WO2013097756A1 - 一种定位方法、客户端及定位系统 - Google Patents

一种定位方法、客户端及定位系统 Download PDF

Info

Publication number
WO2013097756A1
WO2013097756A1 PCT/CN2012/087784 CN2012087784W WO2013097756A1 WO 2013097756 A1 WO2013097756 A1 WO 2013097756A1 CN 2012087784 W CN2012087784 W CN 2012087784W WO 2013097756 A1 WO2013097756 A1 WO 2013097756A1
Authority
WO
WIPO (PCT)
Prior art keywords
client
time
access point
message
access points
Prior art date
Application number
PCT/CN2012/087784
Other languages
English (en)
French (fr)
Inventor
丁志明
Original Assignee
华为终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为终端有限公司 filed Critical 华为终端有限公司
Publication of WO2013097756A1 publication Critical patent/WO2013097756A1/zh
Priority to US14/317,287 priority Critical patent/US9584972B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0252Radio frequency fingerprinting
    • G01S5/02521Radio frequency fingerprinting using a radio-map
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • the present invention relates to the field of communications, and in particular, to a positioning method, a client, and a positioning system. Background technique
  • Wi-Fi is a technology that allows clients such as personal computers and handheld devices to connect to each other wirelessly. Clients can communicate with each other through access points, and access points can provide management and services to clients. As Wi-Fi access points become more widely available, there are more and more indoor positioning systems that use Wi-Fi for indoor positioning. For example, when people go to a strange mall, want to know where they are in the mall, or find a destination through indoor navigation, they also need to determine their location, you can use your own Wi-Fi phone. Determine where you are.
  • the embodiment of the invention provides a positioning method, a client and a positioning system, which can accurately locate, enable the client to accurately know the location of the client, and further facilitate the use of the user.
  • an embodiment of the present invention provides a positioning method, including:
  • the client sends a location request instruction to at least three access points
  • the client receives a response message from each access point to the request instruction
  • the client sends, by the client, a corresponding measurement report message to each access point, so that each access point obtains a radio signal flight time between the respective access point and the client;
  • the client receives a location estimation result from the network side, where the location estimation result is the radio signal flight time received by the network side from each access point, and multiple pre-measured sample points
  • the sample time is compared and calculated, and the coordinate position of the sample point corresponding to the sample time with the smallest time difference obtained is obtained; the sample time is a radio signal between the sample point and each access point flight duration.
  • an embodiment of the present invention provides a positioning method, including:
  • the client sends a location request instruction to the at least three access points, so that each access point sends the first measurement message to the client;
  • the client receives a first measurement message from each of the at least three access points; the client sends a response message to the first measurement message to the respective access points, and receives Second measurement messages from the respective access points to obtain radio signal flight times between the respective access points and the clients;
  • the client transmits a radio signal flight time between the respective access points and the client, and a pre-measured radio signal flight time between the plurality of sample points and the respective access points
  • the alignment calculation is performed, and the coordinate position of the sample point having the smallest time difference is used as the positioning coordinate of the client.
  • an embodiment of the present invention provides a client, including:
  • a first sending unit configured to send a location request instruction to at least three access points
  • a first receiving unit configured to receive a response message from the access point to the request command
  • a second sending unit configured to send, to each access point, a corresponding measurement report message, so that each access point obtains a respective Radio signal flight time with the client
  • a second receiving unit configured to receive a location estimation result from the network side, where the location estimation result is the radio signal flight time received by the network side from each access point, and multiple pre-measurements
  • the sample time of the sample point is compared and calculated, and the coordinate position of the sample point corresponding to the sample time with the smallest time difference obtained is obtained; the sample time is between the sample point and each access point Radio signal flight time.
  • an embodiment of the present invention provides a client, including:
  • a storage unit configured to store a pre-measured number of sample points and a radio signal flight time between each access point
  • a first sending unit configured to send a location request instruction to at least three access points, so that each access point Sending a first measurement message to the client;
  • a first receiving unit configured to receive a first measurement message from each of the at least three access points
  • a second sending unit configured to send, to the each access point, a response message to the first measurement message
  • a second receiving unit configured to receive second measurement messages from the respective access points, to obtain a radio signal flight time between the respective access points and the client;
  • a processing unit configured to obtain a location estimation result, where the location estimation result is a radio signal flight time between the each access point and the client, and the plurality of pre-measured The sample point is compared with the flight time of the radio signal between the access points, and the coordinate position of the sample point with the smallest time difference is used as the positioning coordinate of the client.
  • an embodiment of the present invention provides a positioning system, including:
  • a client configured to: after sending a location request instruction to the at least three access points, receive a response message from each access point to the request instruction, and send a corresponding measurement report message to each access point, so that each The access point obtains the radio signal flight time between the respective client and the client, and receives the location estimation result from the network side;
  • At least three access points configured to receive a location request instruction from the client, send the response message to the client, and receive a corresponding measurement report message from the client, to obtain respective After the radio signal flight time between the clients, the obtained radio signal flight time between each access point and the client is respectively sent to the network side;
  • the network side is configured to compare the received flight time of the radio signal from each access point with the sampling time of a plurality of pre-measured sample points, and obtain the minimum time difference obtained.
  • the coordinate position of the sample point corresponding to the sample time is sent to the client; the sample time is the flight time of the radio signal between the sample point and each access point.
  • an embodiment of the present invention provides a positioning system, including:
  • a client configured to send a location request instruction to at least three access points, and receive a first measurement message from each of the at least three access points, and send the a response message of the first measurement message, and receiving a second measurement message from the respective access points, to obtain a radio signal flight time between the respective access point and the client, and connecting the respective Radio signal flight time between the ingress point and the client, and the plurality of sample points pre-measured Performing comparison calculation on the flight time of the radio signal between the access points, and determining the coordinate position of the sample point corresponding to the sampling time with the smallest time difference as the positioning coordinate of the client;
  • At least three access points configured to receive a location request command from the client, send the first measurement message to the client, and receive a response message from the client to the first measurement message, And transmitting the second measurement message to the client, so that the client obtains a radio signal flight time between each access point and the client.
  • the positioning method, the client and the positioning system provided by the embodiment of the present invention send a location request instruction to the at least three access points through the client, and each access point sends a response message to the request command to the client, and receives the response message from the client.
  • Corresponding measurement report messages respectively, to obtain the radio signal flight time between each access point and the client, and then transmit the radio signal flight time to the network side, whereby the network side can fly the received radio signal Time, comparing and calculating the sampling time of a plurality of pre-measured sampling points, obtaining a coordinate position of the sampling point corresponding to the sampling time with the smallest time difference, the coordinate position being the position of the client, thereby
  • the network side informs the client of the coordinate position.
  • FIG. 1 is a schematic flowchart of a positioning method according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic flowchart of a positioning method according to Embodiment 2 of the present invention.
  • FIG. 3 is a schematic diagram of an application scenario of a positioning method according to Embodiment 2 of the present invention.
  • FIG. 4 is a schematic flowchart of a positioning method according to Embodiment 3 of the present invention.
  • FIG. 5 is a schematic flowchart of a positioning method according to Embodiment 4 of the present invention.
  • FIG. 6 is a schematic structural diagram 1 of a client according to Embodiment 5 of the present invention.
  • FIG. 7 is a schematic structural diagram 2 of a client according to Embodiment 5 of the present invention.
  • FIG. 8 is a schematic structural diagram 3 of a client according to Embodiment 5 of the present invention.
  • FIG. 9 is a schematic structural view 1 of a positioning system according to Embodiment 6 of the present invention.
  • FIG. 10 is a schematic structural diagram 2 of a positioning system according to Embodiment 6 of the present invention. detailed description
  • An embodiment of the present invention provides a positioning method. As shown in FIG. 1, the method includes:
  • the client sends a location request instruction to at least three access points.
  • the main function of the access point (AP) in this embodiment is to connect the wireless network clients together, and then connect the wireless network to the Ethernet, which is equivalent to a bridge connecting the wired network and the wireless network.
  • the access point in this embodiment may be specifically a wireless switch.
  • At least three access points are deployed in the space area occupied by the indoors. If positioning in one plane is implemented, at least three access points need to be deployed, and three access points are required to be on the same line. Since the access point finally gets the radio signal flight time between the access point and the client, the propagation speed of the radio signal is fixed and known, so the access point can basically obtain between the client and the access point. Distance, when the first access point obtains the distance between it and the client, what can be determined is the circle with the radius between the first access point and the client centered on the first access point. When the second access point obtains the distance between the second access point and the client, it can be determined that the second access point is centered, and the distance between the second access point and the client is a circle of a radius.
  • intersections When two circles intersect, two intersections can be determined, and one point cannot be determined.
  • the third access point obtains the distance between it and the client, it is determined that the third access point is the center, and the third access is After the distance between the point and the client is a circle of radius, since the three access points are not on the same line, an intersection point can be determined, which is the location of the client. If you need to locate in a three-dimensional space, such as deploying many access points inside the building and using a better penetrating radio signal spectrum for communication, the client can perform time-of-flight measurements simultaneously with the access points above and below the building.
  • the client needs to perform flight time measurement with at least four access points, and the four access points are not in the same plane. On, at the same time any three of them are not in a straight line.
  • the client makes measurements with more access points, it will get more accurate positioning results. Therefore, when the client enters the area and wants to know where it is, it needs to send a location request command to at least three access points, which is used to initiate the measurement of the flight time of the access point by the access point.
  • the client receives a response message from each access point to the request instruction.
  • the client After transmitting the location request command to at least three access points, the client receives a response message from each access point to the request command.
  • the client sends a corresponding measurement report message to each access point, so that each access point obtains a radio signal flight time between the respective access point and the client.
  • each access point After receiving the location request command from the client, each access point performs the measurement of the flight time of the radio signal time-of-flight message, and receives the corresponding measurement report message from the client by sending a response message to the client and recording the time of the message departure. The time when the message arrives is recorded, and the flight time of the radio signal between each access point and the client is calculated according to the arrival time of the response message recorded by the client and the time when the measurement report message is sent.
  • the response message may be an acknowledgement control frame of the location request command.
  • the client receives a location estimation result from the network side, where the location estimation result is the radio signal flight time received by the network side from each access point, and multiple pre-measured sample points.
  • the sample time is compared and calculated, and the coordinate position of the sample point corresponding to the sample time with the smallest time difference obtained is obtained; the sample time is a radio signal between the sample point and each access point flight duration.
  • the network side has a storage function for storing the required data and connecting to each access point by wire.
  • the network side receives the radio signal flight time from each access point, and compares the pre-measured number of sample points with the radio signal flight time between the access points, and the pre-measured number of ⁇
