WO2013094743A1 - Battery system - Google Patents

Battery system Download PDF

Info

Publication number
WO2013094743A1
WO2013094743A1 PCT/JP2012/083297 JP2012083297W WO2013094743A1 WO 2013094743 A1 WO2013094743 A1 WO 2013094743A1 JP 2012083297 W JP2012083297 W JP 2012083297W WO 2013094743 A1 WO2013094743 A1 WO 2013094743A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging rate
value
secondary battery
voltage value
acquisition unit
Prior art date
Application number
PCT/JP2012/083297
Other languages
French (fr)
Japanese (ja)
Inventor
巧 大矢
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2013094743A1 publication Critical patent/WO2013094743A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • H02J7/00716Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current in response to integrated charge or discharge current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/44Control modes by parameter estimation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a battery system, and more particularly to a battery system for obtaining a charging rate of a secondary battery.
  • a secondary battery that can be charged and discharged as a drive source for driving a load such as a motor, and a control device that monitors and controls the secondary battery
  • the control device can calculate the charge rate (SOC: State Of Charge) of the secondary battery, set an allowable current value according to the calculated charge rate, and supply the load to the load.
  • SOC State Of Charge
  • Various controls such as limiting the current value of the secondary battery are performed.
  • Patent Document 1 as a method of correcting the charging rate based on the integrated value of the charging / discharging current, when the charging / discharging state of the secondary battery is reversed (when the charging state is reversed from the discharging state or from the charging state) When reversing to the discharging state), the voltage between the terminals of the secondary battery (open voltage) is measured, the charging rate based on the voltage between the terminals is estimated, and the charging rate based on the integrated value of the charging / discharging current is corrected.
  • a method is disclosed.
  • the present invention provides a simple new battery system capable of appropriately correcting the charging rate of the secondary battery even when the reversal of the charge / discharge state of the secondary battery is small. For the purpose.
  • the battery system of one aspect of the present invention integrates the current value acquired by the current value acquisition unit that acquires the current value of the charge / discharge current of the secondary battery over time and the current value acquired by the current value acquisition unit.
  • a charging rate calculation unit that calculates a first charging rate of the secondary battery based on an integrated value
  • a voltage value acquisition unit that acquires a voltage value between terminals of the secondary battery
  • the current value acquisition unit includes the current value Is obtained at a predetermined value or less and continuously for a predetermined time, using the inter-terminal voltage value acquired by the voltage value acquisition unit, based on the correlation between the inter-terminal voltage value of the secondary battery and the charging rate.
  • the voltage value when the absolute value of the difference between the charge rate estimation unit for estimating the second charge rate of the secondary battery and the first charge rate and the second charge rate is equal to or greater than a correction target value. Based on the representative voltage value determined from the inter-terminal voltage value acquired by the acquisition unit and the correlation. A determination unit that determines whether or not the difference between the inter-terminal voltage value according to the estimated first charging rate is due to the internal resistance value of the secondary battery, and the determination unit determines the result, Correction for correcting the first charging rate based on the second charging rate when the difference between the representative voltage value and the voltage value between the terminals according to the first charging rate is not caused by the internal resistance value Part.
  • the first charging rate calculated by integrating the current value of the charge / discharge current of the secondary battery is calculated between the terminals of the secondary battery.
  • the inter-terminal voltage value acquired for estimating the second charging rate can be the inter-terminal voltage value when the load is being driven, so depending on the current value of the secondary battery required by the load The voltage drop value due to the internal resistance of the secondary battery may be greatly affected. As a result, depending on the timing at which the inter-terminal voltage value is measured, the inter-terminal voltage value varies greatly, and the second charging rate estimated by the inter-terminal voltage value may not be accurate. Nevertheless, if the first charging rate is corrected based on this second charging rate, the second charging rate that deviates from the actual charging rate rather than the first charging rate is used for various controls of the control device. There is also a risk.
  • the first charge can be performed at an appropriate second charge rate by considering the accuracy of the second charge rate estimated based on the internal resistance value of the secondary battery.
  • the rate can be corrected, and the charging rate with less error can be reliably used in various controls of the control device.
  • the determination unit has an internal resistance value of the secondary battery when an absolute value of a difference between the first charging rate and the second charging rate is equal to or greater than a correction target value.
  • the first charging rate may be corrected based on the second charging rate.
  • the determination unit is configured to acquire the current value acquired by the current value acquisition unit for a certain period including a time point when the voltage value acquisition unit acquires a voltage value between terminals of the secondary battery. Whether the current fluctuation of the current value acquired by the current value acquisition unit is within the predetermined range for the certain period of time.
  • the first charging rate may be corrected based on the second charging rate.
  • the determination unit is configured to determine whether the secondary battery is in a charged state or a discharged state for a certain period including a time point when the voltage value acquiring unit acquires a voltage value between terminals of the secondary battery. It is further determined whether or not it is in one of the states, and the correction unit determines that the determination unit is in one of the charged state or the discharged state of the secondary battery for the certain period of time.
  • the first charging rate may be corrected based on the second charging rate.
  • the battery system further includes a temperature acquisition unit that acquires the temperature of the secondary battery, and the determination unit has an absolute value of a difference between the first charging rate and the second charging rate.
  • a minimum allowable temperature is set according to the internal resistance value of the secondary battery, and it is determined whether the temperature acquired by the temperature acquisition unit is equal to or higher than the minimum allowable temperature.
  • the correction unit corrects the first charging rate based on the second charging rate when the temperature acquired by the temperature acquisition unit is equal to or higher than the minimum allowable temperature as a result of the determination by the determination unit. May be.
  • the schematic block diagram of the battery system of this embodiment is shown. An explanatory view for explaining an outline of a work vehicle to which a battery system of this embodiment is applied is shown.
  • the schematic functional block of BMU is shown.
  • an example of the table showing the relationship between the voltage value between terminals of a secondary battery, temperature, and a charging rate is shown.
  • the usage range of the charging rate of the secondary battery, the calculated first charging rate and the estimated second charging rate are exemplarily shown, and the first charging rate ASOC is the actual charging. The time is smaller than the rate TrSOC.
  • the usage range of the charging rate of the secondary battery, the calculated first charging rate and the estimated second charging rate are exemplarily shown, and the first charging rate ASOC is the actual charging.
  • the time when it is larger than the rate TrSOC is shown.
  • an example of the table showing the relationship between the internal resistance value of a secondary battery, temperature, and a charge rate is shown, and the case of the internal resistance value at the time of discharge is shown.
  • an example of the table showing the relationship between the internal resistance value of a secondary battery, temperature, and a charge rate is shown, and the case of the internal resistance value at the time of charge is shown.
  • the first charge rate ASOC which may include an error calculated by integrating the charge / discharge current of the secondary battery, is calculated as the second charge rate ESOC estimated by the voltage value between the terminals of the secondary battery.
  • the correction is determined in consideration of the influence caused by the internal resistance value of the secondary battery.
  • FIG. 1 is a schematic configuration diagram of the battery system 1
  • FIG. 2 is a diagram for explaining an outline of the work vehicle 100.
  • the battery system 1 includes a battery device 2, a host control device 3, a power load 4, and a power receiving unit 5.
  • Battery device 2 includes a plurality of secondary batteries 20 (20a to 20h) as a drive source for driving work vehicle 100.
  • the host controller 3 controls the driving of the work vehicle 100 while exchanging information with the battery device 2.
  • the electric power load 4 is a motor for driving the work vehicle 100 or the like.
  • the power receiving unit 5 receives power from an external power source.
  • the work vehicle 100 will be briefly described with reference to FIG.
  • the work vehicle 100 is used as a vehicle that circulates around the stations 111 provided in various places on the circuit 110, receives an object at one station 111, and delivers the object at another station 111.
  • the work vehicle 100 travels using the secondary battery 20, which is a component of the battery system 1, as a drive source, and receives power supplied from a power supply facility 112 provided at a predetermined location of the circuit 111 via the power receiving unit 5.
  • the secondary battery 20 can be charged by receiving power.
  • the power supply facility 112 has, for example, a power supply line (not shown) arranged along the circuit 110, and supplies external power received from a commercial power source to the work vehicle 100 through the power supply line.
  • the power receiving unit 5 is an electromagnetic coil disposed along the power supply line, and receives power supplied from the power supply line by electromagnetic induction.
  • Such work vehicle 100 can be driven without stopping for 24 hours while repeatedly charging and discharging the secondary battery 20 of the battery system 1.
  • the battery device 2 includes an assembled battery 21 including a plurality of secondary batteries 20 (20a to 20h), which are power sources necessary for driving the work vehicle 100, and a battery management device 22.
  • the battery device 2 can discharge the power charged in the plurality of secondary batteries 20a to 20h to the power load 4, and can also receive the power received from the commercial power source (not shown) via the power receiving unit 5.
  • the secondary batteries 20a to 20h can be charged.
  • the secondary batteries 20a to 20h may be secondary batteries that can be charged and discharged, and are, for example, lithium ion secondary batteries.
  • the assembled battery 21 is configured by connecting a first arm and a second arm in parallel.
  • the first arm includes four secondary batteries 20a to 20d connected in series.
  • the second arm includes four secondary batteries 20e to 20h connected in series.
  • a case where eight secondary batteries 20a to 20h are connected in series or in parallel as shown in FIG. 1 will be described as an example.
  • the present invention is not limited to this case. Instead, the number of secondary batteries connected in series or in parallel may be changed as appropriate, or a plurality of secondary batteries may be connected only in series or connected only in parallel.
  • the battery device 2 is provided with temperature sensors TA to TH, voltage sensors VA to VH, a current sensor IA, and a current sensor IB, respectively.
  • the temperature sensors TA to TH measure the respective temperatures (for example, the temperature of the battery container surface) Ta to Th of the secondary batteries 20a to 20h.
  • Voltage sensors VA to VH measure inter-terminal voltages (cell voltages) Va to Vh between the positive terminals and the negative terminals of the secondary batteries 20a to 20h, respectively.
  • the current sensor IA measures the current Ia flowing through the secondary batteries 20a to 20d of the first arm.
  • the current sensor IB measures the current Ib flowing through the secondary arm secondary batteries 20e to 20h.
  • Battery management device (Battery Management System: BMS) 22 is a device that centrally manages a plurality of secondary batteries 20a to 20h and transmits / receives various signals to / from host control device 3.
  • the battery management device 22 includes CMUs (Cell Monitor Units) 221 ⁇ / b> A and 221 ⁇ / b> B and BMUs (Battery Management Units) 222.
  • the CMU 221A is a unit for monitoring each temperature Ta to Td and each terminal voltage Va to Vd of the secondary batteries 20a to 20d of the first arm, and communicates with the temperature sensors TA to TD and the voltage sensors VA to VD. Connected through a line.
  • the CMU 221A receives, for example, measurement information (temperatures Ta to Td, inter-terminal voltages Va to Vd) measured and output by the above-mentioned various sensors as analog signals, and these analog signals are converted into analog-digital converters (Analog Digital Converter). : ADC), the digital signal corresponding to each is converted, and then an identification ID is assigned to each measurement information and output to the BMU 222 in order to identify the secondary batteries 20a to 20d.
  • ADC Analog Digital Converter
  • the CMU 221B is a unit for monitoring the temperatures Te to Th and the inter-terminal voltages Ve to Vh of the secondary batteries 20e to 20h of the second arm, and communicates with the temperature sensors TE to TH and the voltage sensors VE to VH. Connected through a line.
  • the CMU 221B receives, for example, measurement information (temperatures Te to Th and terminal voltages Ve to Vh) measured and output by the various sensors as analog signals, and these analog signals are received by an analog-to-digital converter (ADC). After conversion into a digital signal corresponding to each, an identification ID is assigned to each measurement information and output to the BMU 222 in order to identify the secondary batteries 20a to 20d.
  • ADC analog-to-digital converter
  • the CMUs 221A and 221B are provided for each arm to which a plurality of secondary batteries 20 are connected in series.
  • the present invention is not limited to this case. It is good also as a structure provided with CMU for every two secondary batteries made, and it is good also as a structure provided with CMU for every individual secondary battery, The structure can be changed suitably.
  • the BMU 222 is connected to the CMUs 221A and 221B and the host controller 3 via communication lines, and each piece of measurement information (temperatures Ta to Th, terminal voltages Va to Vh) converted from the CMUs 221A and 221B into digital signals. Receive.
  • the BMU 222 is connected to the current sensors IA and IB via a communication line in order to monitor the current Ia flowing through the first arm and the current Ib flowing through the second arm.
  • the current sensors IA and IB Measurement information (currents Ia and Ib) to be measured and output are received as analog signals, and these analog signals are converted into corresponding digital signals by an analog-digital converter (ADC).
  • ADC analog-digital converter
  • the BMU 222 calculates the charging rate based on the measurement information and transmits / receives various signals to / from the host control device 3.
  • the BMU 222 has a current value acquisition unit 23, a charge rate calculation unit 24, a voltage value acquisition unit 25, and a temperature acquisition unit 26 as processing functions for deriving the charge rate of the battery device 2.
  • the current value acquisition unit 23 acquires information on the currents Ia and Ib from the current sensors IA and IB.
  • the charging rate calculation unit 24 calculates the first charging rate ASOC from the information on the currents Ia and Ib acquired by the current value acquisition unit 23.
  • the voltage value acquisition unit 25 acquires information on the inter-terminal voltage values Va to Vh of the secondary batteries 20a to 20h from the CMUs 221A and 221B.
  • the temperature acquisition unit 26 acquires information on the temperatures Ta to Th of the secondary batteries 20a to 20h from the CMUs 221A and 221B.
  • the charging rate estimation unit 27 estimates the second charging rate ESOC based on the information on the inter-terminal voltage values Va to Vh and the temperatures Ta to Th acquired by the voltage value acquisition unit 25 and the temperature acquisition unit 26.
  • the determination unit 28 determines whether to correct the first charging rate ASOC based on the second charging rate ESOC.
  • the correcting unit 29 corrects the first charging rate ASOC based on the second charging rate ESOC.
  • the BMU 222 includes a charge rate storage unit 30 and a table storage unit 31.
  • the charging rate storage unit 30 stores the first charging rate ASOC calculated by the charging rate calculation unit 24 and the second charging rate ESOC estimated by the charging rate estimation unit 27 as the charging rate of the assembled battery 21.
  • the table storage unit 31 stores various tables used by the charging rate estimation unit 27 for estimating the second charging rate ESOC.
  • the BMU 222 includes, for example, a processor for performing various computations and controls, a RAM that temporarily stores information (data), functions as a working area at the time of control, a ROM that stores programs, and peripheral circuits. The processing functions of the above units can be realized.
  • the current value acquisition unit 23 acquires information on the current values Ia and Ib of the charge / discharge currents flowing through the secondary batteries 20a to 20h in the battery device 2 from the current sensors IA and IB over time.
  • the timing for acquiring the current values Ia and Ib can be appropriately set according to factors such as the characteristics of the work vehicle 100 and the driving situation. For example, the timing for acquiring the current values Ia and Ib is set every 100 msec. Set.
  • the current value acquisition unit 23 notifies the charging rate calculation unit 24 of information on the acquired current values Ia and Ib.
  • the current value acquisition unit 23 acquires the current values Ia and Ib below a predetermined value and continuously for a predetermined time, the current value acquisition unit 23 notifies the charging rate estimation unit 27 of information to that effect.
  • the inter-terminal voltage values Va to Vh of the secondary batteries 20a to 20h are the no-load voltage.
  • the predetermined value can be set to 100 A
  • the predetermined time can be set to 10 sec. Note that the predetermined value and the predetermined time can be appropriately set according to factors such as the electric power required to drive the work vehicle 100 and the specifications of the secondary battery.
  • the charging rate calculation unit 24 integrates the current values Ia and Ib acquired by the current value acquisition unit 23, and based on the integrated value, the first of the assembled battery 21 including a plurality of secondary batteries 20a to 20h.
  • the charging rate ASOC is calculated.
  • the first charging rate ASOC can be calculated by setting the charging rate SOC stored in the charging rate storage unit 30 as the initial charging rate and adding (or subtracting) the charging rate variation to the initial charging rate,
  • the charging rate calculation unit 24 overwrites the calculated first charging rate ASOC in the charging rate storage unit 30 as the charging rate SOC.
  • the method itself for calculating the charging rate by integrating the current values of the charge / discharge current can be the same as the conventional calculation method.
  • the voltage value acquisition unit 25 acquires the inter-terminal voltage values Va to Vh of the secondary batteries 20a to 20h transmitted from the CMUs 221A and 221B.
  • the voltage value acquisition unit 25 notifies the information on the acquired inter-terminal voltage values Va to Vh to the charging rate estimation unit 27 and the correction unit 29.
  • the temperature acquisition unit 26 acquires the temperatures Ta to Th of the secondary batteries 20a to 20h transmitted from the CMUs 221A and 221B.
  • the temperature acquisition unit 26 notifies the charging rate estimation unit 27 of information on the acquired temperatures Ta to Th.
  • the timing at which the voltage value acquisition unit 25 acquires the inter-terminal voltage values Va to Vh and the timing at which the temperature acquisition unit 26 acquires the temperatures Ta to Th depend on factors such as characteristics of the work vehicle 100 and driving conditions.
  • the timing for acquiring each voltage value and temperature may be set every 500 msec, or the current value acquisition unit 23 keeps the current values Ia and Ib below a predetermined value and continues for a predetermined time.
  • the timing for acquiring each voltage value and temperature may be the time when the voltage value acquisition unit 25 and the temperature acquisition unit 26 receive information from the current value acquisition unit 23, respectively.
  • the charge rate estimation unit 27 receives information indicating that the current values Ia and Ib are continuously acquired for a predetermined time or less from the current value acquisition unit 23
  • the voltage value acquisition unit 25 acquires Using the voltage values Va to Vh and the temperatures Ta to Th acquired by the temperature acquisition unit 26, the correlation between the voltage value between the terminals of the secondary battery, the temperature, and the charging rate stored in the table storage unit 31 in advance is calculated.
  • the charging rates ESOC [a] to ESOC [h] of the secondary batteries 20a to 20h are estimated.
  • the charging rate estimation unit 27 further estimates a second charging rate ESOC that is a charging rate of the assembled battery 21 from the estimated charging rates ESOC [a] to ESOC [h] of the respective secondary batteries 20a to 20h. If all the secondary batteries 20a to 20h have the same characteristics, the table may be stored in advance in the table storage unit 31. If at least one secondary battery has different characteristics from other secondary batteries, the table may be stored in the table storage unit 31 in advance for the number of the different characteristics.
  • the charging rate of the secondary battery 20 has a correlation with the terminal voltage (open voltage OCV) of the secondary battery 20 when there is no load (the current value of the secondary battery is approximately 0 A). Therefore, if the open circuit voltage OCV of the secondary battery 20 can be confirmed, the charging rate of the secondary battery 20 can be estimated. Even when the load is not stopped and the current value of the secondary battery 20 is not approximately 0 A as in the work vehicle 100 of the present embodiment, the current value of the secondary battery 20 is less than or equal to a predetermined value and If it is the voltage between the terminals of the secondary battery 20 when it continues for a predetermined time, the charging rate approximated to the actual charging rate can be estimated while maintaining a certain accuracy.
  • the usage range of the charging rate when the secondary battery 20 is repeatedly charged and discharged is a certain range (for example, 60% to 70%), and the charging rate of the secondary battery 20 is When it falls within the allowable use range (for example, 10% to 90%), there is a margin (20%) between the upper limit of the use range (70%) and the upper limit of the use allowable range (90%). Since there is a margin (50%) between the lower limit (60%) of the use range and the lower limit (10%) of the allowable use range, the method of estimating the charging rate while maintaining the above-described certain accuracy is sufficiently useful.
  • the allowable use range for example, 10% to 90%
  • the allowable use range is a use range of a desirable charge rate that can efficiently use the secondary battery 20 and extend the life, and when the charge rate is out of this use range, the secondary battery 20 It is the range where charging / discharging of is restricted. Note that the allowable use range can be changed as appropriate according to the type of the secondary battery 20, and the range may be, for example, 0% to 100%.
  • the method of estimating the second charging rate ESOC in the charging rate estimating unit 27 is, for example, deriving the maximum charging rate SOC [max] and the minimum charging rate SOC [min] from the charging rates ESOC [a] to ESOC [h]. Then, the intermediate value can be calculated using the following formula (1), and the calculated intermediate value can be estimated as the second charging rate ESOC.
  • the second charging rate ESOC estimation method using the above formula (1) is merely an example, and other estimation methods may be used.
  • the charging rate ESOC is simply used.
  • An average value of [a] to ESOC [h] may be calculated, and the calculated average value may be estimated as the second charging rate ESOC.
  • the determination unit 28 is determined from the inter-terminal voltage values Va to Vh acquired by the voltage value acquisition unit 25 when the absolute value of the difference between the first charging rate ASOC and the second charging rate ESOC is equal to or greater than the correction target value XD1. It is determined whether the difference between the representative voltage value Vr and the inter-terminal voltage value V ASOC corresponding to the first charging rate ASOC estimated from the correlation is due to the internal resistance value of the secondary battery 20. . Specifically, the determination unit 28 calculates the voltage drop value Vdr due to the internal resistance value of the secondary battery 20, and the difference between the representative voltage value Vr and the inter-terminal voltage value V ASOC is the calculated voltage drop value Vdr. Determine if greater than.
  • the charging rate calculation unit 24 calculates the first charging rate ASOC by integrating the current values Ia and Ib that may include errors, the first charging rate ASOC can be significantly different from the actual charging rate. . Therefore, it is necessary to correct the first charging rate ASOC based on the second charging rate ESOC that approximates the actual charging rate.
  • the inter-terminal voltage value acquired to estimate the second charging rate ESOC can be the inter-terminal voltage value when the load is being driven, depending on the current value of the secondary battery required by the load The voltage drop value due to the internal resistance of the secondary battery may be greatly affected. As a result, depending on the timing at which the inter-terminal voltage value is measured, the second charging rate estimated from the inter-terminal voltage value may not be accurate.
  • the determination unit 28 calculates the voltage drop value Vdr due to the internal resistance value of the secondary battery 20 and corrects the first charging rate ASOC based on the appropriate second charging rate ESOC. It is determined whether or not the charging rate is close to the actual charging rate.
  • the correction target value XD1 is a value that serves as an index when correcting the first charging rate ASOC based on the second charging rate ESOC.
