WO2013097015A1 - Vitreous material enabling automatic formation of nanostructured metallic film and related applications - Google Patents

Vitreous material enabling automatic formation of nanostructured metallic film and related applications Download PDF

Info

Publication number
WO2013097015A1
WO2013097015A1 PCT/BR2012/000552 BR2012000552W WO2013097015A1 WO 2013097015 A1 WO2013097015 A1 WO 2013097015A1 BR 2012000552 W BR2012000552 W BR 2012000552W WO 2013097015 A1 WO2013097015 A1 WO 2013097015A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoparticles
allows
film
nanostructured
self
Prior art date
Application number
PCT/BR2012/000552
Other languages
French (fr)
Portuguese (pt)
Inventor
Petrus D'AMORIM SANTA CRUZ OLIVEIRA
Ricardo SCHNEIDER
Original Assignee
Universidade Federal De Pernambuco
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidade Federal De Pernambuco filed Critical Universidade Federal De Pernambuco
Publication of WO2013097015A1 publication Critical patent/WO2013097015A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/16Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/345Surface crystallisation

Definitions

  • the present invention relates to a glassy material characterized by the growth capacity of nanostructured films on its surface from elements - typically metals - contained in their original composition.
  • the glass-nanostructure composite is obtained in a controlled manner by self-forming nanoparticles on the surface of the material, especially when it is heat treated in a reducing atmosphere, typically hydrogen gas.
  • An important feature of the material refers to the nanostructured film, formed by nanoparticles only on the surface of the material, not observing the formation of these nanoparticles inside it.
  • the film-forming nanoparticles can be removed when the material is immersed in solvents, such as water, with or without the aid of ultrasound.
  • a second important feature refers to the fact that the film forming process can be repeated countless times, even after its complete removal.
  • Typical applications of this material involve its use as active substrates in processes and electronic devices, as an active part in sensors and actuators.
  • processes two applications stand out: in heterogeneous catalysis, due to the large surface area resulting from the nanostructure, and as an active material for the preparation of stable nanoparticle solutions, including size control.
  • the state of the art includes methods of vacuum deposition, electrochemistry, colloid aggregation, sedimentation of sols on solid substrates, among others, generally presenting the problems mentioned above, especially when they are produced. with techniques involving vacuum or ultra-vacuum. Also in relation to the state of the art, special treatment of the substrate surface is required for immobilization of the desired metal film or metal oxide to obtain the necessary adhesion for applications. Film deposition using evaporation techniques has limitations in situations where it is necessary to cover regions with sharp curvatures, in which case, in "shadow” regions, factors such as thickness and distribution of film forming nanoparticles are affected.
  • the immobilization of the formed nanoparticles occurs naturally when the material object of this patent is heat treated in a reducing atmosphere.
  • the film forming nanoparticles on the surface of the material can be removed with a suitable solvent, or immobilized as an active film.
  • the invention is based on the development of a base glass matrix, which allows the self-forming of the nanostructured film from metal dopants in the starting composition itself - metal oxides or other metal compounds in small quantities.
  • the glass matrix is obtained by melting the starting reagents, homogenized and placed in a crucible of platinum, alumina, glassy carbon or equivalent, and baked in the oven for the time required for melting and homogenization - typically above 20 minutes at room temperature. above the melting point of the mixture, typically around 900-950 ° C for the family of material used - consisting of NaH 2 P0 4 / Ge0 2 ratios ranging from 0.5 to 5.5 and include A1 2 0 3 , up to 10 mol% (typically 3 mol%).
  • Nanoparticle precursor dopants are added to the initial composition and homogenized.
  • Silver and / or nickel are typically used in the form of oxides - typical doping of 1.5 mol% Ag 20 or Ni 2 0 3 , ranging from 0.1 to 12 mol%.
  • the molten material is cooled around room temperature in a platinum, graphite, alumina or other mold, preferably non-adherent to the material.
  • the base matrix may also be doped with other metal oxides, such as manganese oxide or other metal cation precursors.
  • the use of other anions may be employed in the formulation of the base matrix as well as the reagent precursor, which may have germanium replaced by another forming cation, and sodium by another vitreous network modifier, which may also possibly contain intermediate cations.
  • the matrix may be modified or have components substituted with silicates, borates, transition metal oxides, alkaline and / or alkaline earths.
  • the glass matrix acts as an active substrate capable of producing nanostructured metallic films and / or metal oxides on its surface.
  • the ease of removal of the formed film can be controlled by the polarity of the solvent used.
  • the active vitreous substrate allows a synthesis route of nanoparticles that can be removed and dispersed in liquid medium. They may, depending on the application, be separated from the solvent, resulting in a nanopowder, stored in immobilized form, and separated into a single solid phase only when necessary. Additionally, it allows the control of nanoparticle size and thus it is possible to obtain solutions of metallic nanoparticles or metal oxide nanoparticles.
  • the morphology of the nanostructured film is dependent on experimental parameters (gas flow, temperature and heat treatment time etc), thus allowing the control of the size and shape of the formed nanoparticles. Additionally, the control of the heat treatment atmosphere allows the conversion of the metallic films (Ni 0 , Ag 0 , Mn 0 etc.) to their respective oxides when the initially metallic films are subjected to thermal treatment in an oxidizing atmosphere, such as
  • the heat treatment temperature varies with the material composition, being possible to obtain films even at temperatures below 150 ° C or higher.
  • the need for a reducing atmosphere for the growth of nanostructured metal films allows the choice of gases that selectively reduce the doping ions present in the active substrate, and even the formation of morphologically controlled polymetallic films.
  • oxidizing gases leading to the formation of oxide films supported on the same active substrate may be included.
  • Treatment time control in oxidizing-reducing atmosphere can provide nanoparticles with lump-shell, metal-oxide structure, respectively or just by reversing the order of treatment atmospheres.
  • Conductive metal film can be converted to oxide film by heat treatment in oxidizing atmosphere.
  • oxide film can be converted into conductive metal film by treating at a suitable temperature in a reducing atmosphere, allowing the use of this material as an active part of sensors and dosimeters, in particular gases.
  • the vitreous substrate initially has no nanoparticles.
  • the nanostructured film is formed on its surface, as can be inferred by examining the scanning electron microscopy (SEM) image, in Figure 1.
  • SEM scanning electron microscopy
  • the solution formed by removing the nanoparticles from the active substrate has an absorption band associated with the nanoparticle surface plasmon ( Figure 2). This absorption band is dependent on the size, shape and electron density (composition) of the nanoparticles.
  • the size of the nanoparticles can be controlled with the heat treatment time the substrate is subjected to and monitored by the plasmon band.
  • the internal numbering of the graph shows the heat treatment time, in minutes, of the active substrates in a hydrogen gas atmosphere.
  • Figure 3 shows the conductivity (voltage versus current) curves for the silver ion doped glass matrix.
  • the conductivity of the metal film changes by nine orders of magnitude when the heat treatment time goes from twenty minutes to thirty minutes, and can also be controlled depending on the treatment conditions.
  • the scale for treatment times under thirty minutes is in picoamperes, while for the thirty minute treatment in milliamperes.
  • Nanostructured film can also be used for heterogeneous catalysis applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

