WO2013097668A1 - 油页岩开采方法 - Google Patents

油页岩开采方法 Download PDF

Info

Publication number
WO2013097668A1
WO2013097668A1 PCT/CN2012/087277 CN2012087277W WO2013097668A1 WO 2013097668 A1 WO2013097668 A1 WO 2013097668A1 CN 2012087277 W CN2012087277 W CN 2012087277W WO 2013097668 A1 WO2013097668 A1 WO 2013097668A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
oil shale
oil
combustible gas
oxygen
Prior art date
Application number
PCT/CN2012/087277
Other languages
English (en)
French (fr)
Inventor
陈�峰
刘洪涛
乔军
Original Assignee
新奥气化采煤有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新奥气化采煤有限公司 filed Critical 新奥气化采煤有限公司
Priority to AU2012361948A priority Critical patent/AU2012361948A1/en
Priority to US14/369,764 priority patent/US9382789B2/en
Priority to CA2861909A priority patent/CA2861909C/en
Publication of WO2013097668A1 publication Critical patent/WO2013097668A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/243Combustion in situ
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B36/00Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/164Injecting CO2 or carbonated water
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/166Injecting a gaseous medium; Injecting a gaseous medium and a liquid medium
    • E21B43/168Injecting a gaseous medium
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/34Arrangements for separating materials produced by the well
    • E21B43/40Separation associated with re-injection of separated materials
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/243Combustion in situ
    • E21B43/247Combustion in situ in association with fracturing processes or crevice forming processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/70Combining sequestration of CO2 and exploitation of hydrocarbons by injecting CO2 or carbonated water in oil wells

