WO2013097322A1 - 血氧测量仪 - Google Patents

血氧测量仪 Download PDF

Info

Publication number
WO2013097322A1
WO2013097322A1 PCT/CN2012/071194 CN2012071194W WO2013097322A1 WO 2013097322 A1 WO2013097322 A1 WO 2013097322A1 CN 2012071194 W CN2012071194 W CN 2012071194W WO 2013097322 A1 WO2013097322 A1 WO 2013097322A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood oxygen
unit
data
motion
data processing
Prior art date
Application number
PCT/CN2012/071194
Other languages
English (en)
French (fr)
Inventor
刘树海
张燕清
Original Assignee
北京超思电子技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京超思电子技术股份有限公司 filed Critical 北京超思电子技术股份有限公司
Publication of WO2013097322A1 publication Critical patent/WO2013097322A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters

Definitions

  • the invention belongs to the technical field of medical equipment, and particularly relates to an oximeter. Background technique
  • Blood Oxygen content is an important indicator of human health. It is important to know your blood oxygen level at any time for people's daily health care. To this end, the technicians have developed an oximeter suitable for use by ordinary family members, which derives the tip based on the absorbance of different wavelengths of red or infrared light at the distal end of the human body such as the finger or earlobe of the subject. Arterial oxygen saturation of the tissue.
  • the above-mentioned oximeter generally has a high measurement accuracy only when people are at a standstill; and when people are in a state of motion, measurement is caused by shaking or swinging of a user's measured portion. The accuracy is reduced. This is because: On the one hand, the jitter or oscillation of the measured part changes the path of the light during conduction, thus affecting the accuracy of the measurement results; on the other hand, the movement affects the volume of the venous blood vessel and the oxygen content of the vein, thereby affecting the artery. Signal extraction.
  • the present invention provides an oximeter having a plurality of data processing modes corresponding to a current state of a user, and correcting the measurement result according to the motion data when the user is in a motion state. Therefore, it also has high measurement accuracy under motion.
  • the present invention provides an oximeter comprising a blood oxygen data collection unit, a motion data detection unit, a mode selection unit, a blood oxygen data processing unit, and a control unit, wherein the control unit is for controlling The operation of the blood oxygen data collection unit, the motion data detection unit, the mode selection unit, and the blood oxygen data processing unit; the blood oxygen data collection unit is configured to perform blood oxygen data collection according to the instruction of the control unit, And transmitting the collected blood oxygen data to the control unit; the motion data detecting unit is configured to detect motion data, and send the detected motion data to the mode selection unit; Selecting a corresponding blood oxygen data processing mode based on the motion data detected by the motion data detecting unit, and transmitting the selection result to the control unit; the blood oxygen data processing unit is based on the selection according to the instruction of the control unit Blood oxygen data processing mode and based on the blood oxygen data or the blood oxygen data and motion data to obtain blood oxygen values
  • the blood oxygen data processing mode includes a static state data processing mode and a motion state data processing mode.
  • the blood oxygen data processing unit obtains a blood oxygen value based on the collected blood oxygen data; in the motion state data processing mode, the blood oxygen data processing unit is based on The blood oxygen data collected and the detected motion data are used to obtain blood oxygen values.
  • the blood oxygen data processing unit performs correction based on the detected motion data.
  • the modifying comprises correcting the collected blood oxygen data or the blood oxygen value obtained based on the collected blood oxygen data based on the detected current motion data.
  • the modifying comprises correcting a blood oxygen value obtained based on the collected blood oxygen data based on a historical exercise state blood oxygen value corresponding to the detected current exercise data.
  • the correction comprises a correction based on the detected current motion data in combination with a historical exercise state blood oxygen value corresponding to the detected current motion data.
  • the mode selection unit further provides the user with a blood oxygen measurement mode and a motion information acquisition mode selection, and sends the selection result to the control unit.
  • the mode selection unit automatically enters a default selection mode after a set time.
  • the oximeter further includes a motion data processing unit that transmits an "into motion information acquisition mode" indication according to the control unit, and obtains motion information based on the detected motion data.
  • the motion information includes user motion path information and motion energy consumption information.
  • the mode selection unit is set to an automatic selection mode and/or a manual selection mode.
  • the oximeter further comprises an automatic correction unit for automatically correcting the blood oxygen measurement result based on the relevant data stored in the oximeter.
  • the motion data detecting unit includes a piezoelectric acceleration sensor, a capacitive acceleration sensor or a thermal induction acceleration sensor.
  • the oximeter provided by the present invention is provided with a motion data detecting unit and a mode selecting unit, and the mode selecting unit can respectively select the corresponding blood oxygen according to the data detected by the motion data detecting unit when the user is in a stationary state and a motion state.
  • the data processing mode that is, selecting a blood oxygen data processing mode having high accuracy in a stationary state in a stationary state, and selecting a blood oxygen data processing mode having high accuracy in a moving state in a moving state.
  • the oximeter provided by the present invention takes into account the current state of the user (ie, whether the user is currently in a stationary state or a moving state) when calculating the blood oxygen level of the user, instead of using it as in the prior art.
  • the same blood oxygen data processing mode is used to calculate the blood oxygen level when the person is in a static state or a motion state. Therefore, the oximeter provided by the invention not only has a highly accurate blood oxygen data processing mode when the user is in a static state, but also has an accuracy suitable for the state when the user is in a motion state.
  • the high blood oxygen data processing mode allows it to have high measurement accuracy whether the user is at rest or in motion.
  • the mode selection unit included in the oximeter may determine whether the user is in a motion state according to the motion data detected by the motion data detecting unit, and select a corresponding data processing mode according to the determination result. . If in motion, the motion state data processing mode is selected, and the measurement results are performed based on the motion data during the blood oxygen data processing process. Corrected so that the user can get higher accuracy measurement results when he is in motion; if he is at rest, he does not perform motion state related correction, but is directly the same as the prior art oximeter The blood oxygen value is obtained based on the measured data, which also has a high accuracy. Therefore, the oximeter provided by the present invention can obtain highly accurate measurement results regardless of whether the user is in a stationary state or a moving state.
  • the mode selection unit included in the oximeter further provides the user with a choice of blood oxygen measurement mode and motion information acquisition mode.
  • the motion information acquisition mode the motion information of the user, such as the motion path or the motion energy, can be obtained according to the motion data detected by the motion data detecting unit, so that the oximeter can realize various functions and is convenient to use.
  • the oximeter is further provided with an automatic correction unit that can perform the processing result of the blood oxygen data according to the blood oxygen value of the same user measured by other more accurate devices. Correction to further improve the measurement accuracy of the oximeter.
  • FIG. 1 is a schematic structural view of a blood oxygen meter according to a first embodiment of the present invention
