WO2013098950A1 - Ammonia absorption type cooling device utilizing solar energy or surplus energy - Google Patents

Ammonia absorption type cooling device utilizing solar energy or surplus energy Download PDF

Info

Publication number
WO2013098950A1
WO2013098950A1 PCT/JP2011/080248 JP2011080248W WO2013098950A1 WO 2013098950 A1 WO2013098950 A1 WO 2013098950A1 JP 2011080248 W JP2011080248 W JP 2011080248W WO 2013098950 A1 WO2013098950 A1 WO 2013098950A1
Authority
WO
WIPO (PCT)
Prior art keywords
ammonia
heating
water
heat
ammonia gas
Prior art date
Application number
PCT/JP2011/080248
Other languages
French (fr)
Japanese (ja)
Inventor
博 冨安
藤本 喜久
Original Assignee
Tomiyasu Hiroshi
Fujimoto Yoshihisa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomiyasu Hiroshi, Fujimoto Yoshihisa filed Critical Tomiyasu Hiroshi
Priority to PCT/JP2011/080248 priority Critical patent/WO2013098950A1/en
Publication of WO2013098950A1 publication Critical patent/WO2013098950A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • F25B15/04Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas the refrigerant being ammonia evaporated from aqueous solution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/002Machines, plants or systems, using particular sources of energy using solar energy
    • F25B27/007Machines, plants or systems, using particular sources of energy using solar energy in sorption type systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Definitions

