WO2013094360A1 - Synchronous motor drive apparatus - Google Patents

Synchronous motor drive apparatus Download PDF

Info

Publication number
WO2013094360A1
WO2013094360A1 PCT/JP2012/080272 JP2012080272W WO2013094360A1 WO 2013094360 A1 WO2013094360 A1 WO 2013094360A1 JP 2012080272 W JP2012080272 W JP 2012080272W WO 2013094360 A1 WO2013094360 A1 WO 2013094360A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
synchronous motor
power
current
effective
Prior art date
Application number
PCT/JP2012/080272
Other languages
French (fr)
Japanese (ja)
Inventor
充邦 吉田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201280063326.8A priority Critical patent/CN104011993B/en
Publication of WO2013094360A1 publication Critical patent/WO2013094360A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/74Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors controlling two or more ac dynamo-electric motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/26Power factor control [PFC]

Definitions

  • the present invention relates to a synchronous motor drive device, and more particularly to a synchronous motor drive device that supplies three-phase AC power generated by an inverter circuit to a synchronous motor.
  • the synchronous motor driving device converts AC power (hereinafter also referred to as AC voltage and AC current) supplied from a commercial AC power source into DC power (hereinafter also referred to as DC voltage and DC current) by a converter circuit. Then, the DC power is converted into AC power (AC current) by an inverter circuit, and the synchronous motor is driven.
  • the inverter circuit chops the DC voltage output from the converter circuit with an IPM (Intelligent Power Module) or the like, thereby generating an AC current with variable frequency.
  • the refrigeration / air-conditioning apparatus has a fuse in the AC circuit unit so that the input AC current supplied from the commercial AC power supply does not exceed the current for operating the breaker.
  • the refrigeration / air conditioning device performs control to reduce the rotational speed of the synchronous motor of the compressor.
  • a current sensor such as an expensive current transformer (hereinafter also referred to as CT) is employed to detect the input alternating current.
  • Patent Document 1 uses a shunt resistor 12 that detects an output current to the inverter 4 without using CT, and estimates the input AC current from the three-phase AC power supply 2. Is disclosed.
  • Patent Document 2 discloses a configuration in which a DC-side current of a main circuit 11 of a PWM inverter is detected by a current sensor 12 and distributed to a current for each phase.
  • Patent Document 1 the current flowing through the shunt resistor 12 is integrated by the integrating circuit 19, and the input AC current is estimated based on the correlation between the integration value and the input AC current obtained in advance through experiments. For this reason, it is difficult to accurately estimate the input AC current according to the characteristics of the three-phase AC power supply and the rectifier circuit (converter circuit). Furthermore, the input AC current of the air conditioner is consumed not only by the compressor but also by, for example, heat loss in a fan motor and other power module units. In the configuration of Patent Document 1, it is impossible to detect the input AC current caused by them.
  • An object of the present invention is to provide a synchronous motor driving device capable of calculating active power with high accuracy and estimating input AC current with a simple configuration.
  • the present invention relates to a converter circuit that converts AC power into a DC voltage and outputs it, an inverter circuit that converts the DC voltage into a three-phase AC current based on a PWM signal, and outputs the same to a synchronous motor, and a microcomputer that outputs a PWM signal
  • the microcomputer includes a PWM signal generation unit that generates a PWM signal, an active power calculation unit that calculates the effective power of the synchronous motor based on the power supply current of the inverter circuit, and a direct current for the DC voltage and the effective power of the synchronous motor.
  • a voltage effective value calculation unit that calculates the voltage effective value of AC power based on the amount of change in voltage, a means for calculating the power factor of AC power based on the effective power or rotational speed of the synchronous motor, and the effective power and voltage of the synchronous motor
  • a synchronous motor driving device having an input current calculation unit that estimates an effective current value of AC power based on an effective value and a power factor.
  • the microcomputer further includes a DC voltage monitor circuit that generates a DC voltage monitor signal based on the DC voltage, and a DC voltage detector that detects the DC voltage based on the DC voltage monitor signal. It is desirable.
  • the microcomputer further has means for storing the relationship of the amount of change in DC voltage with respect to the effective power of the synchronous motor.
  • the microcomputer further includes means for detecting a ripple cycle of the AC power based on the DC voltage monitor signal, and the voltage effective value calculation unit includes the ripple cycle of the AC voltage and the change of the DC voltage. It is desirable to calculate the voltage effective value of AC power based on the amount.
  • the microcomputer further includes a proportional constant storage unit that holds a proportional constant of the power consumption of the microcomputer with respect to the effective power of the synchronous motor, and the effective power of the synchronous motor is equal to the effective power of the synchronous motor.
  • a value obtained by further adding a value obtained by multiplying power by a proportional constant is desirable.
  • the PWM signal generation unit reduce the rotational speed of the synchronous motor when the output of the input current calculation unit exceeds a predetermined value.
  • the present invention relates to a converter circuit that converts alternating current power into a direct current voltage and outputs it, and a first inverter circuit that converts the direct current voltage into a three-phase alternating current based on the first PWM signal and outputs it to a first synchronous motor. And a second inverter circuit that converts the DC voltage into a three-phase AC current based on the second PWM signal and outputs the same to the second synchronous motor, and a micro that outputs the first PWM signal and the second PWM signal.
  • the microcomputer includes a first PWM signal generation unit that generates a first PWM signal, a second PWM signal generation unit that generates a second PWM signal, and a power supply for the first inverter circuit A first active power calculator that calculates the effective power of the first synchronous motor based on the current; and a second active power that calculates the effective power of the second synchronous motor based on the power supply current of the second inverter circuit A voltage effective value of the AC power based on a change amount of the DC voltage with respect to the effective power of the synchronous motor obtained by adding the DC voltage and the effective power of the first synchronous motor and the effective power of the second synchronous motor.
  • a voltage effective value calculation unit for calculating for calculating; means for calculating a power factor of AC power based on the effective power or rotational speed of the first synchronous motor and the second synchronous motor; and the effective power, voltage effective value of the synchronous motor, and A synchronous motor driving device having an input current calculation unit that estimates an effective current value of AC power based on a power factor.
  • the synchronous motor drive device according to each embodiment of the present invention, it is a circuit diagram showing a configuration of a microcomputer A incorporating a current detection circuit 5A.
  • FIG. 3 is a circuit diagram illustrating a specific configuration of a converter circuit in the synchronous motor driving device according to each embodiment of the present invention.
  • the synchronous motor driving device MD1 includes a converter circuit 2, an inverter circuit 3, a current detection resistor (shunt resistor) R1, a resistor Rdc1, a resistor Rdc2, a current detection circuit 5, and a microcomputer A1.
  • Converter circuit 2 converts AC power supplied from commercial AC power supply 1 having voltage effective value Vac and current effective value Iac into DC voltage Vdc, and outputs it between positive DC line PL1 and negative DC line PL2.
  • FIG. 12A shows a converter circuit that outputs a DC voltage Vdc of 200 V from an AC voltage of 200 V, for example, as the effective voltage value Vac.
  • the AC voltage is rectified and smoothed by the diode bridge DB and the capacitor C, and output as a DC voltage Vdc of 200V.
  • FIG. 12B shows a converter circuit in which the voltage effective value Vac outputs a DC voltage Vdc of 200 V from an AC voltage of 100 V, for example.
  • the AC voltage is converted into a DC voltage Vdc boosted to 200 V by a voltage doubler circuit composed of a diode bridge DB, a capacitor C1, and a capacitor C2.
  • a converter circuit having a necessary configuration is selected according to the value of the effective voltage value Vac supplied to the synchronous motor drive device MD1.
  • the inverter circuit 3 has a three-phase (U phase / V phase / W phase) inverter (Qu / Qx, Qv / Qy, Qw / Qz) connected between the positive DC line PL1 and the negative DC line PL2.
  • Each of the three-phase inverters converts the DC voltage Vdc into a three-phase AC current (U phase / V phase / W phase) and supplies the same to the synchronous motor 4.
  • the microcomputer A1 generates a PWM (Pulse Width Modulation) signal and controls switching of each of the three-phase inverters. By this switching control, the inverter circuit 3 generates a three-phase AC current from the DC voltage Vdc.
  • PWM Pulse Width Modulation
  • the output side of the converter circuit 2 and the input side of the inverter circuit 3 are connected by a positive DC line PL1 and a negative DC line PL2, and a current detection resistor R1 is provided on the negative DC line PL2 between the two circuits. .
  • the current detection circuit 5 detects the DC current Idc flowing through the inverter circuit 3 based on the voltage generated across the current detection resistor R1, amplifies it, and outputs it to the microcomputer A1 as the DC current monitor signal Idc_sig.
  • the resistor Rdc1 and the resistor Rdc2 are connected in series between the positive DC line PL1 and the negative DC line PL2 to form a DC voltage monitor circuit.
  • a DC voltage monitor signal Vdc_sig1 obtained by dividing the DC voltage Vdc by both resistances is output to the microcomputer A1 from the connection point between the resistors Rdc1 and Rdc2.
  • microcomputer A1 Referring to FIG. 2, the configuration and operation of microcomputer A1 according to Embodiment 1 of the present invention will be described.
  • the microcomputer A1 includes a PWM signal generation unit 7 and an input current estimation unit 6.
  • the PWM signal generation unit 7 generates a PWM signal and outputs it to the inverter circuit 3.
  • the input current estimation unit 6 is supplied from the commercial AC power supply 1 to the synchronous motor driving device.
  • Estimated current effective value Iac_est of the input alternating current supplied to MD 1 is calculated and output to PWM signal generation unit 7.
  • the input current estimation unit 6 includes an instantaneous current distribution unit 61, an instantaneous power calculation unit 62, an active power calculation unit 63, and an input current calculation unit 64. Further, a synchronous motor pole number storage unit 612 that stores the number of poles of the synchronous motor 4 driven by the synchronous motor drive device MD1, a detection cycle storage unit 613 that stores a detection cycle of the DC current Idc of the inverter circuit 3, and a DC current Idc. It has a detection electrical angle setting unit 611 that sets the pitch of the electrical angle of the motor to be detected, and an instantaneous DC voltage detection unit 621 that detects the value of the DC voltage Vdc output from the converter circuit 2 at the time when the DC current Idc is detected.
  • the instantaneous current distribution unit 61 converts the DC current Idc flowing through the inverter circuit 3 at time t based on the DC current monitor signal Idc_sig detected at a predetermined time t to each of the three-phase (U-phase / V-phase / W-phase) inverters. Is distributed to instantaneous currents Iu (t), Iv (t), and Iw (t).
  • the DC current Idc of the inverter circuit 3 is the sum of currents flowing from the three-phase inverters to the negative DC line PL2.
  • the current flowing through each of the three-phase inverters is controlled by the PWM signal output from the PWM signal generation unit 7 included in the microcomputer A1.
  • the instantaneous current distribution unit 61 obtains a change in the DC current monitor signal Idc_sig at the timing immediately before and immediately after the switching of each of the three-phase inverters.
  • the change is distributed to the three-phase inverters based on the switching information of the PWM signal, so that the direct current Idc flowing through the inverter circuit 3 is distributed to the three-phase inverters.
  • the instantaneous DC voltage detection unit 621 detects the value of the DC voltage Vdc output from the converter circuit 2 at a set time based on the input DC voltage monitor signal Vdc_sig1, and the instantaneous power calculation unit 62 and the voltage effective value calculation unit 641 is output.
  • the instantaneous DC voltage detector 621 further detects and outputs a ripple period f_rpl of the DC voltage Vdc based on the DC voltage monitor signal Vdc_sig1.
  • the converter circuit 2 full-wave rectifies the AC voltage with a diode bridge, further reduces the ripple voltage with a smoothing circuit, and outputs a DC voltage Vdc.
  • a ripple (pulsation) having a cycle twice that of the commercial AC power supply 1 remains in the DC voltage Vdc as a result of full-wave rectification. This ripple cycle is reflected in the ripple cycle f_rpl of the DC voltage monitor signal Vdc_sig1 generated by resistance-dividing the DC voltage Vdc.
  • the ripple period f_rpl is obtained by detecting the value of the DC voltage monitor signal Vdc_sig1 at a predetermined detection period and averaging the detected value.
  • the detection cycle is set every few microseconds in consideration of noise cancellation, for example.
  • the ripple period f_rpl having twice the period is 10 milliseconds and 8.33 milliseconds, respectively.
  • This detection cycle is desirably set to a time from several microseconds to several hundred microseconds in consideration of the processing performance of the microcomputer A1 and the relationship with other arithmetic processing.
  • the input current estimation unit 6 further includes a voltage effective value calculation unit 641 that calculates the voltage effective value Vac of the commercial AC power supply 1, a power factor table 642 that stores a power factor between the AC voltage and the AC current, and a synchronous motor driving device.
  • a proportional constant storage unit 643 that converts heat loss energy of MD1 into power consumption is included.
  • the voltage effective value calculator 641 calculates the voltage effective value Vac according to the calculation formula described later. Is calculated.
  • the instantaneous power calculator 62 calculates the instantaneous power p (t) at a predetermined time t based on the three-phase instantaneous currents Iu (t), Iv (t), and Iw (t).
  • Instantaneous DC voltage detection unit 621 detects and outputs the value of DC voltage Vdc at time t output from converter circuit 2.
  • the instantaneous power p (t) is calculated by the following equation based on the instantaneous currents Iu (t), Iv (t), and Iw (t) and the DC voltage Vdc output from the instantaneous DC voltage detector 621.
  • the symbol “*” means a multiplication symbol
  • the symbol “/” means a division symbol.
  • pu (t) pu (t) + pv (t) + pw (t)
  • pu (t), pv (t), and pw (t) are instantaneous powers of the U phase, the V phase, and the W phase, respectively, and are obtained by the following equations.
  • pu (t) Vdc * U-phase PWM duty ratio * Iu (t)
  • pv (t) Vdc * V-phase PWM duty ratio * Iv (t)
  • pw (t) Vdc * W-phase PWM duty ratio * Iw (t)
  • the PWM duty ratio is a duty ratio of the PWM waveform.
  • FIG. 3 is a schematic diagram showing a waveform of a three-phase alternating current output from the inverter circuit 3 in the synchronous motor driving device MD1 according to the embodiment of the present invention.
  • the horizontal axis indicates a range corresponding to one mechanical rotation of the synchronous motor 4, that is, a mechanical angle of 360 °.
  • the vertical axis schematically shows the output current waveform of the inverter 3 for each phase (U phase / V phase / W phase).
  • the mechanical angle 360 ° corresponds to the electrical angle 720 °.
  • the time at the electrical angle of 30 ° is set to t1
  • the detection time is set for every electrical angle of 60 ° (pitch at the electrical angle of 60 °).
  • the last detection time tn in the cycle T is a time corresponding to an electrical angle of 690 °, and the total number of detections is 12 times.
  • the detection of instantaneous power has been described by setting the electrical angle 60 ° as the cycle.
  • the calculation accuracy of the active power can be improved by setting the instantaneous power detection time (the pitch of the electrical angle to be set) smaller.
  • the pitch of the electrical angle for detecting the instantaneous power p (t) is 1 °, 10 °, 30 °, or 60 ° in consideration of the processing performance of the microcomputer A1 and the relationship with other arithmetic processing. It is preferable to select from these periods.
  • the pitch of the electrical angle to be set is preferably 60 ° or less.
  • the synchronous motor pole number storage unit 612 stores the pole number of the synchronous motor 4 driven by the inverter circuit 3.
  • a synchronous motor having a four-pole three-phase structure is described as an example.
  • the synchronous motor pole number storage unit 612 stores information indicating that the synchronous motor has four poles.
  • the synchronous motor driving device MD1 according to the present embodiment can easily control a synchronous motor having another structure by changing information to be written in the synchronous motor pole number storage unit 612.
  • the detection cycle storage unit 613 stores the pitch of the electrical angle for detecting the instantaneous power p (t) in the cycle T of one mechanical rotation of the synchronous motor 4.
  • the synchronous motor driving device MD1 according to the present embodiment can change the pitch of the electrical angle, and can calculate the effective power with the accuracy required by the user.
  • the detected electrical angle setting unit 611 outputs the time t at which the DC current monitor signal Idc_sig output from the current detection circuit 5 is detected to the instantaneous current distribution unit 61.
  • the instantaneous current distribution unit 61 calculates the instantaneous currents Iu (t), Iv (t), and Iw (t) flowing through the three-phase inverters of the inverter circuit 3 at the designated time t.
  • the detection electrical angle setting unit 611 Based on the information output from the synchronous motor pole number storage unit 612 and the detection cycle storage unit 613, the detection electrical angle setting unit 611 detects the DC current Idc flowing through the inverter circuit 3 relative to the instantaneous current distribution unit 61 at the detection time t1. ⁇ Tn is notified.
  • the active power calculation unit 63 integrates the instantaneous power p (t) output from the instantaneous power calculation unit 62 over a predetermined period T, and divides the integration result by the period T to calculate the active power P.
  • the time for which the motor makes one mechanical rotation is defined as a period T, and a plurality of times t1 to tn are set over the period T.
  • the effective power P consumed by the synchronous motor 4 is obtained by the following formula 1 obtained by dividing the sum of the instantaneous powers p (t1) to p (tn) at each time by the period T.
  • P (p (t1) + p (t2) +... + P (tn)) / T.
  • the active power calculation unit 63 calculates the effective power P consumed by the synchronous motor 4 by dividing the sum of the instantaneous powers p (t1) to p (tn) at each time by the period T as described in Equation 1. And output to the input current calculation unit 64 and the voltage effective value calculation unit 641.
  • a formula for calculating the effective power P will be described, taking as an example the specific number of poles of the synchronous motor 4 and the pitch of the detected electrical angle.
  • Total effective power P_md1 of the synchronous motor driving device the effective values of the AC voltage and the AC current supplied from the commercial AC power supply 1 to the synchronous motor driving device MD1 are Vac and Iac, respectively.
  • the phase difference between the AC voltage and the AC current is “ ⁇ ”
  • the effective power is Vac * Iac * cos ( ⁇ ).
  • Vac * Iac * cos ( ⁇ ) P_md1
  • the effective power supplied from the commercial AC power source 1 to the converter circuit 2 constituted by a diode bridge or the like and the output power of the converter circuit 2 are considered to be substantially equal.
  • the output power of the converter circuit 2 is mainly consumed by the synchronous motor 4 driven by the inverter circuit 3.
  • the active power of the synchronous motor 4 is obtained as the active power P output from the active power calculator 63 shown in FIG.
  • a formula for calculating the effective power P of the synchronous motor 4 is as shown in Formula 1.
  • the output power of the converter circuit 2 in addition to the effective power P of the synchronous motor 4, power consumption due to heat loss of the microcomputer A1 part that controls the inverter circuit 3 may not be negligible.
  • the power for the heat loss of the IPM (microcomputer A1) that controls the chopping operation of the inverter circuit 3 is P_ipm1.
  • This P_ipm1 is proportional to the effective power P of the synchronous motor 4 driven by the inverter circuit 3. If the proportionality constant is k1, the following relationship is established.
  • P_ipm1 k1 * P
  • the proportionality constant k1 is a value obtained by experiments or the like and is stored in the microcomputer A1.
  • the total effective power P_md1 consumed by the synchronous motor driving device MD1 is the sum of the effective power P of the synchronous motor 4 and the power P_ipm1 corresponding to the heat loss of the IPM.
  • the relationship between the active power supplied from the commercial AC power supply 1 to the converter circuit 2 and the total active power P_md1 consumed by the synchronous motor driving device MD1 is shown below.