  • FIG. 2 is a flow chart of blood oxygen measurement when the blood oxygen meter is in an automatic selection mode according to the first embodiment of the present invention
  • FIG. 3 is a flow chart of blood oxygen measurement when the blood oxygen meter is manually selected in the first embodiment of the present invention
  • FIG. 4 is a schematic structural view of a blood oxygen meter according to a second embodiment of the present invention.
  • FIG. 5 is a measurement flow chart of a blood oxygen meter according to a second embodiment of the present invention
  • FIG. 6 is another measurement flow chart of the blood oxygen meter according to the second embodiment of the present invention
  • the schematic diagram of the structure of the oximeter provided by the third embodiment The schematic diagram of the structure of the oximeter provided by the third embodiment. detailed description In order to enable those skilled in the art to better understand the technical solutions of the present invention, the blood oxygen meter provided by the present invention will be described in detail below with reference to the accompanying drawings.
  • the blood oxygen meter provided by the first embodiment of the present invention includes a blood oxygen data collecting unit 10, a motion data detecting unit 11, a control unit 12, a mode selecting unit 13, a blood oxygen data processing unit 14, and a display.
  • the control unit 12 is configured to control the operations of the blood oxygen data collection unit 10, the motion data detection unit 11, the mode selection unit 13, the blood oxygen data processing unit 14, and the display unit 15, and the blood oxygen data collection unit 10 is configured to
  • the indication of the control unit 12 collects blood oxygen data of the user (so-called blood oxygen data refers to data related to calculating the blood oxygen value of the user that can be obtained from the user), and sends the collected blood oxygen data.
  • the motion data detecting unit 11 is configured to detect the motion data of the user according to the instruction of the control unit 12, and send the detected motion data to the mode selecting unit 13;
  • the mode selecting unit 13 is configured to The detected motion data selects a corresponding blood oxygen data processing mode, and sends the selection result to the control unit 12;
  • the blood oxygen data processing unit 14 is configured to, based on the indication of the control unit 12, based on the selected blood oxygen data processing mode, And obtaining a blood oxygen value based on the collected blood oxygen data or the collected blood oxygen data and the detected motion data;
  • the display unit 15 is for displaying the measurement result in accordance with the instruction of the control unit 15.
  • the mode selection unit 13 determines, according to the motion data detected by the motion data detecting unit 11, the current state of the user, that is, whether the user is currently in a stationary state or in a motion state, and selects a corresponding one according to the determination result. Blood oxygen data processing mode.
  • the stationary state data processing mode is selected, and the control unit 12 instructs the blood oxygen data processing unit 14 to perform the static state data processing mode to obtain the blood oxygen value according to the selection result, that is, The blood oxygen data processing unit 14 obtains the blood oxygen value based on the collected blood oxygen data; when the mode selecting unit 13 determines that the user is currently in the motion state, selects the motion state data processing mode, and the control unit 12 determines according to the selection result.
  • the blood oxygen data processing unit 14 is instructed to execute the motion state data processing mode to obtain the blood oxygen value, that is, the blood oxygen data processing unit 14 obtains the blood oxygen value based on the collected blood oxygen data and the detected motion data.
  • the blood oxygen data collection unit 10 may include an illumination tube and a photodetector.
  • the light signal emitted by the illumination tube reaches a human body tip such as a finger or an earlobe, and is attenuated or transmitted through the body tissue in the portion.
  • the photodetector receives the optical signal and outputs the received optical signal to the blood oxygen data processing unit 14, and the blood oxygen data processing unit 14 is based on the optical signal emitted by the light emitting tube and the optical signal received by the photodetector. And generate blood oxygen values.
  • the motion data may include acceleration
  • the motion data detecting unit 11 includes an acceleration sensor, such as a piezoelectric acceleration sensor, a capacitive acceleration sensor, or a thermal induction acceleration sensor, and the sensor may detect whether there is acceleration, and The detection result is sent to the mode selection unit 13.
  • the following takes the technical principle of the capacitive acceleration sensor as an example to illustrate the detection method of the motion acceleration (motion data):
  • the motion data detecting unit 11 includes a capacitive acceleration sensor capable of sensing motion signals such as acceleration or vibration in different directions.
  • the acceleration sensor is mainly composed of a movable mechanism designed by utilizing the mechanical properties of silicon.
  • the mechanism includes two sets of silicon combs, one set is fixed, and the other group moves with moving objects; the former is equivalent to a fixed electrode, and the latter is equivalent For movable electrodes.
  • the motion data detecting unit 11 detects the motion data, and transmits the detected motion data to Mode selection unit 13.
  • various acceleration sensors can be used.
  • the capacitive acceleration sensor is taken as an example to describe the detection method of the motion data of the blood oxygen meter provided in this embodiment.
  • the motion data may also comprise other physiological and biochemical parameters or kinematic parameters, in which case the motion data detection unit 11 may comprise sensors or detection means for detecting the respective parameters.
  • the mode selection unit 13 can be set to any one or two of an automatic selection mode and a manual selection mode.
  • the mode selection unit 13 first determines the current state of the user based on the detection result of the motion data detecting unit 11, and then selects the corresponding blood oxygen data processing mode according to the determination result. Specifically, when the motion data detecting unit 11 detects the motion data, the motion data detected by the motion data detecting unit 11 exceeds a certain threshold, or the motion data detecting unit 11 continuously detects the motion data for a period of time, the mode selecting unit 13 Judgement The user is in motion and selects the motion state data processing mode, otherwise the user is determined to be in a stationary state and the stationary state data processing mode is selected.
  • the measurement process is as shown in Fig. 2.
  • the user sends an instruction to measure the blood oxygen content by operating the button or the touch screen, and the blood oxygen data collection unit 10 starts collecting blood oxygen data according to the instruction, and the motion data detecting unit 11 detects the motion data according to the instruction; then the mode selection unit 13 determining the current state of the user according to the detection result of the motion data detecting unit 11, and selecting a corresponding blood oxygen data processing mode according to the determination result; the control unit 12 instructing the blood oxygen data processing unit 14 according to the selection result of the mode selecting unit 13.
  • the corresponding blood oxygen data processing mode is executed, that is, the static state data processing mode is executed when the user is in a stationary state, and the motion state data processing mode is executed when the user is in the motion state; finally, the measurement result is displayed by the display unit 15.
  • the mode selection unit 13 indicates to the user that there is a motion signal when the motion data detecting unit 11 detects the motion data, the detected motion data exceeds a certain threshold, or continuously detects the motion data for a period of time.
  • the user makes a judgment according to the actual situation of whether or not the current state is in motion, and inputs the judgment result to the mode selection unit 13, and then the mode selection unit 13 selects the corresponding blood oxygen data processing mode according to the judgment result.
  • the oximeter performs the manual selection mode, the measurement process is as shown in FIG.