  • the present invention relates to an ammonia absorption type cooling device, and relates to a device that performs air conditioning (cooling) using surplus energy such as solar energy or nighttime power.
  • the present invention relates to a cooling device that uses solar energy or surplus power as a heating source of a heat medium used for heating ammonia water in order to efficiently produce liquid ammonia used as a refrigerant at low cost.
  • Patent Document 1 touches the structure of a cooler in an absorption refrigeration (ammonia absorption cooling) cycle on the second page of the specification, left column, lines 6 to 31; and ammonia absorption refrigeration.
  • the device (cooling) itself is a well-known method as shown in Non-Patent Document 1.
  • the ammonia absorption type cooling device is a system that performs cooling by heat of evaporation when ammonia liquefied by pressurization is vaporized in principle.
  • the vaporized ammonia is absorbed by water and becomes ammonia water.
  • ammonia water is heated, ammonia evaporates, but in a closed system, when the pressure in the system reaches equilibrium with the vapor pressure of liquid ammonia at that temperature due to the vapor pressure of ammonia, the ammonia liquefies.
  • ammonia gas liquefies when the vapor pressure reaches about 1.0 MPa at a temperature of about 30 ° C.
  • the liquefied ammonia is vaporized and the cooling operation is repeated.
  • ammonia gas In the case of a conventional cooler using ammonia as a refrigerant, ammonia gas is compressed and liquefied and vaporized and cooled with heat of vaporization. However, when vaporized, ammonia expands and its volume increases. Therefore, in order to repeat the cycle of liquefaction ⁇ vaporization, there was a problem that ammonia gas had to be constantly pressurized with a compressor.
  • the present inventors have solved the above problems and studied a method of repeating liquefaction ⁇ vaporization of ammonia without using a compressor.
  • liquid ammonia was made using solar heat or electric power, and this liquid ammonia was vaporized.
  • the present invention has been completed by finding that it is not necessary to use a compressor for compressing the gas by dissolving the ammonia gas discharged from the heat exchange device in water by using it as a refrigerant for the heat exchange device.
  • the gist of the present invention is that (Claim 1) A conversion device that converts solar energy in which a heating tube is stored into heat energy, a heating vessel containing ammonia water, a heating device for heating ammonia water in the heating vessel, the heating tube, and the heating A closed heat medium circulation system composed of a heat medium circulation pipe connecting the heating device in the container, an evaporation tower for passing ammonia gas heated and evaporated by the heated heat medium, and a liquid ammonia storage tank for the ammonia gas An ammonia gas passage pipe, a storage tank for liquid ammonia, a heat exchange device for vaporizing the liquid ammonia to be used as a refrigerant, and a sealed ammonia gas circulation comprising a pipe connecting the container and each device An ammonia absorption cooling device comprising a system.
  • a sealed ammonia gas circulation system composed of an exchange device, a mixer that absorbs ammonia gas used in the heat exchange device and recovers the ammonia gas, and a pipe connecting the container and each device
  • An ammonia absorption cooling device characterized by comprising:
  • the invention described in claim 1 is composed of a hermetically sealed heating heat medium circulation system group and an ammonia gas circulation system group, and the heating medium circulation system group is a heating medium.
  • a device group for evaporating ammonia water by a converter which converts solar energy in which a heating tube is accommodated into heat energy, a heating medium containing ammonia water as a heating medium heated by the converter device It consists of a circulation pipe that leads to a heating device for heating the ammonia water inside, and a circulation pipe that returns the heating medium to the solar energy conversion device after the ammonia water in the heating vessel is evaporated.
  • the ammonia circulation system group consists of a heating vessel, an evaporation tower, a liquid ammonium storage tank, and a heat exchange device. That is, the heated and evaporated ammonia gas enters the evaporation tower, the ammonia gas is liquefied by the vapor pressure of the ammonia itself, stored in a liquid ammonia storage tank, vaporized and used as a refrigerant for the heat exchange device, and then recovered ammonia gas It is an ammonia absorption cooling device using liquid ammonia, characterized in that water is absorbed in water.
  • the invention described in claim 2 is different from the invention of claim 1 in the heating device for heating ammonia water, and does not use solar energy and mainly uses an electric heater or an IH heater using electric power as a heat source.
  • This is an invention relating to an ammonia absorption cooling device.
  • the invention is almost the same as the invention of claim 1 except that a separator for separating a mixed gas of heated and evaporated water vapor and ammonia gas is provided.
  • liquid ammonia can be produced at low cost.
  • the obtained liquid ammonia can be used as a refrigerant for the heat exchange device.
  • consumption and storage of storing liquid ammonia can be performed simultaneously while cooling using stored liquid ammonia, a cooling operation can be performed as needed.
  • FIG. 1 is a diagram showing an outline of an ammonia absorption cooling device using solar energy.
  • 1 is a solar energy conversion device that absorbs solar heat into a heat medium, and consists of a heating tube filled with a heat medium to be heated and a box for storing them or a plate-like object on which they are placed.
  • the solar energy conversion device is a device that converts solar energy into thermal energy.
  • the storage box or the plate to be placed is preferably inclined so as to be easily exposed to sunlight.
  • the heating tube is supplied with a heating medium from one end, and the heated heating medium is led from the other end through the circulation pipe 2 to the heating vessel 6 containing ammonia water.
  • Each heating tube is a unit, and is connected to a supply tube for supplying the heat medium returned from the heating container.
  • the other end is connected to an outflow pipe through which the heat medium is sent, and this is connected to the circulation pipe 2.
  • a method of heating a plurality of heating tubes in a line is preferable.
  • One end of each heating pipe is connected to one outflow pipe of the heat medium, and both ends of the outflow pipe are closed, and the heat pipe heated around the intermediate portion is connected to the circulation pipe 2 that sends out the heating medium to the heating container 6. It is connected.
  • the other end of each heating pipe is also connected to one heating medium supply pipe, and both ends of this supply pipe are closed, and a circulation pipe through which the heating medium returned from the heating container 6 flows in the middle part. 3 is connected. That is, both ends of the heating tube are an inlet side and an outlet side of the heating medium.
  • the method of putting a heat medium in a storage box without using a heating tube, heating with a solar heat, and circulating the heated heat medium with a pump is also employable.
  • the heating tube has a heat resistance of about 300 ° C., but a glass tube is preferably used.
  • the heating tube is preferably transparent on the surface through which light passes and black on the other surface so that it can easily absorb solar heat. It is preferable to place a reflector on the back of the heating tube so as not to miss light outside the heating tube (between the tubes).
  • a high boiling point solvent is used as a heating medium for transporting heat.
  • Any solvent having a boiling point of 150 ° C. or higher can be used, but silicon oil, ethylene glycol and the like can be preferably used.
  • the solvent is colorless and transparent, carbon or the like can be dispersed in the solvent, and light can be directly absorbed by the solvent.
  • the number of heating tubes to be used may be determined by the amount of heat necessary for the evaporation of ammonia water in the heating vessel.
  • the heated heat medium flows through the circulation pipe, enters the heating container, evaporates the ammonia water, and returns to the solar energy conversion device 1.
  • the system through which the heat medium flows is preferably sealed.
  • the heat medium is supplied by suctioning the inside of the system such as the heating pipe, the outflow pipe, the circulation pipe, and the supply pipe with a vacuum pump (not shown) to evacuate the oil as the heat medium from the heat medium inlet 5.
  • a vacuum pump not shown
  • the amount of oil is preferably 80 to 90% of the volume in the system.
  • Oil that has been heated in the heating pipe and whose temperature has risen causes natural convection to flow from the outflow pipe to the circulation pipe, but it is preferable to install a pump somewhere in the circulation pipe path to actively circulate the oil. .
  • the installation place of the pump (indicated by P in FIG. 1) is preferably installed somewhere in the circulation pipe 3 for returning the heat medium where the temperature of the heat medium is lowered. Further, if the gas reservoir 4 is provided at the corner of the circulation pipe 2 passage on the heat medium outlet side, the flow of the heat medium can be performed smoothly.
  • the heating vessel 6 contains ammonia water 7, which is heated by the heat medium sent through the circulation pipe 2 to evaporate the ammonia water.
  • Ammonia water having a concentration of 20% or more, preferably 20 to 30% is used.
  • An ammonia water concentration of 20% or less is not preferable because the amount of ammonia that evaporates is small.
  • concentration of commercially available ammonia water is about 30%, it is preferable to use ammonia water having a concentration of about 30%.
  • the concentration of ammonia water is not limited to 30% or less.
  • the material of the circulating pipe through which the heat medium flows is heat resistant and is preferably not easily damaged.
  • a stainless steel pipe is preferable.
  • a circulation pipe for heating the ammonia water is installed in the heating container.
  • the ammonia water in the heating container is heated by the heat medium and evaporates.
  • the heating container needs to have a pressure resistance and be made of a material that is not corroded by ammonia.
  • stainless steel is preferable.
  • ammonia water is supplied from the ammonia water inlet 8 to the heating container.
  • the supply amount is preferably about 1/2 to 2/3 of the capacity of the heating container. If the amount of ammonia water is small, the amount of ammonia that evaporates decreases, which is not preferable. If too much ammonia water is added, the ammonia water may be pushed up to the evaporation tower 9 due to the pressure applied in the container.
  • the diameter of the pipe 10, which is a passage leading from the evaporation tower 9 to the liquid ammonia storage tanks 11, 11 ', is smaller than the diameter of the evaporation tower.
  • the ammonia gas is further pressurized while flowing through the pipe 10, and the ammonia gas is liquefied due to self-pressure and stored in the storage tanks 11, 11 '.
  • the refrigerant flows out to the pipe 12 which is a passage to the heat exchange apparatus, and is guided to the pipe 13 in the heat exchange apparatus.
  • the diameter of the pipe 12 is smaller than the diameter of the pipe at the outlet of the liquid ammonia storage tank, and is set smaller than the diameter of the pipe 13 in the heat exchange device.
  • the liquid ammonia is vaporized in the piping in the heat exchange device, and heat is exchanged with the outside air due to the removal of the heat of vaporization, thereby producing a cooling action.
  • the ammonia gas used for cooling in the heat exchange device is guided to the mixer 15 containing water 16 and dissolved in the water in the mixer.
  • the pressure in the mixer is lowered, the ammonia gas is sucked, and smoothly flows through the pipe of the heat exchange device without applying pressure, and the cooling action is continued.
  • the ammonia water 16 in the mixer in which the ammonia gas is dissolved is returned to the heating container 6 and used as an ammonia supply source. Moreover, without putting water into the mixer, the ammonia gas returned from the heat exchange device can be led to the heating vessel as it is, and the ammonia water in the heating vessel can be absorbed by the ammonia water. In this case, the ammonia evaporates and the concentration of the ammonia water that has fallen is increased, so that it is used as an ammonia supply source.
  • the apparatus for carrying out the present invention is composed of a system in which all of the heat medium circulation system and the ammonia gas circulation system are sealed and evacuated.
  • ⁇ A temperature sensor was installed at the top of the liquid ammonia storage tank. The temperature of the sensor became almost constant at 21-22 ° C. As the temperature of the heating medium increased, the pressure in the heating vessel increased as shown above. Since the vapor pressure of liquid ammonia is 0.78 MPa at 17 ° C., it can be rationally explained that the pressure in the heating vessel is almost in equilibrium with the liquefaction pressure of ammonia.
  • the heating container When the heating container was heated for a long time (about 10 hours), ammonia in the ammonia water evaporated in the heating container, the concentration decreased, and the pressure decreased. That is, initially, the pressure in the heating container was 0.72 MPa at 135 ° C. (sensor temperature 16 ° C.), but after several hours it was 0.73 MPa at 140 ° C. (sensor temperature 16 ° C.). Further, with the passage of time, the pressure in the heating container is 0.68 MPa at a heating medium temperature of 145 ° C. (sensor temperature 16 ° C.), and the pressure in the heating container is 0 at a heating medium temperature of 150 ° C. (sensor temperature 16 ° C.). .70 MPa. That is, it was found that the temperature of the heating container must be increased from 135 ° C. to 150 ° C. in order to maintain the pressure in the heating container at 0.68 to 0.73 MPa.
  • the difference between the invention described in claim 2 and the invention described in claim 1 is that the method of heating ammonia water is different.
  • the invention described in claim 1 uses a heat medium heated by solar energy as a heat source, whereas the invention described in claim 2 uses electric power.
  • the steps of evaporation of ammonia ⁇ storage of liquid ammonia ⁇ liquid ammonia vaporization ⁇ heat exchange device ⁇ recovery of ammonia gas and the like are almost the same as the invention of claim 1 except that a separator is provided in the middle. Only the differences will be described here.
  • a sheathed heater can be put into ammonia water and heated.
  • One of the most efficient ways to convert power into heat is an IH heater.
  • the advantage of the IH heater is that temperature control is easy, so that the heating temperature can be kept below the set temperature even in the home IH heater.
  • power as an energy source it is possible to use inexpensive nighttime surplus power.
  • the concentration of the ammonia water to be used is preferably 20 to 30%, and the amount of the ammonia water to be added is preferably about 1/2 to 2/3 of the capacity of the heating vessel.
  • the entire heating container is made of SUS430.
  • SUS430 is preferable because it is heated by an IH heater.
  • a temperature sensor is attached to the heating container to control the temperature of the IH heater.
  • the length of the evaporation tower 9 is slightly shorter than that of the apparatus according to the first aspect of the present invention. This is because the heating temperature is set higher than that of the invention described in claim 1 and the vapor to be evaporated contains ammonia and a small amount of water vapor. This is because there is no problem even if water vapor is contained in the coming steam.
  • the mixed vapor guided to the separator 18 is separated into ammonia gas and water vapor at the upper part, and the ammonia gas is liquefied while passing through the ammonia gas passage pipe 10 and stored in the liquid ammonia storage tank.
  • the water vapor is condensed and stored in the water collection tank 19.
  • the water stored in the collection tank is sent to the mixer 15 and used to absorb the ammonia gas returned from the heat exchange device. Subsequent steps are the same as those of the first aspect of the present invention.
  • the entire heating container for IH heater was made of SUS430.
  • a temperature sensor is attached to the heating container.
  • the capacity of the heating container was 10 L, and 150 g of 30% ammonia water was placed in the heating container.
  • Table 2 shows the relationship between the sensor temperature and the pressure in the heating container.
  • Example 1 An apparatus as shown in FIG. 1 was used. A glass tube having an inner diameter of about 10 cm and a length of about 2 m was used as one unit. In this example, one glass tube was used. About 8 L of ethylene glycol having a boiling point of 197.3 ° C. was used as a heating medium. The total capacity of the heat medium circulation pipe and the glass tube was about 9L. After the air in the heat medium circulation path was removed with a vacuum pump, ethylene glycol was introduced into the system from the heat medium inlet. The glass tube containing ethylene glycol was exposed to direct sunlight in mid-February, but it was about 13 ° C at first, but rose to about 160 ° C after 8 hours.
  • the capacity of the stainless steel heating container was 4L.
  • the circulation pipe of the heat medium is installed toward the bottom of the heating container and is completely immersed in the ammonia water.
  • the aqueous ammonia was heated by ethylene glycol heated to about 150 ° C., and the ammonia evaporated.
  • the evaporation tower used was a stainless steel pipe having a length of 120 cm and an inner diameter of 20 mm.
  • the vapor pressure of the gas in the evaporation tower was 1.5 MPa. Since the vapor pressure of water at this temperature was approximately 0.5 MPa, it was considered that the vaporized vapor contained no water vapor but only ammonia gas.
  • Ammonia gas that passed through the piping in the heat exchanger was guided to a mixer containing water and absorbed in water.
  • the ammonia water that absorbed the ammonia gas in the mixer was returned to the heating vessel and reused as ammonia water. Since ammonia gas is absorbed by water, the pressure in the mixer decreases. For this reason, the gas in the heat exchanger piping continuously flows, so that the cooler could be operated continuously.
  • Example 2 The apparatus shown in FIG. 2 was used. In the same manner as in Example 1, the inside of the system was evacuated by a vacuum pump, and then 3.0 kg of ammonia water having a concentration of about 30% was supplied to a 10 L heating vessel. The entire heating container was made of SUS430 and a temperature sensor was attached. As the IH heater, MR-20DE made by Toshiba was used. The IH heater was installed on the lower surface of the heating container, and the heating temperature was set to high to medium.
  • the length of the evaporation tower was 60 cm and the inner diameter was 20 mm.
  • the evaporated steam contained water vapor in addition to ammonia gas. This mixed vapor was led to a separator and separated into ammonia gas and water. The water condensed at the bottom was stored in a water collection tank. The accumulated water was sent to the mixer. The separated ammonia gas was sent from the top of the separator to a liquid ammonia storage tank. Thereafter, when the same operation as in Example 1 was performed, the cooler could be continuously operated.
  • liquid ammonia can be used at low cost. Can be manufactured and stored. The resulting liquid ammonia becomes stored energy that can be used for cooling.
  • liquid ammonia since liquid ammonia is stored while being cooled using the stored liquid ammonia, it can be consumed and stored at the same time, so that the cooling operation can be carried out at any time, which has a great effect on energy saving. There is.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

Provided is a device for producing liquid ammonia, which is storable as energy for cooling, using inexpensive energy and for enabling a cooler to be operated anytime. Either a heat carrier heated by solar energy as a heat source or an electrothermal or induction heater operated with electric power is used as a heating source to heat ammonia water and vaporize the ammonia, which is converted to liquid ammonia and then stored. When at least two liquid-ammonia tanks are installed, a concurrent operation is possible in which the liquid ammonia in one tank is used as a refrigerant for a heat exchanger and, simultaneously therewith, liquid ammonia is produced and stored in another tank. The ammonia gas having been used for cooling is absorbed into water to obtain ammonia water, which is reused as a supply material.

