WO2013099060A1 - Inverter device - Google Patents

Inverter device Download PDF

Info

Publication number
WO2013099060A1
WO2013099060A1 PCT/JP2012/005825 JP2012005825W WO2013099060A1 WO 2013099060 A1 WO2013099060 A1 WO 2013099060A1 JP 2012005825 W JP2012005825 W JP 2012005825W WO 2013099060 A1 WO2013099060 A1 WO 2013099060A1
Authority
WO
WIPO (PCT)
Prior art keywords
arm side
switching circuit
voltage
inverter device
switching
Prior art date
Application number
PCT/JP2012/005825
Other languages
French (fr)
Japanese (ja)
Inventor
松井 敬三
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201280065079.5A priority Critical patent/CN104040866B/en
Publication of WO2013099060A1 publication Critical patent/WO2013099060A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/5388Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with asymmetrical configuration of switches

Definitions

  • the present invention relates to an inverter device which includes a plurality of switching elements, converts DC power into AC power of a desired frequency, and drives a load such as a motor.
  • inverter device which converts input power from a power supply into AC power of a desired frequency and is used for motor drive, etc.
  • upstream (upper arm side) and downstream (lower arm) according to application direction of power supply voltage
  • a switching circuit having two series circuits of two switching elements on the side) is common.
  • switching elements IGBTs (Insulated Gate Bipolar Transistors), which are insulated gate bipolar transistors, and MOSFETs, which are a type of field effect transistors, are widely used.
  • the switching element on the upper arm side of the switching circuit used to drive the DC motor is configured by an IGBT or MOSFET, and the switching element on the lower arm side is a bipolar transistor. It was configured.
  • an IGBT or MOSFET capable of high-speed switching is used as the three-phase switching element on the upper arm side of the switching circuit, and a bipolar transistor is used as the three-phase switching element on the lower arm side. It is cheaper than using all IGBTs or MOSFETs, and enables finer control of switching and chopping than when using bipolar transistors.
  • noise can be reduced by enabling deletion of electromagnetic noise when driving a direct current motor and control to reduce vibration due to resonance with the peripheral mechanism.
  • the inverter device of the present invention includes a switching circuit configured of a plurality of upper and lower arms, and a control unit that drives the switching circuit by a PWM modulation method.
  • the switching element forming the upper arm side switching circuit and the switching element forming the lower arm side switching circuit are formed by different types of switching elements.
  • the control unit switches the average output voltage based on a condition that determines the magnitude relationship between the on resistance of the switching element that configures the lower arm side switching circuit and the on resistance of the switching element that configures the upper arm side switching circuit. Shift to the lower voltage side or higher voltage side than the intermediate voltage of the power supply voltage supplied to the
  • FIG. 1 is a block diagram of an inverter device according to a first embodiment of the present invention.
  • FIG. 2 is a characteristic diagram showing characteristics of switching elements of the inverter device according to the first embodiment of the present invention.
  • FIG. 3 is a timing chart showing an example of timing characteristics of switching in the PWM modulation method of the inverter device according to the first embodiment of the present invention.
  • FIG. 4 is a characteristic diagram of an example showing characteristics of the amount of current flowing through switching elements on the upper arm side and the lower arm side in the inverter device according to the first embodiment of the present invention.
  • FIG. 5 is a timing chart showing another example of the timing characteristic of switching in the PWM modulation method of the inverter device according to the first embodiment of the present invention.
  • FIG. 1 is a block diagram of an inverter device according to a first embodiment of the present invention.
  • FIG. 2 is a characteristic diagram showing characteristics of switching elements of the inverter device according to the first embodiment of the present invention.
  • FIG. 3 is
  • FIG. 6 is a characteristic diagram of another example showing the characteristics of the amount of current flowing in the switching elements on the upper arm side and the lower arm side in the inverter device according to the first embodiment of the present invention.
  • FIG. 7 is a characteristic diagram showing switching characteristics of the output voltage with respect to the output current in the control unit of the inverter device according to the first embodiment of the present invention.
  • FIG. 8 is a timing chart showing timing characteristics of switching in the PWM modulation method of the inverter device according to the first embodiment of the present invention.
  • FIG. 1 is a block diagram of an inverter device according to a first embodiment of the present invention.
  • the alternating current power supplied from the alternating current power supply 1 is once converted into a direct current by the rectifier circuit 4 and the smoothing capacitor 5 and supplied to the inverter device 2.
  • the inverter device 2 includes a switching circuit 20, a control unit 21, and current detection units 28a and 28b.
  • the switching circuit 20 includes an upper arm side switching circuit 20u including switching elements 22 to 24 connected to the high voltage side of the power supply voltage, and switching elements 25 to 27 connected to the low voltage side of the power supply voltage.
  • the lower arm side switching circuit 20d is configured.
  • the switching elements 22 to 24 are connected in series to the switching elements 25 to 27, respectively, to form a three-phase series circuit.
  • the connection point between the switching elements 22-24 on the upper arm side and the switching elements 25-27 on the lower arm side in these series circuits is connected to the motor 3 which is a load.
  • the current detection units 28a and 28b detect two-phase output current values (current values flowing to the motor 3) in the three-phase series circuit, and the remaining one-phase output current values are detected two-phase output current values. Is obtained by calculation or the like.
  • the control unit 21 further includes a comparison unit 29 that compares the output current value detected by the current detection units 28 a and 28 b with a predetermined current value. The operation of the comparison unit 29 will be described later.
  • the control unit 21 controls the switching of the switching elements 22 to 27 so that the inverter device 2 outputs AC power that causes the motor 3 to rotate at a desired number of rotations.
  • a control method of switching a general pulse width modulation (PWM modulation) method of controlling an output voltage by a time width of a drive pulse of a switching element is used.
  • PWM modulation pulse width modulation
  • control unit 21 drives the switching elements 22 to 27 based on the current value detected by the current detection units 28a and 28b for detecting the current flowing to the motor 3.
  • semiconductor devices such as IGBTs having high efficiency at high load are used. Reflux diodes 22a to 24a are connected in parallel to the switching elements 22 to 24, respectively.
  • semiconductor devices such as MOSFETs capable of high speed switching and having a high efficiency at low load are used as compared with the upper arm side switching elements 22 to 24.
  • FIG. 2 is a characteristic diagram showing the characteristics of switching elements used in the inverter device according to the first embodiment of the present invention.
  • FIG. 2 shows voltage-current characteristics of an IGBT as a switching element on the upper arm side and a MOSFET as a switching element on the lower arm side.
  • the characteristic curve of the IGBT shows the relationship between the collector-emitter voltage Vce (sat) (on voltage) and the collector current Ic when the IGBT is on.
  • Vce collector-emitter voltage
  • Ic collector current
  • the characteristic curve of the MOSFET shows the relationship between the drain current Id and the voltage drop which is the drain-source voltage Vds when the MOSFET is on.
  • the relationship between the drain-source voltage Vds and the drain current Id is substantially linear as shown in FIG. Therefore, regardless of the value of the load current (drain current Id), the slope of this characteristic line is substantially constant, so that the on resistance of the switching element is constant regardless of the magnitude of the load current.
  • FIG. 8 is a timing chart showing timing characteristics of switching in the PWM modulation method of the conventional inverter device.
  • a voltage is output in a sine wave with respect to the phase angle of the rotor (not shown) of the motor 3.
  • the U-phase, V-phase, and W-phase output voltages are sine wave voltages each having a phase difference of 120 degrees.
  • a carrier signal voltage composed of a triangular wave having a predetermined carrier frequency with respect to the sine wave voltage is compared with the sine wave voltage.
  • the upper arm side switching elements 22 to 24 are turned on by outputting a drive signal to the upper arm side switching elements 22 to 24 and vice versa.
  • the switching elements 25 to 27 on the arm side are turned off.
  • FIG. 3 is a timing chart showing an example of timing characteristics of switching of the PWM modulation system of the inverter device according to the first embodiment of the present invention.
  • the control unit 21 controls switching of the switching elements 22 to 27 and outputs a sine wave voltage to the motor 3 in accordance with the PWM modulation method
  • the voltage output to three phases (U phase, V phase, W phase) of the motor 3
  • the average output voltage which is an average value is set to 1/2 of the power supply voltage supplied to the switching circuit in a general inverter device. That is, the average output voltage of the inverter device is set to the voltage of the DC part, that is, the value Vdc / 2 which is half the voltage across the smoothing capacitor 5.
  • sine wave voltages having a phase difference of 120 degrees from each other are output from the inverter device to the motor 3.
  • the control unit 21 shifts the average output voltage to a lower voltage side than the intermediate voltage of the power supply voltages supplied to the switching circuit 20.
  • the line voltage applied between the terminals of the three-phase winding of the motor 3 is the same as that in the case of the sine wave voltage waveform shown in FIG. Therefore, the motor 3 performs the same operation.
  • the value of the output current to the motor 3 is smaller than I1 (FIG. 2), the efficiency of the inverter device 2 can be improved by outputting a voltage having a reduced average voltage to the motor 3.
  • FIG. 4 is an example of a characteristic diagram showing the characteristics of the amount of current flowing in the switching elements on the upper arm side and the lower arm side of the inverter device according to the first embodiment of the present invention.
  • the amount of current flowing through the switching element is a time integral value of the current flowing through the switching element.
  • FIG. 4 shows the switching elements 22 to 24 on the upper arm side and the switching elements 25 to 25 on the lower arm side when the average output voltage value of the inverter device 2 is set to a value lower than Vdc / 2 as shown in FIG. 27 shows the characteristics of the amount of current flowing.
  • the amount of current (the amount of lower arm current) flowing through switching elements 25 to 27 on the lower arm side is substantially equal to all average output voltage regions. And the amount of current flowing to the switching elements 22 to 24 on the upper arm side (upper arm current amount).
  • the amount of current which is the integral value of the current flowing in the MOSFET which is the switching element on the lower arm side becomes larger than the amount of current which is the integral value of the current flowing in the IGBT which is the switching element on the upper arm side.
  • the efficiency of the MOSFET which is the switching element on the lower arm side is higher than that of the IGBT which is the switching element on the upper arm side. That is, the MOSFET which is the switching element on the lower arm side has a smaller on-resistance than the IGBT which is the switching element on the upper arm side.
  • the loss of the inverter device which is the sum of the losses of the switching elements on the upper arm side and the lower arm side, can be reduced as compared with the drive system having the average output voltage value Vdc / 2 shown in FIG.
  • the efficiency of the upper arm IGBT is ⁇ (IGBT)
  • the efficiency of the lower arm MOSFET is ⁇ (MOSFET)
  • the amount of current flowing through the upper arm IGBT is P (IGBT)
  • the lower arm MOSFET is flowing
  • the amount of current is P (MOSFET)
  • the total loss L (TOTAL) is given by (Expression 1) shown below.
  • FIG. 5 is a timing chart showing another example of the timing characteristic of switching of the PWM modulation system of the inverter device in the first embodiment of the present invention.
  • the average output voltage value of inverter device 2 is higher than Vdc / 2 (this value In this case, it is set to 7 ⁇ Vdc / 8). That is, the control unit 21 shifts the average output voltage to a higher voltage side than the intermediate voltage of the power supply voltages supplied to the switching circuit 20. Although the average output voltage output to the motor 3 increases, the line voltage applied between the terminals of the three-phase winding of the motor 3 is the same as in the case of FIG. In this case, the efficiency of the inverter device 2 can be improved by outputting to the motor 3 a voltage obtained by increasing the average voltage.
  • FIG. 6 is another example of the characteristic diagram showing the characteristics of the amount of current flowing in the switching elements on the upper arm side and the lower arm side of the inverter device according to the first embodiment of the present invention.
  • the average output voltage value of the inverter device 2 is set to a value higher than Vdc / 2.
  • the on time of the switching elements 22 to 24 on the upper arm side It will be longer than 27 on-time. This is because, since the average output voltage is high, the time when the output voltage becomes larger than the carrier signal voltage is longer than the time when the output voltage becomes smaller than the carrier signal voltage.
  • the amount of current which is the integral value of the current flowing to the IGBT which is the switching element on the upper arm side is larger than the amount of current which is the integral value of the current flowing to the MOSFET which is the switching element on the lower arm side.
  • the output current value is larger than I1
  • the IGBT as the switching element on the upper arm side has higher efficiency than the MOSFET as the switching element on the lower arm side. That is, the IGBT as the switching element on the upper arm side has a smaller on-resistance than the MOSFET as the switching element on the lower arm side.
  • the loss of the inverter device 2 which is the sum of the losses of the switching elements on the upper arm side and the lower arm side can be reduced as compared with the driving method in which the average output voltage value shown in FIG. it can.
  • FIG. 7 is a characteristic diagram showing switching characteristics of the average output voltage with respect to the output current in the control unit of the inverter device in the first embodiment of the present invention.
  • the control unit 21 changes the three-phase alternating current average output voltage value output by the inverter device 2 based on the output current values detected by the current detection units 28a and 28b. That is, the control unit 21 compares the magnitudes of the output current values detected by the current detection units 28a and 28b with I1, which is a predetermined current value defined by the switching element on the upper arm side and the switching element on the lower arm side.
  • the comparison unit 29 that compares the The control unit 21 determines the magnitude relationship between the on resistance of the switching elements 22 to 24 on the upper arm side and the on resistance of the switching elements 25 to 27 on the lower arm side based on the determination result of the comparing unit 29.
  • the average output voltage may be set based on the comparison result of In particular, when the output current value is I1, the average output voltage value is set to Vdc / 2.
  • the output current value is larger than I1
  • the average output voltage value is increased from Vdc / 2 according to the output current value.
  • the amount of current flowing to the switching elements 22 to 24 on the upper arm side is made larger than the amount of current flowing to the switching elements 25 to 27 on the lower arm side, and the load of the switching elements 22 to 24 on the upper arm side is high. It makes it heavy and reduces the loss in the inverter apparatus 2 (switching circuit 20) total.
  • the output current value is smaller than I1
  • the average output voltage value is decreased from Vdc / 2 according to the output current value.
  • the amount of current flowing through the switching elements 25 to 27 on the lower arm side is increased more than the amount of current flowing to the switching elements 22 to 24 on the upper arm side, and the load on the switching elements on the lower arm side with high efficiency is increased.
  • the total loss of the inverter device 2 (switching circuit 20) is reduced.
  • P (IGBT) ⁇ (1- ⁇ (IGBT)) which is a loss generated in the IGBT as the switching element on the upper arm side, and a loss generated in the MOSFET as the switching element on the lower arm side P (MOSFET) ⁇ (1 ⁇ (MOSFET)) has almost equal values. Therefore, the loss balance of the switching elements on the upper arm side and the lower arm side is maintained, whereby the heat generation balance of the switching elements is maintained, and an inverter device with high reliability is realized.
  • the MOSFET is used as the lower arm side switching elements 25 to 27 as a high efficiency switching element at low load
  • the IGBT is an upper arm side switching element 22 as a high efficiency switching element at high load. Used as ⁇ 24.
  • the MOSFET is used as the switching element 22 to 24 on the upper arm side as a high efficiency switching element at low load
  • the IGBT is used as the switching element 25 to 27 on the lower arm side as a high efficiency switching element at high load
  • the output current value is smaller than I1
  • the average output voltage value is increased according to the output current value.
  • the amount of current flowing to the switching elements 22 to 24 on the upper arm side is increased, the load on the switching elements 22 to 24 on the upper arm side with high efficiency is increased, and the total loss of the inverter device 2 (switching circuit 20) Reduce
  • a MOSFET is used as a high efficiency switching element at low load
  • an IGBT is used as a high efficiency switching element at high load
  • semiconductor elements such as gallium nitride (GaN) transistors may be used instead of MOSFETs
  • bipolar transistors may be used instead of IGBTs.
  • the inverter device of the present invention includes the switching circuit configured of the plurality of upper and lower arms, and the control unit that drives the switching circuit by the PWM modulation method.
  • the switching element forming the upper arm side switching circuit and the switching element forming the lower arm side switching circuit are formed by different types of switching elements.
  • the control unit switches the average output voltage based on a condition that determines the magnitude relationship between the on resistance of the switching element that configures the lower arm side switching circuit and the on resistance of the switching element that configures the upper arm side switching circuit. Shift to the lower voltage side or higher voltage side than the intermediate voltage of the power supply voltage supplied to the
  • the controller outputs an average output under the condition that the on resistance of the switching element constituting the lower arm side switching circuit is smaller than the on resistance of the switching element constituting the upper arm side switching circuit.
  • the voltage is shifted to a lower voltage side than the intermediate voltage of the power supply voltage.
  • the control unit sets the average output voltage to the middle of the power supply voltage. Shift to a higher voltage than the voltage.
  • the inverter device further includes a current detection unit that detects an output current value.
  • the control unit determines a comparison unit that determines the magnitude relationship between the output current value detected by the current detection unit and the predetermined current value defined by the switching elements that constitute the upper arm switching circuit and the lower arm switching circuit. Have.
  • the control unit determines, based on the determination result of the comparison unit, the magnitude relationship between the on resistance of the switching element forming the upper arm side switching circuit and the on resistance of the switching element forming the lower arm side switching circuit.
  • control unit shifts the average output voltage value in accordance with the magnitude of the output current value detected by the current detection unit.
  • different types of switching elements constituting the upper arm side switching circuit and the lower arm side switching circuit are a MOSFET and an IGBT.
  • different types of switching elements constituting the upper arm side switching circuit and the lower arm side switching circuit are a GaN transistor and an IGBT.
  • the inverter device according to the present invention is used for an inverter device that reduces inverter circuit loss by optimally performing drive control of switching elements, and is useful for an inverter device with high efficiency and high reliability.