The present invention relates to a vitreous material characterized by the ability to grow, in a controlled manner, nanostructured films on the surface thereof, on the basis of compounds of typically metallic elements included as dopants in the original composition thereof. The process begins with the automatic formation of nanoparticles on the surface of the material, grown using heat treatment as a function of parameters such as temperature, time and atmosphere type (reducing, neutral or oxidizing) resulting in metallic, oxide or mixed nanostructures, including the core-shell type. The type of doping is also chosen as a function of the applications of the material, which involve use as active substrates in electronic devices and processes, as active parts in sensors and dosimeters, in particular for detecting gases, including hydrogen, in heterogeneous catalysis and as active material for preparing stable nanoparticle solutions, including with size control. The nanoparticles that form the film may be removed when the material is treated with specific solvents, forming isolated nanoparticles after separation and drying of the solvent. The second important feature relates to the fact that the formation of nanostructures (nanoparticles or film) may be restarted any number of times, including following complete removal.

Description

Relatório descritivo da patente de invenção de MATERIAL VÍTREO COM PROPRIEDADE DE AUTOFORMAÇÃO DE FILME METÁLICO NANOESTRUTURADO E SUAS APLICAÇÕES.  DETAILED REPORT OF THE PATENT OF Nano-STRUCTURED METAL FILM SELF-PROPERTY VITREOUS MATERIAL AND ITS APPLICATIONS.
Refere-se a presente invenção a um material vítreo caracterizado por apresentar a capacidade de crescimento de filmes nanoestruturados em sua superfície, a partir de elementos - tipicamente metais - contidos na sua composição original. O compósito vidro-nanoestrutura é obtido de forma controlada, a partir da autoformação de nanopartículas na superfície do material, principalmente quando este é submetido a tratamento térmico em atmosfera redutora, tipicamente de hidrogénio gasoso. The present invention relates to a glassy material characterized by the growth capacity of nanostructured films on its surface from elements - typically metals - contained in their original composition. The glass-nanostructure composite is obtained in a controlled manner by self-forming nanoparticles on the surface of the material, especially when it is heat treated in a reducing atmosphere, typically hydrogen gas.
Uma característica importante do material refere-se ao filme nanoestruturado, formado por nanopartículas somente na superfície do material, não se observando a formação dessas nanopartículas no interior do mesmo. As nanopartículas que formam o filme podem ser removidas quando o material é imerso em solventes, como a água, com ou sem auxílio de ultrassom. Uma segunda característica importante refere-se ao fato de que o processo de formação do filme pode ser repetido inúmeras vezes, inclusive após sua total remoção.  An important feature of the material refers to the nanostructured film, formed by nanoparticles only on the surface of the material, not observing the formation of these nanoparticles inside it. The film-forming nanoparticles can be removed when the material is immersed in solvents, such as water, with or without the aid of ultrasound. A second important feature refers to the fact that the film forming process can be repeated countless times, even after its complete removal.
As aplicações típicas do presente material envolve sua utilização como substratos ativos em processos e em dispositivos eletrônicos, como parte ativa em sensores e atuadores. Em processos, duas aplicações que se destacam: em catálise heterogénea, devido à grande área superficial decorrente da nanoestrutura, e como material ativo para preparação de soluções estáveis de nanopartículas, inclusive com controle de tamanho.  Typical applications of this material involve its use as active substrates in processes and electronic devices, as an active part in sensors and actuators. In processes, two applications stand out: in heterogeneous catalysis, due to the large surface area resulting from the nanostructure, and as an active material for the preparation of stable nanoparticle solutions, including size control.
O estado da arte para síntese de nanopartículas divide-se em processos que necessitam de equipamentos onerosos e processos através de reações químicas em geral por via úmida. O maior problema desses processos é a possibilidade de contaminação da superfície por agentes redutores usados nas reações em solução.  The state of the art for nanoparticle synthesis is divided into processes requiring costly equipment and processes through generally wet chemical reactions. The major problem with these processes is the possibility of surface contamination by reducing agents used in solution reactions.
