び外周が同心円となるように、中心部に貫通孔5が形成された円盤状のガラス基板1に加工する工程である。
<Disk processing process>
In the disk processing step, a through-hole 5 is formed in the central portion so that the inner periphery and the outer periphery are concentric as shown in FIG. Is a step of processing into a disk-shaped glass substrate 1 on which is formed.
 (ガラス溶融工程)
 まず、ガラス溶融工程として、ガラス素材を溶融する。ガラス基板の材料としては、特に限定されない。例えば、HDD用ガラス基板の材料として、一般的に用いることができるガラス素材を用いることができる。より具体的には、下記表1に示す組成のガラス素材を用いることができる。
(Glass melting process)
First, a glass material is melted as a glass melting step. The material for the glass substrate is not particularly limited. For example, a glass material that can be generally used can be used as the material of the glass substrate for HDD. More specifically, a glass material having a composition shown in Table 1 below can be used.
 (プレス工程)
 次に、プレス工程として、溶融ガラスを下型に流し込み、上型によってプレス成形して円板状のガラス基板前駆体を得る。なお、円板状のガラス基板前駆体は、プレス成形によらず、例えば、ダウンドロー法やフロート法で形成したシートガラスを研削砥石で切り出して作製してもよい。
(Pressing process)
Next, as a pressing step, molten glass is poured into a lower mold and press-molded with an upper mold to obtain a disk-shaped glass substrate precursor. The disk-shaped glass substrate precursor may be produced by cutting a sheet glass formed by, for example, a downdraw method or a float method with a grinding stone, without using press molding.
 ガラス基板の大きさに限定はない。例えば、外径が2.5インチ、1.8インチ、1インチ、0.8インチなど種々の大きさのガラス基板がある。また、ガラス基板の厚みにも限定はなく、2mm、1mm、0.63mmなど種々の厚みのガラス基板がある。 There is no limitation on the size of the glass substrate. For example, there are glass substrates of various sizes such as an outer diameter of 2.5 inches, 1.8 inches, 1 inch, and 0.8 inches. Further, the thickness of the glass substrate is not limited, and there are glass substrates having various thicknesses such as 2 mm, 1 mm, and 0.63 mm.
 (コアリング加工工程)
 プレス成形したガラス基板前駆体は、コアリング加工工程で、中心部に穴を開ける。穴開けは、カッター部にダイヤモンド砥石等を備えたコアドリル等で研削することで中心部に穴を開ける。
(Coring process)
The press-molded glass substrate precursor is pierced at the center in the coring process. In the drilling, a hole is drilled in the center by grinding with a core drill or the like equipped with a diamond grindstone or the like in the cutter part.
 <内・外径精密加工工程>
 次に、内・外径精密加工工程として、ガラス基板前駆体の外周端面および内周端面を、例えば鼓状のダイヤモンド等の研削砥石により研削して内・外径加工し、ガラス基板を作製する。
<Inner and outer diameter precision machining process>
Next, as the inner / outer diameter precision machining step, the outer peripheral end surface and the inner peripheral end surface of the glass substrate precursor are ground with an abrasive wheel such as a drum-shaped diamond to process the inner / outer diameter, thereby producing a glass substrate. .
 <内径研磨工程>
 内・外径精密加工工程を終えたガラス基板を複数積み重ねて積層し、その状態で内周面の研磨加工を、端面研磨機を用いて研磨する。
<Inner diameter polishing process>
A plurality of glass substrates that have been subjected to the inner / outer diameter precision processing step are stacked and stacked, and in this state, the inner peripheral surface is polished using an end surface polishing machine.
 <研削工程>
 研削工程によって、ガラス基板表面の大きなうねり、欠け、ひび等を除去することができる。研削工程は、ガラス基板の平行度、平坦度等を精密に調節できる点から、第1研削工程および第2研削工程の2工程を有することが好ましい。
<Grinding process>
The grinding process can remove large undulations, chips, cracks, and the like on the surface of the glass substrate. The grinding step preferably has two steps, a first grinding step and a second grinding step, from the viewpoint that the parallelism and flatness of the glass substrate can be precisely adjusted.
 <外径研磨工程>
 外径研磨工程はガラス基板を複数積み重ねて積層し、その状態で外周端面の研磨加工を、端面研磨機や研磨ブラシを用いて研磨する。端面研磨機は、公知の装置を使用することができる。
<Outside diameter polishing process>
In the outer diameter polishing step, a plurality of glass substrates are stacked and laminated, and in this state, the outer peripheral end surface is polished using an end surface polishing machine or a polishing brush. A known apparatus can be used for the end face polishing machine.
 (第1研削工程)
 第1研削工程として、ガラス基板の両表面を研削加工し、ガラス基板の全体形状、すなわちガラス基板の平行度、平坦度および厚みを予備調整する。また、第1研削工程において、固定砥粒を用いることが好ましい。
(First grinding process)
As the first grinding step, both surfaces of the glass substrate are ground, and the overall shape of the glass substrate, that is, the parallelism, flatness and thickness of the glass substrate are preliminarily adjusted. In the first grinding step, it is preferable to use fixed abrasive grains.
 (第2研削工程)
 第2研削工程として、前記第1研削工程の後にガラス基板の両表面を再び研削加工して、ガラス基板の平行度、平坦度および厚みを微調整する。