Abstract

This inverter device is equipped with: a switching circuit comprising multiple upper and lower arms; and a control unit for driving the switching circuit by means of a PWM modulation scheme. Switching components that constitute an upper-arm-side switching circuit and switching components that constitute a lower-arm-side switching circuit are composed of switching components of different types. The control unit shifts an average output voltage to the lower voltage side or to the higher voltage side with respect to the intermediate voltage of a source voltage supplied to the switching circuit on the basis of a condition that determines the magnitude relationship between on-resistances of the switching components that constitute the lower-arm-side switching circuit and on-resistances of the switching components that constitute the upper-arm-side switching circuit.

Description

インバータ装置Inverter device
 本発明は、複数個のスイッチング素子により構成され、直流電力を、所望の周波数の交流電力に変換し、モータなどの負荷の駆動を行うインバータ装置に関する。 The present invention relates to an inverter device which includes a plurality of switching elements, converts DC power into AC power of a desired frequency, and drives a load such as a motor.
 従来、電源からの入力電力を、所望の周波数の交流電力に変換し、モータ駆動などに使用するいわゆるインバータ装置においては、電源電圧の印加方向に従って上流側(上アーム側)および下流側(下アーム側)の2つのスイッチング素子の直列回路を2組有するスイッチング回路が一般的である。スイッチング素子としては、絶縁ゲートバイポーラトランジスタであるIGBT(Insulated Gate Bipolar Transistor)や電界効果トランジスタの一種であるMOSFETなどが広く使用されている。 Conventionally, in a so-called inverter device which converts input power from a power supply into AC power of a desired frequency and is used for motor drive, etc., upstream (upper arm side) and downstream (lower arm) according to application direction of power supply voltage A switching circuit having two series circuits of two switching elements on the side) is common. As switching elements, IGBTs (Insulated Gate Bipolar Transistors), which are insulated gate bipolar transistors, and MOSFETs, which are a type of field effect transistors, are widely used.
 IGBTは、低負荷時には効率は低いが、高負荷時には比較的効率が高く、さらにスイッチング速度も高速である特徴を有する。一方、MOSFETは、低負荷時には効率は高く、高負荷時には比較的効率が低く、さらにスイッチング速度も高速である特徴を有する。また、一般的なインバータ回路においては、スイッチング回路の上下アームすべてのスイッチング素子を同じ素子で構成しているものが大半であった。 The IGBT is characterized by low efficiency at low load, but relatively high efficiency at high load, and also high switching speed. On the other hand, MOSFETs are characterized by high efficiency at low load, relatively low efficiency at high load, and high switching speed. Also, in general inverter circuits, most of the switching elements of the upper and lower arms of the switching circuit are constituted by the same element.
 一方、特許文献1に示すインバータ装置においては、上流側および下流側となる2つのスイッチング素子で、少なくとも一方のスイッチング素子がMOSFETで、他方のスイッチング素子がIGBTからなる直列回路を有する。これにより、IGBTのオン時の両端間電圧が一定となることによる高電圧、高電流出力時のロスが小さい特性と、同時にMOSFETのオン、オフ速度が速いことによる高周波スイッチングが可能で、かつ低電圧、低電流出力時のロスが小さいという特性を利用し効率を向上させていた。 On the other hand, in the inverter device shown in Patent Document 1, two switching elements on the upstream side and the downstream side have a series circuit in which at least one switching element is a MOSFET and the other switching element is an IGBT. As a result, the loss of high voltage and high current output due to the voltage across the IGBT becoming constant becomes small, and the high frequency switching due to the fast on / off speed of the MOSFET is possible and low. The efficiency is improved by utilizing the characteristic that the loss at the time of voltage and low current output is small.
 また、特許文献2に示すインバータ回路においては、直流電動機を駆動するために用いられるスイッチング回路の上アーム側のスイッチング素子をIGBTまたはMOSFETにて構成し、下アーム側のスイッチング素子をバイポーラトランジスタにて構成していた。このように、スイッチング回路の上アーム側の3相のスイッチング素子に高速スイッチングが可能なIGBTまたはMOSFETを用い、下アーム側の3相のスイッチング素子にバイポーラトランジスタを用いることにより、6相のスイッチング素子すべてにIGBTまたはMOSFETを用いるよりも安価で、かつ、バイポーラトランジスタ使用時と比べ、細かいスイッチングやチョッピングの制御を可能としていた。更に、直流電動機駆動時における電磁音の削除や、周辺機構との共振による振動を削減する制御を行うことを可能にして、静音化を向上させていた。 Further, in the inverter circuit shown in Patent Document 2, the switching element on the upper arm side of the switching circuit used to drive the DC motor is configured by an IGBT or MOSFET, and the switching element on the lower arm side is a bipolar transistor. It was configured. As described above, an IGBT or MOSFET capable of high-speed switching is used as the three-phase switching element on the upper arm side of the switching circuit, and a bipolar transistor is used as the three-phase switching element on the lower arm side. It is cheaper than using all IGBTs or MOSFETs, and enables finer control of switching and chopping than when using bipolar transistors. Furthermore, noise can be reduced by enabling deletion of electromagnetic noise when driving a direct current motor and control to reduce vibration due to resonance with the peripheral mechanism.
 このようなスイッチング回路の上下アームが異なった種類のスイッチング素子で構成されたインバータ装置の場合には、通常のスイッチングパターンで駆動した場合、各スイッチング素子にかかる負荷のバランスが不均一になる。このため、片方のスイッチング素子に負荷が集中し、温度上昇により駆動範囲が限定される場合があった。 In the case of an inverter device in which the upper and lower arms of such a switching circuit are configured by different types of switching elements, the balance of the load applied to each switching element becomes uneven when driven by a normal switching pattern. For this reason, load may concentrate on one of the switching elements, and the drive range may be limited due to temperature rise.
 また、各スイッチング素子の効率が高くなる条件は、スイッチング素子の種類によって異なるため、通常のスイッチングパターンで駆動した場合には、スイッチング素子の特性を考慮して効率を最大化することは困難であった。 In addition, since the conditions for increasing the efficiency of each switching element are different depending on the type of switching element, it is difficult to maximize the efficiency in consideration of the characteristics of the switching element when driven by a normal switching pattern. The
特開2007-129848号公報JP, 2007-129848, A 特開平7-31182号公報Japanese Patent Application Laid-Open No. 7-31182
 本発明のインバータ装置は、複数の上下アームから構成されるスイッチング回路と、スイッチング回路をPWM変調方式で駆動する制御部とを備える。上アーム側スイッチング回路を構成するスイッチング素子と、下アーム側スイッチング回路を構成するスイッチング素子は異なる種類のスイッチング素子で構成される。制御部は、下アーム側スイッチング回路を構成するスイッチング素子のオン抵抗と、上アーム側スイッチング回路を構成するスイッチング素子のオン抵抗との大小関係を決定する条件に基づいて、平均出力電圧をスイッチング回路に供給される電源電圧の中間電圧より低電圧側または高電圧側にシフトさせる。 The inverter device of the present invention includes a switching circuit configured of a plurality of upper and lower arms, and a control unit that drives the switching circuit by a PWM modulation method. The switching element forming the upper arm side switching circuit and the switching element forming the lower arm side switching circuit are formed by different types of switching elements. The control unit switches the average output voltage based on a condition that determines the magnitude relationship between the on resistance of the switching element that configures the lower arm side switching circuit and the on resistance of the switching element that configures the upper arm side switching circuit. Shift to the lower voltage side or higher voltage side than the intermediate voltage of the power supply voltage supplied to the
 このような構成により、低損失、高速のスイッチング素子を備え、下アーム側のスイッチング素子が高効率となる負荷条件においても、上アーム側のスイッチング素子が高効率となる負荷条件においても、常に高効率なインバータ装置が実現される。 With such a configuration, low-loss, high-speed switching elements are provided, and even under load conditions in which the lower arm switching elements have high efficiency, and even under load conditions in which the upper arm switching elements have high efficiency, An efficient inverter device is realized.
図1は本発明の実施の形態1におけるインバータ装置の構成図である。FIG. 1 is a block diagram of an inverter device according to a first embodiment of the present invention. 図2は本発明の実施の形態1におけるインバータ装置のスイッチング素子の特性を表わす特性図である。FIG. 2 is a characteristic diagram showing characteristics of switching elements of the inverter device according to the first embodiment of the present invention. 図3は本発明の実施の形態1におけるインバータ装置のPWM変調方式におけるスイッチングのタイミング特性の一例を表すタイミング図である。FIG. 3 is a timing chart showing an example of timing characteristics of switching in the PWM modulation method of the inverter device according to the first embodiment of the present invention. 図4は本発明の実施の形態1におけるインバータ装置における上アーム側と下アーム側のスイッチング素子に流れる電流量の特性を示した一例の特性図である。FIG. 4 is a characteristic diagram of an example showing characteristics of the amount of current flowing through switching elements on the upper arm side and the lower arm side in the inverter device according to the first embodiment of the present invention. 図5は本発明の実施の形態1におけるインバータ装置のPWM変調方式におけるスイッチングのタイミング特性の別の一例を表すタイミング図である。FIG. 5 is a timing chart showing another example of the timing characteristic of switching in the PWM modulation method of the inverter device according to the first embodiment of the present invention. 図6は本発明の実施の形態1におけるインバータ装置における上アーム側と下アーム側のスイッチング素子に流れる電流量の特性を示した別の一例の特性図である。FIG. 6 is a characteristic diagram of another example showing the characteristics of the amount of current flowing in the switching elements on the upper arm side and the lower arm side in the inverter device according to the first embodiment of the present invention. 図7は本発明の実施の形態1におけるインバータ装置の制御部における出力電流に対する出力電圧の切換特性を表す特性図である。FIG. 7 is a characteristic diagram showing switching characteristics of the output voltage with respect to the output current in the control unit of the inverter device according to the first embodiment of the present invention. 図8は本発明の実施の形態1におけるインバータ装置のPWM変調方式におけるスイッチングのタイミング特性を表すタイミング図である。FIG. 8 is a timing chart showing timing characteristics of switching in the PWM modulation method of the inverter device according to the first embodiment of the present invention.
