WO2013098237A1 - Kissenfiltereinheit - Google Patents

Kissenfiltereinheit Download PDF

Info

Publication number
WO2013098237A1
WO2013098237A1 PCT/EP2012/076651 EP2012076651W WO2013098237A1 WO 2013098237 A1 WO2013098237 A1 WO 2013098237A1 EP 2012076651 W EP2012076651 W EP 2012076651W WO 2013098237 A1 WO2013098237 A1 WO 2013098237A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane element
filter unit
elements
carrier
membrane
Prior art date
Application number
PCT/EP2012/076651
Other languages
English (en)
French (fr)
Inventor
Christian Dahlberg
Erik Müller
Dietmar Oechsle
Werner Wietschorke
Original Assignee
MAHLE InnoWa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAHLE InnoWa GmbH filed Critical MAHLE InnoWa GmbH
Publication of WO2013098237A1 publication Critical patent/WO2013098237A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/08Flat membrane modules
    • B01D63/081Manufacturing thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/08Flat membrane modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/14Specific spacers
    • B01D2313/146Specific spacers on the permeate side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/022Asymmetric membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/36Hydrophilic membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/48Antimicrobial properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones

Definitions

  • the invention is based on a cushion filter unit with at least one drainage unit and at least two membrane elements.
  • a "drainage unit” is intended in particular a ⁇ A standardized be understood, which is intended to space at least two membrane elements vonei ⁇ Nander and between the membrane elements a space for a
  • Mass transport in particular for a line of filter filtered through the membrane elements Filt- to a discharge element, which dissipates the filtrate from the cushion filter unit to provide.
  • a “membrane element" is to be understood in particular an element having a porous separating layer, in particular a thickness of at most 200 ⁇ and preferably ⁇ ⁇ of at most 1 ⁇ ⁇ , wherein the separation layer a separation limit of a maximum of 2 ⁇ , preferably at most 0 , 2 ⁇ and preferably of not more than 0.01 ⁇
  • Separatation limit is intended in particular a limit value of a diameter of a Stoffteilchens ver ⁇ were to be, wherein the particulate matter is retained by the separating layer.
  • the membrane element may be formed asymmetrically, whereby a membrane element is to be understood under a "asymmetric" membrane element, wherein the porous Separating layer has a pore size monotonically changing over a thickness.
  • the membrane element may be formed by at least one organic and / or at least one inorganic material.
  • the membrane element is formed from a polymer, preferably from polyethersulfone.
  • the drainage unit is formed at least by at least two Sussembly elements, each of which is partially filled by a membrane element.
  • a “carrier element” is to be understood in particular to mean an element which carries at least one membrane element and in which a substance transport, in particular of substances which have passed through the membrane element, can take place " should be understood in particular that a membrane element fills a maximum of 95 percent, preferably at most 50 percent and preferably at most 5 percent of a volume of the support element.
  • the drainage unit is formed by regions of the carrier elements which are not filled by the respective membrane elements.
  • other elements may be inserted into the drainage unit, for example, a fine non-woven, which is introduced into formed by a scrim Trä ⁇ gerettin. It can thus be advantageous to dispense with a separate element for the spacing of the carrier elements of the membranes.
  • the carrier elements are connected to each other flat.
  • surface connected to each other is to be understood in particular that in a radius of maximum 5 mm, preferably of at most 2 mm and preferably of a maximum of 0, 5 mm of a contact point of the support elements to one another at least one further contact point of the Trä ⁇ gerium located.
  • Touch point is to be understood in particular a position of a surface of a first support member to which the first support member is connected to a second support member. It can advantageously be a high strength of the drainage unit and a high load resistance of the cushion filter unit can be achieved. Furthermore, a back flushability of the cushion filter unit can be achieved by a surface connection of the carrier elements.
  • the carrier elements are connected to one another in a material-locking manner.
  • integrally connected is intended in particular to be understood that the support elements are held together by atomic or molecular forces, such as can be achieved for example by soldering, welding, adhesive bonding and / or vulcanisation.
  • which the carrier elements firmly bonded to each other by ultrasonic welding
  • other material-fit connections for example by Kle ⁇ ben with a highly viscous adhesive, preferably based on epoxy, silicone and / or polyurethane basis, conceivable. thus, it can be achieved, in particular a fixed connection of the support elements, and a stable drainage unit.
  • the carrier elements each have a mountain-valley structure on at least one surface remote from a membrane element,
  • all surfaces of the carrier elements may have a mountain-valley structure " a surface is to be understood in particular that the surface has elevations in the form of, for example, waves or nubs, which valleys of the surface by a maximum of 2 mm, advantageously of at most 0, 5 mm and preferably of at most 0, 1 mm.
  • the surface has a line density of at least 10 waves / cm, preferably at least 50 waves / cm and preferably ⁇ at least 100 waves / cm perpendicular to a main direction of extension of the waves and surveys in the form of knobs an area density of at least 100 nubs / cm2, advantageously of at least 500 nubs / cm2, and preferably of at least 1000 nubs / cm2.
  • the mountain-valley structure can come about through a structure of a fabric which forms a carrier element. In particular channels for a rapid mass transport, in particular a filtrate, can thus be obtained on the surface.
  • the support elements are connected to one another at at least one point of contact administratei ⁇ Nander respectively from peak to peak.
  • the term "connected to each other from mountain peak to mountain peak” is to be understood in particular as meaning that points of contact between the carrier elements are each formed by peaks of waves and / or nubs of the carrier elements.
  • Trust are to be understood as meaning in particular regions of waves and / or nubs which maximum ⁇ the top 100, advantageously at most the top 10 ⁇ and preferably at most the top 1000 nm of waves and / or Nop ⁇ pen include. It can thus be advantageously obtained a drainage unit in which a mass transport can take place in channels formed by valleys with high flow volume and high flow rate.
  • the carrier elements are formed by a fabric.
  • tissue is intended in particular a textile structure are understood, which consists of min ⁇ least two substantially orthogonal to each other arranged thread systems.
  • positioned substantially perpendicular to each other is to be understood in particular that adjacent threads of different yarn systems include an angle with each other , which deviates by a maximum of 5 degrees, advantageously a maximum of 1 degree, and preferably a maximum of 0, 1 degrees of 90 degrees.
  • the Stauele ⁇ elements instead of a fabric also be formed by a nonwoven fabric.
  • nonwoven in particular a textile structure made up of interconnected fibers verstan be the ⁇ , wherein a compound of the fibers to one another by adhesion to each other and / or can be achieved by a mechanical, chemical and / or thermal treatment, and in which an orientation individual fibers can be described by statistical means to each other only.
  • the fabric or the nonwoven fabric may be of any one skilled appear suitable organic and / or inorganic material ⁇ represents Herge, preferably the woven fabric or the nonwoven fabric is at least partially made of polypropy ⁇ len and / or polyoxymethylene made.
  • the two support elements, which form a drainage unit, each of different fabrics and / or nonwovens can be ge ⁇ forms.
  • At least one membrane element has an additional functional coating.