Description

太陽エネルギーもしくは余剰エネルギーを利用したアンモニア吸収式冷却装置Ammonia absorption cooling system using solar energy or surplus energy
 本発明は、アンモニア吸収式冷却装置に関するもので、太陽エネルギーもしくは夜間電力などの余剰エネルギーを利用して空調(冷却)を行う装置に関する。具体的には冷媒として使用する液体アンモニアを安価に効率良く製造するために、アンモニア水の加熱に使用する熱媒の加熱源として太陽エネルギーもしくは余剰電力を使う冷却装置に関する。 The present invention relates to an ammonia absorption type cooling device, and relates to a device that performs air conditioning (cooling) using surplus energy such as solar energy or nighttime power. Specifically, the present invention relates to a cooling device that uses solar energy or surplus power as a heating source of a heat medium used for heating ammonia water in order to efficiently produce liquid ammonia used as a refrigerant at low cost.
 従来からアンモニアを冷媒として使用するアンモニア吸収式冷却(冷凍)法は広く実施されていたが、蒸気圧縮冷凍法の発達とともに顧みられなくなっていた。しかし1990年代よりフロン類の使用規制への対応や排熱利用による省エネルギーのために再び注目されてきた。特許文献1には吸収式冷凍(アンモニア吸収式冷却)サイクルにおける冷却器の構造が、明細書第2頁、左欄第6行目から第31行目に触れられているし、アンモニア吸収式冷凍装置(冷却)自体は、非特許文献1に示すように従来より周知の方式である。 Conventionally, the ammonia absorption cooling (refrigeration) method using ammonia as a refrigerant has been widely practiced, but has been neglected with the development of the vapor compression refrigeration method. However, since the 1990s, it has been attracting attention again in order to comply with regulations on the use of chlorofluorocarbons and to save energy by using waste heat. Patent Document 1 touches the structure of a cooler in an absorption refrigeration (ammonia absorption cooling) cycle on the second page of the specification, left column, lines 6 to 31; and ammonia absorption refrigeration. The device (cooling) itself is a well-known method as shown in Non-Patent Document 1.
実用新案登録第2548789号公報Utility Model Registration No. 2548789
 アンモニア吸収式冷却装置とは、原理的には加圧により液化したアンモニアが気化する際の蒸発熱により冷却を行う方式である。気化したアンモニアは水に吸収されてアンモニア水となる。このアンモニア水を加熱するとアンモニアが蒸発するが、閉じられた系ではアンモニアの蒸気圧により系内の圧力がその温度における液体アンモニアの蒸気圧と平衡に達したとき、アンモニアは液化する。例えば、アンモニアガスは30℃程度の温度で蒸気圧が1.0MPa程度になると液化を起こす。液化したアンモニアを気化させ冷却操作を繰り返す。 The ammonia absorption type cooling device is a system that performs cooling by heat of evaporation when ammonia liquefied by pressurization is vaporized in principle. The vaporized ammonia is absorbed by water and becomes ammonia water. When this ammonia water is heated, ammonia evaporates, but in a closed system, when the pressure in the system reaches equilibrium with the vapor pressure of liquid ammonia at that temperature due to the vapor pressure of ammonia, the ammonia liquefies. For example, ammonia gas liquefies when the vapor pressure reaches about 1.0 MPa at a temperature of about 30 ° C. The liquefied ammonia is vaporized and the cooling operation is repeated.
 蒸気圧縮型では冷媒を圧縮、液化して貯蔵することは可能であるが、大量の液体を閉じられた系内で気化させるには限度がある。これは吸収型冷却の特徴であり、他のエネルギー貯蔵、例えば蓄電と比較しても際だっている。冷却という一つのエネルギー利用に限定されるが、夏季における空調の消費電力は膨大であり、空調用のエネルギーを貯蔵するということは、潜在的な消費電力の節約につながる。 In the vapor compression type, it is possible to store a refrigerant compressed and liquefied, but there is a limit to vaporizing a large amount of liquid in a closed system. This is a feature of absorption cooling, and is also striking compared to other energy stores, such as electricity storage. Although it is limited to one energy use of cooling, the power consumption of air conditioning in summer is enormous, and storing energy for air conditioning leads to potential power consumption savings.
 従来のようにアンモニアを冷媒として使用する冷却機の場合はアンモニアガスを圧縮して液化し、それを気化させて気化熱で冷却するのであるが、気化した際アンモニアが膨張し体積が大きくなる。それで液化→気化のサイクルを繰り返すためにはアンモニアガスをコンプレッサーで常に圧を加えなければならないという難点があった。 In the case of a conventional cooler using ammonia as a refrigerant, ammonia gas is compressed and liquefied and vaporized and cooled with heat of vaporization. However, when vaporized, ammonia expands and its volume increases. Therefore, in order to repeat the cycle of liquefaction → vaporization, there was a problem that ammonia gas had to be constantly pressurized with a compressor.
 そこで本発明者らは、上記の問題点を解決し、コンプレッサーを使うことなく、アンモニアの液化→気化を繰り返す方式について研究した結果、太陽熱もしくは電力を使って液体アンモニアを作り、この液体アンモニアを気化させて熱交換装置の冷媒として用い、熱交換装置を出たアンモニアガスを水に溶解させることでガスを圧縮するためのコンプレッサーを使う必要もないことを見出し本発明を完成させた。 Therefore, the present inventors have solved the above problems and studied a method of repeating liquefaction → vaporization of ammonia without using a compressor. As a result, liquid ammonia was made using solar heat or electric power, and this liquid ammonia was vaporized. Thus, the present invention has been completed by finding that it is not necessary to use a compressor for compressing the gas by dissolving the ammonia gas discharged from the heat exchange device in water by using it as a refrigerant for the heat exchange device.
 すなわち、本発明の要旨とするところは、
(請求項1)
 加熱管が収納されている太陽エネルギーを熱エネルギーに変換する変換装置と、アンモニア水を入れた加熱容器と、該加熱容器内のアンモニア水を加熱するための加熱装置と、前記加熱管と前記加熱容器内の加熱装置を繋ぐ熱媒循環パイプとで構成された密閉された熱媒循環系と、加熱された熱媒により加熱され蒸発したアンモニアガスを通す蒸発塔と、アンモニアガスを液体アンモニア貯蔵タンクに導くアンモニアガス通路パイプと、液体アンモニアの貯蔵タンクと、前記液体アンモニアを気化して冷媒とする熱交換装置と、前記容器および各装置を結ぶパイプとで構成されている密閉されたアンモニアガス循環系とからなることを特徴とするアンモニア吸収式冷却装置。
(請求項2)
 アンモニア水を入れた加熱容器と、該加熱容器内のアンモニア水を加熱するための加熱装置と、加熱され蒸発したアンモニアガスと水蒸気を通す蒸発塔と、前記水蒸気と前記アンモニアガスを分離する分離器と、該分離器で分離された水を貯える水タンクと、前記アンモニアガスを液体アンモニア貯蔵タンクに導くアンモニアガス通路パイプと、液体アンモニアの貯蔵タンクと、前記液体アンモニアを気化して冷媒とする熱交換装置と、前記熱交換装置で用いられたアンモニアガスを水に吸収させてアンモニアガスを回収する混合器と、前記容器および各装置を結ぶパイプとから構成されている密閉されたアンモニアガス循環系とからなることを特徴とするアンモニア吸収式冷却装置。
That is, the gist of the present invention is that
(Claim 1)
A conversion device that converts solar energy in which a heating tube is stored into heat energy, a heating vessel containing ammonia water, a heating device for heating ammonia water in the heating vessel, the heating tube, and the heating A closed heat medium circulation system composed of a heat medium circulation pipe connecting the heating device in the container, an evaporation tower for passing ammonia gas heated and evaporated by the heated heat medium, and a liquid ammonia storage tank for the ammonia gas An ammonia gas passage pipe, a storage tank for liquid ammonia, a heat exchange device for vaporizing the liquid ammonia to be used as a refrigerant, and a sealed ammonia gas circulation comprising a pipe connecting the container and each device An ammonia absorption cooling device comprising a system.
(Claim 2)
A heating vessel containing ammonia water, a heating device for heating the ammonia water in the heating vessel, an evaporation tower for passing heated and evaporated ammonia gas and water vapor, and a separator for separating the water vapor and the ammonia gas A water tank for storing the water separated by the separator, an ammonia gas passage pipe for guiding the ammonia gas to the liquid ammonia storage tank, a storage tank for liquid ammonia, and heat for vaporizing the liquid ammonia to be used as a refrigerant A sealed ammonia gas circulation system composed of an exchange device, a mixer that absorbs ammonia gas used in the heat exchange device and recovers the ammonia gas, and a pipe connecting the container and each device An ammonia absorption cooling device characterized by comprising:
 上記発明を説明すると、請求項1に記載されている発明は、密閉された加熱熱媒の循環系の装置群とアンモニアガス循環系の装置群からなり、熱媒循環系の装置群は熱媒によりアンモニア水を蒸発させるための装置群であって、加熱管が収納されている太陽エネルギーを熱エネルギーに変換する変換装置、該変換装置で加熱された熱媒を、アンモニア水を入れた加熱容器内のアンモニア水を加熱するための加熱装置に導く循環パイプ、加熱容器内のアンモニア水を蒸発させた後、熱媒を太陽エネルギー変換装置に戻す循環パイプから構成されている。 Describing the above invention, the invention described in claim 1 is composed of a hermetically sealed heating heat medium circulation system group and an ammonia gas circulation system group, and the heating medium circulation system group is a heating medium. A device group for evaporating ammonia water by a converter, which converts solar energy in which a heating tube is accommodated into heat energy, a heating medium containing ammonia water as a heating medium heated by the converter device It consists of a circulation pipe that leads to a heating device for heating the ammonia water inside, and a circulation pipe that returns the heating medium to the solar energy conversion device after the ammonia water in the heating vessel is evaporated.
 アンモニア循環系の装置群は加熱容器、蒸発塔、液体アンモニウム貯蔵タンク、熱交換装置から構成されている。すなわち、加熱され蒸発したアンモニアガスは蒸発塔に入り、アンモニアガスをアンモニア自体の蒸気圧により液化させて液体アンモニア貯蔵タンクに貯蔵し、気化させ熱交換装置の冷媒として使用した後、回収したアンモニアガスを水に吸収させることを特徴とする液体アンモニアを使用するアンモニア吸収式冷却装置である。 The ammonia circulation system group consists of a heating vessel, an evaporation tower, a liquid ammonium storage tank, and a heat exchange device. That is, the heated and evaporated ammonia gas enters the evaporation tower, the ammonia gas is liquefied by the vapor pressure of the ammonia itself, stored in a liquid ammonia storage tank, vaporized and used as a refrigerant for the heat exchange device, and then recovered ammonia gas It is an ammonia absorption cooling device using liquid ammonia, characterized in that water is absorbed in water.
 また、請求項2に記載されている発明は、請求項1の発明とアンモニア水を加熱するための加熱装置が異なり、太陽エネルギーを使用せず、主として電力を利用した電熱ヒーターまたはIHヒーターを熱源としたアンモニア吸収式冷却装置に関する発明である。また、加熱され、蒸発した水蒸気とアンモニアガスの混合ガスを分離する分離器を備えた他は請求項1の発明とほとんど同じ発明である。 Further, the invention described in claim 2 is different from the invention of claim 1 in the heating device for heating ammonia water, and does not use solar energy and mainly uses an electric heater or an IH heater using electric power as a heat source. This is an invention relating to an ammonia absorption cooling device. Further, the invention is almost the same as the invention of claim 1 except that a separator for separating a mixed gas of heated and evaporated water vapor and ammonia gas is provided.
 本発明によれば、熱源として太陽エネルギーを利用するので、熱エネルギーは無料であり、また電力を利用する場合も夜間の余剰電力を利用するすることができるので安価に液体アンモニアを製造することができ、得られた液体アンモニアを熱交換装置用の冷媒として利用できる。また、貯蔵した液体アンモニアを使って冷却しながら、液体アンモニアを貯蔵するという、消費と貯蔵を同時に行うことができるので、随時冷却運転を実施することができる。 According to the present invention, since solar energy is used as a heat source, thermal energy is free, and even when using electric power, it is possible to use surplus electric power at night so that liquid ammonia can be produced at low cost. The obtained liquid ammonia can be used as a refrigerant for the heat exchange device. Moreover, since consumption and storage of storing liquid ammonia can be performed simultaneously while cooling using stored liquid ammonia, a cooling operation can be performed as needed.