  • the radio signal flight time between the sample point and each access point is to deploy a number of sample points and at least three access points in the space area occupied by the indoor area providing the positioning service, and each sample point is And storing coordinate values of the access points in the network side, and then placing the sample terminals in the plurality of sample points in sequence, the sample terminals receiving response messages from the respective access points, and connecting to each of the access points
  • the ingress sends a corresponding measurement report message, so that each access point obtains a radio signal flight time between each access point and each sample terminal, and the radio signals between the respective access points and each sample terminal are transmitted.
  • the time is stored in the network side.
  • the client sends a location request instruction to at least three access points, and each access point sends a response request message to the client, and receives a corresponding measurement report message from the client, to Obtaining the flight time of the radio signal between each access point and the client respectively, and then transmitting the flight time of the radio signal to the network side, whereby the network side can receive the flight time of the radio signal and the pre-measurement
  • the sampling time of the plurality of sampling points is compared and calculated, and the coordinate position of the sampling point corresponding to the sampling time with the smallest time difference is obtained, and the coordinate position is the position of the client, and thus, the coordinate position of the network side Tell the client.
  • the user can accurately locate, so that the client can accurately know where he is located, and further, it is convenient for the user to use.
  • the embodiment of the present invention provides a positioning method. As shown in FIG. 2, it is assumed that the client includes a client, and the first access point, the second access point, the third access point, and the network side are specifically one location.
  • the server and assuming that the location server is associated with the first access point, the method includes the following steps: S201.
  • the location server establishes a reference point database.
  • the reference point database is configured by deploying multiple sample points and at least three access points in an area providing location services, and each access point obtains a radio signal flight time between each access point and the client, respectively.
  • the server stores the coordinates of each sample point and each access point and the time of flight of the radio signal between each access point and the client.
  • FIG. 3 is exemplarily located in a two-dimensional plane, and three access points are deployed, and the three access points can be simultaneously covered.
  • the method of dividing the area into 1 X 1 m grid is further explained:
  • the sample terminal is placed at the first sample point 301, and the sample terminal receives the response message from the first access point 302, and sends a corresponding measurement report message to the first access point 302, so that the first access point
  • the time of flight of the radio signal between the first access point 302 and the first sample point 301 is obtained.
  • the second access point 303 obtains between the first sample point 301 and the second access point 303.
  • the radio signal flight time, the third access point 304 obtains the radio signal flight time between the first sample point 301 and the third access point 304;
  • the sample terminal is placed at each sample point, and the time of flight of the radio signal between each access point and each sample terminal is obtained, that is, the sample time;
  • the location server stores the coordinate values of the various sample points, the coordinate values of the respective access points, and the radio signal flight time between each access point and each sample terminal to establish a reference point database.
  • the client can fly simultaneously with the access points above and below the building.
  • Time measurement and according to the positioning result, not only the location of the client in the floor plan, but also the floor where the client is located, the client needs to perform flight time measurement with at least four access points, and the four access points Not on the same plane, and any three of them are not in a straight line.
  • the client makes measurements with more access points, it will get more accurate positioning results.
  • the location server stores each sample.
  • the client discovers an access point.
  • the client may discover the access point by listening to the beacon frame or actively detecting, and the access point may inform the client in the beacon frame or the probe response frame that it supports client positioning, and the beacon frame or probe response frame
  • the other access point IDs and the channel information of each access point may be carried, so that after receiving the beacon frame or the probe response frame, the client can learn more about other nearby support client positioning connections.
  • the in point speeds up the speed at which the client discovers the access point.
  • the client sends a location request instruction to the first access point.
  • the client After the client learns that the first access point supports client positioning, the client sends a location request instruction to the first access point.
  • S204 The client receives the first response message sent by the first access point, and records the arrival time T2 of the first response message.
  • the first response message may be an acknowledgement control frame of the location request instruction.
  • the command identifier that can be carried in the location request instruction in step S203 is used to enable the first access point to identify that the first response message is a response control frame for the location request command.
  • each access point and client can accurately measure the measurement time to the nanosecond level, and can accurately calculate the arrival time of the message and the time when the message is sent.
  • each message is encoded and modulated at the physical layer, in media access control.
  • the Medium Access Control (MAC) layer encapsulates each message into a MAC frame. These processes require processing time, which is stable and accurate to nanoseconds, and can be recorded by each access point and client.
  • the time when the message is processed so as to obtain the time when the message meets the positioning requirement, the time when the message starts or arrives, and the message carries the time to meet the positioning requirement, the time of the message to start and/or arrive, or carry the message to meet the positioning requirement. , the departure time of the message and the time of arrival.
  • the client sends a first measurement report message to the first access point, and records a time T3 of the measurement report message.
  • the first measurement report message carries the time T3 of the first measurement report message and the first response message.
  • the arrival time T2 is the difference T3-T2 between T3 and T2.
  • the first access point may send a response message (an ACK message defined in the IEEE 802.11 related standard) to the client as the first response message, and record the response message.
  • a response message an ACK message defined in the IEEE 802.11 related standard
  • the time of issuance as Tl. Since the ACK message must be sent, by recording the time of the ACK message that must be sent, it is not necessary to send a construct or define another message, thereby reducing the number of messages on the air interface and shortening the time required for one location measurement.
  • each access point and client can return a response message to inform the other party that the message is received.
  • a measurement response management message can also be defined here as the first response message.
  • the first measurement 4 report message in step S206 carries the difference ⁇ 3- ⁇ 2 of the issue time ⁇ 3 of the first measurement message and the arrival time ⁇ 2 of the first response message, so that the first access point and the client do not It is required to synchronize in time, and only need to record the time and arrival time of the message and accurately count the nanosecond precision.
  • the arrival of the first response message is calculated.
  • the difference from the issuing time T1 that is, the first access point sends the first response to the client.
  • the time T1 of the location request instruction is recorded, and the issue time T1 is carried in the location request command, then the first access point receives the location request command and records the arrival time.
  • the first access point sends the first flight time, that is, the calculated TOF, to the location server.
  • the first access point may also send the client ID and the command ID when sending the first flight time to the location server.
  • the first access point records the time when the first flight time is sent.
  • the time of the first flight time is the access point timestamp, which is used to inform the location server of the measurement time of the first access point. Therefore, in step S207, the first access point may also send the access point timestamp when transmitting the first flight time to the location server.
  • the second access point measures the second flight time and sends the second flight time to the location server.
  • the second flight time is a time of flight of the radio signal between the second access point and the client.
  • the third access point measures a third time of flight and sends the time to the location server.
  • the third time of flight is a time of flight of the radio signal between the third access point and the client.
  • steps S209 and S210 the second access point and the third access point measure the second time of flight and the third time of flight, and the first access point described in steps S202 to S208 measures the first.
  • the method of flight time is the same and will not be described here.
  • the location server will receive the first flight time, the second flight time, the third flight time from the first access point, the second access point, and the third access point, and the sampling time in the reference point database.
  • the alignment calculation is performed, and the coordinate position of the sample point corresponding to the sample time with the smallest time difference is obtained, and the coordinate position of the sample point is used as the position estimation result.
  • the location server Since the data recorded in the reference point database includes the radio signal flight time between each sample point and each access point, the location server will receive the first access point, the second access point, and the third access. The flight time of the point, and the radio signal flight time between each sample point in the reference point database and each access point can be subjected to a mean square error operation to find a sample point with the smallest time variance value, the sample point
  • the coordinate position is the location of the client, and the location server uses the coordinate position of the sample point as the position estimation result. It should be pointed out that the location server can also use other calculation methods to root According to the measurement data, an accurate reference point is found in the database, and the location of the client can be further estimated based on the reference point coordinates and the measurement data, which will not be described here.
  • the location server sends a location estimation result to the first access point.
  • the client receives the location estimation result from the location server by using the first access point. Specifically, the client can also obtain its positioning result through other networks, for example, through a cellular network. Of course, since the positioning is through the WiFi network, it is natural to obtain the positioning result through the WiFi network.
  • the client and the three access points perform the time-of-flight measurement to obtain the positioning result, but the three access points are not required to be in a straight line. More accurate positioning results can be obtained if time-of-flight measurements are taken with more access points. If you need to locate in a three-dimensional space, such as deploying many access points inside the building and using a better penetrating radio signal spectrum for communication, the client can simultaneously measure the time of flight with the access points above and below the building. According to the positioning result, not only the location of the client in the floor plan but also the floor where the client is located is determined, and the client needs to perform flight time measurement with at least four access points, and the four access points are not in the same plane. On, at the same time any three of them are not in a straight line. Similarly, when the client makes measurements with more access points, it will get more accurate positioning results.
  • the client after the client learns that the access point supports the client positioning, the client sends a location request instruction to the at least three access points, and each access point sends a response message to the request command by sending the response message to the client, and Receiving corresponding measurement report messages from the client to obtain the radio signal flight time between each access point and the client respectively, and then transmitting the radio signal flight time to the network side, whereby the network side can receive the received
  • the flight time of the radio signal is compared with the sampling time of a plurality of pre-measured sample points, and the coordinate position of the sample point corresponding to the sample time with the smallest time difference is obtained, and the coordinate position is the client position.
  • the location whereby the network side informs the client of the coordinate location.
  • the embodiment of the invention provides a positioning method. As shown in FIG. 4, the method includes:
  • the client sends a location request instruction to at least three access points, so that each access point sends a first measurement message to the client.
  • the client receives the first measurement cancellation from each of the at least three access points. Interest.
  • the client sends a response message to the first measurement message to the each access point, and receives a second measurement message from the each access point, to obtain the each access point and the client.
  • the client transmits a radio signal flight time between the each access point and the client, and a pre-measured radio signal flight time between the plurality of sample points and the access points.
  • the alignment calculation is performed, and the coordinate position of the sample point having the smallest time difference is used as the positioning coordinate of the client.
  • the response message may be an acknowledgement control frame of the first measurement message.
  • the pre-measurement of the radio signal flight time between the plurality of sample points and the respective access points may be preset by the user in the user terminal, or may be stored in the network side, and the user terminal only needs to The network side download can obtain the pre-measured radio signal flight time between multiple sample points and each access point.
