WO2013098457A1 - Method for classifying non-microcytic lung carcinoma on the basis of identifying an intratumoral immune response - Google Patents

Method for classifying non-microcytic lung carcinoma on the basis of identifying an intratumoral immune response Download PDF

Info

Publication number
WO2013098457A1
WO2013098457A1 PCT/ES2012/070919 ES2012070919W WO2013098457A1 WO 2013098457 A1 WO2013098457 A1 WO 2013098457A1 ES 2012070919 W ES2012070919 W ES 2012070919W WO 2013098457 A1 WO2013098457 A1 WO 2013098457A1
Authority
WO
WIPO (PCT)
Prior art keywords
genes
prognosis
expression
group
stage
Prior art date
Application number
PCT/ES2012/070919
Other languages
Spanish (es)
French (fr)
Inventor
Julian SANZ ORTEGA
Milagros FERRER ALDEA
Susana HERNÁNDEZ PRIETO
Alejandro ROMERA LÓPEZ
Beatriz PÉREZ-VILLAMIL SALGADO
Florentino HERNANDO TRANCHO
Ana María GÓMEZ MARTÍNEZ
José Ramón JARABO SARCEDA
Antonio José TORRES GARCÍA
José Antonio LÓPEZ GARCÍA-ASENJO
José Luís GONZÁLEZ LARRIBA
Javier PUENTE VÁZQUEZ
Eduardo DÍAZ-RUBIO GARCÍA
José Luís SUBIZA GARRIDO-LESTACHE
Original Assignee
Fundación Para La Investigación Biomédica Del Hospital Clínico San Carlos
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from ES201132151A external-priority patent/ES2411833B1/en
Priority claimed from ES201230250A external-priority patent/ES2420079B1/en
Application filed by Fundación Para La Investigación Biomédica Del Hospital Clínico San Carlos filed Critical Fundación Para La Investigación Biomédica Del Hospital Clínico San Carlos
Publication of WO2013098457A1 publication Critical patent/WO2013098457A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/118Prognosis of disease development
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Definitions

  • the present invention relates to an in vitro method of classification of non-small cell lung carcinoma based on the differential expression of 50 genes. These genes identify an intratumoral immune response.
  • patients with an expression profile of genes associated with an immune response that is associated with a good prognosis are distinguished and patients without that expression profile have a worse prognosis.
  • This classification can be used as a prognostic marker, as a tumor classifier as a function of the antitumor immune response ("immunoscore") or as a biomarker predictor of immune system-based therapies (immunotherapy).
  • the present invention also relates to a kit that It comprises a set of probes that recognize the 50 genes of the invention, so the invention could be framed in the medical field.
  • STATE OF THE TECHNIQUE Lung cancer is the leading cause of cancer death with an annual rate of more than 1.1 million people worldwide, and with a five-year survival rate of only 15%. Approximately 80% of the diagnosed cases are classified as non-small cell lung carcinoma (CNMP) and the remaining 20% correspond to small cell lung carcinoma (CMP). In the CNMP, the most frequent types are squamous or squamous cell carcinoma and adenocarcinoma.
  • CNMP non-small cell lung carcinoma
  • CMP small cell lung carcinoma
  • TNM staging system ⁇ 7- edition
  • T tumor size
  • N lymph node involvement
  • M distant metastases
  • stage II surgery with curative intent is the treatment of choice, the benefit of adjuvant chemotherapy to reduce the high recurrence rate after surgical resection ranging between 30- 35% of patients.
  • adjuvant platinum-based chemotherapy such as cisplatin
  • stage II adjuvant platinum-based chemotherapy, such as cisplatin
  • cisplatin has been shown to improve the survival of certain subgroups but, on the other hand, there is a percentage of patients who despite not relapse after surgery receive adjuvant treatment and which are therefore patients treated in excess. This over-treatment affects problems in these patients associated with the side effects of these treatments.
  • stages I which includes subgroups IA and IB
  • NCN National Comprehensive Cancer Network
  • the technical problem that the invention solves is that of providing an alternative in vitro method that determines the existence of an immune response within the non-small cell lung carcinoma (CNMP) to obtain a personalized treatment of the patient.
  • CNMP non-small cell lung carcinoma
  • an in vitro method for classifying the CNMP that is characterized by the detection and / or quantification of an expression product of the set of 50 genes, which are shown in Table 1 in the biological sample of a subject.
  • the present invention also relates to the use of the expression products of said 50 genes as CNMP cancer prognostic biomarkers.
  • the method of the invention provides a 50 gene predictor for CNMP. The strategy used to obtain this predictor began with a detection and / or quantification of the global gene expression of CNMP tumors in early stages (I and II).
  • the predictor of the invention consists of 50 genes shown in Table 1, hereafter referred to as "50 genes of the invention”.
  • the 50 genes in table 1 are overexpressed in the good prognosis group.
  • the function described for these genes indicates that their overexpression is largely due to the presence of an intratumoral immune response, which is also associated with a better prognosis.
  • the 50 genes in Table 1 are mostly related to structural elements of immune system cells or immune functions (maturation, recruitment, proliferation and survival), especially in B lymphocytes and intratumoral plasma cells. Many of these genes code for immunoglobulin (Ig) molecules (constant heavy and light chains, the J chain, the variable regions of the heavy and light chains), the B cell receptor (CD79a), the specific lineage marker of B cell (CD19), the specific transcription co-activator in B cells (POU2AF1) or the specific folding factor for IgM assembly (pERpI).
  • Ig immunoglobulin
  • TNFRSF17 B cell maturation factor
  • POU2AF1 Zao C. et al. 2008 Oncogene 27: 63-75
  • POU2AF1 Zao C. et al. 2008 Oncogene 27: 63-75
  • POU2AF1 Zao C. et al. 2008 Oncogene 27: 63-75
  • POU2AF1 Zao C. et al. 2008 Oncogene 27: 63-75
  • POU2AF1 the receptor for the B cell activation factor
  • CXCL13 a chemoattractant cytokine of B cells
  • IRF4 a member of the family of transcription factors of the interferon regulatory factor, which have shown to have critical functions in several stages of the development of B cells (Havelange V. et al. Blood 201 1, 1 18 (10): 2827-9), or of CD38, which supports the proliferation and survival of B cells ( Malavasi et al. Blood, 201 1, 1 18 (13) 3470-3478).
  • CD38 is strongly expressed in plasma cells as well as CD27, which is a marker of memory cells that is also within the 50 overexpressed genes in the present study. It is interesting to note that Pim-2, a serine / threonine kinase that is also one of the 50 overexpressed genes, has recently been described as an anti-apoptotic mediator in plasma cells (Asano et al. Leukemia 201 1, 25, 1 182 -1 188).
  • a gene from table 2 ⁇ Homo sapiens ephrin-A4 (EFNA4), transcript variant 3, mRNA), whose reference in the NCBI (National Center for Biotechnology Information, US National Library of Medicine) gene database is NM_182690, is overexpressed in the group of poor prognosis.
  • EFNA4 Homo sapiens ephrin-A4
  • mRNA transcript variant 3, mRNA
  • NCBI National Center for Biotechnology Information, US National Library of Medicine
  • predictor refers herein to a differential gene expression profile or gene expression profile.
  • Gene expression profile means the gene profile obtained after quantification of the expression product of the genes of interest.
  • expression product means messenger RNA (mRNA), complementary DNA (cDNA), complementary RNA (cRNA) and / or the protein produced by the genes of interest or biomarkers, that is, by the genes of Table 1, in an isolated biological sample.
  • the expression profile of the genes is preferably performed by determining the level of mRNA derived from its transcription, after extracting the total RNA present in the isolated biological sample, which can be performed by protocols known in the state of the art.
  • the level of mRNA derived from the transcription of the genes in Table 1 can be determined, for example, but not limited to, by amplification by polymerase chain reaction (PCR), back transcription in combination with the chain reaction of the polymerase (RT-PCR), quantitative RT-PCR, back transcription in combination with the ligase chain reaction (RT-LCR), or any other nucleic acid amplification method; analysis in gene expression series (SAGE, SuperSAGE); DNA or RNA microarrays made with oligonucleotides or probes synthesized in situ by photolithography or by any other mechanism; in situ hybridization using specific probes labeled with any method of marking; by electrophoresis gels; by membrane transfer and hybridization with a specific probe; by nuclear magnetic resonance or any other diagnostic imaging technique using paramagnetic nano
  • the gene expression profile could also be obtained by the detection and / or quantification of the proteins resulting from the translation of the mRNA derived from the transcription of the genes in Table 1, for example, but not limited to, immunodetection by immuno blotting, immunohistochemistry. , chromatography or microarray.
  • the present invention could also refer to an in vitro method for classifying the CNMP that is characterized by the detection of the number of copies in the DNA of the 50 genes shown in Table 1, as well as epigenetic alterations such as hypermethylation of the promoter of the genes or as of the alteration of the mRNA stability due among other factors to transcriptional modifications that affect for example the tail of Poly Adenines.
  • the present invention also relates to the use of these 50 gene alterations as prognostic biomarkers of CNMP cancer, as "immunoscore" or as a biomarker predictive of immunotherapy response.
  • the gene expression profile could also be obtained by detecting and / or quantifying the number of copies of the genes present in Table 1, as well as the levels of epigenetic alterations such as the level of promoter methylation or stability levels of the messenger of these same genes.
  • This detection could be carried out, although not limited by microarrays, CGH (Comparative Genomic Hybridization) or FISH (fluorescent in situ hybridization). It could also be made from material included in paraffin.
  • This invention could also be applied for advanced stages (III and IV).
  • a first aspect of the invention relates to an in vitro method of obtaining useful data for the prognosis of stage I or II CNMP characterized by the detection and / or quantification of the expression product of the genes of the Table 1 in the isolated biological sample of a subject. From now on we will refer to this as the "first method of the invention”.
  • in vitro refers to the method of the invention being performed outside the subject's body.
  • prognosis in the present invention refers to the ability to detect patients who have a high or low probability of recurrence after surgery. A high probability of recurrence is associated with a poor prognosis while a low probability of recurrence is associated with a good prognosis.
  • Recurrence is understood as the recurrence of the disease, in this case of lung cancer.
  • probability of non-recurrence and “probability of ILE (disease-free interval)" are used interchangeably herein.
  • non-small cell lung cancer refers to a type of lung cancer or tumor according to histological classification comprising the subtype squamous or squamous cell carcinoma, adenocarcinoma, adenoescamoso, sarcomatoid carcinoma, and large cell carcinoma.
  • Stim means the phase or classification of lung cancer based on the TNM classification.
  • the TNM classification refers to tumor size (T), lymph node involvement (N) and involvement of other organs (M).
  • Stage I refers to the IA or IB substations.
  • the IA substation refers to lung tumors classified as T1 N0M0.
  • the IB substation includes lung tumors classified as T2aN0M0.
  • Stage II refers to any of the IIA or IIB substations.
  • Sub-stage IIA refers to lung tumors classified as T1 N1 M0, T2aN1 M0 and T2bN0M0.
  • Sub-stage IIB includes lung tumors classified as T2bN1 M0 and T3N0M0.
  • T1 refers to when the tumor ⁇ 3 cm of maximum dimension, is surrounded by lung tissue or visceral pleura and without invasion proximal to the lobar bronchus in fibrobronchoscopy.
  • T1 a is a tumor ⁇ 2 cm and T1 b is a tumor> 2cm and ⁇ 3cm.
  • T2 refers to a tumor> 3 cm in maximum dimension and ⁇ 7 cm or a tumor with at least one of the following characteristics: infiltrate the main bronchus 2 cm or less from the carina, invade visceral pleura or be associated with atelectasis or pneumonitis obstructive T2a is a tumor> 3 cm and ⁇ 5 cm and T2b is a tumor> 5 and ⁇ 7 cm.
  • T3 refers to a tumor> 7 cm or a tumor that affects the costal wall (including tumors of the upper fissure), diaphragm, mediastinal pleura or pericardium; no involvement of the heart, large vessels, trachea, esophagus, vertebral bodies; or a tumor of the main bronchus less than 2 cm from the carina, without infiltration thereof; where atelectasis affects an entire lung and there may be non-malignant pleural effusion. It does NOT refer to the lung tumor without lymph node involvement.
  • N1 refers to the tumor that has involvement of the ipsilateral peribronchial or hilar lymph nodes or both.
  • M0 refers to the lung tumor that does not have distant metastases.
  • the terms “early stages”, “initial stages” or “early stages” refer to CNMP stage I or II.
  • the term “immunoscore” refers to a method to classify the intratumoral immune response (Galón 2012).
  • the present invention by detecting and / or quantifying the expression of the 50 genes in Table 1, it is possible to identify a group of patients with the presence of an intratumoral immune response associated with a good prognosis against a group in which no intratumoral immune response is identified that is associated with poor prognosis.
  • immunotherapy refers to a therapy or treatment against cancer based on or related to the performance of the immune system of the individual in which the tumor occurs, by facilitating an antitumor immune response and recognition or by preventing actions of the immune system that favor tumor growth.
  • genes from table 1 or "50 genes” refers to the 50 genes described in table 1 shown below.
  • Entrez Identifier or “Entrez ID” refer to the gene reference number in the NCBI (National Center for Biotechnology Information, U.S. National Library of Medicine) gene database.
  • AMPD1 It catalyzes the deamination of adenosine monophosphate (AMP) to inosine monophosphate (IMP) in skeletal muscle and plays an important role in The purines cycle.
  • AMP adenosine monophosphate
  • IMP inosine monophosphate
  • TNFRSF17 This receptor is expressed in mature B lymphocytes and is important for the development of B cells and in the autoimmune response. It has as ligand member 13b of the tumor necrosis factor superfamily and activates the nuclear factor of the light chain polypeptide gene enhancer Kappa in B cells (NF-kappaB) and mitogen-activated protein kinase 8 (MAPK8 / JNK). It also binds to other ligands and sends signals of cell survival and proliferation.
  • CD19 A molecule that binds to the B-cell antigen receptor to lower the threshold of lymphocyte stimulation through antigen stimulation.
  • CD27 Member of the tumor necrosis factor receptor superfamily. The receptor has the function of generating and maintaining for a long time the immunity of T cells.
  • the CD70 ligand binds to it and works in the activation of B cells and in the synthesis of immunoglobulins.
  • the adapter proteins called Factor Associated to Receptors of Tumor Necrosis Factors 2 and 5 (TRAF2 and TRAF5) mediate this process.
  • CD27 binding protein (SIVA) is a proapoptotic protein that plays an important role in apoptosis mediated by this receptor.
  • CD38 It is a multifunctional ectoenzyme that is expressed in a multitude of cells and tissues especially in leukocytes. CD38 also has functions in cell adhesion, signal transduction and calcium signaling.
  • CD79A and CD79B code for the lg-alpha and lg-beta proteins that are components of the B lymphocyte antigen receptor.
  • the lg-alpha and lg-beta molecules are necessary for the expression and function of this receptor.
  • GZMB Cytolytic T lymphocytes (CTL) and "natural killer” cells (NK) have the ability to recognize, bind and lyse specific target cells. GZMB is crucial for the rapid induction of apoptosis of the target cells through the immune response generated by the cytolytic T lymphocytes or even in the mediated by B lymphocytes.
  • IGHA1 and IGHA2 Antibody with an important presence in the mucous secretions and that represents the first line of defense of the organism. There are two subclasses Immunoglobulin A1 (lgA1) and Immunoglobulin (lgA2).
  • IGHG1 This gene is translocated in chronic B-cell lymphocytic leukemia with the Cyclin D1 gene (CCND1) and in subclasses of MALT lymphomas (Mucosa Associated Lymphoid Tissue) with the genes "LIM homeobox 4" (LHX4) and "Forkhead box P1 "(FOXP1).
  • IGJ Its function is to join two monomers of either Immunoglobulin M (IgM) or Immunoglobulin A (IgA). It also has the function of binding these immunoglobulins to the secretory component.
  • Each immunoglobulin molecule has two identical heavy chains and two identical light chains. There are two kinds of light chains that are kappa and lambda. This gene encompasses the lambda light chain locus that includes segment V (variable), segment J (junction) and segment C (constant).
  • IGLL1 It is a gene of the immunoglobulin superfamily that codes for the light chain replacing the preB cell receptor. Mutations in this gene can cause B-cell deficiency or agammaglobulinemia.
  • IRF4 It belongs to the family of interferon regulatory factors. It is lymphocyte specific and negatively regulates Toll-like receptors (or TLR), which is a central molecule in the activation of the innate and adaptive immune response.
  • TLR Toll-like receptors
  • KCNN3 Regulates neuronal excitability.
  • KRT81 It is a member of the keratin family.
  • CXCL9 Its function is not well defined but it seems to be involved in T-cell traffic.
  • PNOC It is a neuropeptide that acts as an endogenous ligand of the "Opiate Receptor-Like 1" receptor (ORL1).
  • POU2AF1 It is a specific co-activator of B cells and its absence seems to be related to defects in the development of B cells and the lack of germ centers.
  • BFSP2 also called phakinin, it is a structural protein of cytoskeleton filaments. Next to the filensin forms the BF ("beaded filament").
  • CXCL13 Promotes the migration of B lymphocytes preferably against T lymphocytes and macrophages by calcium stimulation.
  • PIM2 It is a serin / threonine / protein kinase. Prevents apoptosis and promotes cell survival. It is an anti-apoptotic mediator of plasma cells.
  • SMR3A It is a functional homolog of the Vcsal gene ("Variable Coding Sequence A1"). It has been associated as a marker of erectile dysfunction associated with both diabetic and non-diabetic etiology.
  • MZB1 It is associated with the heavy and light chains of immunoglobulin type M (IgM), promoting the assembly of IgM and its secretion.
  • IgM immunoglobulin type M
  • FKBP11 It belongs to the FKBP family which catalyze the folding of proline-containing polypeptides. Its function is inhibited by FK506 and by rapamycin.
  • LAX1 A negative regulator of lymphocyte signaling.
  • CPNE5 Calcium-dependent membrane binding protein that appears to be involved in the regulation of molecular phenomena at the interface of the cell membrane and in the cytoplasm.
  • SLAM7 It is involved in the activation of NK cells and in the regulation of B lymphocyte proliferation during the immune response.
  • DUSP26 It is associated with the inactivation of the protein kinase activated by mitogens 1 and 3 (MAPK1 and MAPK3), as well as with the inhibition of epithelial cell proliferation, which could suggest a role as a tumor suppressor gene.
  • FCRL2 It is part of the immunoglobulin receptor superfamily. It can be a prognostic marker of chronic lymphocytic leukemia.
  • FCRL5 It is also part of the immunoglobulin receptor superfamily. It is involved in the development of B cells and lymphomagenesis.
  • FCRLA This receptor mediates the destruction of antigens recognized by Immunoglobulin G (IgG). It is selective B cell protein and may be involved in its development.
  • IgG Immunoglobulin G
  • DERL3 Protein that is located in the endoplasmic reticulum with the function of degrading misfolded glycoproteins.
  • MTSS1L May be involved in actin packaging. It belongs to the MTSS1 family (Type 1 Metastasis Suppressors).
  • JSRP1 The sarcoplasmic reticulum is a cellular compartment that controls the concentration of intracellular calcium and is involved in the excitation-contraction functions of this cellular compartment. In mice it has been seen This protein interacts with key proteins involved in these excitation-contraction processes.
  • C5orf20 This gene is expressed in dendritic cells, which are potent antigen presenting cells involved in activating native T cells to initiate the antigen-specific immune response.
  • MEI1 Defects in its expression are related to stopping in meiosis and is associated with azoospermia phenomena.
  • GPR114 Protein G associated with receptors with an N-terminus that contains regions rich in serine / threonine. Its expression in cytotoxic lymphocytes has been described. IGHV5-78, FER1L4, IGKV1D-8, KIAA0125, LOC401847, LOC642424, LOC100132941, LOC100133862, LOC100287723, IGHV1-24 and LOC100293440: as of today, the function of these genes is still unknown.
  • biological sample includes, but is not limited to, tissues and / or biological fluids of an individual, obtained by any method known to a person skilled in the art that serves this purpose.
  • subject refers to an individual, preferably human, who has been diagnosed with CNMP.
  • a preferred embodiment of the first aspect of the invention relates to a method that further comprises comparing the useful data obtained from the isolated biological sample of a new subject, with the reference expression values for the genes in Table 1 obtained from subjects with CNMP stage I or II in which the prognosis is known (reference sample). The comparison allows the identification of the new subject as a subject of good prognosis or bad prognosis. From now on, we will refer to this method as the "second method of the invention".
  • reference samples refers, for example, but not limited to samples obtained from individuals having a known molecular profile. This molecular profile can be of good prognosis or of poor prognosis.
  • a person skilled in the art could classify a new patient in the group of good or in the group of poor prognosis when comparing his expression data for the 50 genes of the invention with the expression data for the 50 genes in the reference samples.
  • These reference samples are a group of samples of which the expression profile of the 50 genes is known and the presence or absence of recurrence.
  • a new subject whose expression profile is similar to the good prognosis reference group can be classified as belonging to the good prognosis group, which has an average 3-year probability of ILE at 85% and / or 5 years of 79%.
  • a new subject whose expression profile is similar to the bad prognosis reference group can be classified as belonging to the bad prognosis group, which has an average 3-year probability of ILE at 62% and / or 5 years of 48%.
  • the determination of the prognosis of new patients diagnosed with CNMP in stages I or II implies the classification of these patients into one of the two previously defined reference groups: a group with a good prognosis or a group with a poor prognosis. These reference groups consist of the reference samples.
  • the comparison of the useful data obtained from the biological sample of a new subject, with the reference expression values for the genes of table 1 obtained from subjects with CNMP stage I or II in which the prognosis is known can be carried out by any statistical prediction method known in the state of the art, such as, but not limited to, in any of the methods described in Simón R. et al. J Clin Oncol 2005; 23: 7332-41.
  • the comparison is made by the nearest compact centroid method.
  • the "closest shrunken centroid method” is the classification method described in Tibshirani R. et al. PNAS 2002, 99: 6567-6572 and applied through the Prediction analysis of microarray tool (PAM).
  • the "PAM” tool was developed by Standford University and is freely accessible.
  • the determination of the CNMP prognosis of stages I or II can be established, but not limited, by determining a "reference value" for the group of good prognosis (value 1) and another for the group of poor prognosis (value 2 ).
  • the forecast can be made by estimating the distance between the expression values of the new sample and the "reference values" of each of the two groups. If the distance between the new sample and the value 1 is less than the distance between the new sample and the value 2, the favorable forecast can be determined. On the contrary, if the distance between the new sample and the value 1 is greater than the distance between the new sample and value 2, the unfavorable forecast can be determined.
  • the reference values of each group can be calculated based on the expression values of the 50 genes in the samples of the reference matrix or "development matrix" and will therefore be expressed by a vector of 50 components.
  • the calculation of the reference value of each group is obtained by adding to the global average value of all the samples, a second factor defined as the distance (statistic "t") between the average expression value of the 50 genes of said group with respect to the average expression value of the 50 genes of all the samples included in the training matrix.