本発明の太陽エネルギーを使うアンモニア吸収式冷却装置を示す概略図。Schematic which shows the ammonia absorption type cooling device using the solar energy of this invention. 本発明のIHヒーターを使うアンモニア吸収式冷却装置を示す概略図。Schematic which shows the ammonia absorption cooling device using the IH heater of this invention.
 以下に本発明を図面を交えながら説明する。図1は太陽エネルギーを使うアンモニア吸収式冷却装置の概略を示す図である。1は太陽エネルギー変換装置で熱媒に太陽熱を吸収させる装置で、加熱されるべき熱媒が満たされた加熱管とそれらを収納する箱もしくはそれらを載置しておく板状物からなっている。つまり、太陽エネルギー変換装置は太陽エネルギーを熱エネルギーに変換する装置のことである。収納箱もしくは載置しておく板は太陽光を受け易いように斜めにしておくのが好ましい。 Hereinafter, the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing an outline of an ammonia absorption cooling device using solar energy. 1 is a solar energy conversion device that absorbs solar heat into a heat medium, and consists of a heating tube filled with a heat medium to be heated and a box for storing them or a plate-like object on which they are placed. . In other words, the solar energy conversion device is a device that converts solar energy into thermal energy. The storage box or the plate to be placed is preferably inclined so as to be easily exposed to sunlight.
 加熱管は一方の端から熱媒が供給されるようになっており、加熱された熱媒は他端から循環パイプ2を通してアンモニア水の入った加熱容器6に導かれる。加熱管は一本一本が一つのユニットになっており、加熱容器から戻ってきた熱媒を供給するための供給管に繋がっている。他端は熱媒が送り出される流出管と接続し、これが循環パイプ2に繋がっている。 The heating tube is supplied with a heating medium from one end, and the heated heating medium is led from the other end through the circulation pipe 2 to the heating vessel 6 containing ammonia water. Each heating tube is a unit, and is connected to a supply tube for supplying the heat medium returned from the heating container. The other end is connected to an outflow pipe through which the heat medium is sent, and this is connected to the circulation pipe 2.
 加熱管は複数本並べて加熱する方法が好ましい。各加熱管の一端は一本の熱媒の流出管に接続されており、該流出管の両端は閉じられており、中間部あたりに加熱された熱媒を加熱容器6に送り出す循環パイプ2に繋げてある。各加熱管の他端も一本の熱媒の供給管に接続されており、この供給管の両端は閉じられており、その中間部あたりに加熱容器6から戻ってきた熱媒が流れる循環パイプ3に繋げてある。つまり、加熱管の両端は熱媒の入側と出側となっている。また、加熱管を使わずに熱媒を収納箱に入れ、太陽熱で加熱し、加熱された熱媒をポンプで循環させる方法も採用できる。 A method of heating a plurality of heating tubes in a line is preferable. One end of each heating pipe is connected to one outflow pipe of the heat medium, and both ends of the outflow pipe are closed, and the heat pipe heated around the intermediate portion is connected to the circulation pipe 2 that sends out the heating medium to the heating container 6. It is connected. The other end of each heating pipe is also connected to one heating medium supply pipe, and both ends of this supply pipe are closed, and a circulation pipe through which the heating medium returned from the heating container 6 flows in the middle part. 3 is connected. That is, both ends of the heating tube are an inlet side and an outlet side of the heating medium. Moreover, the method of putting a heat medium in a storage box without using a heating tube, heating with a solar heat, and circulating the heated heat medium with a pump is also employable.
 太陽エネルギーを高効率に熱媒に熱伝達するために、太陽光の全ての波長領域を吸収させることができるのが好ましい。加熱管の材質は300℃程度の耐熱性が有るものなら何でも使用できるが、ガラス製の管が好ましく用いられる。加熱管は太陽熱を吸収し易いよう、光が透過する面を透明に、他面を黒色にするのが好ましい。加熱管の外側(管と管の間)の光を逃さないよう加熱管の裏に反射板を置くのが好ましい。 It is preferable that all wavelength regions of sunlight can be absorbed in order to transfer solar energy to the heat medium with high efficiency. Any material can be used as long as the heating tube has a heat resistance of about 300 ° C., but a glass tube is preferably used. The heating tube is preferably transparent on the surface through which light passes and black on the other surface so that it can easily absorb solar heat. It is preferable to place a reflector on the back of the heating tube so as not to miss light outside the heating tube (between the tubes).
 本発明のアンモニア吸収式冷却装置では、150℃前後の熱源が必要であるため、熱を輸送するための熱媒としては高沸点の溶媒が用いられる。150℃以上の沸点を有する溶媒なら何でも用いることができるが、シリコンオイル、エチレングリコールなどが好ましく用いることができる。溶媒は無色透明であるが、溶媒にカーボン等を分散させ、光を直接溶媒に吸収させることもできる。 Since the ammonia absorption cooling device of the present invention requires a heat source of around 150 ° C., a high boiling point solvent is used as a heating medium for transporting heat. Any solvent having a boiling point of 150 ° C. or higher can be used, but silicon oil, ethylene glycol and the like can be preferably used. Although the solvent is colorless and transparent, carbon or the like can be dispersed in the solvent, and light can be directly absorbed by the solvent.
 使用される加熱管の本数は加熱容器内のアンモニア水の蒸発に必要な熱量により決めれば良い。加熱された熱媒は循環パイプを中を流れ、加熱容器に入り、アンモニア水を蒸発させた後、太陽エネルギー変換装置1に戻る。熱媒の劣化を防ぐため、熱媒の流れる系は密閉されていることが好ましい。 The number of heating tubes to be used may be determined by the amount of heat necessary for the evaporation of ammonia water in the heating vessel. The heated heat medium flows through the circulation pipe, enters the heating container, evaporates the ammonia water, and returns to the solar energy conversion device 1. In order to prevent deterioration of the heat medium, the system through which the heat medium flows is preferably sealed.
 熱媒を供給するのは加熱管、流出管、循環パイプ、供給管などの系内を真空ポンプ(図示していない)で吸引して真空にし、熱媒吸入口5から熱媒となるオイルを系内に取り込む。加熱によるオイルの熱膨張を考慮して、オイルの量は系内の容積の80~90%にするのが好ましい。加熱管内で加熱され、温度が上昇したオイルは自然対流を起こして流出管から循環パイプに流れるのであるが、積極的にオイルを循環させるのに循環パイプ経路のどこかにポンプを設けるのが好ましい。ポンプ(図1中、Pで示している)の設置場所は熱媒の温度が下がっている熱媒戻りの循環パイプ3のどこかに設置するのが好ましい。また、熱媒出側の循環パイプ2通路の曲がり角にガス溜まり4を設けると熱媒の流れがスムースに行える。 The heat medium is supplied by suctioning the inside of the system such as the heating pipe, the outflow pipe, the circulation pipe, and the supply pipe with a vacuum pump (not shown) to evacuate the oil as the heat medium from the heat medium inlet 5. Import into the system. Considering the thermal expansion of oil due to heating, the amount of oil is preferably 80 to 90% of the volume in the system. Oil that has been heated in the heating pipe and whose temperature has risen causes natural convection to flow from the outflow pipe to the circulation pipe, but it is preferable to install a pump somewhere in the circulation pipe path to actively circulate the oil. . The installation place of the pump (indicated by P in FIG. 1) is preferably installed somewhere in the circulation pipe 3 for returning the heat medium where the temperature of the heat medium is lowered. Further, if the gas reservoir 4 is provided at the corner of the circulation pipe 2 passage on the heat medium outlet side, the flow of the heat medium can be performed smoothly.
 加熱容器6にはアンモニア水7が入っており、循環パイプ2を通して送られてきた熱媒により加熱されてアンモニア水が蒸発する。アンモニア水は20%以上、好ましくは20~30%の濃度のものが用いられる。アンモニア水の濃度が20%以下では蒸発するアンモニアの量が少なくて好ましくない。通常、市販されているアンモニア水の濃度は約30%であるので、30%程度の濃度のアンモニア水を使用するのが好ましい。しかし、30%を越える濃度の高いアンモニア水の場合は、蒸発するアンモニアの量が増えて好ましいので、アンモニア水の濃度は30%以下に限定されることはない。 The heating vessel 6 contains ammonia water 7, which is heated by the heat medium sent through the circulation pipe 2 to evaporate the ammonia water. Ammonia water having a concentration of 20% or more, preferably 20 to 30% is used. An ammonia water concentration of 20% or less is not preferable because the amount of ammonia that evaporates is small. Usually, since the concentration of commercially available ammonia water is about 30%, it is preferable to use ammonia water having a concentration of about 30%. However, in the case of ammonia water having a high concentration exceeding 30%, the amount of ammonia to be evaporated increases, which is preferable. Therefore, the concentration of ammonia water is not limited to 30% or less.
 熱媒の流れる循環パイプの材質は耐熱性があり、簡単に破損しないものが好ましく、例としてはステンレス製のパイプが好ましい。アンモニア水を加熱する循環パイプは加熱容器内に設置する。加熱容器内のアンモニア水は熱媒により加熱され蒸発する。この際、かなり高い蒸気圧が発生するため、耐圧性の容器にする必要がある。従って、加熱容器は耐圧性を有し、アンモニアで腐蝕されない材質のものが必要である。例えば、ステンレス製のものが好ましい。 The material of the circulating pipe through which the heat medium flows is heat resistant and is preferably not easily damaged. For example, a stainless steel pipe is preferable. A circulation pipe for heating the ammonia water is installed in the heating container. The ammonia water in the heating container is heated by the heat medium and evaporates. At this time, since a considerably high vapor pressure is generated, it is necessary to use a pressure-resistant container. Therefore, the heating container needs to have a pressure resistance and be made of a material that is not corroded by ammonia. For example, stainless steel is preferable.
 加熱容器内を真空ポンプ(図示していない)で吸引して真空にした後、アンモニア水吸入口8から加熱容器にアンモニア水を供給する。供給量は加熱容器の容量の1/2~2/3程度にするのが好ましい。アンモニア水の量が少ないと蒸発するアンモニアの量が少なくなり好ましくなく、あまりに多くアンモニア水を入れると、容器内に掛かる圧力のためアンモニア水が蒸発塔9の方まで押し上げられることもあり好ましくない。 After the inside of the heating container is evacuated by a vacuum pump (not shown), ammonia water is supplied from the ammonia water inlet 8 to the heating container. The supply amount is preferably about 1/2 to 2/3 of the capacity of the heating container. If the amount of ammonia water is small, the amount of ammonia that evaporates decreases, which is not preferable. If too much ammonia water is added, the ammonia water may be pushed up to the evaporation tower 9 due to the pressure applied in the container.
 蒸発塔9には蒸発したアンモニアと水蒸気が入ることになるが、実際はアンモニアガスのみになると考えられる。これは、150℃程度の温度に加熱され、蒸発したアンモニアガスの蒸気圧は1.5MPa(約15気圧)になり、この温度での水の蒸気圧は0.5MPaであるので水の蒸発がほとんど起こらないと考えられるからである。 Evaporated ammonia and water vapor enter the evaporating tower 9, but it is considered that only ammonia gas is actually used. This is heated to a temperature of about 150 ° C., and the vapor pressure of the evaporated ammonia gas is 1.5 MPa (about 15 atmospheres). This is because it is thought that it hardly occurs.
 蒸発塔9から液体アンモニア貯蔵タンク11、11’へ導かれる通路であるパイプ10の径は蒸発塔の径より小さくしてある。それでパイプ10を流れる間にアンモニアガスはさらに圧力が掛かり、自己圧のためアンモニアガスは液化して、貯蔵タンク11、11’に貯められる。貯蔵タンク11は少なくとも2基設けるのが好ましい。1基が満杯になればバルブを切り替え、他のタンクに貯蔵することができる。液体アンモニア貯蔵タンクを2基にすることにより、満杯になったタンクの液体アンモニアを気化させて熱交換装置の冷媒として使用しながら、もう一つのタンクに液体アンモニアを貯蔵することができる。 The diameter of the pipe 10, which is a passage leading from the evaporation tower 9 to the liquid ammonia storage tanks 11, 11 ', is smaller than the diameter of the evaporation tower. Thus, the ammonia gas is further pressurized while flowing through the pipe 10, and the ammonia gas is liquefied due to self-pressure and stored in the storage tanks 11, 11 '. It is preferable to provide at least two storage tanks 11. When one is full, the valve can be switched and stored in another tank. By using two liquid ammonia storage tanks, liquid ammonia can be stored in another tank while the liquid ammonia in the full tank is vaporized and used as a refrigerant for the heat exchange device.