  • the client sends a location request instruction to at least three access points, and after receiving the first measurement message from each access point, sending the first measurement to each access point. a response message of the message, and receiving a second measurement message from each access point to obtain a radio signal flight time between each access point and the client, so that the client will get the radio signal flight time, and the advance
  • the measured number of sample points is compared with the flight time of the radio signal between the access points, and the coordinate position of the sample point with the smallest time difference is used as the positioning coordinate of the client.
  • An embodiment of the present invention provides a positioning method. As shown in FIG. 5, it is assumed that the present embodiment includes a client, a first access point, a second access point, a third access point, and a location server, and assumes Associated with the client as the first access point, the method includes the following steps:
  • the location server establishes a reference point database.
  • the client discovers an access point.
  • the client can discover the access point by listening to the beacon frame or actively detecting, and the access point can inform the client in the beacon frame or the probe response frame that it supports the client positioning, and the beacon frame or the probe ringing
  • the frame may carry other access point IDs and channel information of each access point, so that after receiving the beacon frame or the probe response frame, the client can learn more about other supported client positioning in the vicinity.
  • the access point speeds up the discovery of access points by the client.
  • the client downloads the reference point database through the first access point.
  • the client can perform IP communication with the location server to download the reference point database, or use other means to implement the download.
  • the reference point data download is supported directly at the MAC layer of the air interface.
  • the client can obtain the required reference point database through other communication means, for example, through a cellular network or a limited local area network, or even by pre-configuring, etc., how to obtain the reference point database, the present invention. Not limited. However, since the positioning is achieved through the WiFi network, it is reasonable to obtain the database through the WiFi network.
  • S504 The client sends a location request instruction to the first access point.
  • the first access point After receiving the location request command of the client, the first access point sends a first measurement message to the client.
  • the client sends a first response message to the first access point, and records a sending time T1 of the first response message.
  • the first response message may be a response message, that is, an ACK message, indicating that the first measurement message is received, and the client records the time T1 of the response message. It should be noted that the first response message may be an acknowledgement control frame of the first measurement message.
  • the second measurement message sent by the first access point is received by the client, where the second measurement message carries the time T3 of sending the second measurement message, and the first response message arrives at the The time T2 of the first access point, or the difference T3-T2 of the T3 and T2.
  • S508 The client receives the second measurement message, and records an arrival time T4 of the second measurement message.
  • the client and the second access point measure the message flight time between them.
  • the client and the third access point measure the message flight time between them.
  • the client sends the measured information with the first access point, the second access point, and the third access point.
  • the line time is compared with the data in the reference point database to obtain the coordinate position of the sample point with the smallest time difference, and the coordinate position of the sample point is used as the position estimation result.
  • the client can use other calculation methods to obtain position estimation results closer to the facts based on the obtained data, and can perform measurements with more access points to improve the accuracy of the position estimation results and achieve three-dimensional positioning. Repeat again.
  • the client finds an access point that supports client positioning, and acquires a pre-measured radio signal flight time between a plurality of sample points and each access point, to at least three
  • the access point sends a location request command, and after receiving the first measurement message from each access point, sends a response message to the first measurement message to each access point, and receives a second response from each access point.
  • the signal flight time is compared and calculated, and the coordinate position of the sample point with the smallest time difference is obtained, which is the position of the client.
  • the embodiment of the present invention provides a client 60, which can be used in the method provided in the first embodiment. As shown in FIG. 6, the method includes:
  • a first sending unit 601 configured to send a location request instruction to at least three access points
  • the first receiving unit 602 is configured to receive a response message from the access point to the request command.
  • a second sending unit 603, configured to send a corresponding measurement report message to each access point, so that each access point obtains a radio signal flight time between the respective access point and the client;
  • a second receiving unit 604 configured to receive a location estimation result from a network side, where the location estimation result is a time of flight of the radio signal received by the network side from each access point, and is pre-measured
  • the sample time of the sample points is compared and calculated, and the coordinate position of the sample point corresponding to the sample time with the smallest time difference obtained is obtained; the sample time is the sample point and each access point
  • the first receiving unit 602 is specifically configured to receive a first response message from each access point to the request instruction, and record an arrival time T2 of the first response message;
  • the second sending unit 603 is specifically configured to: after receiving the first response message, to the sending station
  • the time of entry is specifically configured to: after receiving the first response message, to the sending station
  • the access point of the first response message sends a first measurement report message, and records an issue time T3 of the first measurement report message, where the first measurement report message carries the first measurement report a difference T3-T2 between the
  • the client 60 further includes;
  • the third receiving unit 605 is configured to receive a beacon frame from each access point, where the beacon frame carries the at least three access point IDs and each before sending the location request command to the at least three access points. Channel information of the access point.
  • the client provided by the embodiment of the present invention can send a location request command to at least three access points, and each access point sends a response request message to the client, and receives a corresponding measurement report message from the client.
  • the sampling time of the plurality of sampling points is compared and calculated, and the coordinate position of the sampling point corresponding to the sampling time with the smallest time difference is obtained, and the coordinate position is the position of the client, and thus, the coordinate position of the network side Tell the client.
  • the position can be accurately determined, so that the client can accurately know the location of the user, and further, the user is convenient to use.
  • the embodiment of the present invention provides a client 90, which can be used in the method provided in the third embodiment. As shown in FIG. 8, the method includes:
  • a storage unit 901 configured to store a pre-measured number of sample points and a radio signal flight time between each access point
  • the first sending unit 902 is configured to send a location request instruction to the at least three access points, so that each access point sends the first measurement message to the client.
  • a first receiving unit 903 configured to receive a first measurement message from each of the at least three access points
  • a second sending unit 904 configured to send, to the each access point, a response message to the first measurement message
  • a second receiving unit 905 configured to receive second measurement messages from the respective access points, to obtain a radio signal flight time between the respective access points and the client;
  • the processing unit 906 is configured to obtain a location estimation result, where the location estimation result is that the client sends the radio signal flight time between the each access point and the client, and the multiple measured in advance The sample point is compared with the flight time of the radio signal between the access points, and the coordinate position of the sample point with the smallest time difference is used as the positioning coordinate of the client.
  • the second sending unit 904 is specifically configured to: when the first response message to the first measurement message is sent to the each access point, record the sending time T1 of the first response message;
  • the second receiving unit 905 is specifically configured to receive the second measurement message that is sent after the first response message is received by the each access point, and record an arrival time T4 of the second measurement message;
  • the second measurement message carries the sending time T3 of the second measurement message and the time T2 when the first response message reaches the respective access point, or carries the difference T3-T2 between the T3 and T2;
  • the client provided by the embodiment of the present invention can send a first measurement to each access point by sending a location request instruction to at least three access points and after receiving the first measurement message from each access point. a response message of the message, and receiving a second measurement message from each access point to obtain a radio signal flight time between each access point and the client, so that the client will get the radio signal flight time, and the advance
  • the measured number of sample points is compared with the flight time of the radio signal between the access points, and the coordinate position of the sample point with the smallest time difference is used as the positioning coordinate of the client.
  • An embodiment of the present invention provides an indoor positioning system, as shown in FIG. 9, including: a client 1101, at least three access points 1102, and a network side 1103;
  • the client 1101 is configured to: after sending the location request command to the at least three access points 1102, receive a response message from each access point 1102 to the request command, and send a corresponding measurement report message to each access point 1102. So that each access point 1102 obtains the radio signal flight time between each access point 1102 and the client 1101, and receives the location estimation result from the network side 1103;
  • At least three access points 1102 are configured to receive a location request command from the client 1101, send a response message to the client 1101, and receive a corresponding measurement report message from the client 1101. After obtaining the radio signal flight time between each access point 1102 and the client 1101, the radio signal flight time between each access point 1102 and the client 1101 is respectively sent to the network side 1103;
  • the network side 1103 is configured to compare the received flight time of the radio signal from each access point 1102 with the pre-measured plurality of sample points and the radio signal flight time between the access points 1102.
  • the obtained coordinate time position of the sample point corresponding to the sample time with the smallest time difference is sent to the client 1101; the sample time is the radio signal flight time between the sample point and each access point.
  • the network side 1103 is further configured to store coordinate values of multiple sample points and at least three access points 1102 deployed in an area providing location service, and between each access point 1102 and each sample terminal. Radio signal flight time.
  • each access point after receiving the location request instruction of the client, each access point sends a response message to the location request command to the client, and receives a corresponding measurement report message from the client, thereby obtaining each
  • the radio signal flight time between the access point and the client is sent to the network side, and the network side compares the flight time of the radio signal between the respective access point and the client, and several pre-measurements
  • the sample point is compared with the flight time of the radio signal between each access point, and the coordinate position of the sample point with the smallest time difference is obtained as the position estimation result, and the position estimation result is notified to the client, the client Therefore, the location of the user is known, and further, it is convenient for the user to use.
  • the embodiment of the present invention provides another indoor positioning system, as shown in FIG. 10, comprising: a client 1201, at least three access points 1202;
  • the client 1201 is configured to send a location request command to the at least three access points 1202, and receive a first measurement message from each access point 1202, and send a response message to the first measurement message to each access point 1202. And receiving a second measurement message from each access point 1202 to obtain a radio signal flight time between each access point 1202 and the client 1201, and a radio signal flight time between each access point and the client, Comparing the pre-measured number of sample points with the radio signal flight time between each access point 1202, and calculating the coordinate position of the sample point corresponding to the sample time with the smallest time difference as the client Positioning coordinates
  • the client sends a location request instruction to at least three access points, and receives a first measurement message from each access point, and sends a response message to the first measurement message to each access point. And receiving a second measurement message from each access point to obtain a radio signal flight time between each access point and the client, the client transmitting the radio signal flight time, and a plurality of pre-measured measurements The sample point is compared with the flight time of the radio signal between the access points, and the coordinate position of the sample point corresponding to the sample time with the smallest time difference is used as the positioning coordinate of the client, and the client knows itself
  • the location further, is convenient for the user to use.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种定位方法、客户端及定位系统,涉及通信领域,能够准确定位,使客户端准确获知自身所处位置,进一步地,方便了用户的使用。本实施例的室内定位方法包括:客户端向至少三个接入点发送位置请求指令;客户端接收来自各个接入点对所述请求指令的响应消息;客户端向各个接入点发送相应的测量报告消息,以使得各个接入点分别获得各自与所述客户端之间的无线电信号飞行时间;客户端接收来自网络侧的位置估算结果,位置估算结果为所述网络侧将接收到的来自各个接入点的所述无线电信号飞行时间,与预先测量好的多个采样点的采样时间进行比对计算,所获得的时间差值最小的采样时间对应的采样点的坐标位置。