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited by the embodiment.
 (実施の形態1)
 図1は、本発明の実施の形態1におけるインバータ装置の構成図である。交流電源1より与えられる交流電力は、整流回路4、平滑コンデンサ5により一旦、直流化され、インバータ装置2に供給される。インバータ装置2は、スイッチング回路20、制御部21、電流検出部28a、28bを備えている。スイッチング回路20は、電源電圧の高電圧側に接続されたスイッチング素子22~24により構成される上アーム側スイッチング回路20uと電源電圧の低電圧側に接続されたスイッチング素子25~27により構成される下アーム側スイッチング回路20dから構成されている。スイッチング素子22~24はそれぞれスイッチング素子25~27と直列に接続され、3相の直列回路を構成している。これら直列回路における上アーム側のスイッチング素子22~24と下アーム側のスイッチング素子25~27の相互接続点が、負荷であるモータ3に接続されている。電流検出部28a、28bは3相の直列回路のうち2相の出力電流値(モータ3に流れる電流値)を検出し、残りの1相の出力電流値は検出された2相の出力電流値から演算等によって求められる。また、制御部21は、電流検出部28a、28bが検出した出力電流値と所定の電流値を比較する比較部29を備えている。この比較部29の動作については後ほど説明する。
Embodiment 1
FIG. 1 is a block diagram of an inverter device according to a first embodiment of the present invention. The alternating current power supplied from the alternating current power supply 1 is once converted into a direct current by the rectifier circuit 4 and the smoothing capacitor 5 and supplied to the inverter device 2. The inverter device 2 includes a switching circuit 20, a control unit 21, and current detection units 28a and 28b. The switching circuit 20 includes an upper arm side switching circuit 20u including switching elements 22 to 24 connected to the high voltage side of the power supply voltage, and switching elements 25 to 27 connected to the low voltage side of the power supply voltage. The lower arm side switching circuit 20d is configured. The switching elements 22 to 24 are connected in series to the switching elements 25 to 27, respectively, to form a three-phase series circuit. The connection point between the switching elements 22-24 on the upper arm side and the switching elements 25-27 on the lower arm side in these series circuits is connected to the motor 3 which is a load. The current detection units 28a and 28b detect two-phase output current values (current values flowing to the motor 3) in the three-phase series circuit, and the remaining one-phase output current values are detected two-phase output current values. Is obtained by calculation or the like. The control unit 21 further includes a comparison unit 29 that compares the output current value detected by the current detection units 28 a and 28 b with a predetermined current value. The operation of the comparison unit 29 will be described later.
 制御部21は、モータ3が所望の回転数で回転するような交流電力をインバータ装置2が出力するように、スイッチング素子22~27のスイッチングを制御する。スイッチングの制御方法としては、スイッチング素子の駆動パルスの時間幅により出力電圧を制御する、一般的なパルス幅変調(PWM変調)方式が用いられる。 The control unit 21 controls the switching of the switching elements 22 to 27 so that the inverter device 2 outputs AC power that causes the motor 3 to rotate at a desired number of rotations. As a control method of switching, a general pulse width modulation (PWM modulation) method of controlling an output voltage by a time width of a drive pulse of a switching element is used.
 また、制御部21は、モータ3に流れる電流を検出するための電流検出部28a、28bにより検出された電流値に基づき、スイッチング素子22~27を駆動する。 Further, the control unit 21 drives the switching elements 22 to 27 based on the current value detected by the current detection units 28a and 28b for detecting the current flowing to the motor 3.
 上アーム側のスイッチング素子22~24としては、高負荷時に効率が高いIGBTなどの半導体デバイスが用いられる。スイッチング素子22~24には、それぞれ並列に還流ダイオード22a~24aが接続される。一方、下アーム側のスイッチング素子25~27としては、上アーム側のスイッチング素子22~24に比べると高速なスイッチングが可能で低負荷時に効率が高いMOSFETなどの半導体デバイスが用いられる。 As the switching elements 22 to 24 on the upper arm side, semiconductor devices such as IGBTs having high efficiency at high load are used. Reflux diodes 22a to 24a are connected in parallel to the switching elements 22 to 24, respectively. On the other hand, as the lower arm side switching elements 25 to 27, semiconductor devices such as MOSFETs capable of high speed switching and having a high efficiency at low load are used as compared with the upper arm side switching elements 22 to 24.
 尚、このMOSFETには、その構成上デバイスにダイオードが構成されているため、還流ダイオードを並列に接続する必要がない。このように上アーム側のスイッチング素子22~24と下アーム側のスイッチング素子25~27とで異なった特性のスイッチング素子を使用し、さらに各々の特性に合わせたドライブ方式を用いることにより、安価な構成で、インバータ装置の高効率化を実現することができる。 In addition, since a diode is configured in the device in this MOSFET, it is not necessary to connect freewheeling diodes in parallel. As described above, switching elements having different characteristics are used for the switching elements 22 to 24 on the upper arm side and the switching elements 25 to 27 on the lower arm side, and a drive method adapted to each characteristic is used, whereby the cost is reduced. With the configuration, high efficiency of the inverter device can be realized.
 図2は、本発明の実施の形態1におけるインバータ装置において使用されるスイッチング素子の特性を表わす特性図である。図2は、上アーム側のスイッチング素子であるIGBTと、下アーム側のスイッチング素子であるMOSFETの電圧電流特性を示している。 FIG. 2 is a characteristic diagram showing the characteristics of switching elements used in the inverter device according to the first embodiment of the present invention. FIG. 2 shows voltage-current characteristics of an IGBT as a switching element on the upper arm side and a MOSFET as a switching element on the lower arm side.
 IGBTの特性曲線は、IGBTがオンしている時のコレクタ-エミッタ間電圧Vce(sat)(オン電圧)とコレクタ電流Icとの関係を示している。IGBTでは、コレクタ電流Icが大きくなればなる程、コレクタ-エミッタ間電圧Vceである電圧降下の増加が少なくなり、スイッチング素子のオン抵抗の逆数から成るこの特性曲線の傾きが、相対的に大きくなる。このため、スイッチング素子で発生する損失は負荷電流(コレクタ電流Ic)が大きくなるほど少なくなる。 The characteristic curve of the IGBT shows the relationship between the collector-emitter voltage Vce (sat) (on voltage) and the collector current Ic when the IGBT is on. In the IGBT, as the collector current Ic increases, the increase of the voltage drop which is the collector-emitter voltage Vce decreases, and the slope of this characteristic curve consisting of the reciprocal of the on resistance of the switching element relatively increases. . Therefore, the loss generated in the switching element decreases as the load current (collector current Ic) increases.
 一方、MOSFETの特性曲線は、MOSFETがオンしている時のドレイン-ソース間電圧Vdsである電圧降下とドレイン電流Idとの関係を示している。MOSFETでは、ドレイン-ソース間電圧Vdsとドレイン電流Idの関係は、図2に示したようにほぼ直線となる。このため、負荷電流(ドレイン電流Id)の値によらず、この特性直線の傾きはほぼ一定であるため、負荷電流の大小に関わらず、スイッチング素子のオン抵抗は一定である。 On the other hand, the characteristic curve of the MOSFET shows the relationship between the drain current Id and the voltage drop which is the drain-source voltage Vds when the MOSFET is on. In the MOSFET, the relationship between the drain-source voltage Vds and the drain current Id is substantially linear as shown in FIG. Therefore, regardless of the value of the load current (drain current Id), the slope of this characteristic line is substantially constant, so that the on resistance of the switching element is constant regardless of the magnitude of the load current.
 IGBTとMOSFETのスイッチング素子の特性を比較すると、負荷電流値がI1(電圧降下量がV1)より小さい場合は、IGBTよりMOSFETの方が電圧降下量は少ない(オン抵抗は小さい)、つまりスイッチング素子で発生する損失が少ないことが分かる。 Comparing the characteristics of IGBT and MOSFET switching elements, when the load current value is smaller than I1 (the voltage drop is V1), the voltage drop is smaller in the MOSFET than in the IGBT (on resistance is smaller), that is, the switching element It can be seen that the loss caused by
 逆に、負荷電流値がI1より大きい場合は、MOSFETよりIGBTの方が電圧降下量は少ない(オン抵抗は小さい)、つまりスイッチング素子で発生する損失が少ないことが分かる。 On the contrary, when the load current value is larger than I1, it is understood that the voltage drop amount is smaller in the IGBT than in the MOSFET (the on resistance is smaller), that is, the loss generated in the switching element is smaller.
 従って、負荷電流値が電圧降下量の変化点となるI1より小さい場合には、IGBTよりもMOSFETに多くの電流を流し、逆に負荷電流値がI1より大きい場合には、MOSFETよりもIGBTに多くの電流を流した方が、1個のスイッチング素子あたりの損失は低減され、効率は高くなる傾向となる。 Therefore, when the load current value is smaller than I1 at which the voltage drop amount changes, more current flows through the MOSFET than the IGBT, and conversely, when the load current value is larger than I1, the IGBT is used more than the MOSFET. When a large amount of current flows, the loss per switching element is reduced and the efficiency tends to be high.
 図8は、従来のインバータ装置のPWM変調方式におけるスイッチングのタイミング特性を表すタイミング図である。このPWM変調方式の場合、モータ3のロータ(図示せず)の位相角度に対して、正弦波状に電圧を出力する。 FIG. 8 is a timing chart showing timing characteristics of switching in the PWM modulation method of the conventional inverter device. In the case of this PWM modulation method, a voltage is output in a sine wave with respect to the phase angle of the rotor (not shown) of the motor 3.