  • the data of the second factor will be standardized taking into account the variability of expression of each of the 50 genes within the analyzed group and taking into account a convergence value ⁇ that allows to evaluate the predictive power of each of the genes. It is understood as distance between two samples, groups or subtypes, the quantification of their expression differences.
  • the "closest shrunken centroid" method is able to assign new samples (which in our case make up the validation matrix) to each of the defined groups.
  • the distance between the new sample and each of the groups is relative to the difference between the expression values of the 50 genes in the new sample with respect to the components of the compact centroid ("shrunken centroid") that represent each group.
  • the quantification of distances could be measured, but not limited, by Euclidean distance (Tibshirani R. Diagnosis of multiple cancer types by shrunken centroids of gene expression. PNAS 2002; 99 (10): 6567-72). As mentioned earlier, the new sample will be assigned to the group from which it is at a smaller distance.
  • a second aspect of the invention relates to an in vitro method for the prognosis of stage I or II CNMP characterized by: to. the detection and quantification of the expression product of the genes of table 1 in a reference sample;
  • a preferred embodiment of the fourth method of the invention relates to the method where the nearest compact centroid method is carried out through the application of Microarray Analysis Prediction (PAM).
  • PAM Microarray Analysis Prediction
  • a preferred embodiment of the first and second aspects of the invention refers to the method where the reference sample and the study samples have been previously normalized before comparison.
  • Normalization means the use of a control sample that serves to eliminate experimental variations between the different samples.
  • Another preferred embodiment of the first and second aspects of the invention refers to the method that also comprises the detection and / or quantification of at least one expression product of the genes described in Table 2.
  • Another preferred embodiment of the first and second aspects of the invention relates to the method where the expression product is messenger RNA.
  • An even more preferred embodiment refers to the method where the detection and / or quantification of messenger RNA is performed by microarrays.
  • a more preferred embodiment also refers to the method where the detection and / or quantification of messenger RNA is performed by RT-PCR.
  • Another preferred embodiment of the first and second aspects of the invention relates to the method where the expression product is a protein.
  • An even more preferred embodiment refers to the method where the detection and / or quantification of the protein is performed by immuno blotting, immunohistochemistry, chromatography or microarrays.
  • the detection and quantification of the expression product can be performed using methods known to those skilled in the art. For example, by determining the level of mRNA derived from its transcription, after extracting the total RNA present in the isolated biological sample, which can be done by protocols known in the state of the art. For this, the isolated biological sample can be physically or mechanically treated to break up the cellular tissue or structures and release the intracellular components to an aqueous or organic solution to prepare the nucleic acids for further analysis. Nucleic acids are extracted from the sample by procedures known to those skilled in the art and commercially available.
  • the level of mRNA derived from the transcription of the genes in Table 1 can be determined, for example, but not limited to, by amplification by chain reaction of the polymerase (PCR), retrotranscription in combination with the polymerase chain reaction (RT-PCR), quantitative RT-PCR, retrotranscription in combination with the ligase chain reaction (RT-LCR), or any other amplification method of nucleic acids; serial analysis of gene expression (SAGE, SuperSAGE); microarrays, micromatrices or DNA chips made with oligonucleotides deposited by any mechanism or made with oligonucleotides synthesized in situ by photolithography or by any other mechanism; in situ hybridization using specific probes labeled with any method of marking; by electrophoresis gels; by membrane transfer and hybridization with a specific probe; by nuclear magnetic resonance or any other diagnostic imaging technique using paramagnetic nanoparticles or any other type of detectable nanoparticles functionalized with antibodies or by any other means.
  • PCR polymerase
  • the present invention demonstrates that the detection and quantification of the total mRNA of a biological sample of a subject with stage I or II CNMP is useful for the prognosis of said disease. Therefore, in a preferred embodiment of this aspect of the invention, the expression product detected and quantified is mRNA.
  • the expression product is mRNA.
  • "Microarray” expression microarray, chip or microarray
  • probes oligonucleotides or cDNAs
  • Each of the probes specifically represents a gene determined by having a sequence complementary to the mRNA transcribed by said gene, thus enabling the measurement of the expression levels of all the genes that make up the genome at the same time and in a single experiment.
  • the experimental phase of the microarray can consist of the steps described below.
  • the total RNA is retrotranscribed using as a primer a messenger specific primer (PolidT) and a retrotranscriptase enzyme.
  • a primer a messenger specific primer (PolidT) and a retrotranscriptase enzyme.
  • the cRNA was synthesized, while the process of amplification and marking of the sample was carried out.
  • the labeled cRNA obtained was purified by columns.
  • the cRNA is fragmented into smaller sequences and hybridized to the microarray. Said hybridization process is carried out in a hybridization oven for a long period of time. In this process the labeled cRNA binds specifically to the oligonucleotides synthesized in the microarray.
  • the expression product preferably mRNA or cDNA or complementary RNA (cRNA) obtained from cDNA
  • Detectable labels include, for example, radioactive isotopes, fluorescent labels, chemiluminescent labels, bioluminescent labels or enzymatic labels.
  • the fluorescent labels may be different in the case of the mapping of the expression product of the biological sample and the expression product of the control sample.
  • the detection and quantification can also be carried out by RT-PCR, whereby another preferred embodiment of the first aspect of the invention refers to a method according to claim 7 wherein the detection and / or quantification of the mRNA is performed by RT-PCR or preferably by real-time RT-PCR.
  • the RT-PCR process can be carried out in two phases:
  • Retrotranscription the union between a primer and the mRNA is produced by a joint incubation process of both products. Then the retrotranscription itself takes place using reverse transcription enzymes.
  • PCR polymerase chain reaction
  • cDNA denaturation phase oligonucleotide specific binding phase of the gene under study to the denatured cDNA strand
  • elongation phase from the bound oligonucleotide by which a new strand of synthesized will be synthesized.
  • CDNA Being a process that is measured in real time, it is necessary to use a fluorescent molecule to monitor what happens throughout the process.
  • Quantification on the other hand can also be performed by determining the level of protein derived from the translation of transcribed mRNAs from the 50 genes of the invention.
  • This protein quantification can be performed by any method known to a person skilled in the art that serves this purpose, such as, but not limited to, immunodetection methods (such as western blot, ELISA, immunohistochemistry, immunocytochemistry, immunofluorescence), methods based on isobaric (such as iTRAQ - isobaric Tag for Relative and Absolute Quantitation-, or ICAT -Isotope-Coded Affinity Tag-) or in isotopic (such as SILAC -Stable Isotopes Labeling by Amino Acids in Cell Culture-) or based on fluorescent (such as 2D-DIGE -Difference in Gel Electrophoresis-), as well as methods based on mass spectrometry (MRM, -Multiple Reaction Monitoring-).
  • immunodetection methods such as
  • the expression product is a protein.
  • Another preferred embodiment of the first and second aspect of the present invention relates to the method where the detection and / or quantification of the Protein is made by immuno blotting, immunohistochemistry, chromatography or protein expression arrays.
  • amino acid sequence or “protein” are used interchangeably herein, and refer to a polymeric form of amino acids of any length, which may or may not be chemically or biochemically modified.
  • reduct corresponds to an amino acid.
  • Another preferred embodiment of the first and second aspects of the present invention relates to the method where the biological sample is selected from the list comprising: tissue, blood, plasma, serum, lymph, bronchoalveolar lavage or ascites fluid.
  • Another also preferred embodiment of the first and second aspects of the present invention relates to the method where the biological sample is fresh, frozen, fixed or fixed and embedded in paraffin.
  • Another preferred embodiment of the first and second aspects of the invention relates to a method where the subject is a human.
  • a third aspect of the invention relates to the in vitro use of the expression products of the genes in Table 1 as a prognostic marker of stage I or II CNMP.
  • a fourth aspect of the invention relates to the in vitro use of the expression products of Table 1 to classify the intratumoral immune response in stage I or II CNMP.
  • a fifth aspect of the invention relates to the in vitro use of the expression products of Table 1 as a biomarker predictive of therapeutic response to immunotherapy in the CNMP of stage I or II.
  • a sixth aspect of the invention relates to a kit comprising the probes that recognize the messenger RNA, product of the expression of the genes of table 1, or the cRNA or cDNA to said mRNA, or antibodies that recognize a protein product of expression of the genes in table 1.
  • the amount of probes used for each gene may vary in number.
  • the kit comprises probes, which consist of probes that recognize the messenger RNA resulting from the expression of the genes in Table 1. More preferably the probes are the sequences described as SEQ ID NO: 1 to SEO ID NO: 66 and that specifically recognize the 50 genes in Table 1.
  • this kit comprises probes, which consist of probes that recognize the messenger RNA resulting from the expression of the genes in Table 1. More preferably the probes are the sequences described as SEQ ID NO: 1 to SEO ID NO: 66 and that specifically recognize the 50
  • a preferred embodiment of the sixth aspect of the invention relates to the kit which further comprises at least one probe or an antibody that recognizes an expression product of the genes in Table 2.
  • this kit is the "second kit of the invention”.
  • kits being able to comprise at least one retrotransciptase, or an RNA polymerase or a fluorophore.
  • a preferred embodiment of the third aspect of the invention refers to a kit that also comprises at least one of the reagents selected from the list comprising: retrotranscriptase, an RNA polymerase or a fluorophore.
  • the kit may comprise a mixture of tri-phosphate deoxynucleotides (dNTPs), a mixture of tri-phosphate nucleotides (NTPs), deoxyribonuclease (DNase), ribonuclease inhibitors (RNase), Dithiothreitol (DTT), inorganic pyrophosphatase (PPi) and the necessary buffers for the enzymes provided in the kit.
  • the present invention also relates to the kit where the probes or antibodies are preferably located on a solid support, for example, but not limited to, glass, plastic, tubes, multiwell plates, membranes, or any other known support.
  • a preferred embodiment of the sixth aspect of the invention refers to a kit where the probes or antibodies are preferably located on a solid support.
  • a seventh aspect of the invention relates to the use of the kit of the sixth aspect of the invention to obtain useful data for the prognosis of CNMP stages I or II.
  • data collection may be useful for the administration of adjuvant treatment, for example chemotherapy.
  • adjuvant treatment for example chemotherapy.
  • the use of the first kit of the invention for the evaluation of the need to provide such treatment.
  • An eighth aspect of the invention relates to the use of the kit of the sixth aspect of the invention for obtaining useful data for the classification of the intratumoral immune response of the CNMP of stages I or II.
  • the kit of the present invention can be used to know if there is an intratumoral immune response in the patient.
  • a ninth aspect of the invention relates to the use of the kit of the sixth aspect of the invention to obtain useful data to predict the response to immunotherapy of the stage I or II CNMP.
  • Fig. 1 Shows the probability of ILE in the two main histological subtypes of CNMP.
  • Kaplan-Meier curve showing the probability of ILE of the two main histological subtypes of the CNMP, adenocarcinoma and squamous carcinoma in the development matrix.
  • ILE disease free interval; p, is the probability associated that the differences found in the ILE between the subgroups analyzed are due to chance.
  • Fig. 2. Shows the probability of disease-free interval in stages I and II. .
  • Kaplan-Meier curve showing the probability of ILE for stages I and II of CNMP in the development matrix.
  • ILE disease free interval
  • p is the probability associated that the differences found in the ILE between the subgroups analyzed are due to chance.
  • Fig. 3. It shows the hierarchical grouping of the samples of the development matrix analyzed according to their molecular profile with 3,232 genes.
  • the hierarchical clustering of 84 samples with 3,232 genes is shown (see filtering 3 of example 1) according to the method described in Quackenbush J. Nat Rev Genet. 2001; 2 (6): 418-27.
  • the samples are differentiated according to the histological subtype: continuous line, adenocarcinoma subtype; striped line, squamous subtype; continuous line terminated in * , other CNMP subtypes.
  • "Molecular profile" is defined: as the set of genomic data (in our cases mRNA expression levels) capable of characterizing and identifying a subject or sample.
  • the molecular subtypes found show a clear association with the histological subtypes of the tumors.
  • Kaplan-Meier curve showing the probability of ILE of the two main molecular subtypes of the CNMP found in the development matrix.
  • ILE disease free interval
  • p is the probability associated that the differences found in the ILE between the subgroups analyzed are due to chance.
  • Fig. 5 It shows the hierarchical grouping of the samples of the development matrix analyzed according to their molecular profile with 2,160 genes.
  • Fig. 6 It shows the probability of ILE in the three molecular groups obtained based on their molecular profile with 2,160 genes in the development matrix.
  • Kaplan-Meier curve showing the probability of ILE of the three molecular groups obtained using the list of 2,160 genes and the "k-means" technique.
  • ILE disease free interval; p, is the probability associated that the differences found in the ILE between the analyzed subgroups are due to chance, (x), indicates the number of samples in each of the analyzed groups.
  • Fig. 7 Shows the probability of ILE in the validation matrix samples according to the classification of 3 molecular groups.
  • Kaplan-Meier curve showing the probability of ILE for the validation matrix samples (external series, Roepman et al.) Grouped according to molecular profiles (Group 1, Group 2 and Group 3) previously observed in The development matrix and defined through a predictor of 1,000 genes generated with the application "PAM”.
  • ILE disease free interval; p, is the probability associated that the differences found in the ILE between the analyzed subgroups are due to chance, (x), indicates the number of samples that there are in each of the analyzed groups.
  • Fig. 8. Shows the probability of ILE in the validation matrix samples according to the classification established by the predictor of 50 genes.
  • Kaplan-Meier curve showing the probability of ILE of the two molecular groups obtained in the validation matrix using the 50 gene predictor.
  • ILE disease free interval; p, is the probability associated that the differences found in the ILE between the subgroups analyzed are due to chance, (x) indicates the number of samples in each of the branches of the Kaplan-Meier curve.
  • Fig. 9 Probability of ILE in the validation matrix samples according to the classification established by the predictor of 50 genes independently for stages I and II.
  • Kaplan-Meier curve showing the probability of ILE of the two molecular groups obtained in the validation matrix with the 50 gene predictor generated with the "PAM" application for: A, stage I, and B, stage II.
  • ILE disease free interval; p, is the probability associated that the differences found in the ILE between the subgroups analyzed are due to chance, (x) indicates the number of samples in each of the branches of the Kaplan-Meier curve.
  • Example 1 Obtaining the 50 gene predictor
  • the data collected for the study are divided into clinical data of the patient (age of diagnosis, sex and smoking habit) and histological data of the tumor (histological subtype, tumor size, tumor stage -7- TNM Classification (Kligerman S. American Journal of Roentgenology 2010. 194: 562-573) -, degree of differentiation, keratinization, presence of polymorphonuclear lymphocytes - PMN-, lymph node involvement, k-ras mutations, necrosis, tumor stroma, chronic inflammation, presence of intratumoral lymphocytes -TIL-, location by pulmonary lobes and type of recurrence - regional or distant madness).
  • Tumor samples RNA extraction and purification.
  • CNMP tumors were collected immediately after surgery and frozen and stored at -80 Q C. Histopathological review of the frozen tumors was carried out with the so that all patients included in the study had a tumor representation as a minimum of 70% in the sample used. At the same time, samples of non-tumor pulmonary parenchyma were also collected from these same patients, which were also frozen following the same protocol. RNA from these latter samples was used to create the control sample (a pool of normal tissue RNA). In all cases, the total ribonucleic acid (RNA or RNA) was extracted directly from the frozen samples using Trizol® and a tissue homogenizer.
  • Trizol® Trizol®
  • RNA was measured in Bioanalyzer 2100® using the RIN (or RNA Integrity Number) and only samples with a good RNA quality (RIN> 7.5), were included for the study.
  • the expression profile of the 84 tumors was determined using Agilent® full genome oligonucleotide microarrays (G41 12F) following the protocol provided by the manufacturer. Briefly, double marking was used, with cyanine-5 (Cy5) for each of the 84 tumors included in the study and with cyanine-3 (Cy3) for the control sample, consisting of a "pool" of 42 parenchyma samples not lung tumor.
  • This control sample was introduced in each of the experiments (the same in all of them) in order to identify and correct the technical variations introduced during the experimental phase of the analysis. After this correction (called normalization) the data generated is the ratio between the fluorescence of the tumor and the control sample.
  • Spikelns which are 10 control transcripts synthesized in vitro that derive from the adenovirus E1 A transcriptome, that do not interact with human mRNA and whose initial concentration is known, were included during the stages of screening and hybridization.
  • the "a priori" knowledge of the initial concentration of each of the “Spikelns”, allows us to predict at what level of fluorescence these transcripts should emit once hybridized in the microarray and therefore can be used as quality control of the experimental phase .
  • the microarrays were scanned and quantified using the Agilent® scanner and the Feature Extraction® program (10.7.3) respectively.
  • the Lowess or "Locally Weighted Scatterplot Smoothing” technique was used.
  • ⁇ Cleveland WS Journal of the American statistical Association 1979, 74: 829-836; Cleveland WS, et al. Journal of the American Statistical Association 1988, 83: 596-610.
  • the differentially expressed genes (p-value ⁇ 0.01 and expression difference> 1, 5) were selected and the generated list (1,072 genes) was excluded from the initial list (3,232 genes). Therefore, a list of 2,160 genes (genes shown in Table 2) that are used for the final molecular classification of the 84 tumors is generated.
  • the strategy used for the discovery of the molecular groups consisted in applying first a method of unsupervised analysis, clustering or hierarchical clustering (Fig. 5A), and then an improvement of the molecular groups obtained by means of a second method, method of k-Means (Fig. 5B), which allows to reduce intra-group heterogeneity and increase inter-group variability.
  • the list of 2,160 genes is used to initially construct the molecular classification (which has 3 groups). Once these molecular groups were generated, the molecular classification obtained was evaluated to determine whether or not there was an association with the disease-free interval (ILE) (Fig. 6).
  • ILE disease-free interval
  • the ILE is defined as the time that elapses from the date of surgery until the patient's recurrence is confirmed.
  • the validation matrix includes the expression data of 162 patients diagnosed with the same histological subtypes as those of the invention.
  • validation matrix refers to the set of samples published by Roepman et al used for the validation of molecular classification.
  • Mitrix means the set of expression data obtained in a series of patients using microarrays.
  • a common data matrix has been generated that includes 246 samples (84 of the development matrix + 162 of the validation matrix) each with 17,881 genes.
  • a predictor was obtained through the PAM application (Microarray Prediction Analysis) (Tibshirani R. et al. PNAS 2002; 99 (10): 6567-72) that was evaluated in the validation matrix by studying its association, through the Kaplan-Meier curve, with the ILE.
  • the Cox proportional regression model was used to confirm the prognostic power of our predictor.
  • the forecast classification process requires as a starting point the calculation of a "reference value” for each of the two groups.
  • These "reference values” are obtained from the samples of the patients that make up the so-called “training matrix” or “development matrix” and of which "a priori” their classification is known (as they were with them with the that defined what the group of good and bad prognosis was).
  • each of the reference values will be expressed as a vector of 50 components (one for each of the genes of the invention) and will be calculated as the sum of two subvectors each also expressed with 50 components.
  • the first subvector is common for the two reference values while the second is specific for each of the two reference values to be calculated.
  • the first subvector consists of 50 components, each of which corresponds to the average expression value of one of the 50 genes throughout all the samples that make up the training or development matrix regardless of the group in which they are classified (i.e. the 84 tumors of our matrix).
  • the second subvector will also be defined by 50 components (each of which represents a gene) that will be defined by a "t" statistic that compares for that gene the differences between the first subvector and the average expression value of that gene in the Samples included in the group for which the reference value is to be calculated (either the good prognosis group (29 samples) or the poor prognosis group (55 samples)).
  • the data of the second subvector will be standardized taking into account the variability of expression of each of the 50 genes within the analyzed group and taking into account a convergence value ⁇ that allows to evaluate the predictive power of each of the genes.
  • the distance between the new sample and the "reference value 1" is less than the distance between the new sample and the "reference value 2"
  • the favorable prognosis for the new patient can be determined.
  • the distance between the new sample and the "reference value 1" is greater than the distance between the new sample and "reference value 2”
  • the unfavorable prognosis for the new patient can be determined.
  • factors that correct the result are also introduced, taking into account the variability of expression within the groups and the probability of belong to a certain group taking into account their sample size with respect to the population analyzed. The quantification of distances is measured using the Euclidean distance. 1.2.- RESULTS
  • a first statistical analysis was carried out to verify if there was an association between the most important histopathological variables in the routine management of the CNMP (the histological classification of the tumor, the stage, etc.), with the ILE.
  • HR Group 1 vs. 2 not significant.
  • the present invention demonstrates the usefulness of the method of the invention, as well as the use of the invention.
  • ID Entrez is not indicated or is genes that have no information in the NCBI database and in which the name of the genome oligonucleotide microarray probe has been indicated in the gene symbol complete used (Agilent®, G41 12F).