  • the usage range of the charging rate of the secondary battery 20 in the battery system 1 and It can be determined in consideration of the allowable use range. This is because there is a possibility that the first charging rate ASOC may show a value greatly different from the actual charging rate due to an error, and when the value exceeds the allowable use range, the work vehicle 100 restricts charging / discharging of the secondary battery 20. It is because there is a possibility of doing.
  • the allowable use range is 10% to 90%, and the use range is 60% to 70%
  • ASOC ⁇ TrSOC
  • FIG. As shown, even if the first charging rate ASOC including an error is equal to or lower than the upper limit (70%) of the usage range, the first charging rate TrSOC exceeds the upper limit (90%) of the allowable usage range. If the charging rate ASOC is used for each control, various control results are adversely affected. Therefore, considering that the difference between the upper limit (90%) of the allowable use range and the upper limit (70%) of the use range is 20%, the correction target value XD1 is set to 20%. On the other hand, when ASOC> TrSOC, as shown in FIG.
  • the actual charging rate TrSOC is lower than the lower limit of the allowable usage range (60%).
  • the correction target value XD1 is set to 20% so as not to fall below 10%). Accordingly, the first charging rate ASOC is at least 40%, which is 20% lower than the lower limit (60%) of the use range, and is corrected based on the second charging rate ESOC, so that no particular problem occurs.
  • the correction target value may be set separately for (1) ASOC ⁇ TrSOC and (2) ASOC> TrSOC. For example, the allowable use range is 10% to 90%.
  • the correction target value XD1 when ASOC ⁇ TrSOC is set to 20% and (2) the correction target value XD2 when ASOC> TrSOC is set to 30%. May be. Further, as described above, the correction target value XD1 does not set a difference (20%) between the upper limit (90%) of the allowable use range and the upper limit (70%) of the use range, but a margin width ⁇ (for example, 5%) may be added as appropriate and set to 15%.
  • the voltage drop value Vdr is calculated by using the representative temperature Tr determined by the temperatures Ta to Th acquired by the temperature acquisition unit 26 and the second charging rate ESOC estimated by the charging rate estimation unit 27.
  • the table as shown in FIG. 6A and FIG. 6B showing the relationship between the internal resistance value, temperature, and charging rate of the secondary battery stored in the table storage unit 31 in advance, the secondary battery 20
  • the internal resistance value Rin is estimated, and the estimated internal resistance value Rin is multiplied by the current value Ia or Ib acquired by the current value acquisition unit 23 to calculate the voltage drop value Vdr.
  • FIG. 6A is an example of a table showing the relationship between the internal resistance value, temperature, and charging rate when the secondary battery 20 is discharged
  • FIG. 6B shows the internal resistance value, temperature, and charging when the secondary battery 20 is charged. It is an example of the table which shows the relationship with a rate.
  • the representative temperature Tr is the temperature Ta ⁇ that is acquired by the temperature acquisition unit 26 in order to estimate the internal resistance value Rin of the secondary battery 20 when the assembled battery 21 includes a plurality of secondary batteries 20a ⁇ 20h.
  • the temperature is determined by Th.
  • the representative temperature Tr is similarly set between the temperatures Ta to Th. Of these, it can be determined as an intermediate value between the maximum temperature T [max] and the minimum temperature T [min].
  • the representative temperature Tr can be determined by another method in accordance with the second charging rate ESOC estimation method, and may be determined as an average value of the temperatures Ta to Th, for example. Further, when there is one secondary battery 20 in the battery device 2, the temperature becomes the representative temperature Tr.
  • the determination unit 28 is determined by the inter-terminal voltage values Va to Vh acquired by the voltage value acquisition unit 25 when the absolute value of the difference between the first charging rate ASOC and the second charging rate ESOC is equal to or greater than the correction target value XD1. Whether or not the absolute value of the difference between the representative voltage value Vr and the inter-terminal voltage value V ASOC corresponding to the first charging rate ASOC estimated from the table shown in FIG. 4 is at least greater than the voltage drop value Vdr. Whether or not the following formula (2) is satisfied is determined.
  • ⁇ in the following formula (2) for example, ⁇ ⁇ 1, is a coefficient, and can be set as appropriate in consideration of an increase in internal resistance due to future deterioration of the secondary battery 20.
  • the representative voltage value Vr is a voltage value acquisition for comparison with the inter-terminal voltage value V ASOC corresponding to the first charging rate ASOC when the assembled battery 21 includes a plurality of secondary batteries 20a to 20h.
  • This is a voltage value determined by the inter-terminal voltage values Va to Vh acquired by the unit 25.
  • the representative voltage value Vr is similarly the inter-terminal voltage value.
  • An intermediate value between the maximum inter-terminal voltage value V [max] and the minimum inter-terminal voltage value V [min] among Va to Vh can be determined as the representative voltage value Vr.
  • the representative voltage value Vr can be determined by other methods according to the estimation method of the second charging rate ESOC and the like, for example, may be determined as an average value of the inter-terminal voltage values Va to Vh. Further, when there is one secondary battery 20 in the battery device 2, the voltage value between the terminals becomes the representative voltage value Vr.
  • the correction unit 29 determines the first charging rate ASOC as the second charging rate. Correct based on ESOC. That is, the correction unit 29 rewrites the first charging rate ASOC stored as the charging rate SOC in the charging rate storage unit 30 with the second charging rate ESOC.
  • the determination unit 29 also includes the current values Ia and / or Ib acquired by the current value acquisition unit 23 for a certain period including the time when the voltage value acquisition unit 25 acquires the inter-terminal voltage values Va to Vh of the secondary battery 20. It is also possible to determine whether or not the current fluctuation is within the predetermined range IP , that is, whether or not the following equation (3) is satisfied.
  • the correction unit 29 determines the first charging rate. The ASOC may be corrected based on the second charging rate ESOC.
  • I (t) is a current value acquired at the time t when the inter-terminal voltage values Va to Vh are acquired, and I (t ⁇ 1) is immediately before the time t (for example, The current value acquired before 100 msec), and I (t + 1) is the current value acquired immediately after t (for example, after 100 msec) (the same applies to equation (4) described later).
  • the predetermined range I P for example, the correction target range XD1, the voltage drop value of the secondary battery 20 Vdr, CMU221A, be determined in consideration of factors such as the synchronization deviation between 221B and BMU222 Can do.
  • the correction target range XD1 is set to 20%
  • the charging rate allowable error due to voltage drop is 10%
  • the charging rate allowable error due to synchronization shift is 5%
  • the minutes can be 5%.
  • the temperature is 5 degrees, referring to the table shown in FIG. A voltage value is obtained, and an internal resistance value corresponding to the inter-terminal voltage value is obtained with reference to the tables shown in FIGS. 6A and 6B.
  • the method for determining the predetermined range I P described above is an example, it may be determined a predetermined range I P suitable current fluctuation by repeating experiments.
  • the determining unit 28 and the correction unit 29, the fixed period, the current variation of the current value the current value acquiring unit 23 acquires is equal to or within a predetermined range I P, in accordance with the result, the The functional process of correcting the one charging rate ASOC based on the second charging rate ESOC depends on the usage situation in which the power required by the power load (the current value of the secondary battery) varies greatly in the battery system 1. Although particularly useful, it may be omitted.
  • the determination unit 28 further includes either the charged state or the discharged state of the secondary battery 20 for a certain period including the time when the voltage value acquiring unit 25 acquires the inter-terminal voltage values Va to Vh of the secondary battery 20. It is also possible to determine whether or not the state is satisfied (that is, whether or not the following expression (4) is satisfied).
  • the correcting unit 29 converts the first charging rate ASOC to the second charging rate ESOC. You may correct
  • the correction unit 29 Corrects the first charging rate ASOC based on the second charging rate ESOC.
  • the processing of the correction unit 29 has the following useful effects. That is, it is possible to avoid the possibility that the accurate voltage drop value Vdr at the time of reversal of the charging / discharging current of the secondary battery 20 due to factors such as a synchronization shift between the CMUs 221A, 221B and the BMU 222 cannot be calculated.
  • amendment part 29 it is determined whether it is in any one state of the charge state or the discharge state of the secondary battery 20 for the said fixed period, According to the result, 1st charge rate
  • the functional process of correcting the ASOC based on the second charging rate ESOC may be omitted.
  • the host controller 3 controls the power load 4 such as a motor mounted on the work vehicle 100, and receives information on the charge rate SOC of the assembled battery 21 from the charge rate storage unit 30 of the BMU 222 to charge the battery.
  • Various controls such as setting an allowable current value according to the rate and limiting the current value requested by the power load 4 to the battery device 2 are performed.
  • FIGS. 8 and 9 the setting process of the charging rate of the battery system 1 of the present embodiment performed using the BMU 222 will be described. Note that the processes shown in the flowcharts of FIGS. 8 and 9 can be executed in any order or in parallel as long as the process contents do not contradict each other.
  • the battery system 1 is assumed to use the one shown in FIG. 2, and the table storage unit 31 is assumed to store the table shown in FIG. 4 and the tables shown in FIGS. 6A and 6B in advance.
  • the current value acquisition unit 23 acquires information on the current values Ia and Ib of the charge / discharge currents flowing through the secondary batteries 20a to 20h in the battery device 2 from the current sensors IA and IB over time (step S100).
  • the timing for acquiring the information on the current values Ia and Ib is, for example, every fixed time interval (100 msec).
  • the charging rate calculation unit 24 integrates the current values Ia and Ib acquired by the current value acquisition unit 23, and calculates the first charging rate ASOC of the assembled battery 21 based on the integrated value (step S101).
  • the first charging rate ASOC can be calculated by adding (or subtracting) the charging rate variation to the initial charging rate, using the value stored as the charging rate SOC in the charging rate storage unit 30 as the initial charging rate.
  • the calculated first charging rate ASOC is overwritten in the charging rate storage unit 30 as the charging rate SOC.
  • Information stored as the charging rate SOC in the charging rate storage unit 30 can be transmitted to and received from the host control device 3.
  • the initial charging rate can use the charging rate preserve
  • the current value acquisition unit 23 determines whether or not the total of the acquired current values Ia and Ib is equal to or greater than a predetermined value (step S102). If the sum of the current values Ia and Ib is not less than or equal to the predetermined value (step S102: No), the process returns to step S100.
  • the predetermined value can be appropriately set in consideration of the capacity of the assembled battery 21 and the output required by the power load 4, but is set to 100A, for example.
  • step S102 when the sum of the current values Ia and Ib is equal to or less than the predetermined value (step S102: Yes), the current value acquisition unit 23 turns on the timer (step S103) and sets the current value at the predetermined time interval. Is acquired again (step S104).
  • the charging rate calculation unit 24 integrates the current values Ia and Ib acquired by the current value acquisition unit 23 as in the process of step S101, and the first charging rate of the assembled battery 21 based on the integrated value. ASOC is calculated (step S105). The charging rate calculation unit 24 overwrites the charging rate storage unit 30 again with the first charging rate ASOC calculated in this step as the charging rate SOC.
  • the current value acquisition unit 23 determines again whether or not the current values Ia and Ib acquired in the process of step S104 are equal to or less than the predetermined value (step S106). When it is not less than the predetermined value (step S106: No), the current value acquisition unit 23 resets the timer (step S107) and returns to the process of step S100.
  • step S106 determines whether or not a predetermined time has elapsed. If it is determined that the predetermined time has not elapsed (step S108: No), the process proceeds to step S104.
  • this fixed time can be suitably set in consideration of the capacity of the assembled battery 21, the magnitude of the output power required by the power load 4, etc., for example, it is set to 10 sec.
  • step S108 when the current value acquisition unit 23 determines that a certain time has elapsed (step S108: Yes), the voltage value acquisition unit 25 and the temperature acquisition unit 26 are notified of this, and the voltage value acquisition is performed.
  • the unit 25 and the temperature acquisition unit 26 acquire information on the inter-terminal voltage values Va to Vh and the temperatures Ta to Th from the CMUs 221A and 221B as measurement information (step S109).
  • the voltage value acquisition unit 25 and the temperature acquisition unit 26 are not limited to the case where the notification from the current value acquisition unit 23 is received, and the information on the terminal voltage values Va to Vh and the temperatures Ta to Th are stored in the CMU 221A, You may make it acquire from 221B every predetermined time (for example, every 500 msec).
  • the charging rate estimation unit 27 estimates the second charging rate ESOC of the assembled battery 21 based on the acquired measurement information (step S110). Specifically, the charging rate estimation unit 27 uses the information on the acquired inter-terminal voltage values Va to Vh and the temperatures Ta to Th, and prepares the voltage value, the temperature, and the charging voltage of the secondary battery prepared in advance. Referring to the table as shown in FIG. 4 showing the correlation with the rate, the respective charging rates ESOC [a] to ESOC [h] of the secondary batteries 20a to 20h are estimated, and the above formula (1 ) To estimate the second charging rate ESOC.
  • step S109 the voltage value acquisition unit 25 and the temperature acquisition unit 26 acquire the information on the inter-terminal voltage values Va to Vh and the temperatures Ta to Th from the CMUs 221A and 221B every predetermined time.
  • the charging rate estimation unit 27 uses the assembled battery 21 based on the information on the inter-terminal voltage values Va to Vh and the temperatures Ta to Th before the timing at which the current value acquisition unit 23 acquires the current values Ia and Ib.
  • the second charging rate ESOC may be estimated.
  • the information on the current values Ia and Ib is directly notified to the BMU 222 from the current sensors IA and IB, while the information on the voltage values Va to Vh and the temperatures Ta to Th is detected by the voltage sensors VA to VH and The BMU 222 is notified from the temperature sensors TA to TH via the CMUs 221A and 221B. Therefore, there is a time lag for the BMU 222 to receive the information on the current values Ia and Ib and the information on the voltage values Va to Vh between the terminals and the temperatures Ta to Th, and the information on the current values Ia and Ib. It is conceivable that the terminal voltage values Va to Vh and the temperatures Ta to Th are not synchronized with each other.
  • the voltage value acquisition unit 25 and the temperature acquisition unit 26 consider the amount of synchronization, and the inter-terminal voltage values Va to Vh and the temperatures Ta to Th a predetermined time before acquiring the current values Ia and Ib.
  • the first charge rate ASOC based on the current value and the second charge rate ESOC based on the voltage value between the terminals in the process of step S111 described later by acquiring each information of CMU 221A and 221B, It is possible to remove in advance the amount of synchronization deviation.
  • the determination unit 28 determines the inter-terminal voltage values Va to Vh acquired by the voltage value acquisition unit 25 when the absolute value of the difference between the first charging rate ASOC and the second charging rate ESOC is equal to or greater than the correction target value XD1.
  • the difference between the representative voltage value Vr determined by the value and the inter-terminal voltage value V ASOC according to the first charging rate ASOC estimated by the table indicating the correlation stored in the table storage unit 31 is the secondary battery. It is determined whether or not it is due to the voltage drop value of the internal resistance value of 20 (step S111).
  • the determination unit 28 determines whether or not a value obtained by subtracting the second charging rate ESOC from the first charging rate ASOC is equal to or greater than the correction target value XD1 (step S200).
  • step S200 when it is determined that the correction target value is XD1 or more (step S200: Yes), the determination unit 28 calculates a voltage drop value Vdr due to the internal resistance value of the secondary battery 20 (step S201). On the other hand, when it determines with it not being more than correction object value XD1 (step S200: No), it transfers to the process of step S206.
  • the determination unit 29 uses the above equation (1) to calculate the voltage value acquisition unit 25 from the inter-terminal voltage value V ASOC corresponding to the first charging rate ASOC estimated from the table shown in FIG. It is determined whether or not a value (V ASOC ⁇ Vr) obtained by subtracting the representative voltage value Vr determined from the acquired inter-terminal voltage values Va to Vh is larger than the voltage drop value Vdr (step S202).
  • step S202 when it is determined that V ASOC ⁇ Vr is greater than the voltage drop value Vdr (step S202: Yes), the determination unit 28 uses the above equation (4) to determine that the voltage value acquisition unit 25 is a secondary It is determined whether or not the secondary battery 20 is in a charged state or a discharged state for a certain period including the time point when the inter-terminal voltage values Va to Vh of the battery 20 are acquired (step S203). On the other hand, when it is determined that V ASOC ⁇ Vr is equal to or lower than the voltage drop value Vdr (step S202: No), the process proceeds to step S100.
  • step S203 when it determines with it being in any one state of a charge state or a discharge state (step S203: Yes), the determination part 28 is the voltage value acquisition part 25 using said Formula (3). certain period including the time when acquiring the voltage value Va ⁇ Vh between the terminals of the rechargeable battery 20, the current value Ia of the current value acquisition unit 23 acquires a current variation of Ib is whether it is within the predetermined range I P Determination is made (step S204). On the other hand, when it determines with it not being in any one state of a charge state or a discharge state (step S203: No), it transfers to the process of step S100.
  • step S204 the current value Ia of the current value acquisition unit 23 acquires, if the current variation of Ib is determined to be within the predetermined range I P (step S204: Yes), the determination unit 28, a first charging rate The ASOC is corrected based on the second charging rate ESOC (step S205).
  • the routine to proceed to step S100 if the current variation Ia of the current value the current value acquiring unit 23 acquires, Ib is determined not to be within the predetermined range I P (step S204: No), the routine to proceed to step S100.
  • step S205 the process returns to the flowchart shown in FIG. 8 and proceeds to step S112.
  • step S200 when it is determined in the process of step S200 that the correction target value XD1 is not equal to or greater than the correction target value XD1 (step S200: No), the determination unit 28 subtracts the first charging rate ASOC from the second charging rate ESOC. It is determined whether or not it is greater than or equal to XD1 (step S206).
  • step S206 when it is determined that the correction target value is XD1 or more (step S206: Yes), the determination unit 28 calculates a voltage drop value Vdr due to the internal resistance value of the secondary battery 20 (step S207).
  • the determination unit 28 sets the first charging rate ASOC estimated by the table shown in FIG. 4 from the representative voltage value Vr determined from the inter-terminal voltage values Va to Vh acquired by the voltage value acquisition unit 25. depending inter-terminal voltage value V (ASOC) value obtained by subtracting (Vr-V ASOC) determines whether is greater than the voltage drop value Vdr (step S208).
  • step S208 If it is determined in step S208 that Vr ⁇ V ASOC is greater than the voltage drop value Vdr (step S208: Yes), the process proceeds to step S203. On the other hand, when it is determined that Vr ⁇ V ASOC is equal to or lower than the voltage drop value Vdr (step S208: No), the process proceeds to step S100.
  • step S206 If it is determined in step S206 that the correction target value is not equal to or greater than XD1 (step S206: No), the timer is reset (step S209), and the process proceeds to step S100.
  • the correction unit 29 corrects the first charge rate ASOC based on the second charge rate ESOC. That is, the correction unit 29 rewrites the first charging rate ASOC stored as the charging rate SOC in the charging rate storage unit 30 with the second charging rate ESOC, and sets the second charging rate ESOC to the initial charging rate in step S101.
  • the charging rate setting processing operation is executed in the BMS 222 of the battery system 1 of the present embodiment.
  • the first charge rate calculated by integrating the current value of the charge / discharge current of the secondary battery is determined as the secondary charge rate.
  • the voltage drop value due to the internal resistance of the secondary battery is calculated, and the accuracy of the estimated second charging rate is taken into consideration by the calculated voltage drop value, so that the appropriate The first charging rate can be corrected with the second charging rate, and a charging rate with less error can be reliably used in various controls of the control device.
  • the determination unit 28 determines whether or not the absolute value of the difference between the first charging rate ASOC and the second charging rate ESOC is equal to or greater than the correction target value XD1.
  • the absolute value of the difference is equal to or greater than the correction target value XD1
  • the voltage drop value Vdr due to the internal resistance value of the secondary battery 20 is calculated, but the present invention is not limited to this.
  • the determination unit 28 sets the minimum allowable temperature according to the internal resistance value of the secondary battery.
  • the correction unit 29 determines the representative temperature Tr as a result of the determination by the determination unit 28. May be corrected based on the second charging rate ESOC when the temperature is equal to or higher than the minimum allowable temperature.
  • the usage range of the charging rate is 60% to 70%, which is within the correction target range XD1.
  • the internal resistance value is 1.2 m ⁇
  • the correction unit 29 determines that the representative temperature Tr is equal to or higher than the minimum allowable temperature
  • the first charging rate ASOC is changed to the second charging rate ESOC. Correct based on.
  • the setting of the minimum allowable temperature in the setting unit 28 can be appropriately input and set by the user in consideration of, for example, the usage environment of the battery system.
  • the case where it applied to a working vehicle was demonstrated as an example as the battery system 1 of the said embodiment, this invention is not limited to this,
  • the electric power charged by the battery apparatus 2 with respect to a load is variously supplied.
  • vehicles such as electric cars and electric buses, systems for moving bodies used in airplanes and ships, or power storage systems for home use, natural energy generation such as windmills and sunlight.
  • stationary systems such as a grid interconnection smoothing power storage system combined with the above.
  • the case where the battery management device 22 acquires all the inter-terminal voltages Va to Vh and the temperatures Ta to Th of the secondary batteries 20a to 20h has been described as an example.
  • the invention is not limited to this.
  • a secondary battery that acquires the voltage and temperature between terminals may be selected for each arm, and the second charging rate ESOC may be estimated from these.
  • the number of various measurement sensors (voltage sensors, temperature sensors) can be reduced. Cost can also be suppressed.
  • the case where the BMS 22 and the host control device 3 are separately provided has been described as an example. However, in this case, each process of the BMS 22 and the host control device 3 is performed by one control device. You may make it perform.
  • the charging rate estimation unit 27 uses the inter-terminal voltage values Va to Vh acquired by the voltage value acquisition unit 25 and the temperatures Ta to Th acquired by the temperature acquisition unit 26.
  • the second charging rate ESOC has been estimated, but the present invention is not limited to this.
  • the voltage value acquisition unit 25 in a situation where the temperature can be controlled so that the temperature is constant in the battery system 1, the voltage value acquisition unit 25.
  • the second charging rate ESOC may be estimated from only the inter-terminal voltage values Va to Vh acquired by the above. In this case, it is only necessary to prepare a table representing the relationship between the voltage value between terminals at a certain constant temperature and the charging rate.
  • the representative temperature Tr determined by the temperatures Ta to Th acquired by the temperature acquisition unit 26 and the second charging rate ESOC estimated by the charging rate estimation unit 27 are calculated.
  • the present invention is not limited to this, and for example, in a situation where temperature management can be performed so that the temperature is constant in the battery system 1, the charging rate estimation is performed.
  • the voltage drop value Vdr may be calculated only from the second charging rate ESOC estimated by the unit 27. In this case, it is only necessary to prepare a table representing the relationship between the internal resistance value at a certain temperature and the charging rate.
  • the internal resistance value Rin of the secondary battery 20 is used by using a table that shows the relationship between the internal resistance value and the charging rate of the secondary battery 20 prepared in advance.
  • the voltage drop value Rin is calculated by multiplying the estimated internal resistance value Rin and the current values Ia and Ib acquired by the current value acquisition unit 23, but the present invention is not limited to this.
  • the voltage drop value may be calculated based on the inter-terminal voltage values Va to Vh of the secondary battery 20 and the current values Ia and Ib acquired by the current value acquisition unit 23.
  • the BMU 222 is provided with various parts according to the application, but some of the parts provided in the BMU 222 may be configured together. One part may be further divided into a plurality of parts.
  • the battery system according to the present invention it is possible to appropriately correct the charging rate of the secondary battery even with respect to a load with few drive stops.