 U相、V相、W相の出力電圧は、それぞれ120度毎に位相差を持った正弦波電圧となっている。一方、図8に示したように、その正弦波電圧に対して所定のキャリア周波数を持った三角波で構成されるキャリア信号電圧が、正弦波電圧と比較される。比較された結果、キャリア信号電圧より出力電圧が大きい場合には、上アーム側のスイッチング素子22~24に駆動信号を出力することにより上アーム側のスイッチング素子22~24をオンし、逆に下アーム側のスイッチング素子25~27をオフする。 The U-phase, V-phase, and W-phase output voltages are sine wave voltages each having a phase difference of 120 degrees. On the other hand, as shown in FIG. 8, a carrier signal voltage composed of a triangular wave having a predetermined carrier frequency with respect to the sine wave voltage is compared with the sine wave voltage. As a result of comparison, when the output voltage is larger than the carrier signal voltage, the upper arm side switching elements 22 to 24 are turned on by outputting a drive signal to the upper arm side switching elements 22 to 24 and vice versa. The switching elements 25 to 27 on the arm side are turned off.
 一方、キャリア信号電圧より出力電圧が小さい場合には、下アーム側のスイッチング素子25~27に駆動信号を出力することにより下アーム側のスイッチング素子25~27をオンし、逆に上アーム側のスイッチング素子22~24をオフする。その結果、図8の下側に示したU相上アーム、V相上アーム、W相上アーム、U相下アーム、V相下アーム、W相下アームの各スイッチング素子22~27の駆動信号波形(U相上駆動~W相下駆動)が出力される。 On the other hand, when the output voltage is smaller than the carrier signal voltage, the lower arm side switching elements 25 to 27 are turned on by outputting a drive signal to the lower arm side switching elements 25 to 27, and conversely, the upper arm side The switching elements 22 to 24 are turned off. As a result, drive signals of switching elements 22 to 27 of U-phase upper arm, V-phase upper arm, W-phase upper arm, U-phase lower arm, V-phase lower arm, W-phase lower arm shown in the lower side of FIG. A waveform (U-phase upper drive to W-phase lower drive) is output.
 図3は、本発明の実施の形態1におけるインバータ装置のPWM変調方式のスイッチングのタイミング特性の一例を表すタイミング図である。 FIG. 3 is a timing chart showing an example of timing characteristics of switching of the PWM modulation system of the inverter device according to the first embodiment of the present invention.
 制御部21がPWM変調方式に従い、スイッチング素子22~27のスイッチングを制御しモータ3に正弦波電圧を出力する場合、モータ3の3相(U相、V相、W相)に出力する電圧の平均値である平均出力電圧は、一般的なインバータ装置では、スイッチング回路に供給される電源電圧の1/2に設定される。すなわち、インバータ装置の平均出力電圧は直流部の電圧、つまり平滑コンデンサ5の両端の電圧の半分の値Vdc/2に設定される。これにより、互いに120度位相差を有した正弦波電圧がインバータ装置からモータ3に出力される。 When the control unit 21 controls switching of the switching elements 22 to 27 and outputs a sine wave voltage to the motor 3 in accordance with the PWM modulation method, the voltage output to three phases (U phase, V phase, W phase) of the motor 3 The average output voltage which is an average value is set to 1/2 of the power supply voltage supplied to the switching circuit in a general inverter device. That is, the average output voltage of the inverter device is set to the voltage of the DC part, that is, the value Vdc / 2 which is half the voltage across the smoothing capacitor 5. Thereby, sine wave voltages having a phase difference of 120 degrees from each other are output from the inverter device to the motor 3.
 一方、本発明の実施の形態1におけるインバータ装置2の場合、モータ3に出力される出力電流値(負荷電流値)が低い場合には、図3に示すように、平均出力電圧値はVdc/2より低い値(この場合には、Vdc/8)に設定される。すなわち、制御部21は、平均出力電圧を、スイッチング回路20に供給される電源電圧の中間電圧よりも低電圧側にシフトさせる。モータ3に出力される平均出力電圧は低下するが、モータ3の3相巻線の端子間に加えられる線間電圧は、図8で示した正弦波電圧波形の場合と同じ線間電圧が加えられるため、モータ3は同様の動作を行う。モータ3への出力電流値がI1(図2)より小さい場合には、平均電圧を低減した電圧をモータ3に出力することにより、インバータ装置2の効率を向上させることが可能となる。 On the other hand, in the case of the inverter device 2 according to the first embodiment of the present invention, when the output current value (load current value) output to the motor 3 is low, the average output voltage value is Vdc /, as shown in FIG. It is set to a value lower than 2 (in this case, Vdc / 8). That is, the control unit 21 shifts the average output voltage to a lower voltage side than the intermediate voltage of the power supply voltages supplied to the switching circuit 20. Although the average output voltage output to the motor 3 decreases, the line voltage applied between the terminals of the three-phase winding of the motor 3 is the same as that in the case of the sine wave voltage waveform shown in FIG. Therefore, the motor 3 performs the same operation. When the value of the output current to the motor 3 is smaller than I1 (FIG. 2), the efficiency of the inverter device 2 can be improved by outputting a voltage having a reduced average voltage to the motor 3.
 その原理について図4を用いて説明する。図4は、本発明の実施の形態1におけるインバータ装置の上アーム側と下アーム側のスイッチング素子に流れる電流量の特性を示した特性図の一例である。ここで、スイッチング素子に流れる電流量とは、スイッチング素子に流れる電流の時間積分値である。 The principle will be described with reference to FIG. FIG. 4 is an example of a characteristic diagram showing the characteristics of the amount of current flowing in the switching elements on the upper arm side and the lower arm side of the inverter device according to the first embodiment of the present invention. Here, the amount of current flowing through the switching element is a time integral value of the current flowing through the switching element.
 図4は、図3に示すようにインバータ装置2の平均出力電圧値がVdc/2より低い値に設定された場合の、上アーム側のスイッチング素子22~24と下アーム側のスイッチング素子25~27に流れる電流量の特性を示す。 FIG. 4 shows the switching elements 22 to 24 on the upper arm side and the switching elements 25 to 25 on the lower arm side when the average output voltage value of the inverter device 2 is set to a value lower than Vdc / 2 as shown in FIG. 27 shows the characteristics of the amount of current flowing.
 インバータ装置2の平均出力電圧値がVdc/2より低い場合には、略すべての平均出力電圧の領域に対して、下アーム側のスイッチング素子25~27に流れる電流量(下アーム電流量)が、上アーム側のスイッチング素子22~24に流れる電流量(上アーム電流量)より大となることを示す。 When the average output voltage value of inverter device 2 is lower than Vdc / 2, the amount of current (the amount of lower arm current) flowing through switching elements 25 to 27 on the lower arm side is substantially equal to all average output voltage regions. And the amount of current flowing to the switching elements 22 to 24 on the upper arm side (upper arm current amount).
 インバータ装置2の平均出力電圧値がVdc/2より低い場合には、出力電圧がキャリア信号電圧よりも小さくなる時間が、出力電圧がキャリア信号電圧よりも大きくなる時間より長くなるので、スイッチング素子を駆動する駆動信号波形は図3の下側のようになる。このため、インバータ装置2のスイッチング素子を図3に示す駆動信号波形で駆動した場合、下アーム側のスイッチング素子25~27のオン時間が、上アーム側のスイッチング素子22~24のオン時間よりも長くなる。 When the average output voltage value of inverter device 2 is lower than Vdc / 2, the time when the output voltage becomes smaller than the carrier signal voltage is longer than the time when the output voltage becomes larger than the carrier signal voltage. The drive signal waveform to drive is as shown in the lower side of FIG. Therefore, when the switching element of the inverter device 2 is driven by the drive signal waveform shown in FIG. 3, the on time of the switching elements 25 to 27 on the lower arm side is longer than the on time of the switching elements 22 to 24 on the upper arm side. become longer.
 これにより、下アーム側のスイッチング素子であるMOSFETに流れる電流の積分値である電流量が、上アーム側スイッチング素子であるIGBTに流れる電流の積分値である電流量よりも大きくなる。また、この場合にはモータ3の出力電流値がI1より低い条件であるため、下アーム側のスイッチング素子であるMOSFETは上アーム側のスイッチング素子であるIGBTよりも効率が高い。すなわち、下アーム側のスイッチング素子であるMOSFETは上アーム側のスイッチング素子であるIGBTよりもオン抵抗が小さい。その結果、上アーム側及び下アーム側の各スイッチング素子の損失の総和であるインバータ装置の損失は、図8に示した平均出力電圧値がVdc/2である駆動方式よりも低減できる。 As a result, the amount of current which is the integral value of the current flowing in the MOSFET which is the switching element on the lower arm side becomes larger than the amount of current which is the integral value of the current flowing in the IGBT which is the switching element on the upper arm side. Further, in this case, since the output current value of the motor 3 is lower than I1, the efficiency of the MOSFET which is the switching element on the lower arm side is higher than that of the IGBT which is the switching element on the upper arm side. That is, the MOSFET which is the switching element on the lower arm side has a smaller on-resistance than the IGBT which is the switching element on the upper arm side. As a result, the loss of the inverter device, which is the sum of the losses of the switching elements on the upper arm side and the lower arm side, can be reduced as compared with the drive system having the average output voltage value Vdc / 2 shown in FIG.
 つまり、上アーム側のIGBTの効率をη(IGBT)、下アーム側のMOSFETの効率をη(MOSFET)、上アーム側のIGBTに流れる電流量をP(IGBT)、下アーム側のMOSFETに流れる電流量をP(MOSFET)とした時、総合損失L(TOTAL)は、以下に示す(式1)で与えられる。 That is, the efficiency of the upper arm IGBT is η (IGBT), the efficiency of the lower arm MOSFET is η (MOSFET), the amount of current flowing through the upper arm IGBT is P (IGBT), and the lower arm MOSFET is flowing When the amount of current is P (MOSFET), the total loss L (TOTAL) is given by (Expression 1) shown below.
 (式1)
L(TOTAL)∝P(IGBT)×(1-η(IGBT))+P(MOSFET)×(1-η(MOSFET))
 この場合には、η(MOSFET)はη(IGBT)より大であり、P(MOSFET)はP(IGBT)より大であるため、総合損失L(TOTAL)は、P(MOSFET)とP(IGBT)が等しい場合に比べて低減される。
(Formula 1)
L (TOTAL) ∝ P (IGBT) × (1-((IGBT)) + P (MOSFET) × (1-((MOSFET))
In this case, since η (MOSFET) is larger than η (IGBT) and P (MOSFET) is larger than P (IGBT), the total loss L (TOTAL) is P (MOSFET) and P (IGBT) Is reduced compared to the case where
