WO2013096532A1 - Procédé d'amélioration du rendement de carburant d'un moteur - Google Patents

Procédé d'amélioration du rendement de carburant d'un moteur Download PDF

Info

Publication number
WO2013096532A1
WO2013096532A1 PCT/US2012/070767 US2012070767W WO2013096532A1 WO 2013096532 A1 WO2013096532 A1 WO 2013096532A1 US 2012070767 W US2012070767 W US 2012070767W WO 2013096532 A1 WO2013096532 A1 WO 2013096532A1
Authority
WO
WIPO (PCT)
Prior art keywords
propylene
oil
lubricating
based polymer
molecular weight
Prior art date
Application number
PCT/US2012/070767
Other languages
English (en)
Inventor
Douglas E. Deckman
Original Assignee
Exxonmobil Research And Engineering Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxonmobil Research And Engineering Company filed Critical Exxonmobil Research And Engineering Company
Publication of WO2013096532A1 publication Critical patent/WO2013096532A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M143/00Lubricating compositions characterised by the additive being a macromolecular hydrocarbon or such hydrocarbon modified by oxidation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M143/00Lubricating compositions characterised by the additive being a macromolecular hydrocarbon or such hydrocarbon modified by oxidation
    • C10M143/06Lubricating compositions characterised by the additive being a macromolecular hydrocarbon or such hydrocarbon modified by oxidation containing butene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M143/00Lubricating compositions characterised by the additive being a macromolecular hydrocarbon or such hydrocarbon modified by oxidation
    • C10M143/08Lubricating compositions characterised by the additive being a macromolecular hydrocarbon or such hydrocarbon modified by oxidation containing aliphatic monomer having more than 4 carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/1006Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • C10M2203/1025Aliphatic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/024Propene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/028Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
    • C10M2205/0285Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/54Fuel economy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines

Definitions

  • This disclosure relates to lubricating engines using formulated lubricating oils to improve engine fuel efficiency.
  • Lubricant oil formulations generally contain viscosity index ("VI") improving components to modify the rheological behavior to increase the lubricant viscosity, and promote a more constant viscosity over the range of temperatures over which the lubricant is used.
  • VI viscosity index
  • the viscosity index has been used to measure the rate of change of viscosity of a fluid in relation to temperature. In general, the higher the viscosity index, the smaller is the relative change in viscosity with temperature.
  • the VI improver or viscosity modifier is used to reduce the temperature dependency of the viscosity of the lubricant compositions so that the lubricant compositions can be used over a wide temperature range. In other words, the VI improvers prevent the lubricant compositions from becoming too thin at a high temperature, e.g., hot summer temperatures, and too viscous at a low temperature, e.g., cold winter temperatures.
  • VI improvers include polymethacrylates, olefin copolymers, such as ethylene-propylene copolymers and ethylene-propylene diene-modified copolymers (EPDMs), and hydrogenated styrenic block copolymers such as styrene-ethylene/butylene-styrene copolymer (SEBS), styrene-butadiene copolymers, styrene-isoprene copolymers, and star polymers.
  • olefin copolymers such as ethylene-propylene copolymers and ethylene-propylene diene-modified copolymers (EPDMs)
  • EPDMs ethylene-propylene diene-modified copolymers
  • SEBS styrene-ethylene/butylene-styrene copolymer
  • SEBS styrene-butadiene copolymers
  • ethylene/alpha-olefm copolymers have been widely used as viscosity modifiers, exhibiting the effect of improving viscosity index for the purpose of decreasing the temperature dependence of the lubricant's viscosity. See, for example, U.S. Patent Nos. 6,589,920; 5,391,617; 7,053,153; and 5,374,700.
  • Lubricating oils lose fluidity at low temperatures because wax components therein tend to solidify to crystals.
  • This disclosure also relates in part to a method for improving fuel efficiency in an engine lubricated with a lubricating oil by using as the lubricating oil a formulated oil having a composition comprising: from 60 wt% to 98 wt%, based on the total weight of the formulated oil, of a lubricating oil base stock; from 0.5 wt% to 15 wt%, based on the total weight of the formulated oil, of a viscosity index improver comprising at least one propylene -based polymer, said at least one propylene-based polymer comprising from 60 wt% to 98 wt% propylene derived units and from 2 wt% to 40 wt% units derived from one or more other alpha olefins, a weight average molecular weight (Mw) as measured by GPC of from 100,000 to 500,000, a number average molecular weight (Mn) as measured by GPC of from 100,000 to 400,000, a mo
  • This disclosure further relates in part to a lubricating engine oil having a composition
  • a lubricating engine oil having a composition
  • Fig. 1 graphically depicts Kurt Orbahn (ASTM D6278) shear stability results for the two formulations in the Examples measured at multiple test lengths.
  • improved fuel efficiency can be attained in an engine lubricated with a lubricating oil by using as the lubricating oil a formulated oil as described herein.
  • the lubricating oils of this disclosure are particularly advantageous as passenger vehicle engine oil (PVEO) products.
  • Lubricating base oils that are useful in the present disclosure are both natural oils, and synthetic oils, and unconventional oils (or mixtures thereof) can be used unrefined, refined, or rerefmed (the latter is also known as reclaimed or reprocessed oil).
  • Unrefined oils are those obtained directly from a natural or synthetic source and used without added purification. These include shale oil obtained directly from retorting operations, petroleum oil obtained directly from primary distillation, and ester oil obtained directly from an esterification process. Refined oils are similar to the oils discussed for unrefined oils except refined oils are subjected to one or more purification steps to improve at least one lubricating oil property.
  • Groups I, II, III, IV and V are broad base oil stock categories developed and defined by the American Petroleum Institute (API Publication 1509; www.API.org) to create guidelines for lubricant base oils.
  • Group I base stocks have a viscosity index of between 80 to 120 and contain greater than 0.03% sulfur and/or less than 90% saturates.
  • Group II base stocks have a viscosity index of between 80 to 120, and contain less than or equal to 0.03%> sulfur and greater than or equal to 90%> saturates.
  • Group III stocks have a viscosity index greater than 120 and contain less than or equal to 0.03 % sulfur and greater than 90%> saturates.
  • Group IV includes polyalphaolefms (PAO).
  • Group V base stock includes base stocks not included in Groups I-IV. The table below summarizes properties of each of these five groups.
  • Natural oils include animal oils, vegetable oils (castor oil and lard oil, for example), and mineral oils. Animal and vegetable oils possessing favorable thermal oxidative stability can be used. Of the natural oils, mineral oils are preferred. Mineral oils vary widely as to their crude source, for example, as to whether they are paraffinic, naphthenic, or mixed paraffinic-naphthenic. Oils derived from coal or shale are also useful. Natural oils vary also as to the method used for their production and purification, for example, their distillation range and whether they are straight run or cracked, hydrorefined, or solvent extracted. [0019] Group II and/or Group III hydroprocessed or hydrocracked basestocks, including synthetic oils such as polyalphaolefms, alkyl aromatics and synthetic esters are also well known basestock oils.
  • Synthetic oils include hydrocarbon oil.
  • Hydrocarbon oils include oils such as polymerized and interpolymerized olefins (polybutylenes, polypropylenes, propylene isobutylene copolymers, ethylene-olefin copolymers, and ethylene-alphaolefm copolymers, for example).
  • Polyalphaolefm (PAO) oil base stocks are commonly used synthetic hydrocarbon oil.
  • PAOs derived from C 8 , C 10 , C 12 , C 14 olefins or mixtures thereof may be utilized. See U.S. Patent Nos. 4,956,122; 4,827,064; and 4,827,073.
  • the number average molecular weights of the PAOs typically vary from 250 to 3,000, although PAO's may be made in viscosities up to 100 cSt (100°C).
  • the PAOs are typically comprised of relatively low molecular weight hydrogenated polymers or oligomers of alphaolefins which include, but are not limited to, C 2 to C 32 alphaolefins with the C 8 to C 16 alphaolefins, such as 1-octene, 1-decene, 1-dodecene and the like, being preferred.
  • the preferred polyalphaolefms are poly-1- octene, poly- 1-decene and poly- 1-dodecene and mixtures thereof and mixed olefin- derived polyolefms.
  • the dimers of higher olefins in the range of C 14 to C 18 may be used to provide low viscosity basestocks of acceptably low volatility.
  • the PAOs may be predominantly trimers and tetramers of the starting olefins, with minor amounts of the higher oligomers, having a viscosity range of 1.5 to 12 cSt.
  • the PAO fluids may be conveniently made by the polymerization of an alphaolefin in the presence of a polymerization catalyst such as the Friedel-Crafts catalysts including, for example, aluminum trichloride, boron trifluoride or complexes of boron trifluoride with water, alcohols such as ethanol, propanol or butanol, carboxylic acids or esters such as ethyl acetate or ethyl propionate.
  • a polymerization catalyst such as the Friedel-Crafts catalysts including, for example, aluminum trichloride, boron trifluoride or complexes of boron trifluoride with water, alcohols such as ethanol, propanol or butanol, carboxylic acids or esters such as ethyl acetate or ethyl propionate.
  • a polymerization catalyst such as the Friedel-Crafts catalysts including, for example, aluminum trichloride, boro
  • the hydrocarbyl aromatics can be used as base oil or base oil component and can be any hydrocarbyl molecule that contains at least 5% of its weight derived from an aromatic moiety such as a benzenoid moiety or naphthenoid moiety, or their derivatives.
  • These hydrocarbyl aromatics include alkyl benzenes, alkyl naphthalenes, alkyl diphenyl oxides, alkyl naphthols, alkyl diphenyl sulfides, alkylated bis-phenol A, alkylated thiodiphenol, and the like.
  • the aromatic can be mono-alkylated, dialkylated, polyalkylated, and the like.
  • the aromatic can be mono- or poly-functionalized.
  • the hydrocarbyl groups can also be comprised of mixtures of alkyl groups, alkenyl groups, alkynyl, cycloalkyl groups, cycloalkenyl groups and other related hydrocarbyl groups.
  • the hydrocarbyl groups can range from C 6 up to C 6 o with a range of C 8 to C 20 often being preferred. A mixture of hydrocarbyl groups is often preferred, and up to three such substituents may be present.
  • the hydrocarbyl group can optionally contain sulfur, oxygen, and/or nitrogen containing substituents.
  • the aromatic group can also be derived from natural (petroleum) sources, provided at least 5% of the molecule is comprised of an above-type aromatic moiety.
  • Viscosities at 100°C of approximately 3 cSt to 50 cSt are preferred, with viscosities of approximately 3.4 cSt to 20 cSt often being more preferred for the hydrocarbyl aromatic component.
  • an alkyl naphthalene where the alkyl group is primarily comprised of 1-hexadecene is used.
  • Other alkylates of aromatics can be advantageously used.
  • Naphthalene or methyl naphthalene, for example, can be alkylated with olefins such as octene, decene, dodecene, tetradecene or higher, mixtures of similar olefins, and the like.
  • Useful concentrations of hydrocarbyl aromatic in a lubricant oil composition can be 2% to 25%, preferably 4% to 20%, and more preferably 4% to 15%, depending on the application.
  • Esters comprise a useful base stock. Additive solvency and seal compatibility characteristics may be secured by the use of esters such as the esters of dibasic acids with monoalkanols and the polyol esters of monocarboxylic acids.
  • Esters of the former type include, for example, the esters of dicarboxylic acids such as phthalic acid, succinic acid, alkyl succinic acid, alkenyl succinic acid, maleic acid, azelaic acid, suberic acid, sebacic acid, fumaric acid, adipic acid, linoleic acid dimer, malonic acid, alkyl malonic acid, alkenyl malonic acid, etc., with a variety of alcohols such as butyl alcohol, hexyl alcohol, dodecyl alcohol, 2-ethylhexyl alcohol, etc.
  • dicarboxylic acids such as phthalic acid, succinic acid, alkyl succinic acid, alkenyl succinic acid, maleic acid, azelaic acid, suberic acid, sebacic acid, fumaric acid, adipic acid, linoleic acid dimer, malonic acid, alkyl malonic acid, alkenyl malonic acid, etc
  • esters include dibutyl adipate, di(2-ethylhexyl) sebacate, di-n-hexyl fumarate, dioctyl sebacate, diisooctyl azelate, diisodecyl azelate, dioctyl phthalate, didecyl phthalate, dieicosyl sebacate, etc.
  • Particularly useful synthetic esters are those which are obtained by reacting one or more polyhydric alcohols, preferably the hindered polyols (such as the neopentyl polyols, e.g., neopentyl glycol, trimethylol ethane, 2-methyl-2-propyl- 1,3 -propanediol, trimethylol propane, pentaerythritol and dipentaerythritol) with alkanoic acids containing at least 4 carbon atoms, preferably C 5 to C30 acids such as saturated straight chain fatty acids including caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachic acid, and behenic acid, or the corresponding branched chain fatty acids or unsaturated fatty acids such as oleic acid, or mixtures of any of these materials.
  • the hindered polyols such as the neopentyl polyols
  • Suitable synthetic ester components include the esters of trimethylol propane, trimethylol butane, trimethylol ethane, pentaerythritol and/or dipentaerythritol with one or more monocarboxylic acids containing from 5 to 10 carbon atoms. These esters are widely available commercially, for example, the Mobil P-41 and P-51 esters of ExxonMobil Chemical Company).
  • Other useful fluids of lubricating viscosity include non-conventional or unconventional base stocks that have been processed, preferably catalytically, or synthesized to provide high performance lubrication characteristics.
  • Non-conventional or unconventional base stocks/base oils include one or more of a mixture of base stock(s) derived from one or more Gas-to-Liquids (GTL) materials, as well as isomerate/isodewaxate base stock(s) derived from natural wax or waxy feeds, mineral and or non-mineral oil waxy feed stocks such as slack waxes, natural waxes, and waxy stocks such as gas oils, waxy fuels hydrocracker bottoms, waxy raffinate, hydrocrackate, thermal crackates, or other mineral, mineral oil, or even non- petroleum oil derived waxy materials such as waxy materials received from coal liquefaction or shale oil, and mixtures of such base stocks.
  • GTL Gas-to-Liquids
  • GTL materials are materials that are derived via one or more synthesis, combination, transformation, rearrangement, and/or degradation/deconstructive processes from gaseous carbon-containing compounds, hydrogen-containing compounds and/or elements as feed stocks such as hydrogen, carbon dioxide, carbon monoxide, water, methane, ethane, ethylene, acetylene, propane, propylene, propyne, butane, butylenes, and butynes.
  • GTL base stocks and/or base oils are GTL materials of lubricating viscosity that are generally derived from hydrocarbons; for example, waxy synthesized hydrocarbons, that are themselves derived from simpler gaseous carbon- containing compounds, hydrogen-containing compounds and/or elements as feed stocks.
  • GTL base stock(s) and/or base oil(s) include oils boiling in the lube oil boiling range (1) separated/fractionated from synthesized GTL materials such as, for example, by distillation and subsequently subjected to a final wax processing step which involves either or both of a catalytic dewaxing process, or a solvent dewaxing process, to produce lube oils of reduced/low pour point; (2) synthesized wax isomerates, comprising, for example, hydrodewaxed or hydroisomerized cat and/or solvent dewaxed synthesized wax or waxy hydrocarbons; (3) hydrodewaxed or hydroisomerized cat and/or solvent dewaxed Fischer-Tropsch (F-T) material (i.e., hydrocarbons, waxy hydrocarbons, waxes and possible analogous oxygenates); preferably hydrodewaxed or hydroisomerized/followed by cat and/or solvent dewaxing dewaxed F-T waxy hydrocarbons, or hydrodewaxed
  • GTL base stock(s) and/or base oil(s) derived from GTL materials are characterized by: hydrodewaxed or hydroisomerized/followed by cat and/or solvent dewaxed wax or waxy feed, preferably F-T material derived base stock(s) and/or base oil(s), are characterized