(Second grinding process)
As the second grinding step, after the first grinding step, both surfaces of the glass substrate are ground again to finely adjust the parallelism, flatness and thickness of the glass substrate.
 第1及び第2研削工程にてガラス基板の表裏の表面を研削する機械として、前記研磨工程で用いる両面研磨機と同様の研磨機を使用することができる。 As a machine for grinding the front and back surfaces of the glass substrate in the first and second grinding steps, a polishing machine similar to the double-side polishing machine used in the polishing process can be used.
 第2研削工程を終えた時点で、大きなうねり、欠け、ひび等の欠陥は除去され、ガラス基板の主表面の面粗さは、Rmaxが2~4μm、Raが0.2~0.4μm程度とするのが好ましい。 Upon completion of the second grinding process, defects such as large waviness, chipping and cracks are removed, and the surface roughness of the main surface of the glass substrate is about 2 to 4 μm for Rmax and about 0.2 to 0.4 μm for Ra. Is preferable.
 なお、第1研削工程では、第2研削工程を効率よく行うことができるように大まかに大きなうねり、欠け、ひびを効率よく除去する。このため、第2研削工程で使用する粗さ#1300メッシュから#1700メッシュより粗い#800メッシュから#1200メッシュ程度のダイヤモンドペレットを使用するのが好ましい。第1研削工程が完了した時点での面粗さは、Rmaxが4~8μm、Raが0.4~0.8μm程度とするのが好ましい。 In the first grinding process, roughly large undulations, chips and cracks are efficiently removed so that the second grinding process can be performed efficiently. For this reason, it is preferable to use diamond pellets of about # 800 mesh to # 1200 mesh coarser than # 1300 mesh to # 1700 mesh used in the second grinding step. The surface roughness at the time when the first grinding step is completed is preferably set such that Rmax is about 4 to 8 μm and Ra is about 0.4 to 0.8 μm.
 なお、第1研削工程及び第2研削工程で使用する研磨機は、同一構成ではあるがそれぞれの工程専用に用意された別の研磨機を用いて研削加工を行うのが好ましい。これは、専用のダイヤモンドペレットを貼り付けているため交換が大掛かりな作業となり、また、研磨条件を再設定する等の煩雑な作業が必要となり、製造効率が低下するためである。 It should be noted that the polishing machines used in the first grinding process and the second grinding process have the same configuration, but it is preferable to perform grinding using different polishing machines prepared for each process. This is because the dedicated diamond pellets are pasted, so that the replacement is a large-scale operation, and complicated operations such as resetting the polishing conditions are required, resulting in a reduction in manufacturing efficiency.
 <洗浄工程>
 洗浄工程は、前記研削工程や研磨工程が施されたガラス基板を洗浄する工程である。
<Washing process>
The cleaning step is a step of cleaning the glass substrate that has been subjected to the grinding step or the polishing step.
 前記研削工程後のガラス基板や研磨工程後のガラス基板は、その都度洗浄工程によって洗浄することが好ましい。洗浄工程としては、特に限定されない。具体的には、例えば、以下のような洗浄工程が挙げられる。 The glass substrate after the grinding step and the glass substrate after the polishing step are preferably washed by a washing step each time. The washing process is not particularly limited. Specifically, for example, the following washing steps are mentioned.
 まず、pH13以上のアルカリ洗剤を用いて、ガラス基板の洗浄を行い、ガラス基板にリンスを行う。次に、pH1以下の酸系洗剤を用いて、ガラス基板の洗浄を行い、ガラス基板にリンスを行う。また、各洗浄の後にリンス槽を用いることが好ましい。これらの洗剤には、場合によって界面活性剤、分散材、キレート剤、還元材などを添加しても良い。また、各洗浄槽には、超音波を印加し、それぞれの洗剤には脱気水を使用することが好ましい。そして、最後に、ガラス基板を取り出し、純水でリンスを行い、IPA乾燥させる。 First, the glass substrate is washed with an alkaline detergent having a pH of 13 or more, and the glass substrate is rinsed. Next, the glass substrate is washed with an acid detergent having a pH of 1 or less, and the glass substrate is rinsed. Moreover, it is preferable to use a rinse tank after each washing. In some cases, a surfactant, a dispersing agent, a chelating agent, a reducing material, and the like may be added to these detergents. Moreover, it is preferable to apply an ultrasonic wave to each washing tank and to use deaerated water for each detergent. Finally, the glass substrate is taken out, rinsed with pure water, and dried IPA.
 また、このガラス基板の洗浄は、ガラス基板表面の酸化セリウム量が0.125ng/cm以下となるように行なわれることが好ましい。ガラス基板表面の酸化セリウム量が多すぎると、ガラス基板の平坦度を良好にできない傾向がある。 The glass substrate is preferably cleaned so that the amount of cerium oxide on the surface of the glass substrate is 0.125 ng / cm 2 or less. When the amount of cerium oxide on the surface of the glass substrate is too large, there is a tendency that the flatness of the glass substrate cannot be improved.
 本明細書は、上述したように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。 This specification discloses various modes of technology as described above, and the main technologies are summarized below.