  • the user sends an instruction to measure blood oxygen content by operating a button or a touch screen, and the blood oxygen data collection unit 10 starts collecting blood oxygen data according to the instruction, and the motion data detecting unit 11 detects motion data according to the instruction; The unit 13 performs a corresponding prompt according to the detection result of the motion data detecting unit 11.
  • the mode selecting unit 13 prompts the user that there is no motion signal, and Automatically selecting the quiescent state data processing mode, the control unit 12 instructs the oximetry data processing unit 14 to execute the quiescent state data processing mode according to the selection result; when the motion data detecting unit 11 detects the motion data, the detected motion data exceeds a certain threshold Or, when the motion data is continuously detected for a period of time, the mode selection unit 13 prompts the user to have a motion signal, and then the user makes a judgment according to the actual situation of whether the current state is in motion and inputs the judgment result into the mode.
  • the selecting unit 13 selects a corresponding blood oxygen data processing mode according to the judgment result of the user, and sends the selection result to the control unit 12, and the control unit 12 instructs the blood oxygen data processing unit 14 to perform the corresponding according to the selection result.
  • the blood oxygen data processing mode that is, when the user determines that he is currently in a stationary state, the stationary state data processing mode is executed, and when the user determines that he is currently in the motion state, the motion state data processing mode is executed; finally, the measurement is displayed by the display unit 15. result.
  • the static state data processing mode in this embodiment is the same as the blood oxygen data processing mode of the conventional oximeter, and the motion state data processing mode can select an appropriate processing mode according to the actual situation.
  • the blood oxygen data processing unit 14 may first obtain a blood oxygen value based on the collected blood oxygen data, and then correct the obtained blood oxygen value based on the detected motion data, And sending the corrected blood oxygen value as the final measurement result to the control unit 12; or the blood oxygen data processing unit 14 first corrects the collected blood oxygen data based on the detected motion data, and then based on the corrected Blood oxygen data gives blood oxygen values.
  • the modification includes a correction based on current motion data.
  • physiological and biochemical parameters and kinematic parameters involved in the current exercise state are used as influence factors, and the influence factors are used and based on the current flow state, blood flow rate, respiratory rate, vital capacity, heart rate, An empirical value or a theoretical value of physiological and biochemical parameters such as blood pressure and/or a kinematic parameter to obtain an oximeter, and then based on the blood oxygenation data collected by the oximeter or the blood oxygen value obtained based on the collected blood oxygen data. Make corrections.
  • physiological and biochemical parameters and/or kinematic parameters may be utilized to obtain the above oximetry factors, or only one of the physiological and biochemical parameters and/or kinematic parameters (eg, heart rate or acceleration) may be used to obtain the above blood.
  • Oxygen factor e.g, acetygen factor
  • the correction includes a correction based on a historical exercise state blood oxygen value.
  • the historical blood oxygen values that have been corrected in the history records already stored in the blood sample measuring instrument in accordance with the current motion data are processed according to the current motion data, and the historical blood oxygen values are processed, for example, to average or Perform various mathematical treatments in accordance with physiological and biochemical statistics or laws of motion statistics, and treat the obtained blood oxygen value as a blood oxygen factor, and then based on the blood oxygen factor to blood oxygen
  • the data processing unit 14 corrects the blood oxygen value obtained based on the collected blood oxygen data.
  • the modification includes the above two correction modes, that is, obtaining a first oximetry factor based on current motion data, and obtaining a second oximetry factor based on a historical exercise state blood oxygen value, and based on the The first oximeter and the second oximeter are corrected.
  • the blood oxygen value obtained based on the collected blood oxygen data may be corrected based on the first blood oxygen factor and the second blood oxygen factor; or first, the collected blood based on the first blood oxygen factor pair
  • the oxygen data is corrected, and then the blood oxygen data processing unit 14 obtains the blood oxygen value based on the corrected blood oxygen data, and then corrects the obtained blood oxygen value based on the second blood oxygen factor, and finally obtains the corrected blood oxygen value. Measurement results.
  • supplied blood oxygen data refers to the blood oxygen data collected by the blood oxygen data collection unit 10 without the above correction processing, so-called "based on the collected
  • the blood oxygen value obtained by the blood oxygen data refers to the processing result obtained by the blood oxygen data processing unit 14 based on the blood oxygen data which has not been subjected to the above-described correction processing.
  • the current motion data or historical motion data includes physiological parameters such as blood flow rate, respiratory rate, vital capacity, heart rate, blood pressure, and kinematic parameters such as acceleration and velocity.
  • physiological parameters such as blood flow rate, respiratory rate, vital capacity, heart rate, blood pressure, and kinematic parameters such as acceleration and velocity.
  • the acquisition of these parameters and/or indicators is obtained by adding measurement units or sensors corresponding to these parameters and/or indicators in the respective embodiments.
  • a two-dimensional planar acceleration sensor and/or a gravitational acceleration sensor may be added as an additional unit to the oximeter provided by the present invention, or these parameters and/or indicators may be input to the present invention by other means. In the oximeter.
  • physiological blood biometric parameters and kinematic parameters such as blood flow rate, respiratory rate, vital capacity, heart rate, blood pressure, etc.
  • the oximeter provided by the invention may be appropriately added with a corresponding measuring unit or sensor according to the above requirements, or further designed to receive a corresponding measurement result from an external detecting device.
  • these parameters and/or indicators, corresponding measuring units or sensors, and the arrangement of these measuring devices the structural positions and measuring methods in the oximeter provided by the present invention are well known to those skilled in the art and may be specific to the situation. The present invention will not be described herein.
  • the motion data when the motion data includes physiological and biochemical parameter parameters such as blood flow rate, respiratory rate, vital capacity, heart rate, blood pressure, and various parameters such as acceleration, velocity, and the like, the user is judged.
  • the parameters used in the current state may be the same as or different from the parameters used to obtain the blood oxygen value.
  • the motion data includes a heart rate and a motion acceleration
  • the corresponding motion data detecting unit includes a heart rate sensor and an acceleration sensor
  • the acceleration data is used to determine the blood oxygen value of the user when determining the current state of the user.
  • the heart rate data is used; or the user's current state and the blood oxygen value are used to calculate the heart rate data or the uniform acceleration data.
  • the exercise data includes various physiological and biochemical parameter parameters such as blood flow rate, respiratory rate, vital capacity, heart rate, blood pressure, and various parameters such as acceleration, velocity, and the like
  • the user state is determined. Any of several parameters or all of the parameters can be used to obtain the blood oxygen value.
  • the oximeter provided by the second embodiment of the present invention includes a blood oxygen data collection unit 10, a motion data detecting unit 11, a control unit 12, a mode selection unit 13, a blood oxygen data processing unit 14, and a display.
  • the motion data processing unit 16 is configured to obtain motion information of the user, such as energy consumed by the motion path or motion, based on the data detected by the motion data detecting unit 11 according to the instruction of the control unit 12.