Abstract

A battery system according to the present invention has an acquisition unit for acquiring the current value of the charging and discharging of a secondary battery, a calculation unit for calculating a first state of charge of the secondary battery, an acquisition unit for acquiring the voltage across the terminals of the secondary battery, an estimation unit for estimating a second state of charge of the secondary battery, a determination unit that determines whether the difference between a representative voltage value derived from the acquired voltage value across the terminals and the voltage value across the terminals commensurate with the first state of charge is attributable to the internal resistance value of the secondary battery, and a correction unit for correcting the first state of charge on the basis of the second state of charge when the difference between the representative voltage value and the voltage value across the terminals is not attributable to the internal resistance value.

Description

電池システムBattery system
 本発明は、電池システムに関し、特に、二次電池の充電率を求める電池システムに関する。 The present invention relates to a battery system, and more particularly to a battery system for obtaining a charging rate of a secondary battery.
 従来より、自動車、産業車両、建機などの車両において、モータなどの負荷を駆動する駆動源として充放電可能な二次電池、及び該二次電池を監視・制御する制御装置とで構成される電池システムが利用されている。電池システムにおいて、制御装置は、例えば、二次電池の充電率(SOC:State Of Charge)を算出し、該算出した充電率に応じた許容電流値を設定して、負荷に対して供給可能な二次電池の電流値を制限するといった各種制御を行っている。 2. Description of the Related Art Conventionally, in vehicles such as automobiles, industrial vehicles, and construction machinery, a secondary battery that can be charged and discharged as a drive source for driving a load such as a motor, and a control device that monitors and controls the secondary battery A battery system is used. In the battery system, for example, the control device can calculate the charge rate (SOC: State Of Charge) of the secondary battery, set an allowable current value according to the calculated charge rate, and supply the load to the load. Various controls such as limiting the current value of the secondary battery are performed.
 ここで、二次電池の充電率を求める方法の一つとして、二次電池の充放電電流の積算値に基づいて算出する方法が一般的に知られている。ところが、この方法では、充放電電流を積算して充電率を求めていくため、電池温度などの要因によって誤差が生じてしまっていた。その結果、制御装置による各種制御結果に悪影響を及ぼしていた。 Here, as one of methods for obtaining the charging rate of the secondary battery, a method of calculating based on the integrated value of the charge / discharge current of the secondary battery is generally known. However, in this method, since the charging rate is obtained by integrating the charging / discharging current, an error has occurred due to factors such as battery temperature. As a result, various control results by the control device are adversely affected.
 そこで、特許文献1には、充放電電流の積算値による充電率を補正する方法として、二次電池の充放電状態が反転した時(放電状態から充電状態に反転する時、又は、充電状態から放電状態に反転する時)に、二次電池の端子間電圧(開放電圧)を計測し、該端子間電圧に基づいた充電率を推定して上記充放電電流の積算値による充電率を補正する方法が開示されている。 Therefore, in Patent Document 1, as a method of correcting the charging rate based on the integrated value of the charging / discharging current, when the charging / discharging state of the secondary battery is reversed (when the charging state is reversed from the discharging state or from the charging state) When reversing to the discharging state), the voltage between the terminals of the secondary battery (open voltage) is measured, the charging rate based on the voltage between the terminals is estimated, and the charging rate based on the integrated value of the charging / discharging current is corrected. A method is disclosed.
特開平11-206028号公報Japanese Patent Laid-Open No. 11-206028
 しかしながら、上記特許文献1に記載の技術では、二次電池の充放電状態が反転した時に上記充放電電流の積算値による充電率を補正するものであるため、例えば、上記充放電状態の反転が少ない場合、二次電池の充電率を補正するタイミングがなかなか無く、誤差が積み上げられた充電率を制御装置の各制御で使用することになり、制御装置による各種制御結果に悪影響を及ぼしてしまうという問題点を依然として有していた。 However, in the technique described in Patent Document 1, since the charge rate based on the integrated value of the charge / discharge current is corrected when the charge / discharge state of the secondary battery is reversed, for example, the charge / discharge state is reversed. If the number is small, there is not enough time to correct the charging rate of the secondary battery, and the charging rate with accumulated errors will be used in each control of the control device, which will adversely affect various control results by the control device. Still had problems.
 したがって、本発明は上記問題点に鑑み、二次電池の充放電状態の反転が少ない場合であっても、二次電池の充電率を適切に補正することができる簡易な新しい電池システムを提供することを目的とする。 Therefore, in view of the above problems, the present invention provides a simple new battery system capable of appropriately correcting the charging rate of the secondary battery even when the reversal of the charge / discharge state of the secondary battery is small. For the purpose.
 本発明の一態様の電池システムは、二次電池の充放電電流の電流値を経時的に取得する電流値取得部と、前記電流値取得部が取得した前記電流値を積算し、該積算した積算値に基づいて前記二次電池の第一充電率を算出する充電率算出部と、前記二次電池の端子間電圧値を取得する電圧値取得部と、前記電流値取得部が前記電流値を所定値以下で且つ所定時間継続して取得した場合、前記電圧値取得部が取得した前記端子間電圧値を用いて、前記二次電池の端子間電圧値と充電率との相関関係に基づいて、前記二次電池の第二充電率を推定する充電率推定部と、前記第一充電率と前記第二充電率との差分の絶対値が補正対象値以上である場合に、前記電圧値取得部が取得した前記端子間電圧値より決定される代表電圧値と前記相関関係により推定される第一充電率に応じた端子間電圧値との差分が、前記二次電池の内部抵抗値に起因しているか否かを判定する判定部と、前記判定部が判定した結果、前記代表電圧値と前記第一充電率に応じた端子間電圧値との差分が、前記内部抵抗値に起因していない場合に、前記第一充電率を前記第二充電率に基づいて補正する補正部と、を有する。 The battery system of one aspect of the present invention integrates the current value acquired by the current value acquisition unit that acquires the current value of the charge / discharge current of the secondary battery over time and the current value acquired by the current value acquisition unit. A charging rate calculation unit that calculates a first charging rate of the secondary battery based on an integrated value, a voltage value acquisition unit that acquires a voltage value between terminals of the secondary battery, and the current value acquisition unit includes the current value Is obtained at a predetermined value or less and continuously for a predetermined time, using the inter-terminal voltage value acquired by the voltage value acquisition unit, based on the correlation between the inter-terminal voltage value of the secondary battery and the charging rate. The voltage value when the absolute value of the difference between the charge rate estimation unit for estimating the second charge rate of the secondary battery and the first charge rate and the second charge rate is equal to or greater than a correction target value. Based on the representative voltage value determined from the inter-terminal voltage value acquired by the acquisition unit and the correlation. A determination unit that determines whether or not the difference between the inter-terminal voltage value according to the estimated first charging rate is due to the internal resistance value of the secondary battery, and the determination unit determines the result, Correction for correcting the first charging rate based on the second charging rate when the difference between the representative voltage value and the voltage value between the terminals according to the first charging rate is not caused by the internal resistance value Part.
 かかる電池システムによれば、電流値が所定値以下で且つ所定時間継続した場合に、二次電池の充放電電流の電流値を積算して算出する第一充電率を、二次電池の端子間電圧値で推定する第二充電率に基づいて補正することによって、誤差の少ない充電率を制御装置の各種制御で使用でき、その制御結果に与える影響を抑制することができる。 According to such a battery system, when the current value is equal to or less than a predetermined value and continues for a predetermined time, the first charging rate calculated by integrating the current value of the charge / discharge current of the secondary battery is calculated between the terminals of the secondary battery. By correcting based on the second charging rate estimated by the voltage value, a charging rate with less error can be used in various controls of the control device, and the influence on the control result can be suppressed.
 ここで、第二充電率を推定するために取得する端子間電圧値は、負荷が駆動中のときの端子間電圧値であり得るため、その負荷が必要とする二次電池の電流値によっては、二次電池の内部抵抗による電圧降下値も大きく影響を受けることがある。その結果、端子間電圧値を測定するタイミングによっては、端子間電圧値が大きく異なり、その端子間電圧値によって推定した第二充電率も正確ではない可能性がある。それにもかかわらず、この第二充電率に基づいて第一充電率を補正してしまうと、第一充電率よりも実際の充電率と乖離した第二充電率を制御装置の各種制御に使用してしまうおそれもある。 Here, the inter-terminal voltage value acquired for estimating the second charging rate can be the inter-terminal voltage value when the load is being driven, so depending on the current value of the secondary battery required by the load The voltage drop value due to the internal resistance of the secondary battery may be greatly affected. As a result, depending on the timing at which the inter-terminal voltage value is measured, the inter-terminal voltage value varies greatly, and the second charging rate estimated by the inter-terminal voltage value may not be accurate. Nevertheless, if the first charging rate is corrected based on this second charging rate, the second charging rate that deviates from the actual charging rate rather than the first charging rate is used for various controls of the control device. There is also a risk.
 しかし、本発明の一態様の電池システムによれば、二次電池の内部抵抗値に基づいて上記推定した第二充電率の正確さを考慮することで、適切な第二充電率で第一充電率を補正することができ、誤差の少ない充電率を制御装置の各種制御で確実に使用することができる。 However, according to the battery system of one aspect of the present invention, the first charge can be performed at an appropriate second charge rate by considering the accuracy of the second charge rate estimated based on the internal resistance value of the secondary battery. The rate can be corrected, and the charging rate with less error can be reliably used in various controls of the control device.
 本発明の一態様の電池システムは、前記判定部は、前記第一充電率と前記第二充電率との差分の絶対値が補正対象値以上である場合に、前記二次電池の内部抵抗値による電圧降下値を算出し、前記電圧値取得部が取得した前記端子間電圧値より決定される代表電圧値と前記相関関係により推定される第一充電率に応じた端子間電圧値との差分の絶対値が、前記二次電池の内部抵抗値による電圧降下値より大きいか否かを判定し、前記補正部は、前記判定部が判定した結果、前記代表電圧値と前記第一充電率に応じた端子間電圧値との差分の絶対値が、前記電圧降下値より大きい場合に、前記第一充電率を前記第二充電率に基づいて補正してもよい。 In the battery system according to one aspect of the present invention, the determination unit has an internal resistance value of the secondary battery when an absolute value of a difference between the first charging rate and the second charging rate is equal to or greater than a correction target value. The difference between the representative voltage value determined from the inter-terminal voltage value acquired by the voltage value acquisition unit and the inter-terminal voltage value according to the first charging rate estimated by the correlation Is determined to be greater than a voltage drop value due to an internal resistance value of the secondary battery, and the correction unit determines the representative voltage value and the first charging rate as a result of the determination by the determination unit. When the absolute value of the difference from the corresponding inter-terminal voltage value is larger than the voltage drop value, the first charging rate may be corrected based on the second charging rate.
 本発明の一態様の電池システムは、前記判定部は、前記電圧値取得部が前記二次電池の端子間電圧値を取得した時点を含む一定期間、前記電流値取得部が取得する前記電流値の電流変動が所定範囲内であるか否かを判定し、前記補正部は、上記判定部が前記一定期間、前記電流値取得部が取得する前記電流値の電流変動が所定範囲内であると判定したとき、前記第一充電率を前記第二充電率に基づいて補正してもよい。 In the battery system according to an aspect of the present invention, the determination unit is configured to acquire the current value acquired by the current value acquisition unit for a certain period including a time point when the voltage value acquisition unit acquires a voltage value between terminals of the secondary battery. Whether the current fluctuation of the current value acquired by the current value acquisition unit is within the predetermined range for the certain period of time. When determined, the first charging rate may be corrected based on the second charging rate.
 本発明の一態様の電池システムは、前記判定部は、前記電圧値取得部が前記二次電池の端子間電圧値を取得した時点を含む一定期間、前記二次電池の充電状態又は放電状態のいずれか一方の状態であるか否かを更に判定し、前記補正部は、上記判定部が前記一定期間、前記二次電池の充電状態又は放電状態のいずれか一方の状態であると判定したとき、前記第一充電率を前記第二充電率に基づいて補正してもよい。 In the battery system of one embodiment of the present invention, the determination unit is configured to determine whether the secondary battery is in a charged state or a discharged state for a certain period including a time point when the voltage value acquiring unit acquires a voltage value between terminals of the secondary battery. It is further determined whether or not it is in one of the states, and the correction unit determines that the determination unit is in one of the charged state or the discharged state of the secondary battery for the certain period of time. The first charging rate may be corrected based on the second charging rate.
 本発明の一態様の電池システムは、前記二次電池の温度を取得する温度取得部を更に有し、前記判定部は、前記第一充電率と前記第二充電率との差分の絶対値が補正対象値以上である場合に、前記二次電池の内部抵抗値に応じた最低許容温度を設定し、前記温度取得部が取得した前記温度が前記最低許容温度以上であるか否かを判定し、前記補正部は、前記判定部が判定した結果、前記温度取得部が取得した前記温度が前記最低許容温度以上である場合に、前記第一充電率を前記第二充電率に基づいて補正してもよい。 The battery system according to an aspect of the present invention further includes a temperature acquisition unit that acquires the temperature of the secondary battery, and the determination unit has an absolute value of a difference between the first charging rate and the second charging rate. When the correction target value is equal to or higher than the correction target value, a minimum allowable temperature is set according to the internal resistance value of the secondary battery, and it is determined whether the temperature acquired by the temperature acquisition unit is equal to or higher than the minimum allowable temperature. The correction unit corrects the first charging rate based on the second charging rate when the temperature acquired by the temperature acquisition unit is equal to or higher than the minimum allowable temperature as a result of the determination by the determination unit. May be.
 以上のように構成された本発明の電池システムによれば、駆動停止が少ない負荷に対しても、二次電池の充電率を適切に補正することができる。 According to the battery system of the present invention configured as described above, it is possible to appropriately correct the charging rate of the secondary battery even for a load with few drive stops.
本実施形態の電池システムの概略的な構成図を示す。The schematic block diagram of the battery system of this embodiment is shown. 本実施形態の電池システムが適用されている作業車の概要を説明するための説明図を示す。An explanatory view for explaining an outline of a work vehicle to which a battery system of this embodiment is applied is shown. 本実施形態の電池システムにおいて、BMUの概略的な機能ブロックを示す。In the battery system of this embodiment, the schematic functional block of BMU is shown. 本実施形態の電池システムにおいて、二次電池の端子間電圧値と温度と充電率との関係を表すテーブルの一例を示す。In the battery system of this embodiment, an example of the table showing the relationship between the voltage value between terminals of a secondary battery, temperature, and a charging rate is shown. 本実施形態の電池システムにおいて、二次電池の充電率の使用範囲と、算出された第一充電率及び推定された第二充電率を例示的に示し、第一充電率ASOCが、実際の充電率TrSOCよりも小さいときを示す。In the battery system of the present embodiment, the usage range of the charging rate of the secondary battery, the calculated first charging rate and the estimated second charging rate are exemplarily shown, and the first charging rate ASOC is the actual charging. The time is smaller than the rate TrSOC. 本実施形態の電池システムにおいて、二次電池の充電率の使用範囲と、算出された第一充電率及び推定された第二充電率を例示的に示し、第一充電率ASOCが、実際の充電率TrSOCよりも大きいときを示す。In the battery system of the present embodiment, the usage range of the charging rate of the secondary battery, the calculated first charging rate and the estimated second charging rate are exemplarily shown, and the first charging rate ASOC is the actual charging. The time when it is larger than the rate TrSOC is shown. 本実施形態の電池システムにおいて、二次電池の内部抵抗値と温度と充電率との関係を表すテーブルの一例を示し、放電時の内部抵抗値の場合を示す。In the battery system of this embodiment, an example of the table showing the relationship between the internal resistance value of a secondary battery, temperature, and a charge rate is shown, and the case of the internal resistance value at the time of discharge is shown. 本実施形態の電池システムにおいて、二次電池の内部抵抗値と温度と充電率との関係を表すテーブルの一例を示し、充電時の内部抵抗値の場合を示す。In the battery system of this embodiment, an example of the table showing the relationship between the internal resistance value of a secondary battery, temperature, and a charge rate is shown, and the case of the internal resistance value at the time of charge is shown. 本実施形態の電池システムにおいて、二次電池の充放電電流の遷移の一例を示す。In the battery system of this embodiment, an example of transition of the charging / discharging current of a secondary battery is shown. 本実施形態の電池システムの動作処理内容を示すフローチャートである。It is a flowchart which shows the operation processing content of the battery system of this embodiment. 本実施形態の電池システムの動作処理内容を示すフローチャートである。It is a flowchart which shows the operation processing content of the battery system of this embodiment.
 本実施形態の電池システムは、二次電池の充放電電流を積算して算出された誤差を含み得る第一充電率ASOCを、二次電池の端子間電圧値で推定した第二充電率ESOCに基づいて補正するものであり、この補正するか否かを二次電池の内部抵抗値に起因した影響等を考慮して決めることを特徴の一つとする。 In the battery system of the present embodiment, the first charge rate ASOC, which may include an error calculated by integrating the charge / discharge current of the secondary battery, is calculated as the second charge rate ESOC estimated by the voltage value between the terminals of the secondary battery. One of the features is that the correction is determined in consideration of the influence caused by the internal resistance value of the secondary battery.
 本発明を実施するための好適な実施形態を、図面を参照しながら説明する。なお、本実施形態の電池システム1は、作業車(例えば、無人作業車)100に搭載されたものを例にとって説明する。図1は、電池システム1の概略的な構成図を示し、図2は、上記作業車100の概要を説明するための図を示す。 Preferred embodiments for carrying out the present invention will be described with reference to the drawings. In addition, the battery system 1 of this embodiment is demonstrated taking the thing mounted in the work vehicle (for example, unmanned work vehicle) 100 as an example. FIG. 1 is a schematic configuration diagram of the battery system 1, and FIG. 2 is a diagram for explaining an outline of the work vehicle 100.
 電池システム1は、図1に示すように、電池装置2と、上位制御装置3と、電力負荷4と、受電部5とを含んで構成される。電池装置2は、作業車100を駆動する駆動源として複数の二次電池20(20a~20h)を含む。上位制御装置3は、電池装置2と情報を送受信しつつ、作業車100の駆動を制御する。電力負荷4は、作業車100を駆動するためのモータなどである。受電部5は、外部電源から電力を受電する。 As shown in FIG. 1, the battery system 1 includes a battery device 2, a host control device 3, a power load 4, and a power receiving unit 5. Battery device 2 includes a plurality of secondary batteries 20 (20a to 20h) as a drive source for driving work vehicle 100. The host controller 3 controls the driving of the work vehicle 100 while exchanging information with the battery device 2. The electric power load 4 is a motor for driving the work vehicle 100 or the like. The power receiving unit 5 receives power from an external power source.
 ここで、まず、作業車100について、図2を参照しながら、簡単に説明する。作業車100は、図2に示すように、例えば、巡回路110の各所に設けられたステーション111を巡回し、あるステーション111で物を受け取って、他のステーション111で物を引き渡す車両として利用される。作業車100は、電池システム1の構成要素である二次電池20を駆動源として走行し、巡回路111の所定の箇所に設けられた給電設備112から供給される電力を受電部5を介して受電して二次電池20を充電することができる。給電設備112は、例えば、巡回路110に沿って配された給電線(図示せず)を有し、該給電線を通じて商用電源から受電した外部電力を作業車100に対して供給する。受電部5は、例えば、作業車100が走行した場合に上記給電線に沿うように配された電磁コイルであり、上記給電線から電磁誘導によって供給された電力を受電する。このような作業車100は、電池システム1の二次電池20の充放電を繰り返しつつ、24時間停止することなく駆動することができる。 Here, first, the work vehicle 100 will be briefly described with reference to FIG. As shown in FIG. 2, the work vehicle 100 is used as a vehicle that circulates around the stations 111 provided in various places on the circuit 110, receives an object at one station 111, and delivers the object at another station 111. The The work vehicle 100 travels using the secondary battery 20, which is a component of the battery system 1, as a drive source, and receives power supplied from a power supply facility 112 provided at a predetermined location of the circuit 111 via the power receiving unit 5. The secondary battery 20 can be charged by receiving power. The power supply facility 112 has, for example, a power supply line (not shown) arranged along the circuit 110, and supplies external power received from a commercial power source to the work vehicle 100 through the power supply line. For example, when the work vehicle 100 travels, the power receiving unit 5 is an electromagnetic coil disposed along the power supply line, and receives power supplied from the power supply line by electromagnetic induction. Such work vehicle 100 can be driven without stopping for 24 hours while repeatedly charging and discharging the secondary battery 20 of the battery system 1.
 以下、電池システム1の構成要素である電池装置2及び上位制御装置3について詳細に説明する。 Hereinafter, the battery device 2 and the host control device 3 which are components of the battery system 1 will be described in detail.
 電池装置2は、図1に示すように、作業車100の駆動に必要な電力源である複数の二次電池20(20a~20h)からなる組電池21と、電池管理装置22とで構成される。電池装置2は、複数の二次電池20a~20hに充電された電力を電力負荷4に対して放電することができ、また、商用電源(図示せず)から受電部5を介して受電した電力で二次電池20a~20hを充電することができる。二次電池20a~20hは、充放電可能な二次電池であればよく、例えば、リチウムイオン二次電池である。 As shown in FIG. 1, the battery device 2 includes an assembled battery 21 including a plurality of secondary batteries 20 (20a to 20h), which are power sources necessary for driving the work vehicle 100, and a battery management device 22. The The battery device 2 can discharge the power charged in the plurality of secondary batteries 20a to 20h to the power load 4, and can also receive the power received from the commercial power source (not shown) via the power receiving unit 5. Thus, the secondary batteries 20a to 20h can be charged. The secondary batteries 20a to 20h may be secondary batteries that can be charged and discharged, and are, for example, lithium ion secondary batteries.
 組電池21は、第一アームと、第二アームとが並列に接続されて構成される。第一アームは、直列接続された4つの二次電池20a~20dを備える。第二アームは、直列接続された4つの二次電池20e~20hを備える。なお、本実施形態の組電池21では、図1に示すように8個の二次電池20a~20hがそれぞれ直列又は並列に接続された場合を例にとって説明するが、本発明はこの場合に限られず、直列又は並列に接続される二次電池の数を適宜変更してもよいし、複数の二次電池を直列のみに接続したり、並列のみに接続したりしてもよい。 The assembled battery 21 is configured by connecting a first arm and a second arm in parallel. The first arm includes four secondary batteries 20a to 20d connected in series. The second arm includes four secondary batteries 20e to 20h connected in series. In the assembled battery 21 of the present embodiment, a case where eight secondary batteries 20a to 20h are connected in series or in parallel as shown in FIG. 1 will be described as an example. However, the present invention is not limited to this case. Instead, the number of secondary batteries connected in series or in parallel may be changed as appropriate, or a plurality of secondary batteries may be connected only in series or connected only in parallel.
 また、電池装置2は、温度センサTA~THと、電圧センサVA~VHと、電流センサIA及び電流センサIBとがそれぞれ配される。温度センサTA~THは、二次電池20a~20hのそれぞれの温度(例えば、電池容器表面の温度)Ta~Thを計測する。電圧センサVA~VHは、二次電池20a~20hのそれぞれの正極端子と負極端子との間の端子間電圧(セル電圧)Va~Vhを計測する。電流センサIAは、第一アームの二次電池20a~20dに流れる電流Iaを計測する。電流センサIBは、第二アームの二次電池20e~20hに流れる電流Ibを計測する。 Also, the battery device 2 is provided with temperature sensors TA to TH, voltage sensors VA to VH, a current sensor IA, and a current sensor IB, respectively. The temperature sensors TA to TH measure the respective temperatures (for example, the temperature of the battery container surface) Ta to Th of the secondary batteries 20a to 20h. Voltage sensors VA to VH measure inter-terminal voltages (cell voltages) Va to Vh between the positive terminals and the negative terminals of the secondary batteries 20a to 20h, respectively. The current sensor IA measures the current Ia flowing through the secondary batteries 20a to 20d of the first arm. The current sensor IB measures the current Ib flowing through the secondary arm secondary batteries 20e to 20h.