 本発明の一局面は、酸化セリウムを主成分とする研磨材と、分子内にカルボキシル基を有するアニオン性高分子を含有する分散剤と、六配位換算におけるイオン半径が80~160pmである第1族元素又は第2族元素の陽イオンと、を含む研磨スラリーを用いてガラス基板を研磨する粗研磨工程と、前記粗研磨工程後に行われる化学強化工程と、前記粗研磨されたガラス基板を精密研磨する精密研磨工程と、を有し、前記陽イオンの含有量は、酸化セリウムの含有量に対して、0.05~5mmol/kgであることを特徴とするHDD用ガラス基板の製造方法である。 One aspect of the present invention is a polishing material containing cerium oxide as a main component, a dispersant containing an anionic polymer having a carboxyl group in the molecule, and an ionic radius of 80 to 160 pm in terms of hexacoordination. A rough polishing step of polishing a glass substrate using a polishing slurry containing a cation of a group 1 element or a group 2 element; a chemical strengthening step performed after the rough polishing step; and the rough polished glass substrate. A method of manufacturing a glass substrate for HDD, wherein the content of the cation is 0.05 to 5 mmol / kg with respect to the content of cerium oxide. It is.
 このような構成によれば、粗研磨中のイオン溶出が抑えられ、高温高湿時においても耐衝撃性の優れたHDD用ガラス基板を得ることができる。 According to such a configuration, the elution of ions during rough polishing can be suppressed, and a glass substrate for HDD having excellent impact resistance even at high temperature and high humidity can be obtained.
 また、前記HDD用ガラス基板の製造方法において、前記陽イオンは、六配位換算におけるイオン半径が80~120pmであることが好適である。 In the method for manufacturing a glass substrate for HDD, the cation preferably has an ionic radius of 80 to 120 pm in terms of six coordination.
 このような構成によれば、ガラス基板のイオン溶出をより抑えることができる。 According to such a configuration, ion elution from the glass substrate can be further suppressed.
 また、前記HDD用ガラス基板の製造方法において、前記陽イオンは、マグネシウムイオン、カルシウムイオン、ナトリウムイオン、及びカリウムイオンからなる群より選択される少なくとも一つの陽イオンであることが好適である。 In the method for producing a glass substrate for HDD, the cation is preferably at least one cation selected from the group consisting of magnesium ion, calcium ion, sodium ion, and potassium ion.
 このような構成によれば、イオンが水溶液中に安定して存在することが可能であるため、分散剤への作用を安定して供給でき、その結果、効果的にイオン溶出を抑えることができる。 According to such a configuration, since ions can stably exist in the aqueous solution, the action on the dispersant can be stably supplied, and as a result, ion elution can be effectively suppressed. .
 また、前記HDD用ガラス基板の製造方法において、前記分散剤は、重量平均分子量(Mw)が100~10000であるアクリル酸/マレイン酸の共重合体であることが好適である。 In the method for manufacturing a glass substrate for HDD, it is preferable that the dispersant is an acrylic acid / maleic acid copolymer having a weight average molecular weight (Mw) of 100 to 10,000.
 このような構成によれば、前記分散剤による、研磨材の分散性を高める効果をより発揮することができ、研磨材の凝集をより防止することができる。 According to such a configuration, the effect of improving the dispersibility of the abrasive by the dispersant can be further exhibited, and the aggregation of the abrasive can be further prevented.
 また、前記HDD用ガラス基板の製造方法において、前記分散剤の含有量は、酸化セリウムの含有量に対して、0.01~2質量%であることが好適である。 In the method for manufacturing a glass substrate for HDD, the content of the dispersant is preferably 0.01 to 2% by mass with respect to the content of cerium oxide.
 このような構成によれば、前記分散剤による、研磨材の分散性を高める効果をより発揮することができるため、研磨材の主成分である酸化セリウムが研磨スラリー中でより安定に存在することができる。よって、研磨材の凝集をより防止することができる。 According to such a configuration, the effect of enhancing the dispersibility of the abrasive by the dispersant can be more exerted, so that cerium oxide, which is the main component of the abrasive, exists more stably in the polishing slurry. Can do. Therefore, aggregation of the abrasive can be further prevented.
 以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
 <実施例1>
 以下の各工程によって製造された研磨工程前のガラス基板を用意した。
<Example 1>
A glass substrate before the polishing step produced by the following steps was prepared.
 (円盤加工工程)
 ガラス素材として、ガラス素材(組成は表1参照)を用い、溶融したガラス素材をプレス成形して、外径が約66mmの円板状のブランクスを作製した。ブランクスの厚みは1.05mmとした。
(Disc machining process)
As the glass material, a glass material (see Table 1 for the composition) was used, and the molten glass material was press-molded to produce disc-shaped blanks having an outer diameter of about 66 mm. The thickness of the blanks was 1.05 mm.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (内外径加工工程)
 円筒状のダイヤモンド砥石を備えたコアドリルを用いてブランクスの中心部に直径が20.5mmの円形の孔(中心孔)を開けた。次に、鼓状のダイヤモンド砥石を用いて、ブランクスの外周端面および内周端面を外径65mm、内径20mmに内・外径加工を行った。続いて、上記円盤加工工程後のガラス基板の外周端面および内周端面を、内外周加工機(TKV-1、舘野機械製作所製)により研削した。
(Inner / outer diameter machining process)