  • FIG. 11 is six graphs showing changes in the drop DC voltage ⁇ Vdc (vertical axis) with respect to the active power P (horizontal axis) of the synchronous motor 4.
  • the six graphs can be broadly divided into a group with a commercial AC voltage frequency of 50 Hz and a group with 60 Hz. Each group is further configured by a graph when the effective value of the AC voltage is 90V, 100V, and 110V.
  • the drop DC voltage ⁇ Vdc decreases (the absolute value of ⁇ Vdc increases). That is, the DC voltage Vdc output from the converter circuit 2 decreases.
  • the active power P and the dropped DC voltage ⁇ Vdc have an inversely proportional relationship, and the relationship further changes with the frequency of the input AC voltage. Therefore, for each frequency of the commercial AC voltage, a data table (hereinafter also simply referred to as a data table) of the active power P and the drop DC voltage ⁇ Vdc is stored in the microcomputer A1, and the active power P and the commercial AC voltage are stored. By specifying the frequency, it is possible to obtain the drop DC voltage ⁇ Vdc.
  • the voltage effective value calculation unit 641 shown in FIG. 2 calculates the voltage effective value Vac based on the ripple period f_rpl, the DC voltage Vdc, the active power P, and a data table (not shown).
  • the frequency of the commercial AC power supply 1 is determined from the ripple cycle f_rpl output from the instantaneous DC voltage detector 621, and the data group of the determined frequency is selected from the two data groups stored in the data table.
  • the drop DC voltage ⁇ Vdc corresponding to the active power P of the synchronous motor 4 is determined.
  • the drop DC voltage ⁇ Vdc is determined with reference to the data table.
  • the voltage effective value calculation unit 641 applies the determined drop DC voltage ⁇ Vdc and the DC voltage Vdc output from the instantaneous DC voltage detection unit 621 to Formula 5 or Formula 51, calculates the voltage effective value Vac, and inputs it to the input current calculation unit 64. Output.
  • the relationship between the two may be set to an approximate expression for each frequency of each AC voltage and may be processed.
  • the approximate expression may be a quadratic expression, or the range of the active power P may be divided as appropriate, and the divided power section may be approximated by a primary expression.
  • the drop DC voltage ⁇ Vdc may be calculated.
  • the DC voltage drop ⁇ Vdc may be calculated when the synchronous motor 4 continues to rotate at the same rotational speed for T seconds or longer.
  • the voltage effective value Vac with less error can be estimated by this calculation method.
  • the time T set as the duration is set in the microcomputer A1 in advance.
  • the effective voltage value Vac of the commercial AC power source 1 during the operation period of the synchronous motor 4 can be detected corresponding to the frequency of the commercial AC power source 1 and the circuit configuration of the converter circuit 2. Even if the AC voltage varies during the operation period, the effective voltage value Vac can be detected.
  • FIG. 4 is an example of a table in which the relationship between the total effective power P_md1 and the power factor of the synchronous motor driving device MD1 is obtained in advance through experiments or the like, and is stored in the microcomputer A1.
  • the total active power P_md1 calculated by the microcomputer A1 is applied to the table of FIG. 4 to determine the power factor.
  • the relationship between the two may be set as an approximate expression and arithmetic processing may be performed.
  • FIG. 5 is an example of a table showing the rotational speed (rpm) per unit time of the synchronous motor 4, that is, the relationship between the rotational speed and the power factor, and is stored in the microcomputer A1.
  • the total active power P_md1 calculated by the microcomputer A1 is applied to the table of FIG. 5 to determine the power factor.
  • the input current calculation unit 64 estimates the current effective value Iac of the AC power supplied from the commercial AC power supply 1 based on the active power P of the synchronous motor 4 output from the active power calculation unit 63, and estimates the current effective value Iac_est. Output as.
  • the voltage effective value Vac output from the voltage effective value calculation unit 641, the power factor value stored in the power factor table 642, and the proportionality constant stored in the proportionality constant storage unit 643.
  • Each k1 is quoted.
  • the calculation formula of the estimated current effective value Iac_est corresponds to the above formula 4.
  • the PWM signal generation unit 7 changes the duty of the PWM signal output to the inverter circuit 3 and decreases the rotational speed of the synchronous motor 4.
  • the synchronous motor driving device MD1 can maintain the continuous operation of the refrigeration / air conditioning device.
  • the synchronous motor driving device MD1 of the first embodiment uses the general-purpose arithmetic processing function provided in the microcomputer A1 that operates as the IPM, so that the refrigeration cycle is not added without adding complicated circuit components.
  • the continuous operation of the equipment having Moreover, the input current effective value can be estimated more accurately by adding the power corresponding to the heat loss of the IPM to the effective power of the synchronous motor driving device MD1.
  • Synchronous motor drive device MD11 shown in FIG. 6 converts AC power supplied from commercial AC power source 1 having voltage effective value Vac and current effective value Iac into DC voltage Vdc, and is connected between positive DC line PL1 and negative DC line PL2. It has the converter circuit 2 which outputs. Unlike synchronous motor drive device MD1 shown in FIG. 1, synchronous motor drive device MD11 has inverter circuit 31 and inverter circuit 32 connected in parallel to positive DC line PL1 and negative DC line PL2.
  • the converter circuit 2 one shown in FIG. 12 (a) or FIG. 12 (b) is appropriately selected according to the value of the voltage effective value Vac of the AC power supplied to the synchronous motor driving device MD11.
  • the inverter circuit 31 and the inverter circuit 32 generate a three-phase alternating current from the direct-current voltage Vdc, and supply the three-phase alternating current to the compressor synchronous motor 41 of the refrigeration / air-conditioning apparatus and the fan synchronous motor 42 of the outdoor unit, respectively.
  • the microcomputer A21 generates the PWM signal 1 and the PWM signal 2, and controls the switching operations of the inverter circuit 31 and the inverter circuit 32, respectively.
  • a current detection resistor R11 is provided on the negative DC line PL21 connecting the converter circuit 2 and the inverter circuit 31.
  • a current detection resistor R21 is provided on the negative DC line PL22 connecting the converter circuit 2 and the inverter circuit 32.
  • the current detection circuit 1 (51) and the current detection circuit 2 (52) respectively generate DC currents Idc1 and Idc2 flowing through the inverter circuit 31 and the inverter circuit 32, respectively. It detects, amplifies, and outputs DC current monitor signal Idc1_sig and DC current monitor signal Idc2_sig to microcomputer A21.
  • the synchronous motor driving device MD11 further includes a DC voltage monitor circuit configured by a resistor Rdc1 and a resistor Rdc2 connected in series between the positive DC line PL1 and the negative DC line PL2.
  • a DC voltage monitor signal Vdc_sig11 obtained by dividing the DC voltage Vdc by both resistors is output to the microcomputer A21 from a connection point between the resistors Rdc1 and Rdc2.
  • the microcomputer A21 includes a first input current estimation unit 6M, a second input current estimation unit 6FM, a first PWM signal generation unit 7M, and a second PWM signal generation unit 7FM.
  • First PWM signal generation unit 7M and second PWM signal generation unit 7FM generate PWM signal 1 and PWM signal 2, respectively, and output them to inverter circuit 31 and inverter circuit 32.
  • the first input current estimation unit 6M is supplied from the commercial AC power supply 1 to the compressor synchronous motor 41 based on the DC current monitor signal Idc1_sig and the PWM signal 1 output from the first PWM signal generation unit 7M.
  • An estimated current effective value Iac1_est of the alternating current is calculated and output to the first PWM signal generation unit 7M.
  • the second input current estimation unit 6FM is based on the DC current monitor signal Idc2_sig and the PWM signal 2 output from the second PWM signal generation unit 7FM, and the input AC supplied from the commercial AC power supply 1 to the fan synchronous motor 42.
  • the estimated current effective value Iac2_est of the current is calculated and output to the PWM signal generation unit 2.
  • the first input current estimation unit 6M shown in FIG. 7 has the same configuration as the input current estimation unit 6 according to Embodiment 1 shown in FIG. 2 except for the following points. 2 detects the value of the DC voltage Vdc output from the converter circuit 2 at the set time based on the DC voltage monitor signal Vdc_sig1, and the instantaneous power calculator 62 and the voltage effective value calculator 641 is output. On the other hand, the instantaneous DC voltage detection unit 621 (not shown) included in the first input current estimation unit 6M shown in FIG. 7 detects the value of the DC voltage Vdc based on the DC voltage monitor signal Vdc_sig11.
  • the first input current estimation unit 6M shown in FIG. 7 is a first synchronous motor pole number storage unit 612M that stores the number of motor poles of the compressor synchronous motor 41, and a first electrical angle that detects the instantaneous power. Detection cycle storage unit 613M and a first proportionality constant storage unit 643M that stores the proportionality constant k1.
  • the second input current estimation unit 6FM shown in FIG. 7 has the same configuration as the input current estimation unit 6 according to Embodiment 1 shown in FIG. 2 except for the following points.
  • the instantaneous DC voltage detection unit 621 in FIG. 2 detects the ripple period f_rpl and the DC voltage Vdc of the DC voltage Vdc based on the DC voltage monitor signal Vdc_sig1.
  • the second input current estimation unit 6FM does not include the instantaneous DC voltage detection unit 621 in FIG.
  • the instantaneous power calculation unit 62 and the voltage effective value calculation unit 641 calculate the instantaneous power p (t) and the voltage effective value Vac based on the data output from the instantaneous DC voltage detection unit 621 of the first input current estimation unit 6M. calculate. That is, only the first input current estimation unit 6M has a function of detecting the ripple period f_rpl of the DC voltage Vdc and the DC voltage Vdc from the DC voltage monitor signal Vdc_sig11.
  • the first input current estimation unit 6M and the second input current estimation unit 6FM may have a function of detecting the ripple period f_rpl of the DC voltage Vdc and the DC voltage Vdc_off from the DC voltage monitor signal Vdc_sig11.
  • the detection function may be provided in the second input current estimation unit 6FM.
  • the second input current estimation unit 6FM includes a second synchronous motor pole number storage unit 612FM that stores the motor pole number of the fan synchronous motor 42, and a second detection cycle storage unit that stores an electrical angle for detecting instantaneous power. 613FM and a second proportional constant storage unit 643FM that stores the proportional constant k2.
  • the effective power of the compressor synchronous motor 41 obtained by the first input current estimating unit 6M is P_comp
  • the effective power of the fan synchronous motor 42 obtained by the second input current estimating unit 6FM is P_fan.
  • the voltage effective value Vac of the commercial AC power supply 1 is obtained by the formula 5 or the formula 51 in the first embodiment.
  • the DC voltage Vdc and the drop DC voltage ⁇ Vdc are the instantaneous DC voltage detector 621 and active power calculator 63 provided in the first input current estimator 6M of FIG. Calculate based on the output of.
  • the drop DC voltage ⁇ Vdc is obtained based on a data table (not shown) provided in the microcomputer A21 shown in FIG.
  • the microcomputer A21 When the sum of Iac1_est and Iac2_est exceeds a predetermined value, the microcomputer A21 appropriately controls the inverter 31 and the inverter 32 to reduce the rotational speeds of the compressor synchronous motor 41 and the fan synchronous motor 42. . By this rotation speed control, the synchronous motor driving device MD1 can maintain the continuous operation of the refrigeration / air conditioning device.
  • the synchronous motor driving device MD11 calculates the total effective power including the power corresponding to the heat loss of the IPM of the synchronous motor for the compressor and the synchronous motor for the fan. It becomes possible.
  • a converter circuit 2 includes a converter circuit 2, an inverter circuit 3, a shunt resistor R1, a resistor Rdc1, a resistor Rdc2, a current detection circuit 53, and a microcomputer A3.
  • Converter circuit 2 converts AC power supplied from commercial AC power supply 1 having voltage effective value Vac and current effective value Iac into DC voltage Vdc, and outputs it between positive DC line PL1 and negative DC line PL2.
  • the converter circuit 2 is appropriately selected from those shown in FIG. 12 (a) or FIG. 12 (b) in accordance with the value of the voltage effective value Vac of the AC power supply supplied to the synchronous motor driving device MD2.
  • the inverter circuit 3 has a three-phase (U phase / V phase / W phase) inverter (Qu / Qx, Qv / Qy, Qw / Qz) connected between the positive DC line PL1 and the negative DC line PL2.
  • Each of the three-phase inverters converts the DC voltage Vdc into a three-phase AC current (U phase / V phase / W layer) and supplies it to the synchronous motor 4.
  • the microcomputer A3 generates a PWM (Pulse Width Modulation) signal and controls switching of each of the three-phase inverters. By this switching control, the inverter circuit 3 generates a three-phase AC current from the DC voltage Vdc.
  • PWM Pulse Width Modulation
  • the output side of the converter circuit 2 and the input side of the inverter circuit 3 are connected by a positive DC line PL1 and a negative DC line PL2, and a shunt resistor R1 is provided on the negative DC line PL2 between the two circuits.
  • the resistor Rdc1 and the resistor Rdc2 are connected in series between the positive DC line PL1 and the negative DC line PL2 to form a DC voltage monitor circuit.
  • a DC voltage monitor signal Vdc_sig2 obtained by dividing the DC voltage Vdc by both resistors is output to the microcomputer A3 from the connection point between the resistors Rdc1 and Rdc2.
  • the second embodiment of the present invention is different from the first embodiment and the modification of the first embodiment as follows. That is, current detection resistors Ru, Rv, and Rw are arranged between the three-phase (U-phase / V-phase / W-layer) inverters constituting the inverter circuit 3 and the negative DC line PL2.
  • the DC current Idc of the inverter circuit 3 is detected by the resistor R1 that is also a shunt resistor.
  • the resistor R1 is used as a shunt resistor and is used to detect an overcurrent of the inverter circuit 3.
  • the potential at the connection point between each of the three-phase inverters and the current detection resistors Ru, Rv, Rw is input to the current detection circuit 53.
  • the current detection circuit 53 converts the value of the potential of each phase into DC current signals Iru, Irv, and Irw flowing through the inverters, and outputs them to the microcomputer A3.
  • the microcomputer A3 includes an input current estimation unit 6A and a PWM signal generation unit 7.
  • the PWM signal generation unit 7 generates a PWM signal and outputs it to the inverter circuit 3. Based on the DC current signal Iru / Irv / Irw output from the current detection circuit 53, the PWM signal output from the PWM signal generator 7, and the DC voltage monitor signal Vdc_sig2, the input current estimation unit 6A 1 to calculate the estimated current effective value Iac_est of the input AC current supplied from 1 to the synchronous motor drive device MD2, and outputs it to the PWM signal generator 7.
  • the input current estimation unit 6A includes an instantaneous current detection unit 61A, an instantaneous power calculation unit 62A, an active power calculation unit 63, and an input current calculation unit 64. Further, the synchronous motor pole number storage unit 612 that stores the number of poles of the synchronous motor 4 driven by the synchronous motor drive device MD2, the detection cycle storage unit 613 that stores the detection cycle of the DC current Idc of the inverter circuit 3, and the DC current Idc. It has a detection electric angle setting unit 611 that sets the pitch of the electric angle of the motor to be detected, and an instantaneous DC voltage detection unit 621 that stores the value of the DC voltage Vdc output from the converter circuit 2 at the time when the DC current Idc is detected.
  • the instantaneous current detection unit 61A is configured to output instantaneous currents Iu (t), Iv (t), and Iw ( t) is output. Unlike the first embodiment, it is not necessary to input a PWM signal to the instantaneous current detector 61A and distribute it to the three-phase instantaneous current.
  • the instantaneous DC voltage detection unit 621 detects the value of the DC voltage Vdc output from the converter circuit 2 at a set time based on the input DC voltage monitor signal Vdc_sig2, and the instantaneous power calculation unit 62A and the voltage effective value calculation unit 641 is output.
  • the instantaneous DC voltage detection unit 621 further outputs a ripple cycle f_rpl of the DC voltage Vdc based on the DC voltage monitor signal Vdc_sig2.
  • the method for detecting the ripple period f_rpl is the same as in the first embodiment.
  • the input current estimation unit 6A further includes a voltage effective value calculation unit 641 that calculates the value of the voltage effective value Vac of the commercial AC power supply 1, a power factor table 642 that stores a power factor between the AC voltage and the AC current, and a synchronous motor
  • a proportional constant storage unit 643 that converts heat loss energy of the driving device MD2 into power consumption is included.
  • the voltage effective value calculation unit 641 determines the drop DC voltage ⁇ Vdc with reference to the data table based on the active power P output from the active power calculation unit 63 and the ripple cycle f_rpl output from the instantaneous DC voltage detection unit 621. Furthermore, the voltage effective value calculation unit 641 calculates the voltage effective value Vac by a calculation formula described later based on the determined drop DC voltage ⁇ Vdc and the DC voltage Vdc output from the instantaneous DC voltage detection unit 621.
  • the instantaneous power calculator 62A outputs the three-phase instantaneous currents Iu (t), Iv (t) and Iw (t), the PWM signal output from the PWM signal generator 7, and the instantaneous DC voltage detector 621. Based on the DC voltage Vdc, the instantaneous power p (t) at a predetermined time t is calculated.
  • the instantaneous power p (t) is calculated by the following formula based on the instantaneous currents Iu (t), Iv (t), and Iw (t) and the DC voltage Vdc output from the instantaneous DC voltage detector 621.
  • pu (t) pu (t) + pv (t) + pw (t)
  • pu (t), pv (t), and pw (t) are instantaneous powers of the U phase, the V phase, and the W phase, respectively, and are obtained by the following equations.
  • pu (t) Vdc * U-phase PWM duty ratio * Iu (t)
  • pv (t) Vdc * V-phase PWM duty ratio * Iv (t)
  • pw (t) Vdc * W-phase PWM duty ratio * Iw (t)
  • the PWM duty ratio is a duty ratio of the PWM waveform.
  • the detection time of the instantaneous power p (t) is set similarly to the detection time in the first embodiment shown in FIG.
  • Detection times t1 to tn are set at a detection pitch of a predetermined electrical angle over an electrical angle corresponding to a period T of one mechanical rotation (mechanical angle 360 °) of the synchronous motor 4.
  • the electrical angle corresponding to the period T of one mechanical rotation depends on the number of poles of the synchronous motor 4.
  • Both the detection cycle storage unit 613 shown in FIG. 9 and FIG. 2 store the pitch of the electrical angle at which the instantaneous power p (t) is detected.
  • the synchronous motor pole number storage unit 612 shown in FIGS. 9 and 2 stores the number of poles of the synchronous motor 4 together.
  • the detected electrical angle setting unit 611 shown in FIG. 9 is configured to provide a DC current signal Iru / Irv / Irw to the instantaneous current detection unit 61A based on information output from the synchronous motor pole number storage unit 612 and the detection cycle storage unit 613. The detection times t1 to tn are notified.
  • the active power calculator 63 calculates the effective power P by dividing the sum of the instantaneous power p (t) output from the instantaneous power calculator 62A by the period T of one mechanical rotation of the synchronous motor 4.
  • the formula for calculating the effective power P is the following formula 1A.
  • P (p (t1) + p (t2) + ... + p (tn)) / T ... Equation 1A
  • Formula 1A corresponds to Formula 1 in Embodiment 1.
  • Total effective power P_md2 of synchronous motor driving device the effective values of the AC voltage and AC current supplied from commercial AC power supply 1 to synchronous motor drive device MD2 are Vac and Iac, respectively.
  • the active power is Vac * Iac * cos ( ⁇ ).
