WO2013095058A2 - Gaseous fuel supply device for fuel cell system and fuel cell system comprising same - Google Patents

Gaseous fuel supply device for fuel cell system and fuel cell system comprising same Download PDF

Info

Publication number
WO2013095058A2
WO2013095058A2 PCT/KR2012/011298 KR2012011298W WO2013095058A2 WO 2013095058 A2 WO2013095058 A2 WO 2013095058A2 KR 2012011298 W KR2012011298 W KR 2012011298W WO 2013095058 A2 WO2013095058 A2 WO 2013095058A2
Authority
WO
WIPO (PCT)
Prior art keywords
proportional control
pressure
control valve
fuel
unit
Prior art date
Application number
PCT/KR2012/011298
Other languages
French (fr)
Korean (ko)
Other versions
WO2013095058A3 (en
Inventor
최동민
Original Assignee
주식회사 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 효성 filed Critical 주식회사 효성
Publication of WO2013095058A2 publication Critical patent/WO2013095058A2/en
Publication of WO2013095058A3 publication Critical patent/WO2013095058A3/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/20Control of fluid pressure characterised by the use of electric means
    • G05D16/2006Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means
    • G05D16/2013Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means using throttling means as controlling means
    • G05D16/2026Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means using throttling means as controlling means with a plurality of throttling means
    • G05D16/206Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means using throttling means as controlling means with a plurality of throttling means the plurality of throttling means being arranged for the control of a plurality of diverging pressures from a single pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04388Pressure; Ambient pressure; Flow of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04425Pressure; Ambient pressure; Flow at auxiliary devices, e.g. reformers, compressors, burners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04776Pressure; Flow at auxiliary devices, e.g. reformer, compressor, burner
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0668Removal of carbon monoxide or carbon dioxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a fuel cell, and more particularly, a gaseous fuel supply device configured to supply a gaseous fuel including air and gas to each part of a fuel cell system, which is composed of an integrated single unit, and a fuel comprising the same. It relates to a battery system.
  • biogas obtained through anaerobic treatment of organic waste resources can be used as a raw material for fuel cells, and various practical researches on this are being actively conducted.
  • Biogas is a gas composed mainly of about 65% methane (CH4) and about 35% carbon dioxide (CO2), and is produced by naturally decomposing organic substances of plants and animals by the activity of anaerobic bacteria, and the main source of methane gas All animal waste, landfills, and other organic materials left untreated.
  • CH4 methane
  • CO2 carbon dioxide
  • CHP combined heat and power
  • polymer electrolyte fuel cell is easy to manage electrolytes because it uses solid polymer as electrolyte, and there is no problem of corrosion by electrolyte or evaporation of electrolyte.
  • the high current density per area provides significantly higher output characteristics and lower operating temperatures than other fuel cells.
  • the facility is easy to maintain and repair, has a quick start-up and response characteristics, the development is actively promoted for use as a mobile power source for automobiles, distributed power sources such as homes and public buildings and small power supplies for electronic devices.
  • FIG. 1 is a schematic diagram of a conventional polymer electrolyte fuel cell system.
  • the polyelectrolyte fuel cell is basically a stack 1, a reformer 2, a fuel tank 3 and a water tank 4 to form a system, as shown in FIG. 1. And the like.
  • the stack 1 forms the body of the fuel cell, and the fuel in the fuel tank 3 is supplied to the reformer 2 by a fuel pump (not shown).
  • the reformer 2 reforms the fuel to generate hydrogen gas and supplies the hydrogen gas to the stack 1.
  • the polymer electrolyte fuel cell generates electrical energy by electrochemically reacting hydrogen gas and oxygen in the stack 1.
  • the reformer (2) is provided with a burner (5) for supplying heat for the reforming catalyst reaction, and is provided with a CO remover (6) to lower the CO (carbon monoxide) concentration in the reforming gas, the combustion of the burner (5) Air is supplied to the burner 5 and the CO remover 6 for the selective oxidation reaction (PROX) in the CO remover 6. In addition, air is also supplied to the stack 1 so that oxygen contained in the air reacts with the hydrogen gas electrochemically.
  • a burner (5) for supplying heat for the reforming catalyst reaction
  • a CO remover (6) to lower the CO (carbon monoxide) concentration in the reforming gas
  • each air supply unit 7 is composed of a blower 7a, a buffer 7b, a flow sensor 7c and a valve 7d, which is one of the factors that increase the production period and increase the cost according to the increase in the number of parts. At the same time, there is a problem that the possibility of air leakage increases.
  • the present invention has been made to solve the problems of the prior art as described above, the object of the present invention is to configure the gas fuel supply device, in particular in a single unit to shorten the production period and reduce costs while accurate flow rate It is to provide a gas fuel supply device of a fuel cell system for supplying a fuel cell system and the same.
  • the gas fuel supply apparatus of the fuel cell system includes a blower for supplying gas fuel, a buffer tank located at the rear end of the blower to prevent pulsation of the gas fuel, and a discharged at the rear end of the buffer tank.
  • a proportional control valve part including a plurality of proportional control valves each provided in a flow distribution part for distributing gaseous fuel into a plurality of flow paths and a flow distribution part for adjusting the opening degree of the flow path, at a rear end of the buffer tank and the proportional control valve part;
  • Each of the pressure sensor unit for detecting the pressure of the gas fuel flowing from the buffer tank and the pressure of the plurality of gas fuel discharged via at least one flow path from the rear end of the proportional control valve unit, and the pressure information of the pressure sensor unit
  • a correction controller for correcting the opening rate of the plurality of proportional control valves to a preset opening rate.
  • a plurality of proportional control valves interlock with each other to adjust the opening degree.
  • the pressure information is information obtained by calculating the pressure of the gas fuel discharged from the rear end of the proportional control valve unit by using the pressure difference between the gas fuel flowing in and the pressure of the gas fuel discharged.
  • the fuel cell system includes a fuel processor including a burner and a CO remover to generate reformed gas, a stack to generate electrical energy by receiving reformed gas generated from the fuel processor, and a burner And a gaseous fuel supply device for supplying gaseous fuel including air and gas to the stack and a CO remover, wherein the gaseous fuel supply device is located at the rear of the blower and the blower for supplying the gaseous fuel.
  • a buffer tank for preventing pulsation of gas fuel for preventing pulsation of gas fuel, a flow distribution unit for distributing gas fuel discharged at a rear end of the buffer tank into a plurality of flow paths, and a plurality of flow control units provided in the flow path distribution part respectively to control the opening ratio of the flow path.
  • Proportional control valve unit including a proportional control valve, respectively provided at the rear end of the buffer tank and the proportional control valve unit flows in from the buffer tank Opening ratio of the proportional control valve according to the pressure information of the gas fuel and the pressure sensor unit for detecting the pressure of the plurality of gas fuel discharged through at least one flow path from the rear end of the proportional control valve unit, and the pressure information of the pressure sensor unit It includes a correction controller for correcting to a predetermined opening rate.
  • the plurality of proportional control valves include a first proportional control valve connected to the front end of the burner, a second proportional control valve connected to the front end of the CO remover, and a third proportional control valve connected to the front end of the stack.
  • a plurality of proportional control valves interlock with each other to adjust the opening degree.
  • the pressure sensor unit detects the pressure of the gas fuel discharged from the buffer tank, a first pressure sensor detecting the pressure of the gas fuel flowing into the burner, and a second pressure detecting the pressure of the gas fuel flowing into the CO remover. Sensor, and a third pressure sensor for detecting the pressure of the gas fuel flowing into the stack, the pressure information using the differential pressure between the main pressure sensor, the first pressure sensor, the second pressure sensor, and the third pressure sensor It is calculated.
  • the gas fuel supply unit consists of a single unitary unit.
  • the gas fuel supply device of the fuel cell in a single unitary unit, the power consumption is reduced, the production period is shortened and the cost is reduced according to the number of parts.
  • FIG. 1 is a schematic diagram of a conventional polymer electrolyte fuel cell system.
  • Figure 2 is a block diagram showing a gaseous fuel supply device of a fuel cell system according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a fuel cell system to which a gaseous fuel supply device according to an embodiment of the present invention is applied.
  • FIG. 2 is a block diagram for showing a gaseous fuel supply apparatus of a fuel cell system according to FIG.
  • the gas fuel supply device 100 of the fuel cell system is located at the rear of the blower 110, the blower 110 for supplying the gas fuel to the pulsation of the gas fuel Buffer tank 120 for preventing, the flow tank located at the rear end of the buffer tank 120, the flow distribution unit 130 for distributing the discharged gas into a plurality of flow paths, respectively provided in the flow path of the flow distribution unit 130
  • Proportional control valve unit 140 including a plurality of proportional control valves (141, 142, 143) for adjusting the opening rate of the buffer tank 120 and the buffer tank 120 and the rear end of the proportional control valve unit 140 are respectively provided
  • Pressure sensor unit 150 for detecting the pressure of the gas fuel flowing from the 120 and the pressure of the plurality of gas fuel discharged via at least one flow path from the rear end of the proportional control valve unit 140, and the pressure sensor Multiple proportional control according to the pressure information of the unit 150