Description

一种定位方法、 客户端及定位系统 本申请要求于 2011 年 12 月 28 日提交中国专利局、 申请号为 201110447765.6、 名称为 "一种定位方法、 客户端及定位系统" 的中国专利申 请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信领域, 尤其涉及一种定位方法、 客户端及定位系统。 背景技术
Wi-Fi是一种可以将个人电脑、 手持设备等客户端以无线方式互相连接的 技术,客户端通过接入点可以相互通信, 同时接入点可以给客户端提供管理和 服务。 随着 Wi-Fi的接入点覆盖范围越来越广泛, 利用 Wi-Fi来进行室内定位 的室内定位系统也越来越多。 例如, 当人们到一个陌生的商场, 想知道自己所 处在商场的哪个位置,或者通过室内导航寻找某个目的地时也需要确定自己的 位置, 就可以通过自己带 Wi-Fi功能的手机来确定自己所处的位置。
然而,在用户想要确定自己所处位置时, 由于通信时的信号强度不稳定以 及多径、 穿墙所产生的测量误差的影响, 导致定位不准确、 定位功能在使用中 不方便, 使得用户不能准确获知自己所处的位置。 发明内容
本发明的实施例提供一种定位方法、 客户端及定位系统, 能够准确定位, 使客户端准确获知自身所处位置, 进一步地, 方便了用户的使用。
为达到上述目的, 本发明的实施例釆用如下技术方案:
一方面, 本发明实施例提供一种定位方法, 包括:
客户端向至少三个接入点发送位置请求指令;
所述客户端接收来自各个接入点对所述请求指令的响应消息;
所述客户端向各个接入点发送相应的测量报告消息,以使得各个接入点分 别获得各自与所述客户端之间的无线电信号飞行时间; 所述客户端接收来自网络侧的位置估算结果,所述位置估算结果为所述网 络侧将接收到的来自各个接入点的所述无线电信号飞行时间,与预先测量好的 多个釆样点的釆样时间进行比对计算,所获得的时间差值最小的釆样时间对应 的釆样点的坐标位置;所述釆样时间为所述釆样点与各个接入点之间的无线电 信号飞行时间。
另一方面, 本发明实施例提供一种定位方法, 包括:
客户端向至少三个接入点发送位置请求指令,以使各接入点向所述客户端 发送第一测量消息;
所述客户端接收来自所述至少三个接入点中各个接入点的第一测量消息; 所述客户端向所述各个接入点发送对所述第一测量消息的响应消息,并接 收来自所述各个接入点的第二测量消息,以获得所述各个接入点与所述客户端 之间的无线电信号飞行时间;
所述客户端将所述各个接入点与所述客户端之间的无线电信号飞行时间, 与预先测量好的所述多个釆样点与所述各个接入点之间的无线电信号飞行时 间进行比对计算,将时间差值最小的釆样点的坐标位置作为所述客户端的定位 坐标。
一方面, 本发明实施例提供一种客户端, 包括:
第一发送单元, 用于向至少三个接入点发送位置请求指令;
第一接收单元, 用于接收来自各个接入点对所述请求指令的响应消息; 第二发送单元, 用于向各个接入点发送相应的测量报告消息, 以使得各个 接入点分别获得各自与所述客户端之间的无线电信号飞行时间;
第二接收单元, 用于接收来自网络侧的位置估算结果, 所述位置估算结果 为所述网络侧将接收到的来自各个接入点的所述无线电信号飞行时间,与预先 测量好的多个釆样点的釆样时间进行比对计算,所获得的时间差值最小的釆样 时间对应的釆样点的坐标位置;所述釆样时间为所述釆样点与各个接入点之间 的无线电信号飞行时间。
另一方面, 本发明实施例提供一种客户端, 包括:
存储单元,用于储存预先测量好的若干个釆样点与各个接入点之间的无线 电信号飞行时间;
第一发送单元, 用于向至少三个接入点发送位置请求指令, 以使各接入点 向所述客户端发送第一测量消息;
第一接收单元,用于接收来自所述至少三个接入点中各个接入点的第一测 量消息;
第二发送单元,用于向所述各个接入点发送对所述第一测量消息的响应消 息;
第二接收单元, 用于接收来自所述各个接入点的第二测量消息, 以获得所 述各个接入点与所述客户端之间的无线电信号飞行时间;
处理单元, 用于获取位置估算结果, 所述位置估算结果为所述客户端将所 述各个接入点与所述客户端之间的无线电信号飞行时间,与预先测量好的所述 多个釆样点与所述各个接入点之间的无线电信号飞行时间进行比对计算,将时 间差值最小的釆样点的坐标位置作为所述客户端的定位坐标。
一方面, 本发明实施例提供一种定位系统, 包括:
客户端, 用于在向至少三个接入点发送位置请求指令后,接收来自各个接 入点对所述请求指令的响应消息, 并向各个接入点发送相应的测量报告消息, 以使得各个接入点分别获得各自与所述客户端之间的无线电信号飞行时间,以 及接收来自网络侧的位置估算结果;
至少三个接入点, 用于在接收来自所述客户端的位置请求指令, 向所述客 户端发送所述响应消息,接收来自所述客户端相应的测量报告消息, 以分别获 得各自与所述客户端之间的无线电信号飞行时间后 ,将所述分别获得各个接入 点与所述客户端之间的无线电信号飞行时间发送至所述网络侧;
所述网络侧, 用于将接收到的来自各个接入点的所述无线电信号飞行时 间, 与预先测量好的多个釆样点的釆样时间进行比对计算, 所获得的时间差值 最小的釆样时间对应的釆样点的坐标位置, 并发送给所述客户端; 所述釆样时 间为所述釆样点与各个接入点之间的无线电信号飞行时间。
另一方面, 本发明实施例提供一种定位系统, 包括:
客户端, 用于向至少三个接入点发送位置请求指令, 并接收来自所述至少 三个接入点中各个接入点的第一测量消息,向所述各个接入点发送对所述第一 测量消息的响应消息, 并接收来自所述各个接入点的第二测量消息, 以获得所 述各个接入点与所述客户端之间的无线电信号飞行时间,以及将所述各个接入 点与所述客户端之间的无线电信号飞行时间,与预先测量好的所述多个釆样点 与所述各个接入点之间的无线电信号飞行时间进行比对计算,将时间差值最小 的釆样时间对应的釆样点的坐标位置作为所述客户端的定位坐标;
至少三个接入点, 用于在接收来自所述客户端的位置请求指令, 向所述客 户端发送所述第一测量消息,接收来自所述客户端对所述第一测量消息的响应 消息, 并向所述客户端发送所述第二测量消息, 以使得所述客户端获得各个接 入点与所述客户端之间的无线电信号飞行时间。
本发明实施例提供的定位方法、客户端及定位系统,通过客户端向至少三 个接入点发送位置请求指令,各个接入点通过向客户端发送对请求指令响应消 息, 并接收来自客户端的相应的测量报告消息, 以分别获得各个接入点与客户 端之间的无线电信号飞行时间, 进而将该无线电信号飞行时间发送给网络侧, 由此, 网络侧可以将接收到的该无线电信号飞行时间, 与预先测量好的多个釆 样点的釆样时间进行比对计算,获得时间差值最小的釆样时间对应的釆样点的 坐标位置, 该坐标位置即客户端所处位置, 从而, 网络侧将该坐标位置告知客 户端。通过该方案可以准确定位,使客户端准确获知自身所处位置,进一步地, 方便了用户的使用。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲, 在不付 出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明实施例一的定位方法流程示意图;
图 2为本发明实施例二的定位方法流程示意图;
图 3为本发明实施例二的定位方法应用场景示意图;
图 4为本发明实施例三的定位方法流程示意图;
图 5为本发明实施例四的定位方法流程示意图;
图 6为本发明实施例五的客户端的结构示意图一;
图 7为本发明实施例五客户端的结构示意图二;
图 8为本发明实施例五客户端的结构示意图三;
图 9为本发明实施例六定位系统的构造示意图一; 图 10为本发明实施例六定位系统的构造示意图二。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明中的实施例, 本领域普通技术人员在没有做出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
实施例一
本发明实施例提供一种定位方法, 如图 1所示, 该方法包括:
S101、 客户端向至少三个接入点发送位置请求指令。
本实施例中接入点 (Access Point, 简称 AP)的主要作用是将各个无线网络 客户端连接到一起, 然后将无线网络接入以太网,相当于一个连接有线网和无 线网的桥梁。 本实施例中的接入点可以具体为无线交换机。
在室内所占据的空间区域中部署至少三个接入点,如果实现在一个平面中 的定位, 则需部署至少三个接入点, 并且要求三个接入点不在同一条直线上。 由于接入点最终得到的是接入点与客户端之间的无线电信号飞行时间,无线电 信号的传播速度一定且已知,因此接入点实质上可以得到的是客户端与接入点 之间的距离, 当第一接入点获得其与客户端之间的距离时, 所能确定的是以第 一接入点为中心, 第一接入点与客户端之间的距离为半径的圓, 当第二接入点 获得其与客户端之间的距离时, 所能确定的是以第二接入点为中心, 第二接入 点与客户端之间的距离为半径的圓, 这时, 两个圓相交, 能够确定两个交点, 并不能确定一个点, 然而当第三接入点获得其与客户端之间的距离,确定以第 三接入点为中心, 第三接入点与客户端之间的距离为半径的圓后, 由于这三个 接入点不在同一条直线上, 因此, 可以确定一个交点, 该交点即为客户端的所 处位置。如果需要在一个三维空间进行定位,例如在大厦内部部署许多接入点, 并使用穿透性较好的无线电信号频谱进行通信,则客户端可以与楼上下的接入 点同时进行飞行时间测量,并且根据定位结果不仅判断出客户端在楼层平面中 的位置,还要判断出所在的楼层, 则客户端至少需要与四个接入点进行飞行时 间测量, 并且这四个接入点不在同一平面上, 同时其中任意三个不在一条直线 上。 同理, 客户端与更多的接入点进行测量, 会得到更准确的定位结果。 因此, 当客户端进入该区域想要获知自身所处位置时, 需要至少向三个接 入点发送位置请求指令,该位置请求指令用于发起接入点对消息飞行时间的测 量。
5102、 客户端接收来自各个接入点对所述请求指令的响应消息。
客户端在向至少三个接入点发送位置请求指令后,会接收到来自各个接入 点对该请求指令的响应消息。
5103、客户端向各个接入点发送相应的测量报告消息, 以使得各个接入点 分别获得各自与所述客户端之间的无线电信号飞行时间。
各个接入点在接收到来自客户端的位置请求指令后,进行无线电信号飞行 时间消息飞行时间的测量, 通过向客户端发送响应消息并记录消息出发的时 间,接收来自客户端的相应的测量报告消息并记录消息到达的时间,再根据客 户端记录的响应消息到达时间以及测量报告消息的发出时间,计算出各个接入 点与客户端之间的无线电信号飞行时间。 需要指出的是, 该响应消息可以是位 置请求指令的应答控制帧。
S104、客户端接收来自网络侧的位置估算结果, 所述位置估算结果为所述 网络侧将接收到的来自各个接入点的所述无线电信号飞行时间,与预先测量好 的多个釆样点的釆样时间进行比对计算,所获得的时间差值最小的釆样时间对 应的釆样点的坐标位置;所述釆样时间为所述釆样点与各个接入点之间的无线 电信号飞行时间。
网络侧具有存储功能, 用于储存所需数据, 并通过有线的方式与各个接入 点连接。
网络侧接收到来自各个接入点的无线电信号飞行时间,与预先测量好的若 干个釆样点与各个接入点之间的无线电信号飞行时间进行比对计算,该预先测 量好的若干个釆样点与各个接入点之间的无线电信号飞行时间 ,是通过在提供 定位服务的区域室内所占据的空间区域中部署若干个釆样点及至少三个接入 点, 并将各个釆样点及各个接入点的坐标值储存在所述网络侧中, 而后, 依次 在上述若干个釆样点处放置釆样终端,该釆样终端接收来自各个接入点的响应 消息, 并向各个接入点发送相应的测量报告消息, 以使得各个接入点分别获得 各个接入点与各个釆样终端之间的无线电信号飞行时间 ,该各个接入点与各个 釆样终端之间的无线电信号飞行时间储存在网络侧中。 本发明实施例提供的定位方法,客户端向至少三个接入点发送位置请求指 令,各个接入点通过向客户端发送对请求指令响应消息, 并接收来自客户端的 相应的测量报告消息,以分别获得各个接入点与客户端之间的无线电信号飞行 时间, 进而将该无线电信号飞行时间发送给网络侧, 由此, 网络侧可以将接收 到的该无线电信号飞行时间,与预先测量好的多个釆样点的釆样时间进行比对 计算, 获得时间差值最小的釆样时间对应的釆样点的坐标位置, 该坐标位置即 客户端所处位置, 从而, 网络侧将该坐标位置告知客户端。 通过该方案可以准 确定位, 使客户端准确获知自身所处位置, 进一步地, 方便了用户的使用。