Definitions

  • the invention relates to the field of in situ underground oil shale mining methods. Background technique
  • Oil shale refers to fine-grained sedimentary rocks with high kerogen content and capable of fractionating a considerable amount of petroleum. Solids combustible organic matter with ash content greater than 40% and oil content between 3.5% and 30%. Oil shale The difference between rock and coal is that its ash mass fraction is greater than 40%.
  • Ground treatment includes: oil shale mining and ore preparation; heating decomposition to produce oil mother; processing oil master to produce refining raw materials and useful chemicals, including "underground mining, ground retorting" and "ground mining, ground Dry distillation” two general methods.
  • oil shale ore is mined, transported to the ground, pulverized, and then heated in a ground container to produce fuel liquids and gases; for the latter, oil shale ore is mined, then pulverized and retorted.
  • the treated slag is piled up at the mine or elsewhere.
  • underground processing Heating oil shale resources in the natural sedimentary environment of oil shale to produce oil masters, thereby minimizing or eliminating the thermal decomposition of the mining process and the ground.
  • the heat used to reach the underground thermal decomposition temperature was derived from the combustion of one end of the oil shale ore.
  • ideas have been changed, such as trying to promote heat transfer and fluid flow in oil shale through fractured rock layers, thereby improving the underground combustion process. Thermal decomposition efficiency and recovery factor.
  • Third, mixed processing The oil shale resources of the near surface are first processed on the ground, and then slowly heated for underground mining in the pit formed by excavation of the rock.
  • an object of the present invention is to provide an oil shale mining method by introducing an oxygen-containing gas (for example, oxygen) and flammable through a different pipe from an intake pipe end. The gas is then ignited and piped to the underground oil shale layer to heat the oil shale deposit by self-heating and external heat to produce oil and gas to achieve rapid, large-scale, economical and rational exploitation of oil and gas from the oil shale deposit. the goal of.
  • an oxygen-containing gas for example, oxygen
  • an oil shale mining method comprising: forming an intake duct and an outflow duct in the oil shale; forming the intake duct in the oil shale to communicate with the a gasification passage of the outlet pipe; the combustible gas and the oxygen-containing gas are respectively sent into the oil shale layer through the different intake pipes, and then the flammable gas is sent to the underlying flammable gas in an aerobic environment.
  • a lower end nozzle of the combustible gas line is ignited to heat the oil shale; and an oil and gas mixed product formed by thermal decomposition of the kerogen in the oil shale is recovered through an air outlet duct
  • the method further comprises: pressurizing the gasification passage to form a gap in the oil shale.
  • the method further comprises: separating co 2 from the gas discharged from the gas outlet pipe, and introducing the separated co 2 into the oil shale through a separate pipe or an annulus pipe, wherein The annulus is a portion of the pipe that is placed between two concentric pipes.
  • the method further comprises: separating a combustible gas from the mixed oil and gas product recovered from the gas outlet pipe, and introducing the combustible gas into the oil shale through a separate pipe or an annulus tube, wherein The annulus is a portion of the conduit disposed between two concentric conduits.
  • the combustible gas comprises decane or propane or a combination thereof.
  • the pressurizing comprises pressurizing the pressurized medium by a gas or a liquid.
  • heating the oil shale further comprises: introducing a combustible gas from the outside into the oil shale through a separate conduit.
  • the combustible gas comprises decane, propane or a combination thereof.
  • the outlet duct and the intake duct are communicated by horizontal drilling or filling with high pressure gas or adding water between the intake duct and the outlet duct.
  • the oxygen-containing gas has an oxygen content greater than 20%, or the oxygen-containing gas is oxygen.
  • the present invention utilizes a simple, inexpensive, and practical process for mining oil shale deposits and is environmentally friendly.
  • the method of the invention has simple process, low energy consumption, and can heat the cheese root in the shale layer, thereby more economically and rationally exploiting the oil shale deposit layer to obtain oil and gas products.
  • FIG. 1 is a schematic structural view of underground exploitation of oil shale according to an embodiment of the present invention
  • FIG. 2 is a flow chart of a method of oil shale mining according to an embodiment of the present invention.
  • the present invention provides an oil shale mining method.
  • Embodiments of the invention are described in detail below, examples of which are illustrated in the accompanying drawings.
  • the embodiments described below with reference to the accompanying drawings are intended to be illustrative only, and are not to be construed as limiting.
  • the present invention arranges an intake pipe 1 (or an injection well) and an exhaust pipe 3 (or a production well) at a suitable well spacing by a drilling related technique (shown in FIG. 2).
  • Step S1 as shown in Figure 1.
  • the prefabricated gasification passage 5 is formed by, for example, horizontally directional drilling of the oil shale layer 7 between the intake duct 1 and the exhaust duct 3 (step S2), thereby constructing an oil shale underground mining structure diagram, as shown in FIG.
  • the intake duct 1 and the exhaust duct 3 can also be made to communicate by introducing high-pressure gas into the intake duct 1, thereby forming a gasification passage.
  • the oil shale layer 7 between the intake passage 1 and the exhaust passage 3 can be opened by water pressure by pouring water into the intake passage 1, thereby in the intake passage 1 and A gasification passage 5 is formed between the exhaust passages 3.
  • the gasification passage may be further pressurized, for example, by using a gas or a liquid as a pressurized medium to the underground oil.
  • Shale mine Layer 7 is pressurized to form a gap in the oil shale layer that causes the oil shale layer 7 to loosen, which facilitates heating of the oil shale in subsequent operations.
  • An oxygen-containing gas for example, 0 2 , a gas containing more than 20% of oxygen is introduced from the end of the intake pipe, and then the combustible gas is ignited and piped to the underground oil shale layer, or fed in an aerobic environment.
  • the lower combustible gas is ignited at the lower end of the pipeline for conveying the combustible gas, and the oil shale layer is heated by the combustion of the external gas, and the oil shale itself is also heated by the combustion of part of the oil shale, that is,
  • the oil shale layer is heated by self-heating and external heat (step S3), and the kerogen therein is pyrolyzed to form an oil-gas mixture product.
  • the oxygen-containing gas and the combustible gas are respectively introduced through separate pipes. Further, the oil-gas mixture product obtained in the underground gasification furnace is pumped to the surface through the exhaust passage 3, and the light oil product and the gas product are obtained by separation or the like (step S4).
  • the above combustible gas can be directly added from the outside through a separate pipe, such as decane, propane or a combination thereof.
  • a separate pipe such as decane, propane or a combination thereof.
  • the above combustible gas can also be separated from the oil shale pyrolysis oil and gas mixture product.
  • a hydrocarbon gas such as decane, propane or a combination thereof, and a combustible gas is introduced through a separate pipe or an annulus tube, which is a pipe portion disposed between two concentric pipes.
  • the CO 2 separated from the oil shale pyrolysis oil and gas mixture product is injected back into the oil shale deposit layer 7 through a separate pipeline or an annulus tube.
  • a separate pipeline or an annulus tube for introducing an oxygen-containing gas (not shown) is provided in the intake duct 1 in a portion between the intake duct 1 and the other duct for introducing an oxygen-containing gas.
  • the combustible gas separated from the oil and gas mixed product obtained through the exhaust passage 3 is returned to the underground oil shale ore layer for combustion, fuels the underground heating, and heats the oil shale deposit layer to make the The kerogen pyrolysis forms a mixture of oil and gas.
  • the invention constructs a certain amount of intake/outflow in the oil shale underground deposit layer by means of drilling
  • the gas pipeline forms a gasification passage between the inlet and outlet pipes in the underground ore layer by means of pressure fracturing, etc., and then an oxygen-containing gas is introduced into the inlet pipe end, and then ignited and piped to the underground oil shale layer.
  • the oil shale layer is heated by self-heating and external heat, and the kerogen therein is pyrolyzed to form an oil-gas mixture product.
  • tar and/or other products which may be produced from the oil shale deposit are obtained from the production well, and the obtained combustible gas can be partially returned to the underground oil shale ore layer for combustion and heating, and the above products are continuously produced.
  • the present invention achieves the purpose of rapidly and massively and economically rationally extracting oil and gas from an oil shale deposit.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