  • P_md1 the total active power consumed by the synchronous motor drive device MD2 is P_md1
  • Vac * Iac * cos ( ⁇ ) P_md2
  • the effective power supplied from the commercial AC power supply 1 to the converter circuit 2 constituted by a diode bridge or the like and the output power of the converter circuit 2 are considered to be substantially equal.
  • the output power of the converter circuit 2 is mainly consumed by the synchronous motor 4 driven by the inverter circuit 3.
  • the active power of the synchronous motor 4 is obtained as the active power P output from the active power calculator 63 shown in FIG.
  • the calculation formula for the effective power P of the synchronous motor 4 is as shown in Formula 1A, as in the first embodiment.
  • the output power of the converter circuit 2 in addition to the effective power P of the synchronous motor 4, there is a case where the power consumption due to the heat loss of the microcomputer A 3 that controls the inverter circuit 3 cannot be ignored.
  • the power for the heat loss of the IPM (microcomputer A3) that controls the chopping operation of the inverter circuit 3 is P_ipm3.
  • the proportionality constant k1 is a value obtained by experiments or the like, and is stored in the microcomputer A3.
  • the total effective power P_md3 consumed by the synchronous motor driving device MD3 is the sum of the effective power P of the synchronous motor 4 and the power P_ipm3 corresponding to the heat loss of the IPM.
  • the relationship between the active power supplied from the commercial AC power supply 1 to the converter circuit 2 and the total active power P_md3 consumed by the synchronous motor driving device MD3 is shown below.
  • Vac * Iac * cos ( ⁇ ) P_md3
  • Expression 2A and Expression 3A correspond to Expression 2 and Expression 3 in the first embodiment.
  • Equation 4A (1 + k1) * P / (Vac * cos ( ⁇ )) Equation 4A
  • Expression 4A corresponds to Expression 4 in the first embodiment.
  • the six graphs shown in FIG. 11 are stored in the microcomputer A1 as a data table of the active power P and the drop DC voltage ⁇ Vdc for each frequency of the commercial AC power supply 1, and the active power P And by specifying the frequency of the input AC voltage, it is possible to obtain the dropped DC voltage ⁇ Vdc.
  • the input AC voltage and the power factor cos ( ⁇ ) of the input AC current are obtained based on the table shown in FIG. 4 or 5 stored in the microcomputer A3.
  • the input current calculation unit 64 estimates the effective value Iac of the input AC current supplied from the commercial AC power supply 1 based on the active power P of the synchronous motor 4 output from the active power calculation unit 63, and the estimated current effective value Iac_est. Output as.
  • the voltage effective value Vac output from the voltage effective value calculation unit 641, the power factor value stored in the power factor table 642, and the proportionality constant stored in the proportionality constant storage unit 643.
  • Each k1 is quoted.
  • the calculation formula of the estimated current effective value Iac_est corresponds to the above formula 4A.
  • the PWM signal generation unit 7 changes the duty of the PWM signal output to the inverter circuit 3 and decreases the rotational speed of the synchronous motor 4.
  • the synchronous motor driving device MD2 can maintain the continuous operation of the refrigeration / air conditioning device.
  • the synchronous motor driving device MD2 uses the general-purpose arithmetic processing function provided in the microcomputer A3 that operates as the IPM, so that a refrigeration cycle can be performed without adding complicated circuit components.
  • the continuous operation of the equipment having Moreover, the input current effective value can be estimated more accurately by adding the power corresponding to the heat loss of the IPM to the effective power of the synchronous motor driving device MD2.
  • a microcomputer A shown in FIG. 10 has a configuration in which the current detection circuits 5, 51, 52, and 53 included in each embodiment are incorporated in the microcomputer A as the current detection circuit 5A.
  • the current detection circuit has a function of converting a voltage generated by a current flowing through the current detection resistor into a current value.
  • the current detection circuit 5A which is a voltage-current conversion circuit, is composed of an operational amplifier built in the microcomputer.
  • the other circuits included in the microcomputer A shown in FIG. 10, that is, the configurations and operations of the input current estimating unit 6 and the PWM signal generating unit 7 are the same as those according to the other embodiments, and the description thereof is omitted. .
  • the current detection circuit is built in the microcomputer. Therefore, a synchronous motor drive device can be provided much smaller and cheaper.

Abstract

A converter circuit (2) converts an inputted alternating current power (1) to a direct current voltage (Vdc), and an inverter circuit (3) converts the direct current voltage (Vdc) to a three-phase alternating current and drives a synchronous motor (4). A microcomputer (A1) calculates an active power (P) of the synchronous motor on the basis of a power source current (Idc) of the inverter circuit, and estimates an effective current value (Iac) of the inputted alternating current power on the basis of: an effective voltage value (Vac) of the inputted alternating current power, calculated on the basis of a previously measured relationship between the direct current voltage and the active power of the synchronous motor; the active power (P) of the synchronous motor; and the power factor (cos(θ)) of the inputted alternating current power.

Description

同期モータ駆動装置Synchronous motor drive device
 本発明は、同期モータ駆動装置に関し、特に、インバータ回路で生成した3相交流電力を同期モータへ供給する同期モータ駆動装置に関する。 The present invention relates to a synchronous motor drive device, and more particularly to a synchronous motor drive device that supplies three-phase AC power generated by an inverter circuit to a synchronous motor.
 同期モータ駆動装置は、商用交流電源から供給される交流電力(以下、交流電圧および交流電流をも意味する。)をコンバータ回路で直流電力(以下、直流電圧および直流電流をも意味する。)に変換し、その直流電力をインバータ回路で交流電力(交流電流)に変換して、同期モータを駆動する。インバータ回路は、コンバータ回路が出力する直流電圧を、IPM(Intelligent Power Module)等でチョッピングすることにより、周波数可変の交流電流を生成する。 The synchronous motor driving device converts AC power (hereinafter also referred to as AC voltage and AC current) supplied from a commercial AC power source into DC power (hereinafter also referred to as DC voltage and DC current) by a converter circuit. Then, the DC power is converted into AC power (AC current) by an inverter circuit, and the synchronous motor is driven. The inverter circuit chops the DC voltage output from the converter circuit with an IPM (Intelligent Power Module) or the like, thereby generating an AC current with variable frequency.
 冷凍・空調装置は、商用交流電源から供給される入力交流電流が、ブレーカを作動させる電流を超えないように、交流回路部にヒューズを備えている。しかしながら、冷凍・空調装置の連続性および快適性を維持するため、入力交流電流が所定の値以上になると、冷凍・空調装置は、圧縮機の同期モータの回転数を低下させる制御を行っている。この入力交流電流の検出には、一般的に、高価なカレントトランス(以下、CTとも記載する。)等の電流センサが採用されている。 The refrigeration / air-conditioning apparatus has a fuse in the AC circuit unit so that the input AC current supplied from the commercial AC power supply does not exceed the current for operating the breaker. However, in order to maintain the continuity and comfort of the refrigeration / air conditioning device, when the input AC current exceeds a predetermined value, the refrigeration / air conditioning device performs control to reduce the rotational speed of the synchronous motor of the compressor. . In general, a current sensor such as an expensive current transformer (hereinafter also referred to as CT) is employed to detect the input alternating current.
 特許第4505932号公報(特許文献1)には、CTを使わずに、インバータ4への出力電流を検出するシャント抵抗12を利用して、3相交流電源2からの入力交流電流を推定する構成が開示されている。特開平8-19263号公報(特許文献2)には、PWMインバータの主回路11の直流側電流を電流センサ12で検出し、各相別の電流に分配する構成が開示されている。 Japanese Patent No. 4505932 (Patent Document 1) uses a shunt resistor 12 that detects an output current to the inverter 4 without using CT, and estimates the input AC current from the three-phase AC power supply 2. Is disclosed. Japanese Patent Application Laid-Open No. 8-19263 (Patent Document 2) discloses a configuration in which a DC-side current of a main circuit 11 of a PWM inverter is detected by a current sensor 12 and distributed to a current for each phase.
特許第4505932号公報Japanese Patent No. 4505932 特開平8-19263号公報JP-A-8-19263
 特許文献1では、シャント抵抗12に流れる電流を積分回路19で積分し、その積分値と、予め実験により求めておいた入力交流電流との相関関係に基づき、入力交流電流を推定している。このため、3相交流電源や整流回路(コンバータ回路)の特性に応じて、入力交流電流を精度よく推定することが困難である。さらに、空調装置の入力交流電流は、圧縮機のみではなく、たとえば、ファンモータやその他パワーモジュール部での熱損失等でも消費される。特許文献1の構成では、それらに起因する入力交流電流を検出することが出来ない。 In Patent Document 1, the current flowing through the shunt resistor 12 is integrated by the integrating circuit 19, and the input AC current is estimated based on the correlation between the integration value and the input AC current obtained in advance through experiments. For this reason, it is difficult to accurately estimate the input AC current according to the characteristics of the three-phase AC power supply and the rectifier circuit (converter circuit). Furthermore, the input AC current of the air conditioner is consumed not only by the compressor but also by, for example, heat loss in a fan motor and other power module units. In the configuration of Patent Document 1, it is impossible to detect the input AC current caused by them.
 本発明の目的は、簡易な構成で、精度のよい有効電力の計算および入力交流電流の推定が可能な同期モータ駆動装置を提供することである。 An object of the present invention is to provide a synchronous motor driving device capable of calculating active power with high accuracy and estimating input AC current with a simple configuration.
 本発明は、交流電力を直流電圧に変換して出力するコンバータ回路と、直流電圧をPWM信号に基づき3相交流電流に変換し、同期モータへ出力するインバータ回路と、PWM信号を出力するマイクロコンピュータとを備え、マイクロコンピュータは、PWM信号を生成するPWM信号生成部と、インバータ回路の電源電流に基づき同期モータの有効電力を算出する有効電力計算部と、直流電圧および同期モータの有効電力に対する直流電圧の変化量に基づき交流電力の電圧実効値を算出する電圧実効値計算部と、同期モータの有効電力または回転速度に基づき交流電力の力率を算出する手段と、同期モータの有効電力、電圧実効値および力率に基づき交流電力の電流実効値を推定する入力電流計算部とを有する、同期モータ駆動装置である。 The present invention relates to a converter circuit that converts AC power into a DC voltage and outputs it, an inverter circuit that converts the DC voltage into a three-phase AC current based on a PWM signal, and outputs the same to a synchronous motor, and a microcomputer that outputs a PWM signal The microcomputer includes a PWM signal generation unit that generates a PWM signal, an active power calculation unit that calculates the effective power of the synchronous motor based on the power supply current of the inverter circuit, and a direct current for the DC voltage and the effective power of the synchronous motor. A voltage effective value calculation unit that calculates the voltage effective value of AC power based on the amount of change in voltage, a means for calculating the power factor of AC power based on the effective power or rotational speed of the synchronous motor, and the effective power and voltage of the synchronous motor A synchronous motor driving device having an input current calculation unit that estimates an effective current value of AC power based on an effective value and a power factor. .
 本発明の同期モータ駆動装置において、マイクロコンピュータは、直流電圧に基づき直流電圧モニタ信号を生成する直流電圧モニタ回路と、直流電圧モニタ信号に基づき直流電圧を検出する直流電圧検出部と、をさらに有することが望ましい。 In the synchronous motor drive device of the present invention, the microcomputer further includes a DC voltage monitor circuit that generates a DC voltage monitor signal based on the DC voltage, and a DC voltage detector that detects the DC voltage based on the DC voltage monitor signal. It is desirable.
 本発明の同期モータ駆動装置において、マイクロコンピュータは、同期モータの有効電力に対する直流電圧の変化量の関係を格納する手段をさらに有することが望ましい。 In the synchronous motor driving device of the present invention, it is preferable that the microcomputer further has means for storing the relationship of the amount of change in DC voltage with respect to the effective power of the synchronous motor.
 本発明の同期モータ駆動装置において、マイクロコンピュータは、直流電圧モニタ信号に基づき交流電力のリプル周期を検出する手段をさらに有し、電圧実効値計算部は、交流電圧のリプル周期および直流電圧の変化量に基づき交流電力の電圧実効値を算出することが望ましい。 In the synchronous motor driving device of the present invention, the microcomputer further includes means for detecting a ripple cycle of the AC power based on the DC voltage monitor signal, and the voltage effective value calculation unit includes the ripple cycle of the AC voltage and the change of the DC voltage. It is desirable to calculate the voltage effective value of AC power based on the amount.
 本発明の同期モータ駆動装置において、マイクロコンピュータは、同期モータの有効電力に対するマイクロコンピュータの消費電力の比例定数を保持する比例定数格納部をさらに有し、同期モータの有効電力は、同期モータの有効電力に比例定数を乗算した値をさらに加算した値とすることが望ましい。 In the synchronous motor driving apparatus of the present invention, the microcomputer further includes a proportional constant storage unit that holds a proportional constant of the power consumption of the microcomputer with respect to the effective power of the synchronous motor, and the effective power of the synchronous motor is equal to the effective power of the synchronous motor. A value obtained by further adding a value obtained by multiplying power by a proportional constant is desirable.
 本発明の同期モータ駆動装置において、PWM信号生成部は、入力電流計算部の出力が所定の値を超えた場合、同期モータの回転数を低下させることが望ましい。 In the synchronous motor driving device of the present invention, it is desirable that the PWM signal generation unit reduce the rotational speed of the synchronous motor when the output of the input current calculation unit exceeds a predetermined value.
 本発明は、交流電力を直流電圧に変換して出力するコンバータ回路と、直流電圧を第1のPWM信号に基づき3相交流電流に変換し、第1の同期モータへ出力する第1のインバータ回路と、直流電圧を第2のPWM信号に基づき3相交流電流に変換し、第2の同期モータへ出力する第2のインバータ回路と、第1のPWM信号および第2のPWM信号を出力するマイクロコンピュータとを備え、マイクロコンピュータは、第1のPWM信号を生成する第1のPWM信号生成部と、第2のPWM信号を生成する第2のPWM信号生成部と、第1のインバータ回路の電源電流に基づき第1の同期モータの有効電力を算出する第1の有効電力計算部と、第2のインバータ回路の電源電流に基づき第2の同期モータの有効電力を算出する第2の有効電力計算部と、直流電圧および第1の同期モータの有効電力と第2の同期モータの有効電力とを加算した同期モータの有効電力に対する直流電圧との変化量に基づき交流電力の電圧実効値を算出する電圧実効値計算部と、第1の同期モータおよび第2の同期モータの有効電力または回転速度に基づき、交流電力の力率を算出する手段と、同期モータの有効電力、電圧実効値および力率に基づき交流電力の電流実効値を推定する入力電流計算部とを有する、同期モータ駆動装置である。 The present invention relates to a converter circuit that converts alternating current power into a direct current voltage and outputs it, and a first inverter circuit that converts the direct current voltage into a three-phase alternating current based on the first PWM signal and outputs it to a first synchronous motor. And a second inverter circuit that converts the DC voltage into a three-phase AC current based on the second PWM signal and outputs the same to the second synchronous motor, and a micro that outputs the first PWM signal and the second PWM signal. The microcomputer includes a first PWM signal generation unit that generates a first PWM signal, a second PWM signal generation unit that generates a second PWM signal, and a power supply for the first inverter circuit A first active power calculator that calculates the effective power of the first synchronous motor based on the current; and a second active power that calculates the effective power of the second synchronous motor based on the power supply current of the second inverter circuit A voltage effective value of the AC power based on a change amount of the DC voltage with respect to the effective power of the synchronous motor obtained by adding the DC voltage and the effective power of the first synchronous motor and the effective power of the second synchronous motor. A voltage effective value calculation unit for calculating; means for calculating a power factor of AC power based on the effective power or rotational speed of the first synchronous motor and the second synchronous motor; and the effective power, voltage effective value of the synchronous motor, and A synchronous motor driving device having an input current calculation unit that estimates an effective current value of AC power based on a power factor.
 本発明によれば、簡易な構成で、精度のよい有効電力の計算および入力交流電流の推定が可能な同期モータ駆動装置を提供することができる。 According to the present invention, it is possible to provide a synchronous motor driving device capable of calculating active power with high accuracy and estimating input AC current with a simple configuration.
本発明の実施の形態1に係る同期モータ駆動装置MD1の構成を示す回路図である。It is a circuit diagram which shows the structure of synchronous motor drive device MD1 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るマイクロコンピュータA1の構成を示す回路図である。It is a circuit diagram which shows the structure of microcomputer A1 which concerns on Embodiment 1 of this invention. 本発明の各実施の形態に係る同期モータ駆動装置における、インバータ回路が出力する3相交流電流の波形を示す模式図である。It is a schematic diagram which shows the waveform of the three-phase alternating current which an inverter circuit outputs in the synchronous motor drive device which concerns on each embodiment of this invention. 本発明の各実施の形態に係る同期モータ駆動装置における、総合有効電力と力率との関係を示す図である。It is a figure which shows the relationship between total effective electric power and a power factor in the synchronous motor drive device which concerns on each embodiment of this invention. 本発明の各実施の形態に係る同期モータ駆動装置における、同期モータの単位時間あたりの回転数と力率との対応関係を示す図である。It is a figure which shows the correspondence of the rotation speed per unit time of a synchronous motor, and a power factor in the synchronous motor drive device which concerns on each embodiment of this invention. 本発明の実施の形態1の変形例に係る同期モータ駆動装置MD11の構成を示す回路ブロック図である。It is a circuit block diagram which shows the structure of synchronous motor drive device MD11 which concerns on the modification of Embodiment 1 of this invention. 本発明の実施の形態1の変形例に係るマイクロコンピュータA21の構成を示す回路図である。It is a circuit diagram which shows the structure of microcomputer A21 which concerns on the modification of Embodiment 1 of this invention. 本発明の実施の形態2に係る同期モータ駆動装置MD2の構成を示す回路図である。It is a circuit diagram which shows the structure of synchronous motor drive device MD2 which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係るマイクロコンピュータA3の構成を示す回路図である。It is a circuit diagram which shows the structure of microcomputer A3 which concerns on Embodiment 2 of this invention. 本発明の各実施の形態に係る同期モータ駆動装置において、電流検出回路5Aを内部に取り込んだマイクロコンピュータAの構成を示す回路図である。In the synchronous motor drive device according to each embodiment of the present invention, it is a circuit diagram showing a configuration of a microcomputer A incorporating a current detection circuit 5A. 本発明の各実施形態における同期モータの有効電力と降下直流電圧との関係を示す図である。It is a figure which shows the relationship between the active electric power of the synchronous motor in each embodiment of this invention, and a fall DC voltage. 本発明の各実施の形態に係る同期モータ駆動装置において、コンバータ回路の具体的構成を示す回路図である。FIG. 3 is a circuit diagram illustrating a specific configuration of a converter circuit in the synchronous motor driving device according to each embodiment of the present invention.
 以下、図面を参照しつつ、本発明の実施の形態について説明する。実施の形態の説明において、個数、量などに言及する場合、特に記載ある場合を除き、本発明の範囲は必ずしもその個数、量などに限定されない。実施の形態の図面において、同一の参照符号や参照番号は、同一部分または相当部分を表わすものとする。また、実施の形態の説明において、同一の参照符号等を付した部分等に対しては、重複する説明は繰り返さない場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the description of the embodiments, when the number, amount, or the like is referred to, the scope of the present invention is not necessarily limited to the number, amount, or the like unless otherwise specified. In the drawings of the embodiments, the same reference numerals and reference numerals represent the same or corresponding parts. Further, in the description of the embodiments, the overlapping description may not be repeated for the portions with the same reference numerals and the like.