 図5は、本発明の実施の形態1におけるインバータ装置のPWM変調方式のスイッチングのタイミング特性の別の一例を表すタイミング図である。 FIG. 5 is a timing chart showing another example of the timing characteristic of switching of the PWM modulation system of the inverter device in the first embodiment of the present invention.
 インバータ装置2からモータ3に出力される出力電流値が図2に示したI1より大きい場合には、図5に示すように、インバータ装置2の平均出力電圧値はVdc/2より高い値(この場合には、7×Vdc/8)に設定される。すなわち、制御部21は、平均出力電圧を、スイッチング回路20に供給される電源電圧の中間電圧よりも高電圧側にシフトさせる。モータ3に出力する平均出力電圧は増加するが、モータ3の3相巻線の端子間に加えられる線間電圧は、図8の場合と同様である。この場合には、平均電圧を増加させた電圧をモータ3に出力することにより、インバータ装置2の効率を向上させることが可能となる。 When the output current value output from inverter device 2 to motor 3 is larger than I1 shown in FIG. 2, as shown in FIG. 5, the average output voltage value of inverter device 2 is higher than Vdc / 2 (this value In this case, it is set to 7 × Vdc / 8). That is, the control unit 21 shifts the average output voltage to a higher voltage side than the intermediate voltage of the power supply voltages supplied to the switching circuit 20. Although the average output voltage output to the motor 3 increases, the line voltage applied between the terminals of the three-phase winding of the motor 3 is the same as in the case of FIG. In this case, the efficiency of the inverter device 2 can be improved by outputting to the motor 3 a voltage obtained by increasing the average voltage.
 その原理について図6を用いて説明する。図6は、本発明の実施の形態1におけるインバータ装置の上アーム側と下アーム側のスイッチング素子に流れる電流量の特性を示した特性図の別の一例である。 The principle will be described with reference to FIG. FIG. 6 is another example of the characteristic diagram showing the characteristics of the amount of current flowing in the switching elements on the upper arm side and the lower arm side of the inverter device according to the first embodiment of the present invention.
 モータ3に出力される出力電流値がI1より大きい場合には、図5に示すように、インバータ装置2の平均出力電圧値はVdc/2より高い値に設定される。そのようにインバータ装置2を動作させる場合、図5のスイッチング素子の駆動信号波形を見ても分かるように、上アーム側のスイッチング素子22~24のオン時間が、下アーム側のスイッチング素子25~27のオン時間よりも長くなる。これは、平均出力電圧が高いため、出力電圧がキャリア信号電圧よりも大きくなる時間が、出力電圧がキャリア信号電圧よりも小さくなる時間より長くなるからである。 When the output current value output to the motor 3 is larger than I1, as shown in FIG. 5, the average output voltage value of the inverter device 2 is set to a value higher than Vdc / 2. When the inverter device 2 is operated as described above, as can be seen from the drive signal waveform of the switching element in FIG. 5, the on time of the switching elements 22 to 24 on the upper arm side It will be longer than 27 on-time. This is because, since the average output voltage is high, the time when the output voltage becomes larger than the carrier signal voltage is longer than the time when the output voltage becomes smaller than the carrier signal voltage.
 これにより、上アーム側のスイッチング素子であるIGBTに流れる電流の積分値である電流量が、下アーム側のスイッチング素子であるMOSFETに流れる電流の積分値である電流量よりも大きい。また、この場合には、出力電流値がI1より大きい条件であるため、上アーム側のスイッチング素子であるIGBTは下アーム側のスイッチング素子であるMOSFETよりも効率が高い。すなわち、上アーム側のスイッチング素子であるIGBTは下アーム側のスイッチング素子であるMOSFETよりもオン抵抗が小さい。その結果、上アーム側と下アーム側の各スイッチング素子の損失の総和であるインバータ装置2の損失は、図8に示した平均出力電圧値がVdc/2である駆動方式よりも低減することができる。 As a result, the amount of current which is the integral value of the current flowing to the IGBT which is the switching element on the upper arm side is larger than the amount of current which is the integral value of the current flowing to the MOSFET which is the switching element on the lower arm side. Further, in this case, since the output current value is larger than I1, the IGBT as the switching element on the upper arm side has higher efficiency than the MOSFET as the switching element on the lower arm side. That is, the IGBT as the switching element on the upper arm side has a smaller on-resistance than the MOSFET as the switching element on the lower arm side. As a result, the loss of the inverter device 2 which is the sum of the losses of the switching elements on the upper arm side and the lower arm side can be reduced as compared with the driving method in which the average output voltage value shown in FIG. it can.
 つまり、η(IGBT)はη(MOSFET)より大であり、P(IGBT)はP(MOSFET)より大であるため、総合損失L(TOTAL)は、P(MOSFET)とP(IGBT)が等しい場合に比べて低減される。 That is, since η (IGBT) is larger than η (MOSFET) and P (IGBT) is larger than P (MOSFET), the total loss L (TOTAL) is equal to P (MOSFET) and P (IGBT) It is reduced compared to the case.
 図7は、本発明の実施の形態1におけるインバータ装置の制御部における出力電流に対する平均出力電圧の切換特性を表す特性図である。制御部21は、電流検出部28a、28bにより検出された出力電流値に基づきインバータ装置2が出力する3相の交流の平均出力電圧値を変更する。すなわち、制御部21は、電流検出部28a、28bにより検出された出力電流値と、上アーム側のスイッチング素子と下アーム側のスイッチング素子で定義される所定の電流値であるI1との大小関係を比較する比較部29を有する。制御部21は比較部29の判定結果に基づいて、上アーム側のスイッチング素子22~24のオン抵抗と下アーム側のスイッチング素25~27のオン抵抗の大小関係を判定し、この比較部29の比較結果に基づいて、平均出力電圧を設定してもよい。特に出力電流値がI1の場合、平均出力電圧値がVdc/2に設定される。 FIG. 7 is a characteristic diagram showing switching characteristics of the average output voltage with respect to the output current in the control unit of the inverter device in the first embodiment of the present invention. The control unit 21 changes the three-phase alternating current average output voltage value output by the inverter device 2 based on the output current values detected by the current detection units 28a and 28b. That is, the control unit 21 compares the magnitudes of the output current values detected by the current detection units 28a and 28b with I1, which is a predetermined current value defined by the switching element on the upper arm side and the switching element on the lower arm side. And the comparison unit 29 that compares the The control unit 21 determines the magnitude relationship between the on resistance of the switching elements 22 to 24 on the upper arm side and the on resistance of the switching elements 25 to 27 on the lower arm side based on the determination result of the comparing unit 29. The average output voltage may be set based on the comparison result of In particular, when the output current value is I1, the average output voltage value is set to Vdc / 2.
 これにより、上アーム側と下アーム側の各スイッチング素子に均等に電流が流れる。 Thereby, current flows evenly to the switching elements on the upper arm side and the lower arm side.
 さらに出力電流値がI1よりも大であれば、出力電流値に応じて平均出力電圧値をVdc/2から増加させる。これにより、上アーム側のスイッチング素子22~24に流れる電流量を下アーム側のスイッチング素子25~27に流れる電流量よりも増加させ、効率の高い上アーム側のスイッチング素子22~24の負荷を重くし、インバータ装置2(スイッチング回路20)トータルでの損失を低減させる。 Furthermore, if the output current value is larger than I1, the average output voltage value is increased from Vdc / 2 according to the output current value. As a result, the amount of current flowing to the switching elements 22 to 24 on the upper arm side is made larger than the amount of current flowing to the switching elements 25 to 27 on the lower arm side, and the load of the switching elements 22 to 24 on the upper arm side is high. It makes it heavy and reduces the loss in the inverter apparatus 2 (switching circuit 20) total.
 逆に、出力電流値がI1よりも小であれば、出力電流値に応じて平均出力電圧値をVdc/2から減少させる。これにより、下アーム側のスイッチング素子25~27に流れる電流量を上アーム側のスイッチング素子22~24に流れる電流量よりも増加させ、効率の高い下アーム側のスイッチング素子の負荷を重くし、インバータ装置2(スイッチング回路20)トータルでの損失を低減させる。 Conversely, if the output current value is smaller than I1, the average output voltage value is decreased from Vdc / 2 according to the output current value. As a result, the amount of current flowing through the switching elements 25 to 27 on the lower arm side is increased more than the amount of current flowing to the switching elements 22 to 24 on the upper arm side, and the load on the switching elements on the lower arm side with high efficiency is increased. The total loss of the inverter device 2 (switching circuit 20) is reduced.
 さらに、この場合、上アーム側のスイッチング素子であるIGBTで発生する損失であるP(IGBT)×(1-η(IGBT))と、下アーム側のスイッチング素子であるMOSFETで発生する損失であるP(MOSFET)×(1-η(MOSFET))は、ほぼ均等な値となる。このため、上アーム側と下アーム側の各スイッチング素子の損失バランスが保たれることにより、スイッチング素子の発熱バランスが保たれ、信頼性の高いインバータ装置が実現される。 Furthermore, in this case, P (IGBT) × (1-η (IGBT)), which is a loss generated in the IGBT as the switching element on the upper arm side, and a loss generated in the MOSFET as the switching element on the lower arm side P (MOSFET) × (1−η (MOSFET)) has almost equal values. Therefore, the loss balance of the switching elements on the upper arm side and the lower arm side is maintained, whereby the heat generation balance of the switching elements is maintained, and an inverter device with high reliability is realized.
 上記実施の形態1においては、低負荷時に高効率なスイッチング素子としてMOSFETを下アーム側のスイッチング素子25~27として使用し、高負荷時に高効率なスイッチング素子としてIGBTを上アーム側のスイッチング素子22~24として使用した。しかし、低負荷時に高効率なスイッチング素子としてMOSFETを上アーム側のスイッチング素子22~24として使用し、高負荷時に高効率なスイッチング素子としてIGBTを下アーム側のスイッチング素子25~27として使用した場合にも、同様の効果がある。 In the first embodiment, the MOSFET is used as the lower arm side switching elements 25 to 27 as a high efficiency switching element at low load, and the IGBT is an upper arm side switching element 22 as a high efficiency switching element at high load. Used as ~ 24. However, when the MOSFET is used as the switching element 22 to 24 on the upper arm side as a high efficiency switching element at low load, and the IGBT is used as the switching element 25 to 27 on the lower arm side as a high efficiency switching element at high load Have the same effect.