Abstract

The present invention relates to an in vitro method for classifying non-microcytic lung carcinoma on the basis of the differential expression of 50 genes. Said genes identify an intratumoral immune response. The method of the invention is used to differentiate patients with an expression profile of genes associated with an immune response which is associated with a good prognosis and patients without said expression profile, who have worse prognosis. Said classification can be used as a prognostic marker, as a tumour classifier in accordance with the intratumoral immune response (immunoscore) or as a biomarker predicting therapies based on the immune system (immunotherapy). The present invention also relates to a kit which includes a set of probes that recognise the 50 genes of the invention.

Description

MÉTODO DE CLASIFICACIÓN DEL CARCINOMA NO MICROCÍTICO DE PULMÓN BASADO EN LA IDENTIFICACIÓN DE UNA RESPUESTA INMUNE INTRATUMORAL. La presente invención se refiere a un método in vitro de clasificación del carcinoma no microcítico de pulmón basado en la expresión diferencial de 50 genes. Dichos genes identifican una respuesta inmune intratumoral. Mediante el método de la invención se diferencian pacientes con un perfil de expresión de genes asociados a una respuesta inmune que se asocia con buen pronóstico y pacientes sin ese perfil de expresión que tienen peor pronóstico. Esa clasificación puede usarse como marcador pronóstico, como clasificador de los tumores en función de la respuesta inmune antitumoral {"inmunoscore') o como biomarcador predictor de terapias basadas en el sistema inmune (inmunoterapia). La presente invención también se refiere a un kit que comprende un conjunto de sondas que reconocen los 50 genes de la invención. Por tanto, la invención se podría encuadrar en el campo de la medicina.  CLASSIFICATION METHOD OF THE NON-MICROCYCTIC CARCINOMA OF LUNG BASED ON THE IDENTIFICATION OF AN IMMUNE INTRATUMORAL RESPONSE The present invention relates to an in vitro method of classification of non-small cell lung carcinoma based on the differential expression of 50 genes. These genes identify an intratumoral immune response. By the method of the invention, patients with an expression profile of genes associated with an immune response that is associated with a good prognosis are distinguished and patients without that expression profile have a worse prognosis. This classification can be used as a prognostic marker, as a tumor classifier as a function of the antitumor immune response ("immunoscore") or as a biomarker predictor of immune system-based therapies (immunotherapy). The present invention also relates to a kit that It comprises a set of probes that recognize the 50 genes of the invention, so the invention could be framed in the medical field.
ESTADO DE LA TÉCNICA El cáncer de pulmón es la primera causa de muerte por cáncer con una tasa anual de más de 1 ,1 millones de personas en todo el mundo, y con una tasa de supervivencia a cinco años de sólo el 15%. Aproximadamente el 80% de los casos diagnosticados se clasifican como carcinoma no microcítico de pulmón (CNMP) y el 20% restante corresponden a carcinoma microcítico de pulmón (CMP). En el CNMP, los tipos más frecuentes son el carcinoma epidermoide o escamoso y el adenocarcinoma. STATE OF THE TECHNIQUE Lung cancer is the leading cause of cancer death with an annual rate of more than 1.1 million people worldwide, and with a five-year survival rate of only 15%. Approximately 80% of the diagnosed cases are classified as non-small cell lung carcinoma (CNMP) and the remaining 20% correspond to small cell lung carcinoma (CMP). In the CNMP, the most frequent types are squamous or squamous cell carcinoma and adenocarcinoma.
El sistema de estadiaje TNM {7- edición) basado en el tamaño del tumor (T), la afectación ganglionar (N) y la presencia de metástasis a distancia (M) es, en la actualidad, el factor pronóstico más utilizado en los pacientes con CNMP. En función de estos parámetros, los tumores se clasifican en: estadio I y estadio II (en ambos casos la enfermedad es localizada), estadio III (enfermedad localmente avanzada) y estadio IV (enfermedad metastásica) (Kligerman S. American Journal of Roentgenology 2010. 194:562-573). The TNM staging system {7- edition) based on tumor size (T), lymph node involvement (N) and the presence of distant metastases (M) is currently the most used prognostic factor in patients with CNMP. Depending on these parameters, the tumors are classified into: stage I and stage II (in both cases the disease is localized), stage III (disease locally advanced) and stage IV (metastatic disease) (Kligerman S. American Journal of Roentgenology 2010. 194: 562-573).
En estadios iniciales o tempranos (estadios I y II), la cirugía con intención curativa es el tratamiento de elección encontrándose en continua discusión el beneficio de la quimioterapia adyuvante para disminuir la elevada tasa de recurrencia posterior a la resección quirúrgica que oscila entre un 30-35% de los pacientes. En concreto, en estadios II, la quimioterapia adyuvante basada en platinos, como el cisplatino, ha demostrado mejorar la supervivencia de determinados subgrupos pero, por otro lado, existe un porcentaje de pacientes que a pesar de no recaer tras la cirugía reciben tratamiento adyuvante y que son por lo tanto pacientes tratados en exceso. Este sobretratamiento repercute en problemas en estos pacientes asociados a los efectos secundarios de dichos tratamientos. Respecto a los estadios I (que engloba a los subgrupos IA y IB), y según la guía de consenso elaborada por el "National Comprehensive Cáncer Network" (NCCN) en 201 1 , en el subgrupo IA la quimioterapia adyuvante no está indicada, mientras que en los pacientes del subgrupo IB, sólo está recomendada en aquellos que cumplan factores de riesgo como pobre grado de diferenciación, invasión vascular, resección en cuña y márgenes mínimos. Por lo tanto, debido a la falta de precisión de los métodos actuales para definir el pronóstico de los estadios tempranos del CNMP, en la actualidad existen pacientes que reciben un tratamiento adyuvante que no les beneficia y también pacientes que no reciben un tratamiento adyuvante y que sin embargo tienen una alta probabilidad de recurrencia del tumor. In early or early stages (stages I and II), surgery with curative intent is the treatment of choice, the benefit of adjuvant chemotherapy to reduce the high recurrence rate after surgical resection ranging between 30- 35% of patients. Specifically, in stage II, adjuvant platinum-based chemotherapy, such as cisplatin, has been shown to improve the survival of certain subgroups but, on the other hand, there is a percentage of patients who despite not relapse after surgery receive adjuvant treatment and which are therefore patients treated in excess. This over-treatment affects problems in these patients associated with the side effects of these treatments. Regarding stages I (which includes subgroups IA and IB), and according to the consensus guide developed by the National Comprehensive Cancer Network (NCCN) in 201 1, in subgroup IA, adjuvant chemotherapy is not indicated, while that in patients of subgroup IB, it is only recommended in those who meet risk factors such as poor degree of differentiation, vascular invasion, wedge resection and minimum margins. Therefore, due to the lack of precision of the current methods to define the prognosis of the early stages of the CNMP, there are currently patients who receive an adjuvant treatment that does not benefit them and also patients who do not receive an adjuvant treatment and who however they have a high probability of tumor recurrence.
Actualmente, en el cáncer de pulmón no se conocen marcadores de probado valor pronóstico y predictivo que indiquen cúal será la progresión del paciente (Karapaniagiotou E, et al. Open Lung Cáncer J 2009. 2: 24-30). En CNMP se han desarrollado estudios que utilizan plataformas de análisis masivo para la obtención de perfiles de expresión génica que puedan ser utilizadas como biomarcadores pronóstico. Los resultados obtenidos han sido dispares en cuanto a los genes a incluir en el biomarcador, quizás debido al uso de criterios diferentes en cuanto a la inclusión de pacientes en el estudio, la obtención de muestras, la elección de los estadios tumorales, la exclusión o no de subtipos histológicos de gran importancia en el CNMP, así como a la falta, en algunos casos, de validación independiente (Roepman P. et al. Clin Cáncer Res 2009. 15:284-290; Chen HY et al. New Engl J Med 2007. 356(1 ):1 1 -20); Raponi M et al. Cáncer Res 2006 66:7466-7472; US20090062144; WO2010007093; Raz DJ et al. Clin Cáncer Res 2008 14(17):5565-5570). Currently, no markers of proven prognostic and predictive value that indicate the patient's progression are known in lung cancer (Karapaniagiotou E, et al. Open Lung Cancer J 2009. 2: 24-30). In CNMP, studies have been developed that use massive analysis platforms to obtain gene expression profiles that can be used as prognostic biomarkers. The results obtained have been disparate in terms of the genes to be included in the biomarker, perhaps due to the use of criteria different in terms of the inclusion of patients in the study, the collection of samples, the choice of tumor stages, the exclusion or not of histological subtypes of great importance in the CNMP, as well as the lack, in some cases, of validation independent (Roepman P. et al. Clin Cancer Res 2009. 15: 284-290; Chen HY et al. New Engl J Med 2007. 356 (1): 1 1 -20); Raponi M et al. Cancer Res 2006 66: 7466-7472; US20090062144; WO2010007093; Raz DJ et al. Clin Cancer Res 2008 14 (17): 5565-5570).
Por lo tanto existe la necesidad de desarrollar una herramienta alternativa que pueda ser usada clínicamente, que sea más efectiva que los factores de riesgo estándar en identificar aquellos pacientes completamente resecados que puedan beneficiarse de la quimioterapia adyuvante y distinguirlos de aquellos clasificados como pacientes de bajo riesgo de recurrencia y en los que la quimioterapia no sería necesaria. Además, la respuesta inmune antitumoral se considera actualmente un factor relacionado con el pronóstico de los pacientes. Se requiere por lo tanto un método robusto que sea capaz de estratificar pacientes con CNMP en grupos de buen y mal pronóstico y un método de clasificación de la respuesta inmune intratumoral {"inmunoscore"). DESCRIPCIÓN DE LA INVENCIÓN Therefore, there is a need to develop an alternative tool that can be used clinically, which is more effective than standard risk factors in identifying those completely resected patients who can benefit from adjuvant chemotherapy and distinguish them from those classified as low-risk patients. of recurrence and in which chemotherapy would not be necessary. In addition, the antitumor immune response is currently considered a factor related to the prognosis of patients. A robust method that is capable of stratifying patients with CNMP into groups of good and poor prognosis and a method of classification of the intratumoral immune response ("immunoscore") is therefore required. DESCRIPTION OF THE INVENTION
El problema técnico que resuelve la invención es el de proporcionar un método in vitro alternativo que determine la existencia de una respuesta inmune en el seno del carcinoma no microcítico de pulmón (CNMP) para la obtención de un tratamiento personalizado del paciente. The technical problem that the invention solves is that of providing an alternative in vitro method that determines the existence of an immune response within the non-small cell lung carcinoma (CNMP) to obtain a personalized treatment of the patient.
En la presente invención se describe un método in vitro para clasificar el CNMP que se caracteriza por la detección y/o cuantificación de un producto de expresión del conjunto de 50 genes, que se muestran en la tabla 1 en la muestra biológica de un sujeto. La presente invención también se refiere al uso de los productos de expresión de dichos 50 genes como biomarcadores pronóstico de cáncer de CNMP. El método de la invención proporciona un predictor de 50 genes para CNMP. La estrategia que se utilizó para la obtención de este predictor, comenzó por una detección y/o cuantificación de la expresión génica global de tumores de CNMP en estadios tempranos (I y II). En base a la expresión génica se realizó una clasificación molecular y una asociación con recidiva; la relación de los grupos moleculares con las variables histológicas y clínicas más importantes; la obtención de un predictor que identifica los grupos moleculares generados; la obtención de un predictor que diferencia un grupo de pacientes con buen pronóstico frente a un grupo de pacientes con mal pronóstico; y validación de los predictores con una serie externa. Finalmente, se observó que el método de la invención es útil para el pronóstico de CNMP. El predictor de la invención está constituido por 50 genes que se muestran en la tabla 1 , de ahora en adelante, los denominados "50 genes de la invención". In the present invention, an in vitro method is described for classifying the CNMP that is characterized by the detection and / or quantification of an expression product of the set of 50 genes, which are shown in Table 1 in the biological sample of a subject. The present invention also relates to the use of the expression products of said 50 genes as CNMP cancer prognostic biomarkers. The method of the invention provides a 50 gene predictor for CNMP. The strategy used to obtain this predictor began with a detection and / or quantification of the global gene expression of CNMP tumors in early stages (I and II). Based on gene expression, a molecular classification and an association with recurrence were performed; the relationship of molecular groups with the most important histological and clinical variables; obtaining a predictor that identifies the molecular groups generated; obtaining a predictor that differentiates a group of patients with a good prognosis compared to a group of patients with a poor prognosis; and validation of the predictors with an external series. Finally, it was found that the method of the invention is useful for CNMP prognosis. The predictor of the invention consists of 50 genes shown in Table 1, hereafter referred to as "50 genes of the invention".
Los 50 genes de la tabla 1 , están sobreexpresados en el grupo de buen pronóstico. La función descrita para dichos genes indica que su sobreexpresión se debe en gran medida a la presencia de una respuesta inmune intratumoral, lo que además se asocia a un mejor pronóstico. The 50 genes in table 1 are overexpressed in the good prognosis group. The function described for these genes indicates that their overexpression is largely due to the presence of an intratumoral immune response, which is also associated with a better prognosis.
Los 50 genes de la tabla 1 están relacionados en su mayor parte con elementos estructurales de las células del sistema inmune o con funciones inmunológicas (maduración, reclutamiento, proliferación y supervivencia), sobre todo en linfocitos B y células plasmáticas intratumorales. Muchos de dichos genes codifican para las moléculas de inmunoglobulina (Ig) (cadenas pesadas y ligeras constantes, la cadena J, las regiones variables de las cadenas pesadas y ligeras), el receptor de células B (CD79a), el marcador específico de linaje de célula B (CD19), el co-activador específico de la transcripción en las células B (POU2AF1 ) o el factor específico de plegado para el ensamblaje de IgM (pERpI ). También existen genes aunque no se expresan exclusivamente en las células B, tienen gran influencia en la homeostasis de este tipo celular, como el factor de maduración de las células B (TNFRSF17), que es una diana transcripcional putativa del factor de expresión sobreexpresado POU2AF1 (Zao C. et al. 2008 Oncogene 27: 63-75) y el receptor para el factor de activación de células B (Trung Chu V. et al 2007 J. Immunol 179: 5947-5957). Este es también el caso de SLAM7F (CD139), que induce la proliferación y la expresión de citoquinas autocrinas sobre los linfocitos B humanos (Lee JK, et al. 2007 J Immunol. 179(7): 4672-8), de CXCL13, una citoquina quimioatrayente de las células B (Sáez et al. Blood 201 1 , 1 1 ;1 18(6):1560-9), de IRF4, un miembro de la familia de factores de transcripción del factor regulador del interferón, que han demostrado tener funciones críticas en varias etapas del desarrollo de células B (Havelange V. et al. Blood 201 1 , 1 18(10):2827-9), o de CD38, que apoya la proliferación y la supervivencia de las células B (Malavasi et al. Blood, 201 1 , 1 18 (13) 3470-3478). Curiosamente, CD38 se expresa fuertemente en células plasmáticas así como el CD27, que es un marcador de las células de memoria que también se encuentra dentro de los 50 genes sobreexpresados en el presente estudio. Es interesante resaltar que Pim-2, una serina/treonina kinasa que también es uno de los 50 genes sobreexpresados, ha sido recientemente descrita como un mediador anti-apoptótico en las células plasmáticas (Asano et al. Leukemia 201 1 , 25, 1 182-1 188). Adicionalmente, un gen de la tabla 2 {Homo sapiens ephrin-A4 (EFNA4), transcript variant 3, mRNA), cuya referencia en la base de datos de genes del NCBI (National Centre for Biotechnology Information, U.S. National Library of Medicine) es NM_182690, esta sobreexpresado en el grupo de mal pronóstico. Este gen codifica para una proteína que impide la extravasación de los linfocitos a través del endotelio vascular para alcanzar al tumor, realizando así un efecto contrario al de los genes sobreexpresados en el grupo de buen pronóstico. The 50 genes in Table 1 are mostly related to structural elements of immune system cells or immune functions (maturation, recruitment, proliferation and survival), especially in B lymphocytes and intratumoral plasma cells. Many of these genes code for immunoglobulin (Ig) molecules (constant heavy and light chains, the J chain, the variable regions of the heavy and light chains), the B cell receptor (CD79a), the specific lineage marker of B cell (CD19), the specific transcription co-activator in B cells (POU2AF1) or the specific folding factor for IgM assembly (pERpI). There are also genes although they are not expressed exclusively in B cells, they have great influence on homeostasis of this cell type, such as the B cell maturation factor (TNFRSF17), which is a target Putative transcriptional expression of the overexpressed expression factor POU2AF1 (Zao C. et al. 2008 Oncogene 27: 63-75) and the receptor for the B cell activation factor (Trung Chu V. et al. 2007 J. Immunol 179: 5947-5957 ). This is also the case of SLAM7F (CD139), which induces the proliferation and expression of autocrine cytokines on human B lymphocytes (Lee JK, et al. 2007 J Immunol. 179 (7): 4672-8), of CXCL13, a chemoattractant cytokine of B cells (Sáez et al. Blood 201 1, 1 1; 1 18 (6): 1560-9), of IRF4, a member of the family of transcription factors of the interferon regulatory factor, which have shown to have critical functions in several stages of the development of B cells (Havelange V. et al. Blood 201 1, 1 18 (10): 2827-9), or of CD38, which supports the proliferation and survival of B cells ( Malavasi et al. Blood, 201 1, 1 18 (13) 3470-3478). Interestingly, CD38 is strongly expressed in plasma cells as well as CD27, which is a marker of memory cells that is also within the 50 overexpressed genes in the present study. It is interesting to note that Pim-2, a serine / threonine kinase that is also one of the 50 overexpressed genes, has recently been described as an anti-apoptotic mediator in plasma cells (Asano et al. Leukemia 201 1, 25, 1 182 -1 188). Additionally, a gene from table 2 {Homo sapiens ephrin-A4 (EFNA4), transcript variant 3, mRNA), whose reference in the NCBI (National Center for Biotechnology Information, US National Library of Medicine) gene database is NM_182690, is overexpressed in the group of poor prognosis. This gene codes for a protein that prevents extravasation of lymphocytes through the vascular endothelium to reach the tumor, thus effecting an opposite effect to the overexpressed genes in the good prognosis group.
En contraste con las células B/plasmáticas, no se encontraron genes específicos de linaje para las células T, células NK o macrófagos dentro de estos 50 genes de la tabla 1 pero genes como CD38, CD27 y la granzima B pueden ser expresados tanto en el linaje T como B aunque tradicionalmente se han asociado a linfocitos T citotóxicos y células NK (Hagn et al. 201 1 Immunology and Cell Biology , (2 August 201 1 ) | doi:10.1038/icb.201 1 .64). In contrast to B / plasma cells, no specific lineage genes were found for T cells, NK cells or macrophages within these 50 genes in table 1 but genes such as CD38, CD27 and granzyme B can be expressed in both lineage T as B although traditionally have associated cytotoxic T lymphocytes and NK cells (Hagn et al. 201 1 Immunology and Cell Biology, (2 August 201 1) | doi: 10.1038 / icb.201 1 .64).
Los datos aquí presentados indican que la inmunovigilancia está actuando como un importante factor pronóstico. De hecho, la necesidad de un "inmunoscore" para hacer un correcto pronóstico del cáncer es cada vez más imperiosa (Galón, et al. J Transí Med. 2012 Jan 3;10:1 ). Aunque los mecanismos de inmunidad con valor pronóstico se han relacionado principalmente a las células T (Broussad E.K. et al J. Clin Oncol 201 1 29(6) 602-603), la participación de las células B también se han descrito (Ascierto et al. Breast Cáncer Res Treat. 2012, 131 (3):871 -80). The data presented here indicate that immunovigilance is acting as an important prognostic factor. In fact, the need for an "immunoscore" to make a correct prognosis of cancer is becoming increasingly urgent (Galón, et al. J Transí Med. 2012 Jan 3; 10: 1). Although immunity mechanisms with prognostic value have been mainly related to T cells (Broussad EK et al. J. Clin Oncol 201 1 29 (6) 602-603), the participation of B cells has also been described (Ascierto et al Breast Cancer Res Treat. 2012, 131 (3): 871-80).
El término "predictor" se refiere en esta memoria a un perfil de expresión diferencial de genes o perfil de expresión génica. The term "predictor" refers herein to a differential gene expression profile or gene expression profile.
Se entiende por "perfil de expresión génica" el perfil génico obtenido tras la cuantificación del producto de expresión de los genes de interés. Se entiende por "producto de expresión", al ARN mensajero (ARNm), el ADN complementario (ADNc), el ARN complementario (ARNc) y/o la proteína producida por los genes de interés o biomarcadores, es decir, por los genes de la tabla 1 , en una muestra biológica aislada. "Gene expression profile" means the gene profile obtained after quantification of the expression product of the genes of interest. The term "expression product" means messenger RNA (mRNA), complementary DNA (cDNA), complementary RNA (cRNA) and / or the protein produced by the genes of interest or biomarkers, that is, by the genes of Table 1, in an isolated biological sample.
El perfil de expresión de los genes se realiza, preferiblemente, determinando el nivel de ARNm derivado de su transcripción, previa extracción del ARN total presente en la muestra biológica aislada, lo cual puede realizarse mediante protocolos conocidos en el estado de la técnica. La determinación del nivel de ARNm derivado de la transcripción de los genes de la tabla 1 puede realizarse, por ejemplo, aunque sin limitarnos, mediante amplificación por reacción en cadena de la polimerasa (PCR), retrotranscripcion en combinación con la reacción en cadena de la polimerasa (RT-PCR), RT-PCR cuantitativa, retrotranscripcion en combinación con la reacción en cadena de la ligasa (RT- LCR), o cualquier otro método de amplificación de ácidos nucleicos; análisis en serie de la expresión génica (SAGE, SuperSAGE); microarrays de ADN o de ARN elaborados con oligonucleótidos o sondas sintetizados in situ mediante fotolitografía o por cualquier otro mecanismo; hibridación in situ utilizando sondas específicas marcadas con cualquier método de mareaje; mediante geles de electroforesis; mediante transferencia a membrana e hibridación con una sonda específica; mediante resonancia magnética nuclear o cualquier otra técnica de diagnóstico por imagen utilizando nanopartículas paramagnéticas o cualquier otro tipo de nanopartículas detectables funcionalizadas con anticuerpos o por cualquier otro medio. El perfil de expresión génica también podría obtenerse mediante la detección y/o cuantificacion de las proteínas producto de la traducción del ARNm derivado de la transcripción de los genes de la tabla 1 , mediante por ejemplo, pero sin limitarnos, inmunodeteccion por inmuno blotting, inmunohistoquímica, cromatografía o microarrays. The expression profile of the genes is preferably performed by determining the level of mRNA derived from its transcription, after extracting the total RNA present in the isolated biological sample, which can be performed by protocols known in the state of the art. The level of mRNA derived from the transcription of the genes in Table 1 can be determined, for example, but not limited to, by amplification by polymerase chain reaction (PCR), back transcription in combination with the chain reaction of the polymerase (RT-PCR), quantitative RT-PCR, back transcription in combination with the ligase chain reaction (RT-LCR), or any other nucleic acid amplification method; analysis in gene expression series (SAGE, SuperSAGE); DNA or RNA microarrays made with oligonucleotides or probes synthesized in situ by photolithography or by any other mechanism; in situ hybridization using specific probes labeled with any method of marking; by electrophoresis gels; by membrane transfer and hybridization with a specific probe; by nuclear magnetic resonance or any other diagnostic imaging technique using paramagnetic nanoparticles or any other type of detectable nanoparticles functionalized with antibodies or by any other means. The gene expression profile could also be obtained by the detection and / or quantification of the proteins resulting from the translation of the mRNA derived from the transcription of the genes in Table 1, for example, but not limited to, immunodetection by immuno blotting, immunohistochemistry. , chromatography or microarray.
La presente invención podría referirse también a un método in vitro para clasificar el CNMP que se caracteriza por la detección del número de copias en el ADN de los 50 genes que se muestran en la tabla 1 , así como de las alteraciones epigenéticas como la hipermetilación del promotor de los genes o como de la alteración de la estabilidad del ARNm debido entre otros factores a modificaciones transcripcionales que afectan por ejemplo a la cola de Poli Adeninas. La presente invención también se refiere al uso de estas alteraciones de los 50 genes como biomarcadores pronósticos de cáncer de CNMP, como "inmunoscore" o como biomarcador predictor de respuesta a inmunoterapia. The present invention could also refer to an in vitro method for classifying the CNMP that is characterized by the detection of the number of copies in the DNA of the 50 genes shown in Table 1, as well as epigenetic alterations such as hypermethylation of the promoter of the genes or as of the alteration of the mRNA stability due among other factors to transcriptional modifications that affect for example the tail of Poly Adenines. The present invention also relates to the use of these 50 gene alterations as prognostic biomarkers of CNMP cancer, as "immunoscore" or as a biomarker predictive of immunotherapy response.
Finalmente el perfil de expresión génica también podría obtenerse mediante la detección y/o cuantificacion del número de copias de los genes presentes en la tabla 1 , así como de los niveles de alteraciones epigenéticas como el nivel de metilación del promotor o de los niveles de estabilidad del mensajero de estos mismos genes. Esta detección podría llevarse a cabo, aunque sin limitarse mediante microarrays, CGH (Hibridación genómica comparada) o FISH (hibridación in situ fluorescente). También podría hacerse a partir de material incluido en parafina. Finally, the gene expression profile could also be obtained by detecting and / or quantifying the number of copies of the genes present in Table 1, as well as the levels of epigenetic alterations such as the level of promoter methylation or stability levels of the messenger of these same genes. This detection could be carried out, although not limited by microarrays, CGH (Comparative Genomic Hybridization) or FISH (fluorescent in situ hybridization). It could also be made from material included in paraffin.
Esta invención también podría aplicarse para estadios avanzados (III y IV). This invention could also be applied for advanced stages (III and IV).
Por lo aquí descrito, un primer aspecto de la invención se refiere a un método in vitro de obtención de datos útiles para el pronóstico de CNMP en estadio I o II caracterizado por la detección y/o cuantificación del producto de expresión de los genes de la tabla 1 en la muestra biológica aislada de un sujeto. A partir de ahora nos referiremos a éste como al "método primero de la invención". As described herein, a first aspect of the invention relates to an in vitro method of obtaining useful data for the prognosis of stage I or II CNMP characterized by the detection and / or quantification of the expression product of the genes of the Table 1 in the isolated biological sample of a subject. From now on we will refer to this as the "first method of the invention".
El término "in vitro" se refiere a que el método de la invención se realiza fuera del cuerpo del sujeto. El término "pronóstico" en la presente invención se refiere a la capacidad de detectar pacientes que presentan una alta o baja probabilidad de recidiva tras la cirugía. Una alta probabilidad de recidiva se asocia a un mal pronóstico mientras que una baja probabilidad de recidiva se asocia a un buen pronóstico. Se entiende por "recidiva" la reaparición de la enfermedad, en este caso de un cáncer de pulmón. Las expresiones "probabilidad de no recidiva" y "probabilidad de ILE (intervalo libre de enfermedad)" se usan indistintamente en la presente memoria. The term "in vitro" refers to the method of the invention being performed outside the subject's body. The term "prognosis" in the present invention refers to the ability to detect patients who have a high or low probability of recurrence after surgery. A high probability of recurrence is associated with a poor prognosis while a low probability of recurrence is associated with a good prognosis. "Recurrence" is understood as the recurrence of the disease, in this case of lung cancer. The terms "probability of non-recurrence" and "probability of ILE (disease-free interval)" are used interchangeably herein.