Using a core drill equipped with a cylindrical diamond grindstone, a circular hole (center hole) having a diameter of 20.5 mm was formed in the center of the blank. Next, using a drum-shaped diamond grindstone, inner and outer diameter processing was performed so that the outer peripheral end surface and the inner peripheral end surface of the blanks had an outer diameter of 65 mm and an inner diameter of 20 mm. Subsequently, the outer peripheral end surface and the inner peripheral end surface of the glass substrate after the disk processing step were ground by an inner and outer peripheral processing machine (TKV-1, manufactured by Hadano Machinery Co., Ltd.).
 (研削工程)
 前記内外径加工工程後のガラス基板の主表面を、両面研削機を使用して主表面の平坦度が10μmとなるよう、35μmの取り代で主表面を研削した。次に、前記ガラス基板の両表面を再び研削加工し、ガラス基板の平坦度が3μmとなるように、50μmの取り代で主表面を研削した。
(Grinding process)
The main surface of the glass substrate after the inner and outer diameter processing step was ground with a 35 μm allowance so that the flatness of the main surface was 10 μm using a double-side grinding machine. Next, both surfaces of the glass substrate were ground again, and the main surface was ground with a machining allowance of 50 μm so that the flatness of the glass substrate was 3 μm.
 (粗研磨工程)
 研磨材としての酸化セリウムを10質量%、重量平均分子量(Mw)が1000であるアクリル酸/マレイン酸共重合体を0.1質量%、炭酸マグネシウム0.0017質量%、溶媒として水89.9質量%を、スリーワンモーターを用いて攪拌し、研磨スラリー1を調製した。なお、前記炭酸マグネシウム中のマグネシウムイオンは、前記酸化セリウムの含有量に対して、0.2mmol/kgであった。
(Rough polishing process)
10% by mass of cerium oxide as an abrasive, 0.1% by mass of an acrylic acid / maleic acid copolymer having a weight average molecular weight (Mw) of 1000, 0.0017% by mass of magnesium carbonate, and 89.9% of water as a solvent. The polishing slurry 1 was prepared by stirring the mass% using a three-one motor. In addition, the magnesium ion in the said magnesium carbonate was 0.2 mmol / kg with respect to content of the said cerium oxide.
 (化学強化工程)
 前記研磨後のガラス基板を、硝酸ナトリウム54%、硝酸カリウム46%混合した強化塩を480℃にて溶融し、前記ガラス基板を4時間浸漬させた。
(Chemical strengthening process)
The polished glass substrate was melted at 480 ° C. with a strengthening salt in which 54% sodium nitrate and 46% potassium nitrate were mixed, and the glass substrate was immersed for 4 hours.
 (精密研磨工程)
 粗研磨工程で使用した両面研磨機と同型の研磨機を使用して、平均粒径が20nmであるコロイダルシリカを研磨砥粒として含有する研磨スラリーを用いて研磨行い、ガラス基板の表面を2Åに仕上げた。取り代は1μmであった。
(Precision polishing process)
Using a polishing machine of the same type as the double-side polishing machine used in the rough polishing process, polishing is performed using a polishing slurry containing colloidal silica having an average particle diameter of 20 nm as polishing abrasive grains, and the surface of the glass substrate is reduced to 2 mm. Finished. The machining allowance was 1 μm.
 (洗浄工程)
 前記精密研磨工程を行ったガラス基板をスクラブ洗浄した。洗浄液として、KOHとNaOHとを質量比で1:1に混合したものを超純水(DI水)で希釈し、洗浄能力を高めるために非イオン界面活性剤を添加して得られた液体を用いた。洗浄液の供給は、スプレー噴霧によって行った。スクラブ洗浄後、ガラス基板の表面に残る洗浄液を除去するために、水リンス洗浄工程を超音波槽で2分間行い、IPA洗浄工程を超音波槽で2分間行い、最後に、IPA蒸気によりガラス基板の表面を乾燥させた。
(Washing process)
The glass substrate subjected to the precision polishing step was scrubbed. As a cleaning liquid, a liquid obtained by diluting KOH and NaOH mixed at a mass ratio of 1: 1 with ultrapure water (DI water) and adding a nonionic surfactant to enhance the cleaning performance is obtained. Using. The cleaning liquid was supplied by spraying. After scrub cleaning, in order to remove the cleaning liquid remaining on the surface of the glass substrate, a water rinse cleaning process is performed in an ultrasonic bath for 2 minutes, an IPA cleaning process is performed in an ultrasonic bath for 2 minutes, and finally the glass substrate is cleaned with IPA vapor. The surface of was dried.
 〔耐衝撃性の評価〕
 前記工程によって得られたガラス基板を製膜後、ハードディスクドライブに組み込み、250℃、RT80%の状態において96時間放置した後に耐衝撃性試験を行った。この耐衝撃性試験は、前記放置後の各ガラス基板をドライブに組み込んで落下させて荷重を変更しながらそれぞれテストを行い、基板が割れなかった荷重の最大値を測定し、その値を以下のように評価した。
[Evaluation of impact resistance]
The glass substrate obtained by the above process was formed into a film, then incorporated into a hard disk drive, and allowed to stand at 250 ° C. and RT 80% for 96 hours, and then subjected to an impact resistance test. In this impact resistance test, each glass substrate after being left to stand is incorporated into a drive and dropped to perform a test while changing the load, and the maximum value of the load at which the substrate did not break was measured. It was evaluated as follows.
◎:最大値が1200G以上である。
○:最大値が1100G以上1200G未満である。
×:最大値が1100G未満である。