一种油页岩开采方法包括:在油页岩中形成进气管道(1)以及出气管道(3);在油页岩中形成连通进气管道与出气管道的气化通道(5);通过不同进气管道分别将可燃气体与氧气送入井下,然后在有氧环境中将送入下面的可燃气体在输送可燃气体下端管口点燃,以对油页岩进行加热;以及通过出气管道回收油页岩中干酪根热分解后形成的油气混合产品。该方法工艺简单,能耗低,并且可以将页岩层中的干酪根加热,从而更加经济合理地开采油页岩矿层得到油气产品。

Description

油页岩开釆方法
技术领域
本发明涉及原位地下油页岩开采方法领域。 背景技术
油页岩是指干酪根含量高,并可以分馏出相当量石油的细粒沉积岩,灰 分的质量分数大于 40%,含油率在 3.5%~30%之间的固体可燃有机物。 油页 岩和煤的区别在于它的灰分质量分数大于 40%。
油页岩必须经加热才能从中释放出烃类气体和液体, 综观 100多年来 全球范围内对油页岩的开发, 基本可以概括为以下几种途径: 一、 地面处 理。 地面处理包括: 油页岩开采和矿石准备; 加热分解生产油母; 加工油 母生产精炼原料及有用的化学药品等 3个主要步骤, 其中有 "地下开采, 地面干馏" 和 "地面开采, 地面干馏" 两种通用方法。 对于前者, 油页岩 矿石被开采、 运输到地面、 粉碎, 然后在地面容器中加热来生产燃料液体 和气体; 对于后者, 油页岩矿石被露天开采, 然后粉碎、 干馏加工。 处理 后的矿渣在矿场或其他地方堆放。 二、 地下处理。 在油页岩的天然沉积环 境中加热油页岩资源, 生产油母, 从而最小化或消除开采环节及在地面的 热分解。 早期用来达到地下热分解温度的热量来源于堆积油页岩矿石一端 的燃烧, 如今已转变思路, 比如试图通过断裂岩层来促进油页岩中的热量 传递和流体流动, 从而提高地下燃烧过程的热分解效率和采收率。 三、 混 合型处理。 先在地面加工近地表的油页岩资源, 然后在开挖岩石所形成的 坑里緩慢加热进行地下开采。
虽然全球在油页岩开采、 加工、 利用等许多重要方面取得了进步; 但 在提高能量效率、 减少能量需求, 最小化用水量、 保护来自于地面处理和 地下处理的地表水与地下水, 减少、 使用和处理废弃的矿渣, 开发基础设 施满足多种能量和矿藏资源的需求, 降低风险、 緩解以及解决潜在的社会 经济因素等方而的诸多问题依然存在。 全球能源短缺, 开发油页岩这种替 代品, 势在必行。
传统开采油页岩技术能耗高, 经济效益低, 对地下水污染严重, 并且 工艺流程复杂。 发明内容
针对相关技术中存在的一个或多个问题, 本发明的目的在于提供一种 油页岩开采方法, 其通过由进气管道端通过不同的管路通入含氧气体 (例 如, 氧气) 和可燃气体, 然后将其点燃后用管子输送至地下油页岩层, 通 过自热加外热的方式加热油页岩矿层, 产生油气, 以实现快速、 大规模、 经济合理地从油页岩矿层开采油气的目的。
根据本发明, 提供一种油页岩开采方法, 所述方法包括: 在所述油页 岩中形成进气管道以及出气管道; 在所述油页岩中形成连通所述进气管道 与所述出气管道的气化通道; 由所述进气管道通过不同的管路分别将可燃 气体与含氧气体送入所述油页岩层中, 然后在有氧环境中将送入下面的可 燃气体在输送可燃气体的管路的下端管口点燃, 以对所述油页岩进行加热; 以及通过出气管道回收所述油页岩中干酪根热分解后形成的油气混合产 口
口口
优选地, 所述方法进一步包括: 对所述气化通道加压以在所述油页岩 中形成缝隙。
优选地, 所述方法进一步包括: 从所述出气管道中排放的气体中分离 出 co2, 并将分离出的 co2通过独立的管道或环空管引入所述油页岩中, 其中, 所述环空管为设置在两个同心管道之间的管道部分。
优选地, 所述方法进一步包括: 从所述出气管道中回收的油气混合产 品中分离出可燃气体, 并将所述可燃气体通过独立的管道或环空管引入所 述油页岩中, 其中, 所述环空管为设置在两个同心管道之间的管道部分。 所述可燃气体包括曱烷或丙烷或其结合。
优选地, 所述加压包括通过气体或液体为加压介质进行加压。
优选地, 加热所述油页岩还包括: 通过独立的管道从外部向所述油页 岩中引入可燃气体。 其中, 所述可燃气体包括曱烷、 丙烷或其组合。 优选地, 通过在所述进气管道和所述出气管道之间进行水平钻孔或者 充入高压气体或者加入水使所述出气管道和所述进气管道连通。
优选地, 所述含氧气体的含氧量大于 20%, 或者所述含氧气体为氧气。 本发明通过一种简单、 廉价、 实用的工艺手段对油页岩矿层进行开采, 并 且环境友好。 本发明的方法工艺简单, 能耗低, 并且可以将页岩层中的干 酪根加热, 从而更加经济合理地开采油页岩矿层得到油气产品。 附图说明