  • the mode selection unit 13 provides a user with a blood oxygen measurement mode and a motion information acquisition mode selection in addition to selecting a corresponding blood oxygen data processing mode according to the detection result of the motion data detecting unit 11, and transmitting the user's selection result.
  • control unit 12 enters the corresponding measurement mode according to the selection result, and controls the unit operation corresponding to the measurement mode.
  • the blood oxygen data collection unit 10, the motion data detection unit 11 and the blood oxygen data processing unit 14 are similar to those in the first embodiment of the present invention, and will not be described again.
  • the motion data detecting unit 11 may include an acceleration sensor, and the motion data processing unit 16 may obtain the number of motion steps of the user based on the acceleration detected by the acceleration sensor.
  • the measurement flow of the oximeter provided in this embodiment is described by taking the motion step number of the user as the motion information as an example.
  • the mode selection unit 13 allows the user to select whether to enter the oximetry mode. If the user selects to enter the oximetry mode, the control unit 12 controls.
  • the blood oxygen meter enters the blood oxygen measurement mode; then the mode selection unit 13 determines whether the user is in a motion state, and selects a corresponding blood oxygen data processing mode according to the determination result, and then the control unit 12 indicates the blood oxygen data processing unit according to the selection result. 14 executing a corresponding blood oxygen data processing mode, that is, performing a static state data processing mode when in a stationary state, and performing a motion state data processing mode when in a moving state; finally displaying a measurement result through the display unit 15; When the blood oxygen measurement mode is selected, the control unit 12 controls the oximeter to enter the step mode, and the motion data processing unit 16 starts the step counting based on the detection data of the motion data detecting unit 11, and displays the number of motion steps through the display unit 15.
  • the oximeter provided in this embodiment can also perform the measurement flow shown in FIG. 6. Specifically, when the oximeter provided in this embodiment is turned on, the mode selection unit 13 first determines whether the user is in a motion state, and if not in the motion state, the mode selection unit 13 allows the user to select whether to enter the oximetry mode. If the control unit 12 instructs the blood oxygen data collection unit 10 to collect blood oxygen data, the blood oxygen data processing unit 14 performs a static state data processing mode based on the collected blood oxygen data to obtain a blood oxygen value, and displays The unit 15 displays the measurement result; if the user chooses not to enter the blood oxygen mode, the control unit 12 controls the oximeter to enter the standby state or shut down.
  • the mode selection unit 13 determines that the user is in a motion state, the mode selection unit causes the user to select whether to enter the oximetry mode, and if the oximetry mode is selected, the mode selection unit 13 automatically selects the motion state data processing mode, and the control unit 12
  • the blood oxygen data processing unit 14 is instructed to perform a motion state data processing mode based on the collected blood oxygen data and the detected motion data to obtain a blood oxygen value according to the selection result, and display the measurement result through the display unit 15;
  • the control unit 12 controls the oximeter to automatically enter the grading mode, and the motion data processing unit 16 starts counting based on the motion data detected by the motion data detecting unit 11, and displays the number of motion steps through the display unit 15.
  • the oximeter provided in this embodiment is not limited to the above.
  • the measurement flow shown in Figure 5 and Figure 6 can be changed or set as needed.
  • the mode selection unit may be configured to automatically enter the default selection mode after the oximeter provided in the embodiment is turned on, after a set time (when the user does not select the mode)
  • the default selection mode is an oximetry mode or a motion information acquisition mode, and the set time can be specifically set according to actual needs.
  • the motion information is not limited to the user's motion path (for example, the number of motion steps), but also various other motion information, such as exercise energy consumption, average pulse over a period of time or Heart rate and so on.
  • the oximeter provided by the present invention can simultaneously measure one or more kinds of motion information, for example, the number of motion steps of the user and the calorie information consumed by the user can be simultaneously measured.
  • the oximeter of the third embodiment of the present invention includes a blood oxygen data collection unit 10, a motion data detecting unit 11, a control unit 12, a mode selection unit 13, a blood oxygen data processing unit 14, and a display.
  • the automatic correction unit 17 is for correcting the processing result of the blood oxygen data processing unit 14, and sends the corrected result to the control unit 12.
  • the blood oxygen data collection unit 10, the motion data detection unit 11, the blood oxygen data processing unit 14, the mode selection unit 13, and the motion data processing unit 16 are similar to the above-described embodiments of the present invention, and are not described herein again.
  • the blood oxygen value of the hospital is measured by a more accurate oximeter such as a hospital, and the blood oxygen value is introduced into the present embodiment through the communication unit.
  • the oximeter provided by the example and then measured again by the oximeter provided in the embodiment, and the oximeter provided by the embodiment is provided by the automatic correcting unit 17 according to the above-mentioned higher blood oxygen value.
  • the measured blood oxygen level is corrected, for example, by filtering out some of the measured values of the signal strength that are too high or too low, or by increasing or decreasing the measured value by a percentage as the final measurement.
  • the measured value of the higher accuracy measured by the hospital or the like can be introduced into the oximeter provided in this embodiment through the communication unit when needed, or can be pre-stored in the oximeter provided in the embodiment.
  • the automatic correction unit 17 can be used for the blood oxygen data processing unit.
  • the overlap processing can be performed on the latter processing value according to the previous processing value.
  • the oximeter provided by the above embodiments of the present invention may include a data storage unit for storing data detected by the blood oxygen data detecting unit and the motion data detecting unit, the blood oxygen data processing unit and the motion data.
  • the data required by the processing unit during the data processing and/or the resulting data, as well as the data processing results, etc., can of course also be used to store data imported or input from outside.
  • the motion data required by the blood oxygen data processing unit 14 in the motion state data processing mode may be directly from the motion data detecting unit 11, or the motion data detecting unit 11 may store the detected data therein. After the data storage unit is obtained from the data storage unit.
  • the relationship between the respective units of the oximeter provided by the present invention is not limited to the relationship shown in the drawings, and may be set between the corresponding units as long as there is a need for data transfer or interaction between each other.
  • the oximeter provided by the present invention can use not only a finger-clip or a finger-sleeve structure, but also other shapes and structures, as long as it applies the measurement principle provided by the present invention and The measurement mode is OK.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Physiology (AREA)
  • Dentistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种血氧测量仪,其包括血氧数据采集单元(10)、运动数据检测单元(11)、模式选择单元(13)、血氧数据处理单元(14)和控制单元(12),控制单元(12)控制血氧数据采集单元(10)、运动数据检测单元(11)、模式选择单元(13)和血氧数据处理单元(14)的工作;血氧数据采集单元(10)根据控制单元(12)的指示采集血氧数据,并将采集的血氧数据发送至血氧数据处理单元(14);运动数据检测单元(11)检测运动数据,并将检测的运动数据发送至模式选择单元(13);模式选择单元(13)基于检测到的运动数据选择相应的血氧数据处理模式,并将选择结果发送至控制单元(12);血氧数据处理单元(14)根据控制单元(12)的指示,基于所选择的血氧数据处理模式并基于血氧数据或血氧数据和运动数据来得到血氧值。该血氧测量仪在静止和运动状态下准确度均较高。