A: The maximum value is 1200 G or more.
○: The maximum value is 1100G or more and less than 1200G.
X: The maximum value is less than 1100G.
 <実施例2~13>
 実施例2~4では、下記表2に示すように、マグネシウムイオンをそれぞれ酸化セリウムに対して0.05mmol/kg、5mmol/kg、1mmol/kgとなるように研磨スラリーを調製した他は、前記実施例1と同様にして研磨スラリー2~4を調製した。
<Examples 2 to 13>
In Examples 2 to 4, as shown in Table 2 below, the polishing slurry was prepared such that the magnesium ions were 0.05 mmol / kg, 5 mmol / kg, and 1 mmol / kg with respect to cerium oxide, respectively. Polishing slurries 2 to 4 were prepared in the same manner as in Example 1.
 また、実施例5~6は、イオン半径が80~160pmであるカルシウムイオンを有する炭酸カルシウム、カリウムイオンを有する塩化カリウムを用いて研磨スラリーを調製した他は、前記実施例1と同様にして研磨スラリー5~6とした。 In Examples 5 to 6, polishing was performed in the same manner as in Example 1 except that a polishing slurry was prepared using calcium carbonate having calcium ions having an ionic radius of 80 to 160 pm and potassium chloride having potassium ions. Slurries 5-6 were obtained.
 実施例7~9は、分散剤であるアクリル酸/マレイン酸共重合体の分子量をそれぞれ700、5000、10000となるように、また、マグネシウムイオンをそれぞれ酸化セリウムに対して1mmol/kg、2mmol/kg、3mmol/kgとなるように研磨スラリーを調製した他は、実施例1と同様にして研磨スラリー7~9とした。 In Examples 7 to 9, the molecular weight of the acrylic acid / maleic acid copolymer as a dispersant was set to 700, 5000, and 10,000, respectively, and magnesium ions were added to 1 mmol / kg, 2 mmol / kg of cerium oxide, respectively. Polishing slurries 7 to 9 were made in the same manner as in Example 1 except that the polishing slurry was prepared to 3 kg / kg.
 また、実施例10は、分散剤としてそれぞれ重量平均分子量(Mw)が1000であるスチレン/マレイン酸共重合体を用いて研磨スラリーを調製した他は、前記実施例4と同様にして研磨スラリー10を調製した。 Further, Example 10 was the same as Example 4 except that a polishing slurry was prepared using a styrene / maleic acid copolymer having a weight average molecular weight (Mw) of 1000 as a dispersant. Was prepared.
 また、実施例11~13は、分散剤であるアクリル酸/マレイン酸共重合体の配合量を酸化セリウムに対してそれぞれ0.01質量%、2質量%、0.005質量%となるように研磨スラリーを調製した他は実施例1と同様にして研磨スラリー11~13を調製した。 In Examples 11 to 13, the blending amount of the acrylic acid / maleic acid copolymer as the dispersant is 0.01% by mass, 2% by mass, and 0.005% by mass with respect to cerium oxide, respectively. Polishing slurries 11 to 13 were prepared in the same manner as in Example 1 except that the polishing slurry was prepared.
 続いて、比較例1、2では、それぞれ鉄(III)イオンを有する水溶液(リン酸鉄(III)を塩酸に溶解させ中和させたもの)、セシウムイオンを有する塩化セシウムを用いて研磨スラリーを調製した他は、実施例4と同様にして研磨スラリー14~15を調製した。 Subsequently, in Comparative Examples 1 and 2, a polishing slurry was prepared using an aqueous solution having iron (III) ions (iron (III) phosphate dissolved and neutralized in hydrochloric acid) and cesium chloride having cesium ions. Abrasive slurries 14 to 15 were prepared in the same manner as in Example 4 except that the slurry was prepared.
 また、比較例3では、分散剤としてポリスチレンスルホン酸重合体を用いて研磨スラリーを調製した他は、実施例4と同様にして研磨スラリー16を調製した。 In Comparative Example 3, a polishing slurry 16 was prepared in the same manner as in Example 4 except that a polishing slurry was prepared using a polystyrene sulfonic acid polymer as a dispersant.
 比較例4~5では、マグネシウムイオンをそれぞれ酸化セリウムに対して0.04mmol/kg、6mmol/kgとなるように研磨スラリーを調製した他は、実施例1と同様にして研磨スラリー17~18を調製した。 In Comparative Examples 4 to 5, polishing slurries 17 to 18 were prepared in the same manner as in Example 1 except that the polishing slurry was prepared so that the magnesium ions were 0.04 mmol / kg and 6 mmol / kg with respect to cerium oxide, respectively. Prepared.
 そして、以上のように実施例2~13、比較例1~5に係る前記各研磨スラリー2~18を用いたこと以外は前記実施例1と同様に耐衝撃性試験を行い、前述の評価を行った。 Then, an impact resistance test was performed in the same manner as in Example 1 except that the polishing slurries 2 to 18 according to Examples 2 to 13 and Comparative Examples 1 to 5 were used as described above, and the above evaluation was performed. went.
 以上の実施例1~13,比較例1~5によって得られた結果を下記表2に示す。 The results obtained in Examples 1 to 13 and Comparative Examples 1 to 5 are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記表2に示すように、分子内にカルボキシル基を有するアニオン性高分子を含有する分散剤と、六配位換算におけるイオン半径が80~160である第1族元素又は第2族元素の陽イオンを酸化セリウムに対して0.05~5mmol/kg含む研磨スラリー(研磨スラリー1~13)を用いて研磨を行った場合(実施例1~13)は、耐衝撃性に優れたガラス基板を得ることができた。これは、前記陽イオンがイオン溶出を抑え、かつ前記分散剤が分散効果を持続させることができたことが原因であると考えられる。 As shown in Table 2 above, a dispersant containing an anionic polymer having a carboxyl group in the molecule, and a positive ion of a Group 1 or Group 2 element having an ionic radius of 80 to 160 in terms of hexacoordination. When polishing is performed using a polishing slurry (polishing slurry 1 to 13) containing 0.05 to 5 mmol / kg of ions with respect to cerium oxide (Examples 1 to 13), a glass substrate having excellent impact resistance is used. I was able to get it. It is considered that this is because the cation suppresses ion elution and the dispersing agent can maintain the dispersing effect.