 その場合には、出力電流値がI1よりも大であれば、出力電流値に応じて平均出力電圧値を減少させる。これにより、下アーム側のスイッチング素子25~27に流れる電流量を増加させ、効率の高い下アーム側のスイッチング素子25~27の負荷を重くし、インバータ装置2(スイッチング回路20)トータルでの損失を低減させる。 In that case, if the output current value is larger than I1, the average output voltage value is decreased according to the output current value. As a result, the amount of current flowing to the lower arm side switching elements 25 to 27 is increased, the load on the lower arm side switching elements 25 to 27 with high efficiency is increased, and the total loss of the inverter device 2 (switching circuit 20) Reduce
 逆に、出力電流値がI1よりも小であれば、出力電流値に応じて平均出力電圧値を増加させる。これにより、上アーム側のスイッチング素子22~24に流れる電流量を増加させ、効率の高い上アーム側のスイッチング素子22~24の負荷を重くし、インバータ装置2(スイッチング回路20)トータルでの損失を低減させる。 Conversely, if the output current value is smaller than I1, the average output voltage value is increased according to the output current value. As a result, the amount of current flowing to the switching elements 22 to 24 on the upper arm side is increased, the load on the switching elements 22 to 24 on the upper arm side with high efficiency is increased, and the total loss of the inverter device 2 (switching circuit 20) Reduce
 尚、上記実施の形態1においては、低負荷時に高効率のスイッチング素子としてMOSFETを用い、高負荷時に高効率のスイッチング素子としてIGBTを使用したが、同様の特性を持つものであれば、その他の素子を使用してもよい。例えば、MOSFETの代りに窒化ガリウム(GaN)トランジスタ、IGBTの代りにバイポーラトランジスタなどの半導体素子を用いてもよい。 In the first embodiment, a MOSFET is used as a high efficiency switching element at low load, and an IGBT is used as a high efficiency switching element at high load, but other elements having similar characteristics may be used. Elements may be used. For example, semiconductor elements such as gallium nitride (GaN) transistors may be used instead of MOSFETs, and bipolar transistors may be used instead of IGBTs.
 以上説明したように、本発明のインバータ装置は、複数の上下アームから構成されるスイッチング回路と、スイッチング回路をPWM変調方式で駆動する制御部とを備える。上アーム側スイッチング回路を構成するスイッチング素子と、下アーム側スイッチング回路を構成するスイッチング素子は異なる種類のスイッチング素子で構成される。制御部は、下アーム側スイッチング回路を構成するスイッチング素子のオン抵抗と、上アーム側スイッチング回路を構成するスイッチング素子のオン抵抗との大小関係を決定する条件に基づいて、平均出力電圧をスイッチング回路に供給される電源電圧の中間電圧より低電圧側または高電圧側にシフトさせる。 As described above, the inverter device of the present invention includes the switching circuit configured of the plurality of upper and lower arms, and the control unit that drives the switching circuit by the PWM modulation method. The switching element forming the upper arm side switching circuit and the switching element forming the lower arm side switching circuit are formed by different types of switching elements. The control unit switches the average output voltage based on a condition that determines the magnitude relationship between the on resistance of the switching element that configures the lower arm side switching circuit and the on resistance of the switching element that configures the upper arm side switching circuit. Shift to the lower voltage side or higher voltage side than the intermediate voltage of the power supply voltage supplied to the
 このような構成により、低損失、高速のスイッチング素子を備え、下アーム側のスイッチング素子が高効率となる負荷条件においても、上アーム側のスイッチング素子が高効率となる負荷条件においても、常に高効率なインバータ装置が実現される。 With such a configuration, low-loss, high-speed switching elements are provided, and even under load conditions in which the lower arm switching elements have high efficiency, and even under load conditions in which the upper arm switching elements have high efficiency, An efficient inverter device is realized.
 また本発明のインバータ装置では、制御部は、下アーム側スイッチング回路を構成するスイッチング素子のオン抵抗が、上アーム側スイッチング回路を構成するスイッチング素子のオン抵抗より小となる条件においては、平均出力電圧を電源電圧の中間電圧より低電圧側にシフトさせる。また、制御部は、上アーム側スイッチング回路を構成するスイッチング素子のオン抵抗が、下アーム側スイッチング回路を構成するスイッチング素子のオン抵抗より小となる条件においては、平均出力電圧を電源電圧の中間電圧より高電圧側にシフトさせる。 Further, in the inverter device according to the present invention, the controller outputs an average output under the condition that the on resistance of the switching element constituting the lower arm side switching circuit is smaller than the on resistance of the switching element constituting the upper arm side switching circuit. The voltage is shifted to a lower voltage side than the intermediate voltage of the power supply voltage. Further, under the condition that the ON resistance of the switching element constituting the upper arm side switching circuit is smaller than the ON resistance of the switching element constituting the lower arm side switching circuit, the control unit sets the average output voltage to the middle of the power supply voltage. Shift to a higher voltage than the voltage.
 このような構成により、低損失、高速のスイッチング素子を備え、下アーム側のスイッチング素子が高効率となる負荷条件においても、上アーム側のスイッチング素子が高効率となる負荷条件においても、常に高効率なインバータ装置が実現される。 With such a configuration, low-loss, high-speed switching elements are provided, and even under load conditions in which the lower arm switching elements have high efficiency, and even under load conditions in which the upper arm switching elements have high efficiency, An efficient inverter device is realized.
 また本発明のインバータ装置では、出力電流値を検出する電流検出部をさらに備える。制御部は、電流検出部により検出された出力電流値と、上アーム側スイッチング回路および下アーム側スイッチング回路を構成するスイッチング素子で定義される所定の電流値との大小関係を判定する比較部を有する。制御部は、比較部の判定結果に基づいて上アーム側スイッチング回路を構成するスイッチング素子のオン抵抗と、下アーム側スイッチング回路を構成するスイッチング素子のオン抵抗の大小関係を判定する。 The inverter device according to the present invention further includes a current detection unit that detects an output current value. The control unit determines a comparison unit that determines the magnitude relationship between the output current value detected by the current detection unit and the predetermined current value defined by the switching elements that constitute the upper arm switching circuit and the lower arm switching circuit. Have. The control unit determines, based on the determination result of the comparison unit, the magnitude relationship between the on resistance of the switching element forming the upper arm side switching circuit and the on resistance of the switching element forming the lower arm side switching circuit.
 このような構成により、上アーム側のスイッチング素子が高効率となる負荷条件と、下アーム側のスイッチング素子が高効率となる負荷条件を容易に判定できる。 With such a configuration, it is possible to easily determine the load condition in which the upper arm switching element has high efficiency and the load condition in which the lower arm switching element has high efficiency.
 また本発明のインバータ装置では、制御部は、電流検出部により検出された出力電流値の大きさに応じて平均出力電圧値をシフトする。 Further, in the inverter device according to the present invention, the control unit shifts the average output voltage value in accordance with the magnitude of the output current value detected by the current detection unit.
 このような構成により、上アーム側のスイッチング素子と、下アーム側のスイッチング素子で発生する損失が、ほぼ均等な値となる。このため、上アーム側と下アーム側の各スイッチング素子の損失バランスが保たれることにより、スイッチング素子の発熱バランスが保たれ、信頼性の高いインバータ装置が実現される。 With such a configuration, losses generated in the switching element on the upper arm side and the switching element on the lower arm side become substantially equal values. Therefore, the loss balance of the switching elements on the upper arm side and the lower arm side is maintained, whereby the heat generation balance of the switching elements is maintained, and an inverter device with high reliability is realized.
 また本発明のインバータ装置では、上アーム側スイッチング回路および下アーム側スイッチング回路を構成する異なる種類のスイッチング素子が、MOSFETおよびIGBTである。 Further, in the inverter device of the present invention, different types of switching elements constituting the upper arm side switching circuit and the lower arm side switching circuit are a MOSFET and an IGBT.
 このような構成により、負荷条件によらず変換効率の高いインバータ装置が実現される。 With such a configuration, an inverter device with high conversion efficiency is realized regardless of load conditions.
 また本発明のインバータ装置では、上アーム側スイッチング回路および下アーム側スイッチング回路を構成する異なる種類のスイッチング素子が、GaNトランジスタおよびIGBTである。 Further, in the inverter device of the present invention, different types of switching elements constituting the upper arm side switching circuit and the lower arm side switching circuit are a GaN transistor and an IGBT.
 このような構成により、負荷条件によらず変換効率の高いインバータ装置が実現される。 With such a configuration, an inverter device with high conversion efficiency is realized regardless of load conditions.
 以上説明したように本発明のインバータ装置は、スイッチング素子の駆動制御を最適に行うことにより、インバータ回路損失を低減させるインバータ装置に用いられ、高効率、信頼性の高いインバータ装置に関して有用である。 As described above, the inverter device according to the present invention is used for an inverter device that reduces inverter circuit loss by optimally performing drive control of switching elements, and is useful for an inverter device with high efficiency and high reliability.
 1  交流電源
 2  インバータ装置
 3  モータ
 4  整流回路
 5  平滑コンデンサ
 20  スイッチング回路
 20u  上アーム側スイッチング回路
 20d  下アーム側スイッチング回路
 21  制御部
 22~24  上アーム側のスイッチング素子
 25~27  下アーム側のスイッチング素子
 28a,28b  電流検出部
 29  比較部
DESCRIPTION OF SYMBOLS 1 AC power supply 2 inverter apparatus 3 motor 4 rectifier circuit 5 smoothing capacitor 20 switching circuit 20 u upper arm side switching circuit 20 d lower arm side switching circuit 21 control part 22 to 24 upper arm side switching element 25 to 27 lower arm side switching element 28a, 28b current detection unit 29 comparison unit

