WO2013097613A1 - 复合材料预制件织造成形方法 - Google Patents

复合材料预制件织造成形方法 Download PDF

Info

Publication number
WO2013097613A1
WO2013097613A1 PCT/CN2012/086548 CN2012086548W WO2013097613A1 WO 2013097613 A1 WO2013097613 A1 WO 2013097613A1 CN 2012086548 W CN2012086548 W CN 2012086548W WO 2013097613 A1 WO2013097613 A1 WO 2013097613A1
Authority
WO
WIPO (PCT)
Prior art keywords
weaving
guide
fiber
layer
sleeves
Prior art date
Application number
PCT/CN2012/086548
Other languages
English (en)
French (fr)
Inventor
单忠德
刘丰
秦绍衍
陈海波
乔娟娟
Original Assignee
机械科学研究总院先进制造技术研究中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201110458786.8A external-priority patent/CN102517760B/zh
Priority claimed from CN201110458790.4A external-priority patent/CN102517761B/zh
Application filed by 机械科学研究总院先进制造技术研究中心 filed Critical 机械科学研究总院先进制造技术研究中心
Publication of WO2013097613A1 publication Critical patent/WO2013097613A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D25/00Woven fabrics not otherwise provided for
    • D03D25/005Three-dimensional woven fabrics
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D41/00Looms not otherwise provided for, e.g. for weaving chenille yarn; Details peculiar to these looms
    • D03D41/004Looms for three-dimensional fabrics