 <実施の形態1>
 図1を参照して、本発明の実施の形態1に係る同期モータ駆動装置MD1の構成および動作を説明する。
<Embodiment 1>
With reference to FIG. 1, the configuration and operation of synchronous motor drive device MD1 according to Embodiment 1 of the present invention will be described.
 同期モータ駆動装置MD1は、コンバータ回路2、インバータ回路3、電流検出抵抗(シャント抵抗)R1、抵抗Rdc1、抵抗Rdc2、電流検出回路5、およびマイクロコンピュータA1より構成される。 The synchronous motor driving device MD1 includes a converter circuit 2, an inverter circuit 3, a current detection resistor (shunt resistor) R1, a resistor Rdc1, a resistor Rdc2, a current detection circuit 5, and a microcomputer A1.
 コンバータ回路2は、電圧実効値Vacおよび電流実効値Iacを有する商用交流電源1から供給される交流電力を直流電圧Vdcに変換し、正極直流ラインPL1と負極直流ラインPL2間に出力する。 Converter circuit 2 converts AC power supplied from commercial AC power supply 1 having voltage effective value Vac and current effective value Iac into DC voltage Vdc, and outputs it between positive DC line PL1 and negative DC line PL2.
 コンバータ回路2の具体例を図12に示す。図12(a)は、電圧実効値Vacが、例えば、200Vの交流電圧から200Vの直流電圧Vdcを出力するコンバータ回路である。交流電圧はダイオードブリッジDBおよびコンデンサCにより整流・平滑化され、200Vの直流電圧Vdcとして出力される。 A specific example of the converter circuit 2 is shown in FIG. FIG. 12A shows a converter circuit that outputs a DC voltage Vdc of 200 V from an AC voltage of 200 V, for example, as the effective voltage value Vac. The AC voltage is rectified and smoothed by the diode bridge DB and the capacitor C, and output as a DC voltage Vdc of 200V.
 図12(b)は、電圧実効値Vacが、例えば、100Vの交流電圧から200Vの直流電圧Vdcを出力するコンバータ回路である。交流電圧は、ダイオードブリッジDB、コンデンサC1およびコンデンサC2で構成される倍電圧回路により、200Vに昇圧された直流電圧Vdcに変換される。同期モータ駆動装置MD1に供給される電圧実効値Vacの値に応じて、必要な構成を有するコンバータ回路が選択される。 FIG. 12B shows a converter circuit in which the voltage effective value Vac outputs a DC voltage Vdc of 200 V from an AC voltage of 100 V, for example. The AC voltage is converted into a DC voltage Vdc boosted to 200 V by a voltage doubler circuit composed of a diode bridge DB, a capacitor C1, and a capacitor C2. A converter circuit having a necessary configuration is selected according to the value of the effective voltage value Vac supplied to the synchronous motor drive device MD1.
 インバータ回路3は、正極直流ラインPL1と負極直流ラインPL2間に接続される3相(U相/V相/W相)のインバータ(Qu/Qx、Qv/Qy、Qw/Qz)を有する。3相の各インバータは、直流電圧Vdcを3相の交流電流(U相/V相/W相)に変換して、同期モータ4に供給する。 The inverter circuit 3 has a three-phase (U phase / V phase / W phase) inverter (Qu / Qx, Qv / Qy, Qw / Qz) connected between the positive DC line PL1 and the negative DC line PL2. Each of the three-phase inverters converts the DC voltage Vdc into a three-phase AC current (U phase / V phase / W phase) and supplies the same to the synchronous motor 4.
 マイクロコンピュータA1は、PWM(Pulse Width Modulation)信号を生成し、3相の各インバータのスイッチングを制御する。このスイッチング制御により、インバータ回路3は、直流電圧Vdcから3相の交流電流を生成する。 The microcomputer A1 generates a PWM (Pulse Width Modulation) signal and controls switching of each of the three-phase inverters. By this switching control, the inverter circuit 3 generates a three-phase AC current from the DC voltage Vdc.
 コンバータ回路2の出力側とインバータ回路3の入力側とは、正極直流ラインPL1および負極直流ラインPL2で接続され、両回路間の負極直流ラインPL2上には、電流検出抵抗R1が設けられている。電流検出回路5は、電流検出抵抗R1の両端に発生する電圧に基づき、インバータ回路3を流れる直流電流Idcを検出し、増幅して直流電流モニタ信号Idc_sigとしてマイクロコンピュータA1に出力する。 The output side of the converter circuit 2 and the input side of the inverter circuit 3 are connected by a positive DC line PL1 and a negative DC line PL2, and a current detection resistor R1 is provided on the negative DC line PL2 between the two circuits. . The current detection circuit 5 detects the DC current Idc flowing through the inverter circuit 3 based on the voltage generated across the current detection resistor R1, amplifies it, and outputs it to the microcomputer A1 as the DC current monitor signal Idc_sig.
 抵抗Rdc1および抵抗Rdc2は、正極直流ラインPL1と負極直流ラインPL2との間に直列接続され、直流電圧モニタ回路を形成する。抵抗Rdc1および抵抗Rdc2の接続点から、直流電圧Vdcを両抵抗で分圧した直流電圧モニタ信号Vdc_sig1がマイクロコンピュータA1へ出力される。 The resistor Rdc1 and the resistor Rdc2 are connected in series between the positive DC line PL1 and the negative DC line PL2 to form a DC voltage monitor circuit. A DC voltage monitor signal Vdc_sig1 obtained by dividing the DC voltage Vdc by both resistances is output to the microcomputer A1 from the connection point between the resistors Rdc1 and Rdc2.
 図2を参照して、本発明の実施の形態1に係るマイクロコンピュータA1の構成および動作を説明する。 Referring to FIG. 2, the configuration and operation of microcomputer A1 according to Embodiment 1 of the present invention will be described.
 (構成)
 マイクロコンピュータA1は、PWM信号生成部7と、入力電流推定部6とを有する。PWM信号生成部7は、PWM信号を生成してインバータ回路3へ出力する。入力電流推定部6は、電流検出回路5から出力される直流電流モニタ信号Idc_sig、PWM信号生成部7から出力されるPWM信号および直流電圧モニタ信号Vdc_sig1に基づき、商用交流電源1から同期モータ駆動装置MD1に供給される入力交流電流の推定電流実効値Iac_estを計算し、PWM信号生成部7に出力する。
(Constitution)
The microcomputer A1 includes a PWM signal generation unit 7 and an input current estimation unit 6. The PWM signal generation unit 7 generates a PWM signal and outputs it to the inverter circuit 3. Based on the DC current monitor signal Idc_sig output from the current detection circuit 5, the PWM signal output from the PWM signal generation unit 7, and the DC voltage monitor signal Vdc_sig 1, the input current estimation unit 6 is supplied from the commercial AC power supply 1 to the synchronous motor driving device. Estimated current effective value Iac_est of the input alternating current supplied to MD 1 is calculated and output to PWM signal generation unit 7.
 入力電流推定部6は、瞬時電流分配部61、瞬時電力計算部62、有効電力計算部63、および入力電流計算部64を有する。さらに、同期モータ駆動装置MD1が駆動する同期モータ4の極数を格納する同期モータ極数格納部612、インバータ回路3の直流電流Idcの検出周期を格納する検出周期格納部613、直流電流Idcを検出するモータの電気角度のピッチを設定する検出電気角度設定部611、および直流電流Idcを検出した時刻におけるコンバータ回路2が出力する直流電圧Vdcの値を検出する瞬時直流電圧検出部621を有する。 The input current estimation unit 6 includes an instantaneous current distribution unit 61, an instantaneous power calculation unit 62, an active power calculation unit 63, and an input current calculation unit 64. Further, a synchronous motor pole number storage unit 612 that stores the number of poles of the synchronous motor 4 driven by the synchronous motor drive device MD1, a detection cycle storage unit 613 that stores a detection cycle of the DC current Idc of the inverter circuit 3, and a DC current Idc. It has a detection electrical angle setting unit 611 that sets the pitch of the electrical angle of the motor to be detected, and an instantaneous DC voltage detection unit 621 that detects the value of the DC voltage Vdc output from the converter circuit 2 at the time when the DC current Idc is detected.
 (瞬時電流Iu(t)/Iv(t)/Iw(t)の検出)
 瞬時電流分配部61は、所定の時刻tで検出した直流電流モニタ信号Idc_sigに基づき、時刻tにおいてインバータ回路3に流れる直流電流Idcを、3相(U相/V相/W相)の各インバータに流れる瞬時電流Iu(t)、Iv(t)、およびIw(t)に分配する。インバータ回路3の直流電流Idcは、3相の各インバータから負極直流ラインPL2に流れる電流の合計である。その3相の各インバータに流れる電流は、マイクロコンピュータA1に含まれるPWM信号生成部7が出力するPWM信号で制御される。
(Detection of instantaneous current Iu (t) / Iv (t) / Iw (t))
The instantaneous current distribution unit 61 converts the DC current Idc flowing through the inverter circuit 3 at time t based on the DC current monitor signal Idc_sig detected at a predetermined time t to each of the three-phase (U-phase / V-phase / W-phase) inverters. Is distributed to instantaneous currents Iu (t), Iv (t), and Iw (t). The DC current Idc of the inverter circuit 3 is the sum of currents flowing from the three-phase inverters to the negative DC line PL2. The current flowing through each of the three-phase inverters is controlled by the PWM signal output from the PWM signal generation unit 7 included in the microcomputer A1.
 瞬時電流分配部61は、3相の各インバータのスイッチング直前と直後のタイミングで、直流電流モニタ信号Idc_sigの変化分を求める。その変化分をPWM信号のスイッチング情報に基づき3相の各インバータに分配することで、インバータ回路3を流れる直流電流Idcを、3相の各インバータに分配する。 The instantaneous current distribution unit 61 obtains a change in the DC current monitor signal Idc_sig at the timing immediately before and immediately after the switching of each of the three-phase inverters. The change is distributed to the three-phase inverters based on the switching information of the PWM signal, so that the direct current Idc flowing through the inverter circuit 3 is distributed to the three-phase inverters.
 瞬時直流電圧検出部621は、入力された直流電圧モニタ信号Vdc_sig1に基づき、設定された時刻におけるコンバータ回路2が出力する直流電圧Vdcの値を検出し、瞬時電力計算部62および電圧実効値計算部641へ出力する。 The instantaneous DC voltage detection unit 621 detects the value of the DC voltage Vdc output from the converter circuit 2 at a set time based on the input DC voltage monitor signal Vdc_sig1, and the instantaneous power calculation unit 62 and the voltage effective value calculation unit 641 is output.
 瞬時直流電圧検出部621は、さらに、直流電圧モニタ信号Vdc_sig1に基づき直流電圧Vdcのリプル周期f_rplを検出して出力する。コンバータ回路2は交流電圧をダイオードブリッジで全波整流し、さらに平滑回路でリプル電圧を低減して直流電圧Vdcを出力する。しかし、直流電圧Vdcには、全波整流の結果として、商用交流電源1の2倍の周期を有するリプル(脈動)が残る。このリプル周期は、直流電圧Vdcを抵抗分圧して生成される直流電圧モニタ信号Vdc_sig1のリプル周期f_rplに反映される。 The instantaneous DC voltage detector 621 further detects and outputs a ripple period f_rpl of the DC voltage Vdc based on the DC voltage monitor signal Vdc_sig1. The converter circuit 2 full-wave rectifies the AC voltage with a diode bridge, further reduces the ripple voltage with a smoothing circuit, and outputs a DC voltage Vdc. However, a ripple (pulsation) having a cycle twice that of the commercial AC power supply 1 remains in the DC voltage Vdc as a result of full-wave rectification. This ripple cycle is reflected in the ripple cycle f_rpl of the DC voltage monitor signal Vdc_sig1 generated by resistance-dividing the DC voltage Vdc.
 リプル周期f_rplは、直流電圧モニタ信号Vdc_sig1の値を所定の検出周期で検出し、検出した値を平均化処理して求める。検出周期は、ノイズキャンセルを考慮し、例えば、数マイクロ秒毎に設定する。検出された交流電圧の周期が50Hzおよび60Hzである場合、その2倍の周期を有するリプル周期f_rplは、各々、10ミリ秒および8.33ミリ秒となる。 The ripple period f_rpl is obtained by detecting the value of the DC voltage monitor signal Vdc_sig1 at a predetermined detection period and averaging the detected value. The detection cycle is set every few microseconds in consideration of noise cancellation, for example. When the period of the detected AC voltage is 50 Hz and 60 Hz, the ripple period f_rpl having twice the period is 10 milliseconds and 8.33 milliseconds, respectively.
 従って、直流電圧モニタ信号Vdc_sig1から交流電圧(即ち、商用交流電源1)の周期を検出するには、最低でも1ミリ秒程度毎に直流電圧モニタ信号Vdc_sig1の値を検出する必要がある。この検出周期は、マイクロコンピュータA1の処理性能や他の演算処理との関係を考慮し、数マイクロ秒から数百マイクロ秒までの時間に設定することが望ましい。 Therefore, in order to detect the period of the AC voltage (that is, the commercial AC power supply 1) from the DC voltage monitor signal Vdc_sig1, it is necessary to detect the value of the DC voltage monitor signal Vdc_sig1 at least every 1 millisecond. This detection cycle is desirably set to a time from several microseconds to several hundred microseconds in consideration of the processing performance of the microcomputer A1 and the relationship with other arithmetic processing.
 入力電流推定部6は、さらに、商用交流電源1の電圧実効値Vacを算出する電圧実効値計算部641、交流電圧および交流電流間の力率を格納する力率テーブル642、および同期モータ駆動装置MD1の熱損失エネルギーを消費電力に換算する比例定数格納部643を有する。 The input current estimation unit 6 further includes a voltage effective value calculation unit 641 that calculates the voltage effective value Vac of the commercial AC power supply 1, a power factor table 642 that stores a power factor between the AC voltage and the AC current, and a synchronous motor driving device. A proportional constant storage unit 643 that converts heat loss energy of MD1 into power consumption is included.
 電圧実効値計算部641は、瞬時直流電圧検出部621が出力する直流電圧Vdcおよびリプル周期f_rplと、有効電力計算部63が出力する有効電力Pとに基づき、後述する計算式により電圧実効値Vacを算出する。 Based on the DC voltage Vdc and ripple period f_rpl output from the instantaneous DC voltage detector 621 and the active power P output from the active power calculator 63, the voltage effective value calculator 641 calculates the voltage effective value Vac according to the calculation formula described later. Is calculated.
 (瞬時電力p(t)の計算)
 瞬時電力計算部62は、3相の瞬時電流Iu(t)、Iv(t)、およびIw(t)に基づき、所定の時刻tにおける瞬時電力p(t)を計算する。瞬時直流電圧検出部621は、コンバータ回路2が出力する時刻tにおける直流電圧Vdcの値を検出して出力する。瞬時電力p(t)は、瞬時電流Iu(t)、Iv(t)、およびIw(t)と瞬時直流電圧検出部621から出力される直流電圧Vdcに基づき、以下の式で計算される。なお、以降の式で、記号”*”は乗算記号を、記号”/”は除算記号を、各々意味する。
(Calculation of instantaneous power p (t))
The instantaneous power calculator 62 calculates the instantaneous power p (t) at a predetermined time t based on the three-phase instantaneous currents Iu (t), Iv (t), and Iw (t). Instantaneous DC voltage detection unit 621 detects and outputs the value of DC voltage Vdc at time t output from converter circuit 2. The instantaneous power p (t) is calculated by the following equation based on the instantaneous currents Iu (t), Iv (t), and Iw (t) and the DC voltage Vdc output from the instantaneous DC voltage detector 621. In the following expressions, the symbol “*” means a multiplication symbol, and the symbol “/” means a division symbol.
 p(t)=pu(t)+pv(t)+pw(t)
ここで、pu(t)、pv(t)およびpw(t)は、各々、U相、V相、およびW相の瞬時電力であり、下記の式により求められる。
pu(t)=Vdc*U相PWMデューティ比*Iu(t)
pv(t)=Vdc*V相PWMデューティ比*Iv(t)
pw(t)=Vdc*W相PWMデューティ比*Iw(t)
PWMデューティ比とは、PWM波形のデューティ比である。
p (t) = pu (t) + pv (t) + pw (t)
Here, pu (t), pv (t), and pw (t) are instantaneous powers of the U phase, the V phase, and the W phase, respectively, and are obtained by the following equations.
pu (t) = Vdc * U-phase PWM duty ratio * Iu (t)
pv (t) = Vdc * V-phase PWM duty ratio * Iv (t)
pw (t) = Vdc * W-phase PWM duty ratio * Iw (t)
The PWM duty ratio is a duty ratio of the PWM waveform.
 (瞬時電力の検出時刻t1~tn)
 図3を参照して、同期モータ4の機械的1回転の周期Tで設定する瞬時電力p(t)の検出時刻t1~tnについて説明する。図3は、本発明の実施の形態に係る同期モータ駆動装置MD1において、インバータ回路3が出力する3相交流電流の波形を示す模式図である。横軸は、同期モータ4の機械的1回転、つまり機械角度360°に対応する範囲を示す。縦軸は、インバータ3の相別(U相/V相/W相)の出力電流波形を模式的に示す。
(Instantaneous power detection times t1 to tn)
With reference to FIG. 3, the detection times t1 to tn of the instantaneous power p (t) set in the period T of one mechanical rotation of the synchronous motor 4 will be described. FIG. 3 is a schematic diagram showing a waveform of a three-phase alternating current output from the inverter circuit 3 in the synchronous motor driving device MD1 according to the embodiment of the present invention. The horizontal axis indicates a range corresponding to one mechanical rotation of the synchronous motor 4, that is, a mechanical angle of 360 °. The vertical axis schematically shows the output current waveform of the inverter 3 for each phase (U phase / V phase / W phase).
 4極3相の構造を有する同期モータの場合、機械的1回転の間に、電気的には2回転する。つまり、機械角度360°は、電気角度720°に対応する。図3では、同期モータの機械的1回転の周期Tにおいて、電気角度30°の時刻をt1とし、以降、電気角度60°毎(電気角度60°のピッチ)に検出時刻を設定する。周期Tにおける最後の検出時刻tnは、電気角度690°に対応する時刻となり、検出回数は総計12回となる。 In the case of a synchronous motor having a four-pole three-phase structure, it electrically rotates twice during one mechanical rotation. That is, the mechanical angle 360 ° corresponds to the electrical angle 720 °. In FIG. 3, in the period T of one mechanical rotation of the synchronous motor, the time at the electrical angle of 30 ° is set to t1, and thereafter, the detection time is set for every electrical angle of 60 ° (pitch at the electrical angle of 60 °). The last detection time tn in the cycle T is a time corresponding to an electrical angle of 690 °, and the total number of detections is 12 times.