 このように液体アンモニアを貯蔵タンクに貯め、随時冷媒として使用できるということは冷却するためのエネルギーを貯蔵できるということであり、アンモニア水の蒸発の熱源に安価な太陽エネルギーを使用したり、余剰電力を使用したりすることと並んで本発明の最大の特徴として挙げることができる。 In this way, storing liquid ammonia in a storage tank and using it as a refrigerant at any time means that energy for cooling can be stored, and cheap solar energy can be used as a heat source for evaporation of ammonia water, or surplus power Can be cited as the greatest feature of the present invention.
 液体アンモニア貯蔵タンク11(または11’)の下側のバルブを開けると冷媒が熱交換装置への通路である配管12に流れ出し、熱交換装置内の配管13に導かれる。配管12の径は液体アンモニア貯蔵タンクの出口のパイプの径より小さくなっており、また熱交換装置内の配管13の径より小さく設定してある。これにより液体アンモニアは熱交換装置内の配管内で気化し、気化熱が奪われることで外気との間で熱交換が起こって冷却作用が発現する。配管13の通路の途中もしくは出口付近に冷却補助タンク14を設けるのが好ましい。冷却補助タンクで冷却ガスを少しの時間滞留させることにより、冷却効果を高めることができる。 When the lower valve of the liquid ammonia storage tank 11 (or 11 ') is opened, the refrigerant flows out to the pipe 12 which is a passage to the heat exchange apparatus, and is guided to the pipe 13 in the heat exchange apparatus. The diameter of the pipe 12 is smaller than the diameter of the pipe at the outlet of the liquid ammonia storage tank, and is set smaller than the diameter of the pipe 13 in the heat exchange device. As a result, the liquid ammonia is vaporized in the piping in the heat exchange device, and heat is exchanged with the outside air due to the removal of the heat of vaporization, thereby producing a cooling action. It is preferable to provide a cooling auxiliary tank 14 in the middle of the passage of the pipe 13 or in the vicinity of the outlet. The cooling effect can be enhanced by retaining the cooling gas for a short time in the cooling auxiliary tank.
 熱交換装置で冷却に使われたアンモニアガスは水16入った混合器15に導かれ、混合器内の水に溶解する。アンモニアガスが水に溶解することにより、混合器内の圧力が下がり、アンモニアガスは吸引されることになり、圧力をかけることなく熱交換装置の配管内をスムースに流れ、冷却作用は持続する。 The ammonia gas used for cooling in the heat exchange device is guided to the mixer 15 containing water 16 and dissolved in the water in the mixer. When the ammonia gas is dissolved in water, the pressure in the mixer is lowered, the ammonia gas is sucked, and smoothly flows through the pipe of the heat exchange device without applying pressure, and the cooling action is continued.
 アンモニアガスが溶解した混合器内のアンモニア水16を加熱容器6に戻し、アンモニア供給源として使用する。また、混合器内に水を入れず、熱交換装置から戻ってきたアンモニアガスをそのまま加熱容器に導き、加熱容器内のアンモニア水にアンモニアガスを吸収させることができる。この場合は、アンモニアが蒸発し、アンモニア濃度の下がったアンモニア水の濃度が上がるので、アンモニアの供給源として使用するになる。 The ammonia water 16 in the mixer in which the ammonia gas is dissolved is returned to the heating container 6 and used as an ammonia supply source. Moreover, without putting water into the mixer, the ammonia gas returned from the heat exchange device can be led to the heating vessel as it is, and the ammonia water in the heating vessel can be absorbed by the ammonia water. In this case, the ammonia evaporates and the concentration of the ammonia water that has fallen is increased, so that it is used as an ammonia supply source.
 このように、本発明を実施するための装置は熱媒の循環系、アンモニアガスの循環系の全てが密閉かつ真空にされた系で構成されている。 Thus, the apparatus for carrying out the present invention is composed of a system in which all of the heat medium circulation system and the ammonia gas circulation system are sealed and evacuated.
 ここで太陽エネルギーで加熱した熱媒を使って加熱容器内のアンモニア水を蒸発させた場合、熱媒の温度と加熱容器内の圧力の関係を調べるために実験した。室温16~17℃、加熱容器の容量は4L、そこに約30%のアンモニア水2.5kgを入れ、熱媒の温度を125℃にして加熱した。その結果を表1に示した。 Here, when ammonia water in the heating vessel was evaporated using a heating medium heated by solar energy, an experiment was conducted to investigate the relationship between the temperature of the heating medium and the pressure in the heating vessel. The room temperature was 16 to 17 ° C., the capacity of the heating vessel was 4 L, and 2.5 kg of about 30% ammonia water was added thereto, and the heating medium was heated to 125 ° C. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 温度センサーを液体アンモニア貯蔵タンクの上部に設置した。センサーの温度は21~22℃でほぼ一定になった。熱媒の温度を上げていくと、上に示すように加熱容器内の圧力は上昇した。液体アンモニアの蒸気圧は17℃で0.78MPaであるから、加熱容器内の圧力はアンモニアの液化圧力とほぼ平衡になっていると合理的に説明できる。 ¡A temperature sensor was installed at the top of the liquid ammonia storage tank. The temperature of the sensor became almost constant at 21-22 ° C. As the temperature of the heating medium increased, the pressure in the heating vessel increased as shown above. Since the vapor pressure of liquid ammonia is 0.78 MPa at 17 ° C., it can be rationally explained that the pressure in the heating vessel is almost in equilibrium with the liquefaction pressure of ammonia.
 液体アンモニア貯蔵タンク上部をファンにより冷却し、センサー温度を20℃にすると、130℃における加熱容器内の圧力はわずかに低下し、0.75MPaになった。さらにセンサー温度を16℃にすると、130℃における加熱容器内の圧力は0.71MPaになった。以上の結果から、液体アンモニア貯蔵タンクの上部を冷やすと、アンモニアの凝縮温度が下がり、それと平衡にある加熱容器内の圧力も低下することが分かった。 When the upper part of the liquid ammonia storage tank was cooled by a fan and the sensor temperature was set to 20 ° C., the pressure in the heating container at 130 ° C. slightly decreased to 0.75 MPa. Further, when the sensor temperature was 16 ° C., the pressure in the heating container at 130 ° C. was 0.71 MPa. From the above results, it was found that when the upper part of the liquid ammonia storage tank was cooled, the ammonia condensation temperature was lowered and the pressure in the heating vessel in equilibrium with it was also lowered.
 加熱容器を長時間(約10時間)加熱すると、加熱容器内においてアンモニア水中のアンモニアが蒸発して濃度が減少し、圧力は低下した。すなわち、最初、135℃(センサー温度16℃)において加熱容器内の圧力は0.72MPaであったが、数時間後140℃(センサー温度16℃)では0.73MPaであった。また、時間経過に伴って、熱媒温度145℃(センサー温度16℃)において加熱容器内の圧力は0.68MPa、さらに熱媒温度150℃(センサー温度16℃)において加熱容器内の圧力は0.70MPaであった。つまり、加熱容器内の圧力を0.68~0.73MPaに維持するには、加熱容器の温度を135℃から150℃に上げなければならないことが分かった。 When the heating container was heated for a long time (about 10 hours), ammonia in the ammonia water evaporated in the heating container, the concentration decreased, and the pressure decreased. That is, initially, the pressure in the heating container was 0.72 MPa at 135 ° C. (sensor temperature 16 ° C.), but after several hours it was 0.73 MPa at 140 ° C. (sensor temperature 16 ° C.). Further, with the passage of time, the pressure in the heating container is 0.68 MPa at a heating medium temperature of 145 ° C. (sensor temperature 16 ° C.), and the pressure in the heating container is 0 at a heating medium temperature of 150 ° C. (sensor temperature 16 ° C.). .70 MPa. That is, it was found that the temperature of the heating container must be increased from 135 ° C. to 150 ° C. in order to maintain the pressure in the heating container at 0.68 to 0.73 MPa.
 以上のことから、本発明を実施するためには、熱媒温度は150℃程度の温度で運転することが好ましいことが分かった。 From the above, it was found that it is preferable to operate the heating medium at a temperature of about 150 ° C. in order to carry out the present invention.
 次に請求項2記載の発明について図2により説明する。請求項2記載の発明と請求項1記載の発明との相異点はアンモニア水の加熱方法が異なることである。請求項1記載の発明は熱源として太陽エネルギーにより加熱した熱媒を使っているのに対し、請求項2記載の発明では電力を使うことにある。また、アンモニアの蒸発→液体アンモニアの貯蔵→液体アンモニア気化→熱交換装置→アンモニアガスの回収などの工程は途中に分離器を設けている以外は請求項1記載の発明とほとんど同じであるので、ここでは相違点だけを説明する。 Next, the invention described in claim 2 will be described with reference to FIG. The difference between the invention described in claim 2 and the invention described in claim 1 is that the method of heating ammonia water is different. The invention described in claim 1 uses a heat medium heated by solar energy as a heat source, whereas the invention described in claim 2 uses electric power. Further, the steps of evaporation of ammonia → storage of liquid ammonia → liquid ammonia vaporization → heat exchange device → recovery of ammonia gas and the like are almost the same as the invention of claim 1 except that a separator is provided in the middle. Only the differences will be described here.
 電力をエネルギー源として加熱容器6内のアンモニア水7を加熱するのにニクロム線を使った電熱器具、例えば、シーズヒーターをアンモニア水中に入れ、加熱することもできるが、IHヒーター17を使用する方法を好ましく用いることができる。電力を熱に変換する最も効率の高い方法の一つはIHヒーターである。またIHヒーターの利点は温度制御が容易なことで、家庭用IHヒーターでも加熱温度を設定温度以下に保持することができる。エネルギー源としての電力は、安価な夜間の余剰電力を利用することができる。請求項1記載の発明と同様、使用するアンモニア水の濃度は20~30%であることが好ましく、入れるアンモニア水の量も加熱容器の容量の1/2~2/3程度が好ましい。 A method of using an IH heater 17 although an electric heating apparatus using a nichrome wire for heating the ammonia water 7 in the heating container 6 using electric power as an energy source, for example, a sheathed heater can be put into ammonia water and heated. Can be preferably used. One of the most efficient ways to convert power into heat is an IH heater. Further, the advantage of the IH heater is that temperature control is easy, so that the heating temperature can be kept below the set temperature even in the home IH heater. As power as an energy source, it is possible to use inexpensive nighttime surplus power. Similar to the first aspect of the invention, the concentration of the ammonia water to be used is preferably 20 to 30%, and the amount of the ammonia water to be added is preferably about 1/2 to 2/3 of the capacity of the heating vessel.
 アンモニア水の加熱は130~200℃の温度で行うのが好ましい。加熱容器は全体をSUS430にて作ってある。SUS430はIHヒーターにより加熱されるので好ましい。加熱容器には温度センサーが取付けられており、IHヒーターの温度管理ができる。加熱容器全体をSUS430で作ることにより加熱容器の周り全体が加熱されることになり、効率良くアンモニア水の蒸発を行うことができる。 It is preferable to heat the ammonia water at a temperature of 130 to 200 ° C. The entire heating container is made of SUS430. SUS430 is preferable because it is heated by an IH heater. A temperature sensor is attached to the heating container to control the temperature of the IH heater. By making the entire heating container with SUS430, the entire area around the heating container is heated, and ammonia water can be efficiently evaporated.
 蒸発塔9の長さは請求項1記載の発明の装置に比べ少し短くした。これは加熱温度が請求項1記載の発明より高く設定してあり、蒸発する蒸気にはアンモニアと少量の水蒸気が含まれるが、後の分離器18でアンモニアと水を分離するので蒸発塔を昇ってくる蒸気に水蒸気が含まれていても何ら支障が無いためである。 The length of the evaporation tower 9 is slightly shorter than that of the apparatus according to the first aspect of the present invention. This is because the heating temperature is set higher than that of the invention described in claim 1 and the vapor to be evaporated contains ammonia and a small amount of water vapor. This is because there is no problem even if water vapor is contained in the coming steam.