  • GTL base stock(s) and/or base oil(s) are typically highly paraffinic (>90% saturates), and may contain mixtures of monocycloparaffins and multicycloparaffins in combination with non-cyclic isoparaffms.
  • GTL base stock(s) and/or base oil(s) typically have very low sulfur and nitrogen content, generally containing less than 10 ppm, and more typically less than 5 ppm of each of these elements.
  • the sulfur and nitrogen content of GTL base stock(s) and/or base oil(s) obtained from F-T material, especially F-T wax, is essentially nil.
  • the absence of phosphorous and aromatics make this materially especially suitable for the formulation of low SAP products.
  • GTL base stock and/or base oil and/or wax isomerate base stock and/or base oil is to be understood as embracing individual fractions of such materials of wide viscosity range as recovered in the production process, mixtures of two or more of such fractions, as well as mixtures of one or two or more low viscosity fractions with one, two or more higher viscosity fractions to produce a blend wherein the blend exhibits a target kinematic viscosity.
  • the GTL material, from which the GTL base stock(s) and/or base oil(s) is/are derived is preferably an F-T material (i.e., hydrocarbons, waxy hydrocarbons, wax).
  • the GTL base stock(s) and/or base oil(s) are typically highly paraffinic (>90% saturates), and may contain mixtures of monocycloparaffins and multicycloparaffins in combination with non-cyclic isoparaffms.
  • the ratio of the naphthenic (i.e., cycloparaffin) content in such combinations varies with the catalyst and temperature used.
  • GTL base stock(s) and/or base oil(s) and hydrodewaxed, or hydroisomerized/cat (and/or solvent) dewaxed base stock(s) and/or base oil(s) typically have very low sulfur and nitrogen content, generally containing less than 10 ppm, and more typically less than 5 ppm of each of these elements.
  • the sulfur and nitrogen content of GTL base stock(s) and/or base oil(s) obtained from F-T material, especially F-T wax, is essentially nil.
  • the absence of phosphorous and aromatics make this material especially suitable for the formulation of low sulfur, sulfated ash, and phosphorus (low SAP) products.
  • Base oils for use in the formulated lubricating oils useful in the present disclosure are any of the variety of oils corresponding to API Group I, Group II, Group III, Group IV, and Group V oils and mixtures thereof, preferably API Group II, Group III, Group IV, and Group V oils and mixtures thereof, more preferably the Group III to Group V base oils due to their exceptional volatility, stability, viscometric and cleanliness features.
  • Minor quantities of Group I stock such as the amount used to dilute additives for blending into formulated lube oil products, can be tolerated but should be kept to a minimum, i.e. amounts only associated with their use as diluent/carrier oil for additives used on an "as-received" basis.
  • Even in regard to the Group II stocks it is preferred that the Group II stock be in the higher quality range associated with that stock, i.e. a Group II stock having a viscosity index in the range 100 ⁇ VI ⁇ 120.
  • the base oil constitutes the major component of the engine oil lubricant composition of the present disclosure and typically is present in an amount ranging from 50 to 99 weight percent, preferably from 70 to 95 weight percent, and more preferably from 85 to 95 weight percent, based on the total weight of the composition.
  • the base oil may be selected from any of the synthetic or natural oils typically used as crankcase lubricating oils for spark-ignited and compression-ignited engines.
  • the base oil conveniently has a kinematic viscosity, according to ASTM standards, of 2.5 cSt to 12 cSt (or mm 2 /s) at 100°C and preferably of 2.5 cSt to 9 cSt (or mm 2 /s) at 100° C. Mixtures of synthetic and natural base oils may be used if desired.
  • Viscosity index improvers provide lubricants with high and low temperature operability. These additives impart shear stability at elevated temperatures and acceptable viscosity at low temperatures.
  • Propylene-based polymers are used as viscosity index improvers. These polymers have acceptable properties as viscosity index improvers with good shear stability and viscosity characteristics. More particularly, it has been found that propylene-based polymers having low a-olefm content that, when used as VI improvers, promote oil thickening, shear stability and low temperature viscometrics, while lowering the oil pour point. These propylene-based VI improvers reduce the temperature dependency of the viscosity of the lubricant compositions so that the lubricant compositions can be used over a wide temperature range without solids or gel formations and thereby improve engine fuel efficiency. Illustrative propylene-based polymers useful as viscosity index improvers in this disclosure are disclosed in WO 2010/016847, which is incorporated herein in its entirety.
  • the propylene-based polymer can be one or more propylene-alpha-olefm- copolymers, propylene-alpha-olefm-diene terpolymers, or propylene-diene copolymers.
  • propylene-based polymer and "PCP” are used interchangeably herein and refer to one or more propylene-alpha- olefin-copolymers, propylene-alpha-olefm-diene terpolymers and propylene-diene copolymers having 60 wt% to 99.7 wt% propylene derived units.
  • PCPs of the present disclosure may interchangeably refer to the PCP being made up of multiple monomers (i.e., propylene and ethylene) or units derived from monomers (i.e., propylene-derived units and/or units derived from alpha-olefms).
  • the propylene-based polymer can be prepared by polymerizing propylene with ethylene and/or one or more C4-C20 alpha-olefms, or a combination of ethylene and one or more C4-C20 alpha-olefm and one or more dienes.
  • the one or more dienes can be conjugated or non-conjugated.
  • the one or more dienes are non-conjugated.
  • the propylene-based polymer can be prepared by polymerizing propylene with one or more dienes.
  • the propylene-based polymer can be prepared by polymerizing propylene with ethylene and/or at least one C4-C20 alpha-olefm, or a combination of ethylene and at least one C 4 - C20 alpha-olefm and one or more dienes.
  • the one or more dienes can be conjugated or non-conjugated.
  • the one or more dienes are non-conjugated.
  • the comonomers can be linear or branched.
  • Preferred linear comonomers include ethylene or C 4 to C 8 alpha-olefms, more preferably ethylene, 1-butene, 1- hexene, and 1-octene, even more preferably ethylene or 1-butene.
  • Preferred branched comonomers include 4-methyl-l-pentene, 3-methyl-l-pentene, and 3,5,5-trimethyl-l- hexene.
  • the comonomer can include styrene.
  • Illustrative dienes can include but are not limited to 5-ethylidene-2- norbornene (ENB); 1,4-hexadiene; 5-methylene-2-norbornene (MNB); 1 ,6-octadiene; 5-methyl-l,4-hexadiene; 3,7-dimethyl- 1 ,6-octadiene; 1 ,3-cyclopentadiene;
  • ENB 5-ethylidene-2- norbornene
  • MNB 5-methylene-2-norbornene
  • 1 ,6-octadiene 5-methyl-l,4-hexadiene
  • 3,7-dimethyl- 1 ,6-octadiene 1 ,3-cyclopentadiene
  • the diene is ENB.
  • Preferred methods and catalysts for producing the propylene-based polymers are found in publications U.S. 2004/0236042 and WO 2005/049672 and in U.S. Patent No. 6,881,800, which are all incorporated by reference herein.
  • Pyridine amine complexes such as those described in WO 2003/040201 are also useful to produce the propylene-based polymers useful herein.
  • the catalyst can involve a fluxional complex, which undergoes periodic intra-molecular re-arrangement so as to provide the desired interruption of stereoregularity as in U.S. 6,559,262.
  • the catalyst can be a stereorigid complex with mixed influence on propylene insertion, see Rieger EP 1 070 087.
  • the catalyst described in EP 1 614 699 could also be used for the production of backbones suitable for the invention.
  • the propylene-based polymer can have an average propylene content on a weight percent basis of from 60 wt% to 99.7 wt%, more preferably from 60 wt% to 99.5 wt%, more preferably from 60 wt% to 98 wt%, more preferably from 60 wt% to 97 wt%, more preferably from 60 wt% to 95 wt% based on the weight of the polymer.
  • the balance comprises units derived from one or more alpha-olefms.
  • the one or more alpha-olefms may comprise ethylene, or one or more C4-C20 alpha-olefm or a combination of ethylene and one or more C4-C20 alpha- olefin. In another embodiment, the one or more alpha-olefms may compromise ethylene, or one or more C4-C 12 alpha-olefms or a combination of ethylene and one or more C 4 - C 12 alpha-olefms. In a preferred embodiment, the one or more alpha-olefms comprises ethylene. In another embodiment, the one or more alpha-olefms comprises butene.
  • the mole ratio of propylene to the one or more other alpha olefins can range from 50:50 to 85:15, preferably from 50:50 to 80:20, and more preferably from 50:50 to 75:25.
  • the balance comprises units derived from one or more dienes and optionally one or more of the alpha-olefms described previously.
  • the alpha-olefm is ethylene, butene, hexene or octene.
  • two alpha-olefms are present, preferably ethylene and one of butene, hexene or octene.
  • the propylene-based polymer comprises 0.2 wt% to 24 wt%, units derived from a non-conjugated diene based on the weight of the polymer, more preferably from 0.5 wt% to 12 wt%, more preferably 0.6 wt% to 8 wt%, and more preferably 0.7 wt% to 5 wt%.
  • the diene content ranges from 0.2 wt% to 10 wt%, more preferably from 0.2 to 5 wt%, more preferably from 0.2 wt% to 4 wt%, preferably from 0.2wt% to 3.5 wt%, preferably from 0.2wt% to 3.0 wt%, and preferably from 0.2 wt% to 2.5 wt% based on the weight of the polymer.
  • the propylene-based polymer comprises units derived from ENB in an amount of from 0.5 to 4 wt%, more preferably from 0.5 to 2.5 wt%, and more preferably from 0.5 to 2.0 wt%.
  • the propylene-based polymer preferably comprises propylene-derived units and diene-derived units in one or more of the ranges described above with the balance comprising one or more C 2 and/or C 4 -C 2 o olefins. In general, this will amount to the propylene-based polymer preferably comprising from 5 to 40 wt% of one or more C 2 and/or C 4 -C 2 o olefins based the weight of the polymer.
  • the combined amounts of these olefins in the polymer is preferably at least 5 wt% and falling within the ranges described herein.
  • Other preferred ranges for the one or more alpha-olefms include from 5 wt% to 35 wt%, more preferably from 5 wt% to 30 wt%, more preferably from 5 wt% to 25 wt%, more preferably from 5 wt% to 20 wt%, more preferably from 5 to 17 wt% and more preferably from 5 wt% to 16 wt%.
  • the propylene-based polymer can have a Mw of 100,000 to 500,000 g/mole, more preferably a Mw of 125,000 to 475,000, more preferably a Mw of 150,000 to 450,000, more preferably a Mw of 175,000 to 425,000, more preferably a Mw of 200,000 to 400,000, more preferably a Mw of 225,000 to 375,000, wherein Mw is determined as described herein.
  • the propylene-based polymer can have a Mw ranging from a low of 100,000, 110,000, 120,000, 130,000, or 140,000 to a high of 450,000, 460,000, 470,000, 480,000, or 500,000.
  • the propylene-based polymer can have a Mn of 100,000 to 400,000 g/mole, more preferably a Mn of 125,000 to 375,000, more preferably a Mn of 150,000 to 350,000, more preferably a Mn of 175,000 to 325,000, wherein Mn is determined as described herein.
  • the MWD can have an upper limit of 2, or 1.95, or 1.9, or 1.85, or 1.8, or 1.75, or 1.7, or 1.65, or 1.6, or 1.55 and a lower limit of 1, or 1.05, or 1.1, or 1.15, or 1.2, or 1.25.
  • the MWD of the propylene-based polymer is 1.0 to 1.95, more preferably 1.0 to 1.75, and most preferably 1.0 to 1.5.
  • the propylene-based polymer can have a density of 0.85 g/cm 3 to 0.92 g/cm 3 , more preferably, 0.87 g/cm 3 to
  • the propylene-based polymer can have a melt flow rate (MFR, 2.16 kg weight @ 230°C), equal to or greater than 0.2 g/10 min as measured according to the ASTM D-1238 test method as modified.
  • MFR melt flow rate
  • the MFR (2.16 kg @ 230°C) is from 0.5 g/10 min to 200 g/10 min and more preferably from 1 g/10 min to 100 g/10 min.
  • the propylene-based polymer has an MFR upper limit of 200 g/10 min, 150 g/10 min, 100 g/10 min, 75 g/10 min, 50 g/10 min, 30 g/10 min, 25 g/10 min, or 20 g/10 min and a lower limit of 0.1 g/10 min, 0.5 g/10 min, 1 g/10 min, 2 g/10 min, 3 g/10 min, 4 g/10 min, 5 g/10 min, 8 g/10 min, or 10 g/10 min.
  • the propylene-based polymer has an MFR of 0.5 g/10 min to 200 g/10 min, preferably from 2 g/10 min to 30 g/10 min, more preferably from 3 g/10 min to 21 g/lOmin, more preferably from 5 g/10 min to 30 g/10 min, more preferably 10 g/10 min to 30 g/10 min, more preferably 10 g/10 min to 25 g/10 min, or more preferably 2 g/ 10 min to 10 g/10 min.
  • the propylene-based polymer can have a Mooney viscosity ML (1+4)@125°C, as determined according to ASTM D 1646, of less than 100, more preferably less than 75, even more preferably less than 60, most preferably less than 30.
  • the Mooney viscosity can range from a low of 1, 5, 10, or 15 to a high of 30, 60, 75 or 100.
  • the propylene-based polymer can have a heat of fusion (Hf) determined according to the DSC procedure described herein, which is greater than or equal to 0.5 Joules per gram (J/g), and is less than or equal to 80 J/g, preferably less than or equal to 75 J/g, preferably less than or equal to 70 J/g, more preferably less than or equal to 60 J/g, more preferably less than or equal to 50 J/g, more preferably less than or equal to 35 J/g. Also preferably, the propylene-based polymer has a heat of fusion that is greater than or equal to 1 J/g, preferably greater than or equal to 5 J/g.
  • Hf heat of fusion
  • the propylene-based polymer can have a heat of fusion (Hf), which is from 0.5 J/g to 75 J/g, preferably from 1 J/g to 75 J/g, more preferably from 0.5 J/g to 35 J/g.
  • Hf heat of fusion
  • Preferred propylene-based polymers and compositions can be characterized in terms of both their melting points (Tm) and heats of fusion, which properties can be influenced by the presence of comonomers or steric irregularities that hinder the formation of crystallites by the polymer chains.
  • the heat of fusion ranges from a lower limit of 1.0 J/g, or 1.5 J/g, or 3.0 J/g, or 4.0 J/g, or 6.0 J/g, or 7.0 J/g, to an upper limit of 30 J/g, or 35 J/g, or 40 J/g, or 50 J/g, or 60 J/g or 70 J/g, or 75 J/g, or 80 J/g.
  • the crystallinity of the propylene-based polymer can also be expressed in terms of percentage of crystallinity (i.e. % crystallinity).