  • a correction control unit 160 for correcting the opening degree of the valves 141, 142, and 143 to
  • the gaseous fuel supply device 100 of a fuel cell system is composed of one single unit, and includes a fuel cell containing gaseous fuel and air introduced from the outside through the blower 110. It distributes and supplies each part of the system.
  • a blower 110 flows gaseous fuel into the buffer tank 120.
  • Blower 110 refers to a blower having a discharge pressure of the pressure ratio is 1.1 or more and less than 2.0 or 1000mmAq ⁇ 1kg / cm2 by pumping the gas by the rotary motion of the van or rotor.
  • blower 110 does not directly introduce the gas fuel into the gas fuel supply device 100 of the fuel cell system.
  • the blower 110 first introduces gaseous fuel into the buffer tank 120.
  • Gas fuel introduced into the buffer tank 120 is discharged to the flow distribution unit 130 by the pressure inside.
  • the main pressure sensor 151 provided between the buffer tank 120 and the flow distribution unit 130 detects the total pressure of the gas fuel flowing into the gas fuel supply device 100 of the fuel cell system, and detects The total pressure information of the prepared gas fuel is provided to the correction controller 160.
  • the flow distribution unit 130 distributes the gas fuel flows into the first proportional control valve 141, the second proportional control valve 142, and the third proportional control valve 143, respectively.
  • each of the proportional control valves 141, 142, and 143 adjusts the opening ratio of the corresponding flow path.
  • the opening rate may be set differently by interlocking the respective proportional control valves 141, 142, and 143.
  • the blower 110 supplies 45 L of gas fuel per minute to the gas fuel supply device 100, wherein the first proportional control valve 141 is controlled at 30% opening rate per minute. 30L of gaseous fuel is discharged into the corresponding flow path, while the second proportional control valve 142 is controlled at an opening rate of 10%, 10L of gaseous fuel per minute is discharged into the corresponding flow path, and the third proportional control valve 143 is opened. As the rate is controlled at 5%, 5 liters of gaseous fuel are discharged per minute.
  • the opening ratio is reduced to 20% by controlling the first proportional control valve 141 as necessary, 20L of gaseous fuel is discharged per minute. Then, the blower 110 is controlled to supply 35 L of gas fuel per minute, so that the flow rate of the gas fuel is changed unless the opening ratios of the second proportional control valve 142 and the third proportional control valve 143 are changed. do.
  • the gas fuel supply device 100 is proportionally controlled in conjunction with the opening ratios of the respective proportional control valves 141, 142, and 143.
  • the opening ratio of the first proportional control valve 141 when the opening ratio of the first proportional control valve 141 is lowered from 30% to 20%, and thus the amount of gas fuel supplied through the blower 110 is reduced, the second proportional control valve 142 ), The opening rate of 10% increases from 10% to 15%, and the opening rate of the third proportional control valve 143 increases from 5% to 10%, so that the flow rate of the gas fuel discharged to each flow path is kept constant. It can be.
  • the opening ratios of the respective proportional control valves 141, 142, and 143 may be adjusted to increase or decrease the flow rate flowing through the second proportional control valve 142 and the third proportional control valve 143. Of course.
  • the gaseous fuel supply device 100 includes a first pressure sensor 152 at a rear end of the first proportional control valves 141 and a second pressure sensor 153 and a second end at a rear end of the second proportional control valves 142.
  • the third pressure sensor 154 is provided at the rear end of the three proportional control valves 143.
  • each of the pressure sensors 152, 153, and 154 senses the pressure of the gas fuel discharged into each flow path and provides the pressure to the correction controller 160.
  • the correction control unit 160 uses the pressure difference between the pressure of the gas fuel provided by the respective pressure sensors 152, 153, and 154 and the total pressure of the gas fuel provided by the main pressure sensor 151.
  • the flow rate discharged by the proportional control valves 141, 142, and 143 is calculated using the Bernoulli equation and the continuous equation. If the flow rate discharged by the proportional control valves 141, 142, 143 is different from the set flow rate, the correction control unit 160 controls the opening degree to correct this.
  • each of the fuel cell system in one single unit without having to install a separate supply device for each part of the fuel cell system as in the prior art
  • the fuel consumption can be lowered because gas fuel can be distributed and supplied to the unit.
  • the use of expensive components such as a flow sensor is not required, and the number of parts required for manufacturing is reduced, which shortens manufacturing period, reduces cost, and reduces the number of leak points, making it easy to maintain and repair. It works. It also has the effect of preventing pulsation and correcting the opening rate to precisely control the flow rate.
  • the supply device configured as described above may be applied to the city gas supply unit, and may also be applied to the field of precision distributors of fluids such as gas combustion devices and liquid fuels including water / air and alcohol.
  • FIG. 3 is a schematic diagram of a fuel cell system to which a gaseous fuel supply device according to an embodiment of the present invention is applied.
  • the fuel cell system 200 includes a stack 210 for generating electricity, a fuel processor 250 for generating hydrogen to be supplied to the stack 210, a stack 210, and a fuel.
  • a gaseous fuel supply device 100 for supplying gaseous fuel to the processing apparatus 250, a cooling device 240 for cooling the stack 210, other water tanks 241, a fuel tank 242, and a heat exchanger.
  • peripherals 243).
  • the stack 210 has a structure in which a plurality of unit cells 211 made of a membrane / electrode assembly (MEA) and a bipolar plate (Bipolar Plate) in close contact with both surfaces thereof are stacked in the order of several to several tens. An anode electrode and a cathode electrode are attached to each other with an electrolyte membrane interposed therebetween.
  • MEA membrane / electrode assembly
  • Bipolar Plate bipolar plate
  • the bipolar plate separates each membrane / electrode assembly and serves as a passage for supplying hydrogen gas and oxygen required for the reaction of the fuel cell to the anode electrode and the cathode electrode of the membrane / electrode assembly, and the anode of each membrane / electrode assembly. Simultaneously serves as a conductor that connects the electrode and the cathode electrode in series.
  • the stack 210 converts the chemical energy of hydrogen contained in a hydrocarbon-based fuel such as methanol, ethanol, and natural gas and oxygen contained in the air into electrical energy directly by an electrochemical reaction.
  • Stack 210 requires a supply of air, including oxygen.
  • the fuel processor 250 reforms and purifies the fuel to generate hydrogen, and supplies the hydrogen to the anode of the stack 210.
  • the reformer 250 generates a hydrogen by reacting a hydrocarbon-based fuel with water vapor. 231, a CO shift converter 221 for lowering the content of carbon monoxide (CO) so as not to poison the anode catalyst when the generated reformed gas is supplied to the stack 210, and a CO shifter 221.
  • the fuel gas discharged from) may be configured to include a COx reactor or remover 220 to purify carbon monoxide again through a selective oxidation reaction (PROX).
  • PROX selective oxidation reaction
  • the heat exchanger 243 serves to heat the water supplied by the pump (not shown) through heat exchange, and supply the reformer 231 in a steam state.
  • the reforming reaction of the reformer 231 is an endothermic reaction, and thus requires the heat of combustion of the burner 230, and requires the supply of air including oxygen for the combustion of the burner 230.
  • the selective oxidation reaction in the CO remover 220 also requires the supply of air containing oxygen.
  • the supply of such air is made by the gaseous fuel supply device 100 constituted by a single unit according to an embodiment of the present invention.
  • an air supply device for supplying air to the burner 230, an air supply device for supplying air to the CO remover 220, and an air supply device for supplying air to the stack 210 should be provided separately.
  • the gaseous fuel supply device 100 receives a gaseous fuel including air and gas from the blower 110 in one single unit, the fuel cell system 200 that requires this Can be distributed to each part of the supply.
  • the gas fuel supply apparatus 100 is provided with a blower (Blower) (110), the blower (110) to introduce the gas fuel into the buffer tank (120).
  • blower blower
  • Gas fuel introduced into the buffer tank 120 is discharged to the flow distribution unit 130 by the pressure inside.
  • the main pressure sensor 151 provided between the buffer tank 120 and the flow distribution unit 130 detects the total pressure of the gas fuel flowing into the gas fuel supply device 100 of the fuel cell system, and detects The pressure information of the used gas fuel is provided to the correction controller 160.
  • the flow distribution unit 130 distributes the gas fuel flows into the first proportional control valve 141, the second proportional control valve 142, and the third proportional control valve 143, respectively.
  • each of the proportional control valves 141, 142, and 143 adjusts the opening ratio of the corresponding flow path.
  • the opening degree may be set differently by interlocking the respective proportional control valves 141, 142, and 143 as described above.
  • the gas fuel supply device 100 includes a first pressure sensor 152 at a rear end of the first proportional control valves 141 and a second pressure sensor 153 and a third at a rear end of the second proportional control valves 142.
  • the third pressure sensor 154 is provided at the rear end of the proportional control valves 143.
  • Each of the pressure sensors 152, 153, and 154 senses the pressure of the gas fuel discharged to the respective flow paths and provides the pressure to the correction controller 160.
  • the correction control unit 160 uses the pressure difference between the pressure of the gas fuel provided by the respective pressure sensors 152, 153, and 154 and the total pressure of the gas fuel provided by the main pressure sensor 151.
  • the flow rate discharged by the proportional control valves 141, 142, and 143 is calculated using the Bernoulli equation and the continuous equation. If the flow rate discharged by the proportional control valves 141, 142, 143 is different from the set flow rate, the correction control unit 160 controls the opening degree to correct this.
  • gas fuel supply device 110 blower