Definitions

  • the present invention relates to the field of three-dimensional weaving of composite materials, and in particular to a method of forming a composite preform.
  • Composite materials are widely used in aerospace, defense, military, automotive, and other industries because of their combination of various advantages of matrix materials and reinforcing materials, remarkable mechanical properties, and light weight. With the rapid development of various industries, the performance requirements of composite materials are getting higher and higher. Therefore, the requirements for weaving and forming large-size, complex shapes, high-performance and lightweight preforms for composite preforms are becoming higher and higher. . With the development of technology, composite parts have become larger, more complex, and higher-performance, and composite forming technology has continued to develop.
  • the forming methods of prefabricated parts mainly include orthogonal interlacing, three-dimensional weaving, stitching weaving, and three-dimensional weaving.
  • Orthogonal interweaving method The basic arrangement of fibers in the orthogonal interlacing method is along three orthogonal directions (warp direction, weft direction and axial direction), and the warp and weft fibers are made to each other by controlling the introduction action and order of the fibers. Interlacing, after the interlacing of one layer is completed, the axial fibers are introduced, the pre-formed parts are inter-layer interlaced, and the obtained pre-formed parts are impregnated with the resin to finally form a part.
  • the United States, Australia, Japan and other countries have conducted more research.
  • the orthogonal interlacing technology developed by Shikishima Canvas is simple in process and low in cost, and can be modified by traditional two-dimensional knitting mechanics to realize processing.
  • the shortcoming of this technique is that the preform has only a few rows of fiber bundles interlaced on the layer, and the thickness of the layer is limited, which is not suitable for the processing of large-sized parts.
  • Three-dimensional weaving method In the three-dimensional weaving method, the fibers are intertwined and intertwined in three-dimensional space, not only intertwined in the plane but also intertwined in the thickness direction, thereby forming a monolithic structure without delamination, improving the overall performance of the braid.
  • the obtained preform is impregnated with a resin to finally form a part.
  • Quadrax Advanced Materials has proposed a four-step process
  • DuPont has developed a two-step process to study the three-dimensional weaving process. The development of this technology has promoted the application of multi-directional reinforced composite materials in the aviation industry, which has received great attention from various industrialized countries.
  • Three-dimensional weaving method Three-dimensional weaving composite material is a composite material with three-dimensional integral fabric as reinforcement. It is a new type of fabric composite material developed in the 1980s.
  • the fiber not only passes through the two-dimensional plane, but also the space is interwoven in the space by the thickness direction to form a monolithic structure, which can be designed well, and overcomes the shortcomings of the two-dimensional composite material, such as poor impact resistance and easy delamination, and has excellent mechanical properties.
  • This technology can directly weave all-shaped prefabricated parts of various shapes and sizes. Composite parts made from these preforms do not require further processing, which avoids fiber damage due to processing.
  • This method has the unique advantages of high strength, difficulty in matrix damage, high impact resistance and comprehensive mechanical properties, as well as resistance to ablation, high temperature resistance and good thermal insulation properties. It has attracted the attention of the United States, Germany and other countries.
  • the three-dimensional woven composite material is a composite material with a three-dimensional integral fabric as a reinforcement. It is a new type of fabric composite material developed in the 1980s. It is developed from one-dimensional and two-dimensional structures. The fibers of the three-dimensional structural fabric are not only passed through two.
  • the three-dimensional weaving technology for the preparation of composite preforms mainly includes three-dimensional weaving, three-dimensional weaving, three-dimensional knitting and the like. Compared with traditional laminated composite materials and automatic placement technology, composite three-dimensional weaving technology has many advantages, but the forming size is small, the process is complicated, the equipment is low in automation, the fiber content is low, and it is difficult to realize large-scale and complicated. Problems with structural parts manufacturing.
  • the invention is based on the research of the three-dimensional weaving forming method of the composite material, and mainly aims at the problem of poor mechanical properties between the pre-formed parts of the prior weaving forming method, and proposes a new weaving forming method of the composite material pre-formed parts.
  • a conventional three-dimensional woven preform is combined with a composite material weaving technique for the disadvantages of low interlayer strength, small forming size, complicated process, and difficulty in automation.
  • a method for layered weaving of prefabricated parts based on digital guide template is proposed to realize the automation of preparation of composite prefabricated parts and provide a flexible processing method for weaving large and complex prefabricated parts.
  • the method introduces an array of guide column templates that provide a fulcrum for each layer of woven fibers.
  • the guiding column template is designed according to the two-dimensional contour layered by the three-dimensional model, and the guiding sleeve is arranged on the guiding column to approximate the contour of the part; the woven fiber is formed by winding and locking the guiding sleeve to form the internal mesh structure and the inner and outer contours. Weaving of various structures.
  • the guide sleeve provides support for the different layers of fibers to enhance the strength between the layers. In order to facilitate the weaving and forming, it is easy to realize the automatic winding guide sleeve, and it is determined that each layer has a profile of 0 degrees in the cross section.
  • the parallel guide sleeves are wound line by line in four directions of 45 degrees, 90 degrees and 135 degrees.
  • the fiber winding manner of the adjacent two guide sleeves can be linear and '8'type; after four winding directions are superimposed, each layer is obtained. Section outline internal grid structure.
  • a method for layered weaving of composite preforms comprising the following steps: a) layering the CAD model of the composite part along the Z direction to generate profile information; b) arranging the guide sleeves in the array according to the profile information On the guiding column template of the layout; c) in the contour of the current weaving layer, supported by the guiding sleeve, and the guiding sleeves of the fibers are parallelized in the direction of 0 degrees; the guiding sleeve is used as the support, and the fibers are parallel in the direction of 45 degrees.
  • the guide sleeve is wound line by line; the guide sleeve is used as a support, and the guide sleeves of the fibers are parallelized in a 90-degree direction; the guide sleeve is used as a support, and the fibers are wound along the 135-degree parallel guide sleeves one by one: the fibers are in different directions
  • the order of winding can be arbitrarily combined, and all the weaving paths are superimposed to complete the weaving inside the layer; the weaving of the inner and outer contours of the current layer is completed by winding the fibers along the guide sleeve near the inner and outer contours; d) after completing a layer of weaving, continue with step c ) the next layer of weaving; e) after all layers have been woven, remove all the woven fiber guide sleeves from the guide column template , Finishing the weaving of composite preforms.
  • the woven fibers include carbon fibers, graphite fibers, aramid fibers, silicon carbide fibers, glass fibers, etc., and the fiber specifications can be selected according to a three-dimensional model of the composite part.
  • the guiding sleeve structure can be designed, the outer part thereof can be smooth or grooved, and the fibers are entangled in the guiding sleeve groove during weaving; the guiding sleeve height, diameter, sectional shape and other parameters can be 3D model design of the part.
  • the guide sleeve can be selected according to actual needs, such as aluminum alloy, carbon fiber reinforced composite material, titanium alloy, stainless steel, and the like.
  • the guiding column template has an array of guiding columns with a diameter and a spacing.
  • the winding of the guide sleeves along the parallel guide sleeves and the winding of the guide sleeves near the inner and outer contours may be linear and '8'.
  • a shortcoming of low interlayer strength and poor integrity of a component of a three-dimensional weaving method for a prefabricated part of a prefabricated part and a guiding sleeve is formed by using the guiding sleeve (a) as a fulcrum. (b) Inter-layer reinforced weaving forming method of a pre-formed intertwined piece.