  • the propylene-based polymer is substantially amorphous characterized in that it has 0 % crystallinity as determined according to the DSC procedure described herein.
  • the propylene-based polymer has a % crystallinity of from 0.5 % to 40%, preferably 1% to 30%, more preferably 5% to 25% wherein % crystallinity is determined according to the DSC procedure described herein.
  • the propylene-based polymer preferably has a crystallinity of less than 40%, preferably 0.25% to 25%, more preferably from 0.5%) to 22%, and most preferably from 0.5%> to 20%>.
  • the thermal energy for the highest order of polypropylene is estimated at 189 J/g (i.e., 100% crystallinity is equal to 209 J/g.).
  • the propylene-based polymer preferably has a single broad melting transition.
  • the propylene-based polymer can show secondary melting peaks adjacent to the principal peak, but for purposes herein, such secondary melting peaks are considered together as a single melting point, with the highest of these peaks (relative to baseline as described herein) being considered the melting point of the propylene-based polymer.
  • Heat of fusion, % crystallinity and melting temperature of the propylene- based polymer can be determined, for example by a Differential Scanning Calorimetry (DSC) as described n WO 2010/016847, supra.
  • DSC Differential Scanning Calorimetry
  • the propylene-based polymer can be blended with other polymeric viscosity index modifiers, such as polybutenes, polymers of styrene with butadiene or isoprene that may optionally be hydrogenated or a combination of butadiene or isoprene, ester based viscosity index modifiers such as esters of styrene/maleic anhydride polymers, esters of styrene/maleic anhydride/acrylate terpolymers, and polymethacrylates.
  • polymeric viscosity index modifiers such as polybutenes, polymers of styrene with butadiene or isoprene that may optionally be hydrogenated or a combination of butadiene or isoprene
  • ester based viscosity index modifiers such as esters of styrene/maleic anhydride polymers, esters of styrene/maleic anhydride/acrylate terpolymers,
  • viscosity index modifiers for such blends include acrylate-or methacrylate-containing copolymers or copolymers of styrene and an ester of an unsaturated carboxylic acid such as styrene/maleic ester (typically prepared by esterification of a styrene/maleic anhydride copolymer).
  • the propylene-based polymer can itself be a blend of discrete random propylene-based polymers.
  • Such blends can include ethylene- based polymers and propylene-based polymers, or at least one of each such ethylene - based polymers and propylene-based polymers.
  • the number of propylene-based polymers can be three or less, more preferably two or less.
  • the propylene-based polymer is a blend of discrete random propylene-based polymers
  • it may further be blended with other polymeric viscosity index modifiers, such as polybutenes, polymers of styrene with butadiene or isoprene or a combination of butadiene or isoprene, ester based viscosity index modifiers such as esters of styrene/maleic anhydride polymers, esters of styrene/maleic anhydride/acrylate terpolymers, and polymethacrylates.
  • polymeric viscosity index modifiers such as polybutenes, polymers of styrene with butadiene or isoprene or a combination of butadiene or isoprene
  • ester based viscosity index modifiers such as esters of styrene/maleic anhydride polymers, esters of styrene/maleic anhydride/acrylate
  • viscosity index modifiers for such blends include acrylate-or methacrylate-containing copolymers or copolymers of styrene and an ester of an unsaturated carboxylic acid such as styrene/maleic ester (typically prepared by esterification of a styrene/maleic anhydride copolymer).
  • the propylene-based polymer can include a blend of two propylene-based polymers differing in the olefin content, the diene content, or both.
  • the propylene-based polymers can include copolymers prepared according to the procedures in WO 02/36651.
  • the propylene-based polymer can include polymers consistent with those described in WO 2003/040201, WO 2003/040202, WO 2003/040095, WO 2003/040201, WO 2003/040233, and/or WO 2003/040442.
  • the propylene-based polymer can include polymers consistent with those described in EP 1 233 191, and U.S. 6,525,157, along with suitable propylene homo- and copolymers described in U.S. 6,770,713 and U.S. Patent Application Publication 2005/215964, all of which are incorporated by reference.
  • the propylene-based polymer can also include one or more polymers consistent with those described in EP 1 614 699 or EP 1 017 729.
  • the propylene-based polymer can be grafted (i.e. "functionalized") using one or more grafting monomers as described in WO 2010/016847, supra.
  • grafting denotes covalent bonding of the grafting monomer to a polymer chain of the propylene-based polymer.
  • the grafted propylene-based polymer can be prepared using conventional techniques.
  • the formulated lubricating oil useful in the present disclosure may additionally contain one or more of the other commonly used lubricating oil performance additives including but not limited to dispersants, detergents, pour point depressants (PPDs), corrosion inhibitors, rust inhibitors, metal deactivators, other anti-wear agents and/or extreme pressure additives, anti-seizure agents, wax modifiers, viscosity modifiers, fluid-loss additives, seal compatibility agents, friction modifiers, lubricity agents, anti-staining agents, chromophoric agents, defoamants, demulsifiers, emulsifiers, densifiers, wetting agents, gelling agents, tackiness agents, colorants, and others.
  • dispersants including but not limited to dispersants, detergents, pour point depressants (PPDs), corrosion inhibitors, rust inhibitors, metal deactivators, other anti-wear agents and/or extreme pressure additives, anti-seizure agents, wax modifiers, viscosity modifier
  • Dispersants help keep these byproducts in solution, thus diminishing their deposition on metal surfaces.
  • Dispersants used in the formulation of the lubricating oil may be ashless or ash-forming in nature.
  • the dispersant is ashless.
  • So called ashless dispersants are organic materials that form substantially no ash upon combustion.
  • non-metal-containing or borated metal- free dispersants are considered ashless.
  • metal-containing detergents discussed above form ash upon combustion.
  • Suitable dispersants typically contain a polar group attached to a relatively high molecular weight hydrocarbon chain.
  • the polar group typically contains at least one element of nitrogen, oxygen, or phosphorus.
  • Typical hydrocarbon chains contain 50 to 400 carbon atoms.
  • dispersants may be characterized as phenates, sulfonates, sulfurized phenates, salicylates, naphthenates, stearates, carbamates, thiocarbamates, phosphorus derivatives.
  • a particularly useful class of dispersants are the alkenylsuccinic derivatives, typically produced by the reaction of a long chain hydrocarbyl substituted succinic compound, usually a hydrocarbyl substituted succinic anhydride, with a polyhydroxy or polyamino compound.
  • the long chain hydrocarbyl group constituting the oleophilic portion of the molecule which confers solubility in the oil is normally a polyisobutylene group.
  • Hydrocarbyl-substituted succinic acid and hydrocarbyl-substituted succinic anhydride derivatives are useful dispersants.
  • succinimide, succinate esters, or succinate ester amides prepared by the reaction of a hydrocarbon-substituted succinic acid compound preferably having at least 50 carbon atoms in the hydrocarbon substituent, with at least one equivalent of an alkylene amine are particularly useful.
  • Succinimides are formed by the condensation reaction between hydrocarbyl substituted succinic anhydrides and amines. Molar ratios can vary depending on the polyamine. For example, the molar ratio of hydrocarbyl substituted succinic anhydride to TEPA can vary from 1 : 1 to 5: 1. Representative examples are shown in U.S. Patent Nos. 3,087,936; 3,172,892; 3,219,666; 3,272,746; 3,322,670; and 3,652,616, 3,948,800; and Canada Patent No. 1,094,044.
  • Succinate esters are formed by the condensation reaction between hydrocarbyl substituted succinic anhydrides and alcohols or polyols. Molar ratios can vary depending on the alcohol or polyol used. For example, the condensation product of a hydrocarbyl substituted succinic anhydride and pentaerythritol is a useful dispersant.
  • Succinate ester amides are formed by condensation reaction between hydrocarbyl substituted succinic anhydrides and alkanol amines.
  • suitable alkanol amines include ethoxylated polyalkylpolyamines, propoxylated polyalkylpolyamines and polyalkenylpolyamines such as polyethylene polyamines.
  • propoxylated hexamethylenediamine Representative examples are shown in U.S. Patent No. 4,426,305.
  • the molecular weight of the hydrocarbyl substituted succinic anhydrides used in the preceding paragraphs will typically range between 800 and 2,500.
  • the above products can be post-reacted with various reagents such as sulfur, oxygen, formaldehyde, carboxylic acids such as oleic acid.
  • the above products can also be post reacted with boron compounds such as boric acid, borate esters or highly borated dispersants, to form borated dispersants generally having from 0.1 to 5 moles of boron per mole of dispersant reaction product.
  • Mannich base dispersants are made from the reaction of alkylphenols, formaldehyde, and amines. See U.S. Patent No.
  • Typical high molecular weight aliphatic acid modified Mannich condensation products useful in this disclosure can be prepared from high molecular weight alkyl- substituted hydroxyaromatics or HN(R) 2 group-containing reactants.
  • Hydrocarbyl substituted amine ashless dispersant additives are well known to one skilled in the art; see, for example, U.S. Patent Nos. 3,275,554; 3,438,757; 3,565,804; 3,755,433, 3,822,209, and 5,084,197.
  • Preferred dispersants include borated and non-borated succinimides, including those derivatives from mono-succinimides, bis-succinimides, and/or mixtures of mono- and bis-succinimides, wherein the hydrocarbyl succinimide is derived from a hydrocarbylene group such as polyisobutylene having a Mn of from 500 to 5000 or a mixture of such hydrocarbylene groups.
  • Other preferred dispersants include succinic acid-esters and amides, alkylphenol-polyamine-coupled Mannich adducts, their capped derivatives, and other related components. Such additives may be used in an amount of 0.1 to 20 weight percent, preferably 0.5 to 8 weight percent.
  • pour point depressants also known as lube oil flow improvers
  • pour point depressants may be added to lubricating compositions of the present disclosure to lower the minimum temperature at which the fluid will flow or can be poured.
  • suitable pour point depressants include polymethacrylates, polyacrylates, polyarylamides, condensation products of haloparaffm waxes and aromatic compounds, vinyl carboxylate polymers, and terpolymers of dialkylfumarates, vinyl esters of fatty acids and allyl vinyl ethers.
  • 1,815,022; 2,015,748; 2,191,498; 2,387,501; 2,655, 479; 2,666,746; 2,721,877; 2,721,878; and 3,250,715 describe useful pour point depressants and/or the preparation thereof.
  • Such additives may be used in an amount of 0.01 to 5 weight percent, preferably 0.01 to 1.5 weight percent.
  • Illustrative detergent useful in this disclosure include, for example, alkali metal detergents, alkaline earth metal detergents, or mixtures of one or more alkali metal detergents and one or more alkaline earth metal detergents.
  • a typical detergent is an anionic material that contains a long chain hydrophobic portion of the molecule and a smaller anionic or oleophobic hydrophilic portion of the molecule.
  • the anionic portion of the detergent is typically derived from an organic acid such as a sulfur acid, carboxylic acid, phosphorous acid, phenol, or mixtures thereof.
  • the counterion is typically an alkaline earth or alkali metal.
  • Salts that contain a substantially stochiometric amount of the metal are described as neutral salts and have a total base number (TBN, as measured by ASTM D2896) of from 0 to 80.
  • TBN total base number
  • Many compositions are overbased, containing large amounts of a metal base that is achieved by reacting an excess of a metal compound (a metal hydroxide or oxide, for example) with an acidic gas (such as carbon dioxide).
  • a metal compound a metal hydroxide or oxide, for example
  • an acidic gas such as carbon dioxide
  • Useful detergents can be neutral, mildly overbased, or highly overbased.
  • Alkaline earth phenates are another useful class of detergent. These detergents can be made by reacting alkaline earth metal hydroxide or oxide (CaO, Ca(OH) 2 , BaO, Ba(OH) 2 , MgO, Mg(OH) 2 , for example) with an alkyl phenol or sulfurized alkylphenol.
  • alkaline earth metal hydroxide or oxide Ca(OH) 2 , BaO, Ba(OH) 2 , MgO, Mg(OH) 2 , for example
  • Useful alkyl groups include straight chain or branched C 1 -C30 alkyl groups, preferably, C 4 -C 2 o. Examples of suitable phenols include isobutylphenol, 2-ethylhexylphenol, nonylphenol, dodecyl phenol, and the like.
  • starting alkylphenols may contain more than one alkyl substituent that are each independently straight chain or branched.
  • the sulfurized product may be obtained by methods well known in the art. These methods include heating a mixture of alkylphenol and sulfurizing agent (including elemental sulfur, sulfur halides such as sulfur dichloride, and the like) and then reacting the sulfurized phenol with an alkaline earth metal base.
  • Metal salts of carboxylic acids are also useful as detergents. These carboxylic acid detergents may be prepared by reacting a basic metal compound with at least one carboxylic acid and removing free water from the reaction product. These compounds may be overbased to produce the desired TBN level.
  • Detergents made from salicylic acid are one preferred class of detergents derived from carboxylic acids.
  • Useful salicylates include long chain alkyl salicylates.
  • One useful family of compositions is of the formula
  • R is an alkyl group having 1 to 30 carbon atoms
  • n is an integer from 1 to 4
  • M is an alkaline earth metal.
  • Preferred R groups are alkyl chains of at least Cn , preferably C 13 or greater. R may be optionally substituted with substituents that do not interfere with the detergent's function.
  • M is preferably, calcium, magnesium, or barium. More preferably, M is calcium.
  • Hydrocarbyl-substituted salicylic acids may be prepared from phenols by the Kolbe reaction (see U.S. Patent No. 3,595,791).
  • the metal salts of the hydrocarbyl- substituted salicylic acids may be prepared by double decomposition of a metal salt in a polar solvent such as water or alcohol.