本发明上述的和 /或附加的方面和优点从下面结合附图对实施例的描 述中将变得明显和容易理解, 其中:
图 1是根据本发明实施例的油页岩地下开采的结构简图; 以及 图 2是根据本发明实施例的油页岩开采方法的流程图。 具体实施方式
考虑到相关技术中存在的问题, 本发明提供一种油页岩开采方法。 下 面详细描述本发明的实施例, 所述实施例的示例在附图中示出。 应理解, 下面通过参考附图描述的实施例是示例性的, 仅用于解释本发明, 而不能 解释为对本发明的限制。
本发明根据油页岩矿层勘探详情, 通过钻井相关技术在合适的井间距 上布置进气管道 1 (或称为注入井)及排气管道 3 (或称为生产井) (图 2 中所示的步骤 S1 ) , 如图 1所示。 再通过诸如水平定向钻打通进气管道 1 和排气管道 3之间的油页岩层 7形成预制气化通道 5 (步骤 S2 ) , 从而构 建油页岩地下开采结构图, 图 1所示。 根据本发明的一实施例, 还可以通 过向进气管道 1通入高压气体来使得该进气管道 1和排气管道 3连通, 从 而形成气化通道。 根据本发明的另一实施例, 可以通过向进气通道 1 中灌 入水, 从而通过水压来打通进气通道 1和排气通道 3之间的油页岩层 7 , 从而在进气通道 1和排气通道 3之间形成气化通道 5。 根据本发明的一实 施例, 进气通道 1、 排气通道 3、 以及气化通道 5构建完成后, 还可以进一 步对气化通道加压, 诸如, 通过气体或者液体为加压介质对地下油页岩矿 层 7进行加压, 从而在油页岩层中形成缝隙, 使得油页岩层 7松落, 这样 有助于后续操作中, 对油页岩的加热。
油页岩开采结构构建完成后, 要先经过点火阶段。 由进气管道 1 端通 入含氧气体, 例如, 02、 含氧量大于 20%的气体, 然后将可燃气体点燃后 用管子输送至地下油页岩层, 或者在有氧环境中将送入下面的可燃气体在 输送可燃气体的管路的下端管口点燃, 通过外部气体的燃烧对该油页岩层 进行加热, 同时, 也通过部分油页岩的燃烧来对油页岩本身进行加热, 即, 通过自热加外热的方式来加热油页岩层(步骤 S3 ) , 使其中的干酪根热解 形成油气混和产品。 为了避免含氧气体与可燃气体混合后爆炸, 分别通过 独立的管道通入该含氧气体与可燃气体。 进而通过排气通道 3将地下气化 炉中得到的油气混和产品抽到地表, 经过分离等手段得到轻质油产品及煤 气产品 (步骤 S4 ) 。
根据本发明,上述的可燃气体可以直接从外部通过独立的管道中加入, 诸如曱烷、 丙烷或其组合, 当然, 上述的可燃气体也可以是从油页岩热解 的油气混合产品中分离出的曱烷、 丙烷或其组合等烃类气体, 并且, 通过 独立的管路或者环空管加入可燃气体, 所谓的环空管为设置在两个同心管 道之间的管道部分。
根据发明的一实施例, 从油页岩热解的油气混合产品中分离出来的 C02通过独立的管路或者环空管, 回注入油页岩矿层 7。 例如, 在进气管道 1 中设置有另一用于引入含氧气体的管道(图中未示出) , 处于该进气管 道 1和该另一用于引入含氧气体的管道之间的部分为环空管, 通过该环空 管使得回注入油页岩矿层 7的 C02气体与其它气体 (诸如, 含氧气体等) 相分离。 通过将 C02气体回注入油页岩矿层中, 增加油页岩中含烃气体的 产量, 降低了油页岩析出的烯烃类气体在油页岩孔隙中的分压, 有利于页 岩气等含烃气体从油页岩中解吸, 提高油气采收率。
根据本发明的另一实施例, 从经由排气通道 3得到的油气混合产品分 离得到的可燃气体返回到地下油页岩矿层燃烧, 为地下的加热提供燃料, 加热油页岩矿层, 使其中的干酪根热解形成油气混和产品。
本发明通过钻井的手段在油页岩地下矿层中构建一定数量的进气 /出 气管道,通过加压压裂等方式在地下矿层中在进出管道之间形成气化通道, 然后由进气管道端通入含氧气体, 然后将其点燃后用管子输送至地下油页 岩层, 通过自热加外热的方式加热油页岩层, 使其中的干酪根热解形成油 气混和产品。 进而从生产井中得到可能从油页岩矿层中生产出的焦油和 /或 其它产品, 得到的可燃气体可以部分返回地下油页岩矿层燃烧供热, 继续 生产上述产品。 从而本发明实现了快速、 大规模、 经济合理地从油页岩矿 层开采油气的目的。
尽管已经示出和描述了本发明的实施例, 对于本领域的普通技术人员 而言, 可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例 进行多种变化、 修改、 替换和变型, 本发明的范围由所附权利要求及其等 同限定。