El término "cáncer de pulmón no microcítico", "carcinoma no microcítico de pulmón" (CNMP), "carcinoma de pulmón no microcítico" (CPNM), o cáncer pulmonar de células no pequeñas (en inglés "non-small cell lung cáncer", NSCLC) se refiere a un tipo de cáncer o tumor de pulmón según clasificación histológica que comprende el subtipo carcinoma escamoso o epidermoide, adenocarcinoma, adenoescamoso, carcinoma sarcomatoide, y carcinoma de células grandes. Se entiende por "estadio" la fase o la clasificación del cáncer de pulmón en base a la clasificación TNM. La clasificación TNM se refiere al tamaño del tumor (T), la afectación de ganglios linfáticos (N) y la afectación de otros órganos (M). El estadio I se refiere a los subestadios IA o IB. El subestadio IA se refiere a los tumores de pulmón de clasificación T1 N0M0. El subestadio IB incluye los tumores de pulmón de clasificación T2aN0M0. El estadio II se refiere a cualquiera de los subestadios IIA o IIB. El subestadio IIA se refiere a los tumores de pulmón de clasificación T1 N1 M0, T2aN1 M0 y T2bN0M0. El subestadio IIB incluye los tumores de pulmón de clasificación T2bN1 M0 y T3N0M0. En la clasificación TNM, T1 se refiere a cuando el tumor < 3 cm de dimensión máxima, está rodeado por tejido pulmonar o pleura visceral y sin invasión proximal al bronquio lobar en fibrobroncoscopia. El T1 a es un tumor < 2 cm y el T1 b es un tumor > 2cm y < 3cm. T2 se refiere a un tumor > 3 cm de dimensión máxima y < 7 cm o un tumor con al menos una de las siguientes características: infiltrar el bronquio principal a 2 cm o menos de la carina, invadir pleura visceral o asociarse con atelectasias o neumonitis obstructiva. T2a es un tumor > 3 cm y < 5 cm y T2b es un tumor > 5 y < 7 cm. T3 se refiere a un tumor > 7 cm o un tumor que afecta a la pared costal (incluidos los tumores de la cisura superior), diafragma, pleura mediastínica o pericardio; sin afectación del corazón, grandes vasos, tráquea, esófago, cuerpos vertebrales; o un tumor del bronquio principal a menos de 2 cm de la carina, sin infiltración de la misma; donde la atelectasia afecta a todo un pulmón y puede existir derrame pleural no maligno. NO se refiere al tumor de pulmón sin afectación de los ganglios linfáticos. N1 se refiere al tumor que presenta afectación de los ganglios linfáticos peribronquiales o hiliares ipsilaterales o ambos. M0 se refiere al tumor de pulmón que no presenta metástasis a distancia. The term "non-small cell lung cancer", "non-small cell lung carcinoma" (CNMP), "non-small cell lung carcinoma" (NSCLC), or non-small cell lung cancer ("non-small cell lung cancer") , NSCLC) refers to a type of lung cancer or tumor according to histological classification comprising the subtype squamous or squamous cell carcinoma, adenocarcinoma, adenoescamoso, sarcomatoid carcinoma, and large cell carcinoma. "Stage" means the phase or classification of lung cancer based on the TNM classification. The TNM classification refers to tumor size (T), lymph node involvement (N) and involvement of other organs (M). Stage I refers to the IA or IB substations. The IA substation refers to lung tumors classified as T1 N0M0. The IB substation includes lung tumors classified as T2aN0M0. Stage II refers to any of the IIA or IIB substations. Sub-stage IIA refers to lung tumors classified as T1 N1 M0, T2aN1 M0 and T2bN0M0. Sub-stage IIB includes lung tumors classified as T2bN1 M0 and T3N0M0. In the TNM classification, T1 refers to when the tumor <3 cm of maximum dimension, is surrounded by lung tissue or visceral pleura and without invasion proximal to the lobar bronchus in fibrobronchoscopy. T1 a is a tumor <2 cm and T1 b is a tumor> 2cm and <3cm. T2 refers to a tumor> 3 cm in maximum dimension and <7 cm or a tumor with at least one of the following characteristics: infiltrate the main bronchus 2 cm or less from the carina, invade visceral pleura or be associated with atelectasis or pneumonitis obstructive T2a is a tumor> 3 cm and <5 cm and T2b is a tumor> 5 and <7 cm. T3 refers to a tumor> 7 cm or a tumor that affects the costal wall (including tumors of the upper fissure), diaphragm, mediastinal pleura or pericardium; no involvement of the heart, large vessels, trachea, esophagus, vertebral bodies; or a tumor of the main bronchus less than 2 cm from the carina, without infiltration thereof; where atelectasis affects an entire lung and there may be non-malignant pleural effusion. It does NOT refer to the lung tumor without lymph node involvement. N1 refers to the tumor that has involvement of the ipsilateral peribronchial or hilar lymph nodes or both. M0 refers to the lung tumor that does not have distant metastases.
En la presente invención los términos "estadios tempranos", "estadios iniciales" o "estadios precoces" se refieren a estadio I o II de CNMP. El término "inmunoscore" se refiere a un método para clasificar la respuesta inmune intratumoral (Galón 2012). En la presente invención, mediante la detección y/o cuantificacion de la expresión de los 50 genes de la tabla 1 , es posible identificar un grupo de pacientes con presencia de una respuesta inmune intratumoral asociada a buen pronóstico frente a un grupo en el que no se identifica respuesta inmune intratumoral que se asocia a mal pronóstico. In the present invention the terms "early stages", "initial stages" or "early stages" refer to CNMP stage I or II. The term "immunoscore" refers to a method to classify the intratumoral immune response (Galón 2012). In the present invention, by detecting and / or quantifying the expression of the 50 genes in Table 1, it is possible to identify a group of patients with the presence of an intratumoral immune response associated with a good prognosis against a group in which no intratumoral immune response is identified that is associated with poor prognosis.
El término "inmunoterapia" se refiere a una terapia o tratamiento contra el cáncer basado o relacionado con la actuación del sistema inmunológico del individuo en el que ocurre el tumor, mediante la facilitación de un reconocimiento y respuesta inmune antitumoral o impidiendo actuaciones del sistema inmunológico que favorecen el crecimiento tumoral. The term "immunotherapy" refers to a therapy or treatment against cancer based on or related to the performance of the immune system of the individual in which the tumor occurs, by facilitating an antitumor immune response and recognition or by preventing actions of the immune system that favor tumor growth.
El término "genes de la tabla 1 " o "50 genes" se refiere a los 50 genes descritos en la tabla 1 que se muestra a continuación. The term "genes from table 1" or "50 genes" refers to the 50 genes described in table 1 shown below.
Los términos "Identificador Entrez" o "ID Entrez" se refieren al número de referencia del gen en la base de datos de genes del NCBI (National Centre for Biotechnology Information, U.S. National Library of Medicine). The terms "Entrez Identifier" or "Entrez ID" refer to the gene reference number in the NCBI (National Center for Biotechnology Information, U.S. National Library of Medicine) gene database.
Figure imgf000012_0001
Figure imgf000013_0001
Figure imgf000012_0001
Figure imgf000013_0001
Figure imgf000014_0001
Figure imgf000014_0001
A continuación se muestra una breve descripción de algunas de las funciones conocidas de los genes presentados en la tabla 1 : AMPD1: Cataliza la deaminacion de la adenosina monofosfato (AMP) a inosina monofosfato (IMP) en el músculo esquelético y tiene un importante papel en el ciclo de las purinas. Below is a brief description of some of the known functions of the genes presented in Table 1: AMPD1: It catalyzes the deamination of adenosine monophosphate (AMP) to inosine monophosphate (IMP) in skeletal muscle and plays an important role in The purines cycle.
TNFRSF17: Este receptor se expresa en linfocitos B maduros y es importante para el desarrollo de las células B y en la respuesta autoinmune. Tiene como ligando al miembro 13b de la superfamilia del factor de necrosis tumoral y activa el factor nuclear del potenciador del gen polipetídico de la cadena ligera Kappa en células B (NF-kappaB) y la proteína kinasa activada por mitógeno 8 (MAPK8/JNK). También se une a otros ligandos y envía señales de supervivencia celular y proliferación. CD19: Molécula que se une al receptor de antígenos de los linfocitos B para disminuir el umbral de estimulación de los linfocitos a través de la estimulación por antígeno. TNFRSF17: This receptor is expressed in mature B lymphocytes and is important for the development of B cells and in the autoimmune response. It has as ligand member 13b of the tumor necrosis factor superfamily and activates the nuclear factor of the light chain polypeptide gene enhancer Kappa in B cells (NF-kappaB) and mitogen-activated protein kinase 8 (MAPK8 / JNK). It also binds to other ligands and sends signals of cell survival and proliferation. CD19: A molecule that binds to the B-cell antigen receptor to lower the threshold of lymphocyte stimulation through antigen stimulation.
CD27: Miembro de la superfamilia del receptor del factor de necrosis tumoral. El receptor tiene la función de generar y mantener durante largo tiempo la inmunidad de las células T. El ligando CD70 se une a él y funciona en la activación de las células B y en la síntesis de inmunoglobulinas. Las proteínas adaptadoras denominadas Factor Asociado a Receptores de Factores de Necrosis Tumoral 2 y 5 (TRAF2 y TRAF5) median en este proceso. La proteína de unión a CD27 (SIVA) es una proteína proapoptotica que juega un importante papel en la apoptosis mediada por este receptor. CD27: Member of the tumor necrosis factor receptor superfamily. The receptor has the function of generating and maintaining for a long time the immunity of T cells. The CD70 ligand binds to it and works in the activation of B cells and in the synthesis of immunoglobulins. The adapter proteins called Factor Associated to Receptors of Tumor Necrosis Factors 2 and 5 (TRAF2 and TRAF5) mediate this process. CD27 binding protein (SIVA) is a proapoptotic protein that plays an important role in apoptosis mediated by this receptor.
CD38: Es una ectoenzima multifuncional que se expresa en multitud de células y tejidos especialmente en leucocitos. CD38 también tiene funciones en la adhesión celular, transducción de señales y señalización por calcio. CD38: It is a multifunctional ectoenzyme that is expressed in a multitude of cells and tissues especially in leukocytes. CD38 also has functions in cell adhesion, signal transduction and calcium signaling.
CD79A y CD79B: codifican para las proteínas lg-alpha e lg-beta que son componentes del receptor antigénico de linfocitos B. Las moléculas lg-alfa e lg- beta son necesarias para la expresión y función de este receptor. CD79A and CD79B: code for the lg-alpha and lg-beta proteins that are components of the B lymphocyte antigen receptor. The lg-alpha and lg-beta molecules are necessary for the expression and function of this receptor.
GZMB: Los linfocitos T citolíticos (CTL) y las células "natural killer" (NK) tienen la habilidad de reconocer, unir y lisar células diana específicas. La GZMB es crucial para la rápida inducción de la apoptosis de las células diana a través de la respuesta inmune generada por los linfocitos T citolíticos o incluso en la mediada por linfocitos B. IGHA1 e IGHA2: Anticuerpo con una importante presencia en las secreciones mucosas y que representa la primera línea de defensa del organismo. Existen dos subclases Inmunoglobulina A1 (lgA1 ) e Inmunoglobulina (lgA2). IGHG1: Este gen se encuentra traslocado en la leucemia linfocítica crónica de células B con el gen Ciclina D1 (CCND1 ) y en subclases de linfomas MALT (Tejido Linfoide Asociado a Mucosa) con los genes "LIM homeobox 4" (LHX4) y "Forkhead box P1 " (FOXP1 ). IGJ: Su función es unir dos monómeros o bien de Inmunoglobulina M (IgM) o bien de Inmunoglobulina A (IgA). También tiene la función de unir estas inmunoglobulinas al componente secretor. GZMB: Cytolytic T lymphocytes (CTL) and "natural killer" cells (NK) have the ability to recognize, bind and lyse specific target cells. GZMB is crucial for the rapid induction of apoptosis of the target cells through the immune response generated by the cytolytic T lymphocytes or even in the mediated by B lymphocytes. IGHA1 and IGHA2: Antibody with an important presence in the mucous secretions and that represents the first line of defense of the organism. There are two subclasses Immunoglobulin A1 (lgA1) and Immunoglobulin (lgA2). IGHG1: This gene is translocated in chronic B-cell lymphocytic leukemia with the Cyclin D1 gene (CCND1) and in subclasses of MALT lymphomas (Mucosa Associated Lymphoid Tissue) with the genes "LIM homeobox 4" (LHX4) and "Forkhead box P1 "(FOXP1). IGJ: Its function is to join two monomers of either Immunoglobulin M (IgM) or Immunoglobulin A (IgA). It also has the function of binding these immunoglobulins to the secretory component.
\GL@: Cada molécula de inmunoglobulina tiene dos cadenas pesadas idénticas y dos cadenas ligeras idénticas. Hay dos clases de cadenas ligeras que son kappa y lambda. Este gen abarca el locus de la cadena ligera lambda que incluye el segmento V (variable), segmento J (unión) y segmento C (constante). IGLL1: Es un gen de la superfamilia de las inmunoglobulinas que codifica para la cadena ligera sustitutiva del receptor de células preB. Mutaciones en este gen pueden producir deficiencia de células B o agammaglobulinemia. @ GL: Each immunoglobulin molecule has two identical heavy chains and two identical light chains. There are two kinds of light chains that are kappa and lambda. This gene encompasses the lambda light chain locus that includes segment V (variable), segment J (junction) and segment C (constant). IGLL1: It is a gene of the immunoglobulin superfamily that codes for the light chain replacing the preB cell receptor. Mutations in this gene can cause B-cell deficiency or agammaglobulinemia.
IRF4: Pertenece a la familia de factores reguladores del interferón. Es específico de linfocitos y regula negativamente los receptores tipo Toll (o TLR), que es una molécula central en la activación de la respuesta inmune innata y adaptativa. IRF4: It belongs to the family of interferon regulatory factors. It is lymphocyte specific and negatively regulates Toll-like receptors (or TLR), which is a central molecule in the activation of the innate and adaptive immune response.
KCNN3: Regula la excitabilidad neuronal. KCNN3: Regulates neuronal excitability.
KRT81: Es un miembro de la familia de keratinas. CXCL9: Su función no está bien definida pero parece que está implicado en el tráfico de células T. KRT81: It is a member of the keratin family. CXCL9: Its function is not well defined but it seems to be involved in T-cell traffic.
PNOC: Es un neuropéptido que actúa como ligando endógeno del receptor "Opiate Receptor-Like 1 " (ORL1 ). PNOC: It is a neuropeptide that acts as an endogenous ligand of the "Opiate Receptor-Like 1" receptor (ORL1).
POU2AF1: Es un coactivador específico de células B y su ausencia parece estar relacionada con defectos en el desarrollo de células B y con la falta de centros germinales. POU2AF1: It is a specific co-activator of B cells and its absence seems to be related to defects in the development of B cells and the lack of germ centers.
BFSP2: también denominada faquinina, es una proteína estructural de filamentos del citoesqueleto. Junto a la filensina forma el BF ("beaded filament"). BFSP2: also called phakinin, it is a structural protein of cytoskeleton filaments. Next to the filensin forms the BF ("beaded filament").
CXCL13: Promueve la migración de linfocitos B preferentemente frente a linfocitos T y macrófagos mediante estimulación con calcio. CXCL13: Promotes the migration of B lymphocytes preferably against T lymphocytes and macrophages by calcium stimulation.
PIM2: Es una serin/treonin/protein kinasa. Previene apoptosis y promueve supervivencia celular. Es un mediador anti-apoptótico de células plasmáticas. SMR3A: Es un homólogo funcional del gen Vcsal ("Variable Coding Sequence A1 "). Se ha asociado como un marcador de la disfunción eréctil asociada con etiología tanto diabética como no diabética. PIM2: It is a serin / threonine / protein kinase. Prevents apoptosis and promotes cell survival. It is an anti-apoptotic mediator of plasma cells. SMR3A: It is a functional homolog of the Vcsal gene ("Variable Coding Sequence A1"). It has been associated as a marker of erectile dysfunction associated with both diabetic and non-diabetic etiology.
MZB1: Está asociada con las cadenas pesadas y ligeras de la inmunoglobulina tipo M (IgM), promoviendo el ensamblaje de la IgM y su secreción. MZB1: It is associated with the heavy and light chains of immunoglobulin type M (IgM), promoting the assembly of IgM and its secretion.
FKBP11: Pertenece a la familia FKBP las cuales catalizan el plegamiento de los polipéptidos que contienen prolina. Su función es inhibida por FK506 y por rapamicina. FKBP11: It belongs to the FKBP family which catalyze the folding of proline-containing polypeptides. Its function is inhibited by FK506 and by rapamycin.
LAX1: Un regulador negativo de la señalización de linfocitos. CPNE5: Proteína de unión a membrana dependiente de calcio que parece estar implicada en la regulación de fenómenos moleculares en la interfase de la membrana celular y en el citoplasma. SLAM7: Está implicada en la activación de células NK y en la regulación de la proliferación de linfocitos B durante la respuesta inmune. LAX1: A negative regulator of lymphocyte signaling. CPNE5: Calcium-dependent membrane binding protein that appears to be involved in the regulation of molecular phenomena at the interface of the cell membrane and in the cytoplasm. SLAM7: It is involved in the activation of NK cells and in the regulation of B lymphocyte proliferation during the immune response.
DUSP26: Está asociado con la inactivación de la Proteína Kinasa activada por mitógenos 1 y 3 (MAPK1 y MAPK3), así como con la inhibición de la proliferación de células epiteliales, lo que podría sugerir un papel como gen supresor de tumores. DUSP26: It is associated with the inactivation of the protein kinase activated by mitogens 1 and 3 (MAPK1 and MAPK3), as well as with the inhibition of epithelial cell proliferation, which could suggest a role as a tumor suppressor gene.
FCRL2: Forma parte de la superfamilia de receptores de inmunoglobulinas. Puede ser un marcador pronóstico de leucemia linfocítica crónica. FCRL2: It is part of the immunoglobulin receptor superfamily. It can be a prognostic marker of chronic lymphocytic leukemia.
FCRL5: También es parte de la superfamilia de receptores de inmunoglobulinas. Está implicado en el desarrollo de células B y en la linfomagénesis. FCRL5: It is also part of the immunoglobulin receptor superfamily. It is involved in the development of B cells and lymphomagenesis.
FCRLA: Este receptor media la destrucción de los antígenos reconocidos por la Inmunoglobulina G (IgG). Es proteína selectiva de células B y puede estar implicada en su desarrollo.  FCRLA: This receptor mediates the destruction of antigens recognized by Immunoglobulin G (IgG). It is selective B cell protein and may be involved in its development.
DERL3: Proteína que se ubica en el retículo endoplasmático con la función de degradar glicoproteínas mal plegadas. DERL3: Protein that is located in the endoplasmic reticulum with the function of degrading misfolded glycoproteins.
MTSS1L: Puede estar implicada en el empaquetamiento de la actina. Pertenece a la familia MTSS1 (Supresores de Metástasis Tipo 1 ). MTSS1L: May be involved in actin packaging. It belongs to the MTSS1 family (Type 1 Metastasis Suppressors).
JSRP1: El retículo sarcoplasmático es un compartimento celular que controla la concentración de calcio intracelular y está implicado en las funciones de excitación-contracción de este compartimento celular. En ratones se ha visto que esta proteína interacciona con proteínas claves implicadas en estos procesos de excitación-contracción. JSRP1: The sarcoplasmic reticulum is a cellular compartment that controls the concentration of intracellular calcium and is involved in the excitation-contraction functions of this cellular compartment. In mice it has been seen This protein interacts with key proteins involved in these excitation-contraction processes.
C5orf20: Este gen se expresa en células dendríticas, que son potentes células presentadoras de antígenos implicadas en activar las células T nativas para iniciar la respuesta inmune específica de antígeno. C5orf20: This gene is expressed in dendritic cells, which are potent antigen presenting cells involved in activating native T cells to initiate the antigen-specific immune response.
MEI1: Defectos en su expresión están relacionados con parada en meiosis y se asocia a fenómenos de azoospermia. MEI1: Defects in its expression are related to stopping in meiosis and is associated with azoospermia phenomena.
GPR114: Proteína G asociada a receptores con un extremo N terminal que contiene regiones ricas en serina/treonina. Se ha descrito su expresión en linfocitos citotóxicos. IGHV5-78, FER1L4, IGKV1D-8, KIAA0125, LOC401847, LOC642424, LOC100132941, LOC100133862, LOC100287723, IGHV1-24 y LOC100293440: a día de hoy, todavía no se conoce la función de estos genes. GPR114: Protein G associated with receptors with an N-terminus that contains regions rich in serine / threonine. Its expression in cytotoxic lymphocytes has been described. IGHV5-78, FER1L4, IGKV1D-8, KIAA0125, LOC401847, LOC642424, LOC100132941, LOC100133862, LOC100287723, IGHV1-24 and LOC100293440: as of today, the function of these genes is still unknown.
El término "muestra biológica" incluye, pero sin limitarnos, tejidos y/o fluidos biológicos de un individuo, obtenidos mediante cualquier método conocido por un experto en la materia que sirva para tal fin. The term "biological sample" includes, but is not limited to, tissues and / or biological fluids of an individual, obtained by any method known to a person skilled in the art that serves this purpose.
El término "sujeto" se refiere a un individuo, preferentemente humano, que ha sido diagnosticado de CNMP. The term "subject" refers to an individual, preferably human, who has been diagnosed with CNMP.
Una realización preferida del primer aspecto de la invención se refiere a un método que además comprende la comparación de los datos útiles obtenidos de la muestra biológica aislada de un nuevo sujeto, con los valores de expresión de referencia para los genes de la tabla 1 obtenidos de sujetos con CNMP estadio I o II en los que el pronóstico es conocido (muestra de referencia). La comparación permite la identificación del nuevo sujeto como un sujeto de buen pronóstico o de mal pronóstico. A partir de ahora, nos referiremos a este método como al "método segundo de la invención". A preferred embodiment of the first aspect of the invention relates to a method that further comprises comparing the useful data obtained from the isolated biological sample of a new subject, with the reference expression values for the genes in Table 1 obtained from subjects with CNMP stage I or II in which the prognosis is known (reference sample). The comparison allows the identification of the new subject as a subject of good prognosis or bad prognosis. From now on, we will refer to this method as the "second method of the invention".
El término "muestras de referencia" tal como se entiende en la presente invención se refiere, por ejemplo, pero sin limitarse, a las muestras obtenidas de individuos que presenten un perfil molecular conocido. Este perfil molecular puede ser de buen pronóstico o de mal pronóstico. The term "reference samples" as understood in the present invention refers, for example, but not limited to samples obtained from individuals having a known molecular profile. This molecular profile can be of good prognosis or of poor prognosis.
Un experto en la materia podría clasificar un nuevo paciente en el grupo de buen o en el grupo de mal pronóstico al comparar sus datos de expresión para los 50 genes de la invención con los datos de expresión para los 50 genes en las muestras de referencia. Estas muestras de referencia son un grupo de muestras de las que se conoce el perfil de expresión de los 50 genes y la presencia o no de recidiva. Por ejemplo, pero sin limitarse, un nuevo sujeto cuyo perfil de expresión sea similar al grupo de referencia de buen pronóstico puede ser clasificado como perteneciente al grupo de buen pronóstico, el cual tiene una probabilidad media de ILE a los 3 años del 85% y/o a los 5 años del 79%. Por ejemplo, pero sin limitarse, un nuevo sujeto cuyo perfil de expresión sea similar al grupo de referencia de mal pronóstico puede ser clasificado como perteneciente al grupo de mal pronóstico, el cual tiene una probabilidad media de ILE a los 3 años del 62% y/o a los 5 años del 48%. A person skilled in the art could classify a new patient in the group of good or in the group of poor prognosis when comparing his expression data for the 50 genes of the invention with the expression data for the 50 genes in the reference samples. These reference samples are a group of samples of which the expression profile of the 50 genes is known and the presence or absence of recurrence. For example, but not limited to, a new subject whose expression profile is similar to the good prognosis reference group can be classified as belonging to the good prognosis group, which has an average 3-year probability of ILE at 85% and / or 5 years of 79%. For example, but not limited to, a new subject whose expression profile is similar to the bad prognosis reference group can be classified as belonging to the bad prognosis group, which has an average 3-year probability of ILE at 62% and / or 5 years of 48%.
La determinación del pronóstico de nuevos pacientes diagnosticados con CNMP en estadios I o II implica la clasificación de esos pacientes en uno de los dos grupos de referencia previamente definidos: grupo de buen pronóstico o grupo de mal pronóstico. Estos grupos de referencia están constituidos por las muestras de referencia. The determination of the prognosis of new patients diagnosed with CNMP in stages I or II implies the classification of these patients into one of the two previously defined reference groups: a group with a good prognosis or a group with a poor prognosis. These reference groups consist of the reference samples.
La comparación de los datos útiles obtenidos de la muestra biológica de un nuevo sujeto, con los valores de expresión de referencia para los genes de la tabla 1 obtenidos de sujetos con CNMP estadio I o II en los que el pronóstico es conocido (muestra de referencia), puede llevarse a cabo mediante cualquier método estadístico de predicción conocido en el estado de la técnica, como por ejemplo, pero sin limitarse, en cualquiera de los métodos descritos en Simón R. et al. J Clin Oncol 2005; 23:7332-41 . En una realización preferida del método segundo de la invención, la comparación se realiza mediante el método del centroide compacto más cercano. En adelante, el "método tercero de la invención". The comparison of the useful data obtained from the biological sample of a new subject, with the reference expression values for the genes of table 1 obtained from subjects with CNMP stage I or II in which the prognosis is known (reference sample ), can be carried out by any statistical prediction method known in the state of the art, such as, but not limited to, in any of the methods described in Simón R. et al. J Clin Oncol 2005; 23: 7332-41. In a preferred embodiment of the second method of the invention, the comparison is made by the nearest compact centroid method. Hereinafter, the "third method of the invention".
Se entiende como el "método del centroide compacto más cercano" ("nearest shrunken centroid method") el método de clasificación descrito en Tibshirani R. et al. PNAS. 2002, 99:6567-6572 y aplicado a través de la herramienta Predicción de Análisis por Microarrays ("Prediction analysis of microarrays" o PAM). La herramienta "PAM" fue desarrollada por la Universidad de Standford y es de libre acceso. The "closest shrunken centroid method" is the classification method described in Tibshirani R. et al. PNAS 2002, 99: 6567-6572 and applied through the Prediction analysis of microarray tool (PAM). The "PAM" tool was developed by Standford University and is freely accessible.
La determinación del pronóstico de CNMP de estadios I o II puede establecerse, aunque sin limitarse, mediante la determinación de un "valor de referencia" para el grupo de buen pronóstico (valor 1 ) y de otro para el grupo de mal pronostico (valor 2). El pronóstico puede realizarse estimando la distancia entre los valores de expresión de la nueva muestra y los "valores de referencia" de cada uno de los dos grupos. Si la distancia entre la nueva muestra y el valor 1 es menor que la distancia entre la nueva muestra y el valor 2, se podrá determinar el pronóstico favorable. Por el contrario, si la distancia entre la nueva muestra y el valor 1 es mayor que la distancia entre la nueva muestra y valor 2, se podrá determinar el pronóstico desfavorable. The determination of the CNMP prognosis of stages I or II can be established, but not limited, by determining a "reference value" for the group of good prognosis (value 1) and another for the group of poor prognosis (value 2 ). The forecast can be made by estimating the distance between the expression values of the new sample and the "reference values" of each of the two groups. If the distance between the new sample and the value 1 is less than the distance between the new sample and the value 2, the favorable forecast can be determined. On the contrary, if the distance between the new sample and the value 1 is greater than the distance between the new sample and value 2, the unfavorable forecast can be determined.