  • additional functional coating is intended in particular a coating with a maximum thickness of 5 ⁇ , advantageously ⁇ of at most 0.5 and preference ⁇ example of a maximum of 1 nm to be understood, which is composed of a material different from a material of the membrane element material and at least one additional function different from a filtering function, for example an antimicrobial and / or antifungal function or a lotus effect-based anti-soiling function to a reduction of fouling.
  • the additional functional coating may be formed by a monomolecular coating be formed from organic and / or inorganic coatings and / or by a coating of a combination of organic and inorganic materials, for example, an organometallic coating.
  • the additional function ⁇ be istu ng may for example be formed by a layer of carbon nanotubes. It can be advantageously achieved by an additional functional coating a simple adaptation of the cushion filter
  • a method of manufacturing a cushion filter unit in which in a process step at least a membrane element in a support member cantilevered will ⁇ introduced and two support elements are connected to each other at one of the end remote from at least one membrane element side in a further process step. It can thus be achieved in particular a simple manufacturing process.
  • a highly viscous solution together with a solvent, such as N-methyl-2-pyrrolidone, are included, wherein in the solution in addition to the material components and the solvent further substances, such as a stabilizer may be included, and by addition of a precipitating agent, For example, of water, and / or by a change in external conditions, such as a temperature and / or a pH Value, a formation of the membrane element from the material contained in the solution ⁇ constituents used.
  • the highly viscous solution can be ⁇ introduced to the carrier element, to be distributed evenly by means of a doctor blade and precipitated by means of a phase inversion to a membrane element. It can thus be achieved in particular an easy to carry out, easy to control production process.
  • the membrane element is partially precipitated in the carrier elements by ⁇ is proposed.
  • partially precipitated is to be understood in particular that the membrane element after completion of the precipitation process fills a maximum of 95 percent, preferably a maximum of 50 percent and preferably a maximum of 5 percent of a volume of the support element.
  • a vapor to the carrier element ⁇ applied solution for preparing the membrane element is treated in a climate chamber.
  • climate chamber is to be understood in particular as a space through which the Trä- is guided gerelement with the applied solution and in the preset, kontrollier ⁇ bare external conditions, such as a preset temperature, air humidity and / or air flow is provided.
  • the climate chamber in particular ⁇ least one heating element and at least one humidifier on.
  • the precipitation of the membrane element takes place at least in part.
  • a surface of the membrane element is made. thus, it may, in particular properties of Membranele ⁇ ments, such as pore size and / or distribution, controllable.
  • FIG. 1 shows the schematic structure of a cushion filter unit 1 0 according to the invention with a drainage unit 1 2, which is formed by two carrier elements 1 to 4, which are respectively partially filled by ei ⁇ nem membrane element 1.
  • the drainage unit 1 2 is formed by areas of the support elements 1 4, which are not filled by the membrane elements 16.
  • the drainage unit 1 2 provides a space between the membrane elements 16 provided in which a transported by passing through the membrane elements 1 6 and filtered through the membrane elements 16 and fluid rank by unillustrated discharge devices can be ⁇ leads.
  • the membrane elements 1 6 each fill approximately 60 percent of a volume of the carrier elements 1 4.
  • the support elements 1 4 are each formed by a fabric.
  • Elevations of the mountain-valley structure are formed by mountains 20 in the form of waves, the valleys 1 8 of the surfaces by 0.5 mm survive.
  • the waves have a line density perpendicular to a main direction of extension of the waves of 30 waves / cm.
  • Channels of the drainage unit 1 2 formed by mountains 20 and valleys 18 of the mountain-valley structure permit a high flow volume of a liquid filtered through the membrane elements 16.
  • the membrane elements 16 are made of a hydrophilic polysulfone polymer and white ⁇ sen an asymmetric structure, wherein a pore size of 0, 1 ⁇ on a side remote from the drainage unit 1 2 side of the membrane elements 1 6 to 1 0 ⁇ at one of the drainage unit 1 2 facing side of the membrane elements 16 increases.
  • the membrane elements 16 have an additional functional coating 26 on a surface remote from the drainage unit 12, which has an antibacterial effect for reducing fouling.
  • the support elements 1 4 are connected to form the drainage unit 1 2 cohesively by means of a high-viscosity epoxy-based adhesive together.
  • the adhesive is in each case applied to mountain peaks 22 of the surfaces of the carrier elements 1 4, that is, the adhesive is applied to areas of the waves, which survive the surface by 10 ⁇ and higher. Touch points 24 of the support elements 1 4, where a cohesive connection is made by means of the adhesive are each formed by the mountain peaks 22, whereby the Trä ⁇ gerium 1 4 are connected flat to each other.
  • the cushion filter unit 1 0, in a process of three steps 34, 36, 38 forth ⁇ provided (Fig. 3).
  • a membrane element 1 6 is introduced into a carrier element 1 4 on one side and a solution 28 applied to the carrier element 1 4 for the production of the membrane element 16 in a climatic chamber 32 is treated.
  • the introduced membrane element 16 is dried and optionally provided with an additional functional coating 26.
  • two carrier elements 1 4 are each connected to one another at the side facing away from the membrane element 16 to a pillow filter unit 1 0 and optionally with other func ⁇ onsettin, such as a discharge pipe connected.
  • the membrane element 16 is introduced into the carrier element 1 4 by means of a precipitation process in the method step 34 (FIG. 2).
  • the carrier element 1 4 is placed on a treadmill 42.
  • a solution 28 of components of po- lyethersulfone in the form of a diphenol and 4-4'-dichlorodiphenolsulfone on a support element 1 4 applied.
  • the application is done by means of a nozzle 40, which sprays the solution 28 onto the carrier element 1 4.
  • the applied solution 28 is distributed uniformly directly on the carrier element 1 4 directly afterwards by means of a doctor blade 30.
  • the solution 28 seeps into the carrier element 1 4 and fills in the course of Trans ⁇ ports ever larger areas of the support member 1 4.
  • the carrier element 1 4 is brought with the applied Lö ⁇ solution 28 by the treadmill 42 in the climatic chamber 32.
  • the solution polymerizes 28 due to added precipitant, which is in the form of water vapor in the climatic chamber 32 added water.
  • a surface of the membrane element 16 is formed by polymerization of the solution 28.
  • the carrier element 1 4 with superficially polymerized solution 28 is spent after passing through the air ⁇ chamber 32 in a water bath 44, where by the water as the precipitant residual solution 28 to the Membrane element 16 is like.
  • the membrane element 16 is hereby only partially penetrated into the carrier element 1 4, so that it only partially fills the carrier element 1 4.
  • the introduced membrane element 1 6 is dried.
  • the carrier element 1 4 is cut with membrane element 16 into appropriate sizes.
  • an additional functional coating 26 may be applied to the membrane element 16 after precipitation of the membrane element 16 and / or after drying of the membrane element 16.
  • the carrier element 1 4 can be spent with the introduced membrane element 16, for example, in a vacuum chamber to a surface coating by means of a plasma.
  • the additional functional coating 26 may be applied during the felling process.
  • the highly viscous adhesive is applied to the shafts gebil ⁇ Deten mountains 20 of the mountain-valley structure, and two support elements 1 4 are connected by means of the applied adhesive cohesively together.
  • a coconut filter unit 10 having a drainage unit 1 2 and two carrier elements 1 4 each having one Membrane element 1 6.
  • the cushion filter unit 10 on three sides by a continuous connection, example ⁇ , by ultrasonic welding and / or by a solid adhesive bond, sealed to the outside and is on a fourth side a discharge element appropriate.