Quanto aos processos de produção de filmes finos de nanopartículas, o estado da arte inclui métodos de deposição a vácuo, eletroquímica, agregação de colóides, sedimentação de sóis em substratos sólidos, dentre outros, em geral apresentando os problemas citados anteriormente, principalmente quando são produzidos com técnicas envolvendo vácuo ou ultravácuo. Ainda em relação ao estado da arte, há necessidade de tratamento especial da superfície do substrato para imobilização do filme metálico ou óxido metálico desejado, para se obter a aderência necessária para aplicações. A deposição de filmes utilizando técnicas de evaporação apresenta limitações em situações onde seja necessário o recobrimento de regiões com curvaturas acentuadas, sendo neste caso afetados, em regiões de "sombra", fatores como espessura e distribuição das nanopartículas formadoras do filme. As for nanoparticle thin film production processes, the state of the art includes methods of vacuum deposition, electrochemistry, colloid aggregation, sedimentation of sols on solid substrates, among others, generally presenting the problems mentioned above, especially when they are produced. with techniques involving vacuum or ultra-vacuum. Also in relation to the state of the art, special treatment of the substrate surface is required for immobilization of the desired metal film or metal oxide to obtain the necessary adhesion for applications. Film deposition using evaporation techniques has limitations in situations where it is necessary to cover regions with sharp curvatures, in which case, in "shadow" regions, factors such as thickness and distribution of film forming nanoparticles are affected.
Para se reduzir o impacto ambiental através dos preceitos do "princípio da precaução", aplicado quando este impacto ainda não é bem conhecido ou avaliado, recomenda-se a imobilização das nanopartículas em substratos, no presente caso, vítreo.  In order to reduce the environmental impact through the "precautionary principle" precepts applied when this impact is not yet well known or assessed, the immobilization of nanoparticles on glassy substrates is recommended.
A imobilização de nanopartículas não é um procedimento simples, inviabilizando na maioria dos casos o reuso do material.  The immobilization of nanoparticles is not a simple procedure, making in most cases the reuse of the material impossible.
Na presente invenção, a imobilização das nanopartículas formadas ocorre naturalmente quando o material objeto desta patente é submetido a tratamento térmico em atmosfera redutora. As nanopartículas que formam o filme na superfície do material podem ser removidas controladamente, com solvente adequado, ou podem ser utilizadas imobilizadas na forma de filme ativo.  In the present invention, the immobilization of the formed nanoparticles occurs naturally when the material object of this patent is heat treated in a reducing atmosphere. The film forming nanoparticles on the surface of the material can be removed with a suitable solvent, or immobilized as an active film.
A invenção está baseada no desenvolvimento de uma matriz vítrea de base, que permita a autoformação do filme nanoestruturado a partir de dopantes metálicos na própria composição de partida - óxidos de metais ou outros compostos metálicos em pequenas quantidades. A matriz vítrea é obtida a partir da fusão dos reagentes de partida, homogeneizados e colocados em um cadinho de platina, alumina, carbono vítreo ou equivalente, e lavado ao forno durante o tempo necessário para a fusão e homogeneização - tipicamente acima de 20 minutos a uma temperatura acima do ponto de fusão da mistura, tipicamente em torno de 900- 950 °C para a família de material utilizada - constituída com proporções de NaH2P04 / Ge02 variando de 0,5 a 5,5, podendo-se incluir A1203, até 10 mol % (tipicamente 3 mol %). Os dopantes precursores das nanopartículas (compostos de metais) são adicionados à composição inicial e homogeneizados. Prata e/ou níquel são tipicamente utilizados na forma de óxidos - dopagem típica de 1,5 mol % de Ag20 ou Ni203, podendo variar de 0,1 a 12 mol %. O material fundido é resfriado em torno da temperatura ambiente, em molde de platina, grafite, alumina ou outro, de preferência não aderente ao material. A matriz base também pode ser dopada com outros óxidos metálicos, como óxido de manganês ou outros precursores de cátions metálicos. A utilização de outros ânions pode ser empregada na formulação do matriz base bem como precursor dos reagentes, que pode ter o germânio substituído por outro cátion formador, e o sódio por outro modificador da rede vítrea, que pode também conter eventualmente cátions intermediários. Desta forma, a matriz pode ser modificada ou ter componentes substituídos com silicatos, boratos, óxidos de metais de transição, alcalinos e/ou alcalino - terrosos. The invention is based on the development of a base glass matrix, which allows the self-forming of the nanostructured film from metal dopants in the starting composition itself - metal oxides or other metal compounds in small quantities. The glass matrix is obtained by melting the starting reagents, homogenized and placed in a crucible of platinum, alumina, glassy carbon or equivalent, and baked in the oven for the time required for melting and homogenization - typically above 20 minutes at room temperature. above the melting point of the mixture, typically around 900-950 ° C for the family of material used - consisting of NaH 2 P0 4 / Ge0 2 ratios ranging from 0.5 to 5.5 and include A1 2 0 3 , up to 10 mol% (typically 3 mol%). Nanoparticle precursor dopants (metal compounds) are added to the initial composition and homogenized. Silver and / or nickel are typically used in the form of oxides - typical doping of 1.5 mol% Ag 20 or Ni 2 0 3 , ranging from 0.1 to 12 mol%. The molten material is cooled around room temperature in a platinum, graphite, alumina or other mold, preferably non-adherent to the material. The base matrix may also be doped with other metal oxides, such as manganese oxide or other metal cation precursors. The use of other anions may be employed in the formulation of the base matrix as well as the reagent precursor, which may have germanium replaced by another forming cation, and sodium by another vitreous network modifier, which may also possibly contain intermediate cations. Thus, the matrix may be modified or have components substituted with silicates, borates, transition metal oxides, alkaline and / or alkaline earths.
A matriz vítrea atua como um substrato ativo capaz de produzir filmes metálicos e/ou óxidos metálicos nanoestruturados sobre a sua superfície. A facilidade de remoção do filme formado pode ser controlada pela polaridade do solvente usado. O substrato vítreo ativo permite uma rota de síntese de nanopartículas que podem ser removidas e dispersas em meio líquido. Podem, dependendo da aplicação, ser separadas do solvente, resultando num nanopó, armazenado na forma imobilizada, e separado numa única fase sólida apenas quando necessário. Adicionalmente, permite o controle do tamanho das nanopartículas sendo assim possível a obtenção de soluções de nanopartículas metálicas ou nanopartículas de óxidos metálicos.  The glass matrix acts as an active substrate capable of producing nanostructured metallic films and / or metal oxides on its surface. The ease of removal of the formed film can be controlled by the polarity of the solvent used. The active vitreous substrate allows a synthesis route of nanoparticles that can be removed and dispersed in liquid medium. They may, depending on the application, be separated from the solvent, resulting in a nanopowder, stored in immobilized form, and separated into a single solid phase only when necessary. Additionally, it allows the control of nanoparticle size and thus it is possible to obtain solutions of metallic nanoparticles or metal oxide nanoparticles.
A morfologia do filme nanoestruturado possui dependência com parâmetros experimentais (fluxo de gás, temperatura e tempo de tratamento térmico etc), permitindo, assim, o controle do tamanho e forma das nanopartículas formadas. Adicionalmente, o controle da atmosfera de tratamento térmico permite a conversão dos filmes metálicos (Ni0, Ag0, Mn0 etc.) nos seus respectivos óxidos, quando submete-se os filmes, inicialmente metálicos, ao tratamento térmico em atmosfera oxidante, comoThe morphology of the nanostructured film is dependent on experimental parameters (gas flow, temperature and heat treatment time etc), thus allowing the control of the size and shape of the formed nanoparticles. Additionally, the control of the heat treatment atmosphere allows the conversion of the metallic films (Ni 0 , Ag 0 , Mn 0 etc.) to their respective oxides when the initially metallic films are subjected to thermal treatment in an oxidizing atmosphere, such as
°2(g)- A temperatura de tratamento térmico varia com a composição do material, sendo possível a obtenção de filmes inclusive em temperaturas abaixo de 150°C, ou maiores. A necessidade de atmosfera redutora para o crescimento dos filmes metálicos nanoestruturados permite a escolha de gases que reduzam seletivamente os íons dopantes presentes no substrato ativo, e até mesmo a formação de filmes polimetálicos com controle de morfologia. Nesta mesma etapa, podem ser incluídos gases oxidantes que levem à formação de filmes de óxidos, suportados sobre o mesmo substrato ativo. O controle do tempo de tratamento em atmosfera oxidante-redutora pode fornecer nanopartículas com estrutura caroço-casca, metal-óxido, respectivamente ou ao contrário, apenas invertendo-se a ordem das atmosferas de tratamento. ° 2 (g) - The heat treatment temperature varies with the material composition, being possible to obtain films even at temperatures below 150 ° C or higher. The need for a reducing atmosphere for the growth of nanostructured metal films allows the choice of gases that selectively reduce the doping ions present in the active substrate, and even the formation of morphologically controlled polymetallic films. In this same step, oxidizing gases leading to the formation of oxide films supported on the same active substrate may be included. Treatment time control in oxidizing-reducing atmosphere can provide nanoparticles with lump-shell, metal-oxide structure, respectively or just by reversing the order of treatment atmospheres.