Los valores de referencia de cada grupo, se pueden calcular en base a los valores de expresión de los 50 genes en las muestras de la matriz de referencia o "matriz de desarrollo" y vendrán expresados por tanto mediante un vector de 50 componentes. El cálculo del valor de referencia de cada grupo (en nuestro caso el grupo de buen pronóstico y el grupo de mal pronóstico), se obtiene de sumar al valor promedio global de todas las muestras, un segundo factor definido como la distancia (estadístico "t") entre el valor promedio de expresión de los 50 genes de dicho grupo con respecto al valor promedio de expresión de los 50 genes de todas las muestras incluidas en la matriz de entrenamiento. Los datos del segundo factor serán estandarizados teniendo en cuenta, la variabilidad de expresión de cada uno de los 50 genes dentro del grupo analizado y teniendo en cuenta un valor de convergencia Δ que permite evaluar el poder predictivo de cada uno de los genes. Se entiende como distancia entre dos muestras, grupos o subtipos, la cuantificación de sus diferencias de expresión. The reference values of each group can be calculated based on the expression values of the 50 genes in the samples of the reference matrix or "development matrix" and will therefore be expressed by a vector of 50 components. The calculation of the reference value of each group (in our case the group of good prognosis and the group of bad prognosis), is obtained by adding to the global average value of all the samples, a second factor defined as the distance (statistic "t") between the average expression value of the 50 genes of said group with respect to the average expression value of the 50 genes of all the samples included in the training matrix. The data of the second factor will be standardized taking into account the variability of expression of each of the 50 genes within the analyzed group and taking into account a convergence value Δ that allows to evaluate the predictive power of each of the genes. It is understood as distance between two samples, groups or subtypes, the quantification of their expression differences.
Aunque el valor final de referencia o "shrunken centroid" obtenido para cada grupo se basa en los valores de expresión, su valor real es adimensional y no es directamente proporcional a los datos de fluorescencia inicialmente obtenidos en cada muestra. Dicho valor de referencia, en cada grupo, contiene 50 componentes, una por cada uno de los genes analizados. Although the final reference value or "shrunken centroid" obtained for each group is based on the expression values, its actual value is dimensionless and is not directly proportional to the fluorescence data initially obtained in each sample. Said reference value, in each group, contains 50 components, one for each of the genes analyzed.
Una vez calculados los valores de referencia para cada grupo, el método del "nearest shrunken centroid", es capaz de asignar nuevas muestras (que en nuestro caso conforman la matriz de validación) a cada uno de los grupos definidos. La distancia entre la nueva muestra y cada uno de los grupos es relativa a la diferencia entre los valores de expresión de los 50 genes en la muestra nueva con respecto a las componentes del centroide compacto ("shrunken centroid") que representan cada grupo. La cuantificación de las distancias podrían medirse, aunque sin limitarse, mediante la distancia euclidea (Tibshirani R. Diagnosis of múltiple cáncer types by shrunken centroids of gene expression. PNAS 2002; 99(10):6567-72). Como se mencionó con anterioridad, la nueva muestra será asignada al grupo del que se encuentre a una menor distancia. Por todo lo aquí descrito, un segundo aspecto de la invención se refiere a un método in vitro para el pronóstico del CNMP de estadio I o II caracterizado por: a. la detección y cuantificación del producto de expresión de los genes de la tabla 1 en una muestra de referencia; Once the reference values for each group have been calculated, the "closest shrunken centroid" method is able to assign new samples (which in our case make up the validation matrix) to each of the defined groups. The distance between the new sample and each of the groups is relative to the difference between the expression values of the 50 genes in the new sample with respect to the components of the compact centroid ("shrunken centroid") that represent each group. The quantification of distances could be measured, but not limited, by Euclidean distance (Tibshirani R. Diagnosis of multiple cancer types by shrunken centroids of gene expression. PNAS 2002; 99 (10): 6567-72). As mentioned earlier, the new sample will be assigned to the group from which it is at a smaller distance. For all that is described herein, a second aspect of the invention relates to an in vitro method for the prognosis of stage I or II CNMP characterized by: to. the detection and quantification of the expression product of the genes of table 1 in a reference sample;
b. el cálculo de un valor de referencia (valor 1 ) para cada producto de expresión de los genes de la tabla 1 en las muestras de referencia de pronóstico favorable (grupo de buen pronóstico) y el cálculo de un valor de referencia (valor 2) en las muestras de referencia de pronóstico desfavorable (grupo de mal pronóstico) mediante el uso del método del centroide más cercano;  b. the calculation of a reference value (value 1) for each expression product of the genes in table 1 in the favorable prognostic reference samples (good prognosis group) and the calculation of a reference value (value 2) in unfavorable prognosis reference samples (poor prognosis group) by using the nearest centroid method;
c. la detección y cuantificación del producto de expresión de los genes de la tabla 1 en la muestra biológica de un nuevo sujeto en el que el pronóstico es desconocido (muestra de estudio);  C. the detection and quantification of the expression product of the genes of table 1 in the biological sample of a new subject in which the prognosis is unknown (study sample);
d. la comparación mediante el uso del método de clasificación del centroide compacto más cercano de los valores obtenidos en la detección y cuantificación del producto de expresión de los genes de la tabla 1 en la muestra de estudio con los valores de referencia obtenidos en los grupos de buen y mal pronóstico. e. la asociación de la muestra de estudio al grupo de buen pronóstico o al grupo de mal pronóstico según lo establecido en el método del centroide compacto más cercano.  d. the comparison by using the closest compact centroid classification method of the values obtained in the detection and quantification of the expression product of the genes of table 1 in the study sample with the reference values obtained in the groups of good and bad prognosis. and. the association of the study sample to the group of good prognosis or the group of poor prognosis as established in the method of the nearest compact centroid.
En adelante este método se denominará "método cuarto de la invención". Hereinafter this method will be called "fourth method of the invention".
Una realización preferida del método cuarto de la invención se refiere al método donde el método del centroide compacto más cercano se lleva a cabo a través de la aplicación de Predicción de Análisis de Microarrays (PAM). A preferred embodiment of the fourth method of the invention relates to the method where the nearest compact centroid method is carried out through the application of Microarray Analysis Prediction (PAM).
Una realización preferida del primer y del segundo aspecto de la invención, se refiere al método donde la muestra de referencia y las muestras de estudio han sido previamente normalizadas antes de la comparación. A preferred embodiment of the first and second aspects of the invention refers to the method where the reference sample and the study samples have been previously normalized before comparison.
Se entiende por "normalización" la utilización de una muestra control que sirva para eliminar variaciones experimentales entre las distintas muestras. Otra realización preferida del primer y del segundo aspecto de la invención, se refiere al método que además comprende la detección y/o cuantificación de al menos un producto de expresión de los genes descritos en la tabla 2. "Normalization" means the use of a control sample that serves to eliminate experimental variations between the different samples. Another preferred embodiment of the first and second aspects of the invention refers to the method that also comprises the detection and / or quantification of at least one expression product of the genes described in Table 2.
Otra realización preferida del primer y del segundo aspecto de la invención, se refiere al método donde el producto de expresión es ARN mensajero. Una realización aún más preferida se refiere al método donde la detección y/o cuantificación del ARN mensajero se realiza mediante microarrays. Una realización también más preferida se refiere al método donde la detección y/o cuantificación del ARN mensajero se realiza mediante RT-PCR. Another preferred embodiment of the first and second aspects of the invention relates to the method where the expression product is messenger RNA. An even more preferred embodiment refers to the method where the detection and / or quantification of messenger RNA is performed by microarrays. A more preferred embodiment also refers to the method where the detection and / or quantification of messenger RNA is performed by RT-PCR.
Otra realización preferida del primer y del segundo aspecto de la invención, se refiere al método donde el producto de expresión es una proteína. Una realización aún más preferida se refiere al método donde la detección y/o cuantificación de la proteína se realiza mediante inmuno blotting, inmunohistoquímica, cromatografía o microarrays. Another preferred embodiment of the first and second aspects of the invention relates to the method where the expression product is a protein. An even more preferred embodiment refers to the method where the detection and / or quantification of the protein is performed by immuno blotting, immunohistochemistry, chromatography or microarrays.
La detección y cuantificación del producto de expresión (ARNm, ARN complementario obtenido a partir de ADNc, ADN complementario o proteína) se puede realizar utilizando los métodos conocidos por el experto en la materia. Por ejemplo, determinando el nivel de ARNm derivado de su transcripción, previa extracción del ARN total presente en la muestra biológica aislada, lo cual puede realizarse mediante protocolos conocidos en el estado de la técnica. Para ello la muestra biológica aislada puede tratarse física o mecánicamente para romper el tejido o las estructuras celulares y liberar los componentes intracelulares a una solución acuosa u orgánica para preparar los ácidos nucleicos para un posterior análisis. Los ácidos nucleicos se extraen de la muestra por procedimientos conocidos por el experto en la materia y comercialmente disponibles. La determinación del nivel de ARNm derivado de la transcripción de los genes de la tabla 1 puede realizarse, por ejemplo, aunque sin limitarnos, mediante amplificación por reacción en cadena de la polimerasa (PCR), retrotranscripción en combinación con la reacción en cadena de la polimerasa (RT-PCR), RT-PCR cuantitativa, retrotranscripción en combinación con la reacción en cadena de la ligasa (RT-LCR), o cualquier otro método de amplificación de ácidos nucleicos; análisis en serie de la expresión génica (SAGE, SuperSAGE); microarrays, micromatrices o chips de ADN elaborados con oligonucleotidos depositados por cualquier mecanismo o elaborados con oligonucleotidos sintetizados in situ mediante fotolitografía o por cualquier otro mecanismo; hibridación in situ utilizando sondas específicas marcadas con cualquier método de mareaje; mediante geles de electroforesis; mediante transferencia a membrana e hibridación con una sonda específica; mediante resonancia magnética nuclear o cualquier otra técnica de diagnóstico por imagen utilizando nanopartículas paramagnéticas o cualquier otro tipo de nanopartículas detectables funcionalizadas con anticuerpos o por cualquier otro medio. The detection and quantification of the expression product (mRNA, complementary RNA obtained from cDNA, complementary DNA or protein) can be performed using methods known to those skilled in the art. For example, by determining the level of mRNA derived from its transcription, after extracting the total RNA present in the isolated biological sample, which can be done by protocols known in the state of the art. For this, the isolated biological sample can be physically or mechanically treated to break up the cellular tissue or structures and release the intracellular components to an aqueous or organic solution to prepare the nucleic acids for further analysis. Nucleic acids are extracted from the sample by procedures known to those skilled in the art and commercially available. The level of mRNA derived from the transcription of the genes in Table 1 can be determined, for example, but not limited to, by amplification by chain reaction of the polymerase (PCR), retrotranscription in combination with the polymerase chain reaction (RT-PCR), quantitative RT-PCR, retrotranscription in combination with the ligase chain reaction (RT-LCR), or any other amplification method of nucleic acids; serial analysis of gene expression (SAGE, SuperSAGE); microarrays, micromatrices or DNA chips made with oligonucleotides deposited by any mechanism or made with oligonucleotides synthesized in situ by photolithography or by any other mechanism; in situ hybridization using specific probes labeled with any method of marking; by electrophoresis gels; by membrane transfer and hybridization with a specific probe; by nuclear magnetic resonance or any other diagnostic imaging technique using paramagnetic nanoparticles or any other type of detectable nanoparticles functionalized with antibodies or by any other means.
En la presente invención se demuestra que la detección y cuantificación del ARNm total de una muestra biológica de un sujeto con CNMP de estadios I o II es útil para el pronóstico de dicha enfermedad. Por todo ello en una realización preferida de este aspecto de la invención el producto de expresión detectado y cuantificado es ARNm. The present invention demonstrates that the detection and quantification of the total mRNA of a biological sample of a subject with stage I or II CNMP is useful for the prognosis of said disease. Therefore, in a preferred embodiment of this aspect of the invention, the expression product detected and quantified is mRNA.
Por ello, otra realización preferida del primer aspecto de la invención se refiere a un método donde el producto de expresión es ARNm. Se entiende por "microarray" (microarray de expresión, chip o micromatriz) al conjunto de sondas (oligonucleotidos o ADNc) dispuestas de manera ordenada sobre una superficie sólida, que permite analizar simultáneamente la expresión del genoma completo de un organismo. Cada una de las sondas representa específicamente un gen determinado al poseer una secuencia complementaria al ARNm transcrito por dicho gen, posibilitando así, la medición de los niveles de expresión de todos los genes que conforman el genoma al mismo tiempo y en un único experimento. Para la utilización de microarrays y obtención de datos a partir de ellos, la fase experimental de los microarrays puede constar de los pasos que se describen a continuación. En primer lugar, el ARN total se retrotranscribe usando como cebador un cebador específico para mensajero (PolidT) y una enzima retrotranscriptasa. Utilizando como molde el ADNc de doble cadena obtenido anteriormente, se sintetizó el ARNc, a la vez que se llevaba a cabo el proceso de amplificación y mareaje de la muestra. El ARNc marcado obtenido se purificó mediante columnas. El ARNc es fragmentado en secuencias mas pequeñas e hibridado al microarray. Dicho proceso de hibridación se lleva a cabo en un horno de hibridación durante un periodo largo de tiempo. En este proceso el ARNc marcado se une de manera específica a los oligonucleótidos sintetizados en el microarrays. Posteriormente el microarray es lavado para eliminar todo el ARNc excedente no unido a los oligonucleótidos. De acuerdo con la presente invención el producto de expresión, preferiblemente ARNm o ADNc o ARN complementario (ARNc) obtenido a partir de ADNc, puede ser marcado o etiquetado mediante técnicas bien conocidas en el estado de la técnica. Etiquetas detectables incluyen, por ejemplo, isótopos radiactivos, etiquetas fluorescentes, etiquetas quimioluminiscentes, etiquetas bioluminiscentes o etiquetas enzimáticas. Las etiquetas fluorescentes pueden ser distintas en el caso del mareaje del producto de expresión de la muestra biológica y del producto expresión de la muestra control. Por otra parte, la detección y cuantificación también se pueden realizar mediante RT-PCR, por lo que otra realización preferida del primer aspecto de la invención se refiere a un método según la reivindicación 7 donde la detección y/o cuantificación del ARNm se realiza mediante RT-PCR o preferiblemente mediante RT-PCR a tiempo real. El proceso de RT-PCR se puede llevar a cabo en dos fases: Therefore, another preferred embodiment of the first aspect of the invention relates to a method where the expression product is mRNA. "Microarray" (expression microarray, chip or microarray) is understood as the set of probes (oligonucleotides or cDNAs) arranged in an orderly manner on a solid surface, which allows simultaneous analysis of the expression of the entire genome of an organism. Each of the probes specifically represents a gene determined by having a sequence complementary to the mRNA transcribed by said gene, thus enabling the measurement of the expression levels of all the genes that make up the genome at the same time and in a single experiment. For the use of microarrays and obtaining data from them, the experimental phase of the microarray can consist of the steps described below. First, the total RNA is retrotranscribed using as a primer a messenger specific primer (PolidT) and a retrotranscriptase enzyme. Using as a template the double stranded cDNA obtained above, the cRNA was synthesized, while the process of amplification and marking of the sample was carried out. The labeled cRNA obtained was purified by columns. The cRNA is fragmented into smaller sequences and hybridized to the microarray. Said hybridization process is carried out in a hybridization oven for a long period of time. In this process the labeled cRNA binds specifically to the oligonucleotides synthesized in the microarray. Subsequently, the microarray is washed to remove all excess cRNA not bound to the oligonucleotides. In accordance with the present invention, the expression product, preferably mRNA or cDNA or complementary RNA (cRNA) obtained from cDNA, can be labeled or labeled by techniques well known in the state of the art. Detectable labels include, for example, radioactive isotopes, fluorescent labels, chemiluminescent labels, bioluminescent labels or enzymatic labels. The fluorescent labels may be different in the case of the mapping of the expression product of the biological sample and the expression product of the control sample. On the other hand, the detection and quantification can also be carried out by RT-PCR, whereby another preferred embodiment of the first aspect of the invention refers to a method according to claim 7 wherein the detection and / or quantification of the mRNA is performed by RT-PCR or preferably by real-time RT-PCR. The RT-PCR process can be carried out in two phases:
- Retrotranscripción: se produce la unión entre un cebador y el ARNm mediante un proceso de incubación conjunta de ambos productos. Seguidamente se produce la retrotranscripción propiamente dicha utilizando enzimas de transcripción inversa. - Retrotranscription: the union between a primer and the mRNA is produced by a joint incubation process of both products. Then the retrotranscription itself takes place using reverse transcription enzymes.
- PCR posterior: se produce la amplificación del ADNc obtenido en la fase anterior mediante la técnica de reacción en cadena de la polimerasa (PCR). Para cada muestra y para cada transcrito de los genes analizados se llevará a cabo la reacción de PCR de manera individualizada. Este proceso implica la repetición cíclica de 3 fases: fase de desnaturalización del ADNc, fase de unión específica del oligonucleótido del gen en estudio a la hebra del ADNc desnaturalizado y fase de elongación a partir del oligonucleótido unido mediante la que se sintetizará una hebra nueva de ADNc. Al tratarse de un proceso que se mide en tiempo real, es necesario usar una molécula fluorescente para monitorizar lo que sucede a lo largo del proceso. La cuantificacion por otro lado también se puede realizar determinando el nivel de proteína derivado de la traducción de los ARNm transcritos a partir de los 50 genes de la invención. Esta cuantificacion proteica se puede realizar mediante cualquier método conocido por un experto en la materia que sirva para tal fin, como por ejemplo, pero sin limitarnos, métodos de inmunodetección (como western blot, ELISA, inmunohistoquímica, inmunocitoquímica, inmunofluorescencia), métodos basados en mareajes isobáricos (como iTRAQ - isobaríc Tag for Relative and Absolute Quantitation-, o ICAT -Isotope-Coded Affinity Tag-) o en mareajes isotópicos (como SILAC -Stable Isotopes Labeling by Amino Acids in Cell Culture-) o basados en mareajes fluorescentes (como 2D-DIGE -Difference in Gel Electrophoresis-), así como métodos basados en espectrometría de masas (MRM, -Múltiple Reaction Monitoring-) . Por todo ello en otra realización preferida de este aspecto de la invención es el método donde el producto de expresión es una proteína. Otra realización preferida del primer y segundo aspecto de la presente invención se refiere al método donde la detección y/o cuantificacion de la proteína se realiza mediante inmuno blotting, inmunohistoquímica, cromatografía o arrays de expresión de proteínas. - Subsequent PCR: amplification of the cDNA obtained in the previous phase is produced by the polymerase chain reaction (PCR) technique. For each sample and for each transcript of the genes analyzed, the PCR reaction will be carried out individually. This process involves the cyclic repetition of 3 phases: cDNA denaturation phase, oligonucleotide specific binding phase of the gene under study to the denatured cDNA strand and elongation phase from the bound oligonucleotide by which a new strand of synthesized will be synthesized. CDNA Being a process that is measured in real time, it is necessary to use a fluorescent molecule to monitor what happens throughout the process. Quantification on the other hand can also be performed by determining the level of protein derived from the translation of transcribed mRNAs from the 50 genes of the invention. This protein quantification can be performed by any method known to a person skilled in the art that serves this purpose, such as, but not limited to, immunodetection methods (such as western blot, ELISA, immunohistochemistry, immunocytochemistry, immunofluorescence), methods based on isobaric (such as iTRAQ - isobaric Tag for Relative and Absolute Quantitation-, or ICAT -Isotope-Coded Affinity Tag-) or in isotopic (such as SILAC -Stable Isotopes Labeling by Amino Acids in Cell Culture-) or based on fluorescent ( such as 2D-DIGE -Difference in Gel Electrophoresis-), as well as methods based on mass spectrometry (MRM, -Multiple Reaction Monitoring-). Therefore, in another preferred embodiment of this aspect of the invention is the method where the expression product is a protein. Another preferred embodiment of the first and second aspect of the present invention relates to the method where the detection and / or quantification of the Protein is made by immuno blotting, immunohistochemistry, chromatography or protein expression arrays.
Los términos "secuencia de aminoácidos" o "proteína" se usan aquí de manera intercambiable, y se refieren a una forma polimérica de aminoácidos de cualquier longitud, que pueden estar, o no, química o bioquímicamente modificados. El término "residuo" corresponde a un aminoácido. The terms "amino acid sequence" or "protein" are used interchangeably herein, and refer to a polymeric form of amino acids of any length, which may or may not be chemically or biochemically modified. The term "residue" corresponds to an amino acid.
Otra realización preferida del primer y segundo aspectos de la presente invención se refiere al método donde la muestra biológica se selecciona de la lista que comprende: tejido, sangre, plasma, suero, linfa, lavado broncoalveolar o fluido ascítico. Another preferred embodiment of the first and second aspects of the present invention relates to the method where the biological sample is selected from the list comprising: tissue, blood, plasma, serum, lymph, bronchoalveolar lavage or ascites fluid.
Otra realización también preferida del primer y segundo aspectos de la presente invención se refiere al método donde la muestra biológica es fresca, congelada, fijada o fijada y embebida en parafina. Another also preferred embodiment of the first and second aspects of the present invention relates to the method where the biological sample is fresh, frozen, fixed or fixed and embedded in paraffin.
Otra realización preferida del primer y segundo aspectos de la invención se refiere a un método donde el sujeto es un humano. Another preferred embodiment of the first and second aspects of the invention relates to a method where the subject is a human.
Un tercer aspecto de la invención se refiere al uso in vitro de los productos de expresión de los genes de la tabla 1 como marcador pronóstico de CNMP de estadio I o II. Un cuarto aspecto de la invención se refiere al uso in vitro de los productos de expresión de la tabla 1 para clasificar la respuesta inmune intratumoral en CNMP de estadio I o II. A third aspect of the invention relates to the in vitro use of the expression products of the genes in Table 1 as a prognostic marker of stage I or II CNMP. A fourth aspect of the invention relates to the in vitro use of the expression products of Table 1 to classify the intratumoral immune response in stage I or II CNMP.
Los autores de la presente invención han encontrado que los genes de la tabla 1 están sobreexpresados en aquellos pacientes que presentan un mejor pronóstico, y que dichos genes están en su mayor parte relacionados con la respuesta inmune. De esta forma, la sobreexpresión de los genes de la tabla 1 se asocia a la presencia de una respuesta inmune intratumoral, lo que correlaciona con un mejor pronóstico clínico. Por otro lado, una menor expresión de estos 50 genes se asocia a la ausencia de una respuesta inmune intratumoral, lo que correlaciona con un peor pronóstico clínico. The authors of the present invention have found that the genes in Table 1 are overexpressed in those patients who have a better prognosis, and that these genes are mostly related to the immune response. In this way, overexpression of the genes in table 1 It is associated with the presence of an intratumoral immune response, which correlates with a better clinical prognosis. On the other hand, a lower expression of these 50 genes is associated with the absence of an intratumoral immune response, which correlates with a worse clinical prognosis.
Un quinto aspecto de la invención se refiere al uso in vitro de los productos de expresión de la tabla 1 como biomarcador predictor de respuesta terapéutica a la inmunoterapia en el CNMP de estadio I o II. Un sexto aspecto de la invención se refiere a un kit que comprende las sondas que reconocen el ARN mensajero, producto de la expresión de los genes de la tabla 1 , o el ARNc o ADNc a dicho ARNm, o anticuerpos que reconocen una proteína producto de expresión de los genes de la tabla 1 . La cuantía de sondas utilizadas para cada gen puede variar en número. Preferiblemente el kit comprende sondas, que consisten en las sondas que reconocen el ARN mensajero producto de la expresión de los genes de la tabla 1 . Más preferiblemente las sondas son las secuencias descritas como SEQ ID NO: 1 a SEO ID NO: 66 y que reconocen específicamente los 50 genes de la tabla 1 . En adelante nos referiremos a este kit como al "kit primero de la invención". A fifth aspect of the invention relates to the in vitro use of the expression products of Table 1 as a biomarker predictive of therapeutic response to immunotherapy in the CNMP of stage I or II. A sixth aspect of the invention relates to a kit comprising the probes that recognize the messenger RNA, product of the expression of the genes of table 1, or the cRNA or cDNA to said mRNA, or antibodies that recognize a protein product of expression of the genes in table 1. The amount of probes used for each gene may vary in number. Preferably the kit comprises probes, which consist of probes that recognize the messenger RNA resulting from the expression of the genes in Table 1. More preferably the probes are the sequences described as SEQ ID NO: 1 to SEO ID NO: 66 and that specifically recognize the 50 genes in Table 1. Hereinafter we will refer to this kit as the "first kit of the invention".
Una realización preferida del sexto aspecto de la invención se refiere al kit que además comprende al menos una sonda o un anticuerpo que reconoce un producto de expresión de los genes de la tabla 2. En adelante nos referiremos a este kit como al "kit segundo de la invención". A preferred embodiment of the sixth aspect of the invention relates to the kit which further comprises at least one probe or an antibody that recognizes an expression product of the genes in Table 2. Hereinafter we will refer to this kit as the "second kit of the invention".
Otra realización preferida del sexto aspecto de la invención se refiere a que el kit puede comprender al menos una retrotransciptasa, o una ARN polimerasa o un fluoróforo. Por lo que una realización preferida del tercer aspecto de la invención se refiere a un kit que además comprende al menos unos de los reactivos seleccionados de la lista que comprende: retrotranscriptasa, una ARN polimerasa o un fluoróforo. Además el kit puede comprender una mezcla de deoxinucleótidos tri-fosfato (dNTPs), una mezcla de nucleótidos tri-fosfato (NTPs), deoxiribonucleasa (DNasa), inhibidores de la ribonucleasa (RNasa), Dithiothreitol (DTT), pirofosfatasa inorgánica (PPi) y los tampones necesarios para las enzimas proporcionadas en el kit. Además, la presente invención también se refiere al kit donde las sondas o los anticuerpos están preferiblemente situados en un soporte sólido, por ejemplo, pero sin limitarse, cristal, plástico, tubos, placas multipocillo, membranas, o cualquier otro soporte conocido. Por lo que una realización preferida del sexto aspecto de la invención se refiere a un kit donde las sondas o los anticuerpos están preferiblemente situadas en un soporte sólido. Another preferred embodiment of the sixth aspect of the invention relates to the kit being able to comprise at least one retrotransciptase, or an RNA polymerase or a fluorophore. Thus, a preferred embodiment of the third aspect of the invention refers to a kit that also comprises at least one of the reagents selected from the list comprising: retrotranscriptase, an RNA polymerase or a fluorophore. In addition, the kit may comprise a mixture of tri-phosphate deoxynucleotides (dNTPs), a mixture of tri-phosphate nucleotides (NTPs), deoxyribonuclease (DNase), ribonuclease inhibitors (RNase), Dithiothreitol (DTT), inorganic pyrophosphatase (PPi) and the necessary buffers for the enzymes provided in the kit. In addition, the present invention also relates to the kit where the probes or antibodies are preferably located on a solid support, for example, but not limited to, glass, plastic, tubes, multiwell plates, membranes, or any other known support. Thus, a preferred embodiment of the sixth aspect of the invention refers to a kit where the probes or antibodies are preferably located on a solid support.