Description

血氧测量仪 技术领域
本发明属于医疗设备技术领域, 具体涉及一种血氧测量仪。 背景技术
随着生活水平的提高, 人们越来越关注自己以及家人的身体健康。 血液 含氧量是表征人体健康状况的一项重要指标, 能够随时获知自身的血氧含量 值对于人们的日常保健具有重要的意义。 为此, 技术人员开发出一种适于普 通家庭成员使用的血氧测量仪, 其基于被测者的手指或耳垂等人体末梢部位 对不同波长的红光或红外光的吸光率来推算出末梢组织的动脉血氧饱和度。
然而, 上述这种血氧测量仪通常只在人们处于静止状态时才具有较高的 测量准确度; 而当人们处于运动状态时, 会因使用者的被测部位的抖动或摆 动等而导致测量准确度降低。 这是因为: 一方面, 被测部位的抖动或摆动会 改变光在传导过程中的路径, 从而影响测量结果的准确度; 另一方面, 运动 会影响静脉血管容积和静脉含氧量, 从而影响动脉信号提取。
由于血氧测量仪在家庭、 野外或者战场监护中有比较广泛的实用前景, 而在野外或战场监护中会存在许多期望在运动状态下测量血氧的情形,因此, 人们希望可以获得一种不论使用者处于静止状态还是运动状态都能提供高准 确度的测量结果的血氧测量仪。 发明内容
为解决上述技术问题, 本发明提供了一种血氧测量仪, 其具有与使用者 当前状态相对应的多种数据处理模式, 并且当使用者处于运动状态时可根据 运动数据对测量结果进行修正,使得在运动状态下也具有较高的测量准确度。 为此, 本发明提供了一种血氧测量仪, 其包括血氧数据釆集单元、 运动 数据检测单元、 模式选择单元、 血氧数据处理单元和控制单元, 其中, 所述 控制单元用于控制所述血氧数据釆集单元、 运动数据检测单元、 模式选择单 元和血氧数据处理单元的工作; 所述血氧数据釆集单元用于根据所述控制单 元的指示进行血氧数据釆集, 并将釆集到的血氧数据发送至所述控制单元; 所述运动数据检测单元用于检测运动数据, 并将所检测到的运动数据发送至 所述模式选择单元; 所述模式选择单元用于基于所述运动数据检测单元所检 测到的运动数据选择相应的血氧数据处理模式, 并将选择结果发送至控制单 元; 所述血氧数据处理单元根据所述控制单元的指示, 基于所选择的血氧数 据处理模式并基于所述血氧数据或所述血氧数据和运动数据来得到血氧值。
其中, 所述血氧数据处理模式包括静止状态数据处理模式和运动状态数 据处理模式。
其中, 在所述静止状态数据处理模式中, 所述血氧数据处理单元基于所 釆集的血氧数据得到血氧值; 在所述运动状态数据处理模式中, 所述血氧数 据处理单元基于所釆集的血氧数据和所检测到的运动数据而得到血氧值。
其中, 在所述运动状态数据处理模式中, 所述血氧数据处理单元基于所 检测到的运动数据进行修正。
其中, 所述修正包括基于所检测到的当前运动数据对所釆集的血氧数据 或基于所釆集的血氧数据得到的血氧值进行修正。
其中, 所述修正包括基于与所检测到的当前运动数据相对应的历史运动 状态血氧值对基于所釆集的血氧数据得到的血氧值进行修正。
其中, 所述修正包括基于所检测到的当前运动数据结合与所检测到的当 前运动数据相对应的历史运动状态血氧值进行的修正。
其中, 所述模式选择单元还为使用者提供血氧测量模式和运动信息获取 模式选择, 并将选择结果发送至所述控制单元。
其中, 所述模式选择单元经过设定时间后自动进入默认选择模式。 其中, 所述血氧测量仪还包括运动数据处理单元, 其根据所述控制单元 发送 "进入运动信息获取模式" 指示, 基于所检测到的运动数据来得到运动 信息。
其中, 所述运动信息包括使用者运动路程信息和运动耗能信息。
其中, 所述模式选择单元被设定为自动选择模式和 /或人工选择模式。 其中, 所述血氧测量仪还包括自动校正单元, 其用于基于存储于血氧测 量仪内的相关数据对血氧测量结果进行自动校正。
其中, 所述运动数据检测单元包括压电式加速度传感器、 电容式加速度 传感器或热感应式加速度传感器。
本发明提供的血氧测量仪具有如下有益效果:
本发明提供的血氧测量仪设置有运动数据检测单元和模式选择单元, 且 模式选择单元可根据运动数据检测单元所检测的数据在使用者处于静止状态 和运动状态时分别选择相对应的血氧数据处理模式, 即, 在静止状态下选择 在静止状态下具有高准确度的血氧数据处理模式, 在运动状态下选择在运动 状态下具有高准确度的血氧数据处理模式。 换言之, 本发明提供的血氧测量 仪在计算使用者的血氧值时会考虑到使用者的当前状态 (即, 使用者当前处 于静止状态还是运动状态 ),而不是像现有技术那样无论使用者处于静止状态 还是运动状态均釆用相同的血氧数据处理模式来计算血氧值。 因此, 本发明 提供的血氧测量仪不仅在使用者处于静止状态时, 具有准确度较高的血氧数 据处理模式, 而且在使用者处于运动状态时, 也具有适用于该状态的准确度 较高的血氧数据处理模式, 从而使得其无论是在使用者处于静止状态还是处 于运动状态的情况下都具有较高的测量准确度。
在本发明的一个优选实施方式中, 血氧测量仪所包含的模式选择单元可 根据运动数据检测单元所检测的运动数据, 判断使用者是否处于运动状态, 并根据判断结果选择相应的数据处理模式。 如处于运动状态, 则选择运动状 态数据处理模式, 并在血氧数据处理过程中会基于运动数据对测量结果进行 修正, 从而使得使用者处于运动状态时也可得到准确度较高的测量结果; 如 处于静止状态, 则不进行与运动状态相关的修正, 而是同现有技术中的血氧 测量仪一样直接基于测量数据来得到血氧值, 这同样具有较高的准确度。 因 此, 无论使用者处于静止状态还是运动状态, 釆用本发明提供的血氧测量仪 都能获得高准确度的测量结果。
在本发明的一个优选实施方式中, 血氧测量仪所包含的模式选择单元还 为使用者提供血氧测量模式和运动信息获取模式的选择。 在运动信息获取模 式中,可根据运动数据检测单元所检测的运动数据来得到使用者的运动信息, 例如运动路程或运动耗能, 从而使得该血氧测量仪可实现多种功能, 方便了 使用者。
在本发明的一个优选实施方式中, 血氧测量仪还设置有自动校正单元, 其可根据其他准确度更高的设备所测得的同一使用者的血氧值对血氧数据的 处理结果进行校正, 从而进一步提高该血氧测量仪的测量准确度。 附图说明
图 1为本发明第一实施例提供的血氧测量仪的结构示意图;
图 2为本发明第一实施例提供的血氧测量仪执行自动选择模式时的血氧 测量流程图;
图 3为本发明第一实施例提供的血氧测量仪执行人工选择模式时的血氧 测量流程图;
图 4为本发明第二实施例提供的血氧测量仪的结构示意图;
图 5为本发明第二实施例提供的血氧测量仪的一种测量流程图; 图 6为本发明第二实施例提供的血氧测量仪的另一种测量流程图; 图 7为本发明第三实施例提供的血氧测量仪的结构示意图。 具体实施方式 为了使本技术领域的人员更好地理解本发明的技术方案, 下面结合附图 对本发明提供的血氧测量仪进行详细描述。
如图 1所示, 本发明第一实施例提供的血氧测量仪包括血氧数据釆集单 元 10、 运动数据检测单元 11、 控制单元 12、 模式选择单元 13、 血氧数据处 理单元 14和显示单元 15。其中,控制单元 12用于控制血氧数据釆集单元 10、 运动数据检测单元 11、 模式选择单元 13、 血氧数据处理单元 14和显示单元 15的工作,血氧数据釆集单元 10用于根据控制单元 12的指示釆集使用者的 血氧数据 (所谓血氧数据指的是能够从使用者身上获取的与计算使用者血氧 值有关的数据), 并将所釆集的血氧数据发送至血氧数据处理单元 14; 运动 数据检测单元 11用于根据控制单元 12的指示检测使用者的运动数据, 并将 所检测到的运动数据发送至模式选择单元 13; 模式选择单元 13用于根据所 检测到的运动数据选择相应的血氧数据处理模式, 并将选择结果发送至控制 单元 12; 血氧数据处理单元 14用于根据控制单元 12的指示, 基于所选择的 血氧数据处理模式、 并基于所釆集到的血氧数据或所釆集到的血氧数据和所 检测到的运动数据而得到血氧值; 显示单元 15用于根据控制单元 15的指示 显示测量结果。