 本実施の形態1では、瞬時電力の検出を電気角度60°を周期と設定して説明した。有効電力の計算精度は、瞬時電力の検出時間(設定する電気角度のピッチ)をより小さく設定することで向上可能となる。実際には、マイクロコンピュータA1の処理性能や他の演算処理との関係を考慮して、瞬時電力p(t)を検出する電気角度のピッチは、1°、10°、30°、または60°の周期から選択することが好ましい。但し、選択する電気角度のピッチが大きすぎると、有効電力計算部が出力する計算結果の精度が低下する。従って、設定する電気角度のピッチは、60°以下とすることが好ましい。 In the first embodiment, the detection of instantaneous power has been described by setting the electrical angle 60 ° as the cycle. The calculation accuracy of the active power can be improved by setting the instantaneous power detection time (the pitch of the electrical angle to be set) smaller. In practice, the pitch of the electrical angle for detecting the instantaneous power p (t) is 1 °, 10 °, 30 °, or 60 ° in consideration of the processing performance of the microcomputer A1 and the relationship with other arithmetic processing. It is preferable to select from these periods. However, if the pitch of the electrical angle to be selected is too large, the accuracy of the calculation result output by the active power calculation unit is reduced. Therefore, the pitch of the electrical angle to be set is preferably 60 ° or less.
 図2に戻り、入力電流推定部6が有する、検出電気角度設定部611、同期モータ極数格納部612、検出周期格納部613、および有効電力計算部63の動作を説明する。 2, the operations of the detected electrical angle setting unit 611, the synchronous motor pole number storage unit 612, the detection cycle storage unit 613, and the active power calculation unit 63 included in the input current estimation unit 6 will be described.
 同期モータ極数格納部612は、インバータ回路3が駆動する同期モータ4の極数を格納している。本実施の形態では、4極3相の構造を有する同期モータを一例として説明している。この場合、同期モータ極数格納部612には、同期モータの極数が4極であることを示す情報が格納される。本実施の形態に係る同期モータ駆動装置MD1は、同期モータ極数格納部612に書き込む情報を変更することで、容易に、他の構造を有する同期モータを制御することが可能となる。 The synchronous motor pole number storage unit 612 stores the pole number of the synchronous motor 4 driven by the inverter circuit 3. In the present embodiment, a synchronous motor having a four-pole three-phase structure is described as an example. In this case, the synchronous motor pole number storage unit 612 stores information indicating that the synchronous motor has four poles. The synchronous motor driving device MD1 according to the present embodiment can easily control a synchronous motor having another structure by changing information to be written in the synchronous motor pole number storage unit 612.
 検出周期格納部613は、同期モータ4の機械的1回転の周期Tにおいて、瞬時電力p(t)を検出する電気角度のピッチを格納している。本実施の形態に係る同期モータ駆動装置MD1は、電気角度のピッチが変更可能であり、ユーザが必要とする精度で有効電力を計算することが可能となる。 The detection cycle storage unit 613 stores the pitch of the electrical angle for detecting the instantaneous power p (t) in the cycle T of one mechanical rotation of the synchronous motor 4. The synchronous motor driving device MD1 according to the present embodiment can change the pitch of the electrical angle, and can calculate the effective power with the accuracy required by the user.
 検出電気角度設定部611は、電流検出回路5が出力する直流電流モニタ信号Idc_sigを検出する時刻tを、瞬時電流分配部61に出力する。瞬時電流分配部61は、指定された時刻tにおける、インバータ回路3が有する3相の各インバータに流れる瞬時電流Iu(t)、Iv(t)、およびIw(t)を計算する。 The detected electrical angle setting unit 611 outputs the time t at which the DC current monitor signal Idc_sig output from the current detection circuit 5 is detected to the instantaneous current distribution unit 61. The instantaneous current distribution unit 61 calculates the instantaneous currents Iu (t), Iv (t), and Iw (t) flowing through the three-phase inverters of the inverter circuit 3 at the designated time t.
 同期モータ極数格納部612および検出周期格納部613から出力される情報に基づき、検出電気角度設定部611は、瞬時電流分配部61に対して、インバータ回路3に流れる直流電流Idcの検出時刻t1~tnを通知する。 Based on the information output from the synchronous motor pole number storage unit 612 and the detection cycle storage unit 613, the detection electrical angle setting unit 611 detects the DC current Idc flowing through the inverter circuit 3 relative to the instantaneous current distribution unit 61 at the detection time t1. ~ Tn is notified.
 (有効電力Pの計算)
 有効電力計算部63は、瞬時電力計算部62から出力される瞬時電力p(t)を所定の周期Tに亘り積算し、その積算結果を周期Tで除算して、有効電力Pを計算する。モータの場合は、まず、モータが機械的に1回転する時間を周期Tとし、この周期Tに亘り複数の時刻t1~tnを設定する。同期モータ4で消費される有効電力Pは、各時刻における瞬時電力p(t1)~p(tn)の総和を周期Tで除算した以下の式1で求められる。
P=(p(t1)+p(t2)+ … +p(tn))/T  … 式1
 有効電力計算部63は、式1に記載の通り、各時刻における瞬時電力p(t1)~p(tn)の総和を周期Tで除算して、同期モータ4で消費される有効電力Pを算出し、入力電流計算部64および電圧実効値計算部641へ出力する。以下に、具体的な同期モータ4の極数および検出する電気角度のピッチを例に、有効電力Pの計算式を説明する。
(Calculation of active power P)
The active power calculation unit 63 integrates the instantaneous power p (t) output from the instantaneous power calculation unit 62 over a predetermined period T, and divides the integration result by the period T to calculate the active power P. In the case of a motor, first, the time for which the motor makes one mechanical rotation is defined as a period T, and a plurality of times t1 to tn are set over the period T. The effective power P consumed by the synchronous motor 4 is obtained by the following formula 1 obtained by dividing the sum of the instantaneous powers p (t1) to p (tn) at each time by the period T.
P = (p (t1) + p (t2) +... + P (tn)) / T.
The active power calculation unit 63 calculates the effective power P consumed by the synchronous motor 4 by dividing the sum of the instantaneous powers p (t1) to p (tn) at each time by the period T as described in Equation 1. And output to the input current calculation unit 64 and the voltage effective value calculation unit 641. In the following, a formula for calculating the effective power P will be described, taking as an example the specific number of poles of the synchronous motor 4 and the pitch of the detected electrical angle.
 同期モータ4が4極3相構造の場合は、機械的1回転は電気的2回転に対応する。従って、電気角度60°のピッチでインバータ回路3の瞬時電力p(t)を検出した場合、検出回数は12回となる。従って、有効電力Pは、次の通り計算される。
P=(p(t1)+ … +p(t12))/12
4極3相の同期モータの有効電力Pは、上記計算式により求められる。
When the synchronous motor 4 has a four-pole three-phase structure, one mechanical rotation corresponds to two electrical rotations. Therefore, when the instantaneous power p (t) of the inverter circuit 3 is detected at an electrical angle of 60 °, the number of detections is 12. Therefore, the active power P is calculated as follows.
P = (p (t1) +... + P (t12)) / 12
The effective power P of the four-pole three-phase synchronous motor is obtained by the above formula.
 同期モータ4が6極3相構造の場合は、機械的1回転は電気的3回転に対応する。従って、電気角度60°のピッチでインバータ回路3の瞬時電力p(t)を検出した場合、検出回数は18回となる。その有効電力Pは、次の通り計算される。
P=(p(t1)+ … +p(t18))/18
6極3相の同期モータの有効電力Pは、上記計算式により求められる。
When the synchronous motor 4 has a six-pole three-phase structure, one mechanical rotation corresponds to three electrical rotations. Therefore, when the instantaneous electric power p (t) of the inverter circuit 3 is detected at an electrical angle of 60 °, the number of detections is 18. The active power P is calculated as follows.
P = (p (t1) +... + P (t18)) / 18
The effective power P of the 6-pole 3-phase synchronous motor is obtained by the above formula.
 (同期モータ駆動装置の総合有効電力P_md1)
 図1において、商用交流電源1から同期モータ駆動装置MD1へ供給される交流電圧および交流電流の実効値は、各々、VacおよびIacである。この交流電圧と交流電流との位相差を”θ”とすると、その有効電力は、Vac*Iac*cos(θ)となる。ここで、同期モータ駆動装置MD1が消費する総合有効電力をP_md1とすると、両者の有効電力の値には、
Vac*Iac*cos(θ)=P_md1
という関係が成立する。
(Total effective power P_md1 of the synchronous motor driving device)
In FIG. 1, the effective values of the AC voltage and the AC current supplied from the commercial AC power supply 1 to the synchronous motor driving device MD1 are Vac and Iac, respectively. When the phase difference between the AC voltage and the AC current is “θ”, the effective power is Vac * Iac * cos (θ). Here, assuming that the total active power consumed by the synchronous motor driving device MD1 is P_md1,
Vac * Iac * cos (θ) = P_md1
The relationship is established.
 図1に示す同期モータ駆動装置MD1において、商用交流電源1からダイオードブリッジ等で構成されるコンバータ回路2へ供給される有効電力と、コンバータ回路2の出力電力とは、ほぼ等しいと考えられる。このコンバータ回路2の出力電力は、主に、インバータ回路3で駆動される同期モータ4で消費される。この同期モータ4の有効電力は、図2に示す有効電力計算部63が出力する有効電力Pとして求められる。同期モータ4の有効電力Pの計算式は式1に示す通りである。 In the synchronous motor driving device MD1 shown in FIG. 1, the effective power supplied from the commercial AC power source 1 to the converter circuit 2 constituted by a diode bridge or the like and the output power of the converter circuit 2 are considered to be substantially equal. The output power of the converter circuit 2 is mainly consumed by the synchronous motor 4 driven by the inverter circuit 3. The active power of the synchronous motor 4 is obtained as the active power P output from the active power calculator 63 shown in FIG. A formula for calculating the effective power P of the synchronous motor 4 is as shown in Formula 1.
 さらに、コンバータ回路2の出力電力は、同期モータ4の有効電力Pに加えて、インバータ回路3を制御するマイクロコンピュータA1部の熱損失に起因する消費電力が無視できない場合もある。インバータ回路3のチョッピング動作を制御するIPM(マイクロコンピュータA1)の熱損失分の電力をP_ipm1とする。このP_ipm1は、インバータ回路3が駆動する同期モータ4の有効電力Pに比例する。その比例定数をk1とすると、以下の関係が成立する。
P_ipm1=k1*P
なお、比例定数k1は実験等により得られる値であり、マイクロコンピュータA1に格納される。
Furthermore, as for the output power of the converter circuit 2, in addition to the effective power P of the synchronous motor 4, power consumption due to heat loss of the microcomputer A1 part that controls the inverter circuit 3 may not be negligible. The power for the heat loss of the IPM (microcomputer A1) that controls the chopping operation of the inverter circuit 3 is P_ipm1. This P_ipm1 is proportional to the effective power P of the synchronous motor 4 driven by the inverter circuit 3. If the proportionality constant is k1, the following relationship is established.
P_ipm1 = k1 * P
The proportionality constant k1 is a value obtained by experiments or the like and is stored in the microcomputer A1.
 以上から、同期モータ駆動装置MD1が消費する総合有効電力P_md1は、同期モータ4の有効電力PおよびIPMの熱損失分の電力P_ipm1の和となる。以下に、商用交流電源1からコンバータ回路2へ供給される有効電力と同期モータ駆動装置MD1で消費される総合有効電力P_md1との関係を示す。
Vac*Iac*cos(θ)=P_md1  … 式2
P_md1=P+P_ipm1=(1+k1)*P  … 式3
 式1、式2および式3から、入力交流電源の電流実効値Iac、同期モータ4の有効電力P、交流電圧の実効値Vac、および力率cos(θ)は、以下の式4の関係を有する。
Iac=(1+k1)*P/(Vac*cos(θ))  … 式4
以下に、交流電圧の実効値Vacと力率cos(θ)の算出方法を説明する。
From the above, the total effective power P_md1 consumed by the synchronous motor driving device MD1 is the sum of the effective power P of the synchronous motor 4 and the power P_ipm1 corresponding to the heat loss of the IPM. The relationship between the active power supplied from the commercial AC power supply 1 to the converter circuit 2 and the total active power P_md1 consumed by the synchronous motor driving device MD1 is shown below.
Vac * Iac * cos (θ) = P_md1 Equation 2
P_md1 = P + P_ipm1 = (1 + k1) * P Equation 3
From Equation 1, Equation 2, and Equation 3, the effective current value Iac of the input AC power supply, the effective power P of the synchronous motor 4, the effective value Vac of the AC voltage, and the power factor cos (θ) are expressed by the following Equation 4. Have.
Iac = (1 + k1) * P / (Vac * cos (θ)) Equation 4
Below, the calculation method of the effective value Vac and power factor cos ((theta)) of an alternating voltage is demonstrated.
 (交流電圧の実効値Vacの計算)
 図1に示す商用交流電源1の電圧実効値Vacの計算方法について説明する。同期モータ4の回転速度が上昇するに従いコンバータ回路2の出力電流が増加するため、コンバータ回路2の直流電圧Vdcは低下する。即ち、コンバータ回路2が有効電力Pを出力していない場合に比べて、同期モータ4へ有効電力Pを供給しているコンバータ回路2の直流電圧Vdcは低下する。この直流電圧Vdcの降下分を降下直流電圧ΔVdcとする。降下直流電圧ΔVdcは負の値を有し、コンバータ回路2が同期モータ4へ有効電力Pを供給していないときの直流電圧Vdcを基準値とする降下電圧値である。
(Calculation of effective value Vac of AC voltage)
A method for calculating the voltage effective value Vac of the commercial AC power supply 1 shown in FIG. 1 will be described. Since the output current of the converter circuit 2 increases as the rotational speed of the synchronous motor 4 increases, the DC voltage Vdc of the converter circuit 2 decreases. That is, the DC voltage Vdc of the converter circuit 2 that supplies the synchronous motor 4 with the active power P is lower than when the converter circuit 2 does not output the active power P. The drop of the DC voltage Vdc is defined as a dropped DC voltage ΔVdc. The drop DC voltage ΔVdc has a negative value, and is a drop voltage value using the DC voltage Vdc as a reference value when the converter circuit 2 is not supplying the active power P to the synchronous motor 4.
 図12(a)に示すコンバータ回路2が有効電力Pを出力している場合、電圧実効値Vac、直流電圧Vdcおよび降下直流電圧ΔVdcとは以下の関係を有する。
Vac=(Vdc-ΔVdc)/√2
=(Vdc+abs(ΔVdc))/√2  … 式5
ここで、√2は2の平方根、abs(ΔVdc)はΔVdcの絶対値である。
When converter circuit 2 shown in FIG. 12 (a) outputs active power P, voltage effective value Vac, DC voltage Vdc, and dropped DC voltage ΔVdc have the following relationship.
Vac = (Vdc−ΔVdc) / √2
= (Vdc + abs (ΔVdc)) / √2 Equation 5
Here, √2 is the square root of 2, and abs (ΔVdc) is the absolute value of ΔVdc.
 コンバータ回路2が図12(b)に示す倍電圧回路の場合、電圧実効値Vac、直流電圧Vdcおよび降下直流電圧ΔVdcとは以下の関係を有する。
Vac=(Vdc-ΔVdc)/2/√2
=(Vdc+abs(ΔVdc))/2/√2  … 式51
コンバータ回路2の回路構成に基づき、いずれか一方の式が選択される。
When converter circuit 2 is the voltage doubler circuit shown in FIG. 12B, voltage effective value Vac, DC voltage Vdc, and drop DC voltage ΔVdc have the following relationship.
Vac = (Vdc−ΔVdc) / 2 / √2
= (Vdc + abs (ΔVdc)) / 2 / √2 Equation 51
One of the equations is selected based on the circuit configuration of the converter circuit 2.
 図11を参照して、降下直流電圧ΔVdcの計算方法を説明する。
 図11は、同期モータ4の有効電力P(横軸)に対する降下直流電圧ΔVdc(縦軸)の変化を示す6本のグラフである。6本のグラフは、大別すると、商用交流電圧の周波数が50Hzのグループと60Hzのグループとに分けられる。各グループは、さらに、交流電圧の実効値が90V、100V、および110Vの場合のグラフで構成される。6本のグラフに示される通り、同期モータ4の有効電力Pが増加すると、降下直流電圧ΔVdcは減少(ΔVdcの絶対値は増加)する。即ち、コンバータ回路2が出力する直流電圧Vdcは減少する。
With reference to FIG. 11, a method of calculating the drop DC voltage ΔVdc will be described.
FIG. 11 is six graphs showing changes in the drop DC voltage ΔVdc (vertical axis) with respect to the active power P (horizontal axis) of the synchronous motor 4. The six graphs can be broadly divided into a group with a commercial AC voltage frequency of 50 Hz and a group with 60 Hz. Each group is further configured by a graph when the effective value of the AC voltage is 90V, 100V, and 110V. As shown in the six graphs, when the active power P of the synchronous motor 4 increases, the drop DC voltage ΔVdc decreases (the absolute value of ΔVdc increases). That is, the DC voltage Vdc output from the converter circuit 2 decreases.
 図11に示される通り、有効電力Pと降下直流電圧ΔVdcとは反比例に近い関係を有し、その関係は入力交流電圧の周波数で更に変化することがわかる。従って、商用交流電圧の各周波数別に、有効電力Pと降下直流電圧ΔVdcのデータテーブル(以下、単に、データテーブルとも記載する)をマイクロコンピュータA1に格納しておき、有効電力Pおよび商用交流電圧の周波数を指定することにより、降下直流電圧ΔVdcを求めることが出来る。 As shown in FIG. 11, it can be seen that the active power P and the dropped DC voltage ΔVdc have an inversely proportional relationship, and the relationship further changes with the frequency of the input AC voltage. Therefore, for each frequency of the commercial AC voltage, a data table (hereinafter also simply referred to as a data table) of the active power P and the drop DC voltage ΔVdc is stored in the microcomputer A1, and the active power P and the commercial AC voltage are stored. By specifying the frequency, it is possible to obtain the drop DC voltage ΔVdc.
 図2に示す電圧実効値計算部641は、リプル周期f_rpl、直流電圧Vdc、有効電力P、およびデータテーブル(図示せず)に基づき、電圧実効値Vacを計算する。瞬時直流電圧検出部621が出力するリプル周期f_rplから商用交流電源1の周波数が判別され、データテーブルに格納される2つのデータ群のうち、判別した周波数のデータ群が選択される。以上により、同期モータ4の有効電力Pに対応した降下直流電圧ΔVdcが決定される。さらに、有効電力計算部63が出力する有効電力Pに基づき、データテーブルを参照して降下直流電圧ΔVdcが決定される。 The voltage effective value calculation unit 641 shown in FIG. 2 calculates the voltage effective value Vac based on the ripple period f_rpl, the DC voltage Vdc, the active power P, and a data table (not shown). The frequency of the commercial AC power supply 1 is determined from the ripple cycle f_rpl output from the instantaneous DC voltage detector 621, and the data group of the determined frequency is selected from the two data groups stored in the data table. As described above, the drop DC voltage ΔVdc corresponding to the active power P of the synchronous motor 4 is determined. Furthermore, based on the active power P output from the active power calculation unit 63, the drop DC voltage ΔVdc is determined with reference to the data table.
 電圧実効値計算部641は、決定した降下直流電圧ΔVdcおよび瞬時直流電圧検出部621が出力する直流電圧Vdcを式5または式51に当てはめ、電圧実効値Vacを計算し、入力電流計算部64へ出力する。 The voltage effective value calculation unit 641 applies the determined drop DC voltage ΔVdc and the DC voltage Vdc output from the instantaneous DC voltage detection unit 621 to Formula 5 or Formula 51, calculates the voltage effective value Vac, and inputs it to the input current calculation unit 64. Output.