Un séptimo aspecto de la invención se refiere al uso del kit del sexto aspecto de la invención para la obtención de datos útiles para el pronóstico de CNMP estadios I o II. Además, la obtención de datos puede ser útil para la administración de tratamiento adyuvante, por ejemplo quimioterapia. Por lo que también se refiere al uso del kit primero de la invención para la evaluación de la necesidad de suministrar dicho tratamiento. A seventh aspect of the invention relates to the use of the kit of the sixth aspect of the invention to obtain useful data for the prognosis of CNMP stages I or II. In addition, data collection may be useful for the administration of adjuvant treatment, for example chemotherapy. As regards the use of the first kit of the invention for the evaluation of the need to provide such treatment.
Un octavo aspecto de la invención se refiere al uso del kit del sexto aspecto de la invención para la obtención de datos útiles para la clasificación de la respuesta inmune intratumoral del CNMP de estadios I o II. El kit de la presente invención puede emplearse para conocer si existe una respuesta inmune intratumoral en el paciente. Un noveno aspecto de la invención se refiere al uso del kit del sexto aspecto de la invención para la obtención de datos útiles para predecir la respuesta a inmunoterapia del CNMP de estadios I o II. An eighth aspect of the invention relates to the use of the kit of the sixth aspect of the invention for obtaining useful data for the classification of the intratumoral immune response of the CNMP of stages I or II. The kit of the present invention can be used to know if there is an intratumoral immune response in the patient. A ninth aspect of the invention relates to the use of the kit of the sixth aspect of the invention to obtain useful data to predict the response to immunotherapy of the stage I or II CNMP.
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los siguientes ejemplos y figuras se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención. DESCRIPCION DE LAS FIGURAS Throughout the description and the claims the word "comprises" and its variants are not intended to exclude other technical characteristics, additives, components or steps. For those skilled in the art, other objects, advantages and features of the invention will be partly derived from the description and in part of the practice of the invention. The following examples and figures are provided by way of illustration, and are not intended to be limiting of the present invention. DESCRIPTION OF THE FIGURES
Fig. 1. Muestra la probabilidad de ILE en los dos subtipos histológicos principales de CNMP. Curva de Kaplan-Meier que muestra la probabilidad de ILE de los dos subtipos histológicos principales del CNMP, adenocarcinoma y carcinoma escamoso en la matriz de desarrollo. ILE, intervalo libre de enfermedad; p, es la probabilidad asociada a que las diferencias encontradas en el ILE entre los subgrupos analizados sean debidas al azar. Fig. 1. Shows the probability of ILE in the two main histological subtypes of CNMP. Kaplan-Meier curve showing the probability of ILE of the two main histological subtypes of the CNMP, adenocarcinoma and squamous carcinoma in the development matrix. ILE, disease free interval; p, is the probability associated that the differences found in the ILE between the subgroups analyzed are due to chance.
Fig. 2. Muestra la probabilidad de intervalo libre de enfermedad en estadios I y II. . Curva de Kaplan-Meier que muestra la probabilidad de ILE para estadios I y II de CNMP en la matriz de desarrollo. ILE, intervalo libre de enfermedad; p, es la probabilidad asociada a que las diferencias encontradas en el ILE entre los subgrupos analizados sean debidas al azar. Fig. 3. Muestra la agrupación jerárquica de las muestras de la matriz de desarrollo analizadas en función de su perfil molecular con 3.232 genes.Fig. 2. Shows the probability of disease-free interval in stages I and II. . Kaplan-Meier curve showing the probability of ILE for stages I and II of CNMP in the development matrix. ILE, disease free interval; p, is the probability associated that the differences found in the ILE between the subgroups analyzed are due to chance. Fig. 3. It shows the hierarchical grouping of the samples of the development matrix analyzed according to their molecular profile with 3,232 genes.
Se muestra la agrupación ("clustering") jerárquica de 84 muestras con 3.232 genes (ver filtrado 3 del ejemplo 1 ) según el método descrito en Quackenbush J. Nat Rev Genet. 2001 ;2(6):418-27. Las muestras están diferenciadas en función del subtipo histológico: línea continua, subtipo adenocarcinoma; línea rayada, subtipo escamoso; línea continua terminada en *, otros subtipos de CNMP. Se define "perfil molecular": como el conjunto de datos genómicos (en nuestro casos niveles de expresión del ARNm) capaz de caracterizar e identificar un sujeto o muestra. Los subtipos moleculares encontrados muestran una clara asociación con los subtipos histológicos de los tumores. Fig. 4. Muestra la probabilidad de ILE en función de los grupos moleculares obtenidos en la matriz de desarrollo a partir de 3.232 genes.The hierarchical clustering of 84 samples with 3,232 genes is shown (see filtering 3 of example 1) according to the method described in Quackenbush J. Nat Rev Genet. 2001; 2 (6): 418-27. The samples are differentiated according to the histological subtype: continuous line, adenocarcinoma subtype; striped line, squamous subtype; continuous line terminated in * , other CNMP subtypes. "Molecular profile" is defined: as the set of genomic data (in our cases mRNA expression levels) capable of characterizing and identifying a subject or sample. The molecular subtypes found show a clear association with the histological subtypes of the tumors. Fig. 4. It shows the probability of ILE as a function of the molecular groups obtained in the development matrix from 3,232 genes.
Curva de Kaplan-Meier que muestra la probabilidad de ILE de los dos subtipos moleculares principales del CNMP encontrados en la matriz de desarrollo. ILE, intervalo libre de enfermedad; p, es la probabilidad asociada a que las diferencias encontradas en el ILE entre los subgrupos analizados sean debidas al azar. Kaplan-Meier curve showing the probability of ILE of the two main molecular subtypes of the CNMP found in the development matrix. ILE, disease free interval; p, is the probability associated that the differences found in the ILE between the subgroups analyzed are due to chance.
Fig. 5. Muestra la agrupación jerárquica de las muestras de la matriz de desarrollo analizadas en función de su perfil molecular con 2.160 genes.Fig. 5. It shows the hierarchical grouping of the samples of the development matrix analyzed according to their molecular profile with 2,160 genes.
Análisis del patrón de expresión génica global de los tumores de la matriz de desarrollo para la obtención de grupos moleculares utilizando el listado de 2.160 genes (ver filtrado 4 del ejemplo 1 ). A, se muestra la agrupación molecular ("clustering") jerárquica de 84 muestras con 2.160 genes. B, agrupación perfeccionada por el método de "k-means" descrito en Quackenbush J. Nat Rev Genet. 2001 ;2(6):418-27. En ambos casos resulta en tres grupos moleculares (Grupo 1 , 2 y 3) o "clusters". Analysis of the overall gene expression pattern of tumors of the developmental matrix to obtain molecular groups using the list of 2,160 genes (see filtering 4 of example 1). A, the hierarchical molecular clustering of 84 samples with 2,160 genes is shown. B, grouping perfected by the "k-means" method described in Quackenbush J. Nat Rev Genet. 2001; 2 (6): 418-27. In both cases it results in three molecular groups (Group 1, 2 and 3) or "clusters".
Fig. 6. Muestra la probabilidad de ILE en los tres grupos moleculares obtenidos en función de su perfil molecular con 2.160 genes en la matriz de desarrollo. Curva de Kaplan-Meier que muestra la probabilidad de ILE de los tres grupos moleculares obtenidos utilizando el listado de 2.160 genes y la técnica de "k-means". ILE, intervalo libre de enfermedad; p, es la probabilidad asociada a que las diferencias encontradas en el ILE entre los subgrupos analizados sean debidas al azar, (x), indica el número de muestras que hay en cada uno de los grupos analizados. Fig. 6. It shows the probability of ILE in the three molecular groups obtained based on their molecular profile with 2,160 genes in the development matrix. Kaplan-Meier curve showing the probability of ILE of the three molecular groups obtained using the list of 2,160 genes and the "k-means" technique. ILE, disease free interval; p, is the probability associated that the differences found in the ILE between the analyzed subgroups are due to chance, (x), indicates the number of samples in each of the analyzed groups.
Fig. 7. Muestra la probabilidad de ILE en las muestras de la matriz de validación de acuerdo a la clasificación de 3 grupos moleculares. Curva de Kaplan-Meier que muestra la probabilidad de ILE para las muestras de la matriz de validación (serie externa, Roepman et al.) agrupadas en función de los perfiles moleculares (Grupo 1 , Grupo 2 y Grupo 3) previamente observados en la matriz de desarrollo y definidos a través de un predictor de 1 .000 genes generado con la aplicación "PAM". ILE, intervalo libre de enfermedad; p, es la probabilidad asociada a que las diferencias encontradas en el ILE entre los subgrupos analizados sean debidas al azar, (x), indica el número de muestras que hay que hay en cada uno de los grupos analizados. Fig. 7. Shows the probability of ILE in the validation matrix samples according to the classification of 3 molecular groups. Kaplan-Meier curve showing the probability of ILE for the validation matrix samples (external series, Roepman et al.) Grouped according to molecular profiles (Group 1, Group 2 and Group 3) previously observed in The development matrix and defined through a predictor of 1,000 genes generated with the application "PAM". ILE, disease free interval; p, is the probability associated that the differences found in the ILE between the analyzed subgroups are due to chance, (x), indicates the number of samples that there are in each of the analyzed groups.
Fig. 8. Muestra la probabilidad de ILE en las muestras de la matriz de validación de acuerdo a la clasificación establecida mediante el predictor de 50 genes. Curva de Kaplan-Meier que muestra la probabilidad de ILE de los dos grupos moleculares obtenidos en la matriz de validación utilizando el predictor de 50 genes. ILE, intervalo libre de enfermedad; p, es la probabilidad asociada a que las diferencias encontradas en el ILE entre los subgrupos analizados son debidas al azar, (x) indica el número de muestras que hay en cada una de las ramas de la curva de Kaplan-Meier. Fig. 8. Shows the probability of ILE in the validation matrix samples according to the classification established by the predictor of 50 genes. Kaplan-Meier curve showing the probability of ILE of the two molecular groups obtained in the validation matrix using the 50 gene predictor. ILE, disease free interval; p, is the probability associated that the differences found in the ILE between the subgroups analyzed are due to chance, (x) indicates the number of samples in each of the branches of the Kaplan-Meier curve.
Fig. 9. Probabilidad de ILE en las muestras de la matriz de validación de acuerdo a la clasificación establecida mediante el predictor de 50 genes de manera independiente para estadios I y II. Curva de Kaplan-Meier que muestra la probabilidad de ILE de los dos grupos moleculares obtenidos en la matriz de validación con el predictor de 50 genes generado con la aplicación "PAM" para: A, el estadio I, y B, estadio II. ILE, intervalo libre de enfermedad; p, es la probabilidad asociada a que las diferencias encontradas en el ILE entre los subgrupos analizados son debidas al azar, (x) indica el número de muestras que hay en cada una de las ramas de la curva de Kaplan-Meier. Fig. 9. Probability of ILE in the validation matrix samples according to the classification established by the predictor of 50 genes independently for stages I and II. Kaplan-Meier curve showing the probability of ILE of the two molecular groups obtained in the validation matrix with the 50 gene predictor generated with the "PAM" application for: A, stage I, and B, stage II. ILE, disease free interval; p, is the probability associated that the differences found in the ILE between the subgroups analyzed are due to chance, (x) indicates the number of samples in each of the branches of the Kaplan-Meier curve.
EJEMPLOS EXAMPLES
Los siguientes ejemplos específicos que se proporcionan en este documento de patente sirven para ilustrar la naturaleza de la presente invención. Estos ejemplos se incluyen solamente con fines ilustrativos y no han de ser interpretados como limitaciones a la invención que aquí se reivindica. Por tanto, los ejemplos descritos más adelante ilustran la invención sin limitar el campo de aplicación de la misma. The following specific examples provided in this patent document serve to illustrate the nature of the present invention. These examples are included for illustrative purposes only and should not be construed as limitations on the invention claimed herein. So, The examples described below illustrate the invention without limiting its scope.
Ejemplo 1 : Obtención del predictor de 50 genes Example 1: Obtaining the 50 gene predictor
Materiales y métodos Materials and methods
1 .1 .1 Selección de pacientes 1 .1 .1 Patient selection
En este estudio se han incluido 84 pacientes (12 mujeres y 72 varones con media de edad de 66,5 -rango de 36-82 años-) diagnosticados en estadios iniciales (60 pacientes estadio I y 24 pacientes estadio II) de CNMP durante los años 2001 a 2008 en el Hospital Clinico San Carlos (HCSC) de Madrid. Todos los pacientes cumplieron los siguientes criterios de inclusión: pacientes con tumores completamente resecados, sin afectación de ganglios mediastínicos, sin tratamiento quimioterápico y de los cuales existiera material tumoral congelado en el biobanco del HCSC perteneciente al subprograma RETICS del Instituto de Salud Carlos III (número de expediente RD090076/0102). Los datos recogidos para el estudio se dividen en datos clínicos del paciente (edad de diagnóstico, sexo y hábito tabáquico) y datos histológicos del tumor (subtipo histológico, tamaño tumor, estadio tumoral -7- Clasificación TNM (Kligerman S. American Journal of Roentgenology 2010. 194:562-573)-, grado de diferenciación, queratinización, presencia de linfocitos polimorfonucleares - PMN-, afectación ganglionar, mutaciones de k-ras, necrosis, estroma tumoral, inflamación crónica, presencia de linfocitos intratumorales -TIL-, localización por lóbulos pulmonares y tipo de recidiva -loco regional o a distancia-).  This study included 84 patients (12 women and 72 men with a mean age of 66.5 -range 36-82 years) diagnosed in early stages (60 stage I patients and 24 stage II patients) of CNMP during the years 2001 to 2008 at the San Carlos Clinic Hospital (HCSC) in Madrid. All patients met the following inclusion criteria: patients with completely resected tumors, no mediastinal lymph node involvement, no chemotherapeutic treatment and of which there was frozen tumor material in the HCSC biobank belonging to the RETICS subprogram of the Carlos III Health Institute (number of file RD090076 / 0102). The data collected for the study are divided into clinical data of the patient (age of diagnosis, sex and smoking habit) and histological data of the tumor (histological subtype, tumor size, tumor stage -7- TNM Classification (Kligerman S. American Journal of Roentgenology 2010. 194: 562-573) -, degree of differentiation, keratinization, presence of polymorphonuclear lymphocytes - PMN-, lymph node involvement, k-ras mutations, necrosis, tumor stroma, chronic inflammation, presence of intratumoral lymphocytes -TIL-, location by pulmonary lobes and type of recurrence - regional or distant madness).
1 .1 .2. Muestras tumorales. Extracción y purificación del ARN. 1 .1 .2. Tumor samples RNA extraction and purification.
Siguiendo el protocolo de congelación de las muestras incluidas en el biobanco del HCSC, los tumores de CNMP se recogieron inmediatamente después de la cirugía y se congelaron y almacenaron a -80QC. Se llevó a cabo la revisión histopatológica de los tumores congelados con el fin de que todos los pacientes incluidos en el estudio tuvieran una representación tumoral como mínimo del 70% en la muestra utilizada. Paralelamente, se recogieron de estos mismos pacientes, muestras de parénquima pulmonar no tumoral que también fueron congeladas siguiendo el mismo protocolo. El ARN proveniente de estas últimas muestras se utilizó para crear la muestra control (un pool de ARN de tejidos normales). En todos los casos, el ácido ribonucleico (ARN o RNA) total fue extraído directamente de las muestras congeladas utilizando Trizol® y un homogeneizador de tejidos. Posteriormente fue tratado con DNAsa y cuantificado en el espectofotómetro NanoDrop ND-1000®. La calidad del ARN extraído se midió en Bioanalyzer 2100® mediante el RIN (o Número de Integridad del ARN) y únicamente las muestras con una buena calidad de ARN (RIN > 7,5), fueron incluidas para el estudio. Following the freezing protocol of the samples included in the HCSC biobank, CNMP tumors were collected immediately after surgery and frozen and stored at -80 Q C. Histopathological review of the frozen tumors was carried out with the so that all patients included in the study had a tumor representation as a minimum of 70% in the sample used. At the same time, samples of non-tumor pulmonary parenchyma were also collected from these same patients, which were also frozen following the same protocol. RNA from these latter samples was used to create the control sample (a pool of normal tissue RNA). In all cases, the total ribonucleic acid (RNA or RNA) was extracted directly from the frozen samples using Trizol® and a tissue homogenizer. He was subsequently treated with DNAse and quantified in the NanoDrop ND-1000® spectrophotometer. The quality of the extracted RNA was measured in Bioanalyzer 2100® using the RIN (or RNA Integrity Number) and only samples with a good RNA quality (RIN> 7.5), were included for the study.
1 .1 .3. Perfil de expresión por microarrays. 1 .1 .3. Expression profile by microarray.
El perfil de expresión de los 84 tumores se determinó utilizando microarrays de oligonucleótidos de genoma completo de Agilent® (G41 12F) siguiendo el protocolo suministrado por el fabricante. Brevemente, se utilizó doble mareaje, con cianina-5 (Cy5) para cada uno de los 84 tumores incluidos en el estudio y con cianina-3 (Cy3) para la muestra control, compuesta por un "pool" de 42 muestras de parénquima no tumoral de pulmón. Esta muestra control se introdujo en cada uno de los experimentos (la misma en todos ellos) para poder identificar y corregir las variaciones técnicas introducidas durante la fase experimental del análisis. Tras esta corrección (denominada normalización) el dato generado es el ratio entre la fluorescencia del tumor y la muestra control. Durante las etapas de mareaje e hibridación se incluyeron los "Spikelns", que son 10 transcritos control sintetizados in vitro que derivan del transcriptoma del Adenovirus E1 A, que no interaccionan con el ARNm humano y cuya concentración inicial es conocida. El conocimiento "a priori" de la concentración inicial de cada uno de los "Spikelns", nos permite predecir a qué nivel de fluorescencia deberían emitir estos transcritos una vez hibridados en el microarray y por tanto poder utilizarlos como control de calidad de la fase experimental. Los microarrays fueron escaneados y cuantificados usando el escáner de Agilent® y el programa Feature Extraction® (10.7.3) respectivamente. Para la normalización de los datos extraídos se utilizó la técnica Lowess o "Locally Weighted Scatterplot Smoothing". {Cleveland WS: Journal of the American statistical Association 1979, 74:829-836; Cleveland WS, et al. Journal of the American Statistical Association 1988, 83:596-610.) The expression profile of the 84 tumors was determined using Agilent® full genome oligonucleotide microarrays (G41 12F) following the protocol provided by the manufacturer. Briefly, double marking was used, with cyanine-5 (Cy5) for each of the 84 tumors included in the study and with cyanine-3 (Cy3) for the control sample, consisting of a "pool" of 42 parenchyma samples not lung tumor. This control sample was introduced in each of the experiments (the same in all of them) in order to identify and correct the technical variations introduced during the experimental phase of the analysis. After this correction (called normalization) the data generated is the ratio between the fluorescence of the tumor and the control sample. "Spikelns", which are 10 control transcripts synthesized in vitro that derive from the adenovirus E1 A transcriptome, that do not interact with human mRNA and whose initial concentration is known, were included during the stages of screening and hybridization. The "a priori" knowledge of the initial concentration of each of the "Spikelns", allows us to predict at what level of fluorescence these transcripts should emit once hybridized in the microarray and therefore can be used as quality control of the experimental phase . The microarrays were scanned and quantified using the Agilent® scanner and the Feature Extraction® program (10.7.3) respectively. For the normalization of the extracted data, the Lowess or "Locally Weighted Scatterplot Smoothing" technique was used. {Cleveland WS: Journal of the American statistical Association 1979, 74: 829-836; Cleveland WS, et al. Journal of the American Statistical Association 1988, 83: 596-610.)
1 .1 .4. Análisis de datos 1 .1 .4. Analysis of data
Para la obtención del método de la invención, se partió de un listado inicial de 41 .000 sondas presentes en el microarrays de oligonucleotidos de genoma completo de Agilent®. A partir de un proceso de filtrado se llegó hasta una clasificación molecular que finalmente derivó en la creación del predictor de la invención compuesto por sólo 50 genes. El método se desarrolló siguiendo los siguientes pasos de filtrado:  To obtain the method of the invention, an initial list of 41,000 probes present in the Agilent® full genome oligonucleotide microarray was started. From a filtering process, a molecular classification was reached that ultimately resulted in the creation of the predictor of the invention composed of only 50 genes. The method was developed following the following filtering steps:
1 .- Filtrado por "flags": exclusión de sondas con baja fluorescencia o con problemas durante el proceso de hibridación en más de un 10% de las muestras. El nuevo listado incluía 24.617 sondas. 1 .- Filtered by "flags": exclusion of probes with low fluorescence or problems during the hybridization process in more than 10% of the samples. The new listing included 24,617 probes.
2.- Promedio de las sondas con el mismo identificador con el objetivo de trabajar con valores de expresión únicos para cada gen. El nuevo listado incluía 17.881 genes. 2.- Average of the probes with the same identifier in order to work with unique expression values for each gene. The new listing included 17,881 genes.
3.- Filtrado por expresión: selección de genes con una variación de expresión al menos de 3 veces respecto a la mediana de ese gen en al menos el 10% de las muestras. El nuevo listado incluyó un total de 3.232 genes (Fig. 3). Una vez generados los grupos moleculares a partir de este listado de 3.232 genes, se evaluó la clasificación molecular obtenida para conocer si existía o no asociación con el intervalo libre de enfermedad (ILE) (Fig. 4). 4.- Filtrado histológico: se eliminaron los genes que caracterizan las diferencias histológicas entre los principales subtipos histológicos del CNMP (adenocarcinoma y carcinoma escamoso). Para ello, se seleccionaron los genes diferencialmente expresados (p-valor < 0,01 y diferencia de expresión > 1 ,5) y el listado generado (1 .072 genes) se excluyó del listado inicial (3.232 genes). Se genera por tanto un listado de 2.160 genes (genes que se muestran en la tabla 2) que se utilizan para la clasificación molecular final de los 84 tumores. La estrategia utilizada para el descubrimiento de los grupos moleculares consistió en aplicar en primer lugar un método de análisis no supervisado, agrupamiento o "clustering" jerárquico (Fig. 5A), y a continuación un perfeccionamiento de los grupos moleculares obtenidos mediante un segundo método, método de k-Means (Fig. 5B), el cual permite disminuir la heterogeneidad intra-grupo y aumentar la variabilidad inter-grupo. El listado de 2.160 genes se usa para construir inicialmente la clasificación molecular (que tiene 3 grupos). Una vez generados estos grupos moleculares, se evaluó la clasificación molecular obtenida para conocer si existía o no asociación con el intervalo libre de enfermedad (ILE) (Fig. 6). El ILE se define como el tiempo que transcurre desde la fecha de la cirugía hasta que se confirma la recidiva del paciente. 3.- Filtering by expression: gene selection with a variation of expression at least 3 times with respect to the median of that gene in at least 10% of the samples. The new listing included a total of 3,232 genes (Fig. 3). Once the molecular groups were generated from this list of 3,232 genes, the molecular classification obtained was evaluated to determine whether or not there was an association with the disease-free interval (ILE) (Fig. 4). 4.- Histological filtering: the genes that characterize the histological differences between the main histological subtypes of the CNMP (adenocarcinoma and squamous carcinoma) were eliminated. For this, the differentially expressed genes (p-value <0.01 and expression difference> 1, 5) were selected and the generated list (1,072 genes) was excluded from the initial list (3,232 genes). Therefore, a list of 2,160 genes (genes shown in Table 2) that are used for the final molecular classification of the 84 tumors is generated. The strategy used for the discovery of the molecular groups consisted in applying first a method of unsupervised analysis, clustering or hierarchical clustering (Fig. 5A), and then an improvement of the molecular groups obtained by means of a second method, method of k-Means (Fig. 5B), which allows to reduce intra-group heterogeneity and increase inter-group variability. The list of 2,160 genes is used to initially construct the molecular classification (which has 3 groups). Once these molecular groups were generated, the molecular classification obtained was evaluated to determine whether or not there was an association with the disease-free interval (ILE) (Fig. 6). The ILE is defined as the time that elapses from the date of surgery until the patient's recurrence is confirmed.
En el análisis estadístico se han utilizado curvas de Kaplan-Meier y el test log- rank para evaluar la probabilidad de cada subtipo molecular respecto a la recidiva (Clark TG. British Journal of Cáncer 2003. 89: 232-238). Además, con el método de regresión proporcional de Cox se calcula el "hazard ratio" para los grupos moleculares. In the statistical analysis, Kaplan-Meier curves and the log-rank test have been used to assess the probability of each molecular subtype with respect to recurrence (Clark TG. British Journal of Cancer 2003. 89: 232-238). In addition, the "hazard ratio" for molecular groups is calculated using the Cox proportional regression method.
Asimismo, se realizó un análisis de las vías moleculares que se encuentran alteradas de manera significativa entre los grupos moleculares obtenidos. Se llevó a cabo utilizando la herramienta GSEA ("Gene Set Enrichment Análisis" o análisis de enriquecimiento de conjuntos de genes) (Subramanian A et al. PNAS 2005 102 (43) 15545-15550 y Mootha VK et al. Nat Gen 2003). Sólo se evaluaron las vías moleculares con una representación mínima de más de 15 genes y se utilizaron 100.000 permutaciones para asegurar los resultados. Para obtener los resultados de GSEA se partió del listado original de 17.881 genes ya que cuando se analizan vías moleculares conviene incluir todos los genes disponibles que cumplan los controles de calidad (17.881 genes), ya que diferencias no significativas de expresión en un grupo de genes pueden sin embargo ser claves, para definir qué caminos de señalización ("pathways") están alterados entre los grupos. Likewise, an analysis of the molecular pathways that are significantly altered between the molecular groups obtained was performed. It was carried out using the GSEA tool ("Gene Set Enrichment Analysis" or gene set enrichment analysis) (Subramanian A et al. PNAS 2005 102 (43) 15545-15550 and Mootha VK et al. Nat Gen 2003). Only molecular pathways with a minimum representation of more than 15 genes were evaluated and 100,000 permutations were used to ensure the results. In order to obtain the GSEA results, the original list of 17,881 genes was used since when analyzing molecular pathways, all available genes that meet quality controls (17,881 genes) should be included, since non-significant differences in expression in a group of genes they can nevertheless be keys, to define which signaling paths ("pathways") are altered between the groups.
1 .1 .5. Validación de los 3 grupos moleculares en una serie externa. 1 .1 .5. Validation of the 3 molecular groups in an external series.
Para la validación de la clasificación molecular obtenida, se utilizó la matriz de datos publicada por el grupo de Roepman y colaboradores (Roepman P et al. Clin Cáncer Res 2009. 15:284-290). La matriz de validación incluye los datos de expresión de 162 pacientes diagnosticados de los mismos subtipos histológicos que los de la invención.  For the validation of the molecular classification obtained, the data matrix published by the Roepman et al. Group (Roepman P et al. Clin Cancer Res 2009. 15: 284-290) was used. The validation matrix includes the expression data of 162 patients diagnosed with the same histological subtypes as those of the invention.
El termino "matriz de entrenamiento" o "matriz de desarrollo" se refiere a las muestras del biobanco del HCSC (n= 84). El término "matriz de validación" se refiere al conjunto de muestras publicado por Roepman et al utilizado para la validación de la clasificación molecular. Por "matriz" se entiende el conjunto de datos de expresión obtenidos en una serie de pacientes mediante microarrays.  The term "training matrix" or "development matrix" refers to the HCSC biobank samples (n = 84). The term "validation matrix" refers to the set of samples published by Roepman et al used for the validation of molecular classification. "Matrix" means the set of expression data obtained in a series of patients using microarrays.