具体地, 模式选择单元 13根据所述运动数据检测单元 11所检测到的运 动数据判断使用者当前所处状态, 即, 使用者当前是处于静止状态还是处于 运动状态, 并根据判断结果选择相应的血氧数据处理模式。 当模式选择单元 13判断使用者当前处于静止状态时, 则选择静止状态数据处理模式, 控制单 元 12根据该选择结果而指示血氧数据处理单元 14执行静止状态数据处理模 式来得到血氧值, 即,血氧数据处理单元 14基于所釆集的血氧数据得到血氧 值; 当模式选择单元 13判断使用者当前处于运动状态时,则选择运动状态数 据处理模式, 控制单元 12根据该选择结果而指示血氧数据处理单元 14执行 运动状态数据处理模式来得到血氧值, 即,血氧数据处理单元 14基于所釆集 的血氧数据和所检测到的运动数据而得到血氧值。 在实际应用中, 血氧数据釆集单元 10可包括发光管和光电探测器, 发 光管发出的光信号到达诸如手指或耳垂的人体末梢部位, 经该部位内的人体 组织衰减后被反射或透射至光电探测器, 光电探测器接收该光信号并将接收 到的光信号输出至血氧数据处理单元 14, 血氧数据处理单元 14基于发光管 发出的光信号和光电探测器接收到的光信号而生成血氧值。
在实际应用中, 运动数据可以包括加速度, 此时运动数据检测单元 11 包括加速度传感器, 例如压电式加速度传感器、 电容式加速度传感器或者热 感应式加速度传感器, 通过传感器可检测是否存在加速度, 并将检测结果发 送至模式选择单元 13。 下面以电容式加速度传感器的技术原理为例, 说明运 动加速度(运动数据)的检测方法: 运动数据检测单元 11包括电容式加速度 传感器, 其能够感测不同方向的加速度或振动等运动信号。 这种加速度传感 器主要构成是利用硅的机械性质设计出的可移动机构, 该机构包括两组硅梳 齿, 一组固定, 另一组随运动物体移动; 前者相当于固定的电极, 后者相当 于可移动电极。 当可移动的梳齿产生了位移, 就会随之产生与位移成比例的 电容值的改变 ( A C ), 此时运动数据检测单元 11 即检测到运动数据, 并将 检测到的运动数据传送给模式选择单元 13。 在实际使用中, 可使用各种加速 度传感器, 此处仅以电容式加速度传感器为例来说明本实施例提供的血氧测 量仪的运动数据的检测方法。 此外, 在实际应用中运动数据还可以包括其他 生理生化参量或运动学参量,此时运动数据检测单元 11可包括用于检测相应 参量的传感器或检测装置。
在实际应用中, 模式选择单元 13可设定为自动选择模式和人工选择模 式中的任意一种或两种模式。在自动选择模式中,模式选择单元 13首先根据 运动数据检测单元 11的检测结果判断使用者当前所处状态,然后根据判断结 果选择相应的血氧数据处理模式。具体地, 当运动数据检测单元 11检测到运 动数据、运动数据检测单元 11检测到的运动数据超过某一阔值或者运动数据 检测单元 11在一段时间内持续检测到运动数据时, 模式选择单元 13判定使 用者处于运动状态, 并选择运动状态数据处理模式, 反之则判定使用者处于 静止状态, 并选择静止状态数据处理模式。 当血氧测量仪执行自动选择模式 时, 其测量过程如图 2所示。 首先使用者通过操作按钮或触摸屏发出测量血 氧含量的指令,血氧数据釆集单元 10根据该指令开始釆集血氧数据,运动数 据检测单元 11则根据该指令检测运动数据; 随后模式选择单元 13根据运动 数据检测单元 11的检测结果判断使用者当前所处状态,并根据判断结果选择 相应的血氧数据处理模式; 控制单元 12根据模式选择单元 13的选择结果而 指示血氧数据处理单元 14执行相应的血氧数据处理模式, 即, 当使用者处于 静止状态时执行静止状态数据处理模式, 当使用者处于运动状态时, 执行运 动状态数据处理模式; 最后通过显示单元 15显示测量结果。
在人工选择模式中, 模式选择单元 13在运动数据检测单元 11检测到运 动数据、 检测到的运动数据超过某一阔值或者在一段时间内持续检测到运动 数据时会向使用者提示存在运动信号, 使用者根据当前是否处于运动状态的 实际情况做出判断, 并将判断结果输入模式选择单元 13 , 随后模式选择单元 13根据该判断结果选择相应的血氧数据处理模式。 当血氧测量仪执行人工选 择模式时, 其测量过程如图 3所示。 首先, 使用者通过操作按钮或触摸屏发 出测量血氧含量的指令, 血氧数据釆集单元 10根据该指令开始釆集血氧数 据, 运动数据检测单元 11 则根据该指令检测运动数据; 随后模式选择单元 13根据运动数据检测单元 11的检测结果进行相应提示。 当运动数据检测单 元 11没有检测到运动数据、没有检测到超过某一阔值的运动数据以及没有在 一段时间内持续检测到运动数据时,模式选择单元 13会向使用者提示没有运 动信号,并自动选择静止状态数据处理模式,控制单元 12根据该选择结果指 示血氧数据处理单元 14执行静止状态数据处理模式; 当运动数据检测单元 11检测到运动数据、检测到的运动数据超过某一阔值或者在一段时间内持续 检测到运动数据时,模式选择单元 13会向使用者提示存在运动信号, 随后使 用者根据当前是否处于运动状态的实际情况做出判断并将判断结果输入模式 选择单元 13 , 模式选择单元 13根据使用者的判断结果选择相应的血氧数据 处理模式, 并将选择结果发送至控制单元 12, 控制单元 12根据该选择结果 指示血氧数据处理单元 14执行相应的血氧数据处理模式, 即, 当使用者判定 自身当前处于静止状态时执行静止状态数据处理模式, 当使用者判定自身当 前处于运动状态时,执行运动状态数据处理模式; 最后通过显示单元 15显示 测量结果。
本实施例中的静止状态数据处理模式和常规血氧仪的血氧数据处理模 式相同, 运动状态数据处理模式可根据实际情形选择适合的处理方式。 具体 地,在运动状态数据处理模式中,血氧数据处理单元 14可首先基于所釆集的 血氧数据得到血氧值, 然后再基于所检测到的运动数据对得到的血氧值进行 修正, 并以修正后的血氧值作为最终测量结果发送至控制单元 12; 或者血氧 数据处理单元 14 首先基于所检测到的运动数据对所釆集的血氧数据进行修 正, 然后再基于修正后的血氧数据得到血氧值。
在一种实施方式中, 所述修正包括基于当前运动数据进行的修正。 在这 种修正中, 将当前运动状态涉及到的生理生化参数和运动学参数作为影响因 子, 利用所述影响因子并基于运动学中该当前运动状态下对血液流速、 呼吸 速度、 肺活量、 心率、 血压等生理生化参数和 /或运动学参数的经验值或理论 值得到血氧因子, 再基于该血氧因子对所釆集的血氧数据或基于所釆集的血 氧数据得到的血氧值进行修正。 在实际应用中可利用多种生理生化参数和 / 或运动学参数得到上述血氧因子,也可仅利用其中一种生理生化参数和 /或运 动学参数(例如, 心率或加速度)来得到上述血氧因子。
在另一种实施方式中, 所述修正包括基于历史运动状态血氧值进行的修 正。 在这种修正中, 依据当前运动数据查询血样测量仪中已经存储的历史记 录中符合此类运动数据时经过最终修正的历史血氧值, 对这些历史血氧值进 行处理, 例如去平均值或者进行各种符合生理生化统计学或运动统计学规律 的数学处理, 将处理得到的血氧值作为血氧因子, 再基于该血氧因子对血氧 数据处理单元 14基于所釆集的血氧数据得到的血氧值进行修正。
在又一种实施方式中, 所述修正包括上述两种修正方式, 即, 基于当前 运动数据得到第一血氧因子, 以及基于历史运动状态血氧值得到第二血氧因 子, 并且基于所述第一血氧因子和第二血氧因子进行修正。 在实际应用中, 可基于第一血氧因子和第二血氧因子对基于所釆集的血氧数据得到的血氧值 进行修正; 或者首先, 基于第一血氧因子对所釆集的血氧数据进行修正, 然 后血氧数据处理单元 14基于修正的血氧数据得到血氧值,接着基于第二血氧 因子对所得到的血氧值进行修正, 并以修正后的血氧值作为最终测量结果。
需要说明的是, 本文中所谓的 "所釆集的血氧数据" 指的是血氧数据釆 集单元 10所釆集的未经过上述修正处理的血氧数据,所谓的 "基于所釆集的 血氧数据得到的血氧值"指的是血氧数据处理单元 14基于未经上述修正处理 的血氧数据所得到的处理结果。