Claims (6)

  1. 複数の上下アームから構成されるスイッチング回路と、
    前記スイッチング回路をPWM変調方式で駆動する制御部とを備えるインバータ装置において、
    上アーム側スイッチング回路を構成するスイッチング素子と、下アーム側スイッチング回路を構成するスイッチング素子は異なる種類のスイッチング素子で構成され、
    前記制御部は、前記下アーム側スイッチング回路を構成するスイッチング素子のオン抵抗と、前記上アーム側スイッチング回路を構成するスイッチング素子のオン抵抗との大小関係を決定する条件に基づいて、平均出力電圧を前記スイッチング回路に供給される電源電圧の中間電圧より低電圧側または高電圧側にシフトさせることを特徴とするインバータ装置。
    A switching circuit comprising a plurality of upper and lower arms,
    An inverter device including a control unit that drives the switching circuit by a PWM modulation method;
    The switching element constituting the upper arm side switching circuit and the switching element constituting the lower arm side switching circuit are constituted by different types of switching elements,
    The control unit is an average output voltage based on a condition that determines the magnitude relationship between the on resistance of the switching element that configures the lower arm side switching circuit and the on resistance of the switching element that configures the upper arm side switching circuit. The inverter device is shifted to a lower voltage side or a higher voltage side than an intermediate voltage of the power supply voltage supplied to the switching circuit.
  2. 前記制御部は、前記下アーム側スイッチング回路を構成するスイッチング素子のオン抵抗が、前記上アーム側スイッチング回路を構成するスイッチング素子のオン抵抗より小となる条件においては、前記平均出力電圧を前記電源電圧の中間電圧より低電圧側にシフトさせ、前記上アーム側スイッチング回路を構成するスイッチング素子のオン抵抗が、前記下アーム側スイッチング回路を構成するスイッチング素子のオン抵抗より小となる条件においては、前記平均出力電圧を前記電源電圧の中間電圧より高電圧側にシフトさせることを特徴とする請求項1に記載のインバータ装置。 The control unit is configured to set the average output voltage to the power supply under the condition that the on resistance of the switching element forming the lower arm side switching circuit is smaller than the on resistance of the switching element forming the upper arm side switching circuit. Under the condition that the on-resistance of the switching element forming the upper arm side switching circuit is smaller than the on resistance of the switching element forming the lower arm side switching circuit by shifting the voltage to a lower voltage side than the intermediate voltage of the voltage. The inverter device according to claim 1, wherein the average output voltage is shifted to a higher voltage side than an intermediate voltage of the power supply voltage.
  3. 出力電流値を検出する電流検出部をさらに備え、
    前記制御部は、前記電流検出部により検出された前記出力電流値と、前記上アーム側スイッチング回路および前記下アーム側スイッチング回路を構成するスイッチング素子で定義される所定の電流値との大小関係を判定する比較部を有し、
    前記制御部は、前記比較部の判定結果に基づいて前記上アーム側スイッチング回路を構成するスイッチング素子のオン抵抗と、前記下アーム側スイッチング回路を構成するスイッチング素子のオン抵抗の大小関係を判定することを特徴とする請求項2に記載のインバータ装置。
    It further comprises a current detection unit that detects the output current value,
    The control unit sets the magnitude relationship between the output current value detected by the current detection unit and a predetermined current value defined by switching elements constituting the upper arm side switching circuit and the lower arm side switching circuit. Have a comparator to determine
    The control unit determines, based on the determination result of the comparison unit, the magnitude relationship between the on resistance of the switching element constituting the upper arm side switching circuit and the on resistance of the switching element constituting the lower arm side switching circuit. The inverter device according to claim 2, characterized in that:
  4. 前記制御部は、前記電流検出部により検出された前記出力電流値の大きさに応じて前記平均出力電圧値をシフトする請求項3に記載のインバータ装置。 The inverter device according to claim 3, wherein the control unit shifts the average output voltage value in accordance with the magnitude of the output current value detected by the current detection unit.
  5. 前記上アーム側スイッチング回路および前記下アーム側スイッチング回路を構成する異なる種類のスイッチング素子が、MOSFETおよびIGBTであることを特徴とする請求項1に記載のインバータ装置。 The inverter device according to claim 1, wherein the different types of switching elements constituting the upper arm side switching circuit and the lower arm side switching circuit are a MOSFET and an IGBT.
  6. 前記上アーム側スイッチング回路および前記下アーム側スイッチング回路を構成する異なる種類のスイッチング素子が、GaNトランジスタおよびIGBTであることを特徴とする請求項1に記載のインバータ装置。 The inverter device according to claim 1, wherein the different types of switching elements constituting the upper arm side switching circuit and the lower arm side switching circuit are a GaN transistor and an IGBT.
PCT/JP2012/005825 2011-12-27 2012-09-13 Inverter device WO2013099060A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280065079.5A CN104040866B (en) 2011-12-27 2012-09-13 DC-to-AC converter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011285001A JP5857189B2 (en) 2011-12-27 2011-12-27 Inverter device
JP2011-285001 2011-12-27