 分離器18に導かれた混合蒸気は上部にアンモニアガス、水蒸気は下部に分離され、アンモニアガスはアンモニアガス通路パイプ10を通っている途中で液化が起こり、液体アンモニア貯蔵タンクに貯蔵される。水蒸気は凝結されて水捕集タンク19に貯まる。捕集タンクに貯まった水は混合器15に送られ、熱交換装置から戻ってきたアンモニアガスの吸収に使われる。以降の工程は先述した請求項1記載の発明と同じである。 The mixed vapor guided to the separator 18 is separated into ammonia gas and water vapor at the upper part, and the ammonia gas is liquefied while passing through the ammonia gas passage pipe 10 and stored in the liquid ammonia storage tank. The water vapor is condensed and stored in the water collection tank 19. The water stored in the collection tank is sent to the mixer 15 and used to absorb the ammonia gas returned from the heat exchange device. Subsequent steps are the same as those of the first aspect of the present invention.
 蒸発塔9から出てくるアンモニアと水の混合蒸気の温度が高い場合は、アンモニアが凝結し難くなるので、外気温を30℃程度に冷やすようファンなどで空気を送り、アンモニアガス通路10を冷やすのが良い。 When the temperature of the mixed steam of ammonia and water coming out of the evaporation tower 9 is high, it is difficult for the ammonia to condense. Therefore, air is sent with a fan or the like to cool the outside air temperature to about 30 ° C., and the ammonia gas passage 10 is cooled. Is good.
 次いでIHヒーターを用いた実験の一例を示す。IHヒーター用加熱容器全体をSUS430で作製した。加熱容器には温度センサーを取付けてある。加熱容器の容量は10L、加熱容器に30%アンモニア水150g入れた。センサー温度と加熱容器内圧力との関係を表2に示す。IHヒーターを用いると、加熱容器全体の温度が上昇するため、アンモニア蒸気発生の効率は非常に良いことが分かった。 Next, an example of an experiment using an IH heater is shown. The entire heating container for IH heater was made of SUS430. A temperature sensor is attached to the heating container. The capacity of the heating container was 10 L, and 150 g of 30% ammonia water was placed in the heating container. Table 2 shows the relationship between the sensor temperature and the pressure in the heating container. When the IH heater is used, the temperature of the entire heating container rises, and it has been found that the efficiency of ammonia vapor generation is very good.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 温度上昇とともに圧力は上昇したが、これ以後、温度は上昇するが圧力はほぼ一定になった。これはアンモニアの蒸発により、容器内のアンモニア濃度が減少したことによるものと考えられる。144℃以上では、表3に示すように温度上昇に伴い圧力は減少した。 The pressure increased with the temperature rise, but after that, the temperature rose but the pressure became almost constant. This is considered to be due to a decrease in the ammonia concentration in the container due to the evaporation of ammonia. Above 144 ° C., the pressure decreased with increasing temperature as shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 180℃における水の飽和蒸気圧は1.05MPaであるから、アンモニアの蒸気密度が低くなっていることが分かる。逆に、アンモニアに大量の水蒸気が混入することを意味している。このように、請求項1記載の発明の実験で説明した内容で加熱温度と加熱容器内の圧力のレベルにかなりの差が見られるが、請求項1記載の発明の場合は蒸発する蒸気がすべてアンモニアであるのに対し、IHヒーターの場合は蒸発するのはアンモニアと水蒸気の混合蒸気であり、水蒸気の蒸気圧が加わるため大きな値になっているのである。 Since the saturated vapor pressure of water at 180 ° C. is 1.05 MPa, it can be seen that the vapor density of ammonia is low. Conversely, it means that a large amount of water vapor is mixed into ammonia. As described above, although there is a considerable difference between the heating temperature and the pressure level in the heating container in the contents described in the experiment of the invention according to claim 1, in the case of the invention according to claim 1, all the vapor to be evaporated is present. In contrast to ammonia, in the case of an IH heater, it is a vapor mixture of ammonia and water vapor that evaporates, and the vapor pressure of water vapor is added, resulting in a large value.
 以下、本発明を実施例により具体的に説明する。 Hereinafter, the present invention will be specifically described with reference to examples.
 (実施例1)
 図1に示すような装置を使用した。内径約10cm、長さ約2mのガラス管を一つのユニットとした。本実施例ではガラス管1本を使用した。熱媒として沸点197.3℃のエチレングリコールを約8L使用した。熱媒循環パイプとガラス管の全容量は約9Lであった。真空ポンプで熱媒循環経路内の空気を抜いた後、熱媒吸入口からエチレングリコールを系内に入れた。エチレングリコールの入ったガラス管を直射日光に曝した2月中旬であったが、当初約13℃であったのが8時間後には約160℃まで上昇していた。
Example 1
An apparatus as shown in FIG. 1 was used. A glass tube having an inner diameter of about 10 cm and a length of about 2 m was used as one unit. In this example, one glass tube was used. About 8 L of ethylene glycol having a boiling point of 197.3 ° C. was used as a heating medium. The total capacity of the heat medium circulation pipe and the glass tube was about 9L. After the air in the heat medium circulation path was removed with a vacuum pump, ethylene glycol was introduced into the system from the heat medium inlet. The glass tube containing ethylene glycol was exposed to direct sunlight in mid-February, but it was about 13 ° C at first, but rose to about 160 ° C after 8 hours.
 加熱容器、蒸発塔、液体アンモニア貯蔵タンク、熱交換装置内の配管、混合器などの容器類および配管類に入っている空気を真空ポンプで吸引し経路内を真空にした後、アンモニア水吸入口から約30%のアンモニア水を3.0kg入れた。ステンレス製加熱容器の容量は4Lであった。熱媒の循環パイプは加熱容器の底の方に設置されており、完全にアンモニア水に浸されている。約150℃に加熱されたエチレングリコールによりアンモニア水は加熱され、アンモニアが蒸発した。蒸発塔は長さ120cm、内径20mmのステンレスパイプを使用した。 Heating vessel, evaporating tower, liquid ammonia storage tank, piping in heat exchanger, containers such as mixer, etc. and the air in the piping are sucked with a vacuum pump and the path is evacuated, then the ammonia water inlet 3.0 kg of about 30% ammonia water was added. The capacity of the stainless steel heating container was 4L. The circulation pipe of the heat medium is installed toward the bottom of the heating container and is completely immersed in the ammonia water. The aqueous ammonia was heated by ethylene glycol heated to about 150 ° C., and the ammonia evaporated. The evaporation tower used was a stainless steel pipe having a length of 120 cm and an inner diameter of 20 mm.
 蒸発塔内のガスの蒸気圧は1.5MPaであった。この温度での水の蒸気圧はほぼ0.5MPaなので、蒸発した蒸気中には水蒸気が含まれず、アンモニアガスのみであると考えられた。 The vapor pressure of the gas in the evaporation tower was 1.5 MPa. Since the vapor pressure of water at this temperature was approximately 0.5 MPa, it was considered that the vaporized vapor contained no water vapor but only ammonia gas.
 アンモニアガスは8mm径のステンレス製アンモニア通路パイプを通して容量10Lの液体アンモニア貯蔵タンクに導いたところ、タンク内に液体アンモニアが生成し、貯蔵することができた。貯蔵タンク下のバルブを開き、熱交換装置内の配管にアンモニアガスを流したところ、貯蔵タンクおよび熱交換装置内の配管温度は急激に低下し、冷却効果が発現した。 When the ammonia gas was led to a 10-liter liquid ammonia storage tank through an 8 mm diameter stainless steel ammonia passage pipe, liquid ammonia was generated and stored in the tank. When the valve under the storage tank was opened and ammonia gas was allowed to flow through the piping in the heat exchange device, the piping temperature in the storage tank and the heat exchange device dropped rapidly and a cooling effect was exhibited.
 熱交換装置内の配管を通ったアンモニアガスを、水を入れた混合器に導いて水に吸収させた。混合器内のアンモニアガスを吸収したアンモニア水は加熱容器に戻し、アンモニア水として再使用した。アンモニアガスが水に吸収されるので、混合器内の圧力は低下する。そのため、熱交換装置配管内のガスは連続して流れるので、冷却機を連続して運転することができた。 ア ン モ ニ ア Ammonia gas that passed through the piping in the heat exchanger was guided to a mixer containing water and absorbed in water. The ammonia water that absorbed the ammonia gas in the mixer was returned to the heating vessel and reused as ammonia water. Since ammonia gas is absorbed by water, the pressure in the mixer decreases. For this reason, the gas in the heat exchanger piping continuously flows, so that the cooler could be operated continuously.
 (実施例2)
 図2に示す装置を使用した。実施例1と同様にして系内を真空ポンプで吸引して真空にした後、10Lの加熱容器に濃度約30%のアンモニア水を3.0kg供給した。加熱容器全体はSUS430で製で温度センサーを取り付けた。IHヒーターは東芝製MR-20DEを用いた。IHヒーターは加熱容器の下面に設置し、加熱温度を強~中に設定した。
(Example 2)
The apparatus shown in FIG. 2 was used. In the same manner as in Example 1, the inside of the system was evacuated by a vacuum pump, and then 3.0 kg of ammonia water having a concentration of about 30% was supplied to a 10 L heating vessel. The entire heating container was made of SUS430 and a temperature sensor was attached. As the IH heater, MR-20DE made by Toshiba was used. The IH heater was installed on the lower surface of the heating container, and the heating temperature was set to high to medium.
 蒸発塔の長さは60cm、内径は20mmにした、蒸発した蒸気中にはアンモニアガスの他、水蒸気も含まれていた。この混合蒸気を分離器に導き、アンモニアガスと水に分離した。下部に凝結した水は水捕集タンクに貯めた。貯まった水は混合器に送った。分離されたアンモニアガスは分離器の上部から液体アンモニア貯蔵タンクに送った。以下、実施例1と同様の操作を行ったところ、連続して冷却機を運転することができた。 The length of the evaporation tower was 60 cm and the inner diameter was 20 mm. The evaporated steam contained water vapor in addition to ammonia gas. This mixed vapor was led to a separator and separated into ammonia gas and water. The water condensed at the bottom was stored in a water collection tank. The accumulated water was sent to the mixer. The separated ammonia gas was sent from the top of the separator to a liquid ammonia storage tank. Thereafter, when the same operation as in Example 1 was performed, the cooler could be continuously operated.
 以上説明したように、本発明によれば、熱源として太陽エネルギーを利用するので、熱エネルギーは無料であり、また電力を利用する場合でも夜間の余剰電力を利用することもできるので安価に液体アンモニアを製造し、貯蔵することができる。得られた液体アンモニアは冷却用に使用できる貯蔵されたエネルギーとなるのである。本発明では、貯蔵した液体アンモニアを使って冷却しながら、液体アンモニアを貯蔵するという、消費と貯蔵を同時に行うことができるので、随時冷却運転を実施することができ、エネルギーの節約に多大な効果がある。 As described above, according to the present invention, since solar energy is used as a heat source, thermal energy is free, and even when using electric power, night surplus power can be used, so liquid ammonia can be used at low cost. Can be manufactured and stored. The resulting liquid ammonia becomes stored energy that can be used for cooling. In the present invention, since liquid ammonia is stored while being cooled using the stored liquid ammonia, it can be consumed and stored at the same time, so that the cooling operation can be carried out at any time, which has a great effect on energy saving. There is.
 1 …… 太陽エネルギー変換装置
 2 …… 循環パイプ(熱媒出側)
 3 …… 循環パイプ(熱媒戻り側)
 4 …… ガス溜まり
 5 …… 熱媒吸入口
 6 …… 加熱容器
 7 …… アンモニア水
 8 …… アンモニア水吸入口
 9 …… 蒸発塔
 10 …… アンモニアガス通路パイプ
 11、11’ …… 液体アンモニア貯蔵タンク
 12 …… 熱交換装置への冷媒通路
 13 …… 熱交換装置内の配管
 14 …… 冷却補助タンク
 15 …… 混合器
 16 …… 水(アンモニア水)
 17 …… IHヒーター
 18 …… 分離器
 19 …… 水捕集タンク
1 …… Solar energy converter 2 …… Circulation pipe (heat medium exit side)
3 ...... Circulation pipe (heating medium return side)
4 …… Gas pool 5 …… Heat medium inlet 6 …… Heating vessel 7 …… Ammonia water 8 …… Ammonia water inlet 9 …… Evaporation tower 10 …… Ammonia gas passage pipe 11, 11 ′ Liquid ammonia storage Tank 12 ... Refrigerant passage to heat exchanger 13 ... Pipe in heat exchanger 14 ... Cooling auxiliary tank 15 ... Mixer 16 ... Water (ammonia water)
17 …… IH heater 18 …… Separator 19 …… Water collection tank