 特に、六配位換算におけるイオン半径が80~160pmである第1族元素又は第2族元素の陽イオンを0.2~1mmol/kg含有する研磨スラリーを用いた場合(実施例1、実施例4~6)は、さらに耐衝撃性に優れたガラス基板を得ることができた。 In particular, when a polishing slurry containing 0.2 to 1 mmol / kg of a cation of a Group 1 element or Group 2 element having an ionic radius of 80 to 160 pm in terms of hexacoordination is used (Example 1, Example) In 4 to 6), a glass substrate having further excellent impact resistance could be obtained.
 また、分散剤として含有されるアクリル酸/マレイン酸共重合体の分子量が5000である場合(実施例8)や、分散剤としてアクリル酸/マレイン酸共重合体を、0.01質量%、2質量%含有した場合(実施例11,12)に関しても、耐衝撃性にさらに優れたガラス基板を得ることができた。 Further, when the molecular weight of the acrylic acid / maleic acid copolymer contained as a dispersant is 5000 (Example 8), or 0.01% by mass of acrylic acid / maleic acid copolymer as a dispersant. Even in the case of containing in mass% (Examples 11 and 12), it was possible to obtain a glass substrate further excellent in impact resistance.
 一方で、第1族元素又は第2族元素以外のイオンを含有する研磨スラリー(研磨スラリー14)を用いた場合(比較例1)は、耐衝撃性に劣るガラス基板が得られた。これは、分散剤がガラス基板中のイオンに強く捕捉し、イオン溶出が発生したことが原因であると考えられる。 On the other hand, when a polishing slurry (polishing slurry 14) containing ions other than the Group 1 element or Group 2 element was used (Comparative Example 1), a glass substrate inferior in impact resistance was obtained. This is presumably because the dispersant was strongly captured by ions in the glass substrate and ion elution occurred.
 また、六配位換算におけるイオン半径が80~160pmの範囲にないセシウムイオンを含有する研磨スラリー(研磨スラリー15)を用いた場合(比較例2)は、比較例1と同様の理由により、得られたガラス基板が耐衝撃性に劣る結果となった。 Further, when a polishing slurry (polishing slurry 15) containing cesium ions whose ionic radius in hexacoordinate conversion is not in the range of 80 to 160 pm (Comparative Example 2) is used, the same reason as in Comparative Example 1 is obtained. The obtained glass substrate was inferior in impact resistance.
 次に、分散剤として、分子内にカルボキシル基を有していないポリスチレンスルホン酸共重合体を含有する研磨スラリー(研磨スラリー16)を用いた場合(比較例3)は、得られたガラス基板が耐衝撃性に劣る結果となった。これは、ポリスチレンスルホン酸共重合体では酸化セリウムを十分に分散させることができないため、加工にてガラス基板が傷だらけとなり、その後化学強化を行っても傷を起点に割れが発生したことが原因であると考えられる。 Next, when a polishing slurry (polishing slurry 16) containing a polystyrenesulfonic acid copolymer having no carboxyl group in the molecule is used as a dispersant (Comparative Example 3), the obtained glass substrate is The result was inferior in impact resistance. This is because the polystyrene sulfonic acid copolymer cannot sufficiently disperse cerium oxide, so that the glass substrate is fully scratched during processing, and even after chemical strengthening, cracks originated from the scratch. It is thought that.
 また、マグネシウムイオンを0.04mmol/kg含有する研磨スラリー(研磨スラリー17)を用いた場合(比較例4)は、得られたガラス基板が耐衝撃性に劣る結果となった。これは、陽イオンと分散剤によるイオン溶出防止効果が低く、ガラス基板からイオン溶出してしまったことが原因であると考えられる。 Further, when a polishing slurry (polishing slurry 17) containing 0.04 mmol / kg of magnesium ions was used (Comparative Example 4), the obtained glass substrate was inferior in impact resistance. This is considered to be because the ion elution preventing effect by the cation and the dispersing agent is low and ions are eluted from the glass substrate.
 さらに、マグネシウムイオンを6mmol/kg含有する研磨スラリー(研磨スラリー18)を用いた場合(比較例5)は、得られたガラス基板が耐衝撃性に劣る結果となった。これは、以下のことが原因であると考えられる。まず、研磨材の分散性が低下し、加工にてガラス基板が傷だらけとなった。よって、化学強化を行っても傷を起点に割れが発生したことが原因であると考えられる。 Furthermore, when a polishing slurry (polishing slurry 18) containing 6 mmol / kg of magnesium ions was used (Comparative Example 5), the obtained glass substrate was inferior in impact resistance. This is considered to be caused by the following. First, the dispersibility of the abrasive decreased, and the glass substrate was damaged by processing. Therefore, it is considered that the cause is that the cracks originated from scratches even after chemical strengthening.
 本発明によれば、高温高湿の環境下においても耐衝撃性に優れたHDD用ガラス基板の製造方法が提供される。 According to the present invention, there is provided a method for producing a glass substrate for HDD having excellent impact resistance even in a high temperature and high humidity environment.