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Fluid Mechanics (AREA)
  • Fuel Cell (AREA)

Abstract

The present invention relates to a fuel cell. More particularly, the present invention relates to a gaseous fuel supply device formed into an integrated single unit to supply gaseous fuel including air and gas to each unit of a fuel cell system. The present invention also relates to the fuel cell system comprising the gaseous fuel supply device. To this end, the gaseous fuel supply device of the present invention comprises: a blower for supplying a gaseous fuel; a buffer tank located in the rear end of the blower to prevent pulsation of the gaseous fuel; a flow distribution unit located in the rear end of the buffer tank to distribute the gaseous fuel being discharged to multiple flow channels; a proportional control valve unit including multiple proportional control valves arranged in the respective flow channels of the flow distribution unit so as to regulate the degree of opening of the flow channels; pressure sensor units arranged in the rear of the buffer tank and the proportional control valve unit, respectively, so as to sense the pressure of the gaseous fuel flowing from the buffer tank and the pressures of multiple gaseous fuels discharged after passing through at least one flow channel from the rear end of the proportional control valve unit; and a correction control unit for correcting the degree of opening of the multiple proportional control valves to a preset degree of opening based on the pressure information from the pressure sensor unit.

Description

연료전지 시스템의 기체연료 공급장치 및 이를 포함하는 연료전지 시스템Gas fuel supply device of fuel cell system and fuel cell system comprising same
본 발명은 연료전지에 관한 것으로, 더욱 상세하게는 일체형의 단일유닛으로 구성되어 연료전지 시스템의 각 부에 공기 및 가스를 포함하는 기체연료를 공급하는 기체연료 공급장치와, 이를 포함하여 구성되는 연료전지 시스템에 관한 것이다.The present invention relates to a fuel cell, and more particularly, a gaseous fuel supply device configured to supply a gaseous fuel including air and gas to each part of a fuel cell system, which is composed of an integrated single unit, and a fuel comprising the same. It relates to a battery system.
최근 들어 ““저탄소 녹색성장””의 정책하에서 폐기물에너지화 정책과 관련하여, 바이오 에너지에 대한 관심이 높아지고 있다. 이중, 유기성 폐자원의 혐기성 처리를 통해 얻어지는 바이오가스가 연료전지의 원료로 사용될 수 있으며, 이에 대한 다양한 실용화 연구가 활발히 진행되고 있다.Recently, interest in bioenergy has increased with regard to waste energy policy under the policy of “Low Carbon Green Growth”. Among them, biogas obtained through anaerobic treatment of organic waste resources can be used as a raw material for fuel cells, and various practical researches on this are being actively conducted.
바이오가스란 약 65%의 메탄(CH4)과 약 35%의 이산화탄소(CO2)를 주성분으로 하는 기체이며, 혐기성 박테리아의 활동으로 인해 동식물의 유기물질이 자연 분해되어 생성되고, 메탄 가스의 주된 원천은 모든 동물 배설물, 폐기물 매립지, 처리하지 않고 버려진 기타 유기물질등이다.Biogas is a gas composed mainly of about 65% methane (CH4) and about 35% carbon dioxide (CO2), and is produced by naturally decomposing organic substances of plants and animals by the activity of anaerobic bacteria, and the main source of methane gas All animal waste, landfills, and other organic materials left untreated.
일반적으로 열병합발전기(Combined Heat and Power; CHP)는 바이오가스로 전기와 열을 생산한다. 여기서 열병합발전기를 대체해서 연료전지를 사용할 경우, 열병합발전기에 비해 최고 10% 이상의 발전효율을 향상시킬 수 있다. 국내에서는 열병합발전기를 이용해서 전기를 생산할 경우와 연료전지를 이용할 경우, 정부에서 주어지는 발전차액이 3배 가량의 차이를 보인다.In general, combined heat and power (CHP) generates electricity and heat from biogas. If a fuel cell is used instead of the cogeneration generator, the power generation efficiency may be improved by up to 10% or more compared with the cogeneration generator. In Korea, the difference in power generation given by the government is three times the difference between the generation of electricity using cogeneration and the use of fuel cells.
특히, 연료전지들 중에서 고분자 전해질 연료전지(Polymer Electrolyte Membrane Fuel Cell: PEMFC)는, 고체인 고분자를 전해질로 사용하기 때문에 전해질 관리가 용이하고, 전해질에 의한 부식이나 전해질이 증발되는 문제가 없으며, 단위 면적당 전류밀도가 높아 타 연료전지에 비하여 출력 특성이 월등히 높은 동시에 작동 온도가 낮다. 또한, 설비 유지 및 보수가 간편하고 빠른 시동 및 응답 특성을 가지고 있어 자동차용 등과 같은 이동용 전원이나, 주택과 공공 건물 등의 분산용 전원 및 전자기기용 소형 전원으로 이용하기 위하여 개발이 활발히 추진되고 있다.Particularly, among the fuel cells, polymer electrolyte fuel cell (PEMFC) is easy to manage electrolytes because it uses solid polymer as electrolyte, and there is no problem of corrosion by electrolyte or evaporation of electrolyte. The high current density per area provides significantly higher output characteristics and lower operating temperatures than other fuel cells. In addition, the facility is easy to maintain and repair, has a quick start-up and response characteristics, the development is actively promoted for use as a mobile power source for automobiles, distributed power sources such as homes and public buildings and small power supplies for electronic devices.
도 1은 종래의 고분자 전해질 연료전지 시스템의 개략도이다.1 is a schematic diagram of a conventional polymer electrolyte fuel cell system.
고분자 전해질 연료전지(PEMFC)는 도 1에 도시된 바와 같이, 기본적으로 시스템을 구성하기 위해 스택(stack)(1), 개질기(reformer)(2), 연료 탱크(3) 및 물 탱크(4) 등을 구비한다. 스택(1)은 연료 전지의 본체를 형성하며, 연료 탱크(3) 내의 연료는 연료 펌프(미도시)에 의해 개질기(2)로 공급된다. 개질기(2)는 연료를 개질하여 수소 가스를 발생시키고 그 수소 가스를 스택(1)으로 공급한다. 고분자 전해질 연료전지는 스택(1)에서 수소 가스와 산소를 전기화학적으로 반응시켜 전기에너지를 발생시킨다.The polyelectrolyte fuel cell (PEMFC) is basically a stack 1, a reformer 2, a fuel tank 3 and a water tank 4 to form a system, as shown in FIG. 1. And the like. The stack 1 forms the body of the fuel cell, and the fuel in the fuel tank 3 is supplied to the reformer 2 by a fuel pump (not shown). The reformer 2 reforms the fuel to generate hydrogen gas and supplies the hydrogen gas to the stack 1. The polymer electrolyte fuel cell generates electrical energy by electrochemically reacting hydrogen gas and oxygen in the stack 1.
이때, 개질기(2)에는 개질촉매반응을 위해 열을 공급하는 버너(5)가 구비되고, 개질가스 내의 CO(일산화탄소) 농도를 낮추기 위해 CO제거기(6)가 구비되는데, 버너(5)의 연소와 CO제거기(6)에서의 선택적 산화반응(PROX; Preferential Oxidation reaction)을 위해, 버너(5)와 CO제거기(6)에 공기가 공급된다. 또한, 스택(1)에도 공기가 공급되어 공기에 포함된 산소가 수소 가스와 전기화학적으로 반응하게 된다.At this time, the reformer (2) is provided with a burner (5) for supplying heat for the reforming catalyst reaction, and is provided with a CO remover (6) to lower the CO (carbon monoxide) concentration in the reforming gas, the combustion of the burner (5) Air is supplied to the burner 5 and the CO remover 6 for the selective oxidation reaction (PROX) in the CO remover 6. In addition, air is also supplied to the stack 1 so that oxygen contained in the air reacts with the hydrogen gas electrochemically.
그런데 종래의 경우에는 도 1에 도시된 바와 같이, 버너(5)와 CO제거기(6) 및 스택(1)에 공기를 공급하기 위한 공기공급장치(7)가 각각 별도로 구비됨에 따라 전력소비가 많고, 각각의 공기공급장치(7)는 블로어(7a)와 버퍼(7b), 유량센서(7c) 및 밸브(7d)로 구성되어, 부품수 증가에 따른 제작 기간 증가와 원가 상승의 한 요인이 됨과 동시에, 공기의 누설 가능성이 높아지게 되는 문제점이 있다.However, in the conventional case, as shown in FIG. 1, the power consumption is high as the burner 5, the CO remover 6, and the air supply device 7 for supplying air to the stack 1 are separately provided. Each air supply unit 7 is composed of a blower 7a, a buffer 7b, a flow sensor 7c and a valve 7d, which is one of the factors that increase the production period and increase the cost according to the increase in the number of parts. At the same time, there is a problem that the possibility of air leakage increases.
본 발명은 상술한 바와 같은 종래기술의 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 목적은, 특히 하나의 단일유닛으로 기체연료 공급장치를 구성하여 제작 기간을 단축시키고 원가를 절감하는 한편 정확한 유량을 공급하기 위한 연료전지 시스템의 기체연료 공급장치 및 이를 포함하는 연료전지 시스템을 제공하는 것이다. The present invention has been made to solve the problems of the prior art as described above, the object of the present invention is to configure the gas fuel supply device, in particular in a single unit to shorten the production period and reduce costs while accurate flow rate It is to provide a gas fuel supply device of a fuel cell system for supplying a fuel cell system and the same.
이를 위해 본 발명에 따르는 연료전지 시스템의 기체연료 공급장치는, 기체연료를 공급하기 위한 블로어, 블로어의 후단에 위치하여 기체연료의 맥동을 방지하기 위한 버퍼탱크, 버퍼탱크의 후단에 위치하여 토출되는 기체연료를 다수의 유로로 분배하는 유량 분배부, 유량 분배부의 유로에 각각 구비되어 유로의 개도율을 조절하는 다수의 비례제어밸브를 포함하는 비례제어밸브부, 버퍼탱크와 비례제어밸브부의 후단에 각각 구비되어 버퍼탱크로부터 유입되는 기체연료의 압력과 비례제어밸브부의 후단으로부터 적어도 하나 이상의 유로를 경유하여 토출되는 다수의 기체연료의 압력을 감지하기 위한 압력센서부, 및 압력센서부의 압력정보에 따라 다수의 비례제어밸브의 개도율을 기 설정된개도율로 보정하는 보정 제어부를 포함한다.To this end, the gas fuel supply apparatus of the fuel cell system according to the present invention includes a blower for supplying gas fuel, a buffer tank located at the rear end of the blower to prevent pulsation of the gas fuel, and a discharged at the rear end of the buffer tank. A proportional control valve part including a plurality of proportional control valves each provided in a flow distribution part for distributing gaseous fuel into a plurality of flow paths and a flow distribution part for adjusting the opening degree of the flow path, at a rear end of the buffer tank and the proportional control valve part; Each of the pressure sensor unit for detecting the pressure of the gas fuel flowing from the buffer tank and the pressure of the plurality of gas fuel discharged via at least one flow path from the rear end of the proportional control valve unit, and the pressure information of the pressure sensor unit And a correction controller for correcting the opening rate of the plurality of proportional control valves to a preset opening rate.