Claims

权利要求书
1. 一种油页岩开采方法, 其中, 所述方法包括:
在所述油页岩中形成进气管道以及出气管道;
在所述油页岩中形成连通所述进气管道与所述出气管道的气化通道; 由所述进气管道通过不同的管路分别将可燃气体与含氧气体送入所述 油页岩层中, 然后在有氧环境中将送入下面的可燃气体在输送可燃气体的 管路的下端管口点燃, 以对所述油页岩进行加热; 以及
通过所述出气管道回收所述油页岩中干酪根热分解后形成的油气混合 产品。
2. 根据权利要求 1所述的方法, 其中, 所述方法进一步包括: 对所述 气化通道加压以在所述油页岩中形成缝隙。
3. 根据权利要求 1或 2所述的方法, 其中, 所述方法进一步包括: 从 所述出气管道中回收的油气混合产品中分离出 C02, 并将分离出的 C02通 过独立的管道或环空管引入所述油页岩中, 其中, 所述环空管为设置在两 个同心管道之间的管道部分。
4. 根据权利要求 1-3中任一项所述的方法, 其中, 所述方法进一步包 括: 从所述出气管道中回收的油气混合产品中分离出可燃气体, 并将所述 可燃气体通过独立的管道或环空管引入所述油页岩中, 其中, 所述环空管 为设置在两个同心管道之间的管道部分。
5. 根据权利要求 4所述的方法, 其中, 所述可燃气体包括曱烷或丙烷 或其结合。
6. 根据权利要求 2所述的方法, 其中, 所述加压包括通过气体或液体 为加压介质进行加压。
7. 根据权利要求 1所述的方法,其中,对所述油页岩进行加热还包括: 通过独立的管道从外部向所述油页岩中引入可燃气体。
8. 根据权利要求 7所述的方法, 其中, 所述可燃气体包括曱烷、 丙烷 或其组合。
9. 根据权利要求 1所述的方法, 其中, 通过在所述进气管道和所述出 气管道之间进行水平钻孔或者充入高压气体或者加入水使所述出气管道和 所述进气管道连通。
10. 根据权利要求 1 所述的方法, 其中, 所述含氧气体的含氧量大于 20%, 或者所述含氧气体为氧气。
PCT/CN2012/087277 2011-12-29 2012-12-24 油页岩开采方法 WO2013097668A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2012361948A AU2012361948A1 (en) 2011-12-29 2012-12-24 Oil shale exploitation method
US14/369,764 US9382789B2 (en) 2011-12-29 2012-12-24 Oil shale exploitation method
CA2861909A CA2861909C (en) 2011-12-29 2012-12-24 Oil shale exploitation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110452216.8 2011-12-29
CN201110452216.8A CN102425399B (zh) 2011-12-29 2011-12-29 油页岩开采方法