Adicionalmente, pode-se ter o controle da condutividade elétrica do filme metálico produzido, já que esta condutividade é obtida quando se estabelece o "contato" entre as nanopartículas que formam o filme, ultrapassando um limiar de percolação, formando um caminho ininterrupto pelo qual fluirá a corrente elétrica. Assim, pelo tempo de tratamento térmico em atmosfera redutora da matriz vítrea ativa, controla-se sua condutividade elétrica.  Additionally, one can control the electrical conductivity of the metal film produced, since this conductivity is obtained by establishing "contact" between the nanoparticles that form the film, surpassing a percolation threshold, forming an uninterrupted path through which it will flow. the electric current. Thus, by the time of heat treatment in reducing atmosphere of the active glass matrix, its electrical conductivity is controlled.
O filme metálico condutor pode ser convertido em filme de óxido pelo tratamento térmico em atmosfera oxidante. De modo semelhante o filme óxido pode ser convertido em filme metálico condutor pelo tratamento em temperatura adequada em atmosfera redutora, permitindo o uso desse material como parte ativa de sensores e dosímetros, em particular de gases.  Conductive metal film can be converted to oxide film by heat treatment in oxidizing atmosphere. Similarly, oxide film can be converted into conductive metal film by treating at a suitable temperature in a reducing atmosphere, allowing the use of this material as an active part of sensors and dosimeters, in particular gases.
O substrato vítreo inicialmente não apresenta nanopartículas. Após o tratamento térmico, há formação do filme nanoestruturado na sua superfície, conforme pode-se inferir pelo exame da imagem de microscopia eletrônica de varredura (MEV), na figura 1. O controle das condições de obtenção das nanopartículas permite o controle da morfologia do filme formado.  The vitreous substrate initially has no nanoparticles. After the heat treatment, the nanostructured film is formed on its surface, as can be inferred by examining the scanning electron microscopy (SEM) image, in Figure 1. The control of the nanoparticle obtaining conditions allows the control of the morphology of the nanoparticles. movie formed.
A solução formada pela remoção das nanopartículas do substrato ativo apresenta banda uma de absorção associada aos plásmons de superfície das nanopartículas (figura 2). Essa banda de absorção é dependente do tamanho, forma e densidade eletrônica (composição) das nanopartículas. O tamanho das nanopartículas pode ser controlado com o tempo de tratamento térmico em que o substrato é submetido, e monitorado pela banda de plásmon. A numeração interna do gráfico mostra o tempo de tratamento térmico, em minutos, dos substratos ativos, em atmosfera de hidrogénio gasoso.  The solution formed by removing the nanoparticles from the active substrate has an absorption band associated with the nanoparticle surface plasmon (Figure 2). This absorption band is dependent on the size, shape and electron density (composition) of the nanoparticles. The size of the nanoparticles can be controlled with the heat treatment time the substrate is subjected to and monitored by the plasmon band. The internal numbering of the graph shows the heat treatment time, in minutes, of the active substrates in a hydrogen gas atmosphere.
A figura 3 mostra as curvas de condutividade (tensão versus corrente) para a matriz vítrea dopada com o íon prata. A condutividade do filme metálico apresenta uma mudança de nove ordens de grandeza quando o tempo de tratamento térmico passa de vinte minutos para trinta minutos, e também pode ser controlada em função das condições de tratamento. A escala para tempos de tratamento abaixo de trinta minutos está em picoamperes, enquanto que para o tratamento de trinta minutos, em miliamperes. Figure 3 shows the conductivity (voltage versus current) curves for the silver ion doped glass matrix. The conductivity of the metal film changes by nine orders of magnitude when the heat treatment time goes from twenty minutes to thirty minutes, and can also be controlled depending on the treatment conditions. The scale for treatment times under thirty minutes is in picoamperes, while for the thirty minute treatment in milliamperes.
Conclui-se que o presente material traz vantagens quanto à facilidade de produção de nanopartículas imobilizadas, podendo ser separadas no momento desejado, ou usadas sobre o substrato vítreo que as produz, inclusive na forma de filmes nanoestuturados que podem ser aplicados como substratos ativos em dispositivos eletrônicos e parte ativa para sensores e dosímetros. Podem se explorados em técnicas como Raman, e como material ativo para obtenção de soluções estáveis de nanopartículas. O filme nanoestruturado também pode ser utilizado para aplicações em catálise heterogénea.  It is concluded that the present material has advantages regarding the ease of production of immobilized nanoparticles, can be separated at the desired time, or used on the glassy substrate that produces them, including in the form of nanostructured films that can be applied as active substrates in devices. electronics and active part for sensors and dosimeters. They can be explored in techniques such as Raman, and as active material to obtain stable nanoparticle solutions. Nanostructured film can also be used for heterogeneous catalysis applications.