 電池管理装置(Battery Manegement System:BMS)22は、複数の二次電池20a~20hを集中管理するとともに、上位制御装置3との間で各種信号の送受信を行う装置である。電池管理装置22は、CMU(Cell Monitor Unit)221A,221Bと、BMU(Battery Manegement Unit)222とで構成される。 Battery management device (Battery Management System: BMS) 22 is a device that centrally manages a plurality of secondary batteries 20a to 20h and transmits / receives various signals to / from host control device 3. The battery management device 22 includes CMUs (Cell Monitor Units) 221 </ b> A and 221 </ b> B and BMUs (Battery Management Units) 222.
 CMU221Aは、第一アームの二次電池20a~20dの各温度Ta~Td、各端子間電圧Va~Vdを監視するためのユニットであり、温度センサTA~TD、及び電圧センサVA~VDと通信線を介して接続されている。CMU221Aは、例えば、上記各種センサが計測して出力する計測情報(温度Ta~Td、端子間電圧Va~Vd)をそれぞれアナログ信号として受信して、これらアナログ信号をアナログデジタル変換器(Analog Digital Converter:ADC)によってそれぞれに対応するデジタル信号に変換した後、二次電池20a~20dを識別するために識別IDをそれぞれの計測情報に付与してBMU222へ出力する。 The CMU 221A is a unit for monitoring each temperature Ta to Td and each terminal voltage Va to Vd of the secondary batteries 20a to 20d of the first arm, and communicates with the temperature sensors TA to TD and the voltage sensors VA to VD. Connected through a line. The CMU 221A receives, for example, measurement information (temperatures Ta to Td, inter-terminal voltages Va to Vd) measured and output by the above-mentioned various sensors as analog signals, and these analog signals are converted into analog-digital converters (Analog Digital Converter). : ADC), the digital signal corresponding to each is converted, and then an identification ID is assigned to each measurement information and output to the BMU 222 in order to identify the secondary batteries 20a to 20d.
 CMU221Bは、第二アームの二次電池20e~20hの各温度Te~Th、各端子間電圧Ve~Vhを監視するためのユニットであり、温度センサTE~TH、及び電圧センサVE~VHと通信線を介して接続されている。CMU221Bは、例えば、上記各種センサが計測して出力する計測情報(温度Te~Th、端子間電圧Ve~Vh)をそれぞれアナログ信号として受信して、これらアナログ信号をアナログデジタル変換器(ADC)によってそれぞれに対応するデジタル信号に変換した後、二次電池20a~20dを識別するために識別IDをそれぞれの計測情報に付与してBMU222へ出力する。 The CMU 221B is a unit for monitoring the temperatures Te to Th and the inter-terminal voltages Ve to Vh of the secondary batteries 20e to 20h of the second arm, and communicates with the temperature sensors TE to TH and the voltage sensors VE to VH. Connected through a line. The CMU 221B receives, for example, measurement information (temperatures Te to Th and terminal voltages Ve to Vh) measured and output by the various sensors as analog signals, and these analog signals are received by an analog-to-digital converter (ADC). After conversion into a digital signal corresponding to each, an identification ID is assigned to each measurement information and output to the BMU 222 in order to identify the secondary batteries 20a to 20d.
 なお、本実施形態の電池システム1において、複数の二次電池20が直列に接続されているアームごとにCMU221A,221Bを備える構成としているが、本発明はこの場合に限られず、例えば、直列接続された2つの二次電池ごとにCMUを備える構成としてもよいし、個々の二次電池ごとにCMUを備える構成としてもよく、その構成は適宜変更することができる。 In the battery system 1 of the present embodiment, the CMUs 221A and 221B are provided for each arm to which a plurality of secondary batteries 20 are connected in series. However, the present invention is not limited to this case. It is good also as a structure provided with CMU for every two secondary batteries made, and it is good also as a structure provided with CMU for every individual secondary battery, The structure can be changed suitably.
 BMU222は、CMU221A,221B、及び上位制御装置3と通信線を介して接続されており、これらCMU221A,221Bからデジタル信号に変換された各計測情報(温度Ta~Th、端子間電圧Va~Vh)を受信する。また、BMU222は、第一アームに流れる電流Ia及び第二アームに流れる電流Ibを監視するために、電流センサIA,IBと通信線を介して接続されており、例えば、電流センサIA,IBが計測して出力する計測情報(電流Ia,Ib)をそれぞれアナログ信号として受信して、これらアナログ信号をアナログデジタル変換器(ADC)によってそれぞれに対応するデジタル信号に変換する。BMU222は、これら計測情報に基づいて充電率を算出して上位制御装置3との間で各種信号の送受信を行う。 The BMU 222 is connected to the CMUs 221A and 221B and the host controller 3 via communication lines, and each piece of measurement information (temperatures Ta to Th, terminal voltages Va to Vh) converted from the CMUs 221A and 221B into digital signals. Receive. The BMU 222 is connected to the current sensors IA and IB via a communication line in order to monitor the current Ia flowing through the first arm and the current Ib flowing through the second arm. For example, the current sensors IA and IB Measurement information (currents Ia and Ib) to be measured and output are received as analog signals, and these analog signals are converted into corresponding digital signals by an analog-digital converter (ADC). The BMU 222 calculates the charging rate based on the measurement information and transmits / receives various signals to / from the host control device 3.
 BMU222は、電池装置2の充電率を導出する処理機能として、例えば、図3に示すように、電流値取得部23と、充電率算出部24と、電圧値取得部25と、温度取得部26と、充電率推定部27と、判定部28と、補正部29とを備える。電流値取得部23は、電流センサIA,IBから電流Ia,Ibの情報を取得する。充電率算出部24は、電流値取得部23で取得した電流Ia,Ibの情報から第一充電率ASOCを算出する。電圧値取得部25は、CMU221A,221Bから二次電池20a~20hの各端子間電圧値Va~Vhの情報を取得する。温度取得部26は、CMU221A,221Bから二次電池20a~20hの各温度Ta~Thの情報を取得する。充電率推定部27は、電圧値取得部25及び温度取得部26で取得した各端子間電圧値Va~Vh及び温度Ta~Thの各情報に基づいて第二充電率ESOCを推定する。判定部28は、第一充電率ASOCを第二充電率ESOCに基づいて補正するか否かを判定する。補正部29は、第一充電率ASOCを第二充電率ESOCに基づいて補正する。また、BMU222は、充電率記憶部30と、テーブル記憶部31とを備える。充電率記憶部30は、充電率算出部24で算出した第一充電率ASOC、及び充電率推定部27で推定した第二充電率ESOCを組電池21の充電率として記憶する。テーブル記憶部31は、充電率推定部27で第二充電率ESOCの推定等に用いる各種テーブルを記憶する。BMU222は、例えば、種々の演算および制御を行うためのプロセッサ、情報(データ)を一時的に格納するとともに、制御時にワーキングエリアとして機能するRAM、プログラム等を格納するROM、及び周辺回路から構成され、上記各部の処理機能を実現することができる。 For example, as shown in FIG. 3, the BMU 222 has a current value acquisition unit 23, a charge rate calculation unit 24, a voltage value acquisition unit 25, and a temperature acquisition unit 26 as processing functions for deriving the charge rate of the battery device 2. A charging rate estimation unit 27, a determination unit 28, and a correction unit 29. The current value acquisition unit 23 acquires information on the currents Ia and Ib from the current sensors IA and IB. The charging rate calculation unit 24 calculates the first charging rate ASOC from the information on the currents Ia and Ib acquired by the current value acquisition unit 23. The voltage value acquisition unit 25 acquires information on the inter-terminal voltage values Va to Vh of the secondary batteries 20a to 20h from the CMUs 221A and 221B. The temperature acquisition unit 26 acquires information on the temperatures Ta to Th of the secondary batteries 20a to 20h from the CMUs 221A and 221B. The charging rate estimation unit 27 estimates the second charging rate ESOC based on the information on the inter-terminal voltage values Va to Vh and the temperatures Ta to Th acquired by the voltage value acquisition unit 25 and the temperature acquisition unit 26. The determination unit 28 determines whether to correct the first charging rate ASOC based on the second charging rate ESOC. The correcting unit 29 corrects the first charging rate ASOC based on the second charging rate ESOC. The BMU 222 includes a charge rate storage unit 30 and a table storage unit 31. The charging rate storage unit 30 stores the first charging rate ASOC calculated by the charging rate calculation unit 24 and the second charging rate ESOC estimated by the charging rate estimation unit 27 as the charging rate of the assembled battery 21. The table storage unit 31 stores various tables used by the charging rate estimation unit 27 for estimating the second charging rate ESOC. The BMU 222 includes, for example, a processor for performing various computations and controls, a RAM that temporarily stores information (data), functions as a working area at the time of control, a ROM that stores programs, and peripheral circuits. The processing functions of the above units can be realized.
 電流値取得部23は、電池装置2内の二次電池20a~20hに流れる充放電電流の電流値Ia,Ibの情報を電流センサIA,IBから経時的に取得する。なお、この電流値Ia,Ibを取得するタイミングは、作業車100の特性や運転状況などの要因に応じて適宜設定することができ、例えば、電流値Ia,Ibを取得するタイミングを100msecごとに設定する。電流値取得部23は、取得した電流値Ia,Ibの情報を、充電率算出部24に通知する。また、電流値取得部23は、電流値Ia,Ibを所定値以下で且つ所定時間継続して取得した場合、その旨の情報を充電率推定部27に通知する。 The current value acquisition unit 23 acquires information on the current values Ia and Ib of the charge / discharge currents flowing through the secondary batteries 20a to 20h in the battery device 2 from the current sensors IA and IB over time. The timing for acquiring the current values Ia and Ib can be appropriately set according to factors such as the characteristics of the work vehicle 100 and the driving situation. For example, the timing for acquiring the current values Ia and Ib is set every 100 msec. Set. The current value acquisition unit 23 notifies the charging rate calculation unit 24 of information on the acquired current values Ia and Ib. In addition, when the current value acquisition unit 23 acquires the current values Ia and Ib below a predetermined value and continuously for a predetermined time, the current value acquisition unit 23 notifies the charging rate estimation unit 27 of information to that effect.
 ここで、電流値取得部23が電流値Ia,Ibを所定値以下で且つ所定時間継続して取得した場合とは、各二次電池20a~20hの端子間電圧値Va~Vhが無負荷電圧値になるべく近い値となる場合であって、例えば、上記所定値を100A、及び上記所定時間を10secと設定することができる。なお、この所定値及び所定時間は、作業車100を駆動するために必要な電力及び二次電池のスペックなどの要因に応じて適宜設定することができる。 Here, when the current value acquisition unit 23 acquires the current values Ia and Ib below the predetermined value and continuously for a predetermined time, the inter-terminal voltage values Va to Vh of the secondary batteries 20a to 20h are the no-load voltage. For example, the predetermined value can be set to 100 A, and the predetermined time can be set to 10 sec. Note that the predetermined value and the predetermined time can be appropriately set according to factors such as the electric power required to drive the work vehicle 100 and the specifications of the secondary battery.
 充電率算出部24は、電流値取得部23が取得した電流値Ia,Ibを積算し、該積算した積算値に基づいて複数の二次電池20a~20hで構成される組電池21の第一充電率ASOCを算出する。第一充電率ASOCは、充電率記憶部30に記憶されている充電率SOCを初期充電率として、この初期充電率に充電率変動分を加算(又は減算)することで算出することができ、充電率算出部24は、該算出した第一充電率ASOCを充電率SOCとして充電率記憶部30に上書きする。なお、充放電電流の電流値を積算して充電率を算出する方法自体は、従来の算出方法と同様とすることができる。 The charging rate calculation unit 24 integrates the current values Ia and Ib acquired by the current value acquisition unit 23, and based on the integrated value, the first of the assembled battery 21 including a plurality of secondary batteries 20a to 20h. The charging rate ASOC is calculated. The first charging rate ASOC can be calculated by setting the charging rate SOC stored in the charging rate storage unit 30 as the initial charging rate and adding (or subtracting) the charging rate variation to the initial charging rate, The charging rate calculation unit 24 overwrites the calculated first charging rate ASOC in the charging rate storage unit 30 as the charging rate SOC. The method itself for calculating the charging rate by integrating the current values of the charge / discharge current can be the same as the conventional calculation method.
 電圧値取得部25は、CMU221A,221Bから送信される各二次電池20a~20hの端子間電圧値Va~Vhを取得する。電圧値取得部25は、取得した端子間電圧値Va~Vhの情報を、充電率推定部27及び補正部29に通知する。 The voltage value acquisition unit 25 acquires the inter-terminal voltage values Va to Vh of the secondary batteries 20a to 20h transmitted from the CMUs 221A and 221B. The voltage value acquisition unit 25 notifies the information on the acquired inter-terminal voltage values Va to Vh to the charging rate estimation unit 27 and the correction unit 29.
 温度取得部26は、電圧値取得部25と同様に、CMU221A,221Bから送信される各二次電池20a~20hの温度Ta~Thを取得する。温度取得部26は、取得した温度Ta~Thの情報を、充電率推定部27に通知する。 Similarly to the voltage value acquisition unit 25, the temperature acquisition unit 26 acquires the temperatures Ta to Th of the secondary batteries 20a to 20h transmitted from the CMUs 221A and 221B. The temperature acquisition unit 26 notifies the charging rate estimation unit 27 of information on the acquired temperatures Ta to Th.
 なお、電圧値取得部25が端子間電圧値Va~Vhを取得するタイミング、及び温度取得部26が温度Ta~Thを取得するタイミングは、作業車100の特性や運転状況などの要因に応じて適宜設定することができ、例えば、それぞれの電圧値および温度を取得するタイミングを、500msecごととしてもよいし、電流値取得部23が電流値Ia,Ibを所定値以下で且つ所定時間継続して取得した場合に、それぞれの電圧値および温度を取得するタイミングを、その旨の情報を電流値取得部23から電圧値取得部25及び温度取得部26がそれぞれ受信したときとしてもよい。 Note that the timing at which the voltage value acquisition unit 25 acquires the inter-terminal voltage values Va to Vh and the timing at which the temperature acquisition unit 26 acquires the temperatures Ta to Th depend on factors such as characteristics of the work vehicle 100 and driving conditions. For example, the timing for acquiring each voltage value and temperature may be set every 500 msec, or the current value acquisition unit 23 keeps the current values Ia and Ib below a predetermined value and continues for a predetermined time. When acquired, the timing for acquiring each voltage value and temperature may be the time when the voltage value acquisition unit 25 and the temperature acquisition unit 26 receive information from the current value acquisition unit 23, respectively.
 充電率推定部27は、電流値Ia,Ibを所定値以下で且つ所定時間継続して取得した旨の情報を電流値取得部23より受信した場合に、電圧値取得部25が取得した端子間電圧値Va~Vhと、温度取得部26が取得した温度Ta~Thとを用いて、予めテーブル記憶部31に記憶された二次電池の端子間電圧値と温度と充電率との相関関係を示す、図4に示されるようなテーブルを参照して、各二次電池20a~20hのそれぞれの充電率ESOC[a]~ESOC[h]を推定する。充電率推定部27は、更に、推定した各二次電池20a~20hの充電率ESOC[a]~ESOC[h]から、組電池21の充電率である第二充電率ESOCを推定する。なお、上記テーブルは、全ての二次電池20a~20hが同一特性を有するのであれば、上記テーブルを予め一つテーブル記憶部31に記憶しておけば良い。また、少なくとも1つの二次電池が他の二次電池と異なる特性を有するのであれば、上記テーブルはその異なる特性の数分、予めテーブル記憶部31に記憶しておけば良い。 When the charge rate estimation unit 27 receives information indicating that the current values Ia and Ib are continuously acquired for a predetermined time or less from the current value acquisition unit 23, the voltage value acquisition unit 25 acquires Using the voltage values Va to Vh and the temperatures Ta to Th acquired by the temperature acquisition unit 26, the correlation between the voltage value between the terminals of the secondary battery, the temperature, and the charging rate stored in the table storage unit 31 in advance is calculated. With reference to the table shown in FIG. 4, the charging rates ESOC [a] to ESOC [h] of the secondary batteries 20a to 20h are estimated. The charging rate estimation unit 27 further estimates a second charging rate ESOC that is a charging rate of the assembled battery 21 from the estimated charging rates ESOC [a] to ESOC [h] of the respective secondary batteries 20a to 20h. If all the secondary batteries 20a to 20h have the same characteristics, the table may be stored in advance in the table storage unit 31. If at least one secondary battery has different characteristics from other secondary batteries, the table may be stored in the table storage unit 31 in advance for the number of the different characteristics.
 ここで、通常、二次電池20の充電率は、無負荷時(二次電池の電流値が略0A)の二次電池20の端子間電圧(開放電圧OCV)と相関関係を有しているので、二次電池20の開放電圧OCVを確認できれば、その二次電池20の充電率を推定することができる。本実施形態の作業車100のように、負荷が停止しておらず、二次電池20の電流値が略0Aでない場合であっても、二次電池20の電流値がある所定値以下で且つ所定時間継続した時の二次電池20の端子間電圧であれば、一定の精度を保って、実際の充電率と近似した充電率を推定することができる。特に、電池システム1において、二次電池20の充放電を繰り返して使用する際の充電率の使用範囲が一定範囲(例えば、60%~70%)であって、二次電池20の充電率の使用許容範囲(例えば、10%~90%)内に収まる場合、その使用範囲の上限(70%)と使用許容範囲の上限(90%)とで余裕代(20%)があり、及び、その使用範囲の下限(60%)と使用許容範囲の下限(10%)とで余裕代(50%)があるため、上記一定の精度を保って充電率を推定する方法でも十分有用である。上記使用許容範囲とは、二次電池20を効率よく使用でき且つ寿命を延ばすことができる望ましい充電率の使用範囲であって、充電率がこの使用範囲外になった場合に、二次電池20の充放電が制限される範囲である。なお、使用許容範囲は、二次電池20の種類等に応じて適宜変更でき、例えば、0%~100%をその範囲としてもよい。 Here, normally, the charging rate of the secondary battery 20 has a correlation with the terminal voltage (open voltage OCV) of the secondary battery 20 when there is no load (the current value of the secondary battery is approximately 0 A). Therefore, if the open circuit voltage OCV of the secondary battery 20 can be confirmed, the charging rate of the secondary battery 20 can be estimated. Even when the load is not stopped and the current value of the secondary battery 20 is not approximately 0 A as in the work vehicle 100 of the present embodiment, the current value of the secondary battery 20 is less than or equal to a predetermined value and If it is the voltage between the terminals of the secondary battery 20 when it continues for a predetermined time, the charging rate approximated to the actual charging rate can be estimated while maintaining a certain accuracy. In particular, in the battery system 1, the usage range of the charging rate when the secondary battery 20 is repeatedly charged and discharged is a certain range (for example, 60% to 70%), and the charging rate of the secondary battery 20 is When it falls within the allowable use range (for example, 10% to 90%), there is a margin (20%) between the upper limit of the use range (70%) and the upper limit of the use allowable range (90%). Since there is a margin (50%) between the lower limit (60%) of the use range and the lower limit (10%) of the allowable use range, the method of estimating the charging rate while maintaining the above-described certain accuracy is sufficiently useful. The allowable use range is a use range of a desirable charge rate that can efficiently use the secondary battery 20 and extend the life, and when the charge rate is out of this use range, the secondary battery 20 It is the range where charging / discharging of is restricted. Note that the allowable use range can be changed as appropriate according to the type of the secondary battery 20, and the range may be, for example, 0% to 100%.
 充電率推定部27における第二充電率ESOCの推定方法は、例えば、充電率ESOC[a]~ESOC[h]から最大の充電率SOC[max]と最小の充電率SOC[min]とを導き出して、下記式(1)を用いてその中間値を算出し、該算出した中間値を第二充電率ESOCとして推定することができる。 The method of estimating the second charging rate ESOC in the charging rate estimating unit 27 is, for example, deriving the maximum charging rate SOC [max] and the minimum charging rate SOC [min] from the charging rates ESOC [a] to ESOC [h]. Then, the intermediate value can be calculated using the following formula (1), and the calculated intermediate value can be estimated as the second charging rate ESOC.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 なお、本実施形態の電池システム1において、上記式(1)を用いた第二充電率ESOCの推定方法は一例にすぎず、他の推定方法を用いてもよく、例えば、単に、充電率ESOC[a]~ESOC[h]の平均値を算出して、該算出した平均値を第二充電率ESOCと推定してもよい。 In the battery system 1 of the present embodiment, the second charging rate ESOC estimation method using the above formula (1) is merely an example, and other estimation methods may be used. For example, the charging rate ESOC is simply used. An average value of [a] to ESOC [h] may be calculated, and the calculated average value may be estimated as the second charging rate ESOC.
 判定部28は、第一充電率ASOCと第二充電率ESOCとの差分の絶対値が補正対象値XD1以上である場合に、電圧値取得部25が取得した端子間電圧値Va~Vhより決定される代表電圧値Vrと相関関係により推定される第一充電率ASOCに応じた端子間電圧値VASOCとの差分が、二次電池20の内部抵抗値に起因しているか否かを判定する。具体的には、判定部28は、二次電池20の内部抵抗値による電圧降下値Vdrを算出し、代表電圧値Vrと端子間電圧値VASOCとの差分が、上記算出した電圧降下値Vdrより大きいか否かを判定する。 The determination unit 28 is determined from the inter-terminal voltage values Va to Vh acquired by the voltage value acquisition unit 25 when the absolute value of the difference between the first charging rate ASOC and the second charging rate ESOC is equal to or greater than the correction target value XD1. It is determined whether the difference between the representative voltage value Vr and the inter-terminal voltage value V ASOC corresponding to the first charging rate ASOC estimated from the correlation is due to the internal resistance value of the secondary battery 20. . Specifically, the determination unit 28 calculates the voltage drop value Vdr due to the internal resistance value of the secondary battery 20, and the difference between the representative voltage value Vr and the inter-terminal voltage value V ASOC is the calculated voltage drop value Vdr. Determine if greater than.
 すなわち、充電率算出部24において、誤差を含み得る電流値Ia,Ibを積算することによって第一充電率ASOCを算出しているので、その第一充電率ASOCは実際の充電率と大きく異なり得る。そのため、第一充電率ASOCを、実際の充電率と近似する第二充電率ESOCに基づいて補正する必要がある。しかし、第二充電率ESOCを推定するために取得する端子間電圧値は、負荷が駆動中のときの端子間電圧値であり得るため、その負荷が必要とする二次電池の電流値によっては、二次電池の内部抵抗による電圧降下値も大きく影響を受けることがある。その結果、端子間電圧値を測定するタイミングによっては、その端子間電圧値によって推定した第二充電率も正確ではない可能性がある。よって、判定部28は、二次電池20の内部抵抗値による電圧降下値Vdrを算出し、第一充電率ASOCを適切な第二充電率ESOCに基づいて補正するため、第二充電率ESOCが実際の充電率と近似する充電率であるか否かを判定する。 In other words, since the charging rate calculation unit 24 calculates the first charging rate ASOC by integrating the current values Ia and Ib that may include errors, the first charging rate ASOC can be significantly different from the actual charging rate. . Therefore, it is necessary to correct the first charging rate ASOC based on the second charging rate ESOC that approximates the actual charging rate. However, since the inter-terminal voltage value acquired to estimate the second charging rate ESOC can be the inter-terminal voltage value when the load is being driven, depending on the current value of the secondary battery required by the load The voltage drop value due to the internal resistance of the secondary battery may be greatly affected. As a result, depending on the timing at which the inter-terminal voltage value is measured, the second charging rate estimated from the inter-terminal voltage value may not be accurate. Therefore, the determination unit 28 calculates the voltage drop value Vdr due to the internal resistance value of the secondary battery 20 and corrects the first charging rate ASOC based on the appropriate second charging rate ESOC. It is determined whether or not the charging rate is close to the actual charging rate.
 補正対象値XD1は、第一充電率ASOCを第二充電率ESOCに基づいて補正する際の指標となる値であって、例えば、電池システム1における二次電池20の充電率の使用範囲、及び上記使用許容範囲とを考慮して決定することができる。これは、第一充電率ASOCは誤差によって実際の充電率とは大きく異なる値を示すおそれがあり、その値が上記使用許容範囲を超えると、作業車100は二次電池20の充放電を制限してしまうおそれがあるためである。ここで、例えば、実際の充電率(真値)をTrSOCとして表し、使用許容範囲を10%~90%とし、使用範囲を60%~70%とすれば、ASOC<TrSOCのとき、図5Aに示すように、誤差を含む第一充電率ASOCが使用範囲の上限(70%)以下であっても、実際の充電率TrSOCが使用許容範囲の上限(90%)を上回った場合、この第一充電率ASOCを各制御に用いると各種制御結果に悪影響を及ぼしてしまう。よって、使用許容範囲の上限(90%)と使用範囲の上限(70%)との差分が20%であることを考慮して、補正対象値XD1を20%と設定する。一方、ASOC>TrSOCのとき、図5Bに示すように、誤差を含む第一充電率ASOCが使用範囲の下限(60%)以上であっても、実際の充電率TrSOCが使用許容範囲の下限(10%)を下回らないように、上記補正対象値XD1を20%と設定する。これにより、第一充電率ASOCは少なくとも使用範囲の下限(60%)の20%下の40%で、第二充電率ESOCに基づいて補正されるので、特段の問題は生じない。なお、補正対象値は、(1)ASOC<TrSOCのときと、(2)ASOC>TrSOCのときとで、その値を別々に設定してもよく、例えば、使用許容範囲を10%~90%とし、使用範囲を60%~70%とすれば、(1)ASOC<TrSOCのときの補正対象値XD1を20%、(2)ASOC>TrSOCのときの補正対象値XD2を30%と設定してもよい。また、補正対象値XD1は、上述のように、使用許容範囲の上限(90%)と使用範囲の上限(70%)との差分(20%)を設定するのではなく、余裕幅α(例えば、5%)を適宜加えて15%と設定してもよい。 The correction target value XD1 is a value that serves as an index when correcting the first charging rate ASOC based on the second charging rate ESOC. For example, the usage range of the charging rate of the secondary battery 20 in the battery system 1 and It can be determined in consideration of the allowable use range. This is because there is a possibility that the first charging rate ASOC may show a value greatly different from the actual charging rate due to an error, and when the value exceeds the allowable use range, the work vehicle 100 restricts charging / discharging of the secondary battery 20. It is because there is a possibility of doing. Here, for example, if the actual charging rate (true value) is expressed as TrSOC, the allowable use range is 10% to 90%, and the use range is 60% to 70%, when ASOC <TrSOC, FIG. As shown, even if the first charging rate ASOC including an error is equal to or lower than the upper limit (70%) of the usage range, the first charging rate TrSOC exceeds the upper limit (90%) of the allowable usage range. If the charging rate ASOC is used for each control, various control results are adversely affected. Therefore, considering that the difference between the upper limit (90%) of the allowable use range and the upper limit (70%) of the use range is 20%, the correction target value XD1 is set to 20%. On the other hand, when ASOC> TrSOC, as shown in FIG. 5B, even if the first charging rate ASOC including the error is equal to or higher than the lower limit (60%) of the usage range, the actual charging rate TrSOC is lower than the lower limit of the allowable usage range (60%). The correction target value XD1 is set to 20% so as not to fall below 10%). Accordingly, the first charging rate ASOC is at least 40%, which is 20% lower than the lower limit (60%) of the use range, and is corrected based on the second charging rate ESOC, so that no particular problem occurs. The correction target value may be set separately for (1) ASOC <TrSOC and (2) ASOC> TrSOC. For example, the allowable use range is 10% to 90%. If the usage range is 60% to 70%, (1) the correction target value XD1 when ASOC <TrSOC is set to 20%, and (2) the correction target value XD2 when ASOC> TrSOC is set to 30%. May be. Further, as described above, the correction target value XD1 does not set a difference (20%) between the upper limit (90%) of the allowable use range and the upper limit (70%) of the use range, but a margin width α (for example, 5%) may be added as appropriate and set to 15%.