Abstract

Die Erfindung geht aus von einer Kissenfiltereinheit mit zumindest einer Drainageeinheit (12) und zumindest zwei Membranelementen (16). Es wird vorgeschlagen, dass die Drainageeinheit (12) zumindest von wenigstens zwei Trägerelementen (14), die jeweils teilweise von einem Membranelement (16) ausgefüllt sind, gebildet ist.

Description

Kissenfiltereinheit
Stand der Technik Es sind bereits Kissenfiltereinheiten bekannt, die aus zwei Trägerelementen für Filtermembranen und einer dazwischen angeordneten, abstandshaltenden Drainageeinheit bestehen, wobei die Trägerelemente mit Filtermembranen jeweils auf voneinander abgewandten Seiten der Draina¬ geeinheit angeordnet sind. Die Trägerelemente sind dabei jeweils vollständig von den Filter¬ membranen ausgefüllt. Zu filternde Flüssigkeiten, beispielsweise Wasser, können von beiden Seiten die Kissenfiltereinheit umströmen und eine gefilterte Flüssigkeit kann durch die Drainage¬ einheit innerhalb der Kissenfiltereinheit transportiert und von dort abgeleitet werden.
Vorteile der Erfindung Die Erfindung geht aus von einer Kissenfiltereinheit mit zumindest einer Drainageeinheit und zumindest zwei Membranelementen. Unter einer„Drainageeinheit" soll insbesondere eine Ein¬ heit verstanden werden, die dazu vorgesehen ist, zumindest zwei Membranelemente vonei¬ nander zu beabstanden und zwischen den Membranelementen einen Raum für einen
Stofftransport, insbesondere für eine Leitung eines durch die Membranelemente gefilterten Filt- rats zu einem Abführelement, das das Filtrat aus der Kissenfiltereinheit abführt, zur Verfügung zu stellen. Unter einem„Membranelement" soll insbesondere ein Element verstanden werden, das eine poröse Trennschicht aufweist, die insbesondere eine Dicke von maximal 200 μιτι und vor¬ zugsweise von maximal 1 0 μιτι aufweist, wobei die Trennschicht eine Trenngrenze von maximal 2 μιτι, vorteilhaft maximal 0,2 μιτι und vorzugsweise von maximal 0,01 μιτι aufweist. Unter einer „Trenngrenze" soll insbesondere ein Grenzwert eines Durchmessers eines Stoffteilchens ver¬ standen werden, bei dem das Stoffteilchen von der Trennschicht zurückgehalten wird. Das Membranelement kann asymmetrisch ausgebildet sein, wobei unter einem„asymmetrischen" Membranelement ein Membranelement verstanden werden soll, bei dem die poröse Trenn- schicht eine sich über eine Dicke monoton ändernde Porengröße aufweist. Das Membranele¬ ment kann von zumindest einem organischen und/oder von zumindest einem anorganischen Material gebildet sein. Vorteilhaft ist das Membranelement aus einem Polymer, vorzugsweise aus Polyethersulfon, gebildet.
Es wird vorgeschlagen, dass die Drainageeinheit zumindest von wenigstens zwei Trägerele¬ menten, die jeweils teilweise von einem Membranelement ausgefüllt sind, gebildet ist. Unter einem„Trägerelement" soll insbesondere ein Element verstanden werden, das zumindest ein Membranelement trägt und in dem ein Stofftransport, insbesondere von Stoffen, die das Membranelement passiert haben, stattfinden kann. Der Stofftransport kann insbesondere durch das Trägerelement hindurch stattfinden. Unter„teilweise ausgefüllt" soll insbesondere verstanden werden, dass ein Membranelement maximal 95 Prozent, vorteilhaft maximal 50 Prozent und vorzugsweise maximal 5 Prozent eines Volumens des Trägerelements ausfüllt. Insbesondere ist die Drainageeinheit von Bereichen der Trägerelemente gebildet, die nicht von den jeweiligen Membranelementen ausgefüllt sind. Zusätzlich können weitere Elemente in die Drainageeinheit eingefügt sein, beispielsweise ein Feinvlies, welches in von einem Grobgewebe gebildeten Trä¬ gerelementen eingebracht ist. Es kann somit vorteilhaft auf ein separates Element zur Beabstan- dung der Trägerelemente der Membranen verzichtet werden.
Ferner wird vorgeschlagen, dass die Trägerelemente flächig miteinander verbunden sind. Unter „flächig miteinander verbunden" soll insbesondere verstanden werden, dass in einem Umkreis von maximal 5 mm, vorteilhaft von maximal 2 mm und vorzugsweise von maximal 0, 5 mm eines Berührpunkts der Trägerelemente untereinander zumindest ein weiterer Berührpunkt der Trä¬ gerelemente liegt. Unter einem„Berührpunkt" soll insbesondere eine Stelle einer Oberfläche eines ersten Trägerelements verstanden werden, an der das erste Trägerelement mit einem zweiten Trägerelement verbunden ist. Es kann vorteilhaft eine hohe Festigkeit der Drainageein- heit und eine große Belastungsresistenz der Kissenfiltereinheit, erreicht werden. Ferner kann eine Rückspülbarkeit der Kissenfiltereinheit durch eine flächige Verbindung der Trägerelemente erreicht werden. Ferner wird vorgeschlagen, dass die Trägerelemente stoffschlüssig miteinander verbunden sind. Unter„stoffschlüssig verbunden" soll insbesondere verstanden werden, dass die Trägerelemente durch atomare oder molekulare Kräfte zusammengehalten werden, wie sie beispielsweise durch Löten, Schweißen, Kleben und/oder Vulkanisieren erreicht werden können. Vorzugsweise wer¬ den die Trägerelemente durch Ultraschallschweißen stoffschlüssig miteinander verbunden, grundsätzlich sind jedoch auch andere stoffschlüssige Verbindungen, beispielsweise durch Kle¬ ben mit einem hochviskosen