Claims

REIVINDICAÇÕES
1. MATERIAL VÍTREO COM PROPRIEDADE DE AUTOFORMAÇÃO DE FILME METÁLICO NANOESTRUTURADO, composto de uma fase vítrea que contém em sua composição de partida íons dopantes, precursores de uma segunda fase metálica nanoestruturada, caracterizado por permitir a formação controlada de nanopartículas a partir dos dopantes introduzidos na sua composição, sempre compostos de metais escolhidos em função das propriedades desejadas na aplicação. 1. Nano-STRUCTURED METAL FILM SELF-PROPERTY GLASS MATERIAL, composed of a glass phase containing in its starting composition dopant ions, precursors of a second nanostructured metal phase, which allows the controlled formation of nanoparticles from the dopants introduced into the dopant. its composition, always composed of metals chosen according to the desired properties in the application.
2. MATERIAL VÍTREO... de acordo com a reivindicação 1, caracterizado por permitir o controle do tamanho, concentração e forma das nanopartículas produzidas, através de tratamento térmico do material, na faixa 25 °C a 800 °C.  VITREOUS MATERIAL ... according to claim 1, characterized in that it allows control of the size, concentration and shape of the nanoparticles produced by heat treatment of the material in the range 25 ° C to 800 ° C.
3. MATERIAL VÍTREO... de acordo com a reivindicação 1, caracterizado por sua capacidade de produção de filmes metálicos, formados na superfície do material, a partir das nanopartículas, em função do tipo de atmosfera, redutora, oxidante ou neutra, escolhida em função das propriedades desejadas na aplicação.  VITREOUS MATERIAL ... according to claim 1, characterized in that it is capable of producing metal films formed on the surface of the material from nanoparticles, depending on the type of atmosphere, reducing, oxidizing or neutral, chosen in function of the desired properties in the application.
4. MATERIAL VÍTREO... de acordo com as reivindicações 1 e 3, caracterizado por produzir filmes metálicos nanoestruturados apresentando condutividade elétrica controlável a partir das condições de tratamento térmico, tempo, temperatura, atmosfera utilizada, pressão, fluxo de gás, e taxa de aquecimento aplicados ao material. VITREOUS MATERIAL ... according to claims 1 and 3, characterized in that it produces nanostructured metal films having controllable electrical conductivity from the conditions of heat treatment, time, temperature, atmosphere used, pressure, gas flow, and flow rate. heating applied to the material.
5. MATERIAL VÍTREO... de acordo com as reivindicações 1 e 2, caracterizado por permitir produção de nanopartículas metálicas por processo de tratamento térmico em atmosfera redutora.  VITREOUS MATERIAL ... according to claims 1 and 2, characterized in that it allows the production of metal nanoparticles by a heat treatment process in a reducing atmosphere.
6. MATERIAL VÍTREO... de acordo com as reivindicações 1 e 2, caracterizado por permitir produção de nanopartículas de óxidos metálicos por processo de tratamento térmico em atmosfera oxidante.  VITREOUS MATERIAL ... according to claims 1 and 2, characterized in that it allows the production of metal oxide nanoparticles by heat treatment in an oxidizing atmosphere.
7. MATERIAL VÍTREO... de acordo com as reivindicações 1, 2, 5 e 6, caracterizado por permitir produção de nanopartículas com estrutura caroço-casca metal-óxido por tratamento em atmosfera redutora seguida de oxidante, ou óxido-metal, por tratamento em atmosfera oxidante seguida de redutora. VITREOUS MATERIAL ... according to claims 1, 2, 5 and 6, characterized in that it allows the production of core-shell metal-oxide nanoparticles by reduction atmosphere treatment followed by oxidant or oxide metal treatment. in oxidizing atmosphere followed by reducing.