实施例二
本发明实施例提供一种定位方法,如图 2所示,假设本实施例中包括一个 客户端, 第一接入点、 第二接入点、 第三接入点及网络侧具体为一个位置服务 器, 并且假设与位置服务器相关联的为第一接入点, 该方法包括以下步骤: S201、 位置服务器建立基准点数据库。
该基准点数据库是通过在提供定位服务的区域中部署多个釆样点及至少 三个接入点,各个接入点分别获得各个接入点与客户端之间的无线电信号飞行 时间后 ,位置服务器储存各个釆样点及各个接入点的坐标值以及各个接入点与 客户端之间的无线电信号飞行时间所建立的。
为了更加清楚地说明基准点数据库是如何建立的, 下面以图 3为例, 示例 性地在二维平面中进行定位, 釆用部署三个接入点, 并该三个接入点能够同时 覆盖的区域划分为 1 X 1米网格的方法, 进行进一步地说明:
将室内所占据的空间区域划分 1 X 1米的网格, 将每一个网格的中心作为 釆样点, 每个釆样点都有相应的坐标值;
部署若干个接入点, 由于没有方向信息, 因此需要部署至少三个接入点, 每个接入点也有相应的坐标值;
将釆样终端放置在第一釆样点 301 , 釆样终端接收来自第一接入点 302的 响应消息, 并向第一接入点 302发送相应的测量报告消息, 以使得第一接入点 302获得第一接入点 302与第一釆样点 301之间的无线电信号的飞行时间, 同 样的,第二接入点 303得到第一釆样点 301与第二接入点 303之间的无线电信 号飞行时间,第三接入点 304得到第一釆样点 301与第三接入点 304之间的无 线电信号飞行时间; 同样的方法,将釆样终端放置在各个釆样点,得到各个接入点与各个釆样 终端之间的无线电信号飞行时间, 即釆样时间;
由此,位置服务器储存各个釆样点的坐标值、各个接入点的坐标值以及各 个接入点与各个釆样终端之间的无线电信号飞行时间, 以建立基准点数据库。
进一步地, 如果需要在一个三维空间进行定位, 例如在大厦内部部署许多 接入点, 并使用穿透性较好的无线电信号频谱进行通信, 则客户端可以与楼上 下的接入点同时进行飞行时间测量,并且根据定位结果不仅判断出客户端在楼 层平面中的位置,还要判断出所在的楼层, 则客户端至少需要与四个接入点进 行飞行时间测量, 并且这四个接入点不在同一平面上, 同时其中任意三个不在 一条直线上。 同理, 客户端与更多的接入点进行测量, 会得到更准确的定位结 果。
需要说明的是,在实际的应用场景中, 也可以釆用其他方法划分提供定位 服务的区域以部署釆样点或接入点,但由于均是釆用上述方法,使得位置服务 器储存各个釆样点的坐标值、各个接入点的坐标值以及各个接入点与各个釆样 终端之间的无线电信号飞行时间, 最终建立基准点数据库, 此处不再赘述, 但 都应在本发明的保护范围之内。
5202、 客户端发现接入点。
客户端可通过侦听信标帧或主动探测的方式发现接入点,接入点可以在该 信标帧或探测响应帧中告知客户端其支持客户端定位,并且该信标帧或探测响 应帧中可以携带其它各个接入点 ID及各个接入点的信道信息, 这样, 客户端 在接收到该信标帧或探测响应帧之后,就可以更快地获知附近的其它支持客户 端定位的接入点, 加快了客户端发现接入点的速度。
5203、 客户端向第一接入点发送位置请求指令。
客户端在获知第一接入点支持客户端定位后,向该第一接入点发送位置请 求指令。
5204、客户端接收第一接入点发送的第一响应消息,并记录第一响应消息 的到达时间 T2。
需要指出的是,该第一响应消息可以是位置请求指令的应答控制帧。同时, 步骤 S203中的位置请求指令中可以携带的命令标识, 即是用于使第一接入点 识别该第一响应消息是对于位置请求指令的应答控制帧。 需要说明的是,在本发明实施例方法步骤中,各个接入点和客户端能够将 测量时间精确到纳秒级,并且能够精确地计算消息的到达时间和消息的发出时 间。 需要指出的是, 各个消息均是在物理层进行编码和调制, 在介质访问控制
(Medium Access Control, 简称 MAC)层将各个消息封装成 MAC帧, 这些处理 均需要处理时间, 而这些时间都是稳定且可精确到纳秒级的, 并且各个接入点 和客户端都能够记录下处理消息的时间, 以便在需要时获得满足定位要求的, 消息出发或到达的时间, 并在消息中携带满足定位要求的, 消息出发和 /或到 达的时间, 或者在消息中携带满足定位要求的, 消息出发和到达时间差。
S205、客户端向第一接入点发送第一测量报告消息,并记录测量报告消息 的发出时间 T3 , 第一测量报告消息中携带有第一测量报告消息的发出时间 T3 与第一响应消息的到达时间 T2或者是 T3与 T2的差 T3-T2。
S206、第一接入点获得的所述第一接入点与所述客户端之间的无线电信号 飞行时间 TOF=[(T4-Tl)-(T3-T2)]/2; 其中, T1为所述第一响应消息的发出时 间; T4为所述第一测量报告消息到达所述第一接入点的时间。
需要说明的是, 第一接入点还可以在接收到客户端的位置请求指令后, 向 客户端发送应答消息( IEEE 802.11相关标准中定义的 ACK消息)作为第一响 应消息,并记录该应答消息的发出时间作为 Tl。由于 ACK消息是必须发送的, 因此, 通过记录必须发送的 ACK消息的时间, 可以不必发送构造或定义其它 的消息, 进而可以减少空口上的消息数量, 缩短一次位置测量所需的时间。 同 样的,各个接入点与客户端在接收到来自对方的消息后,均可以返回应答消息, 以告知对方其收到该消息。 当然, 这里也可以定义一个测量响应管理消息, 作 为所述第一响应消息。 由于步骤 S206中的第一测量 4艮告消息中携带有第一测量 告消息的发出 时间 Τ3与第一响应消息的到达时间 Τ2的差 Τ3-Τ2 ,因此使得第一接入点与客 户端不要求在时间上同步,只需各自记录下消息的发出时间和到达时间并且能 准确地在纳秒精度上计时即可。
当然,对于无线电信号飞行时间的测量与计算方法,还有其他的实施方式, 例如,在第一接入点与客户端在时间上严格同步的情况下,计算第一响应消息 的到达之间 Τ2与发出时间 T1的差, 即第一接入点在向客户端发送第一响应 消息时, 在第一响应消息中携带该消息的发出时间 T1 , 那么也可以计算出第 一接入点与客户端之间无线电信号的飞行时间 TOF=T2-Tl , 或者, 客户端在 向第一接入点发送位置请求指令时, 记录该位置请求指令的发出时间 T1 , 并 在该位置请求指令中携带该发出时间 T1 , 那么第一接入点在收到该位置请求 指令并记录到达时间 T2后, 可以计算出第一接入点与客户端之间无线电信号 的飞行时间 TOF=T2-Tl。
S207、 第一接入点向位置服务器发送第一飞行时间即前述所算得的 TOF。 第一接入点在向位置服务器发送第一飞行时间时,还可以发送客户端 ID、 命令 ID。
S208、 第一接入点记录发送第一飞行时间的发出时间。
该第一飞行时间的发出时间为接入点时间戳,用于告知位置服务器第一接 入点的测量时间。 因此在步骤 S207中第一接入点在向位置服务器发送第一飞 行时间时, 还可以发送该接入点时间戳。
5209、 第二接入点测量第二飞行时间, 并发送给位置服务器; 所述第二飞 行时间为第二接入点与所述客户端之间无线电信号的飞行时间。
5210、 第三接入点测量第三飞行时间, 并发送给位置服务器; 所述第三飞 行时间为第三接入点与所述客户端之间无线电信号的飞行时间。
需要说明的是,步骤 S209及 S210中,第二接入点及第三接入点测量第二 飞行时间及第三飞行时间的方法,与步骤 S202至 S208描述的第一接入点测量 第一飞行时间的方法相同, 此处不再赘述。
5211、 位置服务器将接收到来自第一接入点、 第二接入点、 第三接入点的 第一飞行时间、 第二飞行时间、 第三飞行时间, 与基准点数据库中的釆样时间 进行比对计算, 获得的时间差值最小的釆样时间对应的釆样点的坐标位置, 并 将该釆样点的坐标位置作为位置估算结果。
由于基准点数据库中记录的数据包括各个釆样点与各个接入点的之间的 无线电信号飞行时间,因此位置服务器将接收到来自第一接入点、第二接入点、 第三接入点的飞行时间,与基准点数据库中各个釆样点与各个接入点的之间的 无线电信号飞行时间可以进行均方差运算,找出时间方差值最小的釆样点, 该 釆样点的坐标位置即为客户端的所处位置,位置服务器将该釆样点的坐标位置 作为位置估算结果。 需要指出的是,位置服务器也可以釆用其它计算方法以根 据测量数据在数据库中找到准确的基准点,并且可以进一步根据基准点坐标和 测量数据估算客户端的位置, 此处不再赘述。
5212、 位置服务器向第一接入点发送位置估算结果。
5213、 客户端通过第一接入点接收来自位置服务器的位置估算结果。 具体地,客户端也可以通过其它网络获得其定位结果,例如通过蜂窝网络。 当然, 既然是通过 WiFi网络进行的定位, 自然是通过 WiFi网络获得定位结果 比较合理。
需要说明的是,如果实现在一个平面中的定位,客户端与三个接入点进行 飞行时间测量可获得定位结果,但要求这三个接入点不在一条直线上。如果与 更多接入点进行飞行时间测量, 可获得更精确的定位结果。如果需要在一个三 维空间进行定位, 例如在大厦内部部署许多接入点, 并使用穿透性较好的无线 电信号频谱进行通信, 则客户端可以与楼上下的接入点同时进行飞行时间测 量, 并且根据定位结果不仅判断出客户端在楼层平面中的位置,还要判断出所 在的楼层, 则客户端至少需要与四个接入点进行飞行时间测量, 并且这四个接 入点不在同一平面上, 同时其中任意三个不在一条直线上。 同理, 客户端与更 多的接入点进行测量, 会得到更准确的定位结果。
本发明实施例提供的定位方法, 客户端在获知接入点支持客户端定位后, 向至少三个接入点发送位置请求指令,各个接入点通过向客户端发送对请求指 令响应消息, 并接收来自客户端的相应的测量报告消息, 以分别获得各个接入 点与客户端之间的无线电信号飞行时间,进而将该无线电信号飞行时间发送给 网络侧, 由此, 网络侧可以将接收到的该无线电信号飞行时间, 与预先测量好 的多个釆样点的釆样时间进行比对计算,获得时间差值最小的釆样时间对应的 釆样点的坐标位置, 该坐标位置即客户端所处位置, 从而, 网络侧将该坐标位 置告知客户端。 通过该方案可以准确定位, 使客户端准确获知自身所处位置, 进一步地, 方便了用户的使用。
实施例三
本发明实施例提供一种定位方法, 如图 4所示, 该方法包括:
S401、客户端向至少三个接入点发送位置请求指令, 以使各接入点向所述 客户端发送第一测量消息。
S402、 客户端接收来自所述至少三个接入点中各个接入点的第一测量消 息。
S403、客户端向所述各个接入点发送对所述第一测量消息的响应消息,并 接收来自所述各个接入点的第二测量消息,以获得所述各个接入点与所述客户 端之间的无线电信号飞行时间。
S404、 客户端将所述各个接入点与所述客户端之间的无线电信号飞行时 间,与预先测量好的所述多个釆样点与所述各个接入点之间的无线电信号飞行 时间进行比对计算,将时间差值最小的釆样点的坐标位置作为所述客户端的定 位坐标。
需要指出的是, 该响应消息可以是第一测量消息的应答控制帧。 并且, 预 先测量好的多个釆样点与各个接入点之间的无线电信号飞行时间,可以是用户 预置在用户终端中的,也可以是存储在网络侧中的, 用户终端只需从网络侧下 载就可获得预先测量好的多个釆样点与各个接入点之间的无线电信号飞行时 间。
本发明实施例提供的定位方法,客户端向至少三个接入点发送位置请求指 令, 并在接收到来自各个接入点的第一测量消息后,通过向各个接入点发送对 第一测量消息的响应消息, 并接收来自各个接入点的第二测量消息, 以获得各 个接入点与所述客户端之间的无线电信号飞行时间,进而客户端将得到的无线 电信号飞行时间,与预先测量好的若干个釆样点与各个接入点之间的无线电信 号飞行时间进行比对计算,将时间差值最小的釆样点的坐标位置作为所述客户 端的定位坐标。 通过该方案可以准确定位, 使客户端准确获知自身所处位置, 进一步地, 方便了用户的使用。
实施例四
本发明实施例提供一种定位方法,如图 5所示,假设本实施例中包括一个 客户端, 第一接入点、 第二接入点、 第三接入点及一个位置服务器, 并且假设 与客户端相关联的为第一接入点, 该方法包括以下步骤:
5501、 位置服务器建立基准点数据库。
关于基准点数据库的建立与步骤 S201中的描述相同, 此处不再赘述。
5502、 客户端发现接入点。