Claims (5)

  1.  酸化セリウムを主成分とする研磨材と、分子内にカルボキシル基を有するアニオン性高分子を含有する分散剤と、六配位換算におけるイオン半径が80~160pmである第1族元素又は第2族元素の陽イオンと、を含む研磨スラリーを用いてガラス基板を研磨する粗研磨工程と、
     前記粗研磨工程後に行われる化学強化工程と、
     前記粗研磨されたガラス基板を精密研磨する精密研磨工程と、を有し、
     前記陽イオンの含有量は、酸化セリウムの含有量に対して、0.05~5mmol/kgであることを特徴とするHDD用ガラス基板の製造方法。
    An abrasive mainly composed of cerium oxide, a dispersant containing an anionic polymer having a carboxyl group in the molecule, and a group 1 element or group 2 having an ionic radius of 80 to 160 pm in terms of hexacoordination A rough polishing step of polishing a glass substrate using a polishing slurry containing an element cation;
    A chemical strengthening step performed after the rough polishing step;
    A precision polishing step of precisely polishing the roughly polished glass substrate,
    The method for producing a glass substrate for HDD, wherein the cation content is 0.05 to 5 mmol / kg with respect to the cerium oxide content.
  2.  前記陽イオンは、六配位換算におけるイオン半径が80~120pmであることを特徴とする請求項1に記載のHDD用ガラス基板の製造方法。 2. The method for producing a glass substrate for HDD according to claim 1, wherein the cation has an ionic radius in terms of six coordination of 80 to 120 pm.
  3.  前記陽イオンは、マグネシウムイオン、カルシウムイオン、ナトリウムイオン、及びカリウムイオンからなる群より選択される少なくとも一つの陽イオンであることを特徴とする請求項1又は2に記載のHDD用ガラス基板の製造方法。 3. The glass substrate for HDD according to claim 1, wherein the cation is at least one cation selected from the group consisting of magnesium ion, calcium ion, sodium ion, and potassium ion. Method.
  4.  前記分散剤は、重量平均分子量が100~10000であるアクリル酸/マレイン酸共重合体であることを特徴とする請求項1~3のいずれか1項に記載のHDD用ガラス基板の製造方法。 The method for producing a glass substrate for HDD according to any one of claims 1 to 3, wherein the dispersant is an acrylic acid / maleic acid copolymer having a weight average molecular weight of 100 to 10,000.
  5.  前記分散剤の含有量は、酸化セリウムの含有量に対して、0.01~2質量%であることを特徴とする請求項1~4のいずれか1項に記載のHDD用ガラス基板の製造方法。 The production of a glass substrate for HDD according to any one of claims 1 to 4, wherein the content of the dispersant is 0.01 to 2% by mass with respect to the content of cerium oxide. Method.
PCT/JP2012/008057 2011-12-28 2012-12-17 Hdd glass substrate manufacturing method WO2013099148A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011289540 2011-12-28
JP2011-289540 2011-12-28