  • Alkaline earth metal phosphates are also used as detergents and are known in the art.
  • Detergents may be simple detergents or what is known as hybrid or complex detergents. The latter detergents can provide the properties of two detergents without the need to blend separate materials. See U.S. Patent No. 6,034,039.
  • Preferred detergents include calcium phenates, calcium sulfonates, calcium salicylates, magnesium phenates, magnesium sulfonates, magnesium salicylates and other related components (including borated detergents), and mixtures thereof.
  • Preferred detergents include magnesium sulfonate and calcium salicylate.
  • the detergent mixture concentration in the lubricating oils of this disclosure can range from 1.0 to 6.0 weight percent, preferably 2.0 to 5.0 weight percent, and more preferably from 2.0 weight percent to 4.0 weight percent, based on the total weight of the lubricating oil.
  • Antioxidants retard the oxidative degradation of base oils during service. Such degradation may result in deposits on metal surfaces, the presence of sludge, or a viscosity increase in the lubricant.
  • One skilled in the art knows a wide variety of oxidation inhibitors that are useful in lubricating oil compositions. See, Klamann in Lubricants and Related Products, op cite, and U.S. Patent Nos. 4,798,684 and 5,084,197, for example.
  • Useful antioxidants include hindered phenols. These phenolic antioxidants may be ashless (metal-free) phenolic compounds or neutral or basic metal salts of certain phenolic compounds. Typical phenolic antioxidant compounds are the hindered phenolics which are the ones which contain a sterically hindered hydroxyl group, and these include those derivatives of dihydroxy aryl compounds in which the hydroxyl groups are in the o- or p-position to each other. Typical phenolic antioxidants include the hindered phenols substituted with C 6 + alkyl groups and the alkylene coupled derivatives of these hindered phenols.
  • phenolic materials of this type 2-t- butyl-4-heptyl phenol; 2-t-butyl-4-octyl phenol; 2-t-butyl-4-dodecyl phenol; 2,6-di-t- butyl-4-heptyl phenol; 2,6-di-t-butyl-4-dodecyl phenol; 2-methyl-6-t-butyl-4-heptyl phenol; and 2-methyl-6-t-butyl-4-dodecyl phenol.
  • Other useful hindered mono-phenolic antioxidants may include for example hindered 2,6-di-alkyl-phenolic proprionic ester derivatives.
  • Bis-phenolic antioxidants may also be advantageously used in combination with the instant disclosure.
  • ortho-coupled phenols include: 2,2'-bis(4- heptyl-6-t-butyl-phenol); 2,2'-bis(4-octyl-6-t-butyl-phenol); and 2,2'-bis(4-dodecyl-6-t- butyl-phenol).
  • Para-coupled bisphenols include for example 4,4'-bis(2,6-di-t-butyl phenol) and 4,4'-methylene-bis(2,6-di-t-butyl phenol).
  • Non-phenolic oxidation inhibitors which may be used include aromatic amine antioxidants and these may be used either as such or in combination with phenolics.
  • Typical examples of non-phenolic antioxidants include: alkylated and non-alkylated
  • aromatic amines such as aromatic monoamines of the formula R R R 3 ⁇ 4 where R is an aliphatic, aromatic or substituted aromatic group, R 9 is an aromatic or a substituted aromatic group, and R 10 is H, alkyl, aryl or R n S(0)xR 12 where R 11 is an alkylene, alkenylene, or aralkylene group, R 12 is a higher alkyl group, or an alkenyl, aryl, or
  • the aliphatic group R may contain from 1 to 20 carbon atoms, and preferably contains from 6 to 12 carbon atoms.
  • both R and R are aromatic or substituted aromatic groups, and the aromatic group may be a fused ring aromatic group such as
  • Aromatic groups R and R may be joined together with other groups such as S.
  • Typical aromatic amines antioxidants have alkyl substituent groups of at least 6 carbon atoms.
  • Examples of aliphatic groups include hexyl, heptyl, octyl, nonyl, and decyl. Generally, the aliphatic groups will not contain more than 14 carbon atoms.
  • the general types of amine antioxidants useful in the present compositions include diphenylamines, phenyl naphthylamines, phenothiazines, imidodibenzyls and diphenyl phenylene diamines. Mixtures of two or more aromatic amines are also useful. Polymeric amine antioxidants can also be used.
  • aromatic amine antioxidants useful in the present disclosure include: p,p'-dioctyldiphenylamine; t-octylphenyl-alpha-naphthylamine; phenyl-alphanaphthylamine; and p-octylphenyl- alpha-naphthylamine .
  • Sulfurized alkyl phenols and alkali or alkaline earth metal salts thereof also are useful antioxidants.
  • Preferred antioxidants include hindered phenols, arylamines. These antioxidants may be used individually by type or in combination with one another. Such additives may be used in an amount of 0.01 to 5 weight percent, preferably 0.01 to 1.5 weight percent, more preferably zero to less than 1.5 weight percent, most preferably zero.
  • a metal alkylthiophosphate and more particularly a metal dialkyl dithio phosphate in which the metal constituent is zinc, or zinc dialkyl dithio phosphate is an essential component of the lubricating oils of this disclosure.
  • ZDDP can be primary, secondary or mixtures thereof.
  • ZDDP compounds generally are of the formula Zn[SP(S)(OR 1 )(OR 2 )] 2 where R 1 and R 2 are Ci-Cig alkyl groups, preferably C 2 -Ci 2 alkyl groups. These alkyl groups may be straight chain or branched.
  • Preferable zinc dithiophosphates which are commercially available include secondary zinc dithiophosphates such as those available from for example, The Lubrizol Corporation under the trade designations "LZ 677A”, “LZ 1095” and “LZ 1371", from for example Chevron Oronite under the trade designation "OLOA 262" and from for example Afton Chemical under the trade designation "HITEC 7169".
  • the ZDDP is typically used in amounts of from 0.4 weight percent to 1.2 weight percent, preferably from 0.5 weight percent to 1.0 weight percent, and more preferably from 0.6 weight percent to 0.8 weight percent, based on the total weight of the lubricating oil, although more or less can often be used advantageously.
  • the ZDDP is a secondary ZDDP and present in an amount of from 0.6 to 1.0 weight percent of the total weight of the lubricating oil.
  • Seal compatibility agents help to swell elastomeric seals by causing a chemical reaction in the fluid or physical change in the elastomer.
  • Suitable seal compatibility agents for lubricating oils include organic phosphates, aromatic esters, aromatic hydrocarbons, esters (butylbenzyl phthalate, for example), and polybutenyl succinic anhydride. Such additives may be used in an amount of 0.01 to 3 weight percent, preferably 0.01 to 2 weight percent.
  • Anti-foam agents may advantageously be added to lubricant compositions. These agents retard the formation of stable foams. Silicones and organic polymers are typical anti-foam agents. For example, polysiloxanes, such as silicon oil or polydimethyl siloxane, provide antifoam properties. Anti-foam agents are commercially available and may be used in conventional minor amounts along with other additives such as demulsifiers; usually the amount of these additives combined is less than 1 weight percent and often less than 0.1 weight percent.
  • a friction modifier is any material or materials that can alter the coefficient of friction of a surface lubricated by any lubricant or fluid containing such material(s).
  • Friction modifiers also known as friction reducers, or lubricity agents or oiliness agents, and other such agents that change the ability of base oils, formulated lubricant compositions, or functional fluids, to modify the coefficient of friction of a lubricated surface may be effectively used in combination with the base oils or lubricant compositions of the present disclosure if desired. Friction modifiers that lower the coefficient of friction are particularly advantageous in combination with the base oils and lube compositions of this disclosure. Friction modifiers may include metal-containing compounds or materials as well as ashless compounds or materials, or mixtures thereof.
  • Metal-containing friction modifiers may include metal salts or metalligand complexes where the metals may include alkali, alkaline earth, or transition group metals. Such metal-containing friction modifiers may also have low-ash characteristics. Transition metals may include Mo, Sb, Sn, Fe, Cu, Zn, and others.
  • Ligands may include hydrocarbyl derivative of alcohols, polyols, glycerols, partial ester glycerols, thiols, carboxylates, carbamates, thiocarbamates, dithiocarbamates, phosphates, thiophosphates, dithiophosphates, amides, imides, amines, thiazoles, thiadiazoles, dithiazoles, diazoles, triazoles, and other polar molecular functional groups containing effective amounts of O, N, S, or P, individually or in combination.
  • Mo-containing compounds can be particularly effective such as for example Mo-dithiocarbamates, Mo(DTC), Mo-dithiophosphates, Mo(DTP), Mo-amines, Mo (Am), Mo-alcoholates, Mo-alcohol- amides, etc. See U.S. Patent Nos. 5,824,627, 6,232,276, 6,153,564, 6,143,701, 6,110,878, 5,837,657, 6,010,987, 5,906,968, 6,734,150, 6,730,638, 6,689,725, 6,569,820; WO 99/66013; WO 99/47629; and WO 98/26030.
  • Ashless friction modifiers may also include lubricant materials that contain effective amounts of polar groups, for example, hydroxyl-containing hydrocarbyl base oils, glycerides, partial glycerides, glyceride derivatives, and the like.
  • Polar groups in friction modifiers may include hydrocarbyl groups containing effective amounts of O, N, S, or P, individually or in combination.
  • Other friction modifiers that may be particularly effective include, for example, salts (both ash-containing and ashless derivatives) of fatty acids, fatty alcohols, fatty amides, fatty esters, hydroxyl-containing carboxylates, and comparable synthetic long-chain hydrocarbyl acids, alcohols, amides, esters, hydroxy carboxylates, and the like.
  • fatty organic acids, fatty amines, and sulfurized fatty acids may be used as suitable friction modifiers.
  • Useful concentrations of friction modifiers may range from 0.01 weight percent to 10-15 weight percent or more, often with a preferred range of 0.1 weight percent to 5 weight percent. Concentrations of molybdenum-containing materials are often described in terms of Mo metal concentration. Advantageous concentrations of Mo may range from 10 ppm to 3000 ppm or more, and often with a preferred range of 20- 2000 ppm, and in some instances a more preferred range of 30-1000 ppm. Friction modifiers of all types may be used alone or in mixtures with the materials of this disclosure. Often mixtures of two or more friction modifiers, or mixtures of friction modifier(s) with alternate surface active material(s), are also desirable.
  • lubricating oil compositions contain one or more of the additives discussed above, the additive(s) are blended into the composition in an amount sufficient for it to perform its intended function. Typical amounts of such additives useful in the present disclosure are shown in Table A below. [00104] It is noted that many of the additives are shipped from the additive manufacturer as a concentrate, containing one or more additives together, with a certain amount of base oil diluent. Accordingly, the weight amounts in the table below, as well as other amounts mentioned in this specification, are directed to the amount of active ingredient (that is the non-diluent portion of the ingredient). The weight percent (wt%) indicated below is based on the total weight of the lubricating oil composition.
  • Anti-foam Agent 0.001-3 0.001-0.15
  • additives are all commercially available materials. These additives may be added independently but are usually precombined in packages which can be obtained from suppliers of lubricant oil additives. Additive packages with a variety of ingredients, proportions and characteristics are available and selection of the appropriate package will take the requisite use of the ultimate composition into account.
  • improved fuel efficiency can be attained, while wear protection is maintained or improved, in an engine lubricated with a lubricating oil by using as the lubricating oil a formulated oil as described herein. Improved engine fuel efficiency can be achieved without sacrificing engine durability.
  • the engine oil lubricants of this disclosure can effectively improve fuel economy while providing desired antiwear performance over a wide temperature range.
  • the lubricating oils of this disclosure are particularly advantageous as passenger vehicle engine oil (PVEO) products.
  • VLl 151 J The Lubrizol Corporation viscosity index (VI) improver
  • Paratone 8451 Chevron Oronite Company
  • VI improvers are olefin copolymers.
  • VLl 151 J uses propylene and butylene as the olefins which are polymerized while Paratone 8451 uses ethylene and propylene as the olefins which are polymerized.
  • VLl 151 J was used as a concentrate containing 11.5 wt% solid polymer in a Group II base oil, and Paratone 8451 was used as a concentrate containing 6.3 wt% solid polymer in a Group I base oil. Both of these oils meet the requirements for an SAE 5W-20 viscosity grade as defined by SAE J300.
  • the formulation containing VLl 151J has a slightly higher HTHS viscosity. This is significant because fuel economy performance is inversely correlated with HTHS viscosity. Table 1 compares the physical properties of two SAE 5W-20 engine oils.
  • Figure 1 provides Kurt Orbahn (ASTM D6278) shear stability results for the above two formulations measured at multiple test lengths. The Kurt Orbahn shear stability results are equivalent for the formulations blended with the two different VI improvers at 0, 5, 10, and 30 test cycles.
  • Sequence VID (ASTM D7589) fuel economy testing was conducted for the two 5W-20 formulations blended with the VLl 151 J and Paratone 8451 VI improvers. Table 2 provides the Sequence VID fuel economy testing results. The results show the superior fuel economy benefits obtained using the VLl 151J VI improvers. Reduced fuel consumption occurred in Sequence VID stages 1, 3, 4, 5 and for the overall test (reported after FEI 1 measurement). The precision for the FEI 1 measurement is 0.13%. Thus, the benefit for the VLl 151 J VI improver was 3.4 standard deviation units above the Paratone VI improver. This benefit is statistically significant at a greater than 95% confidence level.
  • Table 3 compares Gel Permeation Chromatography characterization of the VL1151J and Paratone 8451 VI improvers. Of note is the very similar weight average molecular weight for the two VI improvers. However, the VLl 151J VI improver has a much lower polydispersity index or molecular weight distribution which results in improved fuel economy performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Lubricants (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