 また、判定部28において、電圧降下値Vdrの算出は、温度取得部26が取得した温度Ta~Thにより決定される代表温度Trと、充電率推定部27が推定した第二充電率ESOCとを用いて、予めテーブル記憶部31に記憶された二次電池の内部抵抗値と温度と充電率との関係を示す、図6Aおよび図6Bに示されるようなテーブルを参照して、二次電池20の内部抵抗値Rinを推定し、該推定した内部抵抗値Rinと電流値取得部23が取得した電流値Ia又はIbとを乗算することで電圧降下値Vdrを算出する。図6Aは、二次電池20の放電時の内部抵抗値と温度と充電率との関係を示すテーブルの一例であり、図6Bは、二次電池20の充電時の内部抵抗値と温度と充電率との関係を示すテーブルの一例である。 In the determination unit 28, the voltage drop value Vdr is calculated by using the representative temperature Tr determined by the temperatures Ta to Th acquired by the temperature acquisition unit 26 and the second charging rate ESOC estimated by the charging rate estimation unit 27. Referring to the table as shown in FIG. 6A and FIG. 6B showing the relationship between the internal resistance value, temperature, and charging rate of the secondary battery stored in the table storage unit 31 in advance, the secondary battery 20 The internal resistance value Rin is estimated, and the estimated internal resistance value Rin is multiplied by the current value Ia or Ib acquired by the current value acquisition unit 23 to calculate the voltage drop value Vdr. FIG. 6A is an example of a table showing the relationship between the internal resistance value, temperature, and charging rate when the secondary battery 20 is discharged, and FIG. 6B shows the internal resistance value, temperature, and charging when the secondary battery 20 is charged. It is an example of the table which shows the relationship with a rate.
 ここで、代表温度Trとは、組電池21として複数の二次電池20a~20hを有する場合に、二次電池20の内部抵抗値Rinを推定するために温度取得部26が取得した温度Ta~Thにより決定される温度である。例えば、上述したように、最大の充電率ESOC[max]と最小の充電率ESOC[min]の中間値を第二充電率ESOCとして推定した場合、代表温度Trも同様に、温度Ta~Thのうち最大の温度T[max]と最小の温度T[min]との中間値として決定することができる。なお、代表温度Trは、第二充電率ESOCの推定方法などに合わせて、他の方法でも決定でき、例えば、温度Ta~Thの平均値として決定してもよい。また、電池装置2内において二次電池20が1つの場合は、その温度が代表温度Trとなる。 Here, the representative temperature Tr is the temperature Ta˜ that is acquired by the temperature acquisition unit 26 in order to estimate the internal resistance value Rin of the secondary battery 20 when the assembled battery 21 includes a plurality of secondary batteries 20a˜20h. The temperature is determined by Th. For example, as described above, when an intermediate value between the maximum charging rate ESOC [max] and the minimum charging rate ESOC [min] is estimated as the second charging rate ESOC, the representative temperature Tr is similarly set between the temperatures Ta to Th. Of these, it can be determined as an intermediate value between the maximum temperature T [max] and the minimum temperature T [min]. Note that the representative temperature Tr can be determined by another method in accordance with the second charging rate ESOC estimation method, and may be determined as an average value of the temperatures Ta to Th, for example. Further, when there is one secondary battery 20 in the battery device 2, the temperature becomes the representative temperature Tr.
 判定部28は、第一充電率ASOCと第二充電率ESOCとの差分の絶対値が補正対象値XD1以上である場合に、電圧値取得部25が取得した端子間電圧値Va~Vhにより決定される代表電圧値Vrと、図4に示すテーブルにより推定される第一充電率ASOCに応じた端子間電圧値VASOCとの差分の絶対値が少なくとも電圧降下値Vdrより大きいか否か、すなわち、下記式(2)を満たすか否か、を判定する。下記式(2)中のβ、例えば、β≧1、は係数であり、将来の二次電池20の劣化による内部抵抗値の増加等を考慮して適宜その値を設定することができる。 The determination unit 28 is determined by the inter-terminal voltage values Va to Vh acquired by the voltage value acquisition unit 25 when the absolute value of the difference between the first charging rate ASOC and the second charging rate ESOC is equal to or greater than the correction target value XD1. Whether or not the absolute value of the difference between the representative voltage value Vr and the inter-terminal voltage value V ASOC corresponding to the first charging rate ASOC estimated from the table shown in FIG. 4 is at least greater than the voltage drop value Vdr. Whether or not the following formula (2) is satisfied is determined. Β in the following formula (2), for example, β ≧ 1, is a coefficient, and can be set as appropriate in consideration of an increase in internal resistance due to future deterioration of the secondary battery 20.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、代表電圧値Vrとは、組電池21として複数の二次電池20a~20hを有する場合に、上記第一充電率ASOCに応じた端子間電圧値VASOCと比較するために電圧値取得部25が取得した端子間電圧値Va~Vhにより決定される電圧値である。例えば、上述のように、最大の充電率ESOC[max]と最小の充電率ESOC[min]の中間値を第二充電率ESOCとして推定した場合、代表電圧値Vrも同様に、端子間電圧値Va~Vhのうち最大の端子間電圧値V[max]と最小の端子間電圧値V[min]との中間値を代表電圧値Vrとして決定することができる。なお、代表電圧値Vrは、第二充電率ESOCの推定方法などに合わせて、他の方法でも決定でき、例えば、端子間電圧値Va~Vhの平均値として決定してもよい。また、電池装置2内の二次電池20が1つの場合は、その端子間電圧値が代表電圧値Vrとなる。 Here, the representative voltage value Vr is a voltage value acquisition for comparison with the inter-terminal voltage value V ASOC corresponding to the first charging rate ASOC when the assembled battery 21 includes a plurality of secondary batteries 20a to 20h. This is a voltage value determined by the inter-terminal voltage values Va to Vh acquired by the unit 25. For example, as described above, when the intermediate value between the maximum charging rate ESOC [max] and the minimum charging rate ESOC [min] is estimated as the second charging rate ESOC, the representative voltage value Vr is similarly the inter-terminal voltage value. An intermediate value between the maximum inter-terminal voltage value V [max] and the minimum inter-terminal voltage value V [min] among Va to Vh can be determined as the representative voltage value Vr. The representative voltage value Vr can be determined by other methods according to the estimation method of the second charging rate ESOC and the like, for example, may be determined as an average value of the inter-terminal voltage values Va to Vh. Further, when there is one secondary battery 20 in the battery device 2, the voltage value between the terminals becomes the representative voltage value Vr.
 補正部29は、判定部28において代表電圧値Vrと端子間電圧値VASOCとの差分の絶対値が少なくとも電圧降下値Vdrより大きいと判定された場合、第一充電率ASOCを第二充電率ESOCに基づいて補正する。すなわち、補正部29は、充電率記憶部30に充電率SOCとして記憶された第一充電率ASOCを第二充電率ESOCで書き換える。 When the determination unit 28 determines that the absolute value of the difference between the representative voltage value Vr and the terminal voltage value V ASOC is at least greater than the voltage drop value Vdr, the correction unit 29 determines the first charging rate ASOC as the second charging rate. Correct based on ESOC. That is, the correction unit 29 rewrites the first charging rate ASOC stored as the charging rate SOC in the charging rate storage unit 30 with the second charging rate ESOC.
 判定部29は、また、電圧値取得部25が二次電池20の端子間電圧値Va~Vhを取得した時点を含む一定期間、電流値取得部23が取得する電流値Ia、及び/又はIb、の電流変動が所定範囲I内であるか否か、すなわち、下記式(3)を満たすか否か、を判定することもできる。そして、補正部29は、判定部28が上記一定期間、電流値取得部23が取得する電流値Ia、及び/又はIb、の電流変動が所定範囲内であると判定したとき、第一充電率ASOCを第二充電率ESOCに基づいて補正してもよい。すなわち、計測するタイミングの前後で電流値が所定範囲Iを超えて変動すると、第二充電率ESOCにも大きな影響を及ぼし、第二充電率ESOCを正確に推定できないおそれがあり得るので、補正部29は、電流変動がある一定の所定範囲I内にある場合に、第一充電率ASOCを第二充電率ESOCに基づいて補正する。なお、下記式(3)中において、I(t)は各端子間電圧値Va~Vhを取得した時点tに取得した電流値であり、I(t-1)は時点tの直前(例えば、100msec前)に取得した電流値であり、I(t+1)はtの直後(例えば、100msec後)に取得した電流値である(後述する式(4)中においても同様とする)。 The determination unit 29 also includes the current values Ia and / or Ib acquired by the current value acquisition unit 23 for a certain period including the time when the voltage value acquisition unit 25 acquires the inter-terminal voltage values Va to Vh of the secondary battery 20. It is also possible to determine whether or not the current fluctuation is within the predetermined range IP , that is, whether or not the following equation (3) is satisfied. When the determination unit 28 determines that the current fluctuation of the current values Ia and / or Ib acquired by the current value acquisition unit 23 is within the predetermined range for the predetermined period, the correction unit 29 determines the first charging rate. The ASOC may be corrected based on the second charging rate ESOC. That is, when the current value before and after the timing of measurement fluctuates beyond a predetermined range I P, have a significant impact on the second charging rate ESOC, since the second charging rate ESOC may may not be accurately estimated, corrected part 29, if within a certain predetermined range I P there is a current variation is corrected based on the first charging rate ASOC second charging rate ESOC. In the following formula (3), I (t) is a current value acquired at the time t when the inter-terminal voltage values Va to Vh are acquired, and I (t−1) is immediately before the time t (for example, The current value acquired before 100 msec), and I (t + 1) is the current value acquired immediately after t (for example, after 100 msec) (the same applies to equation (4) described later).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ここで、上記所定範囲Iは、例えば、上記補正対象範囲XD1、二次電池20の電圧降下値Vdr、CMU221A,221BとBMU222との間の同期のズレなどの要因を考慮して決定することができる。例えば、補正対象範囲XD1を20%と設定した場合、電圧降下による充電率の許容誤差分を10%、同期のズレによる充電率の許容誤差分を5%、及び電流変動による充電率の許容誤差分を5%とすることができる。このとき、例えば、温度が5度であるとすると、図4に示すテーブルを参照し、ある充電率(例えば、充電率70%)を基準として、その充電率より5%高い充電率の端子間電圧値を求めて、該端子間電圧値に応じた内部抵抗値を、図6Aおよび図6Bに示すテーブルを参照して求める。そして、これら端子間電圧値と内部抵抗値とから求められる電流値を電流変動の所定範囲Iとして決定することができる。なお、上述の所定範囲Iの決定方法は、一例であって、実験を繰り返して適切な電流変動の所定範囲Iを決定するようにしてもよい。また、判定部28及び補正部29において、上記一定期間、電流値取得部23が取得する電流値の電流変動が所定範囲I内であるか否かを判定し、その結果に応じて、第一充電率ASOCを第二充電率ESOCに基づいて補正するという機能処理は、電池システム1において、電力負荷が必要とする電力(二次電池の電流値)が大きく変動するような使用状況によっては特に有用であるが、省略してもよい。 Here, the predetermined range I P, for example, the correction target range XD1, the voltage drop value of the secondary battery 20 Vdr, CMU221A, be determined in consideration of factors such as the synchronization deviation between 221B and BMU222 Can do. For example, when the correction target range XD1 is set to 20%, the charging rate allowable error due to voltage drop is 10%, the charging rate allowable error due to synchronization shift is 5%, and the charging rate allowable error due to current fluctuation The minutes can be 5%. At this time, for example, if the temperature is 5 degrees, referring to the table shown in FIG. A voltage value is obtained, and an internal resistance value corresponding to the inter-terminal voltage value is obtained with reference to the tables shown in FIGS. 6A and 6B. Then, it is possible to determine the current value obtained from the voltage value and the internal resistance between the terminals as the predetermined range I P of current fluctuation. Incidentally, the method for determining the predetermined range I P described above is an example, it may be determined a predetermined range I P suitable current fluctuation by repeating experiments. Also, the determining unit 28 and the correction unit 29, the fixed period, the current variation of the current value the current value acquiring unit 23 acquires is equal to or within a predetermined range I P, in accordance with the result, the The functional process of correcting the one charging rate ASOC based on the second charging rate ESOC depends on the usage situation in which the power required by the power load (the current value of the secondary battery) varies greatly in the battery system 1. Although particularly useful, it may be omitted.
 判定部28は、さらに、電圧値取得部25が二次電池20の各端子間電圧値Va~Vhを取得した時点を含む一定期間、二次電池20の充電状態又は放電状態のいずれか一方の状態であるか否か(すなわち、下記式(4)を満たすか否か)を判定することもできる。そして、補正部29は、上記判定部28が前記一定期間、二次電池20が充電状態又は放電状態のいずれか一方の状態であると判定したとき、第一充電率ASOCを第二充電率ESOCに基づいて補正してもよい。例えば、図7に示すように、上記各時点t-1,t,t+1における電流値I(t-1),I(t),I(t+1)がいずれも放電状態であれば、補正部29は、第一充電率ASOCを第二充電率ESOCに基づいて補正する。 The determination unit 28 further includes either the charged state or the discharged state of the secondary battery 20 for a certain period including the time when the voltage value acquiring unit 25 acquires the inter-terminal voltage values Va to Vh of the secondary battery 20. It is also possible to determine whether or not the state is satisfied (that is, whether or not the following expression (4) is satisfied). When the determination unit 28 determines that the secondary battery 20 is in a charged state or a discharged state for the certain period, the correcting unit 29 converts the first charging rate ASOC to the second charging rate ESOC. You may correct | amend based on. For example, as shown in FIG. 7, if the current values I (t−1), I (t), and I (t + 1) at the respective time points t−1, t, and t + 1 are all in the discharge state, the correction unit 29 Corrects the first charging rate ASOC based on the second charging rate ESOC.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 この補正部29の処理は次の有用な効果を奏する。すなわち、CMU221A,221BとBMU222との間の同期のズレなどの要因による、二次電池20の充放電電流の反転時における正確な電圧降下値Vdrを算出できなくなるおそれを回避することができる。なお、判定部28及び補正部29において、上記一定期間、二次電池20の充電状態又は放電状態のいずれか一方の状態であるか否かを判定し、その結果に応じて、第一充電率ASOCを第二充電率ESOCに基づいて補正するという機能処理は省略してもよい。 The processing of the correction unit 29 has the following useful effects. That is, it is possible to avoid the possibility that the accurate voltage drop value Vdr at the time of reversal of the charging / discharging current of the secondary battery 20 due to factors such as a synchronization shift between the CMUs 221A, 221B and the BMU 222 cannot be calculated. In addition, in the determination part 28 and the correction | amendment part 29, it is determined whether it is in any one state of the charge state or the discharge state of the secondary battery 20 for the said fixed period, According to the result, 1st charge rate The functional process of correcting the ASOC based on the second charging rate ESOC may be omitted.
 上位制御装置3は、作業車100に搭載されるモータなどの電力負荷4を制御するものであって、BMU222の充電率記憶部30から組電池21の充電率SOCの情報を受信して、充電率に応じた許容電流値を設定し、電力負荷4が電池装置2に対して出力要求する電流値を制限するといった各種制御を行う。 The host controller 3 controls the power load 4 such as a motor mounted on the work vehicle 100, and receives information on the charge rate SOC of the assembled battery 21 from the charge rate storage unit 30 of the BMU 222 to charge the battery. Various controls such as setting an allowable current value according to the rate and limiting the current value requested by the power load 4 to the battery device 2 are performed.
 以下、図8及び図9に示すフローチャートを参照して、BMU222を用いて実施される本実施形態の電池システム1の充電率の設定処理について説明する。なお、図8及び図9のフローチャートで示される各処理は、処理内容に矛盾を生じない範囲で任意に順番を変更して又は並列に実行することができる。また、電池システム1は、図2に示すものを用いるものとし、テーブル記憶部31には、図4に示すテーブル及び図6Aおよび図6Bに示すテーブルが予め記憶されているものとする。 Hereinafter, with reference to the flowcharts shown in FIGS. 8 and 9, the setting process of the charging rate of the battery system 1 of the present embodiment performed using the BMU 222 will be described. Note that the processes shown in the flowcharts of FIGS. 8 and 9 can be executed in any order or in parallel as long as the process contents do not contradict each other. The battery system 1 is assumed to use the one shown in FIG. 2, and the table storage unit 31 is assumed to store the table shown in FIG. 4 and the tables shown in FIGS. 6A and 6B in advance.
 まず、電流値取得部23は、電池装置2内の二次電池20a~20hに流れる充放電電流の電流値Ia,Ibの情報を電流センサIA,IBから経時的に取得する(ステップS100)。電流値Ia,Ibの情報を取得するタイミングは、例えば、一定の時間間隔(100msec)ごととする。 First, the current value acquisition unit 23 acquires information on the current values Ia and Ib of the charge / discharge currents flowing through the secondary batteries 20a to 20h in the battery device 2 from the current sensors IA and IB over time (step S100). The timing for acquiring the information on the current values Ia and Ib is, for example, every fixed time interval (100 msec).
 次いで、充電率算出部24は、電流値取得部23が取得した電流値Ia,Ibを積算し、該積算した積算値に基づいて組電池21の第一充電率ASOCを算出する(ステップS101)。第一充電率ASOCは、充電率記憶部30に充電率SOCとして記憶されている値を初期充電率として、この初期充電率に充電率変動分を加算(又は減算)することで算出することができ、算出した第一充電率ASOCを充電率SOCとして充電率記憶部30に上書きする。この充電率記憶部30に充電率SOCとして記憶された情報は、上位制御装置3との間で送受信が可能である。なお、初期充電率は、例えば、前回、電池システム1を起動して終了した際に充電率記憶部30に保存された充電率を用いることができる。 Next, the charging rate calculation unit 24 integrates the current values Ia and Ib acquired by the current value acquisition unit 23, and calculates the first charging rate ASOC of the assembled battery 21 based on the integrated value (step S101). . The first charging rate ASOC can be calculated by adding (or subtracting) the charging rate variation to the initial charging rate, using the value stored as the charging rate SOC in the charging rate storage unit 30 as the initial charging rate. The calculated first charging rate ASOC is overwritten in the charging rate storage unit 30 as the charging rate SOC. Information stored as the charging rate SOC in the charging rate storage unit 30 can be transmitted to and received from the host control device 3. In addition, the initial charging rate can use the charging rate preserve | saved at the charging rate memory | storage part 30, when the battery system 1 was started and complete | finished last time, for example.
 また、電流値取得部23は、取得した電流値Ia,Ibの合計が所定値以上であるか否かを判定する(ステップS102)。電流値Ia,Ibの合計が所定値以下でない場合(ステップS102:No)、ステップS100の処理に戻る。この所定値は、組電池21の容量や電力負荷4が要求する出力の大きさを考慮して適宜設定することができるが、例えば、100Aと設定する。 Further, the current value acquisition unit 23 determines whether or not the total of the acquired current values Ia and Ib is equal to or greater than a predetermined value (step S102). If the sum of the current values Ia and Ib is not less than or equal to the predetermined value (step S102: No), the process returns to step S100. The predetermined value can be appropriately set in consideration of the capacity of the assembled battery 21 and the output required by the power load 4, but is set to 100A, for example.
 一方、電流値Ia,Ibの合計が所定値以下である場合(ステップS102:Yes)、電流値取得部23は、タイマをONとし(ステップS103)、上記一定の時間間隔をおいて、電流値の情報を再度取得する(ステップS104)。 On the other hand, when the sum of the current values Ia and Ib is equal to or less than the predetermined value (step S102: Yes), the current value acquisition unit 23 turns on the timer (step S103) and sets the current value at the predetermined time interval. Is acquired again (step S104).
 そして、充電率算出部24は、ステップS101の処理と同様に、電流値取得部23が取得した電流値Ia,Ibを積算し、該積算した積算値に基づいて組電池21の第一充電率ASOCを算出する(ステップS105)。充電率算出部24は、本ステップで算出した第一充電率ASOCを充電率SOCとして充電率記憶部30に再度上書きする。 Then, the charging rate calculation unit 24 integrates the current values Ia and Ib acquired by the current value acquisition unit 23 as in the process of step S101, and the first charging rate of the assembled battery 21 based on the integrated value. ASOC is calculated (step S105). The charging rate calculation unit 24 overwrites the charging rate storage unit 30 again with the first charging rate ASOC calculated in this step as the charging rate SOC.
 ここで、電流値取得部23は、ステップS104の処理で取得した電流値Ia,Ibが再度、上記所定値以下であるか否かを判定する(ステップS106)。所定値以下でない場合(ステップS106:No)、電流値取得部23は、タイマをリセットし(ステップS107)、ステップS100の処理に戻る。 Here, the current value acquisition unit 23 determines again whether or not the current values Ia and Ib acquired in the process of step S104 are equal to or less than the predetermined value (step S106). When it is not less than the predetermined value (step S106: No), the current value acquisition unit 23 resets the timer (step S107) and returns to the process of step S100.
 一方、所定値以下の場合(ステップS106:Yes)、電流値取得部23は、上記タイマを参照して、一定時間経過したか否かを判定する(ステップS108)。一定時間経過していないと判定した場合(ステップS108:No)、ステップS104の処理に移る。なお、この一定時間は、組電池21の容量や電力負荷4が要求する出力電力の大きさ等を考慮して適宜設定することができるが、例えば、10secと設定する。 On the other hand, if it is equal to or smaller than the predetermined value (step S106: Yes), the current value acquisition unit 23 refers to the timer and determines whether or not a predetermined time has elapsed (step S108). If it is determined that the predetermined time has not elapsed (step S108: No), the process proceeds to step S104. In addition, although this fixed time can be suitably set in consideration of the capacity of the assembled battery 21, the magnitude of the output power required by the power load 4, etc., for example, it is set to 10 sec.
 ステップS108の処理において、電流値取得部23が、一定時間経過していると判定した場合(ステップS108:Yes)、その旨を電圧値取得部25及び温度取得部26に通知し、電圧値取得部25及び温度取得部26は、計測情報として、端子間電圧値Va~Vh、及び温度Ta~Thの各情報をCMU221A,221Bから取得する(ステップS109)。なお、電圧値取得部25及び温度取得部26は、電流値取得部23からの上記通知を受け付けた場合に限られず、端子間電圧値Va~Vh、及び温度Ta~Thの各情報をCMU221A,221Bから、所定時間ごと(例えば、500msecごと)に、取得するようにしていてもよい。 In the process of step S108, when the current value acquisition unit 23 determines that a certain time has elapsed (step S108: Yes), the voltage value acquisition unit 25 and the temperature acquisition unit 26 are notified of this, and the voltage value acquisition is performed. The unit 25 and the temperature acquisition unit 26 acquire information on the inter-terminal voltage values Va to Vh and the temperatures Ta to Th from the CMUs 221A and 221B as measurement information (step S109). The voltage value acquisition unit 25 and the temperature acquisition unit 26 are not limited to the case where the notification from the current value acquisition unit 23 is received, and the information on the terminal voltage values Va to Vh and the temperatures Ta to Th are stored in the CMU 221A, You may make it acquire from 221B every predetermined time (for example, every 500 msec).
 次いで、充電率推定部27は、上記取得した計測情報に基づいて組電池21の第二充電率ESOCを推定する(ステップS110)。具体的には、充電率推定部27は、上記取得した端子間電圧値Va~Vh及び温度Ta~Thの各情報を用いて、予め用意された二次電池の端子間電圧値と温度と充電率との相関関係を示す、図4に示されるようなテーブルを参照して、各二次電池20a~20hのそれぞれの充電率ESOC[a]~ESOC[h]を推定し、上記式(1)を用いて第二充電率ESOCを推定する。 Next, the charging rate estimation unit 27 estimates the second charging rate ESOC of the assembled battery 21 based on the acquired measurement information (step S110). Specifically, the charging rate estimation unit 27 uses the information on the acquired inter-terminal voltage values Va to Vh and the temperatures Ta to Th, and prepares the voltage value, the temperature, and the charging voltage of the secondary battery prepared in advance. Referring to the table as shown in FIG. 4 showing the correlation with the rate, the respective charging rates ESOC [a] to ESOC [h] of the secondary batteries 20a to 20h are estimated, and the above formula (1 ) To estimate the second charging rate ESOC.