  • the method comprises the following steps: layering the prefabricated model, and arranging an array of guiding sleeves with equally spaced caulking grooves on the guiding template, the fibers in the current layer are supported by the guiding sleeves, and the fibers are respectively at 0 degrees, 45 degrees, 90 degrees,
  • the guide sleeves parallel to the 135-degree direction are woven one by one, and the fibers of two adjacent guide sleeves are wound in layers in each row, and the splicing grooves on the guide sleeve are locked, and after a layer of woven is completed, the next layer is woven.
  • the split layer is woven between the grooves until the layers are finished, and the guide sleeve of the wound fiber is removed from the guide column template to obtain a preform.
  • the method is characterized in that the guide sleeve adds a fiber joint between the splicing layers, thereby greatly enhancing the mechanical properties between the layers.
  • the technical solution adopted by the method to solve its technical problems is as follows: a) First, the three-dimensional CAD model of the part is layered along the Z direction to obtain the two-dimensional contour information of each layer; b) according to the two-dimensional contour information of each layer, Arranging an array of guide sleeves with equally spaced engagement grooves on the digitized guide template; c) arranging the current layer to be woven in the Z-direction between the two parallel layers of the guide sleeve; d) supporting the sleeve, the fiber
  • the guide sleeves which are parallel along the 0 degree direction are woven one by one, and are interleaved in two adjacent guide sleeves in each row; the guide sleeve is supported, and the fibers are arranged between the guide sleeves which are parallel in the direction of 45 degrees.
  • the rows are woven, and are interleaved in two adjacent guide sleeves in each row; with the guide sleeve as a support, the fibers are woven one by one between the guide sleeves parallel to each other in a 90-degree direction, two adjacent in each row
  • the guide sleeve is wrapped in a staggered layer; the sleeve is supported by the guide sleeve, and the fibers are woven one by one between the guide sleeves parallel to the 135 degree direction.
  • Each row of two adjacent guide sleeves is wound in a staggered layer; the winding sequence can be arbitrarily arranged according to the two-dimensional contour information in each layer and between the layers to complete the weaving of the inner structure of the contour; e) After weaving, continue to use step d) to complete the next layer of weaving between the parallel layers of the two guiding sleeves; f) After all the layers are reinforced, the guiding sleeve of the wound fiber is removed from the guiding template to obtain the prefabrication. Pieces.
  • the engaging groove on the guiding sleeve is the key to interlayer reinforcement, and the engaging groove is characterized in that the cross-sectional shape of the engaging groove includes various shapes, such as a rectangular shape, a trapezoidal shape, a semicircular shape, and the like, and the size is also It can be adjusted according to the structure of the preform.
  • the guide sleeve is characterized by a wide variety of materials, including conventional metals and alloys, as well as non-metallic materials such as carbon rods, polytetrafluoroethylene, etc., which can be processed into a groove.
  • the fibers are characterized by a wide variety of materials, including carbon fiber, silicon carbide fiber, quartz fiber, aramid fiber, glass fiber, and the like, which can be woven, and the fiber thickness can also be selected according to the weaving requirements.
  • the winding is characterized in that the winding method comprises a spatial straight line and a space '8' type, or a combination of two ways, and different winding methods are superimposed and wound in the groove of the guide sleeve to enhance the volume content of the fiber.
  • the invention has the following advantages:
  • the composite prefabricated layer weaving method is simple in process and easy to realize automation, and provides a flexible processing method for weaving large and complex preforms;
  • the weaving method realizes the interlayer connection through the guide sleeve, avoids the interlayer delamination, and makes the preform have better mechanical properties. Further, by inter-layer reinforced weaving, the fibers can be joined between different splicing layers of adjacent guide sleeves, since fiber bonding is added between the layers, which greatly enhances the interlayer mechanical properties.
  • the engaging groove on the surface of the guiding sleeve can organically combine the layers to make the preform become a whole, which overcomes the shortcomings of the traditional weaving method, which is easy to tear only by polymer bonding, and further enhances the interlayer mechanical properties.
  • the guide sleeve itself can also bear great mechanical properties in the direction of the layers, and will also greatly enhance the mechanical properties in the interlayer direction.
  • FIG. 1 a layered weaving flow chart of a composite preform according to a first embodiment of the present invention
  • FIG. 2 a row-by-row weaving direction of four fibers in a contour layer of a composite preform according to a first embodiment of the present invention
  • FIG. 4 a different weaving path superposition of the first embodiment of the present invention
  • FIG. 5 a semi-cylindrical semi-cylindrical cross section of the first embodiment of the present invention In-layer weaving, wherein reference numerals: 1 guide post, 2 guide sleeve, 3 guide post template, 4 weaving unit
  • Fig. 6 Flow chart of preform forming of the second embodiment of the present invention
  • Fig. 7 The surface of the second embodiment is a guiding sleeve for the engaging groove, wherein: a) the guiding sleeve, b) the guiding sleeve engaging groove;
  • FIG. 8 is a schematic diagram of the layering of the preform according to the second embodiment of the present invention, wherein a) two Guide sleeve, groove parallel layer, b) current layer;
  • Fig. 9 schematic view of the 0 degree direction of the second embodiment of the invention;
  • Fig. 10 schematic view of the 45 degree direction of the second embodiment of the invention;
  • Fig. 11 Schematic diagram of the 90 degree directional weaving of the second embodiment;
  • Fig. 12 is a schematic view of the 135 degree directional weaving of the second embodiment of the present invention;
  • Fig. 13 is a side effect view of the second embodiment of the present invention;
  • Figure 15 is a side view showing the effect of the preform of the second embodiment of the present invention;
  • Fig. 9 schematic view of the 0 degree direction of the second embodiment of the invention
  • Fig. 10 schematic view of the 45 degree direction of the second embodiment of the invention
  • Fig. 11 Schematic diagram of the 90 degree
  • Fig. 17 is a plan view showing a plan view of a space linear winding method according to a second embodiment of the present invention
  • Fig. 17 is a plan view showing a plan view of a space "8" type winding method according to a second embodiment of the present invention.
  • a weaving method for a semi-cylindrical preform having a semi-circular cross section according to a first embodiment of the present invention is enumerated: First, a semi-cylindrical CAD model is designed on a computer, and each layer is layered.
  • 3mm diameter guide columns (1) are arranged in an equally spaced array of 8mm to obtain the guide column template (3); the guide sleeve (2) is selected as the outer smooth carbon fiber tube, the inner diameter is 3mm, The diameter is 5mm, the height is designed to be equal to the semi-cylindrical height, and it is arranged on the guiding column (1), which approximates the cross-sectional profile of the semi-cylindrical shape; 3k carbon fiber is selected as the woven fiber.
  • the fibers are wound linearly in parallel in the order of 0 degrees, 45 degrees, 90 degrees, 135 degrees, each winding
  • the two adjacent guide sleeves are connected in a straight line and '8' shape, and all the weaving paths are superimposed to complete the weaving inside the contour layer; the weaving of the outer layer of the current layer is completed by winding the fibers along the guide sleeve of the outer contour attachment.
  • the fiber joining manner of the two adjacent guiding sleeves is also linear and '8'; after finishing one layer of weaving, the weaving unit (4) is obtained.
  • a weaving method of a hexahedral preform having a size of 110 mm x 110 mm x 100 mm according to a second embodiment of the present invention is enumerated. Firstly, the material with a diameter of 10mm and a height of 100mm is selected as the guide sleeve of the carbon rod.
  • the cross section of the fit groove is rectangular, the groove width is 3mm, the groove depth is 2mm, and the groove pitch is 5mm.
  • the three-dimensional CAD model of the part is layered along the Z direction to obtain two layers of each layer.
  • Dimensional contour information According to the two-dimensional contour information of each layer, 5X5 guiding sleeves are arranged at equal intervals on the digitized guiding template, the guiding sleeve center distance is 25mm; the current layer to be woven is set in the Z-direction position in the two guiding sleeves Between the parallel layers of the groove; with the guide sleeve as the support, the 3k-size carbon fiber is selected to be woven one by one between the guide sleeves parallel to the 0-degree direction, and wound in two adjacent guide sleeves in each row; The guide sleeve is supported, and the fibers are woven one by one between the guide sleeves which are parallel in the direction of 45 degrees, and are wound in layers in two adjacent guide sleeves of each row; with the guide sleeve as a support