Klebstoff, vorteilhaft auf Epoxid-, Silikon- und/oder Polyurethan- Basis, vorstellbar. Es kann somit insbesondere eine feste Verbindung der Trägerelemente und eine stabile Drainageeinheit erreicht werden. Ferner wird vorgeschlagen, dass die Trägerelemente jeweils an zumindest einer von einem Membranelement abgewandten Oberfläche eine Berg-Tal-Struktur aufweisen. Insbesondere können sämtliche Oberflächen der Trägerelemente eine Berg-Tal-Struktur aufweisen. Unter einer„Berg-Tal-Struktur" einer Oberfläche soll insbesondere verstanden werden, dass die Oberfläche Erhebungen in Form von beispielsweise Wellen oder Noppen aufweist, welche Täler der Oberfläche um maximal 2 mm, vorteilhaft von maximal 0, 5 mm und vorzugsweise von maximal 0, 1 mm überstehen. Bei Erhebungen in Form von Wellen weist die Oberfläche eine Liniendichte von zumindest 10 Wellen/cm, vorteilhaft von zumindest 50 Wellen/cm und vor¬ zugsweise von zumindest 100 Wellen/cm senkrecht zu einer Haupterstreckungsrichtung der Wellen und bei Erhebungen in Form von Noppen eine Flächendichte von zumindest 1 00 Nop- pen/cm2, vorteilhaft von zumindest 500 Noppen/cm2 und vorzugsweise von zumindest 1 000 Noppen/cm2 auf. Insbesondere kann die Berg-Tal-Struktur durch eine Struktur eines Gewebes, welches ein Trägerelement bildet, zustande kommen. Es können somit insbesondere Kanäle für einen schnellen Stofftransport, insbesondere eines Filtrats, an der Oberfläche erhalten werden. Ferner wird vorgeschlagen, dass die Trägerelemente an zumindest einem Berührpunkt unterei¬ nander jeweils von Bergspitze zu Bergspitze miteinander verbunden sind. Unter„von Bergspitze zu Bergspitze miteinander verbunden" soll insbesondere verstanden werden, dass Berührpunkte der Trägerelemente untereinander jeweils von Spitzen von Wellen und/oder Noppen der Trä- gerelemente gebildet sind. Unter„Spitzen" sollen insbesondere Bereiche von Wellen und/oder Noppen verstanden werden, welche maximal die obersten 100 μιτι, vorteilhaft maximal die obersten 10 μιτι und vorzugsweise maximal die obersten 1000 nm der Wellen und/oder Nop¬ pen umfassen. Es kann somit vorteilhaft eine Drainageeinheit erhalten werden, in der ein Stofftransport in durch Täler gebildeten Kanälen mit großem Durchflussvolumen und hoher Fließgeschwindigkeit stattfinden kann.
Ferner wird vorgeschlagen, dass die Trägerelemente von einem Gewebe gebildet sind. Unter einem„Gewebe" soll insbesondere ein textiles Gebilde verstanden werden, welches aus min¬ destens zwei im Wesentlichen rechtwinklig zueinander angeordneten Fadensystemen besteht. Unter„im Wesentlichen rechtwinklig zueinander angeordnet" soll insbesondere verstanden werden, dass aneinander angrenzende Fäden unterschiedlicher Fadensysteme einen Winkel miteinander einschließen, welcher maximal um 5 Grad, vorteilhaft maximal um 1 Grad, und vorzugsweise maximal um 0, 1 Grad von 90 Grad abweicht. Alternativ können die Trägerele¬ mente anstatt von einem Gewebe auch von einem Vliesstoff gebildet sein. Unter einem „Vliesstoff" soll insbesondere ein textiles Gebilde aus miteinander verbundenen Fasern verstan¬ den werden, wobei eine Verbindung der Fasern untereinander durch Haftung aneinander und/oder durch eine mechanische, chemische und/oder thermische Behandlung erreicht werden kann, und bei dem eine Orientierung einzelner Fasern zueinander lediglich durch statistische Mittel beschrieben werden kann. Das Gewebe oder der Vliesstoff können aus jedem einem Fachmann als geeignet erscheinenden organischen und/oder anorganischen Material herge¬ stellt sein, vorzugsweise ist das Gewebe oder der Vliesstoff zumindest teilweise aus Polypropy¬ len und/oder Polyoxymethylen hergestellt. Grundsätzlich können die zwei Trägerelemente, die eine Drainageeinheit bilden, jeweils von unterschiedlichen Geweben und/oder Vliesstoffen ge¬ bildet sein. Es kann somit insbesondere ein einfach herstellbares Trägerelement erreicht werden. Ferner wird vorgeschlagen, dass zumindest ein Membranelement eine zusätzliche Funktionsbe- schichtung aufweist. Unter einer„ zusätzlichen Funktionsbeschichtung" soll insbesondere eine Beschichtung mit einer Dicke von maximal 5 μιτι, vorteilhaft von maximal 0,5 μιτι und vorzugs¬ weise von maximal 1 nm verstanden werden, welche aus einem von einem Material des Membranelements verschiedenen Material besteht und mindestens eine zusätzliche, von einer Filterungsfunktion unterschiedliche Funktion aufweist, beispielsweise eine antimikrobielle und/oder antifungale Funktion oder eine auf dem Lotus-Effekt basierende Anti- Schmutzhaftungsfunktion zu einer Verringerung von Fouling. Insbesondere kann die zusätzliche Funktionsbeschichtung von einer monomolekularen Beschichtung gebildet sein. Die zusätzliche Funktionsbeschichtung kann von organischen und/oder anorganischen Beschichtungen und/oder von einer Beschichtung aus einer Kombination von organischen und anorganischen Materialien, beispielsweise einer organometallischen Beschichtung gebildet sein. Die zusätzliche Funktions¬ beschichtung kann beispielsweise von einer Schicht aus Kohlenstoff-Nanoröhrchen gebildet sein. Es kann vorteilhaft durch eine zusätzliche Funktionsbeschichtung eine einfache Anpassung der Kissenfiltereinheit an spezifische Einsatzsituationen erreicht werden.