客户端可通过侦听信标帧或主动探测的方式发现接入点,接入点可以在该 信标帧或探测响应帧中告知客户端其支持客户端定位,并且该信标帧或探测响 应帧中可以携带其它各个接入点 ID及各个接入点的信道信息, 这样, 客户端 在接收到该信标帧或探测响应帧之后,就可以更快地获知附近的其它支持客户 端定位的接入点, 加快了客户端发现接入点的速度。
5503、 客户端通过第一接入点下载基准点数据库。
客户端可以与位置服务器进行 IP通信以下载基准点数据库, 也可以釆用 其它手段实现下载,例如直接在空口的 MAC层支持基准点数据下载。同样的, 客户端也可以通过其它通信手段获得所需要的基准点数据库,例如通过蜂窝网 络或有限局域网, 甚至可以通过预先配置的等方式等等, 具体怎样获得所述的 基准点数据库, 本发明并不作限定。 不过, 既然是通过 WiFi网络实现定位, 通过 WiFi网络获得所述数据库则比较合理。
5504、 客户端向第一接入点发送位置请求指令。
5505、第一接入点收到客户端的位置请求指令后, 向客户端发送第一测量 消息。
5506、客户端向第一接入点发送第一响应消息, 并记录第一响应消息的发 出时间 Tl。
该第一响应消息可以为一个应答消息, 即 ACK消息, 表示收到第一测量 消息, 客户端记录该应答消息的发出时间 Tl。 需要指出的是, 该第一响应消 息可以是第一测量消息的应答控制帧。
5507、客户端接收所述第一接入点发送的所述第二测量消息; 所述第二测 量消息中携带有所述第二测量消息的发出时间 T3与所述第一响应消息到达所 述第一接入点的时间 T2, 或者携带所述 T3与 T2的差 T3-T2。
5508、客户端接收所述第二测量消息, 并记录所述第二测量消息的到达时 间 T4。
5509、客户端计算其与第一接入点之间无线电信号的飞行时间,或者说空 口消息的飞行时间 TOF=[(T4-Tl)-(T3-T2)]/2。
5510、 按照步骤 S504到 S509相同的方法, 客户端与第二接入点测量它 们之间的消息飞行时间。
5511、 按照步骤 S504到 S509相同的方法, 客户端与第三接入点测量它 们之间的消息飞行时间。
S512、客户端将测得的与第一接入点、 第二接入点、 第三接入点的消息飞 行时间, 与基准点数据库中的数据进行比对计算, 获得时间差值最小的釆样点 的坐标位置, 并将该釆样点的坐标位置作为位置估算结果。
客户端可以在所获得数据的基础上釆用其它计算方法获得更接近事实的 位置估算结果,并且可以与更多的接入点进行测量以提高位置估算结果的准确 性和实现三维定位, 这里不再重复。
本发明实施例提供的室内定位方法, 客户端发现支持客户端定位的接入 点,并获取预先测量好的若干个釆样点与各个接入点之间的无线电信号飞行时 间, 向至少三个接入点发送位置请求指令, 并在接收到来自各个接入点的第一 测量消息后,通过向各个接入点发送对第一测量消息的响应消息, 并接收来自 各个接入点的第二测量消息,以获得各个接入点与客户端之间的无线电信号飞 行时间, 进而客户端将得到的无线电信号飞行时间, 与预先测量好的若干个釆 样点与各个接入点之间的无线电信号飞行时间进行比对计算,获得时间差值最 小的釆样点的坐标位置, 该坐标位置即客户端所处位置。通过该方案可以准确 定位, 使客户端准确获知自身所处位置, 进一步地, 方便了用户的使用。
实施例五
本发明实施例提供一种客户端 60, 可以用于实施例一提供的方法,如图 6 所示, 包括:
第一发送单元 601 , 用于向至少三个接入点发送位置请求指令;
第一接收单元 602, 用于接收来自各个接入点对所述请求指令的响应消 息;
第二发送单元 603 , 用于向各个接入点发送相应的测量报告消息, 以使得 各个接入点分别获得各自与所述客户端之间的无线电信号飞行时间;
第二接收单元 604, 用于接收来自网络侧的位置估算结果, 所述位置估算 结果为所述网络侧将接收到的来自各个接入点的所述无线电信号飞行时间,与 预先测量好的多个釆样点的釆样时间进行比对计算,所获得的时间差值最小的 釆样时间对应的釆样点的坐标位置;所述釆样时间为所述釆样点与各个接入点 之间的无线电信号飞行时间。
进一步地,第一接收单元 602具体用于接收来自各接入点对所述请求指令 的第一响应消息, 并记录所述第一响应消息的到达时间 T2;
第二发送单元 603具体用于在接收到所述第一响应消息后,向所述发送所 述第一响应消息的接入点发送第一测量报告消息,并记录所述第一测量报告消 息的发出时间 T3 , 所述第一测量 ^艮告消息中携带有所述第一测量 ^艮告消息的 发出时间 T3与所述第一响应消息的到达时间 T2的差 T3-T2,以使发送所述第 一响应消息的接入点获得其与所述客户端之间的无线电信号飞行时间: TOF=[(T4-Tl)-(T3-T2)]/2; 其中 T1为所述第一响应消息的发出时间, T4为所 述第一测量报告消息到达发送所述第一响应消息的接入点的时间。
如图 7所示, 客户端 60还包括;
第三接收单元 605, 用于在向至少三个接入点发送位置请求指令前, 接收 来自各个接入点的信标帧, 所述信标帧携带所述至少三个接入点 ID及各个接 入点的信道信息。
本发明实施例提供的客户端,能够通过向至少三个接入点发送位置请求指 令,各个接入点通过向客户端发送对请求指令响应消息, 并接收来自客户端的 相应的测量报告消息,以分别获得各个接入点与客户端之间的无线电信号飞行 时间, 进而将该无线电信号飞行时间发送给网络侧, 由此, 网络侧可以将接收 到的该无线电信号飞行时间,与预先测量好的多个釆样点的釆样时间进行比对 计算, 获得时间差值最小的釆样时间对应的釆样点的坐标位置, 该坐标位置即 客户端所处位置, 从而, 网络侧将该坐标位置告知客户端。 通过该方案可以准 确定位, 使客户端准确获知自身所处位置, 进一步地, 方便了用户的使用。
本发明实施例提供又一种客户端 90, 可以用于实施例三提供的方法, 如 图 8所示, 包括:
存储单元 901 , 用于储存预先测量好的若干个釆样点与各个接入点之间的 无线电信号飞行时间;
第一发送单元 902, 用于向至少三个接入点发送位置请求指令, 以使各接 入点向所述客户端发送第一测量消息;
第一接收单元 903 , 用于接收来自所述至少三个接入点中各个接入点的第 一测量消息;
第二发送单元 904, 用于向所述各个接入点发送对所述第一测量消息的响 应消息;
第二接收单元 905, 用于接收来自所述各个接入点的第二测量消息, 以获 得所述各个接入点与所述客户端之间的无线电信号飞行时间; 处理单元 906, 用于获取位置估算结果, 所述位置估算结果为所述客户端 将所述各个接入点与所述客户端之间的无线电信号飞行时间,与预先测量好的 所述多个釆样点与所述各个接入点之间的无线电信号飞行时间进行比对计算, 将时间差值最小的釆样点的坐标位置作为所述客户端的定位坐标。
进一步地,第二发送单元 904具体用于在向所述各个接入点发送对所述第 一测量消息的第一响应消息时, 记录所述第一响应消息的发出时间 T1 ;
第二接收单元 905, 具体用于接收来自所述各个接入点接收到所述第一响 应消息后, 发送的所述第二测量消息, 并记录所述第二测量消息的到达时间 T4; 所述第二测量消息中携带有所述第二测量消息的发出时间 T3与所述第一 响应消息到达所述各个接入点的时间 T2,或者携带所述 T3与 T2的差 T3-T2; 处理单元 906, 具体用于计算所述各个接入点与所述客户端之间的无线电 飞行时间 TOF=[(T4-Tl)-(T3-T2)]/2
本发明实施例提供的客户端,能够通过向至少三个接入点发送位置请求指 令, 并在接收到来自各个接入点的第一测量消息后,通过向各个接入点发送对 第一测量消息的响应消息, 并接收来自各个接入点的第二测量消息, 以获得各 个接入点与所述客户端之间的无线电信号飞行时间,进而客户端将得到的无线 电信号飞行时间,与预先测量好的若干个釆样点与各个接入点之间的无线电信 号飞行时间进行比对计算,将时间差值最小的釆样点的坐标位置作为所述客户 端的定位坐标。 通过该方案可以准确定位, 使客户端准确获知自身所处位置, 进一步地, 方便了用户的使用。
实施例六
本发明实施例提供一种室内定位系统, 如图 9所示, 包括: 客户端 1101 , 至少三个接入点 1102 , 网络侧 1103;
其中,客户端 1101 ,用于在向至少三个接入点 1102发送位置请求指令后, 接收来自各个接入点 1102对请求指令的响应消息,并向各个接入点 1102发送 相应的测量报告消息,以使得各个接入点 1102分别获得各个接入点 1102与客 户端 1101之间的无线电信号飞行时间,以及接收来自网络侧 1103的位置估算 结果;
至少三个接入点 1102, 用于在接收来自客户端 1101的位置请求指令, 向 客户端 1101发送响应消息,接收来自客户端 1101相应的测量报告消息, 以分 别获得各个接入点 1102与客户端 1101之间的无线电信号飞行时间后,将分别 获得各个接入点 1102与所述客户端 1101之间的无线电信号飞行时间发送至网 络侧 1103;
网络侧 1103 , 用于将接收到的来自各个接入点 1102的无线电信号飞行时 间, 与预先测量好的多个釆样点与各个接入点 1102之间的无线电信号飞行时 间进行比对计算, 所获得的时间差值最小的釆样时间对应的釆样点的坐标位 置, 并发送给客户端 1101 ; 釆样时间为所述釆样点与各个接入点之间的无线 电信号飞行时间。
同时, 网络侧 1103 , 还用于储存在提供定位服务的区域中部署的多个釆 样点及至少三个接入点 1102的坐标值,以及各个接入 1102点与各个釆样终端 之间的无线电信号飞行时间。
本发明实施例提供的定位系统,各个接入点在收到客户端的位置请求指令 后, 向客户端发送对位置请求指令的响应消息, 并收到来自客户端相应的测量 报告消息,从而获得各个接入点与所述客户端之间的无线电信号飞行时间, 并 发送至网络侧,网络侧将该各个接入点与所述客户端之间的无线电信号飞行时 间,与预先测量好的若干个釆样点与各个接入点之间的无线电信号飞行时间进 行比对计算, 获得的时间差值最小的釆样点的坐标位置作为位置估算结果, 并 将该位置估算结果告知客户端, 客户端由此获知自身所处位置, 进一步的, 方 便了用户使用。
本发明实施例提供又一种室内定位系统,如图 10所示,包括:客户端 1201 , 至少三个接入点 1202;
其中, 客户端 1201 , 用于向至少三个接入点 1202发送位置请求指令, 并 接收来自各个接入点 1202的第一测量消息,向各个接入点 1202发送对第一测 量消息的响应消息, 并接收来自各个接入点 1202的第二测量消息, 以获得各 个接入点 1202与客户端 1201之间的无线电信号飞行时间,将各个接入点与客 户端之间的无线电信号飞行时间,与预先测量好的若干个釆样点与各个接入点 1202之间的无线电信号飞行时间进行比对计算, 将时间差值最小的釆样时间 对应的釆样点的坐标位置作为所述客户端的定位坐标;
至少三个接入点 1202 , 用于在接收来自客户端 1201的位置请求指令, 向 客户端 1201发送第一测量消息,接收来自客户端 1201对第一测量消息的响应 消息, 并向客户端 1201发送第二测量消息, 以使得客户端 1201获得各个接入 点 1202与客户端 1201之间的无线电信号飞行时间。
本发明实施例提供的定位系统,客户端向至少三个接入点发送位置请求指 令, 并接收来自各个接入点的第一测量消息, 向各个接入点发送对第一测量消 息的响应消息, 并接收来自各个接入点的第二测量消息, 以获得各个接入点与 所述客户端之间的无线电信号飞行时间,客户端将该无线电信号飞行时间, 与 预先测量好的若干个釆样点与各个接入点之间的无线电信号飞行时间进行比 对计算,将时间差值最小的釆样时间对应的釆样点的坐标位置作为所述客户端 的定位坐标, 客户端由此获知自身所处位置, 进一步的, 方便了用户使用。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可 以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存 储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述的存储 介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于 此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易想到 变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护范围应 以所述权利要求的保护范围为准。