还需要说明的是, 在本发明的各实施方式中, 这些当前运动数据或历史 运动数据包括血液流速、 呼吸速度、 肺活量、 心率、 血压等生理生化指标参 数和加速度、速度等运动学参数。 这些参数和 /或指标的获得是通过在相应的 实施方式中增加对应于这些参数和 /或指标的测量单元或者传感器而获取的。 例如, 对于加速度, 可以釆用二维平面加速度传感器和 /或重力加速度传感器 作为附加单元增加到本发明提供的血氧测量仪中, 或者通过其他方式将这些 参数和 /或指标输入到本发明提供的血氧测量仪中。本领域技术人员应当清楚 的是, 对这些血液流速、 呼吸速度、 肺活量、 心率、 血压等生理生化指标参 数和运动学参数中的一个或者多个的选择是依据使用者的需求而定的, 本发 明提供的血氧测量仪可以根据上述需求适当地增设相应的测量单元或传感 器, 或被进一步设计成能够从外部检测设备中接收相应的测量结果。 至于这 些参数和 /或指标、相应的测量单元或传感器以及这些测量装置的设置、 在本 发明提供的血氧测量仪中的结构位置和测量方法都是本领域技术人员所明了 并可根据具体情形进行设置的, 本发明在此不作赘述。 进一步需要说明的是, 在实际应用中, 当运动数据包括诸如血液流速、 呼吸速度、 肺活量、 心率、 血压等生理生化指标参数和诸如加速度、 速度等 运动学参数的多种参数时, 判断使用者当前所处状态所釆用参数与得到血氧 值所釆用参数可以相同也可以不同。 例如, 在本发明一种实施方式中, 运动 数据包括心率和运动加速度, 相应的运动数据检测单元包括心率传感器和加 速度传感器, 而判断使用者当前所处状态时釆用加速度数据, 得到血氧值时 釆用心率数据; 或者判断使用者当前所处状态和得到血氧值均釆用心率数据 或均釆用加速度数据。 当然, 在实际应用中, 当运动数据包括多种诸如血液 流速、 呼吸速度、 肺活量、 心率、 血压等生理生化指标参数和诸如加速度、 速度等运动学参数的多种参数时, 判断使用者状态与得到血氧值均可釆用其 中任意几种参数或全部参数。
如图 4所示, 本发明第二实施例提供的血氧测量仪包括血氧数据釆集单 元 10、 运动数据检测单元 11、 控制单元 12、 模式选择单元 13、 血氧数据处 理单元 14、 显示单元 15和运动数据处理单元 16。 其中, 运动数据处理单元 16用于根据控制单元 12的指示,基于运动数据检测单元 11所检测到的数据 得到使用者的运动信息, 例如运动路程或运动消耗的能量。 模式选择单元 13 除用于根据运动数据检测单元 11 的检测结果选择相应的血氧数据处理模式 外, 还为使用者提供血氧测量模式和运动信息获取模式选择, 并将使用者的 选择结果发送至控制单元 12, 控制单元 12根据该选择结果进入相应的测量 模式, 并控制与测量模式相对应的单元工作。 血氧数据釆集单元 10、 运动数 据检测单元 11和血氧数据处理单元 14均同本发明第一实施例中的类似, 在 此不再赘述。
在实际应用中, 运动数据检测单元 11 可包括加速度传感器, 运动数据 处理单元 16可基于加速度传感器检测到的加速度得到使用者的运动步数。下 面以使用者的运动步数作为运动信息为例来说明本实施例提供的血氧测量仪 的测量流程。 如图 5 所示, 当开启本实施例提供的血氧测量仪时, 模式选择单元 13 会让使用者选择是否进入血氧测量模式, 若使用者选择进入血氧测量模式, 则控制单元 12控制血氧测量仪进入血氧测量模式; 随后模式选择单元 13会 判断使用者是否处于运动状态, 并根据判断结果选择相应的血氧数据处理模 式, 接着控制单元 12根据选择结果指示血氧数据处理单元 14执行相应的血 氧数据处理模式, 即, 当处于静止状态时执行静止状态数据处理模式, 当处 于运动状态时,执行运动状态数据处理模式; 最后通过显示单元 15显示测量 结果; 若使用者没有选择进入血氧测量模式,则控制单元 12控制血氧测量仪 进入计步模式, 运动数据处理单元 16根据运动数据检测单元 11的检测数据 开始计步, 并通过显示单元 15显示运动步数。
在实际应用中, 本实施例提供的血氧测量仪还可执行如图 6所示的测量 流程。 具体地, 当开启本实施例提供的血氧测量仪时, 首先模式选择单元 13 判断使用者是否处于运动状态, 如果不处于运动状态, 则模式选择单元 13 让使用者选择是否进入血氧测量模式,如果进入则控制单元 12指示血氧数据 釆集单元 10釆集血氧数据, 血氧数据处理单元 14基于所釆集的血氧数据执 行静止状态数据处理模式来得到血氧值, 并通过显示单元 15显示测量结果; 如果使用者选择不进入血氧模式,则控制单元 12控制血氧测量仪进入待机状 态或关机。如果模式选择单元 13判断使用者处于运动状态,则模式选择单元 让使用者选择是否进入血氧测量模式, 如果选择进入血氧测量模式则模式选 择单元 13 自动选择运动状态数据处理模式, 控制单元 12根据该选择结果指 示血氧数据处理单元 14基于所釆集的血氧数据和所检测的运动数据执行运 动状态数据处理模式来得到血氧值,并通过显示单元 15显示测量结果;如果 没有选择进入血氧测量模式,则控制单元 12控制血氧测量仪自动进入计步模 式, 运动数据处理单元 16根据运动数据检测单元 11所检测的运动数据开始 计步, 并通过显示单元 15显示运动步数。
需要说明的是, 在实际应用中, 本实施例提供的血氧测量仪不局限于上 述图 5和图 6所示测量流程, 可根据需要进行相应变化或和设置。 此外, 在 实际应用中, 模式选择单元可设置为当开启本实施例提供的血氧测量仪后, 经过设定时间 (在此时间内使用者没有选择模式)后则自动进入默认选择模 式, 该默认选择模式为血氧测量模式或运动信息获取模式, 所述设定时间可 根据实际需要进行具体设定。
还需要说明的是, 在实际应用中, 运动信息并不局限于使用者运动路程 (例如, 运动步数), 还可以为其他各种运动信息, 例如运动耗能, 一段时间 内的平均脉搏或心率等等。 并且, 在实际应用中, 本发明提供的血氧测量仪 可同时测量一种或多种运动信息, 例如可同时测量使用者的运动步数和使用 者消耗的卡路里信息。
如图 7所示, 本发明第三实施例提供的血氧测量仪包括血氧数据釆集单 元 10、 运动数据检测单元 11、 控制单元 12、 模式选择单元 13、 血氧数据处 理单元 14、 显示单元 15、 运动数据处理单元 16和自动校正单元 17。 其中, 自动校正单元 17用于对血氧数据处理单元 14的处理结果进行校正, 并将校 正后的结果发送至控制单元 12。 血氧数据釆集单元 10、 运动数据检测单元 11、 血氧数据处理单元 14、 模式选择单元 13和运动数据处理单元 16同本发 明上述实施例类似, 在此不再赘述。
在实际使用中, 首先在使用者自身血氧稳定的情况下, 利用医院等的准 确度更高的血氧测量仪测量其自身的血氧值, 并通过通信单元将该血氧值导 入本实施例提供的血氧测量仪中; 然后利用本实施例提供的血氧测量仪再次 测量,并由其中的自动校正单元 17根据上述准确度更高的血氧值对本实施例 提供的血氧测量仪测得的血氧值进行校正, 例如滤除测得的某些信号强度过 高或过低的值,或者将测得的值增加或降低一个百分比来作为最终测量结果。 在实际应用中, 通过医院等测得的准确度更高的测量值可在需要时通过通信 单元导入本实施例提供的血氧测量仪, 也可预先存储于本实施例提供的血氧 测量仪的数据存储单元中。此外, 自动校正单元 17除可对血氧数据处理单元 14的每一或每组处理值进行自动校正外,还可根据前一处理值对后一处理值 进行叠力口校正。
可以理解的是, 本发明上述实施例提供的血氧测量仪均可包括数据存储 单元, 其用于存储血氧数据检测单元和运动数据检测单元所检测的数据、 血 氧数据处理单元和运动数据处理单元在数据处理过程中所需要的和 /或所得 到的数据以及数据处理结果等,当然也可用于存储从外部导入或输入的数据。 当设置有数据存储单元时,血氧数据处理单元 14在运动状态数据处理模式中 所需要的运动数据可直接来自于运动数据检测单元 11 ,也可在运动数据检测 单元 11将其检测数据存储在数据存储单元后,从数据存储单元中获取。此外, 本发明提供的血氧测量仪的各个单元之间的关系并不局限于附图中所示的关 系, 只要彼此之间存在数据传递或交互的需要, 即可在相应的单元之间设置 相应的通信模块或通信线路。
还可以理解的是, 在实际应用中, 本发明提供的血氧测量仪不仅可使用 指夹式或指套式结构, 还可使用于其他形状和结构, 只要其应用本发明提供 的测量原理及测量模式即可。
进一步可以理解的是, 以上实施方式仅仅是为了说明本发明的原理而釆 用的示例性实施方式, 然而本发明并不局限于此。 对于本领域内的普通技术 人员而言, 在不脱离本发明的精神和实质的情况下, 可以做出各种变型和改 进, 这些变型和改进也视为本发明的保护范围。