Para la validación se ha generado una matriz de datos común que incluye 246 muestras (84 de la matriz de desarrollo + 162 de la matriz de validación) cada una de ellas con 17.881 genes. Con la matriz de desarrollo se obtuvo un predictor, mediante la aplicación PAM (Análisis de Predicción de Microarray) (Tibshirani R. et al. PNAS 2002; 99(10):6567-72) que fue evaluado en la matriz de validación estudiando su asociación, mediante la curva de Kaplan-Meier, con el ILE. El modelo de regresión proporcional Cox se utilizó para confirmar el poder pronóstico de nuestro predictor. For validation a common data matrix has been generated that includes 246 samples (84 of the development matrix + 162 of the validation matrix) each with 17,881 genes. With the development matrix, a predictor was obtained through the PAM application (Microarray Prediction Analysis) (Tibshirani R. et al. PNAS 2002; 99 (10): 6567-72) that was evaluated in the validation matrix by studying its association, through the Kaplan-Meier curve, with the ILE. The Cox proportional regression model was used to confirm the prognostic power of our predictor.
1 .1 .6. Obtención y validación del Predictor de 50 genes. Los 3 grupos moleculares generados mediante el filtrado histológico, se agruparon en 2 grupos, grupo de buen pronóstico o grupo 3 y grupo de mal pronostico o grupo 1 +2, debido a la similitud pronostica de ambos grupos moleculares. Así, con dos grupos y partiendo de 2.160 genes se seleccionan, mediante la aplicación de PAM, 50 genes (los genes de la invención que se muestran en la tabla 1 ) capaces de clasificar nuevas muestras en base a estos dos grupos pronóstico en CNMP de estadios I o II. En base a este predictor de 50 genes, las muestras de la matriz de validación fueron clasificadas en el grupo de buen pronóstico o en el de mal pronóstico. Las curvas de Kaplan- Meier y el modelo de regresión proporcional de Cox se utilizaron para validar el poder pronóstico de nuestro predictor (Figs.8, 9A y 9B). 1 .1 .6. Obtaining and validating the Predictor of 50 genes. The 3 molecular groups generated by histological filtering were grouped into 2 groups, a good prognosis group or group 3 and a poor prognosis group or a 1 + 2 group, due to the prognostic similarity of both molecular groups. Thus, with two groups and starting from 2,160 genes, 50 genes (the genes of the invention shown in Table 1) capable of classifying new samples based on these two prognostic groups in CNMP are selected by PAM application. stages I or II. Based on this predictor of 50 genes, the validation matrix samples were classified in the group with a good prognosis or a group with a poor prognosis. The Kaplan-Meier curves and the Cox proportional regression model were used to validate the prognostic power of our predictor (Figs. 8, 9A and 9B).
1 .1 .7. Explicación del análisis con PAM (Tibshirani R. et al. PNAS. 2002, 99:6567-6572). 1 .1 .7. Explanation of the analysis with PAM (Tibshirani R. et al. PNAS. 2002, 99: 6567-6572).
Para ejemplificar esta descripción, utilizaremos como ejemplo la creación del predictor de 50 genes para dos grupos moleculares (buen y mal pronóstico) mencionados en el apartado anterior. Así pues, usando como herramienta de clasificación la aplicación PAM, el proceso de clasificación pronostica, requiere como punto de partida el cálculo de un "valor de referencia" para cada uno de los dos grupos. Estos "valores de referencia" se obtienen a partir de las muestras de los pacientes que conforman la denominada "matriz de entrenamiento" o "matriz de desarrollo" y de los que "a priori" se conoce su clasificación (pues fueron con ellas con las que se definió lo que era el grupo de buen y mal pronóstico). A partir de los pacientes del grupo de buen pronóstico obtendremos el "valor 1 de referencia" y a partir de los pacientes del grupo de mal pronóstico obtendremos el "valor 2 de referencia". Cada uno de los valores de referencia vendrá expresado como un vector de 50 componentes (una por cada uno de los genes de la invención) y se calculará como la suma de dos subvectores cada uno de ellos expresados también con 50 componentes. El primer subvector es común para los dos valores de referencia mientras que el segundo es específico para cada uno de los dos valores de referencia que se quieren calcular. El primer subvector consta de 50 componentes, cada una de las cuales corresponde al valor medio de expresión de uno de los 50 genes a lo largo de todas las muestras que conforman la matriz de entrenamiento o desarrollo independientemente del grupo en el que se encuentren clasificadas (es decir los 84 tumores de nuestra matriz). El segundo subvector también vendrá definido por 50 componentes (cada una de las cuales representa un gen) que vendrán definidas por un estadístico "t" que compara para dicho gen las diferencias entre el primer subvector y el valor medio de expresión de ese gen en las muestras incluidas en el grupo para el que se quiere calcular el valor de referencia (o bien el grupo de buen pronostico (29 muestras) o bien el grupo de mal pronóstico (55 muestras)). Los datos del segundo subvector serán estandarizados teniendo en cuenta, la variabilidad de expresión de cada uno de los 50 genes dentro del grupo analizado y teniendo en cuenta un valor de convergencia Δ que permite evaluar el poder predictivo de cada uno de los genes. Las transformaciones mencionadas harán que aunque el "valor de referencia" o "shrunken centroid" obtenido para cada grupo se basa en valores de expresión, su valor real sea adimensional y no sea un reflejo de los datos de fluorescencia iniciales de cada muestra. Una vez calculado el "valor de referencia" o "shrunken centroid" para cada grupo, el PAM es capaz de asignar las nuevas muestras, que en este ejemplo conformaron la matriz de validación (162 muestras), a cada uno de los grupos previamente definidos. La aplicación de esta invención para conocer el pronóstico de los nuevos pacientes se realiza calculando la distancia entre los valores de expresión de los 50 genes de la nueva muestra con respecto a las 50 componentes del "valor de referencia" o "shrunken centroid" de cada grupo. Si la distancia entre la nueva muestra y el "valor 1 de referencia" es menor que la distancia entre la nueva muestra y el "valor 2 de referencia", se podrá determinar el pronóstico favorable para el nuevo paciente. Por el contrario, si la distancia entre la nueva muestra y el "valor 1 de referencia" es mayor que la distancia entre la nueva muestra y "valor 2 de referencia", se podrá determinar el pronóstico desfavorable para el nuevo paciente. Durante estos últimos cálculos también se introducen factores que corrigen el resultado teniendo en cuenta la variabilidad de expresión dentro de los grupos y la probabilidad de pertenecer a un determinado grupo teniendo en cuenta su tamaño muestral con respecto al de la población analizada. La cuantificación de las distancias se mide utilizando la distancia euclídea. 1.2.- RESULTADOS To exemplify this description, we will use as an example the creation of the 50 gene predictor for two molecular groups (good and bad prognosis) mentioned in the previous section. Thus, using the PAM application as a classification tool, the forecast classification process requires as a starting point the calculation of a "reference value" for each of the two groups. These "reference values" are obtained from the samples of the patients that make up the so-called "training matrix" or "development matrix" and of which "a priori" their classification is known (as they were with them with the that defined what the group of good and bad prognosis was). From the patients of the group of good prognosis we will obtain the "reference value 1" and from the patients of the group of poor prognosis we will obtain the "reference value 2". Each of the reference values will be expressed as a vector of 50 components (one for each of the genes of the invention) and will be calculated as the sum of two subvectors each also expressed with 50 components. The first subvector is common for the two reference values while the second is specific for each of the two reference values to be calculated. The first subvector consists of 50 components, each of which corresponds to the average expression value of one of the 50 genes throughout all the samples that make up the training or development matrix regardless of the group in which they are classified (i.e. the 84 tumors of our matrix). The second subvector will also be defined by 50 components (each of which represents a gene) that will be defined by a "t" statistic that compares for that gene the differences between the first subvector and the average expression value of that gene in the Samples included in the group for which the reference value is to be calculated (either the good prognosis group (29 samples) or the poor prognosis group (55 samples)). The data of the second subvector will be standardized taking into account the variability of expression of each of the 50 genes within the analyzed group and taking into account a convergence value Δ that allows to evaluate the predictive power of each of the genes. The aforementioned transformations will mean that although the "reference value" or "shrunken centroid" obtained for each group is based on expression values, its actual value is dimensionless and is not a reflection of the initial fluorescence data of each sample. Once the "reference value" or "shrunken centroid" is calculated for each group, the PAM is able to assign the new samples, which in this example formed the validation matrix (162 samples), to each of the previously defined groups . The application of this invention to know the prognosis of the new patients is done by calculating the distance between the expression values of the 50 genes of the new sample with respect to the 50 components of the "reference value" or "shrunken centroid" of each group. If the distance between the new sample and the "reference value 1" is less than the distance between the new sample and the "reference value 2", the favorable prognosis for the new patient can be determined. On the contrary, if the distance between the new sample and the "reference value 1" is greater than the distance between the new sample and "reference value 2", the unfavorable prognosis for the new patient can be determined. During these last calculations, factors that correct the result are also introduced, taking into account the variability of expression within the groups and the probability of belong to a certain group taking into account their sample size with respect to the population analyzed. The quantification of distances is measured using the Euclidean distance. 1.2.- RESULTS
1 .2.1 . Análisis de asociación del ILE con las variables clínicas e histopatológicas. 1 .2.1. Association analysis of the ILE with the clinical and histopathological variables.
Se llevó a cabo un primer análisis estadístico para comprobar si existía una asociación entre las variables histopatológicas más importantes en el manejo rutinario del CNMP (la clasificación histológica del tumor, el estadio, etc.), con el ILE. Las curvas de Kaplan-Meier obtenidas no mostraron una asociación estadísticamente significativa del ILE con el tipo histopatológico (Fig. 1 ), el estadio (Fig. 2) o con cualquier otra variable analizada (datos no mostrados). Solamente la presencia de mutaciones en el gen K-Ras mostró una tendencia hacia la asociación con un peor pronóstico (p=0,07).  A first statistical analysis was carried out to verify if there was an association between the most important histopathological variables in the routine management of the CNMP (the histological classification of the tumor, the stage, etc.), with the ILE. The Kaplan-Meier curves obtained did not show a statistically significant association of the ILE with the histopathological type (Fig. 1), the stage (Fig. 2) or with any other variable analyzed (data not shown). Only the presence of mutations in the K-Ras gene showed a tendency towards association with a worse prognosis (p = 0.07).
1 .2.2. Grupos moleculares a partir de 3.232 genes. 1 .2.2. Molecular groups from 3,232 genes.
Mediante el método de clustering jerárquico (centrado de Pearson y Average linkage (Quackenbush J. Nat Rev Genet. 2001 ;2(6):418-27) se identifican dos subtipos moleculares principales que muestran una clara asociación con los subtipos histológicos más representados en nuestra serie, separando molecularmente, los tumores del subtipo adenocarcinoma de los tumores del subtipo escamoso (Fig. 3). Estos 2 subtipos moleculares no muestran diferencias estadísticamente significativas con el ILE (p = 0,350) (Fig. 4).  By means of the hierarchical clustering method (Pearson and Average linkage centering (Quackenbush J. Nat Rev Genet. 2001; 2 (6): 418-27), two main molecular subtypes are identified that show a clear association with the most represented histological subtypes in our series, molecularly separating, tumors of the adenocarcinoma subtype of squamous subtype tumors (Fig. 3). These 2 molecular subtypes do not show statistically significant differences with the ILE (p = 0.350) (Fig. 4).
A la vista de estos resultados, concluimos que los grupos moleculares obtenidos utilizando el listado de 3.232 genes (que son los genes que varían su expresión al menos de 3 veces respecto a la mediana de ese gen en al menos el 10% de las muestras; paso 3 del filtrado anteriormente explicado) se encuentran condicionados por la histología de los tumores. Es importante destacar que no existen diferencias estadísticamente significativas en el tiempo de recidiva cuando se comparan ambos grupos moleculares y recordar que tampoco existían cuando se comparaban ambos grupos clasificados según criterios histológicos. Teniendo en cuenta que el criterio oncológico para el manejo de los pacientes de CNMP nos indica que la histología de los tumores sólo es importante en la enfermedad metastásica (estadio IV) y sólo en relación con el tratamiento indicado, excluimos del listado inicial de 3.232 genes aquellos que caracterizan las diferencias histológicas de los 84 tumores mediante un filtrado que incluía: T-Test a p<0,01 con corrección para comparaciones múltiples de Benjamini and Hochberg (B&H) (Benjamini Y and Hochberg Y. Journal of the Royal Statistical Society. 1995) y una diferencia de expresión de más de 1 ,5 veces. Los genes que cumplieron estos criterios de filtrado fueron excluidos, resultado un listado de 2.160 genes que se utilizaron para la obtención de la clasificación molecular y que son los genes incluidos en la tabla 2. In view of these results, we conclude that the molecular groups obtained using the list of 3,232 genes (which are the genes that vary their expression at least 3 times with respect to the median of that gene in at least 10% of the samples; step 3 of the filtrate explained above) are conditioned by the histology of the tumors. Importantly, there are no statistically significant differences over time. of recurrence when both molecular groups are compared and remember that they did not exist when both groups classified according to histological criteria were compared. Taking into account that the oncological criterion for the management of CNMP patients indicates that the histology of the tumors is only important in metastatic disease (stage IV) and only in relation to the indicated treatment, we exclude from the initial list of 3,232 genes those that characterize the histological differences of the 84 tumors by means of a filtrate that included: T-Test ap <0.01 with correction for multiple comparisons of Benjamini and Hochberg (B&H) (Benjamini Y and Hochberg Y. Journal of the Royal Statistical Society. 1995) and an expression difference of more than 1, 5 times. The genes that met these filtering criteria were excluded, resulting in a list of 2,160 genes that were used to obtain the molecular classification and which are the genes included in Table 2.
1 .2.3. Grupos moleculares con 2.160 genes. Asociación con ILE. 1 .2.3. Molecular groups with 2,160 genes. Association with ILE.
Tras la agrupación de los 84 pacientes según el perfil de expresión génica utilizando el listado de 2.160 genes y el método de clustering jerárquico (Fig. 5A) posteriormente perfeccionado por el método de k-means, se obtuvieron 3 grupos moleculares que se denominaron como Grupo 1 , Grupo 2 y Grupo 3 (Fig. 5B). After the grouping of the 84 patients according to the gene expression profile using the list of 2,160 genes and the hierarchical clustering method (Fig. 5A) subsequently perfected by the k-means method, 3 molecular groups were obtained that were named as Group 1, Group 2 and Group 3 (Fig. 5B).
Estos tres grupos se asociaron de manera estadísticamente significativa con el ILE (log-rank p=0,004), mostrando en la curva de Kaplan-Meier, 2 grupos moleculares de mal pronóstico respecto a la recidiva (Grupo 1 y Grupo 2) y un grupo molecular de buen pronóstico (Grupo 3) (Fig. 6). El "Hazard ratio" (HR, es decir, el riesgo o probabilidad de recaída que tiene un grupo con respecto a otro) de los grupos de mal pronóstico frente al grupo de buen pronóstico es de 6,4 para el Grupo 1 (IC 95%: 1 ,8-22,3; p = 0,004) y de 4,9 para el Grupo 2 (IC 95%: 1 ,4-17,8; p = 0,014). No existe diferencia estadísticamente significativa para el riesgo entre el Grupo 1 y el Grupo 2 (p=0,526). a) - Análisis multivariante These three groups were statistically significantly associated with the ILE (log-rank p = 0.004), showing in the Kaplan-Meier curve, 2 molecular groups with a poor prognosis regarding recurrence (Group 1 and Group 2) and one group. molecular prognosis (Group 3) (Fig. 6). The "Hazard ratio" (HR, that is, the risk or probability of relapse that one group has with respect to another) of the groups of poor prognosis versus the group of good prognosis is 6.4 for Group 1 (IC 95 %: 1, 8-22.3; p = 0.004) and 4.9 for Group 2 (95% CI: 1, 4-17.8; p = 0.014). There is no statistically significant difference in risk between Group 1 and Group 2 (p = 0.526). a) - Multivariate analysis
En este análisis se incluyeron las mutaciones para k-ras por presentar tendencia (p=0,07) para la asociación con el ILE y la clasificación por Estadio ya que es el principal factor pronóstico para el CNMP.  In this analysis, mutations for k-ras were included due to a tendency (p = 0.07) for association with the ILE and the classification by Stage since it is the main prognostic factor for the CNMP.
Después de ajustar por Estadio y por el estatus de K-ras, el modelo multivariante de riesgos proporcionales de Cox confirmó la clasificación molecular como factor pronóstico independiente para evaluar el riesgo de recidiva (HR Grupo 1 vs. 3 = 1 1 .170; 95% Cl: 2,9 a 43,4; p = 4,9E-04; HR Grupo 2 vs. 3 = 7,521 ; 95% Cl: 2,0 a 28,8; p = 0,003); HR Grupo 1 vs. 2= no significativo). b) -. Estudio de vías moleculares. After adjusting for Stage and K-ras status, Cox's multivariate proportional hazards model confirmed the molecular classification as an independent prognostic factor to assess the risk of recurrence (HR Group 1 vs. 3 = 1 1 .170; 95 % Cl: 2.9 to 43.4; p = 4.9E-04; HR Group 2 vs. 3 = 7.521; 95% Cl: 2.0 to 28.8; p = 0.003); HR Group 1 vs. 2 = not significant). b) -. Study of molecular pathways.
Se observó que la clasificación molecular en 3 grupos estaba relacionada con la implicación de vías moleculares relacionadas con sistema inmune como la vía de Células T, Células B, Inflamación y respuesta Th1 que diferencian el Grupo 3 del Grupo 2 y especialmente el Grupo 3 del Grupo 1 . Por otro lado, la alteración de genes implicados en vías de ciclo celular y mecanismos de reparación del ADN confiere las principales diferencias biológicas entre el Grupo 2 y el Grupo 1 . c) - Análisis estadístico de las variables clínicas e histológicas incluidas en el estudio. It was observed that the molecular classification in 3 groups was related to the involvement of molecular pathways related to the immune system such as the T-cell, B-cell, Inflammation and Th1 response pathway that differentiate Group 3 from Group 2 and especially Group 3 from the Group one . On the other hand, the alteration of genes involved in cell cycle pathways and DNA repair mechanisms confers the main biological differences between Group 2 and Group 1. c) - Statistical analysis of the clinical and histological variables included in the study.
Respecto a las variables clínicas de los pacientes incluidas en el estudio, el hábito tabáquico se asoció de manera estadísticamente significativa con la clasificación molecular obtenida (p=0,002). En el caso de las variables histológicas del tumor, la afectación ganglionar (p=0,041 ), a pesar de tener solamente 3 pacientes diagnosticados con N1 , y la inflamación crónica (p=0,001 ) también se asocian de manera estadísticamente significativa con los subtipos moleculares. d)- Validación en serie externa y obtención de predictor para 3 grupos moleculares. Regarding the clinical variables of the patients included in the study, smoking was associated statistically significantly with the molecular classification obtained (p = 0.002). In the case of histological variables of the tumor, lymph node involvement (p = 0.041), despite having only 3 patients diagnosed with N1, and chronic inflammation (p = 0.001) are also statistically significantly associated with molecular subtypes. . d) - External serial validation and obtaining a predictor for 3 molecular groups.
Utilizando la matriz de desarrollo (84 tumores) se obtuvo, mediante el uso de PAM, un primer predictor de 1 .000 genes que identificaba los pacientes en los 3 grupos moleculares, dos de mal pronóstico (grupo 1 y grupo 2) y uno de buen pronóstico (grupo 3). Para la evaluación del poder pronóstico de dicho predictor, se utilizaron los datos de los 162 tumores de la matriz de validación. Estas muestras fueron clasificadas en los 3 grupos moleculares utilizando dicho predictor (1 .000 genes). La curva de Kaplan-Meier para las muestras de la matriz de validación reveló una asociación estadísticamente significativa de estos tres grupos moleculares con el ILE (log-rank p=0,022) (Fig. 7). El "Hazard Ratio" (HR) de los grupos de mal pronóstico frente al de buen pronóstico es de 2,4 veces para el Grupo 1 (p=0,012) y de 2,5 veces para el Grupo 2 (p=0,019).  Using the development matrix (84 tumors), through the use of PAM, a first predictor of 1,000 genes was identified that identified the patients in the 3 molecular groups, two of poor prognosis (group 1 and group 2) and one of Good prognosis (group 3). For the evaluation of the prognostic power of said predictor, the data of the 162 tumors of the validation matrix were used. These samples were classified in the 3 molecular groups using said predictor (1, 000 genes). The Kaplan-Meier curve for the validation matrix samples revealed a statistically significant association of these three molecular groups with the ILE (log-rank p = 0.022) (Fig. 7). The "Hazard Ratio" (HR) of the groups of poor prognosis versus that of good prognosis is 2.4 times for Group 1 (p = 0.012) and 2.5 times for Group 2 (p = 0.019).
1 .2.4. Obtención del predictor de 50 genes. 1 .2.4. Obtaining the predictor of 50 genes.
Como se observó con anterioridad en los resultados obtenidos en la matriz de desarrollo, de los tres grupos obtenidos mediante análisis de expresión génica, el comportamiento del Grupo 1 y el Grupo 2 es similar respecto a la recidiva, no existiendo diferencia estadística significativa para el riesgo entre estos dos grupos (p=0,526). Por ello, ambos grupos se englobaron en uno sólo y se generó un segundo predictor de 50 genes, mediante PAM, para diferenciar pacientes de mal pronóstico (Grupo 1 y 2) y pacientes de buen pronóstico (Grupo 3). En la tabla 3 se incluye el valor del centroide compacto ("shrunken centroid") para los grupos de buen y mal pronóstico obtenidos con las muestras de la matriz de desarrollo. Este segundo predictor engloba los denominados "50 genes de la invención" (ver tabla 1 ) y la evaluación del poder pronóstico del mismo se llevó a cabo de nuevo en la matriz de validación, obteniendo las curvas de Kaplan-Meier que muestran una asociación estadísticamente significativa de los dos grupos obtenidos con el ILE (log-rank p=0,001 ) (Fig. 8). El HR para el Grupo de mal pronóstico es de 3,4 frente al de buen pronóstico (IC 95%: 1 ,6-7,3; p=0,001 ). 1 .2.5. Utilidad del predictor de 50 genes en CNMP separados por estadio. As previously observed in the results obtained in the development matrix, of the three groups obtained through gene expression analysis, the behavior of Group 1 and Group 2 is similar with respect to recurrence, there is no significant statistical difference for risk. between these two groups (p = 0.526). Therefore, both groups were included in only one and a second predictor of 50 genes was generated, using PAM, to differentiate patients with poor prognosis (Group 1 and 2) and patients with good prognosis (Group 3). Table 3 includes the value of the compact centroid ("shrunken centroid") for the groups of good and bad prognosis obtained with the samples of the development matrix. This second predictor encompasses the so-called "50 genes of the invention" (see table 1) and the evaluation of the prognostic power of the same was carried out again in the validation matrix, obtaining the Kaplan-Meier curves that show an association statistically significant of the two groups obtained with the ILE (log-rank p = 0.001) (Fig. 8). The HR for the Group with a poor prognosis is 3.4 compared to the one with a good prognosis (95% CI: 1, 6-7.3; p = 0.001). 1 .2.5. Utility of the predictor of 50 genes in CNMP separated by stage.
Una de las principales críticas aparecidas en el estado del arte (Subramanian J. et al. J Nati Cáncer Inst 2010;102:1 -1 1 ) respecto a la utilidad de los predictores generados para el CNMP es que es necesario demostrar su utilidad para predecir el pronóstico de los pacientes de manera independiente del estadio en el que se clasificaron. Para ello, separamos los 162 pacientes de la matriz de validación en pacientes clasificados en estadio I (1 10 pacientes) y clasificados como estadio II (52 pacientes). Se utilizó el predictor de 50 genes para obtener los grupos moleculares de alto y bajo riesgo (es decir, de mal y buen pronóstico, respectivamente) y se estudió su asociación con el ILE mediante las curvas de Kaplan-Meier. Tanto en estadios I por separado (Fig. 9 A) como en estadios II (Fig. 9 B) se observó una asociación estadísticamente significativa de los grupos con el ILE (p=0,013 y p=0,029 respectivamente) y los HR del grupo de mal pronóstico respecto del de buen pronóstico fueron en el estadio I de 3,2 (IC 95%:1 ,2-8,3; p=0,018) y en el estadio II de 3,5 (IC 95%:1 ,1 -12; p=0,041 ).  One of the main criticisms of the state of the art (Subramanian J. et al. J Nati Cancer Inst 2010; 102: 1 -1 1) regarding the usefulness of the predictors generated for the CNMP is that it is necessary to demonstrate its usefulness for predict the prognosis of patients independently of the stage in which they were classified. To do this, we separated the 162 patients from the validation matrix in patients classified in stage I (1 10 patients) and classified as stage II (52 patients). The 50 gene predictor was used to obtain the high and low risk molecular groups (i.e., poor and good prognosis, respectively) and their association with the ILE was studied using the Kaplan-Meier curves. Both in stages I separately (Fig. 9 A) and in stages II (Fig. 9 B) a statistically significant association of the groups with the ILE was observed (p = 0.013 and p = 0.029 respectively) and the HR of the bad group prognosis with respect to the good prognosis were in stage I of 3.2 (95% CI: 1, 2-8.3; p = 0.018) and in stage II of 3.5 (95% CI: 1, 1 - 12; p = 0.041).
Figure imgf000045_0001
Figure imgf000046_0001
Figure imgf000045_0001
Figure imgf000046_0001
Figure imgf000047_0002
Figure imgf000047_0002
1 .2.6. Sensibilidad y especificidad del predictor de 50 genes. 1 .2.6. Sensitivity and specificity of the 50 gene predictor.
Los valores de sensibilidad y especificidad del predictor para la clasificación de las muestras en los grupos moleculares identificados se muestran en la tabla 4.  The sensitivity and specificity values of the predictor for the classification of the samples in the molecular groups identified are shown in Table 4.
Figure imgf000047_0001
Figure imgf000047_0001
Por lo tanto, y en base a los resultados mostrados, la presente invención demuestra la utilidad del método de la invención, así como del uso de los 50 genes descritos en la tabla 1 como marcadores pronóstico del CNMP de estadios I o II. Therefore, and based on the results shown, the present invention demonstrates the usefulness of the method of the invention, as well as the use of the invention. genes described in table 1 as prognostic markers of stage I or II CNMP.
A continuación se muestra la tabla 2 a la que se ha hecho referencia previamente. Cuando el "ID Entrez" no está indicado o es se trata de genes de los que no hay información en la base de datos NCBI y en los que en el símbolo del gen se ha indicado el nombre de la sonda del microarray de oligonucleótidos de genoma completo utilizado (Agilent®, G41 12F). Below is the table 2 referred to previously. When the "ID Entrez" is not indicated or is genes that have no information in the NCBI database and in which the name of the genome oligonucleotide microarray probe has been indicated in the gene symbol complete used (Agilent®, G41 12F).
Figure imgf000048_0001
Figure imgf000049_0001
Figure imgf000050_0001
Figure imgf000051_0001
Figure imgf000052_0001
Figure imgf000053_0001
Figure imgf000054_0001
Figure imgf000055_0001
Figure imgf000056_0001
Figure imgf000057_0001
Figure imgf000058_0001
Figure imgf000059_0001
Figure imgf000060_0001
Figure imgf000061_0001
Figure imgf000062_0001
Figure imgf000063_0001
Figure imgf000064_0001
Figure imgf000065_0001
Figure imgf000048_0001
Figure imgf000049_0001
Figure imgf000050_0001
Figure imgf000051_0001
Figure imgf000052_0001
Figure imgf000053_0001
Figure imgf000054_0001
Figure imgf000055_0001
Figure imgf000056_0001
Figure imgf000057_0001
Figure imgf000058_0001
Figure imgf000059_0001
Figure imgf000060_0001
Figure imgf000061_0001
Figure imgf000062_0001
Figure imgf000063_0001
Figure imgf000064_0001
Figure imgf000065_0001
Figure imgf000066_0001
Figure imgf000067_0001
Figure imgf000068_0001
Figure imgf000069_0001
Figure imgf000070_0001
Figure imgf000071_0001
Figure imgf000072_0001
Figure imgf000073_0001
Figure imgf000066_0001
Figure imgf000067_0001
Figure imgf000068_0001
Figure imgf000069_0001
Figure imgf000070_0001
Figure imgf000071_0001
Figure imgf000072_0001
Figure imgf000073_0001