Claims

权 利 要求 书
1、 一种定位方法, 其特征在于, 包括:
客户端向至少三个接入点发送位置请求指令;
所述客户端接收来自所述至少三个接入点中的各个接入点对所述请求指 令的响应消息;
所述客户端向所述至少三个接入点中的各个接入点发送相应的测量报告 消息,以使得所述至少三个接入点中的各个接入点根据所述相应的测量报告消 息分别获得各自与所述客户端之间的无线电信号飞行时间;
所述客户端接收来自网络侧的位置估算结果,所述位置估算结果为所述网 络侧将接收到的来自所述至少三个接入点中的各个接入点的所述无线电信号 飞行时间, 与预先测量好的多个釆样点的釆样时间进行比对计算, 所获得的时 间差值最小的釆样时间对应的釆样点的坐标位置;所述釆样时间为所述釆样点 与各个接入点之间的无线电信号飞行时间;所述时间差值为所述至少三个接入 点中的各个接入点的所述无线电信号飞行时间与所述多个釆样点的釆样时间 的差值。
2、 根据权利要求 1所述的定位方法, 其特征在于, 所述客户端向所述至 少三个接入点发送所述位置请求指令之前, 所述方法还包括:
将所述多个釆样点的坐标值储存在所述网络侧中;
位于所述釆样点的釆样终端接收来自所述至少三个接入点中各个接入点 的响应消息, 并向各个接入点发送相应的测量报告消息, 以使得所述至少三个 接入点中各个接入点分别获得所述各个接入点与各个釆样终端之间的无线电 信号飞行时间;
所述网络侧储存所述各个接入点与各个釆样终端之间的无线电信号飞行 时间。
3、 根据权利要求 1或 2所述的定位方法, 其特征在于, 所述客户端接收 来自所述至少三个接入点中各个接入点对所述请求指令的响应消息,所述客户 端向所述至少三个接入点中各个接入点发送相应的测量报告消息,以使得所述 至少三个接入点中各个接入点分别获得各自与所述客户端之间的无线电信号 飞行时间, 包括: 所述客户端接收第一接入点发送的第一响应消息,并记录所述第一响应消 息的到达时间 T2;
所述客户端向所述第一接入点发送第一测量报告消息,并记录所述第一测 量报告消息的发出时间 T3 , 所述第一测量报告消息中携带有所述第一测量报 告消息的发出时间 T3与所述第一响应消息的到达时间 T2,或者所述 T3与 T2 的差 T3-T2;
所述第一接入点获得的所述第一接入点与所述客户端之间的无线电信号 飞行时间 TOF=[(T4-Tl)-(T3-T2)]/2; 其中, T1 为所述第一响应消息的发出时 间; T4为所述第一测量报告消息到达所述第一接入点的时间。
4、 根据权利要求 1-3任一所述的定位方法, 其特征在于, 所述客户端向 所述至少三个接入点发送位置请求指令前, 还包括:
所述客户端接收来自所述至少三个接入点中各个接入点的信标帧,所述信 标帧携带所述至少三个接入点 ID及各个接入点的信道信息;
所述客户端向至少三个接入点发送位置请求指令具体为:
所述客户端根据所述至少三个接入点 ID及各接入点的信道信息, 向所述 至少三个接入点发送位置请求指令。
5、 根据权利要求 1-4任一所述的定位方法, 其特征在于, 所述响应消息 为所述位置请求指令的应答控制帧。
6、 一种定位方法, 其特征在于, 包括:
客户端向至少三个接入点发送位置请求指令,以使各接入点向所述客户端 发送第一测量消息;
所述客户端接收来自所述至少三个接入点中各个接入点的第一测量消息; 所述客户端向所述各个接入点发送对所述第一测量消息的响应消息,并接 收来自所述各个接入点的第二测量消息,以获得所述各个接入点与所述客户端 之间的无线电信号飞行时间;
所述客户端将所述各个接入点与所述客户端之间的无线电信号飞行时间, 与预先测量好的所述多个釆样点与所述各个接入点之间的无线电信号飞行时 间进行比对计算,将时间差值最小的釆样点的坐标位置作为所述客户端的定位 坐标;所述时间差值为所述至少三个接入点中的各个接入点的所述无线电信号 飞行时间与所述多个釆样点的釆样时间的差值。
7、 根据权利要求 6所述的定位方法, 其特征在于, 所述客户端向所述各 个接入点发送对所述第一测量消息的响应消息,并接收来自所述各个接入点的 第二测量消息,以获得所述各个接入点与所述客户端之间的无线电信号飞行时 间, 包括:
所述客户端向第一接入点发送第一响应消息,并记录第一响应消息的发出 时间 T1 ;
所述客户端接收所述第一接入点发送的所述第二测量消息;所述第二测量 消息中携带有所述第二测量消息的发出时间 T3与所述第一响应消息到达所述 第一接入点的时间 T2, 或者携带所述 T3与 T2的差 T3-T2;
所述客户端接收所述第二测量消息,并记录所述第二测量消息的到达时间
T4;
所述客户端计算所述第一接入点与所述客户端之间的无线电信号飞行时 间 TOF=[(T4-Tl)-(T3-T2)]/2。
8、 根据权利要求 6或 7所述的定位方法, 其特征在于, 所述响应消息为 所述第一测量消息的应答控制帧。
9、 一种客户端, 其特征在于, 包括:
第一发送单元, 用于向至少三个接入点发送位置请求指令;
第一接收单元,用于接收来自所述至少三个接入点中各个接入点对所述请 求指令的响应消息;
第二发送单元, 用于向各个接入点发送相应的测量报告消息, 以使得所述 至少三个接入点中各个接入点分别获得各自与所述客户端之间的无线电信号 飞行时间;
第二接收单元, 用于接收来自网络侧的位置估算结果, 所述位置估算结果 为所述网络侧将接收到的来自所述至少三个接入点中各个接入点的所述无线 电信号飞行时间, 与预先测量好的多个釆样点的釆样时间进行比对计算, 所获 得的时间差值最小的釆样时间对应的釆样点的坐标位置;所述釆样时间为所述 釆样点与各个接入点之间的无线电信号飞行时间;所述时间差值为所述至少三 个接入点中的各个接入点的所述无线电信号飞行时间与所述多个釆样点的釆 样时间的差值。
10、 根据权利要求 9所述的客户端, 其特征在于, 所述第一接收单元具体 用于接收来自所述至少三个接入点中各接入点对所述请求指令的第一响应消 息, 并记录所述第一响应消息的到达时间 T2;
所述第二发送单元具体用于在接收到所述第一响应消息后,向所述发送所 述第一响应消息的接入点发送第一测量报告消息,并记录所述第一测量报告消 息的发出时间 T3 , 所述第一测量报告消息中携带有所述第一测量报告消息的 发出时间 T3与所述第一响应消息的到达时间 T2的差 T3-T2,以使发送所述第 一响应消息的接入点获得其与所述客户端之间的无线电信号飞行时间: TOF=[(T4-Tl)-(T3-T2)]/2; 其中 Tl为所述第一响应消息的发出时间, T4为所 述第一测量报告消息到达发送所述第一响应消息的接入点的时间。
11、 根据权利要求 9或 10所述的客户端, 其特征在于, 还包括: 第三接收单元, 用于在向所述至少三个接入点发送位置请求指令前,接收 来自各个接入点的信标帧, 所述信标帧携带所述至少三个接入点 ID及各个接 入点的信道信息;
所述第一发送单元具体用于根据所述至少三个接入点 ID及各接入点的信 道信息, 向所述至少三个接入点发送位置请求指令。
12、 一种客户端, 其特征在于, 包括:
存储单元,用于储存预先测量好的若干个釆样点与各个接入点之间的无线 电信号飞行时间;
第一发送单元, 用于向至少三个接入点发送位置请求指令, 以使各接入点 向所述客户端发送第一测量消息;
第一接收单元,用于接收来自所述至少三个接入点中各个接入点的第一测 量消息;
第二发送单元,用于向所述各个接入点发送对所述第一测量消息的响应消 息;
第二接收单元, 用于接收来自所述各个接入点的第二测量消息, 以获得所 述各个接入点与所述客户端之间的无线电信号飞行时间;
处理单元, 用于获取位置估算结果, 所述位置估算结果为所述客户端将所 述各个接入点与所述客户端之间的无线电信号飞行时间,与预先测量好的所述 多个釆样点与所述各个接入点之间的无线电信号飞行时间进行比对计算,将时 间差值最小的釆样点的坐标位置作为所述客户端的定位坐标;所述时间差值为 所述至少三个接入点中的各个接入点的所述无线电信号飞行时间与所述多个 釆样点的釆样时间的差值。
13、 根据权利要求 12所述的客户端, 其特征在于, 所述第二发送单元具 体用于在向所述各个接入点发送对所述第一测量消息的第一响应消息时,记录 所述第一响应消息的发出时间 T1 ;
所述第二接收单元,具体用于接收来自所述各个接入点接收到所述第一响 应消息后, 发送的所述第二测量消息, 并记录所述第二测量消息的到达时间
T4; 所述第二测量消息中携带有所述第二测量消息的发出时间 T3与所述第一 响应消息到达所述各个接入点的时间 T2 ,或者携带所述 T3与 T2的差 T3-T2;
所述处理单元,具体用于计算所述各个接入点与所述客户端之间的无线电 飞行时间 TOF=[(T4-Tl)-(T3-T2)]/2。
14、 一种定位系统, 其特征在于, 包括:
客户端, 用于在向至少三个接入点发送位置请求指令后,接收来自各个接 入点对所述请求指令的响应消息, 并向各个接入点发送相应的测量报告消息, 以使得各个接入点分别获得各自与所述客户端之间的无线电信号飞行时间,以 及接收来自网络侧的位置估算结果;
至少三个接入点, 用于在接收来自所述客户端的位置请求指令, 向所述客 户端发送所述响应消息,接收来自所述客户端相应的测量报告消息, 以分别获 得各自与所述客户端之间的无线电信号飞行时间后 ,将所述分别获得各个接入 点与所述客户端之间的无线电信号飞行时间发送至所述网络侧;
所述网络侧, 用于将接收到的来自各个接入点的所述无线电信号飞行时 间, 与预先测量好的多个釆样点的釆样时间进行比对计算, 所获得的时间差值 最小的釆样时间对应的釆样点的坐标位置, 并发送给所述客户端; 所述釆样时 间为所述釆样点与各个接入点之间的无线电信号飞行时间;所述时间差值为所 述至少三个接入点中的各个接入点的所述无线电信号飞行时间与所述多个釆 样点的釆样时间的差值。
15、 根据权利要求 14所述的定位系统, 其特征在于, 所述网络侧还用于 储存所述多个釆样点的坐标值,以及各个接入点与各个釆样终端之间的无线电 信号飞行时间。
16、 一种定位系统, 其特征在于, 包括: 客户端, 用于向至少三个接入点发送位置请求指令, 并接收来自所述至少 三个接入点中各个接入点的第一测量消息,向所述各个接入点发送对所述第一 测量消息的响应消息, 并接收来自所述各个接入点的第二测量消息, 以获得所 述各个接入点与所述客户端之间的无线电信号飞行时间,以及将所述各个接入 点与所述客户端之间的无线电信号飞行时间,与预先测量好的所述多个釆样点 与所述各个接入点之间的无线电信号飞行时间进行比对计算,将时间差值最小 的釆样时间对应的釆样点的坐标位置作为所述客户端的定位坐标;所述时间差 值为所述至少三个接入点中的各个接入点的所述无线电信号飞行时间与所述 多个釆样点的釆样时间的差值;
至少三个接入点, 用于在接收来自所述客户端的位置请求指令, 向所述客 户端发送所述第一测量消息,接收来自所述客户端对所述第一测量消息的响应 消息, 并向所述客户端发送所述第二测量消息, 以使得所述客户端获得各个接 入点与所述客户端之间的无线电信号飞行时间。
PCT/CN2012/087784 2011-12-28 2012-12-28 一种定位方法、客户端及定位系统 WO2013097756A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/317,287 US9584972B2 (en) 2011-12-28 2014-06-27 Positioning method, client and positioning system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110447765.6A CN103188791B (zh) 2011-12-28 2011-12-28 一种定位方法、客户端及定位系统
CN201110447765.6 2011-12-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/317,287 Continuation US9584972B2 (en) 2011-12-28 2014-06-27 Positioning method, client and positioning system