다수의 비례제어밸브는 서로 연동하여 개도율이 조절된다.A plurality of proportional control valves interlock with each other to adjust the opening degree.
압력정보는 유입되는 기체연료의 압력과 토출되는 다수의 기체연료의 압력의 차압을 이용하여 비례제어밸브부의 후단에서 토출되는 기체연료의 압력을 각각 연산한 정보이다.The pressure information is information obtained by calculating the pressure of the gas fuel discharged from the rear end of the proportional control valve unit by using the pressure difference between the gas fuel flowing in and the pressure of the gas fuel discharged.
또한, 이를 위해 본 발명에 따르는 연료전지 시스템은, 버너와 CO제거기를 구비하고 개질 가스를 생성하는 연료처리장치와, 연료처리장치에서 발생된 개질 가스를 공급받아 전기에너지를 발생하는 스택과, 버너와 CO제거기 및 스택에 공기 및 가스를 포함하는 기체연료를 공급하는 기체연료 공급장치를 포함하는 연료전지 시스템에 있어서, 기체연료 공급장치는, 기체연료를 공급하기 위한 블로어, 블로어의 후단에 위치하여 기체연료의 맥동을 방지하기 위한 버퍼탱크, 버퍼탱크의 후단에 위치하여 토출되는 기체연료를 다수의 유로로 분배하는 유량 분배부, 유량 분배부의 유로에 각각 구비되어 유로의 개도율을 조절하는 다수의 비례제어밸브를 포함하는 비례제어밸브부, 버퍼탱크와 비례제어밸브부의 후단에 각각 구비되어 버퍼탱크로부터 유입되는 기체연료의 압력과 비례제어밸브부의 후단으로부터 적어도 하나 이상의 유로를 경유하여 토출되는 다수의 기체연료의 압력을 감지하기 위한 압력센서부, 및 압력센서부의 압력정보에 따라 다수의 비례제어밸브의 개도율을 기 설정된개도율로 보정하는 보정 제어부를 포함한다.In addition, for this purpose, the fuel cell system according to the present invention includes a fuel processor including a burner and a CO remover to generate reformed gas, a stack to generate electrical energy by receiving reformed gas generated from the fuel processor, and a burner And a gaseous fuel supply device for supplying gaseous fuel including air and gas to the stack and a CO remover, wherein the gaseous fuel supply device is located at the rear of the blower and the blower for supplying the gaseous fuel. A buffer tank for preventing pulsation of gas fuel, a flow distribution unit for distributing gas fuel discharged at a rear end of the buffer tank into a plurality of flow paths, and a plurality of flow control units provided in the flow path distribution part respectively to control the opening ratio of the flow path. Proportional control valve unit including a proportional control valve, respectively provided at the rear end of the buffer tank and the proportional control valve unit flows in from the buffer tank Opening ratio of the proportional control valve according to the pressure information of the gas fuel and the pressure sensor unit for detecting the pressure of the plurality of gas fuel discharged through at least one flow path from the rear end of the proportional control valve unit, and the pressure information of the pressure sensor unit It includes a correction controller for correcting to a predetermined opening rate.
다수의 비례제어밸브는 버너의 전단에 연결되는 제1 비례제어밸브, CO제거기의 전단에 연결되는 제2 비례제어밸브, 및 스택의 전단에 연결되는 제3 비례제어밸브로 이루어진다.The plurality of proportional control valves include a first proportional control valve connected to the front end of the burner, a second proportional control valve connected to the front end of the CO remover, and a third proportional control valve connected to the front end of the stack.
다수의 비례제어밸브는 서로 연동하여 개도율이 조절된다.A plurality of proportional control valves interlock with each other to adjust the opening degree.
압력센서부는 버퍼탱크에서 토출되는 기체연료의 압력을 감지하는 메인 압력센서, 버너로 유입되는 기체연료의 압력을 감지하는 제1 압력센서, CO제거기로 유입되는 기체연료의 압력을 감지하는 제2 압력센서, 및 스택으로 유입되는 기체연료의 압력을 감지하는 제3 압력센서로 이루어지며, 압력정보는 메인 압력센서와 제1 압력센서, 제2 압력센서, 및 제3 압력센서와의 차압을 이용하여 연산된다.The pressure sensor unit detects the pressure of the gas fuel discharged from the buffer tank, a first pressure sensor detecting the pressure of the gas fuel flowing into the burner, and a second pressure detecting the pressure of the gas fuel flowing into the CO remover. Sensor, and a third pressure sensor for detecting the pressure of the gas fuel flowing into the stack, the pressure information using the differential pressure between the main pressure sensor, the first pressure sensor, the second pressure sensor, and the third pressure sensor It is calculated.
기체연료 공급장치는 일체형의 단일 유닛으로 이루어진다.The gas fuel supply unit consists of a single unitary unit.
본 발명에 따르면, 연료전지의 기체연료 공급장치를 일체형의 단일유닛으로 구성함으로써, 소비전력이 절감되고 부품수의 감소에 따라 제작기간이 단축되며 원가가 절감되는 효과가 있다.According to the present invention, by configuring the gas fuel supply device of the fuel cell in a single unitary unit, the power consumption is reduced, the production period is shortened and the cost is reduced according to the number of parts.
또한, 본 발명에 따르면, 블로어 후단에 차례로 버퍼탱크와 압력센서를 삽입하고, 각 비례제어밸브 후단에 각각 압력센서를 삽입함으로써, 맥동현상을 방지하고 개도율이 보정되어 정확한 유량을 얻을 수 있는 효과도 있다.In addition, according to the present invention, by inserting the buffer tank and the pressure sensor after the blower in turn, and by inserting the pressure sensor to the rear of each proportional control valve, it is possible to prevent the pulsation phenomenon and the opening rate is corrected to obtain accurate flow rate There is also.
도 1은 종래의 고분자 전해질 연료전지 시스템의 개략도.1 is a schematic diagram of a conventional polymer electrolyte fuel cell system.
도 2는 본 발명의 일 실시 예에 따르는 연료전지 시스템의 기체연료 공급장치를 보여주기 위한 블록도.Figure 2 is a block diagram showing a gaseous fuel supply device of a fuel cell system according to an embodiment of the present invention.
도 3은 본 발명의 일 실시 예에 따른 기체연료 공급장치가 적용된 연료전지 시스템의 개략도.3 is a schematic diagram of a fuel cell system to which a gaseous fuel supply device according to an embodiment of the present invention is applied.
이하에서는 첨부된 도면들을 참조하여 본 발명의 실시 예에 따른 연료전지 시스템의 기체연료 공급장치 및 이를 포함하는 연료전지 시스템을 상세히 설명한다.Hereinafter, a gas fuel supply apparatus and a fuel cell system including the same of a fuel cell system according to an exemplary embodiment of the present invention will be described in detail with reference to the accompanying drawings.
도 2와 도 3의 동일 부재에 대해서는 동일한 도면 번호를 기재하였다.The same reference numerals are used for the same members in FIG. 2 and FIG. 3.
아울러, 본 발명을 설명함에 있어서, 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단된 경우 그 상세한 설명은 생략한다.In addition, in describing the present invention, when it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted.
도 2는 에 따르는 연료전지시스템의 기체연료 공급장치를 보여주기 위한 블록도이다.2 is a block diagram for showing a gaseous fuel supply apparatus of a fuel cell system according to FIG.
도 2를 참조하면 본 발명의 일 실시 예에 따르는 연료전지 시스템의 기체연료 공급장치(100)는 기체연료를 공급하기 위한 블로어(110), 블로어(110)의 후단에 위치하여 기체연료의 맥동을 방지하기 위한 버퍼탱크(120), 버퍼탱크(120)의 후단에 위치하여 토출되는 기체연료를 다수의 유로로 분배하는 유량 분배부(130), 유량 분배부(130)의 유로에 각각 구비되어 유로의 개도율을 조절하는 다수의 비례제어밸브(141, 142, 143)를 포함하는 비례제어밸브부(140), 버퍼탱크(120)와 비례제어밸브부(140)의 후단에 각각 구비되어 버퍼탱크(120)로부터 유입되는 기체연료의 압력과 비례제어밸브부(140)의 후단으로부터 적어도 하나 이상의 유로를 경유하여 토출되는 다수의 기체연료의 압력을 감지하기 위한 압력센서부(150), 및 압력센서부(150)의 압력정보에 따라 다수의 비례제어밸브(141, 142, 143)의 개도율을 기 설정된 개도율로 보정하는 보정 제어부(160)를 포함한다.2, the gas fuel supply device 100 of the fuel cell system according to an embodiment of the present invention is located at the rear of the blower 110, the blower 110 for supplying the gas fuel to the pulsation of the gas fuel Buffer tank 120 for preventing, the flow tank located at the rear end of the buffer tank 120, the flow distribution unit 130 for distributing the discharged gas into a plurality of flow paths, respectively provided in the flow path of the flow distribution unit 130 Proportional control valve unit 140 including a plurality of proportional control valves (141, 142, 143) for adjusting the opening rate of the buffer tank 120 and the buffer tank 120 and the rear end of the proportional control valve unit 140 are respectively provided Pressure sensor unit 150 for detecting the pressure of the gas fuel flowing from the 120 and the pressure of the plurality of gas fuel discharged via at least one flow path from the rear end of the proportional control valve unit 140, and the pressure sensor Multiple proportional control according to the pressure information of the unit 150 And a correction control unit 160 for correcting the opening degree of the valves 141, 142, and 143 to a preset opening rate.
도 2와 같이 구성된 본 발명의 일 실시 예에 따르는 연료전지 시스템의 기체연료 공급장치(100)를 자세히 설명하면 다음과 같다.Referring to the gas fuel supply device 100 of the fuel cell system according to an embodiment of the present invention configured as shown in Figure 2 in detail as follows.
우선 본 발명의 일 실시 예에 따른 연료전지 시스템의 기체연료 공급장치 (100)는 하나의 단일유닛으로 구성되며, 블로어(110)를 통해 외부로부터 유입되는 공기 및 가스를 포함하는 기체연료를 연료전지 시스템의 각 부로 각각 분배하여 공급하는 역할을 한다.First, the gaseous fuel supply device 100 of a fuel cell system according to an embodiment of the present invention is composed of one single unit, and includes a fuel cell containing gaseous fuel and air introduced from the outside through the blower 110. It distributes and supplies each part of the system.
우선, 블로어(Blower)(110)는 기체연료를 버퍼탱크(120)로 유입시킨다.First, a blower 110 flows gaseous fuel into the buffer tank 120.
블로어(110)는 날개차 또는 로터의 회전 운동에 의해 기체를 압송하여 압력비가 1.1 이상 2.0 미만 또는 1000mmAq~1kg/cm2의 토출 압력을 가진 송풍기를 말한다. Blower 110 refers to a blower having a discharge pressure of the pressure ratio is 1.1 or more and less than 2.0 or 1000mmAq ~ 1kg / cm2 by pumping the gas by the rotary motion of the van or rotor.