Claims

REIVINDICACIONES
1 . Método in vitro de obtención de datos útiles para el pronóstico de cáncer de pulmón no microcítico de estadio I o II caracterizado por la detección y/o cuantificación del producto de expresión de los genes de la tabla 1 en la muestra biológica aislada de un sujeto. one . In vitro method of obtaining useful data for the prognosis of stage I or II non-small cell lung cancer characterized by the detection and / or quantification of the expression product of the genes of table 1 in the isolated biological sample of a subject.
2. Método según la reivindicación 1 que además comprende la comparación de los datos útiles con valores de expresión de referencia para el producto de expresión de los genes de la tabla 1 en cáncer de pulmón no microcítico de estadio I o II obtenidos de sujetos en los que el pronóstico es conocido (muestra de referencia) para identificación del sujeto como un sujeto de buen pronóstico o de mal pronóstico. 2. A method according to claim 1 further comprising comparing the useful data with reference expression values for the expression product of the genes of table 1 in stage I or II non-small cell lung cancer obtained from subjects in the that the prognosis is known (reference sample) for identification of the subject as a subject of good prognosis or poor prognosis.
3. Método según las reivindicaciones 1 o 2 donde la comparación se realiza mediante el método del centroide compacto más cercano. 3. Method according to claims 1 or 2 wherein the comparison is made by the method of the nearest compact centroid.
4. Método in vitro para el pronóstico de cáncer de pulmón no microcítico de estadio I o II caracterizado por: 4. In vitro method for the prognosis of stage I or II non-small cell lung cancer characterized by:
a. la detección y cuantificación del producto de expresión de los genes de la tabla 1 en una muestra de referencia;  to. the detection and quantification of the expression product of the genes of table 1 in a reference sample;
b. el cálculo de un valor de referencia (valor 1 ) para cada producto de expresión de los genes de la tabla 1 en las muestras de referencia de pronóstico favorable (grupo de buen pronóstico) y el cálculo de un valor de referencia (valor 2) en las muestras de referencia de pronóstico desfavorable (grupo de mal pronóstico) mediante el uso del método del centroide más cercano;  b. the calculation of a reference value (value 1) for each expression product of the genes in table 1 in the favorable prognostic reference samples (good prognosis group) and the calculation of a reference value (value 2) in unfavorable prognosis reference samples (poor prognosis group) by using the nearest centroid method;
c. la detección y cuantificación del producto de expresión de los genes de la tabla 1 en la muestra biológica de un nuevo sujeto en el que el pronóstico es desconocido (muestra de estudio);  C. the detection and quantification of the expression product of the genes of table 1 in the biological sample of a new subject in which the prognosis is unknown (study sample);
d. la comparación mediante el uso del método de clasificación del centroide compacto más cercano de los valores obtenidos en la detección y cuantificacion del producto de expresión de los genes de la tabla 1 en la muestra de estudio con los valores de referencia obtenidos en los grupos de buen y mal pronóstico, e. la asociación de la muestra de estudio al grupo de buen pronóstico o al grupo de mal pronóstico según lo establecido en el método del centroide compacto más cercano. d. comparison by using the closest compact centroid classification method of the values obtained in the detection and quantification of the expression product of the genes of table 1 in the study sample with the reference values obtained in the groups of good and bad prognosis, e. the association of the study sample to the group of good prognosis or the group of poor prognosis as established in the method of the nearest compact centroid.
5. Método según la reivindicación 4 donde el método del centroide más cercano se lleva a cabo a través de la aplicación de Predicción de Análisis de Microarrays (PAM). 5. Method according to claim 4 wherein the nearest centroid method is carried out through the application of Microarray Analysis Prediction (PAM).
6. Método según cualquiera de las reivindicaciones 1 a 5 donde la muestra de referencia y las muestras de estudio han sido previamente normalizadas antes de la comparación. 6. Method according to any one of claims 1 to 5 wherein the reference sample and the study samples have been previously normalized before comparison.
7. Método según cualquiera de las reivindicaciones 1 a 6 que además comprende la detección y/o cuantificacion de al menos un producto de expresión de los genes descritos en la tabla 2. 7. Method according to any one of claims 1 to 6 which further comprises the detection and / or quantification of at least one expression product of the genes described in Table 2.
8. Método según cualquiera de las reivindicaciones 1 a 7 donde el producto de expresión es ARN mensajero. 8. Method according to any one of claims 1 to 7 wherein the expression product is messenger RNA.
9. Método según la reivindicación 8 donde la detección y/o cuantificacion del ARN mensajero se realiza mediante microarrays. 9. Method according to claim 8 wherein the detection and / or quantification of messenger RNA is performed by microarrays.
10. Método según la reivindicación 8 donde la detección y/o cuantificacion del ARN mensajero se realiza mediante RT-PCR. 10. Method according to claim 8 wherein the detection and / or quantification of messenger RNA is performed by RT-PCR.
1 1 . Método según cualquiera de las reivindicaciones 1 a 7 donde el producto de expresión es una proteína. eleven . Method according to any one of claims 1 to 7 wherein the expression product is a protein.
12. Método según la reivindicación 1 1 donde la detección y/o cuantificación de la proteína se realiza mediante inmuno blotting, inmunohistoquímica, cromatografía o microarrays. 12. Method according to claim 1 wherein the detection and / or quantification of the protein is carried out by immuno blotting, immunohistochemistry, chromatography or microarray.
13. Método según cualquiera de las reivindicaciones 1 a 12 donde la muestra biológica se selecciona de la lista que comprende: tejido, sangre, plasma, suero, linfa, lavado broncoalveolar o fluido ascítico. 13. A method according to any of claims 1 to 12 wherein the biological sample is selected from the list comprising: tissue, blood, plasma, serum, lymph, bronchoalveolar lavage or ascites fluid.
14. Método según cualquiera de las reivindicaciones 1 a 13 donde la muestra biológica es fresca, congelada, fijada o fijada y embebida en parafina. 14. Method according to any of claims 1 to 13 wherein the biological sample is fresh, frozen, fixed or fixed and embedded in paraffin.
15. Método según cualquiera de las reivindicaciones 1 a 14 donde el sujeto es un humano. 15. Method according to any of claims 1 to 14 wherein the subject is a human.
16. Uso in vitro de los productos de expresión de los genes de la tabla 1 como marcador pronóstico de cáncer de pulmón no microcítico de estadio I o II. 16. In vitro use of the expression products of the genes in Table 1 as a prognostic marker for stage I or II non-small cell lung cancer.
17. Uso in vitro de los productos de expresión de la tabla 1 para clasificar la respuesta inmune intratumoral en cáncer de pulmón no microcítico de estadio I o II. 17. In vitro use of the expression products in Table 1 to classify the intratumoral immune response in stage I or II non-small cell lung cancer.
18. Uso in vitro de los productos de expresión de la tabla 1 como biomarcador predictor de respuesta terapéutica a la inmunoterapia en el cáncer de pulmón no microcítico de estadio I o II. 18. In vitro use of the expression products of Table 1 as a biomarker predictor of therapeutic response to immunotherapy in stage I or II non-small cell lung cancer.
19. Kit que comprende sondas que consisten en las sondas que reconocen el ARN mensajero, producto de la expresión de los genes de la tabla 1 , o el ADN complementario o ARN complementario a dicho ARN mensajero, o anticuerpos que reconocen una proteína producto de expresión de los genes de la tabla 1 . 19. Kit comprising probes consisting of probes that recognize the messenger RNA, product of the expression of the genes in table 1, or the complementary DNA or RNA complementary to said messenger RNA, or antibodies that recognize an expression product protein of the genes in table 1.
20. Kit según la reivindicación 19 que comprende sondas, que consisten en las sondas que reconocen el ARN mensajero producto de la expresión de los genes de la tabla 1 . 20. Kit according to claim 19 comprising probes, which consist of probes that recognize the messenger RNA resulting from the expression of the genes in Table 1.
21 . Kit según la reivindicación 19 donde las sondas son las secuencias SEQ ID NO: 1 a SEQ IDNO: 66. twenty-one . Kit according to claim 19 wherein the probes are the sequences SEQ ID NO: 1 to SEQ IDNO: 66.
22. Kit según cualquiera de las reivindicaciones 19 a 21 que además comprende al menos una sonda o un anticuerpo que reconoce un producto de expresión de los genes de la tabla 2. 22. Kit according to any of claims 19 to 21 which further comprises at least one probe or an antibody that recognizes an expression product of the genes in Table 2.
23. Kit según la reivindicación 22 que comprende al menos una sonda que reconoce un producto de expresión de los genes de la tabla 2. 23. Kit according to claim 22 comprising at least one probe that recognizes an expression product of the genes in Table 2.
24. Kit según cualquiera de las reivindicaciones 19 a 23 que además comprende al menos unos de los reactivos seleccionados de la lista que comprende: una retrotranscriptasa, una ARN polimerasa o un fluoróforo. 24. Kit according to any of claims 19 to 23 which further comprises at least one of the reagents selected from the list comprising: a retrotranscriptase, an RNA polymerase or a fluorophore.
25. Kit según cualquiera de las reivindicaciones 19 a 24 donde las sondas están situadas en un soporte sólido. 25. Kit according to any of claims 19 to 24 wherein the probes are located on a solid support.
26. Uso del kit según las reivindicaciones 19 a 25 para la obtención de datos útiles para el pronóstico del carcinoma de pulmón no microcítico de estadios I o II. 26. Use of the kit according to claims 19 to 25 for obtaining useful data for the prognosis of stage I or II non-small cell lung carcinoma.
27. Uso del kit según las reivindicaciones 19 a 25 para la obtención de datos útiles para la clasificación de la respuesta inmune intratumoral del carcinoma de pulmón no microcítico de estadios I o II. 27. Use of the kit according to claims 19 to 25 for obtaining useful data for the classification of the intratumoral immune response of stage I or II non-small cell lung carcinoma.
28. Uso del kit según las reivindicaciones 19 a 25 para la obtención de datos útiles para predecir la respuesta a inmunoterapia del carcinoma de pulmón no microcítico de estadios I o II. 28. Use of the kit according to claims 19 to 25 to obtain useful data to predict the immunotherapy response of stage I or II non-small cell lung carcinoma.
PCT/ES2012/070919 2011-12-30 2012-12-28 Method for classifying non-microcytic lung carcinoma on the basis of identifying an intratumoral immune response WO2013098457A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
ES201132151A ES2411833B1 (en) 2011-12-30 2011-12-30 Prognosis method of stage I or II non-small cell lung carcinoma.
ESP201132151 2011-12-30
ES201230250A ES2420079B1 (en) 2012-02-17 2012-02-17 Classification method for non-small cell lung carcinoma based on the identification of an intratumoral immune response.
ESP201230250 2012-02-17

Publications (1)

Publication Number Publication Date
WO2013098457A1 true WO2013098457A1 (en) 2013-07-04

Family

ID=48093001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2012/070919 WO2013098457A1 (en) 2011-12-30 2012-12-28 Method for classifying non-microcytic lung carcinoma on the basis of identifying an intratumoral immune response

Country Status (1)

Country Link
WO (1) WO2013098457A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116042832A (en) * 2023-01-30 2023-05-02 南方医科大学南方医院 Biomarker for predicting non-small cell lung cancer immunotherapy benefit degree and prognosis and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008147205A1 (en) * 2007-06-01 2008-12-04 Agendia B.V. Prognostic gene expression signature for non small cell lung cancer patients
US20090062144A1 (en) 2007-04-03 2009-03-05 Nancy Lan Guo Gene signature for prognosis and diagnosis of lung cancer
WO2010007093A1 (en) 2008-07-17 2010-01-21 Universität Zu Köln A method for lung cancer early detection and prognosis
WO2011094483A2 (en) * 2010-01-29 2011-08-04 H. Lee Moffitt Cancer Center And Research Institute, Inc. Immune gene signatures in cancer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090062144A1 (en) 2007-04-03 2009-03-05 Nancy Lan Guo Gene signature for prognosis and diagnosis of lung cancer
WO2008147205A1 (en) * 2007-06-01 2008-12-04 Agendia B.V. Prognostic gene expression signature for non small cell lung cancer patients
WO2010007093A1 (en) 2008-07-17 2010-01-21 Universität Zu Köln A method for lung cancer early detection and prognosis
WO2011094483A2 (en) * 2010-01-29 2011-08-04 H. Lee Moffitt Cancer Center And Research Institute, Inc. Immune gene signatures in cancer

Non-Patent Citations (35)

* Cited by examiner, † Cited by third party
Title
AGILENT TECHNOLOGIES: "Agilent SurePrint G3 Human Catalog CGH Microarrays", INTERNET CITATION, 8 January 2009 (2009-01-08), pages 1 - 8, XP002660065, Retrieved from the Internet <URL:http://www.chem.agilent.com/Library/brochures/5990-3368en_lo.pdf> [retrieved on 20110926] *
AGILENT TECHNOLOGIES: "Microarray Ordering Guide Catalog", 26 May 2009 (2009-05-26), USA, pages 1 - 8, XP055062784, Retrieved from the Internet <URL:https://www.usc.es/export/sites/default/gl/investigacion/riaidt/secuenciacion/agilent/descargas/Microarray_Ordering_Guide.pdf> [retrieved on 20130514] *
ASANO ET AL., LEUKEMIA, vol. 25, 2011, pages 1182 - 1188
ASCIERTO ET AL., BREAST CANCER RES TREAT., vol. 131, no. 3, 2012, pages 871 - 80
BENJAMINI Y; HOCHBERG Y, JOURNAL OF THE ROYAL STATISTICAL SOCIETY., 1995
BROUSSAD E.K. ET AL., J. CLIN ONCOL, vol. 29, no. 6, 2011, pages 602 - 603
CHEN HY ET AL., NEW ENGL J MED, vol. 356, no. 1, 2007, pages 11 - 20
CLARK TG., BRITISH JOURNAL OF CANCER, vol. 89, 2003, pages 232 - 238
CLEVELAND WS ET AL., JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, vol. 83, 1988, pages 596 - 610
CLEVELAND WS: "Locally Weighted Scatterplot Smoothing", JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, vol. 74, 1979, pages 829 - 836
GALON ET AL., J TRANSL MED., vol. 10, 3 January 2012 (2012-01-03), pages 1
HAGN ET AL., IMMUNOLOGY AND CELL BIOLOGY, 2 August 2011 (2011-08-02)
HAVELANGE V. ET AL., BLOOD, vol. 118, no. 10, 2011, pages 2827 - 9
KARAPANIAGIOTOU E ET AL., OPEN LUNG CANCER J, vol. 2, 2009, pages 24 - 30
KLIGERMAN S, AMERICAN JOURNAL OF ROENTGENOLOGY, vol. 194, 2010, pages 562 - 573
KLIGERMAN S., AMERICAN JOURNAL OF ROENTGENOLOGY, vol. 194, 2010, pages 562 - 573
LEE JK ET AL., J IMMUNOL., vol. 179, no. 7, 2007, pages 4672 - 8
MARCO MALAVASI ET AL., BLOOD, vol. 118, no. 13, 2011, pages 3470 - 3478
MOOTHA VK ET AL., NAT GEN, 2003
NATIONAL COMPREHENSIVE CANCER NETWORK, 2011
QUACKENBUSH, J. NAT REV GENET., vol. 2, no. 6, 2001, pages 418 - 27
RAPONI M ET AL., CANCER RES, vol. 66, 2006, pages 7466 - 7472
RAZ DJ ET AL., CLIN CANCER RES, vol. 14, no. 17, 2008, pages 5565 - 5570
ROEPMAN P ET AL., CLIN CANCER RES, vol. 15, 2009, pages 284 - 290
ROEPMAN P ET AL: "An immune response enriched 72-gene prognostic profile for early-stage non-small-cell lung cancer", CLINICAL CANCER RESEARCH, THE AMERICAN ASSOCIATION FOR CANCER RESEARCH, US, vol. 15, no. 1, 1 January 2009 (2009-01-01), pages 284 - 290, XP002547977, ISSN: 1078-0432, DOI: 10.1158/1078-0432.CCR-08-1258 *
ROEPMAN P. ET AL., CLIN CANCER RES, vol. 15, 2009, pages 284 - 290
SAEZ ET AL., BLOOD, vol. 118, no. 6, 11 December 2010 (2010-12-11), pages 1560 - 9
SIMON R. ET AL., J CLIN ONCOL, vol. 23, 2005, pages 7332 - 41
SUBRAMANIAN ET AL., PNAS, vol. 102, no. 43, 2005, pages 15545 - 15550
SUBRAMANIAN J. ET AL., J NATL CANCER INST., vol. 102, 2010, pages 1 - 11
TIBSHIRANI R. ET AL., PNAS, vol. 99, no. 10, 2002, pages 6567 - 72
TIBSHIRANI R. ET AL., PNAS., vol. 99, 2002, pages 6567 - 6572
TIBSHIRANI R.: "Diagnosis of multiple cancer types by shrunken centroids of gene expression", PNAS, vol. 99, no. 10, 2002, pages 6567 - 72, XP002988576, DOI: doi:10.1073/pnas.082099299
TRUNG CHU V. ET AL., J. IMMUNOL, vol. 179, 2007, pages 5947 - 5957
ZAO C. ET AL., ONCOGENE, vol. 27, 2008, pages 63 - 75

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116042832A (en) * 2023-01-30 2023-05-02 南方医科大学南方医院 Biomarker for predicting non-small cell lung cancer immunotherapy benefit degree and prognosis and application thereof
CN116042832B (en) * 2023-01-30 2023-11-21 南方医科大学南方医院 Biomarker for predicting non-small cell lung cancer immunotherapy benefit degree and prognosis and application thereof

Similar Documents

Publication Publication Date Title
Aldred et al. Papillary and follicular thyroid carcinomas show distinctly different microarray expression profiles and can be distinguished by a minimum of five genes
JP5690588B2 (en) Method for determining hepatocellular carcinoma subtype and detecting hepatoma stem cells
EP2309273B1 (en) Novel tumor marker determination
KR20170120124A (en) Biomarker panel for cancer detection
ES2608322T3 (en) Procedure to predict the response to chemotherapy in a patient who suffers or is at risk of developing recurrent breast cancer
WO2010000907A1 (en) Genomic fingerprint of mammary cancer
CA2504403A1 (en) Prognostic for hematological malignancy
Wentzensen et al. Identification of differentially expressed genes in colorectal adenoma compared to normal tissue by suppression subtractive hybridization
WO2013074044A1 (en) Methods for diagnosis and/or prognosis of gynecological cancer
US20210363593A1 (en) CXCL13 Marker For Predicting Immunotherapeutic Responsiveness In Patient With Lung Cancer And Use Thereof
EP1980627A1 (en) Method of determining a chemotherapeutic regime and survival expectancy for non small cell lung cancer based on EGFR/CSF-1/CA IX expression
WO2010036924A2 (en) Inflammatory genes and microrna-21 as biomarkers for colon cancer prognosis
KR101847815B1 (en) A method for classification of subtype of triple-negative breast cancer
US9464324B2 (en) Methods of determining the prognosis of an adenocarcinoma
US10081842B2 (en) Prostate cancer gene expression profiles
WO2013098457A1 (en) Method for classifying non-microcytic lung carcinoma on the basis of identifying an intratumoral immune response
WO2019145483A1 (en) Molecular signature and use thereof for the identification of indolent prostate cancer
EP3899019A1 (en) Method of predicting for benefit from immune checkpoint inhibition therapy
WO2015044495A1 (en) Method for predicting the response to chemotherapy treatment in patients suffering from colorectal cancer
WO2011012763A2 (en) Method and kit for diagnosing mantle cell lymphoma
JP7471601B2 (en) Molecular signatures and their use for identifying low-grade prostate cancer - Patents.com
ES2411833B1 (en) Prognosis method of stage I or II non-small cell lung carcinoma.
WO2019215394A1 (en) Arpp19 as biomarker for haematological cancers
WO2015006543A1 (en) Method for predicting and detecting tumor metastasis in kidney cancer
ES2381729A1 (en) Test predicting overall survival from pulmonary adenocarcinoma

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12840853

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12840853

Country of ref document: EP

Kind code of ref document: A1