Publications (1)

Publication Number Publication Date
WO2013097756A1 true WO2013097756A1 (zh) 2013-07-04

Family

ID=48679675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/087784 WO2013097756A1 (zh) 2011-12-28 2012-12-28 一种定位方法、客户端及定位系统

Country Status (3)

Country Link
US (1) US9584972B2 (zh)
CN (1) CN103188791B (zh)
WO (1) WO2013097756A1 (zh)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104981711A (zh) * 2013-03-06 2015-10-14 英特尔公司 用于飞行时间范围确定的信道信息交换的系统和方法
KR102123636B1 (ko) * 2013-10-02 2020-06-17 삼성전자주식회사 네트워크 기반의 위치 결정 방법 및 그 전자 장치
US9277369B2 (en) * 2014-06-30 2016-03-01 Qualcomm Technologies International, Ltd. Method for determining location of wireless devices
CN105683774B (zh) * 2014-07-22 2018-08-14 华为技术有限公司 接入点、终端及无线保真WiFi室内定位方法
CN104301868A (zh) * 2014-10-10 2015-01-21 西北工业大学 基于帧往返和到达时间测距技术的高精度室内定位方法
WO2016126280A1 (en) * 2015-02-06 2016-08-11 Intel IP Corporation Positioning with wlan time of flight
WO2016187875A1 (zh) * 2015-05-28 2016-12-01 华为技术有限公司 一种终端设备的定位方法和定位服务器、接入点及系统
CN106707236B (zh) 2015-07-21 2020-11-06 新华三技术有限公司 一种终端定位测量方法和无线接入设备
CN106054126B (zh) * 2016-05-18 2018-09-14 北京永安信通科技股份有限公司 Tof定位方法、装置和系统
CN107942285B (zh) * 2016-10-13 2023-04-14 中兴通讯股份有限公司 一种到达时间差测量方法、装置、控制装置及终端
CN106878955B (zh) * 2017-04-27 2019-11-19 京信通信系统(中国)有限公司 一种室内楼层定位方法及定位设备
US10051422B1 (en) * 2017-05-17 2018-08-14 Qualcomm Incorporated Method and/or system for positioning of a mobile device
DE102017114770A1 (de) * 2017-07-03 2019-01-03 Cleverciti Systems Gmbh Verfahren zur erfassung von fahrzeugen
US10911120B2 (en) * 2017-07-24 2021-02-02 Qualcomm Incorporated Downlink (DL) coordinated beamforming protocols for WiFi
US10212553B1 (en) * 2017-08-16 2019-02-19 Motorola Mobility Llc Direction determination of a wireless tag
US11096141B2 (en) * 2018-08-27 2021-08-17 Zte Corporation Location information determination based on timing measurements in wireless networks
US11895613B2 (en) * 2018-10-19 2024-02-06 Nokia Technologies Oy Positioning with multiple access points
US10495737B1 (en) 2019-02-07 2019-12-03 Clairvoyant Networks, LLC Methods, systems, and computer readable media for time-slotted ultra-wide-band object tracking
US10567035B1 (en) 2019-03-06 2020-02-18 Clairvoyant Networks, LLC Methods, systems, and computer readable media for distribution of time synchronization information to ultra-wide-band devices
US10484833B1 (en) 2019-04-12 2019-11-19 Clairvoyant Networks, LLC Methods, systems and computer readable media for providing and using ultra wideband local area networks (LANs)
CN112533253B (zh) * 2020-12-10 2023-08-29 中国联合网络通信集团有限公司 移动网络信号强度计算方法、装置、电子设备及存储介质
US20230069236A1 (en) * 2021-08-24 2023-03-02 Juniper Networks, Inc. Wifi location enhancement
CN113923184B (zh) * 2021-09-07 2023-06-20 中国电子科技集团公司电子科学研究院 一种ip定位基准点提取方法、装置及可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1916657A (zh) * 2005-08-19 2007-02-21 英华达(上海)电子有限公司 利用无线接入点定位导航的方法
WO2010118104A1 (en) * 2009-04-08 2010-10-14 Qualcomm Incorporated Methods and apparatuses for providing peer-to-peer positioning in wireless networks
WO2011024436A1 (ja) * 2009-08-28 2011-03-03 日本電気通信システム株式会社 無線通信端末
WO2011097414A1 (en) * 2010-02-03 2011-08-11 Nextivity, Inc. Location finding in cellular network with repeater

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004242122A (ja) * 2003-02-07 2004-08-26 Hitachi Ltd 無線信号の伝搬時間差に基づく端末位置の測位方法及び測位システム
KR100605980B1 (ko) * 2005-01-04 2006-07-31 삼성전자주식회사 휴대 인터넷 신호를 이용한 위치 측정 시스템 및 방법
JP4829571B2 (ja) * 2005-09-09 2011-12-07 株式会社日立製作所 受信装置および測位測距システム
CN1744763A (zh) * 2005-09-30 2006-03-08 上海贝豪通讯电子有限公司 在td-scdma和wifi系统下的联合定位方法
US7664511B2 (en) 2005-12-12 2010-02-16 Nokia Corporation Mobile location method for WLAN-type systems
FR2908260A1 (fr) * 2006-11-07 2008-05-09 France Telecom Procede d'estimation de la distance entre deux equipements radio
US11212733B2 (en) * 2007-10-08 2021-12-28 Qualcomm Incorporated Control of wireless transmission based on node status
CN101472330A (zh) * 2007-12-28 2009-07-01 三星电子株式会社 基于时间差定位的传输同步方法
US8165150B2 (en) 2008-12-17 2012-04-24 Avaya Inc. Method and system for wireless LAN-based indoor position location
CN101825696A (zh) * 2009-03-05 2010-09-08 浪潮乐金数字移动通信有限公司 一种手机定位系统及方法
US9046591B1 (en) * 2009-05-07 2015-06-02 Sigtem Technology, Inc. Coordinate-free measurement-domain navigation and guidance using location-dependent radio signal measurements
CN101883424B (zh) * 2010-04-23 2012-11-21 哈尔滨工业大学 基于近邻点数优化的wlan室内knn定位方法
US8489122B2 (en) * 2010-12-09 2013-07-16 Andrew Llc System and method for total flight time ratio pattern matching
US8638671B2 (en) * 2011-07-22 2014-01-28 Qualcomm Incorporated System and method for testing wireless position locating

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1916657A (zh) * 2005-08-19 2007-02-21 英华达(上海)电子有限公司 利用无线接入点定位导航的方法
WO2010118104A1 (en) * 2009-04-08 2010-10-14 Qualcomm Incorporated Methods and apparatuses for providing peer-to-peer positioning in wireless networks
WO2011024436A1 (ja) * 2009-08-28 2011-03-03 日本電気通信システム株式会社 無線通信端末
WO2011097414A1 (en) * 2010-02-03 2011-08-11 Nextivity, Inc. Location finding in cellular network with repeater

Also Published As

Publication number Publication date
CN103188791A (zh) 2013-07-03
CN103188791B (zh) 2016-07-13
US20140315582A1 (en) 2014-10-23
US9584972B2 (en) 2017-02-28

Similar Documents

Publication Publication Date Title
WO2013097756A1 (zh) 一种定位方法、客户端及定位系统
US10192416B2 (en) Indoor positioning and tracking using a multi-band wireless networking system
US11360195B2 (en) Determining a location of a transmitter device
JP7126351B2 (ja) モバイル機器の位置特定のための方法及び装置
US8649800B2 (en) Direction-enhanced navigation
EP2564230B1 (en) Device for round trip time measurements
US8848565B2 (en) Method for performing measurements and positioning in a network based WLAN positioning system
JP2009504529A (ja) 無線ノードネットワークを使用したエレベータかごの呼び方法及びそのためのシステム
JP5710438B2 (ja) 位置検出装置、位置管理システム、位置検出方法およびプログラム
US10031209B2 (en) Localization using time-of-flight
WO2019154149A1 (zh) 一种定位方法、终端及服务器
KR20150111933A (ko) 이동 사용자 단말의 위치를 결정하는 기법
JP2005229616A (ja) シグナル強度測定値を用いた安価な無線端末の位置の推定
WO2015180119A1 (zh) 一种定位方法、网络侧设备、定位节点及定位系统
EP3316633B1 (en) Apparatuses for generating a beacon sensor based network fingerprint
WO2018077099A1 (zh) 一种定位方法、定位装置以及接入点ap
CN109313250A (zh) 用于位置确定的组合的精细定时测量(ftm)和非ftm信息传送
WO2015150344A1 (en) A wireless access point, a transmitter-implemented method, a mobile user device and a user-implemented method for localization
KR20140086321A (ko) 애드혹 망을 이용한 위치 추적 장치 및 방법과 그를 위한 이동통신 시스템
WO2018060545A1 (en) Positioning
EP2653881B1 (en) Cooperative localization of portable electronic devices
CN105580461B (zh) 用于对移动通信装置定位的方法和定位装置
WO2024088052A1 (zh) 定位方法、装置、存储介质、芯片系统及计算机程序产品
Khaoampai et al. DecaFriend: Serverless indoor localization system on mobile phone platform
WO2024015143A1 (en) Inter-cluster coordination configuration for ultra-wideband (uwb) wireless positioning

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12861332

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12861332

Country of ref document: EP

Kind code of ref document: A1