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Woven Fabrics (AREA)

Abstract

一种复合材料预制件分层织造成形方法,属于一种数字化驱动的复合材料三维织造技术,包括如下步骤:对复合材料零件CAD模型沿Z向进行分层,生成截面轮廓信息;将导向套(2)布置在等间距阵列布局的导向柱(1)模板(3)上;在每一层轮廓内,以导向套支撑,将纤维沿0度、45度、90度、135度方向逐行缠绕平行的导向套,完成轮廓内部的织造,当前层内外轮廓的织造由纤维沿内外轮廓附近的导向套缠绕完成;层层织造,完成所有层织造后,将缠绕纤维的导向套取下,完成复合材料预制件的织造。所述方法工序简单、成形尺寸大,易于实现自动化织造大型、复杂结构功能部件预制件。

Description

复合材料预制件织造成形方法 技术领域 本发明涉及复合材料三维织造成形领域, 具体而言, 涉及一种复合材料预制件织 造成形方法。 背景技术 复合材料因其综合了基体材料及增强材料的各项优点, 具有显著的力学性能以及 轻质的特点, 因此广泛应用于航空航天、 国防军工、 汽车等行业。 随着各行业的快速 发展, 对复合材料性能要求越来越高, 因此对复合材料预制件织造成形方法能织造大 尺寸、 形状复杂、 高性能、 轻量化的预制件的要求也越来越高。 随着技术发展, 复合 材料制件向大型化、 复杂化、 高性能化发展, 复合材料成形技术也不断地发展。 日前 预制件的成形方法主要有正交交织法, 三维编织法, 缝合编织法, 三维织造法。 正交交织法: 正交交织法中纤维的基本排布分别沿着三个正交方向 (经向、 纬向 和轴向),通过控制纤维的引入动作和次序使得经向和纬向纤维互相交织, 完成一层的 交织后引入轴向纤维, 对预制件进行层间交织, 将得到的预制件经树脂浸渍后最终形 成制件。 美国、 澳大利业、 日本等国家开展了较多的研究。 Shikishima Canvas 公司开 发的正交交织技术工艺简单,成本低,可在传统的二维编织机工加以改装以实现加工。 然而, 该技术的不足之处是预制件在分层上仅有几排纤维束互相交织, 分层的厚度受 到了限制, 不适用于大尺寸制件的加工。
三维编织法: 三维编织法中纤维在三维空间中相互交织交叉在一起, 不但在平面 内相互交织而且在厚度方向亦相互交织, 从而形成了一个不分层的整体结构, 提高了 编织件整体性能, 将得到的预制件经树脂浸渍后最终形成制件。 Quadrax Advanced Materials 公司提出四步法加工工艺, 杜邦公司开发了两步法加工工艺, 对三维编织的 工艺埋论进行了研究。此项技术的发展促进了多向增强复合材料在航空工业中的应用, 受到了各工业发达国家的极大关注。 美国 3TEX、 德国 Herz0g、 日本京都工艺纤维大 学等都开发了先进三维织造机, 运行速度较高, 配合专用大容量携纱器可实现更大轴 向尺寸预制件的编织。 然而, 三维编织技术更多地只用于加工截面尺寸变化较小的预 制件, 对于复杂结构的预制件, 需通过在编织过程中改变纤维排布或数量, 使得加工 工序复杂化, 不易于自动化控制。 缝合编织法: 美国、 德国、 英国等国研究了缝合编织法, 其基本原理是利用成熟 的缝纫工艺将二维平面织物加工成三维预制件, 将得到的预制件经树脂浸渍后最终形 成制件。 其生产工艺简单, 成本较低, 被各国认定是一种有潜力的加工技术。 此方法 在分层上仅有几排纤维束互相交织, 并且由于受到缝合工艺的限定, 仅被应用在加工 垂直方向的缝合,对于曲面预制件的加工仍有局限性,对预制件的厚度有一定的限制。 三维织造法: 三维织造复合材料是以三维整体织物作为增强体的复合材料, 是 20 世纪 80 年代发展起来的一种新型织物复合材料, 其由一维和二维结构发展而来, 三 维结构织物的纤维不仅通过二维平面, 而目通过厚度方向在空间相互交织, 形成整体 结构, 可设计性好, 同时克服了二维复合材料抗冲击性能差、 易分层等缺点, 具有优 异的力学性能。 采用此技术可以直接编织出各种形状、 不同尺寸的整体异型预制件。 用这些预制件制成的复合材料制件不需再加工, 这就避免了由于加工所造成的纤维损 伤。 此方法具有高强度、 基体损伤不易扩展、 高抗冲击性能和综合力学性能好, 以及 耐烧蚀、 抗高温、 热绝缘性能好等独特的优点, 日前已经引起了美国、 德国等世界各 国的关注, 已经成为复合材料预制件成形的重要领域和研究方向。 但是, 传统复合材料由于层间没有纤维通过, 而容易分层, 为了达到厚度上的要 求, 绝大多数采用层合的形式, 但由于较弱的层间性能、 冲击后易受损伤以及机械连 接孔和几何形状突变处的强度显著下降等弱点,限制了它在主要承力结构件上的应用。 三维织造复合材料是以三维整体织物作为增强体的复合材料, 是 20世纪 80年代 发展起来的一种新型织物复合材料, 其由一维和二维结构发展而来, 三维结构织物的 纤维不仅通过二维平面, 而且通过厚度方向在空间相互交织, 形成整体结构, 可设计 性好, 同时克服了二维复合材料抗冲击性能差、 易分层等缺点, 具有优异的力学性能, 已经引起了美国、 德国等世界各国的关注, 被越来越广泛地应用航空航天、 军工、 汽 车等关键领域。 用于复合材料预制件制备的三维织造技术主要包括三维编织、 三维机织、 三维针 织等。 