Ferner wird ein Verfahren zur Herstellung einer Kissenfiltereinheit vorgeschlagen, bei dem in einem Verfahrensschritt zumindest ein Membranelement in ein Trägerelement einseitig einge¬ bracht wird und in einem weiteren Verfahrensschritt zwei Trägerelemente jeweils an einer von dem zumindest einem Membranelement abgewandten Seite miteinander verbunden werden. Es kann somit insbesondere ein einfaches Herstellungsverfahren erreicht werden.
Ferner wird vorgeschlagen, dass das Membranelement mittels eines Fällprozesses in das Trä¬ gerelement eingebracht wird. Unter einem„Fällprozess" soll insbesondere ein Herstellungsver- fahren verstanden werden, bei dem Materialbestandteile des Membranelements in gelöster
Form in einer hochviskosen Lösung zusammen mit einem Lösungsmittel, beispielsweise N-Methyl- 2-pyrrolidon, enthalten sind, wobei in der Lösung zusätzlich zu den Materialbestandteilen und dem Lösungsmittel weitere Stoffe, beispielsweise ein Stabilisatormittel, enthalten sein können, und durch Zugabe eines Ausfällungsmittels, beispielsweise von Wasser, und/oder durch eine Veränderung äußerer Bedingungen, wie beispielsweise einer Temperatur und/oder eines pH- Werts, eine Bildung des Membranelements aus den in der Lösung enthaltenen Materialbe¬ standteilen einsetzt. Beispielsweise kann die hochviskose Lösung auf das Trägerelement aufge¬ bracht, mittels einer Rakel gleichmässig verteilt und mittels einer Phaseninversion zu einem Membranelement gefällt werden. Es kann somit insbesondere ein einfach durchführbares, gut kontrollierbares Herstellungsverfahren erreicht werden.
Ferner wird vorgeschlagen, dass das Membranelement in das Trägerelemente teilweise durch¬ gefällt wird. Unter„teilweise durchgefällt" soll insbesondere verstanden werden, dass das Membranelement nach Abschluss des Fällprozesses maximal 95 Prozent, vorteilhaft maximal 50 Prozent und vorzugsweise maximal 5 Prozent eines Volumens des Trägerelements ausfüllt.
Ferner wird vorgeschlagen, dass in dem Verfahrensschritt eine auf das Trägerelement aufge¬ brachte Lösung zur Herstellung des Membranelements in einer Klimakammer behandelt wird. Unter einer„Klimakammer" soll insbesondere ein Raum verstanden werden, durch den das Trä- gerelement mit der aufgebrachten Lösung geführt wird und in dem voreingestellte, kontrollier¬ bare äußere Bedingungen, wie beispielsweise eine voreingestellte Temperatur, Luftfeuchte und/oder Luftströmung, bereitgestellt werden. Hierzu weist die Klimakammer insbesondere zu¬ mindest ein Heizelement und zumindest eine Befeuchtungsanlage auf. In der Klimakammer findet die Fällung des Membranelements zumindest zum Teil statt. Insbesondere wird eine Oberfläche des Membranelements gefällt. Es können somit insbesondere Eigenschaften des Membranele¬ ments, wie beispielsweise Porengröße und/oder -Verteilung, kontrollierbar eingestellt werden.
Zeichnungen
Weitere Vorteile ergeben sich aus der folgenden Zeichnungsbeschreibung. In den Zeichnungen ist ein Ausführungsbeispiel der Erfindung dargestellt. Die Zeichnungen, die Beschreibung und die Ansprüche enthalten zahlreiche Merkmale in Kombination. Der Fachmann wird die Merk¬ male zweckmäßigerweise auch einzeln betrachten und zu sinnvollen weiteren Kombinationen zusammenfassen. Es zeigen: eine schematische, nicht maßstabsgetreue Zeichnung einer Kissenfil¬ tereinheit,
eine schematische Darstellung eines Herstellungsprozesses eines Trä¬ gerelements mit einem Membranelement und
eine schematische Darstellung eines Ablaufs eines Verfahrens zur Her¬ stellung der Kissenfiltereinheit.
Beschreibung des Ausführungsbeispiels Figur 1 zeigt den schematischen Aufbau einer erfindungsgemäßen Kissenfiltereinheit 1 0 mit einer Drainageeinheit 1 2, die von zwei Trägerelementen 1 4, welche jeweils teilweise von ei¬ nem Membranelement 1 6 ausgefüllt sind, gebildet ist. Die Drainageeinheit 1 2 ist von Bereichen der Trägerelemente 1 4 gebildet, welche nicht von den Membranelementen 16 ausgefüllt sind. Die Drainageeinheit 1 2 stellt einen Raum zwischen den Membranelementen 16 zur Verfügung, in dem eine durch die Membranelemente 1 6 durchtretende und durch die Membranelemente 16 gefilterte Flüssigkeit transportiert und durch nicht dargestellte Abführvorrichtungen abge¬ führt werden kann. Die Membranelemente 1 6 füllen jeweils etwa 60 Prozent eines Volumens der Trägerelemente 1 4 aus. Die Trägerelemente 1 4 sind jeweils von einem Gewebe gebildet. Oberflächen des Gewebes weisen eine durch einen Verlauf von Fadensystemen des Gewebes bedingte Berg-Tal-Struktur auf. Erhebungen der Berg-Tal-Struktur sind durch Berge 20 in Form von Wellen gebildet, die Täler 1 8 der Oberflächen um 0,5 mm überstehen. Die Wellen weisen eine Liniendichte senkrecht zu einer Haupterstreckungsrichtung der Wellen von 30 Wellen/cm auf. Durch Berge 20 und Täler 1 8 der Berg-Tal-Struktur gebildete Kanäle der Drainageeinheit 1 2 ermöglichen ein hohes Durchflussvolumen einer durch die Membranelemente 1 6 gefilterten Flüssigkeit. Die Membranelemente 16 sind aus einem hydrophilen Polysulfon-Polymer hergestellt und wei¬ sen eine asymmetrische Struktur auf, wobei eine Porengröße von 