8. MATERIAL VÍTREO... de acordo com as reivindicações 1, 2, 5, 6 e 7, caracterizado por permitir a imobilização das nanopartículas produzidas no próprio material. VITREOUS MATERIAL ... according to claims 1, 2, 5, 6 and 7, characterized in that it allows the immobilization of the nanoparticles produced in the material itself.
9. MATERIAL VÍTREO... de acordo com as reivindicações 1, 2, 5, 6 e 7, caracterizado por permitir a separação das nanopartí cuias do substrato vítreo a partir do uso de solventes, em função da polaridade, posteriormente retirados, resultando nas nanopartículas isoladas. VITREOUS MATERIAL ... according to claims 1, 2, 5, 6 and 7, characterized in that it allows the separation of nanoparticles from the vitreous substrate from the use of solvents, depending on the polarity, subsequently removed, resulting in the following: isolated nanoparticles.
10. MATERIAL VÍTREO... de acordo com as reivindicações 1, 3 e 5, caracterizado por permitir a regeneração das nanoestruturas produzidas inúmeras vezes após sua remoção, através de tratamento térmico. Vitreous material ... according to claims 1, 3 and 5, characterized in that it allows the regeneration of nanostructures produced numerous times after their removal by heat treatment.
1 1. MATERIAL VÍTREO COM PROPRIEDADE DE AUTOFORMAÇÃO DE FILME METÁLICO NANOESTRUTURADO E SUAS APLICAÇÕES do filme metálico nanoestruturado, de acordo com as reivindicações 1, 3 e 4, caracterizado por permitir detecção de gases, contaminantes ambientais e substâncias de interesse, particularmente voláteis, a partir da monitoração das propriedades elétricas deste filme. 1. Self-forming glass material with self-forming nanostructured metal film and its applications of nanostructured metal film according to claims 1, 3 and 4, characterized in that it allows the detection of gases, environmental contaminants and particularly volatile substances of interest to from monitoring the electrical properties of this film.
12. MATERIAL VÍTREO COM PROPRIEDADE DE AUTOFORMAÇÃO DE FILME METÁLICO NANOESTRUTURADO E SUAS APLICAÇÕES do filme nanoestruturado, de acordo com as reivindicações 1, 3 e 4, caracterizado por poder atuar como parte ativa de dispositivos eletrônicos, particularmente sensores, dosímetros e atuadores, a partir da monitoração de suas características isolantes, semicondutoras ou condutoras. Self-forming glass material with self-forming nanostructured metal film and its applications of nanostructured film according to claims 1, 3 and 4, characterized in that it can act as an active part of electronic devices, particularly sensors, dosimeters and actuators, from monitoring their insulating, semiconductor or conductive characteristics.
13. MATERIAL VÍTREO COM PROPRIEDADE DE AUTOFORMAÇÃO DE FILME METÁLICO NANOESTRUTURADO E SUAS APLICAÇÕES do filme nanoestruturado, de acordo com as reivindicações 1, 3 e 4, caracterizado por poder atuar em dispositivos eletrônicos que explorem suas propriedades elétricas.  Self-forming glass material with self-forming nanostructured metal film and its applications of nanostructured film according to claims 1, 3 and 4, characterized in that it can be used in electronic devices that exploit its electrical properties.
PCT/BR2012/000552 2011-12-26 2012-12-21 Vitreous material enabling automatic formation of nanostructured metallic film and related applications WO2013097015A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRPI1105798-0 2011-12-26
BRPI1105798 2011-12-26

Publications (1)

Publication Number Publication Date
WO2013097015A1 true WO2013097015A1 (en) 2013-07-04

Family

ID=48696129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2012/000552 WO2013097015A1 (en) 2011-12-26 2012-12-21 Vitreous material enabling automatic formation of nanostructured metallic film and related applications

Country Status (1)