여기서 블로어(110)가 연료전지 시스템의 기체연료 공급장치(100)의 내부로 직접 기체연료를 유입시키지 않는 이유는 다음과 같다.Here, the reason why the blower 110 does not directly introduce the gas fuel into the gas fuel supply device 100 of the fuel cell system is as follows.
우선 블로어(110)에 의해 기체연료가 직접 연료전지 시스템의 기체연료 공급장치(100)로 유입되는 경우에, 유량 분배부(130)에 의하여 맥동현상(Surging)이 발생한다. 따라서 맥동현상의 발생을 방지하기 위해 완충역활을 하는 버퍼탱크(120)가 필요하게 된다. 이런 이유로, 블로어(110)는 기체연료를 버퍼탱크(120)로 우선 유입시킨다.First, when the gaseous fuel flows directly into the gaseous fuel supply device 100 of the fuel cell system by the blower 110, pulsation occurs by the flow rate distribution unit 130. Therefore, in order to prevent the occurrence of pulsation phenomenon, the buffer tank 120 to act as a buffer is required. For this reason, the blower 110 first introduces gaseous fuel into the buffer tank 120.
버퍼탱크(120)로 유입된 기체연료는 내부의 압력에 의해 유량 분배부(130)로 토출된다. 이때 버퍼탱크(120)와 유량 분배부(130) 사이에 구비된 메인 압력센서(151)는 연료전지 시스템의 기체연료 공급장치(100)의 내부로 유입되는 기체연료의 총 압력을 감지하여, 감지된 기체연료의 총압력 정보를 보정 제어부(160)에 제공한다.Gas fuel introduced into the buffer tank 120 is discharged to the flow distribution unit 130 by the pressure inside. At this time, the main pressure sensor 151 provided between the buffer tank 120 and the flow distribution unit 130 detects the total pressure of the gas fuel flowing into the gas fuel supply device 100 of the fuel cell system, and detects The total pressure information of the prepared gas fuel is provided to the correction controller 160.
한편, 유량 분배부(130)는 유입되는 기체연료를 분배하여 제1 비례제어밸브(141), 제2 비례제어밸브(142), 및 제3 비례제어밸브(143)로 각각 유입시킨다.On the other hand, the flow distribution unit 130 distributes the gas fuel flows into the first proportional control valve 141, the second proportional control valve 142, and the third proportional control valve 143, respectively.
여기서 각각의 비례제어밸브들(141, 142, 143)은 해당 유로의 개도율을 조절하게 된다. 이때 개도율은 각각의 비례제어밸브들(141, 142, 143)이 연동되어 서로 다르게 설정될 수 있다.Here, each of the proportional control valves 141, 142, and 143 adjusts the opening ratio of the corresponding flow path. In this case, the opening rate may be set differently by interlocking the respective proportional control valves 141, 142, and 143.
예를 들면, 초기 상태에서, 블로어(110)는 분당 45L의 기체연료를 기체연료 공급장치(100)로 공급하며, 이때, 제1 비례제어밸브(141)는 개도율이 30%로 제어되면서 분당 30L의 기체연료가 해당 유로로 토출되고, 제2 비례제어밸브(142)는 개도율이 10%로 제어되면서 분당 10L의 기체연료가 해당 유로로 토출되며, 제3 비례제어밸브(143)는 개도율이 5%로 제어됨에 따라 분당 5L의 기체연료가 토출된다.For example, in an initial state, the blower 110 supplies 45 L of gas fuel per minute to the gas fuel supply device 100, wherein the first proportional control valve 141 is controlled at 30% opening rate per minute. 30L of gaseous fuel is discharged into the corresponding flow path, while the second proportional control valve 142 is controlled at an opening rate of 10%, 10L of gaseous fuel per minute is discharged into the corresponding flow path, and the third proportional control valve 143 is opened. As the rate is controlled at 5%, 5 liters of gaseous fuel are discharged per minute.
이때, 필요에 의해 제1 비례제어밸브(141)를 제어하여 개도율을 20%로 내리면 해당 유로는 분당 20L의 기체연료가 토출된다. 그러면, 블로어(110)는 분당 35L의 기체연료를 공급하도록 제어되며 이에 따라, 제2 비례제어밸브(142), 제3 비례제어밸브(143)의 개도율을 변경하지 않는다면 기체연료의 유량이 변하게 된다.At this time, if the opening ratio is reduced to 20% by controlling the first proportional control valve 141 as necessary, 20L of gaseous fuel is discharged per minute. Then, the blower 110 is controlled to supply 35 L of gas fuel per minute, so that the flow rate of the gas fuel is changed unless the opening ratios of the second proportional control valve 142 and the third proportional control valve 143 are changed. do.
이 경우, 제2 비례제어밸브(142), 제3 비례제어밸브(143)의 개도율이 변경되지 않기 때문에, 제2 비례제어밸브(142), 제3 비례제어밸브(143)를 통해 기체연료를 공급받는 연료전지 시스템의 각 부는 유량의 부족으로 인해 정상적인 작동을 하지 못하게 될 가능성이 있다.In this case, since the opening ratios of the second proportional control valve 142 and the third proportional control valve 143 are not changed, the gas fuel is provided through the second proportional control valve 142 and the third proportional control valve 143. Each part of the fuel cell system that is supplied with the PSI may not be able to operate normally due to lack of flow rate.
이를 방지하기 위해, 본 발명의 일 실시 예에 따른 기체연료 공급장치(100)는 각각의 비례제어밸브들(141, 142, 143)의 개도율이 연동하여 비례제어된다.In order to prevent this, the gas fuel supply device 100 according to an embodiment of the present invention is proportionally controlled in conjunction with the opening ratios of the respective proportional control valves 141, 142, and 143.
즉, 상술한 바와 같이 제1 비례제어밸브(141)의 개도율이 30%에서 20%로 저하되고, 이에 따라 블로어(110)를 통한 기체연료 공급량이 감소하는 경우, 제2 비례제어밸브(142)의 개도율은 10%에서 15%로 증가하고, 제3 비례제어밸브(143)의 개도율은 5%에서 10%로 증가함으로써, 각각의 유로로 토출되는 기체연료의 유량이 일정하게 유지될 수 있는 것이다. 이때, 제2 비례제어밸브(142), 제3 비례제어밸브(143)를 통해 유입되는 유량이 증가 또는 감소하도록, 각각의 비례제어밸브들(141, 142, 143)의 개도율이 조절될 수 있음은 물론이다.That is, as described above, when the opening ratio of the first proportional control valve 141 is lowered from 30% to 20%, and thus the amount of gas fuel supplied through the blower 110 is reduced, the second proportional control valve 142 ), The opening rate of 10% increases from 10% to 15%, and the opening rate of the third proportional control valve 143 increases from 5% to 10%, so that the flow rate of the gas fuel discharged to each flow path is kept constant. It can be. In this case, the opening ratios of the respective proportional control valves 141, 142, and 143 may be adjusted to increase or decrease the flow rate flowing through the second proportional control valve 142 and the third proportional control valve 143. Of course.
그러나 이와 같이 개도율이 연동되어 비례제어됨에도 불구하고 오차가 발생하는 상황이 발생한다. 따라서 기체연료 공급장치(100)는 제1 비례제어밸브들(141) 의 후단에 제1 압력센서(152), 제2 비례제어밸브들(142) 의 후단에 제2 압력센서(153) 및 제3 비례제어밸브들(143) 의 후단에 제3 압력센서(154)를 구비한다.However, even though the opening rate is interlocked and proportionally controlled, an error occurs. Therefore, the gaseous fuel supply device 100 includes a first pressure sensor 152 at a rear end of the first proportional control valves 141 and a second pressure sensor 153 and a second end at a rear end of the second proportional control valves 142. The third pressure sensor 154 is provided at the rear end of the three proportional control valves 143.
이는 각각의 비례제어밸브들(141,142,143)에서 토출되는 기체연료의 압력을 감지함으로써 실제로 토출되는 유량을 파악하여 개도율을 파악하기 위함이다.This is to determine the opening rate by detecting the flow rate actually discharged by sensing the pressure of the gas fuel discharged from the proportional control valves 141, 142, and 143.
이를 위해 각각의 압력센서들(152, 153, 154)은 각각의 유로로 토출되는 기체연료의 압력을 감지하여 보정 제어부(160)로 제공한다.To this end, each of the pressure sensors 152, 153, and 154 senses the pressure of the gas fuel discharged into each flow path and provides the pressure to the correction controller 160.
그러면 보정 제어부(160)는 각각의 압력센서들(152, 153, 154)에서 제공받은 기체연료의 압력과 상술한 메인 압력센서(151)에서 제공받은 기체연료의 총압력의 차압을 이용하여 각각의 비례제어밸브들(141,142,143)이 토출하는 유량을 베르누이 방정식과 연속방정식을 이용하여 계산한다. 만약 비례제어밸브들(141,142,143)이 토출하는 유량이 설정된 유량과 차이가 나는 경우, 보정 제어부(160)는 이를 보정하기 위해 개도율을 제어한다.Then, the correction control unit 160 uses the pressure difference between the pressure of the gas fuel provided by the respective pressure sensors 152, 153, and 154 and the total pressure of the gas fuel provided by the main pressure sensor 151. The flow rate discharged by the proportional control valves 141, 142, and 143 is calculated using the Bernoulli equation and the continuous equation. If the flow rate discharged by the proportional control valves 141, 142, 143 is different from the set flow rate, the correction control unit 160 controls the opening degree to correct this.
따라서, 본 발명의 일 실시 예에 따른 기체연료 공급장치(100)에 의하면, 종래와 같이 연료전지 시스템의 각 부에 각각 별도의 공급장치를 설치할 필요없이, 하나의 단일유닛에서 연료전지 시스템의 각 부에 기체연료를 분배하여 공급할 수 있으므로 전력소비량을 낮출 수 있다. 또한, 종래와 비교하여 유량센서 등 값비싼 부품을 사용하지 않음과 동시에 제작에 필요한 부품 개수가 감소하므로, 제작 기간 단축과 원가 절감 및 리크 포인트(leak point) 수가 감소되어 유지··보수가 용이한 효과가 있다. 그리고 맥동현상을 방지하고, 개도율을 보정하여 유량을 정확히 제어할 수 있는 효과도 있다. Therefore, according to the gaseous fuel supply device 100 according to an embodiment of the present invention, each of the fuel cell system in one single unit, without having to install a separate supply device for each part of the fuel cell system as in the prior art The fuel consumption can be lowered because gas fuel can be distributed and supplied to the unit. In addition, compared to the conventional method, the use of expensive components such as a flow sensor is not required, and the number of parts required for manufacturing is reduced, which shortens manufacturing period, reduces cost, and reduces the number of leak points, making it easy to maintain and repair. It works. It also has the effect of preventing pulsation and correcting the opening rate to precisely control the flow rate.
상술한 바와 같이 구성된 공급장치는 도시가스 공급부에도 적용될 수 있고, 가스연소기기와 물/공기(air) 및 알코올을 포함하는 액체연료 등 유체의 정밀 분배기 분야에도 적용 가능하다.The supply device configured as described above may be applied to the city gas supply unit, and may also be applied to the field of precision distributors of fluids such as gas combustion devices and liquid fuels including water / air and alcohol.
도 3은 본 발명의 일 실시 예에 따른 기체연료 공급장치가 적용된 연료전지 시스템의 개략도이다.3 is a schematic diagram of a fuel cell system to which a gaseous fuel supply device according to an embodiment of the present invention is applied.