0, 1 μιτι an einer von der Drainageeinheit 1 2 abgewandten Seite der Membranelemente 1 6 bis auf 1 0 μιτι an einer der Drainageeinheit 1 2 zugewandten Seite der Membranelemente 16 zunimmt. Zusätzlich weisen die Membranelemente 1 6 an einer von der Drainageeinheit 1 2 abgewandten Oberfläche eine zusätzliche Funktionsbeschichtung 26 auf, welche eine antibakterielle Wirkung zu einer Verringerung von Fouling aufweist. Die Trägerelemente 1 4 sind zur Bildung der Drainageeinheit 1 2 stoffschlüssig mittels eines hochviskosen Klebstoffs auf Epoxid-Basis miteinander verbunden. Der Klebstoff ist jeweils auf Bergspitzen 22 der Oberflächen der Trägerelemente 1 4 aufgetragen, d. h. der Klebstoff ist auf Bereiche der Wellen aufgetragen, welche die Oberfläche um 10 μιτι und höher überstehen. Berührpunkte 24 der Trägerelemente 1 4, an denen mittels des Klebstoffs eine stoffschlüssige Verbindung hergestellt wird, sind jeweils von den Bergspitzen 22 gebildet, wodurch die Trä¬ gerelemente 1 4 flächig miteinander verbunden sind.
Die Kissenfiltereinheit 1 0 wird in einem Verfahren aus drei Verfahrensschritten 34, 36, 38 her¬ gestellt (Fig. 3). In einem Verfahrensschritt 34 wird ein Membranelement 1 6 in ein Trägerele- ment 1 4 einseitig eingebracht und eine auf das Trägerelement 1 4 aufgebrachte Lösung 28 zur Herstellung des Membranelements 16 in einer Klimakammer 32 behandelt. In einem weiteren Verfahrensschritt 36 wird das eingebrachte Membranelement 16 getrocknet und optional mit einer zusätzlichen Funktionsbeschichtung 26 versehen. In einem weiteren Verfahrensschritt 38 werden zwei Trägerelemente 1 4 jeweils an der von dem Membranelement 16 abgewandten Seite zu einer Kissenfiltereinheit 1 0 miteinander verbunden sowie optional mit weiteren Funkti¬ onselementen, wie beispielsweise einem Abführrohr, verbunden.
Das Membranelement 16 wird in dem Verfahrensschritt 34 in das Trägerelement 1 4 mittels eines Fällprozesses eingebracht (Fig. 2). Hierzu wird das Trägerelement 1 4 auf ein Laufband 42 aufgelegt. In dem ersten Verfahrensschritt 34 wird eine Lösung 28 aus Bestandteilen von Po- lyethersulfon in Form von einem Diphenol und 4-4'-Dichlordiphenolsulfon auf ein Trägerelement 1 4 aufgetragen. Die Auftragung geschieht mittels einer Düse 40, die die Lösung 28 auf das Trägerelement 1 4 aufspritzt. Die aufgetragene Lösung 28 wird direkt im Anschluss mittels einer Rakel 30 gleichmässig auf dem Trägerelement 1 4 verteilt. Während eines Transports auf dem Laufband 42 sickert die Lösung 28 in das Trägerelement 1 4 ein und füllt im Verlauf des Trans¬ ports immer größere Bereiche des Trägerelements 1 4 aus. Unmittelbar nach Verteilung der Lösung 28 auf dem Trägerelement 1 4 wird das Trägerelement 1 4 mit der aufgetragenen Lö¬ sung 28 durch das Laufband 42 in die Klimakammer 32 gebracht. In der Klimakammer 32 po- lymerisiert die Lösung 28 aufgrund zugegebenen Fällungsmittels, wobei es sich um in Form von Wasserdampf in der Klimakammer 32 zugegebenes Wasser handelt. In der Klimakammer 32 entsteht eine Oberfläche des Membranelements 16 durch Polymerisation der Lösung 28. Das Trägerelement 1 4 mit oberflächlich polymerisierter Lösung 28 wird nach Durchlauf der Klima¬ kammer 32 in ein Wasserbad 44 verbracht, wo durch das Wasser als Fällungsmittel restliche Lösung 28 zu dem Membranelement 16 gefällt wird. Das Membranelement 16 wird hierbei in das Trägerelement 1 4 nur teilweise durchgefällt, so dass es das Trägerelement 1 4 nur teilweise ausfüllt.
In dem weiteren Verfahrensschritt 36 wird das eingebrachte Membranelement 1 6 getrocknet. Nach Trocknung des Membranelements 16 wird das Trägerelement 1 4 mit Membranelement 16 in passende Größen geschnitten. Optional kann eine zusätzliche Funktionsbeschichtung 26 nach Fällung des Membranelements 16 und/oder nach Trocknung des Membranelements 1 6 auf das Membranelement 16 aufgebracht werden. Hierzu kann das Trägerelement 1 4 mit dem eingebrachten Membranelement 16 beispielsweise in eine Vakuumkammer zu einer Oberflä- chenbeschichtung mittels eines Plasmas verbracht werden. Alternativ kann die zusätzliche Funk- tionsbeschichtung 26 während des Fällprozesses aufgebracht werden.
In dem weiteren Verfahrensschritt 38 wird der hochviskose Klebstoff auf die von Wellen gebil¬ deten Berge 20 der Berg-Tal-Struktur aufgebracht und zwei Trägerelemente 1 4 werden mittels des aufgetragenen Klebstoffs stoffschlüssig miteinander verbunden. Hierdurch entsteht eine Kis- senfiltereinheit 1 0 mit einer Drainageeinheit 1 2 und zwei Trägerelementen 1 4 mit jeweils einem Membranelement 1 6. Im Anschluss an eine stoffschlüssige Verbindung der Trägerelemente 1 4 wird die Kissenfiltereinheit 10 an drei Seiten durch eine durchgehende Verbindung, beispiels¬ weise durch Ultraschallschweißen und/oder durch eine durchgehende Klebeverbindung, nach außen abgedichtet und an einer vierten Seite wird ein Abführelement angebracht.
Bezugszeichen
1 0 Kissenfiltereinheit
1 2 Drainageeinheit
1 4 Trägerelement
1 6 Membranelement
1 8 Tal
20 Berg
22 Bergspitze
24 Berührpunkt
26 Zusätzliche Funktionsb
28 Lösung
30 Rakel
32 Klimakammer
34 Verfahrensschritt
36 Verfahrensschritt
38 Verfahrensschritt
40 Düse
42 Laufband
44 Wasserbad