Publications (1)

Publication Number Publication Date
WO2013097668A1 true WO2013097668A1 (zh) 2013-07-04

Family

ID=45959424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/087277 WO2013097668A1 (zh) 2011-12-29 2012-12-24 油页岩开采方法

Country Status (5)

Country Link
US (1) US9382789B2 (zh)
CN (1) CN102425399B (zh)
AU (1) AU2012361948A1 (zh)
CA (1) CA2861909C (zh)
WO (1) WO2013097668A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113374460A (zh) * 2021-06-23 2021-09-10 沈阳化工大学 自热式地下干馏油页岩提取页岩油和高热值燃料气的方法
CN114412419A (zh) * 2022-01-21 2022-04-29 中国矿业大学 一种叠置煤层气藏高效闭环抽采的方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102425399B (zh) * 2011-12-29 2015-06-10 新奥气化采煤有限公司 油页岩开采方法
CN103232852B (zh) * 2013-04-28 2014-03-26 吉林省众诚汽车服务连锁有限公司 油页岩原位竖井压裂化学干馏提取页岩油气的方法及工艺
CN103470223B (zh) * 2013-09-23 2015-11-25 中国矿业大学(北京) 一种化石能源低碳共采的方法和系统
CN103790563B (zh) * 2013-11-09 2016-06-08 吉林大学 一种油页岩原位局部化学法提取页岩油气的方法
CN104747143A (zh) * 2013-12-31 2015-07-01 天津建筑机械厂 井下燃烧甲烷稀释重油工艺
CN104653166B (zh) * 2014-12-24 2019-02-12 新奥科技发展有限公司 煤炭地下气化过程中汇水量控制方法及煤炭地下气化方法
CN105840162B (zh) * 2016-05-17 2019-09-17 赵金岷 地下燃烧对流加热方法
CN107091076B (zh) * 2017-07-06 2019-04-12 苏州大学 页岩气的开采方法及系统
CN107474868B (zh) * 2017-09-29 2023-06-27 新疆国利衡清洁能源科技有限公司 油页岩地下制油系统及其制油方法
CN109113699B (zh) 2018-07-12 2021-03-30 中国石油天然气股份有限公司 一种页岩油原位轻质化开发方法、装置及系统
CN109577937A (zh) * 2018-12-10 2019-04-05 中国石油大学(北京) 油页岩原位开采的方法和装置
CN110259424B (zh) * 2019-07-17 2020-07-28 中国石油大学(北京) 一种原位开采油页岩的方法和装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1814987A (zh) * 2006-02-24 2006-08-09 尤尼斯油气技术(中国)有限公司 一种变质岩潜山高凝油油藏火驱采油点火方法
CN101680284A (zh) * 2007-05-15 2010-03-24 埃克森美孚上游研究公司 用于原位转化富含有机物岩层的井下燃烧器井
US20100175872A1 (en) * 2009-01-15 2010-07-15 Conocophillips Company In situ combustion as adjacent formation heat source
US20110011582A1 (en) * 2009-07-17 2011-01-20 Conocophillips Company In situ combustion with multiple staged producers
CN102287175A (zh) * 2011-05-13 2011-12-21 中国海洋石油总公司 一种利用热动力开采页岩气和/或页岩油的方法
CN102425399A (zh) * 2011-12-29 2012-04-25 新奥气化采煤有限公司 油页岩开采方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA004696B1 (ru) * 2001-04-24 2004-06-24 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Извлечение нефти путем сжигания на месте
US8146664B2 (en) * 2007-05-25 2012-04-03 Exxonmobil Upstream Research Company Utilization of low BTU gas generated during in situ heating of organic-rich rock