본 발명의 일 실시 예에 따른 연료전지 시스템(200)은, 전기를 발생하는 스택(210)과, 스택(210)에 공급할 수소를 생성하는 연료처리장치(250)와, 스택(210)과 연료처리장치(250)에 기체연료를 공급하는 기체연료 공급장치(100)와, 스택(210)을 냉각시키는 냉각장치(240)와, 그 외 물 탱크(241)와 연료 탱크(242) 및 열교환기(243) 등 주변장치를 포함한다.The fuel cell system 200 according to an exemplary embodiment of the present invention includes a stack 210 for generating electricity, a fuel processor 250 for generating hydrogen to be supplied to the stack 210, a stack 210, and a fuel. A gaseous fuel supply device 100 for supplying gaseous fuel to the processing apparatus 250, a cooling device 240 for cooling the stack 210, other water tanks 241, a fuel tank 242, and a heat exchanger. And peripherals (243).
여기서, 스택(210)은 막/전극 접합체(Membrane Electrode Assembly: MEA)와 이의 양면에 밀착하는 바이폴라 플레이트(Bipolar Plate)로 이루어진 단위 셀(211)이 수 개 내지 수십 개로 적층된 구조를 가지며, 고분자 전해질막을 사이에 두고 애노드 전극과 캐소드 전극이 부착된 구조로 형성된다. Here, the stack 210 has a structure in which a plurality of unit cells 211 made of a membrane / electrode assembly (MEA) and a bipolar plate (Bipolar Plate) in close contact with both surfaces thereof are stacked in the order of several to several tens. An anode electrode and a cathode electrode are attached to each other with an electrolyte membrane interposed therebetween.
이러한 바이폴라 플레이트는 각각의 막/전극 접합체를 분리하고 연료 전지의 반응에 필요한 수소 가스와 산소를 막/전극 접합체의 애노드 전극과 캐소드 전극으로 공급하는 통로의 역할, 그리고 각각의 막/전극 접합체의 애노드 전극과 캐소드 전극을 직렬로 연결시켜 주는 전도체의 역할을 동시에 수행한다. The bipolar plate separates each membrane / electrode assembly and serves as a passage for supplying hydrogen gas and oxygen required for the reaction of the fuel cell to the anode electrode and the cathode electrode of the membrane / electrode assembly, and the anode of each membrane / electrode assembly. Simultaneously serves as a conductor that connects the electrode and the cathode electrode in series.
이때, 스택(210)은 메탄올, 에탄올, 천연가스와 같은 탄화수소 계열의 연료에 함유되어 있는 수소와, 공기 내에 포함되어 있는 산소의 화학에너지를 전기화학반응에 의해 직접 전기에너지로 변환시키게 되며, 따라서 스택(210)은 산소를 포함한 공기의 공급을 필요로 한다.In this case, the stack 210 converts the chemical energy of hydrogen contained in a hydrocarbon-based fuel such as methanol, ethanol, and natural gas and oxygen contained in the air into electrical energy directly by an electrochemical reaction. Stack 210 requires a supply of air, including oxygen.
연료처리장치(250)는 연료를 개질 및 정화하여 수소를 생성시키고 그 수소를 스택(210)의 연료극에 공급하는 역할을 하며, 탄화수소 계열의 연료를 수증기와 반응시켜 수소를 생성하는 개질기(reformer)(231)와, 생성된 개질가스가 스택(210)으로 공급되었을 때 연료극 촉매에 피독을 일으키지 않도록 일산화탄소(CO)의 함량을 낮추는 CO쉬프트기(shift converter)(221)와, CO쉬프트기(221)에서 배출된 연료가스를 선택적 산화반응(PROX; Preferential Oxidation reaction)을 통해 재차 정화하여 일산화탄소를 제거하는 CO제거기(Prox reactor or remover)(220)를 포함하여 구성될 수 있다.The fuel processor 250 reforms and purifies the fuel to generate hydrogen, and supplies the hydrogen to the anode of the stack 210. The reformer 250 generates a hydrogen by reacting a hydrocarbon-based fuel with water vapor. 231, a CO shift converter 221 for lowering the content of carbon monoxide (CO) so as not to poison the anode catalyst when the generated reformed gas is supplied to the stack 210, and a CO shifter 221. The fuel gas discharged from) may be configured to include a COx reactor or remover 220 to purify carbon monoxide again through a selective oxidation reaction (PROX).
한편, 열교환기(243)는, 펌프(미도시)에 의해 공급되는 물을 열교환을 통해 가열하여, 수증기 상태로 개질기(231)에 공급하는 역할을 한다.On the other hand, the heat exchanger 243 serves to heat the water supplied by the pump (not shown) through heat exchange, and supply the reformer 231 in a steam state.
이때, 개질기(231)에서 이루어지는 개질 반응은 흡열반응이며, 이에 따라 버너(230)의 연소열을 필요로 하고, 버너(230)의 연소를 위해 산소를 포함한 공기의 공급을 필요로 한다. 또한, CO제거기(220)에서의 선택적 산화반응 역시 산소를 포함한 공기의 공급을 필요로 한다.At this time, the reforming reaction of the reformer 231 is an endothermic reaction, and thus requires the heat of combustion of the burner 230, and requires the supply of air including oxygen for the combustion of the burner 230. In addition, the selective oxidation reaction in the CO remover 220 also requires the supply of air containing oxygen.
이러한 공기의 공급은, 본 발명의 일 실시 예에 따라 하나의 단일유닛으로 구성되는 기체연료 공급장치(100)에 의해 이루어진다.The supply of such air is made by the gaseous fuel supply device 100 constituted by a single unit according to an embodiment of the present invention.
즉, 종래에는 버너(230)에 공기를 공급하는 공기공급장치와, CO제거기(220)에 공기를 공급하는 공기공급장치와, 스택(210)에 공기를 공급하는 공기공급장치가 각각 별도로 마련되어야 했지만, 본 발명의 일 실시 예에 따른 기체연료 공급장치(100)는 하나의 단일유닛에서 블로어(110)로부터 공기 및 가스를 포함하는 기체연료를 공급받아, 이를 필요로 하는 연료전지 시스템(200)의 각 부에 분배하여 공급할 수 있다.That is, in the related art, an air supply device for supplying air to the burner 230, an air supply device for supplying air to the CO remover 220, and an air supply device for supplying air to the stack 210 should be provided separately. However, the gaseous fuel supply device 100 according to an embodiment of the present invention receives a gaseous fuel including air and gas from the blower 110 in one single unit, the fuel cell system 200 that requires this Can be distributed to each part of the supply.
이때, 본 발명의 일 실시 예에 따른 기체연료 공급장치(100)는 블로어(Blower)(110)를 구비하고, 블로어(110)는 기체연료를 버퍼탱크(120)로 유입시킨다.At this time, the gas fuel supply apparatus 100 according to an embodiment of the present invention is provided with a blower (Blower) (110), the blower (110) to introduce the gas fuel into the buffer tank (120).
버퍼탱크(120)로 유입된 기체연료는 내부의 압력에 의해 유량 분배부(130)로 토출된다. 이때 버퍼탱크(120)와 유량 분배부(130) 사이에 구비된 메인 압력센서(151)는 연료전지 시스템의 기체연료 공급장치(100)의 내부로 유입되는 기체연료의 총 압력을 감지하여, 감지된 기체연료의 압력정보를 보정 제어부(160)에 제공한다.Gas fuel introduced into the buffer tank 120 is discharged to the flow distribution unit 130 by the pressure inside. At this time, the main pressure sensor 151 provided between the buffer tank 120 and the flow distribution unit 130 detects the total pressure of the gas fuel flowing into the gas fuel supply device 100 of the fuel cell system, and detects The pressure information of the used gas fuel is provided to the correction controller 160.
한편, 유량 분배부(130)는 유입되는 기체연료를 분배하여 제1 비례제어밸브(141), 제2 비례제어밸브(142), 및 제3 비례제어밸브(143)로 각각 유입시킨다.On the other hand, the flow distribution unit 130 distributes the gas fuel flows into the first proportional control valve 141, the second proportional control valve 142, and the third proportional control valve 143, respectively.
여기서 각각의 비례제어밸브들(141, 142, 143)은 해당 유로의 개도율을 조절하게 된다. 이때 개도율은 상술한 바와 같이 각각의 비례제어밸브들(141, 142, 143)이 연동되어 서로 다르게 설정될 수 있다.Here, each of the proportional control valves 141, 142, and 143 adjusts the opening ratio of the corresponding flow path. In this case, the opening degree may be set differently by interlocking the respective proportional control valves 141, 142, and 143 as described above.
기체연료 공급장치(100)는 제1 비례제어밸브들(141) 의 후단에 제1 압력센서(152), 제2 비례제어밸브들(142) 의 후단에 제2 압력센서(153) 및 제3 비례제어밸브들(143)의 후단에 제3 압력센서(154)를 구비한다.The gas fuel supply device 100 includes a first pressure sensor 152 at a rear end of the first proportional control valves 141 and a second pressure sensor 153 and a third at a rear end of the second proportional control valves 142. The third pressure sensor 154 is provided at the rear end of the proportional control valves 143.
각각의 압력센서들(152, 153, 154)은 각각의 유로로 토출되는 기체연료의 압력을 감지하여 보정 제어부(160)로 제공한다.Each of the pressure sensors 152, 153, and 154 senses the pressure of the gas fuel discharged to the respective flow paths and provides the pressure to the correction controller 160.
그러면 보정 제어부(160)는 각각의 압력센서들(152, 153, 154)에서 제공받은 기체연료의 압력과 상술한 메인 압력센서(151)에서 제공받은 기체연료의 총압력의 차압을 이용하여 각각의 비례제어밸브들(141,142,143)이 토출하는 유량을 베르누이 방정식과 연속방정식을 이용하여 계산한다. 만약 비례제어밸브들(141,142,143)이 토출하는 유량이 설정된 유량과 차이가 나는 경우, 보정 제어부(160)는 이를 보정하기 위해 개도율을 제어하게 된다.Then, the correction control unit 160 uses the pressure difference between the pressure of the gas fuel provided by the respective pressure sensors 152, 153, and 154 and the total pressure of the gas fuel provided by the main pressure sensor 151. The flow rate discharged by the proportional control valves 141, 142, and 143 is calculated using the Bernoulli equation and the continuous equation. If the flow rate discharged by the proportional control valves 141, 142, 143 is different from the set flow rate, the correction control unit 160 controls the opening degree to correct this.
이상에서는 본 발명의 바람직한 실시 예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어져서는 안될 것이다.While the above has been shown and described with respect to preferred embodiments of the invention, the invention is not limited to the specific embodiments described above, it is usually in the technical field to which the invention belongs without departing from the spirit of the invention claimed in the claims. Various modifications can be made by those skilled in the art, and these modifications should not be individually understood from the technical spirit or the prospect of the present invention.
100: 기체연료 공급장치 110: 블로어  100: gas fuel supply device 110: blower
120: 버퍼탱크 130: 유량 분배부  120: buffer tank 130: flow distribution unit
140: 비례제어밸브부 150 압력센서부  140: proportional control valve 150 pressure sensor
160: 보정 제어부 160: correction control unit