 有効電力Pと降下直流電圧ΔVdcとの関係をデータテーブルの形式でマイクロコンピュータA1に格納する代わりに、各交流電圧の周波数別に、両者の関係を近似式に設定して演算処理してもよい。近似式は2次式でもよいし、有効電力Pの範囲を適宜分割し、分割した電力区間を1次式で近似してもよい。 Instead of storing the relationship between the active power P and the dropped DC voltage ΔVdc in the form of a data table in the microcomputer A1, the relationship between the two may be set to an approximate expression for each frequency of each AC voltage and may be processed. The approximate expression may be a quadratic expression, or the range of the active power P may be divided as appropriate, and the divided power section may be approximated by a primary expression.
 同期モータ4の回転数が変化する頻度に応じて、降下直流電圧ΔVdcを計算してもよい。例えば、同じ回転数でT秒間以上継続して同期モータ4が回転した場合に、降下直流電圧ΔVdcを計算する構成としてもよい。有効電力Pがある程度の期間に亘って変化しない場合、この計算方法により誤差の少ない電圧実効値Vacを推定できる。継続期間として設定する時間Tは、予め、マイクロコンピュータA1に設定しておく。 Depending on the frequency with which the rotation speed of the synchronous motor 4 changes, the drop DC voltage ΔVdc may be calculated. For example, the DC voltage drop ΔVdc may be calculated when the synchronous motor 4 continues to rotate at the same rotational speed for T seconds or longer. When the effective power P does not change over a certain period, the voltage effective value Vac with less error can be estimated by this calculation method. The time T set as the duration is set in the microcomputer A1 in advance.
 以上の構成により、商用交流電源1の周波数やコンバータ回路2の回路構成に対応して、同期モータ4の運転期間中における商用交流電源1の電圧実効値Vacが検出可能となる。また、運転期間中に交流電圧に変動があった場合でも、その電圧実効値Vacを検出することができる。 With the above configuration, the effective voltage value Vac of the commercial AC power source 1 during the operation period of the synchronous motor 4 can be detected corresponding to the frequency of the commercial AC power source 1 and the circuit configuration of the converter circuit 2. Even if the AC voltage varies during the operation period, the effective voltage value Vac can be detected.
 (力率cos(θ)の計算)
 図4を参照して、交流電圧と交流電流の力率cos(θ)の計算方法を説明する。図4は、同期モータ駆動装置MD1の総合有効電力P_md1と力率との関係を予め実験等で求めたテーブルの一例であり、マイクロコンピュータA1に格納される。マイクロコンピュータA1で算出した総合有効電力P_md1を図4のテーブルに当てはめ、力率を求める。
(Calculation of power factor cos (θ))
With reference to FIG. 4, the calculation method of the power factor cos ((theta)) of an alternating voltage and an alternating current is demonstrated. FIG. 4 is an example of a table in which the relationship between the total effective power P_md1 and the power factor of the synchronous motor driving device MD1 is obtained in advance through experiments or the like, and is stored in the microcomputer A1. The total active power P_md1 calculated by the microcomputer A1 is applied to the table of FIG. 4 to determine the power factor.
 同期モータ駆動装置MD1の総合有効電力P_md1と力率cos(θ)との関係をテーブルの形式でマイクロコンピュータA1に格納する代わりに、両者の関係を近似式に設定して演算処理してもよい。 Instead of storing the relationship between the total active power P_md1 and the power factor cos (θ) of the synchronous motor driving device MD1 in the form of a table in the microcomputer A1, the relationship between the two may be set as an approximate expression and arithmetic processing may be performed. .
 図5を参照して、力率を求める他の方法を説明する。図5は、同期モータ4の単位時間当たりの回転数(rpm)、即ち、回転速度と力率との関係を示すテーブルの一例であり、マイクロコンピュータA1に格納される。マイクロコンピュータA1で算出した総合有効電力P_md1を図5のテーブルに当てはめ、力率を求める。 Referring to FIG. 5, another method for obtaining the power factor will be described. FIG. 5 is an example of a table showing the rotational speed (rpm) per unit time of the synchronous motor 4, that is, the relationship between the rotational speed and the power factor, and is stored in the microcomputer A1. The total active power P_md1 calculated by the microcomputer A1 is applied to the table of FIG. 5 to determine the power factor.
 (推定電流実効値Iac_estの計算)
 図2を参照して、入力電流計算部64による推定電流実効値Iac_estの計算方法を説明する。
(Calculation of estimated current effective value Iac_est)
A method of calculating the estimated current effective value Iac_est by the input current calculation unit 64 will be described with reference to FIG.
 入力電流計算部64は、有効電力計算部63から出力される同期モータ4の有効電力Pに基づき、商用交流電源1から供給される交流電源の電流実効値Iacを推定し、推定電流実効値Iac_estとして出力する。 The input current calculation unit 64 estimates the current effective value Iac of the AC power supplied from the commercial AC power supply 1 based on the active power P of the synchronous motor 4 output from the active power calculation unit 63, and estimates the current effective value Iac_est. Output as.
 この推定電流実効値Iac_estの計算には、電圧実効値計算部641が出力する電圧実効値Vac、力率テーブル642に格納される力率の値、および比例定数格納部643に格納される比例定数k1が各々引用される。推定電流実効値Iac_estの計算式は、以下の通りとなる。
Iac_est=(1+k1)*P/(Vac*cos(θ))
推定電流実効値Iac_estの計算式は、上記の式4に対応する。
For calculating the estimated current effective value Iac_est, the voltage effective value Vac output from the voltage effective value calculation unit 641, the power factor value stored in the power factor table 642, and the proportionality constant stored in the proportionality constant storage unit 643. Each k1 is quoted. The calculation formula of the estimated current effective value Iac_est is as follows.
Iac_est = (1 + k1) * P / (Vac * cos (θ))
The calculation formula of the estimated current effective value Iac_est corresponds to the above formula 4.
 PWM信号生成部7は、入力された推定電流実効値Iac_estが所定の値を越えた場合、インバータ回路3へ出力するPWM信号のデューティーを変更し、同期モータ4の回転数を低下させる。この回転数制御により、同期モータ駆動装置MD1は、冷凍・空調装置の連続運転を維持することができる。 When the input estimated current effective value Iac_est exceeds a predetermined value, the PWM signal generation unit 7 changes the duty of the PWM signal output to the inverter circuit 3 and decreases the rotational speed of the synchronous motor 4. By this rotation speed control, the synchronous motor driving device MD1 can maintain the continuous operation of the refrigeration / air conditioning device.
 以上のように、実施の形態1の同期モータ駆動装置MD1は、IPMとして動作するマイクロコンピュータA1が備える汎用演算処理機能を使用することにより、複雑な構成の回路部品を追加することなく、冷凍サイクルを有する機器の連続運転を維持することができる。また、IPMの熱損失分の電力も同期モータ駆動装置MD1の有効電力に加えることにより、より正確に入力電流実効値を推定することができる。 As described above, the synchronous motor driving device MD1 of the first embodiment uses the general-purpose arithmetic processing function provided in the microcomputer A1 that operates as the IPM, so that the refrigeration cycle is not added without adding complicated circuit components. The continuous operation of the equipment having Moreover, the input current effective value can be estimated more accurately by adding the power corresponding to the heat loss of the IPM to the effective power of the synchronous motor driving device MD1.
 <実施の形態1の変形例>
 図6を参照して、本発明の実施の形態1の変形例に係る同期モータ駆動装置MD11の構成および動作について説明する。
<Modification of Embodiment 1>
With reference to FIG. 6, the configuration and operation of synchronous motor drive device MD11 according to a modification of the first embodiment of the present invention will be described.
 図6に示す同期モータ駆動装置MD11は、電圧実効値Vacおよび電流実効値Iacの商用交流電源1から供給される交流電力を直流電圧Vdcに変換し、正極直流ラインPL1と負極直流ラインPL2間に出力するコンバータ回路2を有する。図1に示す同期モータ駆動装置MD1と異なり、同期モータ駆動装置MD11は、正極直流ラインPL1および負極直流ラインPL2に並列に接続されるインバータ回路31およびインバータ回路32を有する。 Synchronous motor drive device MD11 shown in FIG. 6 converts AC power supplied from commercial AC power source 1 having voltage effective value Vac and current effective value Iac into DC voltage Vdc, and is connected between positive DC line PL1 and negative DC line PL2. It has the converter circuit 2 which outputs. Unlike synchronous motor drive device MD1 shown in FIG. 1, synchronous motor drive device MD11 has inverter circuit 31 and inverter circuit 32 connected in parallel to positive DC line PL1 and negative DC line PL2.
 コンバータ回路2は、同期モータ駆動装置MD11に供給される交流電源の電圧実効値Vacの値に応じて、図12(a)または図12(b)に示されるものが適宜選択される。 As the converter circuit 2, one shown in FIG. 12 (a) or FIG. 12 (b) is appropriately selected according to the value of the voltage effective value Vac of the AC power supplied to the synchronous motor driving device MD11.
 インバータ回路31およびインバータ回路32は、直流電圧Vdcから3相交流電流を生成し、各々、冷凍・空調装置の圧縮機用同期モータ41および室外機のファン用同期モータ42に供給する。マイクロコンピュータA21は、PWM信号1およびPWM信号2を生成し、各々、インバータ回路31およびインバータ回路32のスイッチング動作を制御する。 The inverter circuit 31 and the inverter circuit 32 generate a three-phase alternating current from the direct-current voltage Vdc, and supply the three-phase alternating current to the compressor synchronous motor 41 of the refrigeration / air-conditioning apparatus and the fan synchronous motor 42 of the outdoor unit, respectively. The microcomputer A21 generates the PWM signal 1 and the PWM signal 2, and controls the switching operations of the inverter circuit 31 and the inverter circuit 32, respectively.
 コンバータ回路2とインバータ回路31間を接続する負極直流ラインPL21上には、電流検出抵抗R11が設けられている。コンバータ回路2とインバータ回路32間を接続する負極直流ラインPL22上には、電流検出抵抗R21が設けられている。電流検出抵抗R11および抵抗R21の両端に発生する電圧に基づき、電流検出回路1(51)および電流検出回路2(52)は、各々、インバータ回路31およびインバータ回路32を流れる直流電流Idc1およびIdc2を検出し、増幅して、直流電流モニタ信号Idc1_sigおよび直流電流モニタ信号Idc2_sigをマイクロコンピュータA21に出力する。 A current detection resistor R11 is provided on the negative DC line PL21 connecting the converter circuit 2 and the inverter circuit 31. On the negative DC line PL22 connecting the converter circuit 2 and the inverter circuit 32, a current detection resistor R21 is provided. Based on the voltages generated at both ends of the current detection resistor R11 and the resistor R21, the current detection circuit 1 (51) and the current detection circuit 2 (52) respectively generate DC currents Idc1 and Idc2 flowing through the inverter circuit 31 and the inverter circuit 32, respectively. It detects, amplifies, and outputs DC current monitor signal Idc1_sig and DC current monitor signal Idc2_sig to microcomputer A21.
 同期モータ駆動装置MD11は、さらに、正極直流ラインPL1と負極直流ラインPL2との間に直列接続される抵抗Rdc1および抵抗Rdc2で構成される直流電圧モニタ回路を有する。抵抗Rdc1および抵抗Rdc2の接続点から、直流電圧Vdcを両抵抗で分圧した直流電圧モニタ信号Vdc_sig11がマイクロコンピュータA21へ出力される。 The synchronous motor driving device MD11 further includes a DC voltage monitor circuit configured by a resistor Rdc1 and a resistor Rdc2 connected in series between the positive DC line PL1 and the negative DC line PL2. A DC voltage monitor signal Vdc_sig11 obtained by dividing the DC voltage Vdc by both resistors is output to the microcomputer A21 from a connection point between the resistors Rdc1 and Rdc2.
 図7を参照して、マイクロコンピュータA21の構成および動作を説明する。マイクロコンピュータA21は、第1の入力電流推定部6M、第2の入力電流推定部6FM、第1のPWM信号生成部7M、および第2のPWM信号生成部7FMを有する。第1のPWM信号生成部7Mおよび第2のPWM信号生成部7FMは、各々、PWM信号1およびPWM信号2を生成し、インバータ回路31およびインバータ回路32へ出力する。 The configuration and operation of the microcomputer A21 will be described with reference to FIG. The microcomputer A21 includes a first input current estimation unit 6M, a second input current estimation unit 6FM, a first PWM signal generation unit 7M, and a second PWM signal generation unit 7FM. First PWM signal generation unit 7M and second PWM signal generation unit 7FM generate PWM signal 1 and PWM signal 2, respectively, and output them to inverter circuit 31 and inverter circuit 32.
 第1の入力電流推定部6Mは、直流電流モニタ信号Idc1_sigおよび第1のPWM信号生成部7Mから出力されるPWM信号1に基づき、商用交流電源1から圧縮機用同期モータ41に供給される入力交流電流の推定電流実効値Iac1_estを計算し、第1のPWM信号生成部7Mに出力する。第2の入力電流推定部6FMは、直流電流モニタ信号Idc2_sigおよび第2のPWM信号生成部7FMから出力されるPWM信号2に基づき、商用交流電源1からファン用同期モータ42に供給される入力交流電流の推定電流実効値Iac2_estを計算し、PWM信号生成部2に出力する。 The first input current estimation unit 6M is supplied from the commercial AC power supply 1 to the compressor synchronous motor 41 based on the DC current monitor signal Idc1_sig and the PWM signal 1 output from the first PWM signal generation unit 7M. An estimated current effective value Iac1_est of the alternating current is calculated and output to the first PWM signal generation unit 7M. The second input current estimation unit 6FM is based on the DC current monitor signal Idc2_sig and the PWM signal 2 output from the second PWM signal generation unit 7FM, and the input AC supplied from the commercial AC power supply 1 to the fan synchronous motor 42. The estimated current effective value Iac2_est of the current is calculated and output to the PWM signal generation unit 2.
 図7に示す第1の入力電流推定部6Mは、以下の点を除いて、図2に示す実施の形態1に係る入力電流推定部6と同一の構成を有する。図2における瞬時直流電圧検出部621は、直流電圧モニタ信号Vdc_sig1に基づき、設定された時刻におけるコンバータ回路2が出力する直流電圧Vdcの値を検出し、瞬時電力計算部62および電圧実効値計算部641へ出力する。これに対し、図7に示す第1の入力電流推定部6Mが備える瞬時直流電圧検出部621(図示せず)は、直流電圧モニタ信号Vdc_sig11に基づき直流電圧Vdcの値を検出する。 The first input current estimation unit 6M shown in FIG. 7 has the same configuration as the input current estimation unit 6 according to Embodiment 1 shown in FIG. 2 except for the following points. 2 detects the value of the DC voltage Vdc output from the converter circuit 2 at the set time based on the DC voltage monitor signal Vdc_sig1, and the instantaneous power calculator 62 and the voltage effective value calculator 641 is output. On the other hand, the instantaneous DC voltage detection unit 621 (not shown) included in the first input current estimation unit 6M shown in FIG. 7 detects the value of the DC voltage Vdc based on the DC voltage monitor signal Vdc_sig11.
 図7に示す第1の入力電流推定部6Mは、圧縮機用同期モータ41のモータ極数を格納する第1の同期モータ極数格納部612M、瞬時電力を検出する電気角度を格納する第1の検出周期格納部613M、および比例定数k1を格納する第1の比例定数格納部643Mを備える。 The first input current estimation unit 6M shown in FIG. 7 is a first synchronous motor pole number storage unit 612M that stores the number of motor poles of the compressor synchronous motor 41, and a first electrical angle that detects the instantaneous power. Detection cycle storage unit 613M and a first proportionality constant storage unit 643M that stores the proportionality constant k1.
 図7に示す第2の入力電流推定部6FMは、以下の点を除いて、図2に示す実施の形態1の係る入力電流推定部6と同一の構成を有する。図2における瞬時直流電圧検出部621は、直流電圧モニタ信号Vdc_sig1に基づき、直流電圧Vdcのリプル周期f_rplおよび直流電圧Vdcを検出する。 The second input current estimation unit 6FM shown in FIG. 7 has the same configuration as the input current estimation unit 6 according to Embodiment 1 shown in FIG. 2 except for the following points. The instantaneous DC voltage detection unit 621 in FIG. 2 detects the ripple period f_rpl and the DC voltage Vdc of the DC voltage Vdc based on the DC voltage monitor signal Vdc_sig1.
 これに対し、第2の入力電流推定部6FMは、図2における瞬時直流電圧検出部621を備えない。瞬時電力計算部62および電圧実効値計算部641は、第1の入力電流推定部6Mの瞬時直流電圧検出部621から出力されるそれらデータに基づき、瞬時電力p(t)および電圧実効値Vacを計算する。即ち、第1の入力電流推定部6Mのみ、直流電圧モニタ信号Vdc_sig11から直流電圧Vdcのリプル周期f_rplおよび直流電圧Vdcを検出する機能を有する。 On the other hand, the second input current estimation unit 6FM does not include the instantaneous DC voltage detection unit 621 in FIG. The instantaneous power calculation unit 62 and the voltage effective value calculation unit 641 calculate the instantaneous power p (t) and the voltage effective value Vac based on the data output from the instantaneous DC voltage detection unit 621 of the first input current estimation unit 6M. calculate. That is, only the first input current estimation unit 6M has a function of detecting the ripple period f_rpl of the DC voltage Vdc and the DC voltage Vdc from the DC voltage monitor signal Vdc_sig11.
 必要に応じ、第1の入力電流推定部6Mおよび第2の入力電流推定部6FMが、直流電圧モニタ信号Vdc_sig11から直流電圧Vdcのリプル周期f_rplおよび直流電圧Vdc_offを検出する機能を備えてもよい。また、その検出機能を第2の入力電流推定部6FMが備えてもよい。 If necessary, the first input current estimation unit 6M and the second input current estimation unit 6FM may have a function of detecting the ripple period f_rpl of the DC voltage Vdc and the DC voltage Vdc_off from the DC voltage monitor signal Vdc_sig11. The detection function may be provided in the second input current estimation unit 6FM.
 第2の入力電流推定部6FMは、ファン用同期モータ42のモータ極数を格納する第2の同期モータ極数格納部612FM、瞬時電力を検出する電気角度を格納する第2の検出周期格納部613FM、および比例定数k2を格納する第2の比例定数格納部643FMを備える。 The second input current estimation unit 6FM includes a second synchronous motor pole number storage unit 612FM that stores the motor pole number of the fan synchronous motor 42, and a second detection cycle storage unit that stores an electrical angle for detecting instantaneous power. 613FM and a second proportional constant storage unit 643FM that stores the proportional constant k2.
 図6において、商用交流電源1の交流電圧と交流電流との位相差を”θ”とすると、その有効電力は、Vac*Iac*cos(θ)となる。同期モータ駆動装置MD11が消費する総合有効電力をP_md11とすると、両者の有効電力の値には、
Vac*Iac*cos(θ)=P_md11
という関係が成立する。実施の形態1と同じく、VacおよびIacは商用交流電源1の電圧実効値および電流実効値である。
In FIG. 6, when the phase difference between the AC voltage and AC current of the commercial AC power supply 1 is “θ”, the effective power is Vac * Iac * cos (θ). Assuming that the total active power consumed by the synchronous motor driving device MD11 is P_md11, the value of the effective power of both is
Vac * Iac * cos (θ) = P_md11
The relationship is established. As in the first embodiment, Vac and Iac are the effective voltage value and the effective current value of the commercial AC power supply 1.
 図7において、第1の入力電流推定部6Mで求めた圧縮機用同期モータ41の有効電力をP_compとし、第2の入力電流推定部6FMで求めたファン用同期モータ42の有効電力をP_fanとする。 In FIG. 7, the effective power of the compressor synchronous motor 41 obtained by the first input current estimating unit 6M is P_comp, and the effective power of the fan synchronous motor 42 obtained by the second input current estimating unit 6FM is P_fan. To do.