Claims (2)

  1.  加熱管が収納されている太陽エネルギーを熱エネルギーに変換する変換装置と、アンモニア水を入れた加熱容器と、該加熱容器内のアンモニア水を加熱するための加熱装置と、前記加熱管と前記加熱容器内の加熱装置を繋ぐ熱媒循環パイプとで構成された密閉された熱媒循環系と、加熱された熱媒により加熱され蒸発したアンモニアガスを通す蒸発塔と、アンモニアガスを液体アンモニア貯蔵タンクに導くアンモニアガス通路パイプと、液体アンモニアの貯蔵タンクと、前記液体アンモニアを気化して冷媒とする熱交換装置と、前記容器および各装置を結ぶパイプとで構成されている密閉されたアンモニアガス循環系とからなることを特徴とするアンモニア吸収式冷却装置。 A conversion device that converts solar energy in which a heating tube is stored into heat energy, a heating vessel containing ammonia water, a heating device for heating ammonia water in the heating vessel, the heating tube, and the heating A closed heat medium circulation system composed of a heat medium circulation pipe connecting the heating device in the container, an evaporation tower for passing ammonia gas heated and evaporated by the heated heat medium, and a liquid ammonia storage tank for the ammonia gas An ammonia gas passage pipe, a storage tank for liquid ammonia, a heat exchange device for vaporizing the liquid ammonia to be used as a refrigerant, and a sealed ammonia gas circulation comprising a pipe connecting the container and each device An ammonia absorption cooling device comprising a system.
  2.  アンモニア水を入れた加熱容器と、該加熱容器内のアンモニア水を加熱するための加熱装置と、加熱され蒸発したアンモニアガスと水蒸気を通す蒸発塔と、前記水蒸気と前記アンモニアガスを分離する分離器と、該分離器で分離された水を貯える水タンクと、前記アンモニアガスを液体アンモニア貯蔵タンクに導くアンモニアガス通路パイプと、液体アンモニアの貯蔵タンクと、前記液体アンモニアを気化して冷媒とする熱交換装置と、前記熱交換装置で用いられたアンモニアガスを水に吸収させてアンモニアガスを回収する混合器と、前記容器および各装置を結ぶパイプとから構成されている密閉されたアンモニアガス循環系とからなることを特徴とするアンモニア吸収式冷却装置。 A heating vessel containing ammonia water, a heating device for heating the ammonia water in the heating vessel, an evaporation tower through which heated and evaporated ammonia gas and water vapor pass, and a separator for separating the water vapor and the ammonia gas A water tank for storing the water separated by the separator, an ammonia gas passage pipe for guiding the ammonia gas to a liquid ammonia storage tank, a storage tank for liquid ammonia, and heat that vaporizes the liquid ammonia to serve as a refrigerant A sealed ammonia gas circulation system composed of an exchange device, a mixer that absorbs ammonia gas used in the heat exchange device and recovers ammonia gas, and a pipe that connects the container and each device An ammonia absorption cooling device characterized by comprising:
PCT/JP2011/080248 2011-12-27 2011-12-27 Ammonia absorption type cooling device utilizing solar energy or surplus energy WO2013098950A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/080248 WO2013098950A1 (en) 2011-12-27 2011-12-27 Ammonia absorption type cooling device utilizing solar energy or surplus energy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/080248 WO2013098950A1 (en) 2011-12-27 2011-12-27 Ammonia absorption type cooling device utilizing solar energy or surplus energy