L'invention concerne un procédé destiné à l'amélioration du rendement de carburant dans un moteur lubrifié par une huile lubrifiante grâce à l'utilisation en tant qu'huile lubrifiante d'une huile formulée présentant une composition comprenant : une huile de base lubrifiante ; et un agent d'amélioration de l'indice de viscosité comprenant au moins un polymère à base de propylène. Ledit au moins un polymère à base de propylène comprend 60 % en poids à 98 % en poids d'unités dérivées de propylène et 2 % en poids à 40 % en poids d'unités dérivées d'une ou plusieurs autres alpha-oléfines, un poids moléculaire pondéral (Mw) moyen tel que mesuré par CPG de 100 000 à 500 000, un poids moléculaire numérique (Mn) moyen tel que mesuré par CPG de 100 000 à 400 000, une distribution de poids moléculaires (MWD =Mw/Mn) de 1 à 2 ; et un rapport molaire de propylène à ladite une ou auxdites plusieurs autres alpha-oléfines de 50:50 à 85:15. Le rendement de carburant est amélioré comparativement au rendement de carburant atteint par l'utilisation d'une huile lubrifiante contenant un agent d'amélioration de l'indice de viscosité autre que ledit au moins un polymère à base de propylène. Une huile lubrifiante pour moteur présentant la composition ci-dessus, le rendement de carburant étant amélioré comparativement au rendement de carburant atteint par l'utilisation d'une huile lubrifiante contenant un agent d'amélioration de l'indice de viscosité autre que ledit au moins un polymère à base de propylène dans un moteur lubrifié par l'huile lubrifiante pour moteur, est décrite.
PCT/US2012/070767 2011-12-22 2012-12-20 Procédé d'amélioration du rendement de carburant d'un moteur WO2013096532A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161579342P 2011-12-22 2011-12-22
US61/579,342 2011-12-22