复合材料三维织造技术相比于传统的层压复合材料、 自动铺放技术具有诸多优 点, 但织造成形过程中存在的成形尺寸小、 工序复杂、 设备自动化低、 纤维含量低, 难以实现大型、 复杂结构件制造等问题。 本发明是在研究目前复合材料三维织造成形方法的基础上, 主要针对日前织造成 形方法预制件层间力学性能差的问题,提出了一种新的复合材料预制件织造成形方法。 发明内容 为了实现上述目的, 根据本发明的一个方面, 针对传统三维织造预制件的层间强 度低、 成形尺寸小、 工序复杂、 不易自动化实现等缺点, 将快速成形技术与复合材料 织造技术结合起来, 提出一种基于数字化导向模板的预制件分层织造成形方法, 实现 复合材料预制件制备的自动化, 为大型、 复杂预制件的织造提供一种柔性加工方法。 该方法引入了阵列式导向柱模板, 为每层编织纤维提供支点。 根据三维模型分层 后的二维轮廓设计导向柱模板, 并将导向套布置在导向柱上, 近似逼近零件的轮廓; 织造纤维通过缠绕、锁紧导向套形成内部网格结构和内外轮廓, 达到各种结构的织造。 导向套为不同层纤维提供支撑, 加强层间强度。 为了便于织造成形, 易于实现自动化缠绕导向套, 确定每层截面轮廓内沿 0度、
45度、 90度、 135度四个方向逐行缠绕平行的导向套, 相邻两个导向套的纤维缠绕方 式可以是直线式和' 8 '字式; 四个缠绕方向叠加后, 得到每层截面轮廓内部网格结构。 一种复合材料预制件分层织造成形方法, 其特征包括如下步骤: a ) 对复合材料零件 CAD 模型沿 Z向进行分层, 生成截面轮廓信息; b ) 根据截面轮廓信息将导向套布置在阵列布局的导向柱模板上; c ) 在当前织造层轮廓内, 以导向套为支撑, 将纤维沿 0度方向平行的导向套逐 行缠绕; 以导向套为支撑, 将纤维沿 45 度方向平行的导向套逐行缠绕; 以导向套为 支撑,将纤维沿 90 度方向平行的导向套逐行缠绕; 以导向套为支撑,将纤维沿 135 度 方向平行的导向套逐行缠绕: 纤维沿不同方向缠绕的顺序可以任意组合, 所有织造路 径叠加后完成一层轮廓内部的织造; 当前层内外轮廓的织造由纤维沿内外轮廓附近的 导向套缠绕完成; d ) 完成一层织造后, 继续采用步骤 c ) 进行下一层的织造; e ) 完成所有层织造后, 将所有缠绕纤维的导向套从导向柱模板取下, 完成复合 材料预制件的织造。 所述织造纤维包括碳纤维、 石墨纤维、 芳纶纤维、 碳化硅纤维、 玻璃纤维等, 纤 维规格可根据复合材料零件三维模型选择。 所述导向套结构是可以设计的, 其外部可以是光滑的, 也可以是带有凹槽的, 织 造时纤维在导向套凹槽内进行缠绕; 导向套高度、 直径、 截面形状等参数可根据零件 三维模型设计。 所述导向套可以根据实际需要选择不同材质, 如铝合金、 碳纤维增强复合材料、 钛合金、 不锈钢等。 所述导向柱模板上有直径、 间距可设计的导向柱阵列。 所述沿平行的导向套逐行缠绕和沿内外轮廓附近导向套缠绕过程中, 相邻导向套 间的缠绕方式可以是直线式和' 8 '字式。 根据本发明的另一方面, 提供了一种针对日前预制件三维织造方法零部件的层间 强度低、 整体性差等缺点, 现提出一种以导向套 (a) 为支点进行导向套坎合槽 (b) 错层缠绕的预制件层间增强织造成形方法。 该方法包括如下步骤: 预制件模型分层, 在导向模板上布置具有等间距坎合槽的 导向套阵列, 当前层内纤维以导向套为支点, 纤维分别沿 0度、 45度、 90度、 135度 方向平行的导向套逐行进行编织, 每一行内两个相邻导向套纤维错层缠绕, 并锁紧导 向套上的坎合槽, 完成一层编织后 , 再进行下一层坎合槽之间的错层编织, 直到所有 层编完后, 将缠绕纤维的导向套从导向柱模板取下, 得到预制件。 本方法特征在于导 向套在坎合层间加入了纤维连接, 因此大大增强了层间的力学性能。 本方法解决其技术问题所采用的技术方案流程如下: a) 首先将零件三维 CAD 模型沿 Z 向分层, 得到每层的二维轮廓信息; b)根据每一层的二维轮廓信息,在数字化导向模板上布置具有等间距坎合槽的导 向套阵列; c) 将要编织的当前层沿 Z向位置设置在两个导向套坎合槽平行层之间; d) 以导向套为支撑, 纤维沿 0度方向平行的导向套之间逐行进行编织, 在每一行 两个相邻导向套坎合槽内错层缠绕; 以导向套为支撑, 纤维沿 45度方向平行的导向套 之间逐行进行编织, 在每一行两个相邻导向套坎合槽内错层缠绕; 以导向套为支撑, 纤维沿 90度方向平行的导向套之间逐行进行编织,在每一行两个相邻导向套坎合槽内 错层缠绕; 以导向套为支撑, 纤维沿 135 度方向平行的导向套之间逐行进行编织, 在 每一行两个相邻导向套坎合槽内错层缠绕; 缠绕顺序可以根据每一层内和层间的二维 轮廓信息任意排列组合, 完成一层轮廓内部结构的编织; e ) 完成一层编织后, 继续采用步骤 d) 在两个导向套坎合槽平行层之间完成下 一层编织; f)所有层间增强编完后, 将缠绕纤维的导向套从导向模板取下, 得到预制件。 所述导向套上的坎合槽是层间增强的关键, 坎合槽的特征在于坎合槽的截面形状 包括多种形状, 如矩形, 梯形, 半圆形等可以加工出来的形状, 尺寸也可以根据预制 件的结构进行调整。 所述导向套的特征在于材料种类很多, 除了包括传统的金属以及合金之外, 还包 括碳棒、 聚四氟等可以加工出坎合槽的非金属材料。 所述纤维的特征在于材料的种类很多, 包括碳纤维、 碳化硅纤维、 石英纤维、 芳 纶纤维、 玻璃纤维等可以实现织造的复合材料增强纤维, 纤维粗度也可以根据织造要 求进行选择。 所述缠绕的特征在于缠绕方式包括空间直线式和空间' 8'字式, 也可以两种方式相 组合, 不同的缠绕方法叠加缠绕在导向套凹槽内, 可以增强纤维的体积含量。 本发明与现有技术相比, 具有以下优点:
1 ) 复合材料预制件分层织造方法工艺简单、 易于实现自动化, 为大型、 复杂预 制件织造提供一种柔性加工方法;
2 ) 导向柱在模板上的排列可以根据零件的尺寸、 形状等特点进行灵活布置, 大 大提升了三维织造零部件的灵活性和操作性;
3 ) 该织造方法通过导向套实现层间连接, 避免层间分层, 使预制件有较好的力 学性能。 进一步地, 通过层间增强织造, 纤维可以在相邻导向套不同坎合层之间连接, 因 为层与层之间加入了纤维连接, 大大增强了层间力学性能。 导向套表面的坎合槽可以 将各层有机结合, 使预制件成为一个整体, 克服传统编织方法层间仅靠聚合物粘结易 撕裂的缺点, 进一步增强了层间力学性能。 导向套本身在层间方向也可以承担很大的 力学性能, 也将大大增强层间方向的力学性能。 本方法从以上方面提高了复合材料预制件层间方向的力学性能, 解决的了复合材 料预制件织造的关键技术难点。 附图说明 构成本申请的一部分的说明书附图用来提供对本发明的进一步理解, 本发明的示 意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图中: 本发明第一实施例的复合材料预制件分层织造流程图; 图 2: 本发明第一实施例的复合材料预制件轮廓层内四个纤维逐行织造方向;
S 3: 本发明第一实施例的导向套间纤维缠绕方式; 图 4: 本发明第一实施例的不同织造路径叠加; 图 5 : 本发明第一实施例的截面为半圆形的半圆柱的层内织造, 其中的附图标记: 1 导向柱, 2 导向套, 3导向柱模板, 4织造单元; 图 6: 本发明第二实施例的预制件织造成形流程图; 图 7: 本发明第二实施例的表面为坎合槽的导向套, 其中, a) 导向套, b) 导向 套坎合槽; 图 8: 本发明第二实施例的预制件分层示意图, 其中, a) 两个导向套坎合槽平行 层, b) 当前层; 图 9: 本发明第二实施例的 0度方向织造示意图; 图 10: 本发明第二实施例的 45度方向织造示意图; 图 11 : 本发明第二实施例的 90度方向织造示意图; 图 12: 本发明第二实施例的 135度方向织造示意图; 图 13 : 本发明第二实施例的错层缠绕侧面效果图; 图 14: 本发明第二实施例的预制件俯视面效果图; 图 15 : 本发明第二实施例的预制件侧面效果图; 图 16: 本发明第二实施例的空间直线式缠绕方式俯视面效果图; 图 17: 本发明第二实施例的空间" 8"字式缠绕方式俯视面效果图。 具体实施方式 需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特征可以相 互组合。 下面将参考附图并结合实施例来详细说明本发明。 为详细的描述本发明的特点和步骤, 列举本发明的第一实施例的截面为半圆的半 圆柱预制件的织造方法: 首先在计算机上完成半圆柱 CAD 模型的设计, 分层设计得到每层二维截面轮廓 信息; 将直径为 3mm 导向柱 (1 ) 按 8mm 的等间距阵列排布得到导向柱模板 (3 ) 上; 选取导向套 (2) 材料为外部光滑碳纤维管, 内径为 3mm , 外径为 5mm , 高度 设计为跟半圆柱等高, 将其排布在导向柱(1 )上, 近似逼近半圆柱的截面轮廓; 选取 3k规格的碳纤维作为织造纤维。
从最底层开始织造, 在织造层近似半圆轮廓内, 以导向套 (2) 为支撑, 纤维分别沿 0 度、 45 度、 90度、 135度的顺序逐行缠绕平行的导向套, 每种缠绕方式相邻两个导向 套纤维连结方式采用直线式和' 8'字式, 所有织造路径叠加后完成一层轮廓内部的织 造; 当前层外轮廓的织造由纤维沿外轮廓附件的导向套缠绕完成, 并且相邻两个导向 套纤维连结方式也为直线式和' 8'字式; 完成一层织造后, 得到织造单元 (4)。 采用上述方法进行下一层的织造; 层层织造, 完成三维预制件所有层织造后, 将 缠绕碳纤维的导向套 (2) 从导向柱模板 (3 ) 上取下来, 完成预制件织造。 为详细的描述本发明的特点和步骤, 列举本发明的第二实施例的尺寸为 110mm xllOmm xlOOmm 的六面体预制件的织造方法。 首先选择直径 10mm, 高度 100mm 的 材料为碳棒的导向套, 坎合槽截面为矩形, 槽宽 3mm槽深 2mm, 槽间距 5mm; 将零 件三维 CAD 模型沿 Z向分层, 得到每层的二维轮廓信息; 根据每一层的二维轮廓信 息, 在数字化导向模板上等间距布置 5X5 个导向套, 导向套中心距 25mm; 将要编织 的当前层沿 Z向位置设置在两个导向套坎合槽平行层之间; 以导向套为支撑, 选取 3k 规格的碳纤维沿 0度方向平行的导向套之间逐行进行编织, 在每一行两个相邻导向套 坎合槽内错层缠绕; 以导向套为支撑, 纤维沿 45 度方向平行的导向套之间逐行进行 编织, 在每一行两个相邻导向套坎合槽内错层缠绕; 以导向套为支撑, 纤维沿 90 度 方向平行的导向套之间逐行进行编织, 在每一行两个相邻导向套坎合槽内错层缠绕; 以导向套为支撑, 纤维沿 135 度方向平行的导向套之间逐行进行编织, 在每一行两个 相邻导向套坎合槽内错层缠绕; 缠绕顺序可以根据每一层内和层间的二维轮廓信息任 意排列组合, 完成一层轮廓内部结构的编织; 完成一层编织后, 继续采用上述步骤在 两个导向套坎合槽平行层之间完成下一层编织; 所有层间增强编完后, 将缠绕纤维的 导向套从导向模板取下, 得到预制件。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种复合材料预制件织造成形方法, 其特征在于, 包括如下步骤:
a) 对复合材料零件 CAD 模型沿 Z向进行分层, 生成截面轮廓信息; b) 根据截面轮廓信息将导向套布置在阵列布局的导向柱模板上; c)在当前织造层轮廓内, 以导向套为支撑点, 将纤维沿 0度方向平行的导 向套逐行缠绕; 以导向套为支撑, 将纤维沿 45 度方向平行的导向套逐行缠绕; 以导向套为支撑, 将纤维沿 90 度方向平行的导向套逐行缠绕; 以导向套为支 撑, 将纤维沿 135 度方向平行的导向套逐行缠绕; 上述纤维沿不同方向缠绕的 顺序任意组合, 所有织造路径叠加后完成一层轮廓内部的织造; 当前层内外轮 廓的织造由纤维沿内外轮廓附近的导向套缠绕完成;
d) 完成一层织造后, 继续采用步骤 c) 进行下一层的织造;
e)完成所有层织造后, 将所有缠绕纤维的导向套从导向柱模板取下, 完成 复合材料预制件的织造。
2. 根据权利要求 1 所述的一种复合材料预制件织造成形方法, 其特征在于, 所述 织造纤维为碳纤维、 石墨纤维、 芳纶纤维、 碳化硅纤维或玻璃纤维, 纤维规格 可根据复合材料零件三维模型选择。
3. 根据权利要求 1 所述的一种复合材料预制件织造成形方法, 其特征在于, 所述 导向套结构外部是光滑的或是带有凹槽的; 导向套结构外部带有凹槽时, 纤维 在导向套凹槽内进行缠绕; 导向套高度、 直径、 截面形状等参数根据零件三维 模型设计。
4. 根据权利要求 1 所述的一种复合材料预制件织造成形方法, 其特征在于, 所述 导向套材质为铝合金、 碳纤维增强复合材料、 钛合金或不锈钢。
5. 根据权利要求 1 所述的一种复合材料预制件织造成形方法, 其特征在于, 所述 导向柱模板上设有直径、 间距可设计的导向柱阵列。
6. 根据权利要求 1 所述的一种复合材料预制件织造成形方法, 其特征在于, 所述 沿平行的导向套逐行缠绕和沿内外轮廓附近导向套缠绕过程中, 相邻导向套间 的缠绕方式是直线式或' 8'字式。
7. 一种复合材料预制件织造成形方法, 其特征在于, 该方法包括如下步骤: a ) 首先将零件三维 CAD 模型沿 Z 向分层, 得到每层的二维轮廓信息; b ) 根据每一层的二维轮廓信息, 在数字化导向模板上布置具有等间距坎 合槽的导向套阵列;
c ) 将要编织的当前层沿 Z向位置设置在两个导向套坎合槽平行层之间; d ) 以导向套为支撑, 纤维沿 0度方向平行的导向套之间逐行进行编织, 在每一行两个相邻导向套坎合槽内错层缠绕; 以导向套为支撑, 纤维沿 45 度 方向平行的导向套之间逐行进行编织, 在每一行两个相邻导向套坎合槽内错层 缠绕; 以导向套为支撑, 纤维沿 90 度方向平行的导向套之间逐行进行编织, 在每一行两个相邻导向套坎合槽内错层缠绕; 以导向套为支撑, 纤维沿 135 度 方向平行的导向套之间逐行进行编织, 在每一行两个相邻导向套坎合槽内错层 缠绕; 缠绕顺序根据每一层内和层间的二维轮廓信息任意排列组合, 完成一层 轮廓内部结构的编织;
e ) 完成一层编织后, 继续采用步骤 d) 在两个导向套坎合槽平行层之间 完成下一层编织;
f) 所有层间增强编完后,将缠绕纤维的导向套从导向模板取下,得到预制 件。
8. 根据权利要求 7所述的复合材料预制件织造成形方法, 其特征在于, 所述导向 套上的坎合槽的截面形状为矩形、 梯形或半圆形, 尺寸根据预制件的结构能够 进行调整。
9. 根据权利要求 7所述的复合材料预制件织造成形方法, 其特征在于, 所述导向 套的材料种类包括金属及合金, 还包括碳棒、 聚四氟及其他可以加工出坎合槽 的非金属材料。
10. 根据权利要求 7所述的复合材料预制件织造成形方法, 其特征在于, 所述纤维 的材料包括碳纤维、 碳化硅纤维、 石英纤维、 芳纶纤维、 玻璃纤维及其他可以 实现织造的复合材料增强纤维, 纤维粗度可以根据织造要求进行选择。
11. 根据权利要求 7所述的复合材料预制件织造成形方法, 其特征在于, 所述缠绕 的方式为空间直线式或空间 '8'字式或两种方式相组合。
PCT/CN2012/086548 2011-12-31 2012-12-13 复合材料预制件织造成形方法 WO2013097613A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201110458786.8 2011-12-31
CN201110458786.8A CN102517760B (zh) 2011-12-31 2011-12-31 一种复合材料预制件分层织造成形方法
CN201110458790.4 2011-12-31
CN201110458790.4A CN102517761B (zh) 2011-12-31 2011-12-31 一种复合材料预制件层间增强织造成形方法