Publications (1)

Publication Number Publication Date
WO2013099060A1 true WO2013099060A1 (en) 2013-07-04

Family

ID=48696616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005825 WO2013099060A1 (en) 2011-12-27 2012-09-13 Inverter device

Country Status (3)

Country Link
JP (1) JP5857189B2 (en)
CN (1) CN104040866B (en)
WO (1) WO2013099060A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6394288B2 (en) * 2014-11-04 2018-09-26 株式会社デンソー Power converter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008104282A (en) * 2006-10-18 2008-05-01 Toshiba Kyaria Kk Inverter device
WO2011117932A1 (en) * 2010-03-25 2011-09-29 パナソニック株式会社 Inverter device and electric device using same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4942967B2 (en) * 2005-09-08 2012-05-30 東芝キヤリア株式会社 Inverter device and refrigeration cycle device
US9391544B2 (en) * 2008-11-18 2016-07-12 Stmicroelectronics, Inc. Asymmetrical driver

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008104282A (en) * 2006-10-18 2008-05-01 Toshiba Kyaria Kk Inverter device
WO2011117932A1 (en) * 2010-03-25 2011-09-29 パナソニック株式会社 Inverter device and electric device using same

Also Published As

Publication number Publication date
JP2013135553A (en) 2013-07-08
JP5857189B2 (en) 2016-02-10
CN104040866B (en) 2016-11-23
CN104040866A (en) 2014-09-10

Similar Documents

Publication Publication Date Title
US9564822B2 (en) DC power supply device and power conversion method for converting an AC power supply into a DC power supply
JP5822773B2 (en) Power converter
CN108432119B (en) Power conversion device
JP5494095B2 (en) Inverter device and vacuum cleaner using the same as a fan motor drive device
JP4818489B1 (en) Power converter
US20160211767A1 (en) Inverter controller and control method of inverter device
US8159851B2 (en) Matrix converter
US8283880B2 (en) Motor drive device with function of switching to power regenerative operation mode
CN103312186A (en) Switching-element drive circuit
JP6457800B2 (en) Power conversion device and railway vehicle equipped with the same
WO2017086201A1 (en) Electric power conversion device
JPWO2008149523A1 (en) Power converter
US20090309523A1 (en) Motor driving device, and control method of motor driving device
US10090778B2 (en) Multi-phase power device with two-phase modulation scheme
Lee et al. GaN-based single phase brushless DC motor drive for high-speed applications
WO2013099060A1 (en) Inverter device
Kudoh et al. Single to two-phase matrix converter using GaN-based monolithic bidirectional switch for driving symmetrical two-phase motor
JP4764986B2 (en) Motor drive device for three-phase variable speed motor drive
KR101946369B1 (en) Power transforming apparatus and air conditioner including the same
JP2008099508A (en) Power converter and air conditioner using the same
JP2014212588A (en) Power supply device and electric and electronic equipment coming with the same
JP2011200013A (en) Power converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12862696

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12862696

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 12862696

Country of ref document: EP

Kind code of ref document: A1