Publications (1)

Publication Number Publication Date
WO2013096532A1 true WO2013096532A1 (fr) 2013-06-27

Family

ID=47521172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2012/070767 WO2013096532A1 (fr) 2011-12-22 2012-12-20 Procédé d'amélioration du rendement de carburant d'un moteur

Country Status (2)

Country Link
US (1) US20130165354A1 (fr)
WO (1) WO2013096532A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3174961B1 (fr) 2014-07-31 2019-11-20 ExxonMobil Chemical Patents Inc. Polymères de propylène syndiotactique et compositions lubrifiantes les contenant
CN110621768B (zh) * 2017-03-24 2023-02-21 埃克森美孚化学专利公司 冷起动模拟机粘度提升基料和含有它们的润滑油制剂
WO2020177086A1 (fr) 2019-03-05 2020-09-10 Dow Global Technologies Llc Compositions lubrifiantes d'hydrocarbures améliorées et leur procédé de fabrication

Citations (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1815022A (en) 1930-05-03 1931-07-14 Standard Oil Dev Co Hydrocarbon oil and process for manufacturing the same
US2015748A (en) 1933-06-30 1935-10-01 Standard Oil Dev Co Method for producing pour inhibitors
US2191498A (en) 1935-11-27 1940-02-27 Socony Vacuum Oil Co Inc Mineral oil composition and method of making
US2387501A (en) 1944-04-04 1945-10-23 Du Pont Hydrocarbon oil
US2655479A (en) 1949-01-03 1953-10-13 Standard Oil Dev Co Polyester pour depressants
US2666746A (en) 1952-08-11 1954-01-19 Standard Oil Dev Co Lubricating oil composition
US2721877A (en) 1951-08-22 1955-10-25 Exxon Research Engineering Co Lubricating oil additives and a process for their preparation
US2721878A (en) 1951-08-18 1955-10-25 Exxon Research Engineering Co Strong acid as a polymerization modifier in the production of liquid polymers
US3036003A (en) 1957-08-07 1962-05-22 Sinclair Research Inc Lubricating oil composition
US3087936A (en) 1961-08-18 1963-04-30 Lubrizol Corp Reaction product of an aliphatic olefinpolymer-succinic acid producing compound with an amine and reacting the resulting product with a boron compound
US3172892A (en) 1959-03-30 1965-03-09 Reaction product of high molecular weight succinic acids and succinic anhydrides with an ethylene poly- amine
US3200107A (en) 1961-06-12 1965-08-10 Lubrizol Corp Process for preparing acylated amine-cs2 compositions and products
US3215707A (en) 1960-06-07 1965-11-02 Lubrizol Corp Lubricant
US3250715A (en) 1964-02-04 1966-05-10 Lubrizol Corp Terpolymer product and lubricating composition containing it
US3272746A (en) 1965-11-22 1966-09-13 Lubrizol Corp Lubricating composition containing an acylated nitrogen compound
US3275554A (en) 1963-08-02 1966-09-27 Shell Oil Co Polyolefin substituted polyamines and lubricants containing them
US3316177A (en) 1964-12-07 1967-04-25 Lubrizol Corp Functional fluid containing a sludge inhibiting detergent comprising the polyamine salt of the reaction product of maleic anhydride and an oxidized interpolymer of propylene and ethylene
US3322670A (en) 1963-08-26 1967-05-30 Standard Oil Co Detergent-dispersant lubricant additive having anti-rust and anti-wear properties
US3329658A (en) 1962-05-14 1967-07-04 Monsanto Co Dispersency oil additives
US3382291A (en) 1965-04-23 1968-05-07 Mobil Oil Corp Polymerization of olefins with bf3
US3413347A (en) 1966-01-26 1968-11-26 Ethyl Corp Mannich reaction products of high molecular weight alkyl phenols, aldehydes and polyaminopolyalkyleneamines
US3438757A (en) 1965-08-23 1969-04-15 Chevron Res Hydrocarbyl amines for fuel detergents
US3444170A (en) 1959-03-30 1969-05-13 Lubrizol Corp Process which comprises reacting a carboxylic intermediate with an amine
US3449250A (en) 1962-05-14 1969-06-10 Monsanto Co Dispersency oil additives
US3454555A (en) 1965-01-28 1969-07-08 Shell Oil Co Oil-soluble halogen-containing polyamines and polyethyleneimines
US3454607A (en) 1969-02-10 1969-07-08 Lubrizol Corp High molecular weight carboxylic compositions
US3519565A (en) 1967-09-19 1970-07-07 Lubrizol Corp Oil-soluble interpolymers of n-vinylthiopyrrolidones
US3541012A (en) 1968-04-15 1970-11-17 Lubrizol Corp Lubricants and fuels containing improved acylated nitrogen additives
US3595791A (en) 1969-03-11 1971-07-27 Lubrizol Corp Basic,sulfurized salicylates and method for their preparation
US3630904A (en) 1968-07-03 1971-12-28 Lubrizol Corp Lubricating oils and fuels containing acylated nitrogen additives
US3632511A (en) 1969-11-10 1972-01-04 Lubrizol Corp Acylated nitrogen-containing compositions processes for their preparationand lubricants and fuels containing the same
US3652616A (en) 1969-08-14 1972-03-28 Standard Oil Co Additives for fuels and lubricants
US3687849A (en) 1968-06-18 1972-08-29 Lubrizol Corp Lubricants containing oil-soluble graft polymers derived from degraded ethylene-propylene interpolymers
US3697574A (en) 1965-10-22 1972-10-10 Standard Oil Co Boron derivatives of high molecular weight mannich condensation products
US3702300A (en) 1968-12-20 1972-11-07 Lubrizol Corp Lubricant containing nitrogen-containing ester
US3703536A (en) 1967-11-24 1972-11-21 Standard Oil Co Preparation of oil-soluble boron derivatives of an alkylene polyamine-substituted phenol-formaldehyde addition product
US3704308A (en) 1965-10-22 1972-11-28 Standard Oil Co Boron-containing high molecular weight mannich condensation
US3725480A (en) 1968-11-08 1973-04-03 Standard Oil Co Ashless oil additives
US3726882A (en) 1968-11-08 1973-04-10 Standard Oil Co Ashless oil additives
US3742082A (en) 1971-11-18 1973-06-26 Mobil Oil Corp Dimerization of olefins with boron trifluoride
US3751365A (en) 1965-10-22 1973-08-07 Standard Oil Co Concentrates and crankcase oils comprising oil solutions of boron containing high molecular weight mannich reaction condensation products
US3755433A (en) 1971-12-16 1973-08-28 Texaco Inc Ashless lubricating oil dispersant
US3756953A (en) 1965-10-22 1973-09-04 Standard Oil Co Vatives of high molecular weight mannich reaction condensation concentrate and crankcase oils comprising oil solutions of boron deri
US3769363A (en) 1972-03-13 1973-10-30 Mobil Oil Corp Oligomerization of olefins with boron trifluoride
US3787374A (en) 1971-09-07 1974-01-22 Lubrizol Corp Process for preparing high molecular weight carboxylic compositions
US3798165A (en) 1965-10-22 1974-03-19 Standard Oil Co Lubricating oils containing high molecular weight mannich condensation products
US3803039A (en) 1970-07-13 1974-04-09 Standard Oil Co Oil solution of aliphatic acid derivatives of high molecular weight mannich condensation product
US3822209A (en) 1966-02-01 1974-07-02 Ethyl Corp Lubricant additives
US3876720A (en) 1972-07-24 1975-04-08 Gulf Research Development Co Internal olefin
US3948800A (en) 1971-07-01 1976-04-06 The Lubrizol Corporation Dispersant compositions
US4100082A (en) 1976-01-28 1978-07-11 The Lubrizol Corporation Lubricants containing amino phenol-detergent/dispersant combinations
US4149178A (en) 1976-10-05 1979-04-10 American Technology Corporation Pattern generating system and method
US4218330A (en) 1978-06-26 1980-08-19 Ethyl Corporation Lubricant
US4234435A (en) 1979-02-23 1980-11-18 The Lubrizol Corporation Novel carboxylic acid acylating agents, derivatives thereof, concentrate and lubricant compositions containing the same, and processes for their preparation
US4239930A (en) 1979-05-17 1980-12-16 Pearsall Chemical Company Continuous oligomerization process
CA1094044A (fr) 1977-02-25 1981-01-20 Norman A. Meinhardt Traduction non-disponible
US4367352A (en) 1980-12-22 1983-01-04 Texaco Inc. Oligomerized olefins for lubricant stock
US4413156A (en) 1982-04-26 1983-11-01 Texaco Inc. Manufacture of synthetic lubricant additives from low molecular weight olefins using boron trifluoride catalysts
US4426305A (en) 1981-03-23 1984-01-17 Edwin Cooper, Inc. Lubricating compositions containing boronated nitrogen-containing dispersants
US4434408A (en) 1980-03-11 1984-02-28 Sony Corporation Oscillator having capacitor charging and discharging controlled by non-saturating switches
US4454059A (en) 1976-11-12 1984-06-12 The Lubrizol Corporation Nitrogenous dispersants, lubricants and concentrates containing said nitrogenous dispersants
US4540753A (en) 1983-06-15 1985-09-10 Exxon Research & Engineering Co. Narrow MWD alpha-olefin copolymers
US4767551A (en) 1985-12-02 1988-08-30 Amoco Corporation Metal-containing lubricant compositions
US4798684A (en) 1987-06-09 1989-01-17 The Lubrizol Corporation Nitrogen containing anti-oxidant compositions
US4827073A (en) 1988-01-22 1989-05-02 Mobil Oil Corporation Process for manufacturing olefinic oligomers having lubricating properties
US4827064A (en) 1986-12-24 1989-05-02 Mobil Oil Corporation High viscosity index synthetic lubricant compositions
US4910355A (en) 1988-11-02 1990-03-20 Ethyl Corporation Olefin oligomer functional fluid using internal olefins
US4956122A (en) 1982-03-10 1990-09-11 Uniroyal Chemical Company, Inc. Lubricating composition
US5068487A (en) 1990-07-19 1991-11-26 Ethyl Corporation Olefin oligomerization with BF3 alcohol alkoxylate co-catalysts
US5084197A (en) 1990-09-21 1992-01-28 The Lubrizol Corporation Antiemulsion/antifoam agent for use in oils
EP0471071A1 (fr) 1990-02-23 1992-02-19 Lubrizol Corp Fluides fonctionnels a hautes temperatures.
US5374700A (en) 1990-04-18 1994-12-20 Mitsui Petrochemical Industries, Ltd. Ethylene copolymer
US5391617A (en) 1993-08-02 1995-02-21 Dsm Copolymer, Inc. Solid sheared polymer blends and process for their preparation
US5705458A (en) 1995-09-19 1998-01-06 The Lubrizol Corporation Additive compositions for lubricants and functional fluids
WO1998026030A1 (fr) 1996-12-13 1998-06-18 Exxon Research And Engineering Company Compositions d'huile lubrifiante contenant des complexes de molybdene organiques
US5824627A (en) 1996-12-13 1998-10-20 Exxon Research And Engineering Company Heterometallic lube oil additives
US5837657A (en) 1997-12-02 1998-11-17 Fang; Howard L. Method for reducing viscosity increase in sooted diesel oils
US5906968A (en) 1997-12-12 1999-05-25 Exxon Research & Engineering Company Method of synthesizing Mo3 Sx containing compounds
WO1999047629A1 (fr) 1998-03-13 1999-09-23 Infineum Usa L.P. Huile lubrifiante presentant des proprietes ameliorees de maintien d'economie de carburant
WO1999066013A1 (fr) 1998-06-17 1999-12-23 Infineum Usa L.P. Compositions pour huiles lubrifiantes
US6010987A (en) 1996-12-13 2000-01-04 Exxon Research And Engineering Co. Enhancement of frictional retention properties in a lubricating composition containing a molybdenum sulfide additive in low concentration
US6034039A (en) 1997-11-28 2000-03-07 Exxon Chemical Patents, Inc. Lubricating oil compositions
EP1017729A2 (fr) 1998-07-02 2000-07-12 Montell Technology Company bv Procede de preparation de polymeres d'alpha-olefine sensiblement amorphes, compositions les contenant et procede de preparation de ligand ponte
US6110878A (en) 1997-12-12 2000-08-29 Exxon Chemical Patents Inc Lubricant additives
EP1070087A1 (fr) 1998-04-09 2001-01-24 Bernhard Rieger Combinaison de catalyseur et procede de preparation de polymeres isotactiques lineaires
US6232276B1 (en) 1996-12-13 2001-05-15 Infineum Usa L.P. Trinuclear molybdenum multifunctional additive for lubricating oils
WO2002036651A1 (fr) 2000-10-30 2002-05-10 Exxonmobil Chemical Patents Inc. Polymeres greffes modifies sur la base de nouveaux copolymeres ethylene-propylene
EP1233191A2 (fr) 2001-02-17 2002-08-21 Globemag L.P. Oscillateur hydraulique comme entraínement de machine
US6525157B2 (en) 1997-08-12 2003-02-25 Exxonmobile Chemical Patents Inc. Propylene ethylene polymers
US6559262B1 (en) 1997-06-14 2003-05-06 The Board Of Trustees Of The Leland Stanford Jr. University High melting thermoplastic elastomeric alpha-olefin polymers (PRE/EPE effect) and catalysts therefor
WO2003040095A2 (fr) 2001-11-06 2003-05-15 Dow Global Technologies Inc. Cristallisation de polypropylene a l'aide d'un agent de nucleation semi-cristallin ramifie ou couple
WO2003040202A2 (fr) 2001-11-06 2003-05-15 Dow Global Technologies Inc. Films contenant des copolymeres isotactiques de propylene
WO2003040233A2 (fr) 2001-11-06 2003-05-15 Dow Global Technologies Inc. Melanges polymeres, resistant aux chocs, de polypropylene cristallin et d'agents antichoc de faible poids moleculaire partiellement cristallins
WO2003040442A1 (fr) 2001-11-06 2003-05-15 Dow Global Technologies Inc. Fibres de copolymere de propylene isotactique, preparation et utilisation de ces dernieres
WO2003040201A1 (fr) 2001-11-06 2003-05-15 Dow Global Technologies Inc. Copolymeres de propylene isotactique, preparation et utilisation associees
US6569820B2 (en) 2000-03-29 2003-05-27 Infineum International Ltd. Manufacture of lubricant additives
US6589920B2 (en) 1999-03-30 2003-07-08 Mitsui Chemicals, Inc. Viscosity modifier for lubricating oil and lubricating oil composition
US6689725B1 (en) 1999-10-19 2004-02-10 Exxonmobil Research And Engineering Company Lubricant composition for diesel engines
US6730638B2 (en) 2002-01-31 2004-05-04 Exxonmobil Research And Engineering Company Low ash, low phosphorus and low sulfur engine oils for internal combustion engines
US6734150B2 (en) 2000-02-14 2004-05-11 Exxonmobil Research And Engineering Company Lubricating oil compositions
US6770713B2 (en) 2000-03-23 2004-08-03 The Procter & Gamble Company Compatbilizer and modifier for polymeric compositions comprising polyolefins
US20040236042A1 (en) 1997-08-12 2004-11-25 Sudhin Datta Propylene ethylene polymers and production process
US6881800B2 (en) 2000-10-25 2005-04-19 Exxonmobil Chemical Patents Inc. Processes and apparatus for continuous solution polymerization
WO2005049672A1 (fr) 2003-11-14 2005-06-02 Exxonmobil Chemical Patents Inc. Elastomeres propyleniques reticules transparents et translucides: preparation et utilisation
US20050215964A1 (en) 2004-03-29 2005-09-29 Autran Jean-Philippe M Web materials having both plastic and elastic properties
EP1614699A1 (fr) 2003-03-28 2006-01-11 Mitsui Chemicals, Inc. Copolymere de propylene, composition de polypropylene, utilisation de ceux-ci, composes de metaux de transition et catalyseurs destines a une polymerisation olefinique
US7053153B2 (en) 2000-12-04 2006-05-30 Exxonmobil Chemical Patents Inc. Ethylene copolymer compositions suitable for viscosity index improvers and lubricant compositions
JP2009029983A (ja) * 2007-07-30 2009-02-12 Sumitomo Chemical Co Ltd 粘度調整剤
WO2010016847A1 (fr) 2008-08-08 2010-02-11 Exxonmobil Chemical Patents Inc. Compositions de copolymère oléfinique améliorées pour une modification de la viscosité de l'huile moteur
WO2011038331A1 (fr) * 2009-09-28 2011-03-31 Mitsui Chemicals, Inc. Modificateur de viscosité pour huiles lubrifiantes, composition d'additif pour huiles lubrifiantes, et composition d'huile lubrifiante