Claims (8)

  1. 연료전지 시스템의 기체연료 공급장치에 있어서,In the gas fuel supply apparatus of the fuel cell system,
    기체연료를 공급하기 위한 블로어;A blower for supplying gaseous fuel;
    상기 블로어의 후단에 위치하여 상기 기체연료의 맥동을 방지하기 위한 버퍼탱크;A buffer tank positioned at a rear end of the blower to prevent pulsation of the gas fuel;
    상기 버퍼탱크의 후단에 위치하여 토출되는 기체연료를 다수의 유로로 분배하는 유량 분배부;A flow rate distribution unit disposed at a rear end of the buffer tank to distribute the discharged gas fuel into a plurality of flow paths;
    상기 유량 분배부의 유로에 각각 구비되어 상기 유로의 개도율을 조절하는 다수의 비례제어밸브를 포함하는 비례제어밸브부;A proportional control valve unit provided in each of the flow path distribution units, the proportional control valve unit including a plurality of proportional control valves for adjusting the opening degree of the flow path;
    상기 버퍼탱크와 상기 비례제어밸브부의 후단에 각각 구비되어 상기 버퍼탱크로부터 유입되는 기체연료의 압력과 상기 비례제어밸브부의 후단으로부터 적어도 하나 이상의 유로를 경유하여 토출되는 다수의 기체연료의 압력을 감지하기 위한 압력센서부; 및Detecting the pressure of the gas fuel introduced from the buffer tank and the proportional control valve unit, respectively, and the pressure of the plurality of gas fuel discharged from at least one flow path from the rear end of the proportional control valve unit Pressure sensor unit for; And
    상기 압력센서부의 압력정보에 따라 상기 다수의 비례제어밸브의 개도율을 기 설정된 개도율로 보정하는 보정 제어부를 포함하는 것을 특징으로 하는 연료전지 시스템의 기체연료 공급장치.And a correction control unit for correcting the opening degree of the plurality of proportional control valves to a predetermined opening degree according to the pressure information of the pressure sensor unit.
  2. 제 1항에 있어서, 상기 다수의 비례제어밸브는The method of claim 1, wherein the plurality of proportional control valve
    서로 연동하여 개도율이 조절되는 것을 특징으로 하는 기체연료 공급장치.Gas fuel supply device characterized in that the opening degree is adjusted in conjunction with each other.
  3. 제 1항에 있어서, 상기 압력정보는The method of claim 1, wherein the pressure information is
    상기 유입되는 기체연료의 압력과 상기 토출되는 다수의 기체연료의 압력의 차압을 이용하여 상기 비례제어밸브부의 후단에서 토출되는 기체연료의 압력을 각각 연산한 정보인 것을 특징으로 하는 연료전지 시스템의 기체연료 공급장치.The gas of the fuel cell system, wherein the pressure of the gaseous fuel discharged from the rear end of the proportional control valve unit is calculated using the pressure difference between the gaseous fuel flowed in and the pressure of the gaseous fuels discharged. Fuel supply.
  4. 버너와 CO제거기를 구비하고 개질 가스를 생성하는 연료처리장치와, 상기 연료처리장치에서 발생된 상기 개질 가스를 공급받아 전기에너지를 발생하는 스택과, 상기 버너와 상기 CO제거기 및 상기 스택에 공기 및 가스를 포함하는 기체연료를 공급하는 기체연료 공급장치를 포함하는 연료전지 시스템에 있어서,A fuel processing apparatus having a burner and a CO remover and generating a reformed gas, a stack for generating electrical energy by receiving the reformed gas generated from the fuel processing apparatus, the burner, the CO remover, and air in the stack; A fuel cell system comprising a gas fuel supply device for supplying a gas fuel containing gas,
    상기 기체연료 공급장치는,The gas fuel supply device,
    기체연료를 공급하기 위한 블로어;A blower for supplying gaseous fuel;
    상기 블로어의 후단에 위치하여 상기 기체연료의 맥동을 방지하기 위한 버퍼탱크Located in the rear end of the blower buffer tank for preventing the pulsation of the gas fuel
    상기 버퍼탱크의 후단에 위치하여 토출되는 기체연료를 다수의 유로로 분배하는 유량 분배부;A flow rate distribution unit disposed at a rear end of the buffer tank to distribute the discharged gas fuel into a plurality of flow paths;
    상기 유량 분배부의 유로에 각각 구비되어 상기 유로의 개도율을 조절하는 다수의 비례제어밸브를 포함하는 비례제어밸브부;A proportional control valve unit provided in each of the flow path distribution units, the proportional control valve unit including a plurality of proportional control valves for adjusting the opening degree of the flow path;
    상기 버퍼탱크와 상기 비례제어밸브부의 후단에 각각 구비되어 상기 버퍼탱크로부터 유입되는 기체연료의 압력과 상기 비례제어밸브부의 후단으로부터 적어도 하나 이상의 유로를 경유하여 토출되는 다수의 기체연료의 압력을 감지하기 위한 압력센서부; 및Detecting the pressure of the gas fuel introduced from the buffer tank and the proportional control valve unit, respectively, and the pressure of the plurality of gas fuel discharged from at least one flow path from the rear end of the proportional control valve unit Pressure sensor unit for; And
    상기 압력센서부의 압력정보에 따라 상기 다수의 비례제어밸브의 개도율을 기 설정된 개도율로 보정하는 보정 제어부를 포함하는 것을 특징으로 하는 연료전지 시스템.And a correction control unit for correcting the opening degree of the plurality of proportional control valves to a preset opening degree according to the pressure information of the pressure sensor unit.
  5. 제 4항에 있어서, 상기 다수의 비례제어밸브는 The method of claim 4, wherein the plurality of proportional control valve
    상기 버너의 전단에 연결되는 제1 비례제어밸브;A first proportional control valve connected to the front end of the burner;
    상기 CO제거기의 전단에 연결되는 제2 비례제어밸브; 및A second proportional control valve connected to the front end of the CO remover; And
    상기 스택의 전단에 연결되는 제3 비례제어밸브로 이루어지는 것을 특징으로 하는 연료전지 시스템.And a third proportional control valve connected to the front end of the stack.
  6. 제 4항에 있어서, 상기 다수의 비례제어밸브는The method of claim 4, wherein the plurality of proportional control valve
    서로 연동하여 개도율이 조절되는 것을 특징으로 하는 연료전지 시스템.A fuel cell system, characterized in that the opening degree is adjusted in conjunction with each other.
  7. 제 4항에 있어서, 상기 압력센서부는The method of claim 4, wherein the pressure sensor unit
    상기 버퍼탱크에서 토출되는 상기 기체연료의 압력을 감지하는 메인 압력센서;A main pressure sensor for sensing a pressure of the gas fuel discharged from the buffer tank;
    상기 버너로 유입되는 기체연료의 압력을 감지하는 제1 압력센서;A first pressure sensor for sensing a pressure of gas fuel flowing into the burner;
    상기 CO제거기로 유입되는 기체연료의 압력을 감지하는 제2 압력센서; 및A second pressure sensor for sensing a pressure of the gas fuel introduced into the CO remover; And
    상기 스택으로 유입되는 기체연료의 압력을 감지하는 제3 압력센서로 이루어지며,A third pressure sensor for detecting the pressure of the gas fuel flowing into the stack,
    상기 압력정보는The pressure information is
    상기 메인 압력센서와 상기 제1 압력센서, 상기 제2 압력센서, 및 상기 제3 압력센서와의 차압을 이용하여 연산되는 것을 특징으로 하는 연료전지 시스템.And calculating the differential pressure between the main pressure sensor, the first pressure sensor, the second pressure sensor, and the third pressure sensor.
  8. 제 4항에 있어서, 상기 기체연료공급장치는The gas fuel supply apparatus of claim 4, wherein
    일체형의 단일 유닛으로 이루어지는 것을 특징으로 하는 연료전지 시스템.A fuel cell system comprising an integrated single unit.
PCT/KR2012/011298 2011-12-21 2012-12-21 Gaseous fuel supply device for fuel cell system and fuel cell system comprising same WO2013095058A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0139524 2011-12-21
KR1020110139524A KR101303392B1 (en) 2011-12-21 2011-12-21 Gaseous fuel supply device of fuel cell system and fuel cell systemincluding the same