Publications (1)

Publication Number Publication Date
WO2013098950A1 true WO2013098950A1 (en) 2013-07-04

Family

ID=48696518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/080248 WO2013098950A1 (en) 2011-12-27 2011-12-27 Ammonia absorption type cooling device utilizing solar energy or surplus energy

Country Status (1)

Country Link
WO (1) WO2013098950A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106595148A (en) * 2015-10-16 2017-04-26 安徽华尔泰化工股份有限公司 Ammonia adding device for synthesis ammonia cooler
CN111121339A (en) * 2019-12-23 2020-05-08 山东惠德节能环保科技有限公司 Industrial waste heat or geothermal energy and air energy combined power generation and refrigeration device
WO2020248003A1 (en) * 2019-06-13 2020-12-17 Noh5 Cooling Pty. Ltd. Vacuum cooling system and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54146457U (en) * 1977-11-23 1979-10-11
JPS59170664A (en) * 1983-03-17 1984-09-26 三洋電機株式会社 Solar heat driving diffusion absorption type refrigerator
JPH07132730A (en) * 1993-11-09 1995-05-23 Mitsubishi Motors Corp Absorption type refrigerator for vehicle
JP2548789Y2 (en) * 1990-06-22 1997-09-24 シャープ株式会社 Cooler structure in absorption refrigeration cycle
JPH11105539A (en) * 1997-09-30 1999-04-20 Shinji Yamamura Cooler for vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54146457U (en) * 1977-11-23 1979-10-11
JPS59170664A (en) * 1983-03-17 1984-09-26 三洋電機株式会社 Solar heat driving diffusion absorption type refrigerator
JP2548789Y2 (en) * 1990-06-22 1997-09-24 シャープ株式会社 Cooler structure in absorption refrigeration cycle
JPH07132730A (en) * 1993-11-09 1995-05-23 Mitsubishi Motors Corp Absorption type refrigerator for vehicle
JPH11105539A (en) * 1997-09-30 1999-04-20 Shinji Yamamura Cooler for vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106595148A (en) * 2015-10-16 2017-04-26 安徽华尔泰化工股份有限公司 Ammonia adding device for synthesis ammonia cooler
WO2020248003A1 (en) * 2019-06-13 2020-12-17 Noh5 Cooling Pty. Ltd. Vacuum cooling system and method
US12072122B2 (en) 2019-06-13 2024-08-27 Noh5 Cooling Pty. Ltd. Vacuum cooling system and method
CN111121339A (en) * 2019-12-23 2020-05-08 山东惠德节能环保科技有限公司 Industrial waste heat or geothermal energy and air energy combined power generation and refrigeration device

Similar Documents

Publication Publication Date Title
KR101109536B1 (en) Evaporative Desalination Apparatus of Sea Water Using Phase Changing Fluids
ES2651421T3 (en) Procedure and device for energy conversion
KR101280520B1 (en) Power Generation System Using Waste Heat
CN101737282B (en) High-efficiency hybrid ocean temperature difference power generating system
ES2447827T3 (en) Thermodynamic machine and procedure for its operation
CN101968299B (en) Method for drying materials by utilizing superheated steam
US20120285661A1 (en) Vapor absorption system
US10676373B2 (en) Thermal utilization system and methods
CN102858416B (en) Vapor sorption systems
JP2014156843A (en) Geothermal power generating system
JP2012510601A (en) Cooling method and cooling device
US20240141807A1 (en) Thermoutilizer
WO2013098950A1 (en) Ammonia absorption type cooling device utilizing solar energy or surplus energy
CN107200372B (en) Seawater desalination system and method
US9702596B2 (en) Dry cooling system using thermally induced vapor polymerization
KR101384207B1 (en) Seawater Desalination System Using Solar Energy For Off-shore Facilities
JP2012037145A (en) Ammonia absorption cooling system using solar energy or surplus energy
US20220333603A1 (en) Systems and methods for improving the performance of a gas-driven generator using a phase change refrigerant
CN203754456U (en) Nitrogen circulation type low-temperature evaporation concentration device
KR20160081758A (en) High efficiency low temperature power generation system by evaporator
CN201406329Y (en) solar distilled water generator
CN206467721U (en) A kind of fuel battery air water fetching device
KR101974014B1 (en) Evaporative Desalination Apparatus, Desalination Method and System therewith
US9920658B2 (en) Dry cooling system using thermally induced vapor polymerization
KR20160054652A (en) Hybrid system of steam jet vacuum cooling unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11879134

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11879134

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 11879134

Country of ref document: EP

Kind code of ref document: A1