Claims

权 利 要 求 书
1、 一种血氧测量仪, 其特征在于, 包括血氧数据釆集单元、 运动数据 检测单元、 模式选择单元、 血氧数据处理单元和控制单元, 其中
所述控制单元用于控制所述血氧数据釆集单元、 运动数据检测单元、 模 式选择单元和血氧数据处理单元的工作;
所述血氧数据釆集单元用于根据所述控制单元的指示进行血氧数据釆 集, 并将釆集到的血氧数据发送至所述血氧数据处理单元;
所述运动数据检测单元用于检测运动数据, 并将所检测到的运动数据发 送至所述模式选择单元;
所述模式选择单元用于基于所述运动数据检测单元所检测到的运动数 据选择相应的血氧数据处理模式, 并将选择结果发送至控制单元;
所述血氧数据处理单元根据所述控制单元的指示,基于所选择的血氧数 据处理模式并基于所釆集的血氧数据或所釆集血氧数据和所检测的运动数据 来得到血氧值。
2. 如权利要求 1 所述的血氧测量仪, 其特征在于, 所述血氧数据处理 模式包括静止状态数据处理模式和运动状态数据处理模式。
3. 如权利要求 1 所述的血氧测量仪, 其特征在于, 在所述静止状态数 据处理模式中, 所述血氧数据处理单元基于所釆集的血氧数据得到血氧值; 在所述运动状态数据处理模式中, 所述血氧数据处理单元基于所釆集的 血氧数据和所检测到的运动数据而得到血氧值。
4. 如权利要求 3所述的血氧测量仪, 其特征在于, 在所述运动状态数 据处理模式中, 所述血氧数据处理单元基于所检测到的运动数据进行修正。
5. 如权利要求 4 所述的血氧测量仪, 其特征在于, 所述修正包括基于 所检测到的当前运动数据对所釆集的血氧数据或基于所釆集的血氧数据得到 的血氧值进行修正。
6. 如权利要求 4 所述的血氧测量仪, 其特征在于, 所述修正包括基于 与所检测到的当前运动数据相对应的历史运动状态血氧值对基于所釆集的血 氧数据得到的血氧值进行修正。
7. 如权利要求 4 所述的血氧测量仪, 其特征在于, 所述修正包括基于 所检测到的当前运动数据结合与所检测到的当前状态数据相对应的历史运动 状态血氧值而进行的修正。
8. 如权利要求 1 所述的血氧测量仪, 其特征在于, 所述模式选择单元 还为使用者提供血氧测量模式和运动信息获取模式选择, 并将选择结果发送 至所述控制单元。
9. 如权利要求 8 所述的血氧测量仪, 其特征在于, 所述模式选择单元 经过设定时间后自动进入默认选择模式。
10. 如权利要求 8所述的血氧测量仪, 其特征在于, 还包括运动数据处 理单元, 其根据所述控制单元发送的 "进入运动信息获取模式" 的指示而基 于所检测到的运动数据来得到运动信息。
11. 如权利要求 10所述的血氧测量仪, 其特征在于, 所述运动信息包 括使用者运动路程信息和运动耗能信息。
12. 如权利要求 1-11任意一项所述的血氧测量仪, 其特征在于, 所述 模式选择单元被设定为自动选择模式和 /或人工选择模式。
13. 如权利要求 1所述的血氧测量仪, 其特征在于, 还包括自动校正单 元, 其用于基于存储于血氧测量仪内的相关数据对血氧测量结果进行校正。
14. 如权利要求 1所述的血氧测量仪, 其特征在于, 所述运动数据检测 单元包括压电式加速度传感器、 电容式加速度传感器或热感应式加速度传感 哭口
PCT/CN2012/071194 2011-12-31 2012-02-16 血氧测量仪 WO2013097322A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110460137.1A CN102512180B (zh) 2011-12-31 2011-12-31 血氧测量仪
CN201110460137.1 2011-12-31

Publications (1)

Publication Number Publication Date
WO2013097322A1 true WO2013097322A1 (zh) 2013-07-04

Family

ID=46283477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/071194 WO2013097322A1 (zh) 2011-12-31 2012-02-16 血氧测量仪

Country Status (2)

Country Link
CN (1) CN102512180B (zh)
WO (1) WO2013097322A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102551735B (zh) * 2011-12-31 2014-12-03 北京超思电子技术股份有限公司 血氧测量仪
CN104956212B (zh) * 2012-12-17 2017-10-27 雅培医护站股份有限公司 便携式临床测试装置的空间方位和运动的自校正
WO2014099419A1 (en) 2012-12-17 2014-06-26 Abbott Point Of Care Inc A portable clinical analysis system for hematocrit measurement
US9885706B2 (en) 2012-12-17 2018-02-06 Abbott Point Of Care Inc. Portable clinical analysis system for immunometric measurement
EP2932260B1 (en) 2012-12-17 2019-05-01 Abbott Point Of Care Inc Operation and verification of a portable clinical analysis system
CN105534530A (zh) * 2016-03-09 2016-05-04 佛山市黑盒子科技有限公司 一种可穿戴血氧测量仪的血氧含量监测方法
CN108742538B (zh) * 2018-06-20 2022-04-01 大国创新智能科技(东莞)有限公司 基于大数据与人工智能的体征测量方法和医疗机器人系统
CN112433646B (zh) * 2020-09-22 2022-08-09 上海贝瑞电子科技有限公司 一种通过触摸感应技术控制血氧仪的方法
CN113741265B (zh) * 2021-08-30 2022-09-20 九牧厨卫股份有限公司 一种基于健康监测的智能马桶控制方法、装置及可读介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1729933A (zh) * 2004-08-05 2006-02-08 香港理工大学 可进行运动补偿的便携式保健监测装置及其补偿方法
CN101803925A (zh) * 2010-03-31 2010-08-18 上海交通大学 运动状态下的血氧饱和度监测装置
WO2011035070A1 (en) * 2009-09-17 2011-03-24 Masimo Laboratories, Inc. Improving analyte monitoring using one or more accelerometers
CN102068261A (zh) * 2011-01-21 2011-05-25 上海弘周电子科技有限公司 安全监护仪
CN102551735A (zh) * 2011-12-31 2012-07-11 北京超思电子技术有限责任公司 血氧测量仪及计步方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100463651C (zh) * 2007-08-14 2009-02-25 北京麦邦光电仪器有限公司 一种测量血氧饱和度的方法和装置
CN101632588B (zh) * 2009-08-04 2011-07-20 中国人民解放军第四军医大学 消除运动干扰的血氧饱和度测量方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1729933A (zh) * 2004-08-05 2006-02-08 香港理工大学 可进行运动补偿的便携式保健监测装置及其补偿方法
WO2011035070A1 (en) * 2009-09-17 2011-03-24 Masimo Laboratories, Inc. Improving analyte monitoring using one or more accelerometers
CN101803925A (zh) * 2010-03-31 2010-08-18 上海交通大学 运动状态下的血氧饱和度监测装置
CN102068261A (zh) * 2011-01-21 2011-05-25 上海弘周电子科技有限公司 安全监护仪
CN102551735A (zh) * 2011-12-31 2012-07-11 北京超思电子技术有限责任公司 血氧测量仪及计步方法

Also Published As

Publication number Publication date
CN102512180B (zh) 2015-03-25
CN102512180A (zh) 2012-06-27

Similar Documents

Publication Publication Date Title
WO2013097322A1 (zh) 血氧测量仪
Miah et al. Continuous heart rate and body temperature monitoring system using Arduino UNO and Android device
US8126526B2 (en) Pulse wave analyzing device
US10376156B2 (en) Device for monitoring for effectiveness of heart failure therapy
RU2383299C2 (ru) Устройство измерения кровяного давления и способ работы с устройством измерения кровяного давления
JP4962195B2 (ja) パルスオキシメータ
US20090082681A1 (en) Biological information processing apparatus and biological information processing method
WO2013097323A1 (zh) 血氧测量仪及计步方法
CN105939658A (zh) 用于传感器的最佳定位的方法、系统和装置
JP2005237472A (ja) 血圧測定装置
EP3295867A1 (en) A phone for use in health monitoring
JP2014108141A (ja) 生体情報計測装置、生体情報計測システム、生体情報計測方法及びプログラム
JP2010200901A (ja) 生体信号測定装置
KR101553908B1 (ko) 스마트폰 케이스를 이용한 건강상태 측정 및 관리 장치와 그 방법
CN103637783B (zh) 基于无线控制的人体健康检测系统
WO2017100519A1 (en) Systems and methods for adaptable presentation of sensor data
TWI458465B (zh) 肌體式生理參數監測儀及其顯示切換方法與裝置
RU2015154937A (ru) Устройство и способ для дистанционной беспроводной диагностики функционального состояния сердечно-сосудистой системы человека на основе метода фотоплетизмографии
CN109009019A (zh) 多参数生理检测仪
JP2012152493A (ja) 脈波信号計測装置、およびプログラム
CN204698542U (zh) 提高测量准确度的动态血压监测系统
KR20180065039A (ko) 바이탈통합 의료장비를 이용한 스마트폰 유비쿼터스 헬스퀘어 진단시스템
CN111751492A (zh) 呼出气体检测方法和装置
US20140121551A1 (en) Cardiac output measuring unit
US20230136992A1 (en) Method for blood pressure measurement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12863172

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12863172

Country of ref document: EP

Kind code of ref document: A1