 なお、上記ステップS109の処理において、電圧値取得部25及び温度取得部26が、端子間電圧値Va~Vh及び温度Ta~Thの各情報をCMU221A,221Bから、所定時間ごとに取得するようにした場合、充電率推定部27は、電流値取得部23が電流値Ia,Ibを取得したタイミングより前の端子間電圧値Va~Vh、及び温度Ta~Thの各情報に基づいて組電池21の第二充電率ESOCを推定してもよい。すなわち、電流値Ia,Ibの情報は、電流センサIA,IBから直接BMU222に通知されるのに対し、端子間電圧値Va~Vh及び温度Ta~Thの各情報は、電圧センサVA~VH及び温度センサTA~THからCMU221A,221Bを介してBMU222に通知される。このため、BMU222が、電流値Ia,Ibの情報と、端子間電圧値Va~Vh及び温度Ta~Thの各情報とを受信するのにタイムラグがあって、電流値Ia,Ibの情報と、端子間電圧値Va~Vh及び温度Ta~Thの各情報との同期がズレることも考えられる。よって、電圧値取得部25及び温度取得部26は、その同期がズレた分を考慮して、電流値Ia,Ibを取得する所定時間前の端子間電圧値Va~Vh、及び温度Ta~Thの各情報をCMU221A,221Bから取得することで、後述するステップS111の処理において、電流値に基づく第一充電率ASOCと、端子間電圧値等に基づく第二充電率ESOCとの差分のうち、その同期がズレた分を予め取り除くことができる、 In the process of step S109, the voltage value acquisition unit 25 and the temperature acquisition unit 26 acquire the information on the inter-terminal voltage values Va to Vh and the temperatures Ta to Th from the CMUs 221A and 221B every predetermined time. In this case, the charging rate estimation unit 27 uses the assembled battery 21 based on the information on the inter-terminal voltage values Va to Vh and the temperatures Ta to Th before the timing at which the current value acquisition unit 23 acquires the current values Ia and Ib. The second charging rate ESOC may be estimated. In other words, the information on the current values Ia and Ib is directly notified to the BMU 222 from the current sensors IA and IB, while the information on the voltage values Va to Vh and the temperatures Ta to Th is detected by the voltage sensors VA to VH and The BMU 222 is notified from the temperature sensors TA to TH via the CMUs 221A and 221B. Therefore, there is a time lag for the BMU 222 to receive the information on the current values Ia and Ib and the information on the voltage values Va to Vh between the terminals and the temperatures Ta to Th, and the information on the current values Ia and Ib. It is conceivable that the terminal voltage values Va to Vh and the temperatures Ta to Th are not synchronized with each other. Therefore, the voltage value acquisition unit 25 and the temperature acquisition unit 26 consider the amount of synchronization, and the inter-terminal voltage values Va to Vh and the temperatures Ta to Th a predetermined time before acquiring the current values Ia and Ib. Of the differences between the first charge rate ASOC based on the current value and the second charge rate ESOC based on the voltage value between the terminals in the process of step S111 described later, by acquiring each information of CMU 221A and 221B, It is possible to remove in advance the amount of synchronization deviation.
 次いで、判定部28は、第一充電率ASOCと第二充電率ESOCとの差分の絶対値が補正対象値XD1以上である場合に、電圧値取得部25が取得した端子間電圧値Va~Vhより決定される代表電圧値Vrと、テーブル記憶部31に記憶されている相関関係を示すテーブルによって推定される第一充電率ASOCに応じた端子間電圧値VASOCとの差分が、二次電池20の内部抵抗値の電圧降下値によるものか否かを判定する(ステップS111)。 Next, the determination unit 28 determines the inter-terminal voltage values Va to Vh acquired by the voltage value acquisition unit 25 when the absolute value of the difference between the first charging rate ASOC and the second charging rate ESOC is equal to or greater than the correction target value XD1. The difference between the representative voltage value Vr determined by the value and the inter-terminal voltage value V ASOC according to the first charging rate ASOC estimated by the table indicating the correlation stored in the table storage unit 31 is the secondary battery. It is determined whether or not it is due to the voltage drop value of the internal resistance value of 20 (step S111).
 この判定部28における判定処理について図9に示すフローチャートを参照して詳細に説明する。 The determination process in the determination unit 28 will be described in detail with reference to the flowchart shown in FIG.
 まず、判定部28は、図9に示すように、第一充電率ASOCから第二充電率ESOCを減算した値が補正対象値XD1以上であるか否かを判定する(ステップS200)。 First, as shown in FIG. 9, the determination unit 28 determines whether or not a value obtained by subtracting the second charging rate ESOC from the first charging rate ASOC is equal to or greater than the correction target value XD1 (step S200).
 ステップS200の処理において、補正対象値XD1以上であると判定した場合(ステップS200:Yes)判定部28は、二次電池20の内部抵抗値による電圧降下値Vdrを算出する(ステップS201)。一方、補正対象値XD1以上でないと判定した場合(ステップS200:No)、ステップS206の処理に移る。 In the process of step S200, when it is determined that the correction target value is XD1 or more (step S200: Yes), the determination unit 28 calculates a voltage drop value Vdr due to the internal resistance value of the secondary battery 20 (step S201). On the other hand, when it determines with it not being more than correction object value XD1 (step S200: No), it transfers to the process of step S206.
 ステップS201の処理後、判定部29は、上記式(1)を用いて、図4に示すテーブルにより推定される第一充電率ASOCに応じた端子間電圧値VASOCから電圧値取得部25が取得した端子間電圧値Va~Vhより決定される代表電圧値Vrを減算した値(VASOC-Vr)が、電圧降下値Vdrより大きいか否かを判定する(ステップS202)。但し、|Vdr|=|I|×Rin である。 After the process of step S201, the determination unit 29 uses the above equation (1) to calculate the voltage value acquisition unit 25 from the inter-terminal voltage value V ASOC corresponding to the first charging rate ASOC estimated from the table shown in FIG. It is determined whether or not a value (V ASOC −Vr) obtained by subtracting the representative voltage value Vr determined from the acquired inter-terminal voltage values Va to Vh is larger than the voltage drop value Vdr (step S202). However, | Vdr | = | I | × Rin.
 ステップS202の処理において、VASOC-Vrが電圧降下値Vdrより大きいと判定した場合(ステップS202:Yes)、判定部28は、上記式(4)を用いて、電圧値取得部25が二次電池20の各端子間電圧値Va~Vhを取得した時点を含む一定期間、二次電池20の充電状態又は放電状態のいずれか一方の状態であるか否かを判定する(ステップS203)。一方、VASOC-Vrが電圧降下値Vdr以下であると判定した場合(ステップS202:No)、ステップS100の処理に移る。 In the process of step S202, when it is determined that V ASOC −Vr is greater than the voltage drop value Vdr (step S202: Yes), the determination unit 28 uses the above equation (4) to determine that the voltage value acquisition unit 25 is a secondary It is determined whether or not the secondary battery 20 is in a charged state or a discharged state for a certain period including the time point when the inter-terminal voltage values Va to Vh of the battery 20 are acquired (step S203). On the other hand, when it is determined that V ASOC −Vr is equal to or lower than the voltage drop value Vdr (step S202: No), the process proceeds to step S100.
 ステップS203の処理において、充電状態又は放電状態のいずれか一方の状態であると判定した場合(ステップS203:Yes)、判定部28は、上記式(3)を用いて、電圧値取得部25が二次電池20の各端子間電圧値Va~Vhを取得した時点を含む一定期間、電流値取得部23が取得する電流値Ia,Ibの電流変動が所定範囲I内であるか否かを判定する(ステップS204)。一方、充電状態又は放電状態のいずれか一方の状態でないと判定した場合(ステップS203:No)、ステップS100の処理に移る。 In the process of step S203, when it determines with it being in any one state of a charge state or a discharge state (step S203: Yes), the determination part 28 is the voltage value acquisition part 25 using said Formula (3). certain period including the time when acquiring the voltage value Va ~ Vh between the terminals of the rechargeable battery 20, the current value Ia of the current value acquisition unit 23 acquires a current variation of Ib is whether it is within the predetermined range I P Determination is made (step S204). On the other hand, when it determines with it not being in any one state of a charge state or a discharge state (step S203: No), it transfers to the process of step S100.
 ステップS204の処理において、電流値取得部23が取得する電流値Ia,Ibの電流変動が所定範囲I内であると判定した場合(ステップS204:Yes)、判定部28は、第一充電率ASOCを第二充電率ESOCに基づいて補正する(ステップS205)。一方、電流値取得部23が取得する電流値の電流変動Ia,Ibが所定範囲I内でないと判定した場合(ステップS204:No)、ステップS100の処理に移る。 In the process of step S204, the current value Ia of the current value acquisition unit 23 acquires, if the current variation of Ib is determined to be within the predetermined range I P (step S204: Yes), the determination unit 28, a first charging rate The ASOC is corrected based on the second charging rate ESOC (step S205). On the other hand, if the current variation Ia of the current value the current value acquiring unit 23 acquires, Ib is determined not to be within the predetermined range I P (step S204: No), the routine to proceed to step S100.
 ステップS205の処理後、図8に示すフローチャートに戻り、ステップS112の処理に移る。 After step S205, the process returns to the flowchart shown in FIG. 8 and proceeds to step S112.
 一方、上記ステップS200の処理において、補正対象値XD1以上でないと判定した場合(ステップS200:No)、判定部28は、第二充電率ESOCから第一充電率ASOCを減算した値が補正対象値XD1以上であるか否かを判定する(ステップS206)。 On the other hand, when it is determined in the process of step S200 that the correction target value XD1 is not equal to or greater than the correction target value XD1 (step S200: No), the determination unit 28 subtracts the first charging rate ASOC from the second charging rate ESOC. It is determined whether or not it is greater than or equal to XD1 (step S206).
 ステップS206の処理において、補正対象値XD1以上であると判定した場合(ステップS206:Yes)、判定部28は、二次電池20の内部抵抗値による電圧降下値Vdrを算出する(ステップS207)。 In the process of step S206, when it is determined that the correction target value is XD1 or more (step S206: Yes), the determination unit 28 calculates a voltage drop value Vdr due to the internal resistance value of the secondary battery 20 (step S207).
 ステップS207の処理後、判定部28は、電圧値取得部25が取得した端子間電圧値Va~Vhより決定される代表電圧値Vrから図4に示すテーブルにより推定される第一充電率ASOCに応じた端子間電圧値V(ASOC)を減算した値(Vr-VASOC)が、電圧降下値Vdrより大きいか否かを判定する(ステップS208)。 After the processing of step S207, the determination unit 28 sets the first charging rate ASOC estimated by the table shown in FIG. 4 from the representative voltage value Vr determined from the inter-terminal voltage values Va to Vh acquired by the voltage value acquisition unit 25. depending inter-terminal voltage value V (ASOC) value obtained by subtracting (Vr-V ASOC) determines whether is greater than the voltage drop value Vdr (step S208).
 ステップS208の処理において、Vr-VASOCが電圧降下値Vdrより大きいと判定した場合(ステップS208:Yes)、ステップS203の処理に移る。一方、Vr-VASOCが電圧降下値Vdr以下であると判定した場合(ステップS208:No)、ステップS100の処理に移る。 If it is determined in step S208 that Vr−V ASOC is greater than the voltage drop value Vdr (step S208: Yes), the process proceeds to step S203. On the other hand, when it is determined that Vr−V ASOC is equal to or lower than the voltage drop value Vdr (step S208: No), the process proceeds to step S100.
 また、ステップS206の処理において、補正対象値XD1以上でないと判定した場合(ステップS206:No)、タイマをリセットし(ステップS209)、ステップS100の処理に移る。 If it is determined in step S206 that the correction target value is not equal to or greater than XD1 (step S206: No), the timer is reset (step S209), and the process proceeds to step S100.
 図8のフローチャートに戻り、ステップS111の処理の中のステップS205の処理後、補正部29は、第一充電率ASOCを第二充電率ESOCに基づいて補正する。すなわち、補正部29は、充電率記憶部30に充電率SOCとして記憶された第一充電率ASOCを第二充電率ESOCで書き換えて、第二充電率ESOCをステップS101における初期充電率にする。 Returning to the flowchart of FIG. 8, after the process of step S <b> 205 in the process of step S <b> 111, the correction unit 29 corrects the first charge rate ASOC based on the second charge rate ESOC. That is, the correction unit 29 rewrites the first charging rate ASOC stored as the charging rate SOC in the charging rate storage unit 30 with the second charging rate ESOC, and sets the second charging rate ESOC to the initial charging rate in step S101.
 以上のように本実施形態の電池システム1のBMS222において充電率の設定処理動作が実行される。 As described above, the charging rate setting processing operation is executed in the BMS 222 of the battery system 1 of the present embodiment.
 本実施形態の電池システム1によれば、電流値が所定値以下で且つ所定時間継続した場合に、二次電池の充放電電流の電流値を積算して算出する第一充電率を、二次電池の端子間電圧値で推定する第二充電率に基づいて補正することによって、誤差の少ない充電率を制御装置の各種制御で使用でき、その制御結果に与える影響を抑制することができる。 According to the battery system 1 of the present embodiment, when the current value is equal to or less than a predetermined value and continues for a predetermined time, the first charge rate calculated by integrating the current value of the charge / discharge current of the secondary battery is determined as the secondary charge rate. By correcting based on the second charging rate estimated by the voltage value between the terminals of the battery, the charging rate with less error can be used in various controls of the control device, and the influence on the control result can be suppressed.
 また、本発明の電池システムによれば、二次電池の内部抵抗による電圧降下値を算出し、この算出した電圧降下値によって上記推定した第二充電率の正確さを考慮することで、適切な第二充電率で第一充電率を補正することができ、誤差の少ない充電率を制御装置の各種制御で確実に使用することができる。 Further, according to the battery system of the present invention, the voltage drop value due to the internal resistance of the secondary battery is calculated, and the accuracy of the estimated second charging rate is taken into consideration by the calculated voltage drop value, so that the appropriate The first charging rate can be corrected with the second charging rate, and a charging rate with less error can be reliably used in various controls of the control device.
<変形例>
以上のように本発明の電池システムの好適な実施形態について説明したが、本発明は、上記実施形態に限定されるべきものではなく、請求の範囲に表現された思想及び範囲を逸脱することなく、種々の変形、追加、及び省略が当業者によって可能である。
<Modification>
The preferred embodiments of the battery system of the present invention have been described above. However, the present invention should not be limited to the above-described embodiments, and does not depart from the spirit and scope expressed in the claims. Various modifications, additions, and omissions can be made by those skilled in the art.
 例えば、上記本実施形態の電池システム1において、判定部28において、第一充電率ASOCと第二充電率ESOCとの差分の絶対値が補正対象値XD1以上であるか否かを判定し、上記差分の絶対値が補正対象値XD1以上である場合に、二次電池20の内部抵抗値による電圧降下値Vdrを算出するようにしていたが、本発明はこれに限られない。例えば、判定部28は、第一充電率ASOCと第二充電率ESOCとの差分の絶対値が補正対象値XD1以上である場合に、二次電池の内部抵抗値に応じた最低許容温度を設定し、温度取得部26が取得した温度Ta~Thより決定される代表温度Trが最低許容温度以上であるか否かを判定し、補正部29は、判定部28が判定した結果、代表温度Trが最低許容温度以上である場合に、第一充電率ASOCを第二充電率ESOCに基づいて補正するようにしてもよい。 For example, in the battery system 1 of the present embodiment, the determination unit 28 determines whether or not the absolute value of the difference between the first charging rate ASOC and the second charging rate ESOC is equal to or greater than the correction target value XD1. When the absolute value of the difference is equal to or greater than the correction target value XD1, the voltage drop value Vdr due to the internal resistance value of the secondary battery 20 is calculated, but the present invention is not limited to this. For example, when the absolute value of the difference between the first charging rate ASOC and the second charging rate ESOC is equal to or greater than the correction target value XD1, the determination unit 28 sets the minimum allowable temperature according to the internal resistance value of the secondary battery. Then, it is determined whether or not the representative temperature Tr determined from the temperatures Ta to Th acquired by the temperature acquisition unit 26 is equal to or higher than the minimum allowable temperature, and the correction unit 29 determines the representative temperature Tr as a result of the determination by the determination unit 28. May be corrected based on the second charging rate ESOC when the temperature is equal to or higher than the minimum allowable temperature.
 すなわち、内部抵抗値と温度とは、図6Aおよび図6Bに示すように、相関関係があるので、例えば、充電率の使用範囲が60%~70%であり、上記補正対象範囲内XD1となる内部抵抗値が1.2mΩであるとすると、図6Aおよび図6Bを参照すると、温度が5度以上であれば、第二充電率ESOCの電圧降下値の影響は許容範囲内と考えることができる。よって、設定部28において、最低許容温度を5度と設定し、補正部29が、代表温度Trが最低許容温度以上であると判定した場合に、第一充電率ASOCを第二充電率ESOCに基づいて補正する。このようにすることで、図6Aおよび図6Bに示すテーブルをテーブル記憶部31などのメモリに予め記憶しておく必要がなく、記憶すべきデータ量を減らすことができる。なお、設定部28における最低許容温度の設定は、例えば、電池システムの使用環境等を考慮して、ユーザが適宜入力設定することができる。 That is, since the internal resistance value and the temperature have a correlation as shown in FIGS. 6A and 6B, for example, the usage range of the charging rate is 60% to 70%, which is within the correction target range XD1. Assuming that the internal resistance value is 1.2 mΩ, referring to FIGS. 6A and 6B, if the temperature is 5 degrees or more, the influence of the voltage drop value of the second charging rate ESOC can be considered to be within the allowable range. . Therefore, when the setting unit 28 sets the minimum allowable temperature to 5 degrees and the correction unit 29 determines that the representative temperature Tr is equal to or higher than the minimum allowable temperature, the first charging rate ASOC is changed to the second charging rate ESOC. Correct based on. By doing so, it is not necessary to previously store the tables shown in FIGS. 6A and 6B in a memory such as the table storage unit 31, and the amount of data to be stored can be reduced. The setting of the minimum allowable temperature in the setting unit 28 can be appropriately input and set by the user in consideration of, for example, the usage environment of the battery system.
 また、上記本実施形態の電池システム1として、作業車に適用される場合を例にとって説明したが、本発明はこれに限られず、電池装置2に充電された電力を負荷に対して供給する種々の装置に適用可能であって、例えば、電気自動車や電気バスなどの車両、飛行機や船に用いられる移動体用システム、又は、家庭用の電力貯蔵システム、風車や太陽光のような自然エネルギー発電と組み合わせた系統連系円滑化蓄電システムなどの定置用システムにも適用することができる。 Moreover, although the case where it applied to a working vehicle was demonstrated as an example as the battery system 1 of the said embodiment, this invention is not limited to this, The electric power charged by the battery apparatus 2 with respect to a load is variously supplied. For example, vehicles such as electric cars and electric buses, systems for moving bodies used in airplanes and ships, or power storage systems for home use, natural energy generation such as windmills and sunlight. It can also be applied to stationary systems such as a grid interconnection smoothing power storage system combined with the above.
 さらに、上記本実施形態の電池システム1では、電池管理装置22が各二次電池20a~20hの端子間電圧Va~Vh、及び温度Ta~Thを全て取得する場合を例にとって説明したが、本発明はこれに限られず、例えば、端子間電圧及び温度を取得する二次電池をアームごとに選択して、これらから第二充電率ESOCを推定してもよい。この場合、各種計測センサ(電圧センサ、温度センサ)の数を減らすことができ。コストを抑制することもできる。 Furthermore, in the battery system 1 of the present embodiment, the case where the battery management device 22 acquires all the inter-terminal voltages Va to Vh and the temperatures Ta to Th of the secondary batteries 20a to 20h has been described as an example. The invention is not limited to this. For example, a secondary battery that acquires the voltage and temperature between terminals may be selected for each arm, and the second charging rate ESOC may be estimated from these. In this case, the number of various measurement sensors (voltage sensors, temperature sensors) can be reduced. Cost can also be suppressed.
 またさらに、上記本実施形態の電池システム1では、BMS22と上位制御装置3とを別途備える場合を例にとって説明したが、これらは、BMS22と上位制御装置3との各処理を一つの制御装置で行うようにしてもよい。 Furthermore, in the battery system 1 of the present embodiment, the case where the BMS 22 and the host control device 3 are separately provided has been described as an example. However, in this case, each process of the BMS 22 and the host control device 3 is performed by one control device. You may make it perform.
 さらに、上記本実施形態の電池システム1では、充電率推定部27は、電圧値取得部25が取得した端子間電圧値Va~Vhと、温度取得部26が取得した温度Ta~Thとを用いて、第二充電率ESOCを推定していたが、本発明はこれに限られず、例えば、電池システム1において温度が一定状態になるように温度管理ができる状況下等では、電圧値取得部25が取得した端子間電圧値Va~Vhのみから、第二充電率ESOCを推定するようにしてもよい。この場合、ある一定温度の端子間電圧値と充電率との関係を表すテーブルを用意するだけでよい。 Furthermore, in the battery system 1 of the present embodiment, the charging rate estimation unit 27 uses the inter-terminal voltage values Va to Vh acquired by the voltage value acquisition unit 25 and the temperatures Ta to Th acquired by the temperature acquisition unit 26. The second charging rate ESOC has been estimated, but the present invention is not limited to this. For example, in a situation where the temperature can be controlled so that the temperature is constant in the battery system 1, the voltage value acquisition unit 25. The second charging rate ESOC may be estimated from only the inter-terminal voltage values Va to Vh acquired by the above. In this case, it is only necessary to prepare a table representing the relationship between the voltage value between terminals at a certain constant temperature and the charging rate.
 またさらに、判定部28において電圧降下値Vdrの算出する際に、温度取得部26が取得した温度Ta~Thにより決定される代表温度Trと、充電率推定部27が推定した第二充電率ESOCとを用いて、電圧降下値Vdrを算出していたが、本発明はこれに限られず、例えば、電池システム1において温度が一定状態になるように温度管理ができる状況下等では、充電率推定部27が推定した第二充電率ESOCのみから、電圧降下値Vdrを算出してもよい。この場合、ある一定温度の内部抵抗値と充電率との関係を表すテーブルを用意するだけでよい。 Furthermore, when the voltage drop value Vdr is calculated by the determination unit 28, the representative temperature Tr determined by the temperatures Ta to Th acquired by the temperature acquisition unit 26 and the second charging rate ESOC estimated by the charging rate estimation unit 27 are calculated. However, the present invention is not limited to this, and for example, in a situation where temperature management can be performed so that the temperature is constant in the battery system 1, the charging rate estimation is performed. The voltage drop value Vdr may be calculated only from the second charging rate ESOC estimated by the unit 27. In this case, it is only necessary to prepare a table representing the relationship between the internal resistance value at a certain temperature and the charging rate.
 さらに、判定部28において電圧降下値Vdrの算出する際に、予め用意された二次電池20の内部抵抗値と充電率との関係を示すテーブルを用いて、二次電池20の内部抵抗値Rinを推定し、該推定した内部抵抗値Rinと電流値取得部23が取得した電流値Ia,Ibとを乗算することで電圧降下値Rinを算出していたが、本発明はこれに限られず、二次電池20の端子間電圧値Va~Vhと電流値取得部23が取得した電流値Ia,Ibに基づいて電圧降下値を算出するようにしてもよい。 Further, when the determination unit 28 calculates the voltage drop value Vdr, the internal resistance value Rin of the secondary battery 20 is used by using a table that shows the relationship between the internal resistance value and the charging rate of the secondary battery 20 prepared in advance. The voltage drop value Rin is calculated by multiplying the estimated internal resistance value Rin and the current values Ia and Ib acquired by the current value acquisition unit 23, but the present invention is not limited to this. The voltage drop value may be calculated based on the inter-terminal voltage values Va to Vh of the secondary battery 20 and the current values Ia and Ib acquired by the current value acquisition unit 23.
 またさらに、上記本実施形態において、BMU222には、用途に応じた各部が備えられているが、BMU222に備えられている各部は、そのいくつかを一纏めにして構成されていてもよいし、一つの部をさらに複数の部に分割して構成されていてもよい。 Furthermore, in the present embodiment, the BMU 222 is provided with various parts according to the application, but some of the parts provided in the BMU 222 may be configured together. One part may be further divided into a plurality of parts.
 本発明係わる電池システムによれば、駆動停止が少ない負荷に対しても、二次電池の充電率を適切に補正することができる。 According to the battery system according to the present invention, it is possible to appropriately correct the charging rate of the secondary battery even with respect to a load with few drive stops.
 1…電池システム
 2…電池装置
 21…組電池
 22…電池管理装置(BMS)
 221A,221B…CMU
 222…BMU,23…電流値取得部
 24…充電率算出部
 25…電圧値取得部
 26…温度取得部
 27…充電率推定部
 28…判定部
 29…補正部
 3…上位制御装置
 4…電力負荷(負荷)
 20(20a~20h)…二次電池
 100…作業車
 110…巡回路
 111…ステーション
 112…給電装置
DESCRIPTION OF SYMBOLS 1 ... Battery system 2 ... Battery apparatus 21 ... Battery assembly 22 ... Battery management apparatus (BMS)
221A, 221B ... CMU
222 ... BMU, 23 ... current value acquisition unit 24 ... charge rate calculation unit 25 ... voltage value acquisition unit 26 ... temperature acquisition unit 27 ... charge rate estimation unit 28 ... determination unit 29 ... correction unit 3 ... high-order control device 4 ... power load (load)
20 (20a to 20h) ... secondary battery 100 ... work vehicle 110 ... circuit 111 ... station 112 ... power feeding device