Publications (2)

Publication Number Publication Date
WO2013095058A2 true WO2013095058A2 (en) 2013-06-27
WO2013095058A3 WO2013095058A3 (en) 2013-08-15

Family

ID=48669666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/011298 WO2013095058A2 (en) 2011-12-21 2012-12-21 Gaseous fuel supply device for fuel cell system and fuel cell system comprising same

Country Status (2)

Country Link
KR (1) KR101303392B1 (en)
WO (1) WO2013095058A2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101435333B1 (en) * 2013-05-20 2014-08-27 현대하이스코 주식회사 Performance precise test apparatus for balance of plant of air supply system and method of testing the same
KR102468382B1 (en) 2017-09-01 2022-11-21 현대자동차주식회사 Control method and system of supplying hydrogen for fuel cell
US11349136B2 (en) 2018-05-21 2022-05-31 Bloom Energy Corporation Fuel cell system including Wobbe index detector and method of operating same
CN210668552U (en) * 2019-09-26 2020-06-02 潍柴动力股份有限公司 SOFC gas pipeline and SOFC system automobile
KR102559980B1 (en) * 2021-11-26 2023-07-28 아크로랩스 주식회사 Fuel cell with improved efficiency by having an air supply unit that can control the amount of air supplied

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030186096A1 (en) * 2001-12-12 2003-10-02 Keskula Donald H. Air distribution method and controller for a fuel cell system
JP2004182513A (en) * 2002-12-02 2004-07-02 Toyota Motor Corp Fuel reforming apparatus and fuel cell system
JP2007328968A (en) * 2006-06-07 2007-12-20 Hitachi Metals Ltd Piping system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101122571B1 (en) * 2009-09-01 2012-03-16 삼성중공업 주식회사 Fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030186096A1 (en) * 2001-12-12 2003-10-02 Keskula Donald H. Air distribution method and controller for a fuel cell system
JP2004182513A (en) * 2002-12-02 2004-07-02 Toyota Motor Corp Fuel reforming apparatus and fuel cell system
JP2007328968A (en) * 2006-06-07 2007-12-20 Hitachi Metals Ltd Piping system

Also Published As

Publication number Publication date
KR20130071992A (en) 2013-07-01
WO2013095058A3 (en) 2013-08-15
KR101303392B1 (en) 2013-09-04

Similar Documents

Publication Publication Date Title
US7833668B2 (en) Fuel cell system with greater than 95% fuel utilization
CN100440598C (en) Fuel cell system and method for starting operation of fuel cell system
US20100266923A1 (en) Fuel cell system with electrochemical hydrogen pump and method of operating same
Kamalimeera et al. Prospects and restraints in biogas fed SOFC for rural energization: a critical review in Indian perspective
WO2013095058A2 (en) Gaseous fuel supply device for fuel cell system and fuel cell system comprising same
US6746789B1 (en) Catalytic humidifier and heater for the fuel stream of a fuel cell
WO2007014128A2 (en) Fuel cell system with electrochemical anode exhaust recycling
WO2008121189A1 (en) Sofc system producing reduced atmospheric carbon dioxide using a molten carbonate carbon dioxide pump
US20040106020A1 (en) Catalytic humidifier and heater, primarily for humidification of the oxidant stream for a fuel cell
AU2011335292B2 (en) A solid oxide fuel cell system and a method of operating a solid oxide fuel cell system
CN113937322B (en) Multifunctional solid oxide fuel cell stack test system and operation method thereof
EP2190052B1 (en) Fuel cell system
JP5150068B2 (en) Reformer and indirect internal reforming type solid oxide fuel cell
AU2002226284A1 (en) Pem-fuel cell stack with a coolant distributor structure
WO2021153627A1 (en) Fuel battery power generating system
WO2013027960A2 (en) Gaseous fuel supplying apparatus of a fuel cell system, and a fuel cell system including same
KR20160101548A (en) Heat-Exchanging Apparatus for fuel cell having steam reformer and heat recovering device
KR100987544B1 (en) Fuel Delivery Systems for Indirect Internal Reforming Molten Carbonate Fuel Cells
KR100814434B1 (en) Differential pressure control method for Molten Carbonates Fuel Cell power plants
JP2002134156A (en) Pure hydrogen type fuel cell
CN1532973A (en) Heat utilizing system for fuel cell and its control method
KR20110077133A (en) Apparatus for adjusting fuel gas concentration in fuel cell system
KR20150080171A (en) Air breathing type fuel cell system and method
KR20130083683A (en) Apparatus and method for providing reformed gas with solid oxide fuel cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12860107

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 12860107

Country of ref document: EP

Kind code of ref document: A2