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8227392B2 (en) * 2008-01-25 2012-07-24 Exxonmobil Research And Engineering Company Base stocks and lubricant blends containing poly-alpha olefins

Patent Citations (118)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1815022A (en) 1930-05-03 1931-07-14 Standard Oil Dev Co Hydrocarbon oil and process for manufacturing the same
US2015748A (en) 1933-06-30 1935-10-01 Standard Oil Dev Co Method for producing pour inhibitors
US2191498A (en) 1935-11-27 1940-02-27 Socony Vacuum Oil Co Inc Mineral oil composition and method of making
US2387501A (en) 1944-04-04 1945-10-23 Du Pont Hydrocarbon oil
US2655479A (en) 1949-01-03 1953-10-13 Standard Oil Dev Co Polyester pour depressants
US2721878A (en) 1951-08-18 1955-10-25 Exxon Research Engineering Co Strong acid as a polymerization modifier in the production of liquid polymers
US2721877A (en) 1951-08-22 1955-10-25 Exxon Research Engineering Co Lubricating oil additives and a process for their preparation
US2666746A (en) 1952-08-11 1954-01-19 Standard Oil Dev Co Lubricating oil composition
US3036003A (en) 1957-08-07 1962-05-22 Sinclair Research Inc Lubricating oil composition
US3172892A (en) 1959-03-30 1965-03-09 Reaction product of high molecular weight succinic acids and succinic anhydrides with an ethylene poly- amine
US3444170A (en) 1959-03-30 1969-05-13 Lubrizol Corp Process which comprises reacting a carboxylic intermediate with an amine
US3219666A (en) 1959-03-30 1965-11-23 Derivatives of succinic acids and nitrogen compounds
US3341542A (en) 1959-03-30 1967-09-12 Lubrizol Corp Oil soluble acrylated nitrogen compounds having a polar acyl, acylimidoyl or acyloxy group with a nitrogen atom attached directly thereto
US3215707A (en) 1960-06-07 1965-11-02 Lubrizol Corp Lubricant
US3200107A (en) 1961-06-12 1965-08-10 Lubrizol Corp Process for preparing acylated amine-cs2 compositions and products
US3254025A (en) 1961-08-18 1966-05-31 Lubrizol Corp Boron-containing acylated amine and lubricating compositions containing the same
US3087936A (en) 1961-08-18 1963-04-30 Lubrizol Corp Reaction product of an aliphatic olefinpolymer-succinic acid producing compound with an amine and reacting the resulting product with a boron compound
US3449250A (en) 1962-05-14 1969-06-10 Monsanto Co Dispersency oil additives
US3329658A (en) 1962-05-14 1967-07-04 Monsanto Co Dispersency oil additives
US3275554A (en) 1963-08-02 1966-09-27 Shell Oil Co Polyolefin substituted polyamines and lubricants containing them
US3322670A (en) 1963-08-26 1967-05-30 Standard Oil Co Detergent-dispersant lubricant additive having anti-rust and anti-wear properties
US3250715A (en) 1964-02-04 1966-05-10 Lubrizol Corp Terpolymer product and lubricating composition containing it
US3316177A (en) 1964-12-07 1967-04-25 Lubrizol Corp Functional fluid containing a sludge inhibiting detergent comprising the polyamine salt of the reaction product of maleic anhydride and an oxidized interpolymer of propylene and ethylene
US3454555A (en) 1965-01-28 1969-07-08 Shell Oil Co Oil-soluble halogen-containing polyamines and polyethyleneimines
US3382291A (en) 1965-04-23 1968-05-07 Mobil Oil Corp Polymerization of olefins with bf3
US3438757A (en) 1965-08-23 1969-04-15 Chevron Res Hydrocarbyl amines for fuel detergents
US3565804A (en) 1965-08-23 1971-02-23 Chevron Res Lubricating oil additives
US3756953A (en) 1965-10-22 1973-09-04 Standard Oil Co Vatives of high molecular weight mannich reaction condensation concentrate and crankcase oils comprising oil solutions of boron deri
US3798165A (en) 1965-10-22 1974-03-19 Standard Oil Co Lubricating oils containing high molecular weight mannich condensation products
US3697574A (en) 1965-10-22 1972-10-10 Standard Oil Co Boron derivatives of high molecular weight mannich condensation products
US3751365A (en) 1965-10-22 1973-08-07 Standard Oil Co Concentrates and crankcase oils comprising oil solutions of boron containing high molecular weight mannich reaction condensation products
US3704308A (en) 1965-10-22 1972-11-28 Standard Oil Co Boron-containing high molecular weight mannich condensation
US3272746A (en) 1965-11-22 1966-09-13 Lubrizol Corp Lubricating composition containing an acylated nitrogen compound
US3413347A (en) 1966-01-26 1968-11-26 Ethyl Corp Mannich reaction products of high molecular weight alkyl phenols, aldehydes and polyaminopolyalkyleneamines
US3725277A (en) 1966-01-26 1973-04-03 Ethyl Corp Lubricant compositions
US3822209A (en) 1966-02-01 1974-07-02 Ethyl Corp Lubricant additives
US3519565A (en) 1967-09-19 1970-07-07 Lubrizol Corp Oil-soluble interpolymers of n-vinylthiopyrrolidones
US3666730A (en) 1967-09-19 1972-05-30 Lubrizol Corp Oil-soluble interpolymers of n-vinylthiopyrrolidones
US3703536A (en) 1967-11-24 1972-11-21 Standard Oil Co Preparation of oil-soluble boron derivatives of an alkylene polyamine-substituted phenol-formaldehyde addition product
US3541012A (en) 1968-04-15 1970-11-17 Lubrizol Corp Lubricants and fuels containing improved acylated nitrogen additives
US3687849A (en) 1968-06-18 1972-08-29 Lubrizol Corp Lubricants containing oil-soluble graft polymers derived from degraded ethylene-propylene interpolymers
US3630904A (en) 1968-07-03 1971-12-28 Lubrizol Corp Lubricating oils and fuels containing acylated nitrogen additives
US3725480A (en) 1968-11-08 1973-04-03 Standard Oil Co Ashless oil additives
US3726882A (en) 1968-11-08 1973-04-10 Standard Oil Co Ashless oil additives
US3702300A (en) 1968-12-20 1972-11-07 Lubrizol Corp Lubricant containing nitrogen-containing ester
US3454607A (en) 1969-02-10 1969-07-08 Lubrizol Corp High molecular weight carboxylic compositions
US3595791A (en) 1969-03-11 1971-07-27 Lubrizol Corp Basic,sulfurized salicylates and method for their preparation
US3652616A (en) 1969-08-14 1972-03-28 Standard Oil Co Additives for fuels and lubricants
US3632511A (en) 1969-11-10 1972-01-04 Lubrizol Corp Acylated nitrogen-containing compositions processes for their preparationand lubricants and fuels containing the same
US3803039A (en) 1970-07-13 1974-04-09 Standard Oil Co Oil solution of aliphatic acid derivatives of high molecular weight mannich condensation product
US3948800A (en) 1971-07-01 1976-04-06 The Lubrizol Corporation Dispersant compositions
US3787374A (en) 1971-09-07 1974-01-22 Lubrizol Corp Process for preparing high molecular weight carboxylic compositions
US3742082A (en) 1971-11-18 1973-06-26 Mobil Oil Corp Dimerization of olefins with boron trifluoride
US3755433A (en) 1971-12-16 1973-08-28 Texaco Inc Ashless lubricating oil dispersant
US3769363A (en) 1972-03-13 1973-10-30 Mobil Oil Corp Oligomerization of olefins with boron trifluoride
US3876720A (en) 1972-07-24 1975-04-08 Gulf Research Development Co Internal olefin
US4100082A (en) 1976-01-28 1978-07-11 The Lubrizol Corporation Lubricants containing amino phenol-detergent/dispersant combinations
US4149178A (en) 1976-10-05 1979-04-10 American Technology Corporation Pattern generating system and method
US4454059A (en) 1976-11-12 1984-06-12 The Lubrizol Corporation Nitrogenous dispersants, lubricants and concentrates containing said nitrogenous dispersants
CA1094044A (fr) 1977-02-25 1981-01-20 Norman A. Meinhardt Traduction non-disponible
US4218330A (en) 1978-06-26 1980-08-19 Ethyl Corporation Lubricant
US4234435A (en) 1979-02-23 1980-11-18 The Lubrizol Corporation Novel carboxylic acid acylating agents, derivatives thereof, concentrate and lubricant compositions containing the same, and processes for their preparation
US4239930A (en) 1979-05-17 1980-12-16 Pearsall Chemical Company Continuous oligomerization process
US4434408A (en) 1980-03-11 1984-02-28 Sony Corporation Oscillator having capacitor charging and discharging controlled by non-saturating switches
US4367352A (en) 1980-12-22 1983-01-04 Texaco Inc. Oligomerized olefins for lubricant stock
US4426305A (en) 1981-03-23 1984-01-17 Edwin Cooper, Inc. Lubricating compositions containing boronated nitrogen-containing dispersants
US4956122A (en) 1982-03-10 1990-09-11 Uniroyal Chemical Company, Inc. Lubricating composition
US4413156A (en) 1982-04-26 1983-11-01 Texaco Inc. Manufacture of synthetic lubricant additives from low molecular weight olefins using boron trifluoride catalysts
US4540753A (en) 1983-06-15 1985-09-10 Exxon Research & Engineering Co. Narrow MWD alpha-olefin copolymers
US4767551A (en) 1985-12-02 1988-08-30 Amoco Corporation Metal-containing lubricant compositions
US4827064A (en) 1986-12-24 1989-05-02 Mobil Oil Corporation High viscosity index synthetic lubricant compositions
US4798684A (en) 1987-06-09 1989-01-17 The Lubrizol Corporation Nitrogen containing anti-oxidant compositions
US4827073A (en) 1988-01-22 1989-05-02 Mobil Oil Corporation Process for manufacturing olefinic oligomers having lubricating properties
US4910355A (en) 1988-11-02 1990-03-20 Ethyl Corporation Olefin oligomer functional fluid using internal olefins
EP0471071A1 (fr) 1990-02-23 1992-02-19 Lubrizol Corp Fluides fonctionnels a hautes temperatures.
US5374700A (en) 1990-04-18 1994-12-20 Mitsui Petrochemical Industries, Ltd. Ethylene copolymer
US5068487A (en) 1990-07-19 1991-11-26 Ethyl Corporation Olefin oligomerization with BF3 alcohol alkoxylate co-catalysts
US5084197A (en) 1990-09-21 1992-01-28 The Lubrizol Corporation Antiemulsion/antifoam agent for use in oils
US5391617A (en) 1993-08-02 1995-02-21 Dsm Copolymer, Inc. Solid sheared polymer blends and process for their preparation
US5705458A (en) 1995-09-19 1998-01-06 The Lubrizol Corporation Additive compositions for lubricants and functional fluids
WO1998026030A1 (fr) 1996-12-13 1998-06-18 Exxon Research And Engineering Company Compositions d'huile lubrifiante contenant des complexes de molybdene organiques
US5824627A (en) 1996-12-13 1998-10-20 Exxon Research And Engineering Company Heterometallic lube oil additives
US6232276B1 (en) 1996-12-13 2001-05-15 Infineum Usa L.P. Trinuclear molybdenum multifunctional additive for lubricating oils
US6010987A (en) 1996-12-13 2000-01-04 Exxon Research And Engineering Co. Enhancement of frictional retention properties in a lubricating composition containing a molybdenum sulfide additive in low concentration
US6559262B1 (en) 1997-06-14 2003-05-06 The Board Of Trustees Of The Leland Stanford Jr. University High melting thermoplastic elastomeric alpha-olefin polymers (PRE/EPE effect) and catalysts therefor
US20040236042A1 (en) 1997-08-12 2004-11-25 Sudhin Datta Propylene ethylene polymers and production process
US6525157B2 (en) 1997-08-12 2003-02-25 Exxonmobile Chemical Patents Inc. Propylene ethylene polymers
US6034039A (en) 1997-11-28 2000-03-07 Exxon Chemical Patents, Inc. Lubricating oil compositions
US5837657A (en) 1997-12-02 1998-11-17 Fang; Howard L. Method for reducing viscosity increase in sooted diesel oils
US5906968A (en) 1997-12-12 1999-05-25 Exxon Research & Engineering Company Method of synthesizing Mo3 Sx containing compounds
US6110878A (en) 1997-12-12 2000-08-29 Exxon Chemical Patents Inc Lubricant additives
US6143701A (en) 1998-03-13 2000-11-07 Exxon Chemical Patents Inc. Lubricating oil having improved fuel economy retention properties
WO1999047629A1 (fr) 1998-03-13 1999-09-23 Infineum Usa L.P. Huile lubrifiante presentant des proprietes ameliorees de maintien d'economie de carburant
EP1070087A1 (fr) 1998-04-09 2001-01-24 Bernhard Rieger Combinaison de catalyseur et procede de preparation de polymeres isotactiques lineaires
US6153564A (en) 1998-06-17 2000-11-28 Infineum Usa L.P. Lubricating oil compositions
WO1999066013A1 (fr) 1998-06-17 1999-12-23 Infineum Usa L.P. Compositions pour huiles lubrifiantes
EP1017729A2 (fr) 1998-07-02 2000-07-12 Montell Technology Company bv Procede de preparation de polymeres d'alpha-olefine sensiblement amorphes, compositions les contenant et procede de preparation de ligand ponte
US6589920B2 (en) 1999-03-30 2003-07-08 Mitsui Chemicals, Inc. Viscosity modifier for lubricating oil and lubricating oil composition
US6689725B1 (en) 1999-10-19 2004-02-10 Exxonmobil Research And Engineering Company Lubricant composition for diesel engines
US6734150B2 (en) 2000-02-14 2004-05-11 Exxonmobil Research And Engineering Company Lubricating oil compositions
US6770713B2 (en) 2000-03-23 2004-08-03 The Procter & Gamble Company Compatbilizer and modifier for polymeric compositions comprising polyolefins
US6569820B2 (en) 2000-03-29 2003-05-27 Infineum International Ltd. Manufacture of lubricant additives
US6881800B2 (en) 2000-10-25 2005-04-19 Exxonmobil Chemical Patents Inc. Processes and apparatus for continuous solution polymerization
WO2002036651A1 (fr) 2000-10-30 2002-05-10 Exxonmobil Chemical Patents Inc. Polymeres greffes modifies sur la base de nouveaux copolymeres ethylene-propylene
US7053153B2 (en) 2000-12-04 2006-05-30 Exxonmobil Chemical Patents Inc. Ethylene copolymer compositions suitable for viscosity index improvers and lubricant compositions
EP1233191A2 (fr) 2001-02-17 2002-08-21 Globemag L.P. Oscillateur hydraulique comme entraínement de machine
WO2003040442A1 (fr) 2001-11-06 2003-05-15 Dow Global Technologies Inc. Fibres de copolymere de propylene isotactique, preparation et utilisation de ces dernieres
WO2003040233A2 (fr) 2001-11-06 2003-05-15 Dow Global Technologies Inc. Melanges polymeres, resistant aux chocs, de polypropylene cristallin et d'agents antichoc de faible poids moleculaire partiellement cristallins
WO2003040201A1 (fr) 2001-11-06 2003-05-15 Dow Global Technologies Inc. Copolymeres de propylene isotactique, preparation et utilisation associees
WO2003040202A2 (fr) 2001-11-06 2003-05-15 Dow Global Technologies Inc. Films contenant des copolymeres isotactiques de propylene
WO2003040095A2 (fr) 2001-11-06 2003-05-15 Dow Global Technologies Inc. Cristallisation de polypropylene a l'aide d'un agent de nucleation semi-cristallin ramifie ou couple
US6730638B2 (en) 2002-01-31 2004-05-04 Exxonmobil Research And Engineering Company Low ash, low phosphorus and low sulfur engine oils for internal combustion engines
EP1614699A1 (fr) 2003-03-28 2006-01-11 Mitsui Chemicals, Inc. Copolymere de propylene, composition de polypropylene, utilisation de ceux-ci, composes de metaux de transition et catalyseurs destines a une polymerisation olefinique
WO2005049672A1 (fr) 2003-11-14 2005-06-02 Exxonmobil Chemical Patents Inc. Elastomeres propyleniques reticules transparents et translucides: preparation et utilisation
US20050215964A1 (en) 2004-03-29 2005-09-29 Autran Jean-Philippe M Web materials having both plastic and elastic properties
JP2009029983A (ja) * 2007-07-30 2009-02-12 Sumitomo Chemical Co Ltd 粘度調整剤
WO2010016847A1 (fr) 2008-08-08 2010-02-11 Exxonmobil Chemical Patents Inc. Compositions de copolymère oléfinique améliorées pour une modification de la viscosité de l'huile moteur
WO2011038331A1 (fr) * 2009-09-28 2011-03-31 Mitsui Chemicals, Inc. Modificateur de viscosité pour huiles lubrifiantes, composition d'additif pour huiles lubrifiantes, et composition d'huile lubrifiante

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Klamann in Lubricants and Related Products", VERLAG CHEMIE
M. W. RANNEY: "Lubricant Additives", 1973, NOYES DATA CORPORATION OF PARKRIDGE
VERSTRATE, MACROMOLECULES, vol. 21, 1988, pages 3360

Also Published As

Publication number Publication date
US20130165354A1 (en) 2013-06-27

Similar Documents

Publication Publication Date Title
US9228149B2 (en) Enhanced durability performance of lubricants using functionalized metal phosphate nanoplatelets
EP2941476B1 (fr) Utilisation pour améliorer les performances à haute température dans un moteur
US10738258B2 (en) Method for improving engine fuel efficiency and energy efficiency
US20210189283A1 (en) Lubricating oil compositions and methods of use
EP3087166B1 (fr) Utilisation pour améliorer le rendement de carburant d'un moteur
US20200102519A1 (en) Low viscosity lubricating oils with improved oxidative stability and traction performance
US20130143782A1 (en) Lubricants with improved low-temperature fuel economy
US20180119048A1 (en) Method for improving engine fuel efficiency
US20180037841A1 (en) Lubricating engine oil for improved wear protection and fuel efficiency
WO2018144167A1 (fr) Huile lubrifiante pour moteur et procédé pour améliorer l'efficacité de combustible pour moteur
US20200181525A1 (en) Method for improving oxidation and deposit resistance of lubricating oils
US20140221260A1 (en) Method for improving engine fuel efficiency
US20130137617A1 (en) Method for improving engine fuel efficiency
US20210189282A1 (en) Lubricating oil compositions and methods of use
US20200165537A1 (en) Lubricating oil compositions with improved deposit resistance and methods thereof
US20200140775A1 (en) Lubricating oil compositions having improved cleanliness and wear performance
US20130165354A1 (en) Method for improving engine fuel efficiency
US20190345407A1 (en) Method for improving engine fuel efficiency
US20200199477A1 (en) Method for improving high temperature antifoaming performance of a lubricating oil
US20200190425A1 (en) Lubricating oil compositions having functionalized quercetin antioxidants
US9617494B2 (en) Method for improving deposit control
US20190031975A1 (en) Method for improving deposit control and cleanliness performance in an engine lubricated with a lubricating oil

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12812787

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12812787

Country of ref document: EP

Kind code of ref document: A1