 インバータ回路31およびインバータ回路32のチョッピング動作制御に起因するIPM(マイクロコンピュータA21)の熱損失分の電力P_ipm21の計算式は、
P_ipm21=k1*P_comp+k2*P_fan
となる。
The calculation formula of the electric power P_ipm21 for the heat loss of the IPM (microcomputer A21) resulting from the chopping operation control of the inverter circuit 31 and the inverter circuit 32 is
P_ipm21 = k1 * P_comp + k2 * P_fan
It becomes.
 従って、同期モータ駆動装置MD11の総合有効電力P_md11は、
Vac*Iac*cos(θ)=P_md11
P_md11=(1+k1)*P_comp+(1+k2)*P_fan
となる。
Therefore, the total effective power P_md11 of the synchronous motor driving device MD11 is
Vac * Iac * cos (θ) = P_md11
P_md11 = (1 + k1) * P_comp + (1 + k2) * P_fan
It becomes.
 商用交流電源1の電圧実効値Vacは、実施の形態1における式5または式51により求める。式5または式51において、直流電圧Vdcおよび降下直流電圧ΔVdcは、実施の形態1と同様に、図7の第1の入力電流推定部6Mが備える瞬時直流電圧検出部621および有効電力計算部63の出力に基づき計算する。降下直流電圧ΔVdcは、図7に示すマイクロコンピュータA21が備えるデータテーブル(図示せず)に基づき求める。 The voltage effective value Vac of the commercial AC power supply 1 is obtained by the formula 5 or the formula 51 in the first embodiment. In Equation 5 or 51, the DC voltage Vdc and the drop DC voltage ΔVdc are the instantaneous DC voltage detector 621 and active power calculator 63 provided in the first input current estimator 6M of FIG. Calculate based on the output of. The drop DC voltage ΔVdc is obtained based on a data table (not shown) provided in the microcomputer A21 shown in FIG.
 図7の第1入力電流推定部6Mが出力する第1の推定電流実効値Iac1_est、および第2の入力電流推定部6FMが出力する第2の推定電流実効値Iac2_estは、各々、以下の通りとなる。
Iac1_est=(1+k1)*P_comp/(Vac*cos(θ))
Iac2_est=(1+k2)*P_fan/(Vac*cos(θ))
電圧実効値Vacおよび力率cos(θ)の値は、実施の形態1と同様に求める。
The first estimated current effective value Iac1_est output from the first input current estimation unit 6M in FIG. 7 and the second estimated current effective value Iac2_est output from the second input current estimation unit 6FM are as follows: Become.
Iac1_est = (1 + k1) * P_comp / (Vac * cos (θ))
Iac2_est = (1 + k2) * P_fan / (Vac * cos (θ))
The voltage effective value Vac and the power factor cos (θ) are obtained in the same manner as in the first embodiment.
 マイクロコンピュータA21は、上記Iac1_estとIac2_estの和が、所定の値を超えた場合、インバータ31およびインバータ32を適宜制御して、圧縮機用同期モータ41およびfan用同期モータ42の回転数を低下させる。この回転数制御により、同期モータ駆動装置MD1は、冷凍・空調装置の連続運転を維持することができる。 When the sum of Iac1_est and Iac2_est exceeds a predetermined value, the microcomputer A21 appropriately controls the inverter 31 and the inverter 32 to reduce the rotational speeds of the compressor synchronous motor 41 and the fan synchronous motor 42. . By this rotation speed control, the synchronous motor driving device MD1 can maintain the continuous operation of the refrigeration / air conditioning device.
 以上のように、実施の形態1の変形例に係る同期モータ駆動装置MD11は、圧縮機用同期モータとファン用同期モータの、IPMの熱損失分の電力も含めた総合有効電力を各々算出することが可能となる。 As described above, the synchronous motor driving device MD11 according to the modification of the first embodiment calculates the total effective power including the power corresponding to the heat loss of the IPM of the synchronous motor for the compressor and the synchronous motor for the fan. It becomes possible.
 <実施の形態2>
 図8を参照して、本発明の実施の形態2に係る同期モータ駆動装置MD2の構成および動作について説明する。
<Embodiment 2>
With reference to FIG. 8, the configuration and operation of synchronous motor drive device MD2 according to Embodiment 2 of the present invention will be described.
 図8に示す同期モータ駆動装置MD2は、コンバータ回路2、インバータ回路3、シャント抵抗R1、抵抗Rdc1、抵抗Rdc2、電流検出回路53、およびマイクロコンピュータA3より構成される。 8 includes a converter circuit 2, an inverter circuit 3, a shunt resistor R1, a resistor Rdc1, a resistor Rdc2, a current detection circuit 53, and a microcomputer A3.
 コンバータ回路2は、電圧実効値Vacおよび電流実効値Iacを有する商用交流電源1から供給される交流電力を直流電圧Vdcに変換し、正極直流ラインPL1と負極直流ラインPL2間に出力する。コンバータ回路2は、同期モータ駆動装置MD2に供給される交流電源の電圧実効値Vacの値に応じて、図12(a)または図12(b)に示すものが適宜選択される。 Converter circuit 2 converts AC power supplied from commercial AC power supply 1 having voltage effective value Vac and current effective value Iac into DC voltage Vdc, and outputs it between positive DC line PL1 and negative DC line PL2. The converter circuit 2 is appropriately selected from those shown in FIG. 12 (a) or FIG. 12 (b) in accordance with the value of the voltage effective value Vac of the AC power supply supplied to the synchronous motor driving device MD2.
 インバータ回路3は、正極直流ラインPL1と負極直流ラインPL2間に接続される3相(U相/V相/W相)のインバータ(Qu/Qx、Qv/Qy、Qw/Qz)を有する。3相の各インバータは、直流電圧Vdcを3相の交流電流(U相/V相/W層)に変換して、同期モータ4に供給する。 The inverter circuit 3 has a three-phase (U phase / V phase / W phase) inverter (Qu / Qx, Qv / Qy, Qw / Qz) connected between the positive DC line PL1 and the negative DC line PL2. Each of the three-phase inverters converts the DC voltage Vdc into a three-phase AC current (U phase / V phase / W layer) and supplies it to the synchronous motor 4.
 マイクロコンピュータA3は、PWM(Pulse Width Modulation)信号を生成し、3相の各インバータのスイッチングを制御する。このスイッチング制御により、インバータ回路3は、直流電圧Vdcから3相の交流電流を生成する。 The microcomputer A3 generates a PWM (Pulse Width Modulation) signal and controls switching of each of the three-phase inverters. By this switching control, the inverter circuit 3 generates a three-phase AC current from the DC voltage Vdc.
 コンバータ回路2の出力側とインバータ回路3の入力側とは、正極直流ラインPL1および負極直流ラインPL2で接続され、両回路間の負極直流ラインPL2上には、シャント抵抗R1が設けられている。 The output side of the converter circuit 2 and the input side of the inverter circuit 3 are connected by a positive DC line PL1 and a negative DC line PL2, and a shunt resistor R1 is provided on the negative DC line PL2 between the two circuits.
 抵抗Rdc1および抵抗Rdc2は、正極直流ラインPL1と負極直流ラインPL2との間に直列接続され、直流電圧モニタ回路を形成する。抵抗Rdc1および抵抗Rdc2の接続点から、直流電圧Vdcを両抵抗で分圧した直流電圧モニタ信号Vdc_sig2がマイクロコンピュータA3へ出力される。 The resistor Rdc1 and the resistor Rdc2 are connected in series between the positive DC line PL1 and the negative DC line PL2 to form a DC voltage monitor circuit. A DC voltage monitor signal Vdc_sig2 obtained by dividing the DC voltage Vdc by both resistors is output to the microcomputer A3 from the connection point between the resistors Rdc1 and Rdc2.
 図8において、本発明の実施の形態2が、実施の形態1および実施の形態1の変形例と相違する点は、次の通りである。即ち、インバータ回路3を構成する3相(U相/V相/W層)の各インバータと負極直流ラインPL2と間に、各々に、電流検出抵抗Ru,Rv、Rwが配置されている。実施の形態1等では、インバータ回路3の直流電流Idcをシャント抵抗でもある抵抗R1で検出していた。実施の形態2では、抵抗R1は、シャント抵抗として使用し、インバータ回路3の過電流を検出するために使用する。 In FIG. 8, the second embodiment of the present invention is different from the first embodiment and the modification of the first embodiment as follows. That is, current detection resistors Ru, Rv, and Rw are arranged between the three-phase (U-phase / V-phase / W-layer) inverters constituting the inverter circuit 3 and the negative DC line PL2. In the first embodiment and the like, the DC current Idc of the inverter circuit 3 is detected by the resistor R1 that is also a shunt resistor. In the second embodiment, the resistor R1 is used as a shunt resistor and is used to detect an overcurrent of the inverter circuit 3.
 3相の各インバータと電流検出抵抗Ru、Rv、Rwとの接続点の電位は、電流検出回路53に入力される。電流検出回路53は、各相の電位の値を各インバータに流れる直流電流信号Iru、Irv、およびIrwに変換して、マイクロコンピュータA3に出力する。 The potential at the connection point between each of the three-phase inverters and the current detection resistors Ru, Rv, Rw is input to the current detection circuit 53. The current detection circuit 53 converts the value of the potential of each phase into DC current signals Iru, Irv, and Irw flowing through the inverters, and outputs them to the microcomputer A3.
 図9を参照して、本発明の実施例の形態2に係るマイクロコンピュータA3の構成および動作について説明する。 With reference to FIG. 9, the configuration and operation of the microcomputer A3 according to the second embodiment of the present invention will be described.
 (構成)
 マイクロコンピュータA3は、入力電流推定部6AおよびPWM信号生成部7とを有する。PWM信号生成部7は、PWM信号を生成してインバータ回路3へ出力する。入力電流推定部6Aは、電流検出回路53から出力される直流電流信号Iru/Irv/Irwと、PWM信号生成部7から出力されるPWM信号と、直流電圧モニタ信号Vdc_sig2とに基づき、商用交流電源1から同期モータ駆動装置MD2に供給される入力交流電流の推定電流実効値Iac_estを計算し、PWM信号生成部7に出力する。
(Constitution)
The microcomputer A3 includes an input current estimation unit 6A and a PWM signal generation unit 7. The PWM signal generation unit 7 generates a PWM signal and outputs it to the inverter circuit 3. Based on the DC current signal Iru / Irv / Irw output from the current detection circuit 53, the PWM signal output from the PWM signal generator 7, and the DC voltage monitor signal Vdc_sig2, the input current estimation unit 6A 1 to calculate the estimated current effective value Iac_est of the input AC current supplied from 1 to the synchronous motor drive device MD2, and outputs it to the PWM signal generator 7.
 入力電流推定部6Aは、瞬時電流検出部61A、瞬時電力計算部62A、有効電力計算部63、および入力電流計算部64を有する。さらに、同期モータ駆動装置MD2が駆動する同期モータ4の極数を格納する同期モータ極数格納部612、インバータ回路3の直流電流Idcの検出周期を格納する検出周期格納部613、直流電流Idcを検出するモータの電気角度のピッチを設定する検出電気角度設定部611、および直流電流Idcを検出した時刻におけるコンバータ回路2が出力する直流電圧Vdcの値を格納する瞬時直流電圧検出部621を有する。 The input current estimation unit 6A includes an instantaneous current detection unit 61A, an instantaneous power calculation unit 62A, an active power calculation unit 63, and an input current calculation unit 64. Further, the synchronous motor pole number storage unit 612 that stores the number of poles of the synchronous motor 4 driven by the synchronous motor drive device MD2, the detection cycle storage unit 613 that stores the detection cycle of the DC current Idc of the inverter circuit 3, and the DC current Idc. It has a detection electric angle setting unit 611 that sets the pitch of the electric angle of the motor to be detected, and an instantaneous DC voltage detection unit 621 that stores the value of the DC voltage Vdc output from the converter circuit 2 at the time when the DC current Idc is detected.
 (瞬時電流Iu(t)/Iv(t)/Iw(t)の検出)
 瞬時電流検出部61Aは、所定の時刻tで検出した直流電流信号Iru、Irv、Irwに基づき、時刻tにおいて3相の各インバータに流れる瞬時電流Iu(t)、Iv(t)、およびIw(t)を出力する。実施の形態1と異なり、瞬時電流検出部61AへPWM信号を入力して3相の瞬時電流に分配する必要はない。
(Detection of instantaneous current Iu (t) / Iv (t) / Iw (t))
Based on the DC current signals Iru, Irv, Irw detected at a predetermined time t, the instantaneous current detection unit 61A is configured to output instantaneous currents Iu (t), Iv (t), and Iw ( t) is output. Unlike the first embodiment, it is not necessary to input a PWM signal to the instantaneous current detector 61A and distribute it to the three-phase instantaneous current.
 瞬時直流電圧検出部621は、入力された直流電圧モニタ信号Vdc_sig2に基づき、設定された時刻におけるコンバータ回路2が出力する直流電圧Vdcの値を検出し、瞬時電力計算部62Aおよび電圧実効値計算部641へ出力する。 The instantaneous DC voltage detection unit 621 detects the value of the DC voltage Vdc output from the converter circuit 2 at a set time based on the input DC voltage monitor signal Vdc_sig2, and the instantaneous power calculation unit 62A and the voltage effective value calculation unit 641 is output.
 瞬時直流電圧検出部621は、さらに、直流電圧モニタ信号Vdc_sig2に基づき直流電圧Vdcのリプル周期f_rplを出力する。リプル周期f_rplの検出方法は実施の形態1と同様である。 The instantaneous DC voltage detection unit 621 further outputs a ripple cycle f_rpl of the DC voltage Vdc based on the DC voltage monitor signal Vdc_sig2. The method for detecting the ripple period f_rpl is the same as in the first embodiment.
 入力電流推定部6Aは、さらに、商用交流電源1の電圧実効値Vacの値を計算する電圧実効値計算部641、交流電圧および交流電流間の力率を格納する力率テーブル642、および同期モータ駆動装置MD2の熱損失エネルギーを消費電力に換算する比例定数格納部643を有する。 The input current estimation unit 6A further includes a voltage effective value calculation unit 641 that calculates the value of the voltage effective value Vac of the commercial AC power supply 1, a power factor table 642 that stores a power factor between the AC voltage and the AC current, and a synchronous motor A proportional constant storage unit 643 that converts heat loss energy of the driving device MD2 into power consumption is included.
 電圧実効値計算部641は、有効電力計算部63が出力する有効電力Pおよび瞬時直流電圧検出部621が出力するリプル周期f_rplに基づき、データテーブルを参照して降下直流電圧ΔVdcを決定する。さらに、電圧実効値計算部641は、決定した降下直流電圧ΔVdcおよび瞬時直流電圧検出部621が出力する直流電圧Vdcに基づき、後述する計算式により電圧実効値Vacを算出する。 The voltage effective value calculation unit 641 determines the drop DC voltage ΔVdc with reference to the data table based on the active power P output from the active power calculation unit 63 and the ripple cycle f_rpl output from the instantaneous DC voltage detection unit 621. Furthermore, the voltage effective value calculation unit 641 calculates the voltage effective value Vac by a calculation formula described later based on the determined drop DC voltage ΔVdc and the DC voltage Vdc output from the instantaneous DC voltage detection unit 621.
 (瞬時電力p(t)の計算)
 瞬時電力計算部62Aは、3相の瞬時電流Iu(t)、Iv(t)およびIw(t)と、PWM信号生成部7から出力されるPWM信号と、瞬時直流電圧検出部621が出力する直流電圧Vdcとに基づき、所定の時刻tにおける瞬時電力p(t)を計算する。
(Calculation of instantaneous power p (t))
The instantaneous power calculator 62A outputs the three-phase instantaneous currents Iu (t), Iv (t) and Iw (t), the PWM signal output from the PWM signal generator 7, and the instantaneous DC voltage detector 621. Based on the DC voltage Vdc, the instantaneous power p (t) at a predetermined time t is calculated.
 瞬時電力p(t)は、瞬時電流Iu(t)、Iv(t)、およびIw(t)と瞬時直流電圧検出部621から出力される直流電圧Vdcに基づき、以下の式で計算される。 The instantaneous power p (t) is calculated by the following formula based on the instantaneous currents Iu (t), Iv (t), and Iw (t) and the DC voltage Vdc output from the instantaneous DC voltage detector 621.
 以下の式で、記号”*”は乗算記号を、記号”/”は除算記号を、各々意味する。
p(t)=pu(t)+pv(t)+pw(t)
ここで、pu(t)、pv(t)およびpw(t)は、各々、U相、V相、およびW相の瞬時電力であり、下記の式により求められる。
pu(t)=Vdc*U相PWMデューティ比*Iu(t)
pv(t)=Vdc*V相PWMデューティ比*Iv(t)
pw(t)=Vdc*W相PWMデューティ比*Iw(t)
PWMデューティ比とは、PWM波形のデューティ比である。
In the following equations, the symbol “*” means a multiplication symbol, and the symbol “/” means a division symbol.
p (t) = pu (t) + pv (t) + pw (t)
Here, pu (t), pv (t), and pw (t) are instantaneous powers of the U phase, the V phase, and the W phase, respectively, and are obtained by the following equations.
pu (t) = Vdc * U-phase PWM duty ratio * Iu (t)
pv (t) = Vdc * V-phase PWM duty ratio * Iv (t)
pw (t) = Vdc * W-phase PWM duty ratio * Iw (t)
The PWM duty ratio is a duty ratio of the PWM waveform.
 瞬時電力p(t)の検出時刻は、図3に示す実施の形態1における検出時刻と同様に設定される。同期モータ4の機械的1回転(機械角度360°)の周期Tに対応する電気角度に亘り、所定の電気角度の検出ピッチで検出時刻t1~tnを設定する。この機械的1回転の周期Tに対応する電気角度は同期モータ4の極数に依存する。図9と図2に示す検出周期格納部613は、ともに、瞬時電力p(t)を検出する電気角度のピッチを格納する。図9と図2に示す同期モータ極数格納部612は、ともに、同期モータ4の極数を格納する。 The detection time of the instantaneous power p (t) is set similarly to the detection time in the first embodiment shown in FIG. Detection times t1 to tn are set at a detection pitch of a predetermined electrical angle over an electrical angle corresponding to a period T of one mechanical rotation (mechanical angle 360 °) of the synchronous motor 4. The electrical angle corresponding to the period T of one mechanical rotation depends on the number of poles of the synchronous motor 4. Both the detection cycle storage unit 613 shown in FIG. 9 and FIG. 2 store the pitch of the electrical angle at which the instantaneous power p (t) is detected. The synchronous motor pole number storage unit 612 shown in FIGS. 9 and 2 stores the number of poles of the synchronous motor 4 together.
 図9に示す検出電気角度設定部611は、同期モータ極数格納部612および検出周期格納部613から出力される情報に基づき、瞬時電流検出部61Aに対して、直流電流信号Iru/Irv/Irwの検出時刻t1~tnを通知する。 The detected electrical angle setting unit 611 shown in FIG. 9 is configured to provide a DC current signal Iru / Irv / Irw to the instantaneous current detection unit 61A based on information output from the synchronous motor pole number storage unit 612 and the detection cycle storage unit 613. The detection times t1 to tn are notified.