Publications (1)

Publication Number Publication Date
WO2013097613A1 true WO2013097613A1 (zh) 2013-07-04

Family

ID=48696325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/086548 WO2013097613A1 (zh) 2011-12-31 2012-12-13 复合材料预制件织造成形方法

Country Status (1)

Country Link
WO (1) WO2013097613A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105568546A (zh) * 2015-12-15 2016-05-11 机械科学研究总院先进制造技术研究中心 一种用于分层织造的织造针

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01148863A (ja) * 1987-11-30 1989-06-12 Nissan Motor Co Ltd 3次元繊維構造体の製造方法
CN102192396A (zh) * 2010-03-16 2011-09-21 机械科学研究总院先进制造技术研究中心 一种复合材料三维织造成形方法
CN102191627A (zh) * 2010-03-16 2011-09-21 机械科学研究总院先进制造技术研究中心 一种复合材料三维织造成形设备
CN102517760A (zh) * 2011-12-31 2012-06-27 机械科学研究总院先进制造技术研究中心 一种复合材料预制件分层织造成形方法
CN102517761A (zh) * 2011-12-31 2012-06-27 机械科学研究总院先进制造技术研究中心 一种复合材料预制件层间增强织造成形方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01148863A (ja) * 1987-11-30 1989-06-12 Nissan Motor Co Ltd 3次元繊維構造体の製造方法
CN102192396A (zh) * 2010-03-16 2011-09-21 机械科学研究总院先进制造技术研究中心 一种复合材料三维织造成形方法
CN102191627A (zh) * 2010-03-16 2011-09-21 机械科学研究总院先进制造技术研究中心 一种复合材料三维织造成形设备
CN102517760A (zh) * 2011-12-31 2012-06-27 机械科学研究总院先进制造技术研究中心 一种复合材料预制件分层织造成形方法
CN102517761A (zh) * 2011-12-31 2012-06-27 机械科学研究总院先进制造技术研究中心 一种复合材料预制件层间增强织造成形方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105568546A (zh) * 2015-12-15 2016-05-11 机械科学研究总院先进制造技术研究中心 一种用于分层织造的织造针

Similar Documents

Publication Publication Date Title
CN102517761B (zh) 一种复合材料预制件层间增强织造成形方法
EP2549004B1 (en) Three-dimensional weave-molding method for composite material
CN102517760B (zh) 一种复合材料预制件分层织造成形方法
JP5406850B2 (ja) 交差壁を伴う閉じ構造を織る方法
KR101350095B1 (ko) 복합물 부재용 다중-사틴 위브의 섬유 보강 구조물
CN101918630B (zh) 用于复合结构应用的混杂三维织造/层合支撑物
CN101310053B (zh) 用于复合结构应用的三维混杂织造/层合支撑物
CN109518339B (zh) 一种复合材料三维预制体的多针织造方法
Wambua et al. A review of preforms for the composites industry
KR20110002009A (ko) 복합재 구조의 강화를 위한 프리폼과 이의 제조방법
CN108823785B (zh) 一种预置螺纹的三维编织预制体及其制造方法
CN102648080B (zh) 编织预制件、复合材料、及其制造方法
WO2012091213A1 (ko) 트러스 구조의 심재를 구비한 샌드위치 패널의 제조방법
WO2011113254A1 (zh) 一种复合材料三维织造成形设备
Fangueiro et al. Textile structures
CN102634928A (zh) 整体三维多向结构平顶预制体的制备方法
CN112779646A (zh) 一种管状立体织物及其快速成型制备方法
CN111501195B (zh) 基于数字化导向模板的三维织造中空结构预制体及其成形方法
CN103112180B (zh) 基于数字化导向模版的复合材料预制件及其制备方法
CN109914031B (zh) 三维高压喷管预制体的净形制备方法
CN103061045B (zh) 一种纵向增强的复合材料预制件制备方法和复合材料
WO2013097613A1 (zh) 复合材料预制件织造成形方法
CN102677389B (zh) 十字型三维五向筋条的织造方法
CN104947275A (zh) 一种带有加强筋的层连结构板状织物及其制造方法
Roy et al. Braiding and filament winding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12862323

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12862323

Country of ref document: EP

Kind code of ref document: A1