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1814987A (zh) * 2006-02-24 2006-08-09 尤尼斯油气技术(中国)有限公司 一种变质岩潜山高凝油油藏火驱采油点火方法
CN101680284A (zh) * 2007-05-15 2010-03-24 埃克森美孚上游研究公司 用于原位转化富含有机物岩层的井下燃烧器井
US20100175872A1 (en) * 2009-01-15 2010-07-15 Conocophillips Company In situ combustion as adjacent formation heat source
US20110011582A1 (en) * 2009-07-17 2011-01-20 Conocophillips Company In situ combustion with multiple staged producers
CN102287175A (zh) * 2011-05-13 2011-12-21 中国海洋石油总公司 一种利用热动力开采页岩气和/或页岩油的方法
CN102425399A (zh) * 2011-12-29 2012-04-25 新奥气化采煤有限公司 油页岩开采方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113374460A (zh) * 2021-06-23 2021-09-10 沈阳化工大学 自热式地下干馏油页岩提取页岩油和高热值燃料气的方法
CN114412419A (zh) * 2022-01-21 2022-04-29 中国矿业大学 一种叠置煤层气藏高效闭环抽采的方法
CN114412419B (zh) * 2022-01-21 2022-09-09 中国矿业大学 一种叠置煤层气藏高效闭环抽采的方法

Also Published As

Publication number Publication date
US9382789B2 (en) 2016-07-05
CA2861909C (en) 2017-02-28
CA2861909A1 (en) 2013-07-04
CN102425399A (zh) 2012-04-25
AU2012361948A1 (en) 2014-06-26
US20140352957A1 (en) 2014-12-04
CN102425399B (zh) 2015-06-10

Similar Documents

Publication Publication Date Title
WO2013097668A1 (zh) 油页岩开采方法
CN103670338B (zh) 一种煤层气与煤共采方法
CN103232852B (zh) 油页岩原位竖井压裂化学干馏提取页岩油气的方法及工艺
CN103670357B (zh) 地下含碳有机矿物储层的裂隙沟通、通道加工及地下气化方法
CN103233713B (zh) 油页岩原位水平井压裂化学干馏提取页岩油气方法及工艺
CN103696747A (zh) 一种油页岩原位提取页岩油气的方法
CN102418476A (zh) 深层煤炭和煤层气联合开采技术
CN108756839B (zh) 油页岩隔热增效原位转化方法及系统
WO2013026421A1 (zh) 一种地下煤炭气化的方法
CN102444397A (zh) 开采深层油页岩制取页岩油和油页岩气的方法
CN101871339A (zh) 一种地下原位提取油页岩中烃类化合物的方法
CN103790563A (zh) 一种油页岩原位局部化学法提取页岩油气的方法
CN111396010B (zh) 煤层气田清洁取能系统及方法
CN109736762A (zh) 一种油页岩原位催化氧化法提取页岩油气的方法
CN102383772A (zh) 钻井式油页岩原位气化干馏制油气系统及其工艺方法
CA2937608A1 (en) Subterranean gasification system and method
CN203499663U (zh) 用于油页岩原位水平井压裂化学干馏提取页岩油气的装置
CN111608624B (zh) 一种利用地热开采稠油油藏的方法
CN113464103A (zh) 一种在井下制备纳米催化剂的原位裂解与改质方法
CN103470223A (zh) 一种化石能源低碳共采的方法和系统
CN203476308U (zh) 一种化石能源共存区域的煤炭地下气化开采系统
CN114876429B (zh) 利用井筒催化生热开采稠油油藏的方法
CN101775309A (zh) 利用高温气冷堆进行油砂炼油的方法及专用设备
CN109707356A (zh) 一种油页岩原位开采井下点火加热装置及加热方法
CN110259424B (zh) 一种原位开采油页岩的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12863556

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012361948

Country of ref document: AU

Date of ref document: 20121224

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2861909

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14369764

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12863556

Country of ref document: EP

Kind code of ref document: A1