Publications (1)

Publication Number Publication Date
WO2013099148A1 true WO2013099148A1 (en) 2013-07-04

Family

ID=48696695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/008057 WO2013099148A1 (en) 2011-12-28 2012-12-17 Hdd glass substrate manufacturing method

Country Status (2)

Country Link
JP (1) JPWO2013099148A1 (en)
WO (1) WO2013099148A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03146585A (en) * 1989-11-01 1991-06-21 Fujimi Kenmazai Kogyo Kk Abradant for glass polishing
JPH06330025A (en) * 1993-05-18 1994-11-29 Mitsui Mining & Smelting Co Ltd Polishing material for glass
JP2004055128A (en) * 2003-07-18 2004-02-19 Nippon Sheet Glass Co Ltd Manufacturing method of glass disk substrate for magnetic recording medium
JP2011018398A (en) * 2009-07-09 2011-01-27 Asahi Glass Co Ltd Glass substrate for information recording medium and method for manufacturing the same, and magnetic recording medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03146585A (en) * 1989-11-01 1991-06-21 Fujimi Kenmazai Kogyo Kk Abradant for glass polishing
JPH06330025A (en) * 1993-05-18 1994-11-29 Mitsui Mining & Smelting Co Ltd Polishing material for glass
JP2004055128A (en) * 2003-07-18 2004-02-19 Nippon Sheet Glass Co Ltd Manufacturing method of glass disk substrate for magnetic recording medium
JP2011018398A (en) * 2009-07-09 2011-01-27 Asahi Glass Co Ltd Glass substrate for information recording medium and method for manufacturing the same, and magnetic recording medium

Also Published As

Publication number Publication date
JPWO2013099148A1 (en) 2015-04-30

Similar Documents

Publication Publication Date Title
JP5177087B2 (en) Glass substrate for information recording medium, manufacturing method thereof, and magnetic recording medium
JP4189384B2 (en) Manufacturing method and polishing apparatus for glass substrate for information recording medium
JP4993046B2 (en) Manufacturing method of glass substrate for information recording medium
JP5168387B2 (en) Method for manufacturing glass substrate for magnetic recording medium
JP6490842B2 (en) Grinding tool, glass substrate manufacturing method, magnetic disk glass substrate manufacturing method, and magnetic disk manufacturing method
WO2012093516A1 (en) Glass substrate for information recording medium, manufacturing method for same and magnetic recording medium
JP5331925B2 (en) Manufacturing method of substrate for information recording medium
JP2018174005A (en) Manufacturing method of glass substrate for information recording medium, manufacturing method of information recording medium, glass substrate for information recording medium, and magnetic recording medium
JP5906823B2 (en) Method for manufacturing glass substrate for magnetic recording medium
WO2013099148A1 (en) Hdd glass substrate manufacturing method
JP2009087483A (en) Manufacturing method of glass substrate for information recording medium, glass substrate for information recording medium and magnetic recording medium
JP2009087439A (en) Manufacturing method of glass substrate for magnetic disk
WO2014103296A1 (en) Method for manufacturing glass substrate for hard disks
JP2014197441A (en) Method for manufacturing hard disk substrate
JP2013122795A (en) Slurry for polishing magnetic disk glass, method for manufacturing magnetic disk glass substrate using polishing slurry, and magnetic disk glass substrate
WO2014208266A1 (en) Hdd glass substrate manufacturing method
JP5778165B2 (en) Method for manufacturing glass substrate for information recording medium and method for manufacturing information recording medium
JP2010238310A (en) Method for manufacturing substrate for magnetic disk
JP5859756B2 (en) Manufacturing method of glass substrate for HDD
JP2012256424A (en) Glass substrate for magnetic recording medium
JP5859757B2 (en) Manufacturing method of glass substrate for HDD
JP2012079365A (en) Method for manufacturing glass substrate for information recording medium
JP5636243B2 (en) Manufacturing method of glass substrate for information recording medium
WO2012090755A1 (en) Method for producing glass substrate for recording medium
WO2012042735A1 (en) Manufacturing method for glass substrate for information recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12863976

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013551216

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12863976

Country of ref document: EP

Kind code of ref document: A1