Claims

Ansprüche
1 . Kissenfiltereinheit mit zumindest einer Drainageeinheit ( 1 2) und zumindest zwei Memb¬ ranelementen ( 1 6),
dadurch gekennzeichnet, dass
die Drainageeinheit ( 1 2) zumindest von wenigstens zwei Trägerelementen ( 1 4), die je¬ weils teilweise von einem Membranelement ( 16) ausgefüllt sind, gebildet ist.
2. Kissenfiltereinheit nach Anspruch 1 ,
dadurch gekennzeichnet, dass
die Trägerelemente ( 1 4) flächig miteinander verbunden sind.
3. Kissenfiltereinheit nach Anspruch 2,
dadurch gekennzeichnet, dass
die Trägerelemente ( 1 4) stoffschlüssig miteinander verbunden sind.
4. Kissenfiltereinheit zumindest nach Anspruch 1 ,
dadurch gekennzeichnet, dass
die Trägerelemente ( 1 4) jeweils an zumindest einer, von einem Membranelement ( 16) abgewandten Oberfläche eine Berg-Tal-Struktur aufweisen.
5. Kissenfiltereinheit zumindest nach Anspruch 2 und Anspruch 4,
dadurch gekennzeichnet, dass
die Trägerelemente ( 1 4) an zumindest einem Berührpunkt (24) untereinander jeweils von Bergspitze (22) zu Bergspitze (22) miteinander verbunden sind.
6. Kissenfiltereinheit zumindest nach Anspruch 1 ,
dadurch gekennzeichnet, dass
die Trägerelemente ( 1 4) jeweils von einem Gewebe gebildet sind.
7. Kissenfiltereinheit zumindest nach Anspruch 1 ,
dadurch gekennzeichnet, dass
zumindest ein Membranelement ( 16) eine zusätzliche Funktionsbeschichtung (26) auf¬ weist.
Verfahren zur Herstellung einer Kissenfiltereinheit ( 10) zumindest nach Anspruch 1 , dadurch gekennzeichnet, dass
in einem Verfahrensschritt (34) zumindest ein Membranelement ( 16) in ein Trägerele¬ ment ( 1 4) einseitig eingebracht wird und in einem weiteren Verfahrensschritt (38) zwei Trägerelemente ( 1 4) jeweils an einer von dem zumindest einem Membranelement ( 16) abgewandten Seite miteinander verbunden werden.
Verfahren nach Anspruch 8,
dadurch gekennzeichnet, dass
das Membranelement ( 16) mittels eines Fällprozesses in das Trägerelement ( 1 4) einge¬ bracht wird.
Verfahren nach Anspruch 9,
dadurch gekennzeichnet, dass
das Membranelement ( 16) in das Trägerelement ( 1 4) teilweise durchgefällt wird.
Verfahren zumindest nach Anspruch 8,
dadurch gekennzeichnet, dass
in dem Verfahrensschritt (34) eine auf das Trägerelement ( 1 4) aufgebrachte Lösung (28) zur Herstellung des Membranelements ( 16) in einer Klimakammer (32) behandelt wird.
PCT/EP2012/076651 2011-12-27 2012-12-21 Kissenfiltereinheit WO2013098237A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011122187.9 2011-12-27
DE102011122187A DE102011122187A1 (de) 2011-12-27 2011-12-27 Kissenfiltereinheit