Country Link
WO (1) WO2013097015A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0403088A (en) * 2004-06-29 2006-02-07 Petru S D Amorim Santa Cruz Ol Fiber with hand-structured dielectric film
KR20100044944A (en) * 2008-10-23 2010-05-03 서울대학교산학협력단 Nanostructure gas sensors and nanostructure gas sensor array with metal oxide layer and method of producing the same
KR20100113443A (en) * 2009-04-13 2010-10-21 권기영 Ring type palladium nano structure body and the hydrogen sensor using the palladium nano structure body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0403088A (en) * 2004-06-29 2006-02-07 Petru S D Amorim Santa Cruz Ol Fiber with hand-structured dielectric film
KR20100044944A (en) * 2008-10-23 2010-05-03 서울대학교산학협력단 Nanostructure gas sensors and nanostructure gas sensor array with metal oxide layer and method of producing the same
KR20100113443A (en) * 2009-04-13 2010-10-21 권기영 Ring type palladium nano structure body and the hydrogen sensor using the palladium nano structure body

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ARAÚJO, C. A. F. ET AL.: "Filmes nanoestruturados de prata metálica autoformados por difusao termica em substratos vítreos de B2O3 - PBO", CONIC - CONGRESSO DE INICIAÇÃO CIENTIFICA DA UFPE / CONGRESSO DE INICIACÃO EM DESENVOLVIMENTO TECNOLÓGICO E INOVACÃO. 17° CONGRESSO DE INICIAÇÃO CIENTIFICA / 1° CONGRESSO DE INICIAÇÃO EM DESENVOLVIMENTO TECNOLÓGICO E INOVAÇÃO, 27 October 2009 (2009-10-27) *
ARAUJO, C. A. F. ET AL.: "''Nanoparticulas de prata formadas por processo ''bottom-up'' em matrizes vitreas ativas: materiais como substratos inteligentes para nanodispositivos''", CONIC - CONGRESSO DE INICIAÇÃO CIENTIFICA DA UFPE. 16° CONGRESSO - DIVULGAÇÃO, 3 November 2008 (2008-11-03) *

Similar Documents

Publication Publication Date Title
Yang et al. Synthesis of atomically thin sheets by the intercalation-based exfoliation of layered materials
Zhao et al. Liquid metals: a novel possibility of fabricating 2D metal oxides
Lupan et al. Versatile growth of freestanding orthorhombic α-molybdenum trioxide nano-and microstructures by rapid thermal processing for gas nanosensors
Pauporté et al. Well-aligned ZnO nanowire arrays prepared by seed-layer-free electrodeposition and their Cassie− Wenzel transition after hydrophobization
Alenezi et al. Role of the exposed polar facets in the performance of thermally and UV activated ZnO nanostructured gas sensors
Gao et al. Preparation and electrochemical performance of polycrystalline and single crystalline CuO nanorods as anode materials for Li ion battery
Li et al. Environmentally friendly chemical route to vanadium oxide single-crystalline nanobelts as a cathode material for lithium-ion batteries
Chen et al. Highly conductive and flexible paper of 1D silver-nanowire-doped graphene
Rao et al. Graphene analogues of inorganic layered materials
Peng et al. Shape evolution of layer-structured bismuth oxychloride nanostructures via low-temperature chemical vapor transport
Xu et al. Fabrication of CuO pricky microspheres with tunable size by a simple solution route
Wang et al. Sonochemical method for the preparation of bismuth sulfide nanorods
Thomas et al. Mechanism of Ag doping in ZnO nanowires by electrodeposition: experimental and theoretical insights
Jiang et al. Zinc selenide nanoribbons and nanowires
Takahashi et al. Synthesis and electrochemical properties of single-crystal V2O5 nanorod arrays by template-based electrodeposition
Jiang et al. SnO2-based hierarchical nanomicrostructures: facile synthesis and their applications in gas sensors and lithium-ion batteries
Geng et al. One-dimensional BiPO4 nanorods and two-dimensional BiOCl lamellae: fast low-temperature sonochemical synthesis, characterization, and growth mechanism
Liu et al. Synthesis, characterization, and photocatalytic application of different ZnO nanostructures in array configurations
Wang et al. Controllable synthesis of ZnO nanorod and prism arrays in a large area
Song et al. Superlong high-quality tellurium nanotubes: synthesis, characterization, and optical property
Kumar et al. General route to single-crystalline SnO nanosheets on arbitrary substrates
Zeng et al. Synthesis and ethanol sensing properties of self-assembled monocrystalline ZnO nanorod bundles by poly (ethylene glycol)-assisted hydrothermal process
Tong et al. From amorphous macroporous film to 3D crystalline nanorod architecture: a new approach to obtain high‐performance V2O5 electrochromism
CN105408516A (en) MoS2 thin film and method for manufacturing same
KR20120070973A (en) N-doped transparent graphene film and method for preparing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12863191

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12863191

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 12863191

Country of ref document: EP

Kind code of ref document: A1