Claims (5)

  1.  二次電池の充放電電流の電流値を経時的に取得する電流値取得部と、
     前記電流値取得部が取得した前記電流値を積算し、該積算した積算値に基づいて前記二次電池の第一充電率を算出する充電率算出部と、
     前記二次電池の端子間電圧値を取得する電圧値取得部と、
     前記電流値取得部が前記電流値を所定値以下で且つ所定時間継続して取得した場合、前記電圧値取得部が取得した前記端子間電圧値を用いて、前記二次電池の端子間電圧値と充電率との相関関係に基づいて、前記二次電池の第二充電率を推定する充電率推定部と、
     前記第一充電率と前記第二充電率との差分の絶対値が補正対象値以上である場合に、前記電圧値取得部が取得した前記端子間電圧値より決定される代表電圧値と前記相関関係により推定される第一充電率に応じた端子間電圧値との差分が、前記二次電池の内部抵抗値に起因しているか否かを判定する判定部と、
     前記判定部が判定した結果、前記代表電圧値と前記第一充電率に応じた端子間電圧値との差分が、前記内部抵抗値に起因していない場合に、前記第一充電率を前記第二充電率に基づいて補正する補正部と、
     を有することを特徴とする電池システム。
    A current value acquisition unit that acquires the current value of the charge / discharge current of the secondary battery over time;
    A charge rate calculation unit that integrates the current value acquired by the current value acquisition unit and calculates a first charge rate of the secondary battery based on the integrated value;
    A voltage value acquisition unit for acquiring a voltage value between terminals of the secondary battery;
    When the current value acquisition unit acquires the current value below a predetermined value and continuously for a predetermined time, the voltage value between terminals of the secondary battery is obtained using the voltage value between terminals acquired by the voltage value acquisition unit. And a charging rate estimation unit that estimates a second charging rate of the secondary battery based on the correlation between the charging rate and the charging rate;
    When the absolute value of the difference between the first charging rate and the second charging rate is equal to or greater than the correction target value, the representative voltage value determined by the voltage value between the terminals acquired by the voltage value acquisition unit and the correlation A determination unit that determines whether or not the difference between the terminal voltage value according to the first charging rate estimated by the relationship is due to the internal resistance value of the secondary battery;
    As a result of the determination by the determination unit, when the difference between the representative voltage value and the inter-terminal voltage value according to the first charging rate is not due to the internal resistance value, the first charging rate is set to the first charging rate. A correction unit for correcting based on the two charging rates;
    A battery system comprising:
  2.  前記判定部は、前記第一充電率と前記第二充電率との差分の絶対値が補正対象値以上である場合に、前記二次電池の内部抵抗値による電圧降下値を算出し、
     前記電圧値取得部が取得した前記端子間電圧値より決定される代表電圧値と前記相関関係により推定される第一充電率に応じた端子間電圧値との差分の絶対値が、前記二次電池の内部抵抗値による電圧降下値より大きいか否かを判定し、
     前記補正部は、前記判定部が判定した結果、前記代表電圧値と前記第一充電率に応じた端子間電圧値との差分の絶対値が、前記電圧降下値より大きい場合に、前記第一充電率を前記第二充電率に基づいて補正することを特徴とする請求項1に記載の電池システム。
    When the absolute value of the difference between the first charging rate and the second charging rate is equal to or greater than a correction target value, the determination unit calculates a voltage drop value due to the internal resistance value of the secondary battery,
    The absolute value of the difference between the representative voltage value determined from the inter-terminal voltage value acquired by the voltage value acquisition unit and the inter-terminal voltage value according to the first charging rate estimated by the correlation is the secondary Judge whether it is larger than the voltage drop value due to the internal resistance value of the battery,
    When the absolute value of the difference between the representative voltage value and the inter-terminal voltage value corresponding to the first charging rate is larger than the voltage drop value, the correcting unit determines that the first The battery system according to claim 1, wherein the charging rate is corrected based on the second charging rate.
  3.  前記判定部は、前記電圧値取得部が前記二次電池の端子間電圧値を取得した時点を含む一定期間、前記電流値取得部が取得する前記電流値の電流変動が所定範囲内であるか否かを判定し、
     前記補正部は、上記判定部が前記一定期間、前記電流値取得部が取得する前記電流値の電流変動が所定範囲内であると判定したとき、前記第一充電率を前記第二充電率に基づいて補正することを特徴とする請求項1又は請求項2に記載の電池システム。
    Whether the current value of the current value acquired by the current value acquisition unit is within a predetermined range for a certain period including the time when the voltage value acquisition unit acquires the voltage value between the terminals of the secondary battery. Determine whether or not
    When the determination unit determines that the current fluctuation of the current value acquired by the current value acquisition unit is within a predetermined range for the certain period, the correction unit changes the first charging rate to the second charging rate. The battery system according to claim 1, wherein the correction is performed based on the battery system.
  4.  前記判定部は、前記電圧値取得部が前記二次電池の端子間電圧値を取得した時点を含む一定期間、前記二次電池の充電状態又は放電状態のいずれか一方の状態であるか否かを更に判定し、
     前記補正部は、上記判定部が前記一定期間、前記二次電池の充電状態又は放電状態のいずれか一方の状態であると判定したとき、前記第一充電率を前記第二充電率に基づいて補正することを特徴とする請求項1乃至請求項3のいずれか1項に記載の電池システム。
    Whether the determination unit is in one of a charged state or a discharged state of the secondary battery for a certain period including a time point when the voltage value acquiring unit acquires a voltage value between terminals of the secondary battery. Is further determined,
    The correction unit determines that the first charging rate is based on the second charging rate when the determining unit determines that the charging state or the discharging state of the secondary battery is in the certain period. The battery system according to claim 1, wherein correction is performed.
  5.  前記二次電池の温度を取得する温度取得部を更に有し、
     前記判定部は、前記第一充電率と前記第二充電率との差分の絶対値が補正対象値以上である場合に、前記二次電池の内部抵抗値に応じた最低許容温度を設定し、前記温度取得部が取得した前記温度が前記最低許容温度以上であるか否かを判定し、
     前記補正部は、前記判定部が判定した結果、前記温度取得部が取得した前記温度が前記最低許容温度以上である場合に、前記第一充電率を前記第二充電率に基づいて補正することを特徴とする請求項1に記載の電池システム。
    A temperature acquisition unit for acquiring the temperature of the secondary battery;
    When the absolute value of the difference between the first charging rate and the second charging rate is equal to or greater than the correction target value, the determination unit sets a minimum allowable temperature according to the internal resistance value of the secondary battery, Determining whether the temperature acquired by the temperature acquisition unit is equal to or higher than the minimum allowable temperature;
    The correction unit corrects the first charging rate based on the second charging rate when the temperature acquired by the temperature acquisition unit is equal to or higher than the minimum allowable temperature as a result of the determination by the determination unit. The battery system according to claim 1.
PCT/JP2012/083297 2011-12-22 2012-12-21 Battery system WO2013094743A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-281059 2011-12-22
JP2011281059A JP5272069B2 (en) 2011-12-22 2011-12-22 Battery system