Publications (1)

Publication Number Publication Date
WO2013098237A1 true WO2013098237A1 (de) 2013-07-04

Family

ID=47505001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/076651 WO2013098237A1 (de) 2011-12-27 2012-12-21 Kissenfiltereinheit

Country Status (2)

Country Link
DE (1) DE102011122187A1 (de)
WO (1) WO2013098237A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021110716A1 (en) * 2019-12-02 2021-06-10 Blue Foot Membranes Nv Integrated permeate channel membrane

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3347283A1 (de) * 1983-04-30 1984-10-31 Gkss - Forschungszentrum Geesthacht Gmbh, 2054 Geesthacht Membrankissen
EP1201294A1 (de) * 2000-10-30 2002-05-02 ICTechnology AG Membranfilterkissen
WO2003037489A1 (de) * 2001-10-24 2003-05-08 A3 Abfall-Abwasser-Anlagentechnik Gmbh Plattenfiltrationsmodul
EP1625885A1 (de) * 2004-08-11 2006-02-15 Vlaamse Instelling Voor Technologisch Onderzoek (Vito) Membran mit integriertem Permeatkanal
DE102005046675A1 (de) * 2005-09-29 2007-04-05 Microdyn-Nadir Gmbh Filterelement mit integralem Aufbau und Verfahren zu seiner Herstellung
WO2009135529A1 (en) * 2008-05-07 2009-11-12 Agfa-Gevaert Membrane bags with seamless membrane substance, uses thereof, filtration units therewith and manufacturing processes.

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL121883A0 (en) * 1997-10-05 1998-03-10 Soda Club Holdings Nv Apparatus and method for the purification of water
DE102008019085A1 (de) * 2008-04-15 2009-10-22 Microdyn - Nadir Gmbh Filterverbundmaterial, Verfahren zu seiner Herstellung sowie aus dem Filterverbundmaterial hergestellte Flachfilterelemente
DE102010011067B4 (de) * 2010-03-11 2014-02-20 Trans-Textil Gmbh Flexibles Flächenmaterial zur Begrenzung eines Matrixmaterial-Zuführraums und Verfahren zu dessen Herstellung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3347283A1 (de) * 1983-04-30 1984-10-31 Gkss - Forschungszentrum Geesthacht Gmbh, 2054 Geesthacht Membrankissen
EP1201294A1 (de) * 2000-10-30 2002-05-02 ICTechnology AG Membranfilterkissen
WO2003037489A1 (de) * 2001-10-24 2003-05-08 A3 Abfall-Abwasser-Anlagentechnik Gmbh Plattenfiltrationsmodul
EP1625885A1 (de) * 2004-08-11 2006-02-15 Vlaamse Instelling Voor Technologisch Onderzoek (Vito) Membran mit integriertem Permeatkanal
DE102005046675A1 (de) * 2005-09-29 2007-04-05 Microdyn-Nadir Gmbh Filterelement mit integralem Aufbau und Verfahren zu seiner Herstellung
WO2009135529A1 (en) * 2008-05-07 2009-11-12 Agfa-Gevaert Membrane bags with seamless membrane substance, uses thereof, filtration units therewith and manufacturing processes.

Also Published As

Publication number Publication date
DE102011122187A1 (de) 2013-06-27

Similar Documents

Publication Publication Date Title
Hou et al. Interpenetrating Janus membrane for high rectification ratio liquid unidirectional penetration
DE2953804C2 (de) Gasdurchlässige Membran, Verfahren für ihre Herstellung und ihre Verwendung in einem Blutoxygenerator
DE69910037T2 (de) Mikrostrukturierte trennvorrichtung
EP3068455B1 (de) Taschenförmiges wundauflagesystem
DE102004062743A1 (de) Verfahren zur Erhöhung der Wasserdichtigkeit von textilen Flächengebilden, so ausgerüstete textile Flächengebilde sowie deren Verwendung
WO2007036332A2 (de) Filterelement mit integralem aufbau und verfahren zu seiner herstellung
WO2017129418A1 (de) Kompositmembran und verfahren zum herstellen einer kompositmembran
EP2585192A2 (de) Filtermaterial für fluide und verfahren zur herstellung eines filtermaterials
DE3148312A1 (de) Folie zum trennen fluessiger oder gasfoermiger mehrkomponentensysteme
DE112011101477T5 (de) Semipermeable Verbundmembran
DE102006010831A1 (de) Filtermembranen aus einem Verbund einer porösen Schicht und einem Träger und Verfahren zu ihrer Herstellung
Saini et al. Engineered smart textiles and Janus microparticles for diverse functional industrial applications
WO2015165988A1 (de) Filterelement und verfahren zu dessen herstellung
Wang et al. Janus membrane with bioinspired heterogeneous morphology for efficient fog harvesting
WO2013098237A1 (de) Kissenfiltereinheit
DE112019005099T5 (de) Belüftungsanordnung und Belüftungsgehäuse
DE102011053271A1 (de) Atmungsfähige Abdichtung
WO2014060064A1 (de) Verfahren zur oberflächenbehandlung eines filtermediums
EP3068456B1 (de) Wundversorgungssystem mit einer matte aus kapillarmembranen
WO2015028530A2 (de) Filtermaterial, filterelement und verfahren sowie vorrichtung zum herstellen eines filtermaterials
DE10254718A1 (de) Hydrophober, stoffdurchlässiger Verbundwerkstoff mit selbstreinigenden Eigenschaften
DE10218936B4 (de) Verfahren zur Herstellung elektromechanischer Wandler
DE102008026195B4 (de) Drahtgewebe
EP3048212B1 (de) Beschichtungssystem mit vlies
DE3920562C1 (en) Plate membrane used in micro- and ultra-filtration - obtd. by forming polymer membrane layer on rigid and porous plate through phase inversion process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12810299

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12810299

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 12810299

Country of ref document: EP

Kind code of ref document: A1