Publications (1)

Publication Number Publication Date
WO2013094743A1 true WO2013094743A1 (en) 2013-06-27

Family

ID=48668620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083297 WO2013094743A1 (en) 2011-12-22 2012-12-21 Battery system

Country Status (2)

Country Link
JP (1) JP5272069B2 (en)
WO (1) WO2013094743A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106494252A (en) * 2016-11-21 2017-03-15 许继电源有限公司 Charging electric vehicle control method and control device
EP3852219A1 (en) * 2020-01-17 2021-07-21 Kabushiki Kaisha Toshiba Charge and discharge control device, charge and discharge system, charge and discharge control method, and charge and discharge control program

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6156029B2 (en) * 2013-09-30 2017-07-05 株式会社Gsユアサ Status monitoring device and status monitoring method
JP6128014B2 (en) 2014-02-27 2017-05-17 トヨタ自動車株式会社 Vehicle charging control device
JP6490414B2 (en) 2014-12-05 2019-03-27 古河電気工業株式会社 Secondary battery state detection device and secondary battery state detection method
JP6662172B2 (en) * 2016-04-20 2020-03-11 スズキ株式会社 Battery management device and battery management method
US10923774B2 (en) 2017-03-07 2021-02-16 Denso Corporation Battery state estimating device and power supply device
JPWO2022255480A1 (en) * 2021-06-04 2022-12-08

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008039515A (en) * 2006-08-03 2008-02-21 Nissan Motor Co Ltd Apparatus for detecting remaining capacity of battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5517986B2 (en) * 2011-03-30 2014-06-11 三菱重工業株式会社 Battery system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008039515A (en) * 2006-08-03 2008-02-21 Nissan Motor Co Ltd Apparatus for detecting remaining capacity of battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106494252A (en) * 2016-11-21 2017-03-15 许继电源有限公司 Charging electric vehicle control method and control device
CN106494252B (en) * 2016-11-21 2019-04-23 许继电源有限公司 Electric car charge control method and control device
EP3852219A1 (en) * 2020-01-17 2021-07-21 Kabushiki Kaisha Toshiba Charge and discharge control device, charge and discharge system, charge and discharge control method, and charge and discharge control program
US11735781B2 (en) 2020-01-17 2023-08-22 Kabushiki Kaisha Toshiba Charge and discharge control device, charge and discharge system, charge and discharge control method, and non-transitory storage medium

Also Published As

Publication number Publication date
JP2013130504A (en) 2013-07-04
JP5272069B2 (en) 2013-08-28

Similar Documents

Publication Publication Date Title
JP5272069B2 (en) Battery system
CN110914696B (en) Method and system for estimating battery open cell voltage, state of charge, and state of health during operation of a battery
US11124072B2 (en) Battery control device and electric motor vehicle system
CN109313236B (en) Battery management apparatus and method for calibrating state of charge of battery
KR102035678B1 (en) Method and appratus for caculating state of health(soh) of a battery
KR101195515B1 (en) Status detector for power supply, power supply, and initial characteristic extracting device for use with power supply
AU2010354957B2 (en) Charge status estimation apparatus
CN112313521B (en) Battery monitoring device, integrated circuit, and battery monitoring system
US9071072B2 (en) Available charging/discharging current calculation method and power supply device
JP4130425B2 (en) Secondary battery charge / discharge quantity estimation method and apparatus, secondary battery polarization voltage estimation method and apparatus, and secondary battery remaining capacity estimation method and apparatus
EP2439550B1 (en) Battery state of charge calculation device
EP3267552A1 (en) Battery control device and vehicle system
EP2847026B1 (en) Electrical storage system and equalizing method
JP4997358B2 (en) Full charge capacity correction circuit, charging system, battery pack, and full charge capacity correction method
JP2006112786A (en) Remaining capacity of battery detection method and electric power supply
KR20120135075A (en) State judging device, battery apparatus, state judging method
KR20090122470A (en) Quick charging method of lithium based secondary battery and electronic apparatus employing it
JP2015155859A (en) Battery residual amount estimation device, battery pack, power storage device, electric vehicle and battery residual amount estimation method
EP3011350A2 (en) Monitoring charge stored in a battery
US20170254857A1 (en) Control device, control method, and recording medium
KR20160007870A (en) Method for measuring of SOH and the correcting of SOC in battery using the battery DCIR assay
WO2020026509A1 (en) Cell state estimation device and cell control device
CN104569833A (en) Method and device for calculating charge state of power battery in discharging process
KR20160014165A (en) Method for estimating soc of battery management system
JP2014059226A (en) Soundness calculation device for battery and soundness calculation method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12860549

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12860549

Country of ref document: EP

Kind code of ref document: A1