 (有効電力Pの計算)
 有効電力計算部63は、瞬時電力計算部62Aから出力される瞬時電力p(t)の総和を同期モータ4の機械的1回転の周期Tで除算して有効電力Pを算出する。有効電力Pの計算式は、以下の式1Aとなる。
P=(p(t1)+p(t2)+ … +p(tn))/T  … 式1A
ここで、式1Aは、実施の形態1における式1に対応する。
(Calculation of active power P)
The active power calculator 63 calculates the effective power P by dividing the sum of the instantaneous power p (t) output from the instantaneous power calculator 62A by the period T of one mechanical rotation of the synchronous motor 4. The formula for calculating the effective power P is the following formula 1A.
P = (p (t1) + p (t2) + ... + p (tn)) / T ... Equation 1A
Here, Formula 1A corresponds to Formula 1 in Embodiment 1.
 (同期モータ駆動装置の総合有効電力P_md2)
 図8において、商用交流電源1から同期モータ駆動装置MD2へ供給される交流電圧および交流電流の実効値は、各々、VacおよびIacである。その交流電圧と交流電流との位相差を”θ”とすると、有効電力は、Vac*Iac*cos(θ)となる。ここで、同期モータ駆動装置MD2が消費する総合有効電力をP_md1とすると、両者の有効電力の値には、
Vac*Iac*cos(θ)=P_md2
という関係が成立する。
(Total effective power P_md2 of synchronous motor driving device)
In FIG. 8, the effective values of the AC voltage and AC current supplied from commercial AC power supply 1 to synchronous motor drive device MD2 are Vac and Iac, respectively. When the phase difference between the AC voltage and the AC current is “θ”, the active power is Vac * Iac * cos (θ). Here, assuming that the total active power consumed by the synchronous motor drive device MD2 is P_md1,
Vac * Iac * cos (θ) = P_md2
The relationship is established.
 図8に示す同期モータ駆動装置MD2において、商用交流電源1からダイオードブリッジ等で構成されるコンバータ回路2へ供給される有効電力と、コンバータ回路2の出力電力とは、ほぼ等しいと考えられる。このコンバータ回路2の出力電力は、主に、インバータ回路3で駆動される同期モータ4で消費される。この同期モータ4の有効電力は、図9に示す有効電力計算部63が出力する有効電力Pとして求められる。同期モータ4の有効電力Pの計算式は、実施の形態1と同様に、式1Aに示す通りである。 In the synchronous motor driving device MD2 shown in FIG. 8, the effective power supplied from the commercial AC power supply 1 to the converter circuit 2 constituted by a diode bridge or the like and the output power of the converter circuit 2 are considered to be substantially equal. The output power of the converter circuit 2 is mainly consumed by the synchronous motor 4 driven by the inverter circuit 3. The active power of the synchronous motor 4 is obtained as the active power P output from the active power calculator 63 shown in FIG. The calculation formula for the effective power P of the synchronous motor 4 is as shown in Formula 1A, as in the first embodiment.
 さらに、コンバータ回路2の出力電力は、上記同期モータ4の有効電力Pに加えて、インバータ回路3を制御するマイクロコンピュータA3の熱損失に起因する消費電力が無視できない場合もある。インバータ回路3のチョッピング動作を制御するIPM(マイクロコンピュータA3)の熱損失分の電力をP_ipm3とする。このP_ipm3は、インバータ回路3が駆動する同期モータ4の有効電力Pに比例する。その比例定数をk1とすると、以下の関係が成立する。
P_ipm3=k1*P
なお、比例定数k1は実験等により得られる値であり、マイクロコンピュータA3に格納される。
Furthermore, as for the output power of the converter circuit 2, in addition to the effective power P of the synchronous motor 4, there is a case where the power consumption due to the heat loss of the microcomputer A 3 that controls the inverter circuit 3 cannot be ignored. The power for the heat loss of the IPM (microcomputer A3) that controls the chopping operation of the inverter circuit 3 is P_ipm3. This P_ipm3 is proportional to the effective power P of the synchronous motor 4 driven by the inverter circuit 3. If the proportionality constant is k1, the following relationship is established.
P_ipm3 = k1 * P
The proportionality constant k1 is a value obtained by experiments or the like, and is stored in the microcomputer A3.
 以上から、同期モータ駆動装置MD3が消費する総合有効電力P_md3は、同期モータ4の有効電力PおよびIPMの熱損失分の電力P_ipm3の和となる。以下に、商用交流電源1からコンバータ回路2へ供給される有効電力と同期モータ駆動装置MD3で消費される総合有効電力P_md3との関係を示す。
Vac*Iac*cos(θ)=P_md3  … 式2A
P_md1=P+P_ipm3=(1+k1)*P  … 式3A
ここで、式2Aおよび式3Aは、実施の形態1における式2および式3に対応する。
From the above, the total effective power P_md3 consumed by the synchronous motor driving device MD3 is the sum of the effective power P of the synchronous motor 4 and the power P_ipm3 corresponding to the heat loss of the IPM. The relationship between the active power supplied from the commercial AC power supply 1 to the converter circuit 2 and the total active power P_md3 consumed by the synchronous motor driving device MD3 is shown below.
Vac * Iac * cos (θ) = P_md3 Formula 2A
P_md1 = P + P_ipm3 = (1 + k1) * P Equation 3A
Here, Expression 2A and Expression 3A correspond to Expression 2 and Expression 3 in the first embodiment.
 式1A、式2Aおよび式3Aから、交流電流の実効値Iac、同期モータ4の有効電力P、交流電圧の実効値Vac、および力率cos(θ)は、以下の式4Aの関係を有する。
Iac=(1+k1)*P/(Vac*cos(θ))  … 式4A
ここで、式4Aは、実施の形態1における式4に対応する。
From Equation 1A, Equation 2A, and Equation 3A, the effective value Iac of the alternating current, the effective power P of the synchronous motor 4, the effective value Vac of the alternating voltage, and the power factor cos (θ) have the relationship of the following Equation 4A.
Iac = (1 + k1) * P / (Vac * cos (θ)) Equation 4A
Here, Expression 4A corresponds to Expression 4 in the first embodiment.
 (交流電圧の実効値Vacの計算)
 以下に、交流電圧の実効値Vacと力率cos(θ)の算出方法を説明する。
(Calculation of effective value Vac of AC voltage)
Below, the calculation method of the effective value Vac and power factor cos ((theta)) of an alternating voltage is demonstrated.
 図8に示す商用交流電源1の入力電圧実効値Vacの計算方法について説明する。同期モータ4の回転速度が上昇するに従いコンバータ回路2の出力電流が増加するため、コンバータ回路2の直流電圧Vdcは低下する。実施の形態1と同様に、その直流電圧Vdcの降下分を降下直流電圧ΔVdcとする。 A method of calculating the input voltage effective value Vac of the commercial AC power supply 1 shown in FIG. 8 will be described. Since the output current of the converter circuit 2 increases as the rotational speed of the synchronous motor 4 increases, the DC voltage Vdc of the converter circuit 2 decreases. As in the first embodiment, the DC voltage Vdc drop is defined as the DC voltage drop ΔVdc.
 図12(a)に示すコンバータ回路2が有効電力Pを出力している場合、電圧実効値Vac、直流電圧Vdcおよび降下直流電圧ΔVdcとは以下の関係を有する。
Vac=(Vdc-ΔVdc)/√2
=(Vdc+abs(ΔVdc))/√2  … 式5A
ここで、√2は2の平方根、abs(ΔVdc)はΔVdcの絶対値である。
When converter circuit 2 shown in FIG. 12 (a) outputs active power P, voltage effective value Vac, DC voltage Vdc, and dropped DC voltage ΔVdc have the following relationship.
Vac = (Vdc−ΔVdc) / √2
= (Vdc + abs (ΔVdc)) / √2 Equation 5A
Here, √2 is the square root of 2, and abs (ΔVdc) is the absolute value of ΔVdc.
 コンバータ回路2が図12(b)に示す倍電圧回路の場合、電圧実効値Vac、直流電圧Vdcおよび降下直流電圧ΔVdcとは以下の関係を有する。
Vac=(Vdc-ΔVdc)/2/√2
=(Vdc+abs(ΔVdc))/2/√2  … 式51A
コンバータ回路2の回路構成に基づき、いずれか一方の式が選択される。ここで、式5Aおよび式51Aは、実施の形態1における式5および式51に各々対応する。
When converter circuit 2 is the voltage doubler circuit shown in FIG. 12B, voltage effective value Vac, DC voltage Vdc, and drop DC voltage ΔVdc have the following relationship.
Vac = (Vdc−ΔVdc) / 2 / √2
= (Vdc + abs (ΔVdc)) / 2 / √2 Equation 51A
One of the equations is selected based on the circuit configuration of the converter circuit 2. Here, Formula 5A and Formula 51A correspond to Formula 5 and Formula 51 in Embodiment 1, respectively.
 実施の形態1と同様に、図11に示す6本のグラフを商用交流電源1の各周波数別に、有効電力Pと降下直流電圧ΔVdcのデータテーブルとしてマイクロコンピュータA1に格納しておき、有効電力Pおよび入力交流電圧の周波数を指定することにより、降下直流電圧ΔVdcを求めることが出来る。 As in the first embodiment, the six graphs shown in FIG. 11 are stored in the microcomputer A1 as a data table of the active power P and the drop DC voltage ΔVdc for each frequency of the commercial AC power supply 1, and the active power P And by specifying the frequency of the input AC voltage, it is possible to obtain the dropped DC voltage ΔVdc.
 以上の構成により、同期モータ4の運転期間中における商用交流電源1の電圧実効値Vacの検出が可能となる。また、運転期間中に交流電圧に変動があった場合でも、その電圧実効値Vacを検出することができる。 With the above configuration, it is possible to detect the effective voltage value Vac of the commercial AC power supply 1 during the operation period of the synchronous motor 4. Even if the AC voltage varies during the operation period, the effective voltage value Vac can be detected.
 実施の形態1と同様に、マイクロコンピュータA3に格納した図4または図5に示すテーブルに基づき、入力交流電圧と入力交流電流の力率cos(θ)を求める。 As in the first embodiment, the input AC voltage and the power factor cos (θ) of the input AC current are obtained based on the table shown in FIG. 4 or 5 stored in the microcomputer A3.
 (推定電流実効値Iac_estの計算)
 図9を参照して、入力電流計算部64による推定電流実効値Iac_estの計算方法を説明する。
(Calculation of estimated current effective value Iac_est)
With reference to FIG. 9, the calculation method of estimated current effective value Iac_est by input current calculation unit 64 will be described.
 入力電流計算部64は、有効電力計算部63から出力される同期モータ4の有効電力Pに基づき、商用交流電源1から供給される入力交流電流の実効値Iacを推定し、推定電流実効値Iac_estとして出力する。 The input current calculation unit 64 estimates the effective value Iac of the input AC current supplied from the commercial AC power supply 1 based on the active power P of the synchronous motor 4 output from the active power calculation unit 63, and the estimated current effective value Iac_est. Output as.
 この推定電流実効値Iac_estの計算には、電圧実効値計算部641が出力する電圧実効値Vac、力率テーブル642に格納される力率の値、および比例定数格納部643に格納される比例定数k1が各々引用される。推定電流実効値Iac_estの計算式は、以下の通りとなる。
Iac_est=(1+k1)*P/(Vac*cos(θ))
この推定電流実効値Iac_estの計算式は、上記の式4Aに対応する。
For calculating the estimated current effective value Iac_est, the voltage effective value Vac output from the voltage effective value calculation unit 641, the power factor value stored in the power factor table 642, and the proportionality constant stored in the proportionality constant storage unit 643. Each k1 is quoted. The calculation formula of the estimated current effective value Iac_est is as follows.
Iac_est = (1 + k1) * P / (Vac * cos (θ))
The calculation formula of the estimated current effective value Iac_est corresponds to the above formula 4A.
 PWM信号生成部7は、入力された推定電流実効値Iac_estが所定の値を越えた場合、インバータ回路3へ出力するPWM信号のデューティーを変更し、同期モータ4の回転数を低下させる。この回転数制御により、同期モータ駆動装置MD2は、冷凍・空調装置の連続運転を維持することができる。 When the input estimated current effective value Iac_est exceeds a predetermined value, the PWM signal generation unit 7 changes the duty of the PWM signal output to the inverter circuit 3 and decreases the rotational speed of the synchronous motor 4. By this rotation speed control, the synchronous motor driving device MD2 can maintain the continuous operation of the refrigeration / air conditioning device.
 以上のように、実施の形態2の同期モータ駆動装置MD2は、IPMとして動作するマイクロコンピュータA3が備える汎用演算処理機能を使用することにより、複雑な構成の回路部品を追加することなく、冷凍サイクルを有する機器の連続運転を維持することができる。また、IPMの熱損失分の電力も同期モータ駆動装置MD2の有効電力に加えることにより、より正確に入力電流実効値を推定することができる。 As described above, the synchronous motor driving device MD2 according to the second embodiment uses the general-purpose arithmetic processing function provided in the microcomputer A3 that operates as the IPM, so that a refrigeration cycle can be performed without adding complicated circuit components. The continuous operation of the equipment having Moreover, the input current effective value can be estimated more accurately by adding the power corresponding to the heat loss of the IPM to the effective power of the synchronous motor driving device MD2.
 <実施の形態の変形例>
 図10を参照して、本発明の各実施の形態に共通な変形例を説明する。
<Modification of Embodiment>
With reference to FIG. 10, a modification common to the respective embodiments of the present invention will be described.
 図10に示すマイクロコンピュータAは、各実施の形態が有する電流検出回路5、51、52、53をマイクロコンピュータAの内部に電流検出回路5Aとして取り込んだ構成を有する。電流検出回路は、電流検出抵抗に流れる電流により発生する電圧を、その電流値に変換する機能を有する。電圧-電流変換回路である電流検出回路5Aを、マイクロコンピュータに内蔵される演算増幅器で構成した。 A microcomputer A shown in FIG. 10 has a configuration in which the current detection circuits 5, 51, 52, and 53 included in each embodiment are incorporated in the microcomputer A as the current detection circuit 5A. The current detection circuit has a function of converting a voltage generated by a current flowing through the current detection resistor into a current value. The current detection circuit 5A, which is a voltage-current conversion circuit, is composed of an operational amplifier built in the microcomputer.
 図10に示すマイクロコンピュータAに含まれる他の回路、即ち、入力電流推定部6およびPWM信号生成部7の構成や動作は、他の実施の形態に係るものと同一であり、説明は省略する。 The other circuits included in the microcomputer A shown in FIG. 10, that is, the configurations and operations of the input current estimating unit 6 and the PWM signal generating unit 7 are the same as those according to the other embodiments, and the description thereof is omitted. .
 以上のように、本発明の各実施の形態に共通な変形例の同期モータ駆動装置は、電流検出回路をマイクロコンピュータに内蔵させた。これにより、同期モータ駆動装置を、より一層小型かつ安価に提供することができる。 As described above, in the synchronous motor driving device of the modification common to the embodiments of the present invention, the current detection circuit is built in the microcomputer. Thereby, a synchronous motor drive device can be provided much smaller and cheaper.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明でなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 商用交流電源、2 コンバータ回路、3,31,32 インバータ回路、4,41,42 同期モータ、5,51,52,53 電流検出回路、R1,R11,R21,Ru,Rv,Rw 電流検出抵抗、Rdc1,Rdc2 抵抗、Vdc_sig1,Vdc_sig11,Vdc_sig2 直流電圧モニタ信号、A1,A21,A3 マイクロコンピュータ、Iac 電流実効値、Vac 電圧実効値、Iac 電流実効値、PL1,PL11 正極直流ライン、PL2,PL22 負極直流ライン、MD1,MD11,MD2 同期モータ駆動装置、Idc_sig,Idc1_sig,Idc2_sig 直流電流モニタ信号、6,6M,6FM,6A 入力電流推定部、Iac_est,Iac1_est,Iac2_est 推定電流実効値、L コイル、DB ダイオードブリッジ、C,C1,C2 キャパシタ。 1 commercial AC power supply, 2 converter circuit, 3, 31, 32 inverter circuit, 4, 41, 42 synchronous motor, 5, 51, 52, 53 current detection circuit, R1, R11, R21, Ru, Rv, Rw current detection resistor , Rdc1, Rdc2, resistance, Vdc_sig1, Vdc_sig11, Vdc_sig2, DC voltage monitor signal, A1, A21, A3 microcomputer, Iac current effective value, Vac voltage effective value, Iac current effective value, PL1, PL11 positive DC line, PL2, PL22 negative DC line, MD1, MD11, MD2 synchronous motor drive, Idc_sig, Idc1_sig, Idc2_sig DC current monitor signal, 6,6M, 6FM, 6A input current estimation unit, Iac_est, Iac1_est, Iac2_est estimated current effective value, L coil, D coil Diode bridge, C, C1, C2 capacitor.

Claims (7)

  1.  交流電力を直流電圧に変換して出力するコンバータ回路と、
     前記直流電圧をPWM信号に基づき3相交流電流に変換し、同期モータへ出力するインバータ回路と、
     前記PWM信号を出力するマイクロコンピュータとを備え、
     前記マイクロコンピュータは、
     前記PWM信号を生成するPWM信号生成部と、
     前記インバータ回路の電源電流に基づき前記同期モータの有効電力を算出する有効電力計算部と、
     前記直流電圧および前記同期モータの有効電力に対する前記直流電圧の変化量に基づき前記交流電力の電圧実効値を算出する電圧実効値計算部と、
     前記同期モータの有効電力または回転速度に基づき前記交流電力の力率を算出する手段と、
     前記同期モータの有効電力、前記電圧実効値および前記力率に基づき前記交流電力の電流実効値を推定する入力電流計算部とを有する、同期モータ駆動装置。
    A converter circuit that converts alternating current power into a direct current voltage and outputs it;
    An inverter circuit for converting the DC voltage into a three-phase AC current based on the PWM signal and outputting the same to a synchronous motor;
    A microcomputer for outputting the PWM signal,
    The microcomputer is
    A PWM signal generator for generating the PWM signal;
    An active power calculator that calculates the active power of the synchronous motor based on the power supply current of the inverter circuit;
    A voltage effective value calculation unit that calculates a voltage effective value of the AC power based on the amount of change of the DC voltage with respect to the DC voltage and the effective power of the synchronous motor;
    Means for calculating a power factor of the AC power based on the effective power or the rotational speed of the synchronous motor;
    A synchronous motor drive device comprising: an input current calculation unit that estimates an effective current value of the AC power based on an effective power of the synchronous motor, the effective voltage value, and the power factor.
  2.  前記マイクロコンピュータは、
     前記直流電圧に基づき直流電圧モニタ信号を生成する直流電圧モニタ回路と、
     前記直流電圧モニタ信号に基づき前記直流電圧を検出する直流電圧検出部と、をさらに有する請求項1に記載の同期モータ駆動装置。
    The microcomputer is
    A DC voltage monitor circuit for generating a DC voltage monitor signal based on the DC voltage;
    The synchronous motor drive device according to claim 1, further comprising: a DC voltage detection unit that detects the DC voltage based on the DC voltage monitor signal.
  3.  前記マイクロコンピュータは、
     前記同期モータの有効電力に対する前記直流電圧の変化量の関係を格納する手段をさらに有する、請求項1または請求項2に記載の同期モータ駆動装置。
    The microcomputer is
    The synchronous motor drive device according to claim 1, further comprising means for storing a relationship of a change amount of the DC voltage with respect to an active power of the synchronous motor.
  4.  前記マイクロコンピュータは、
     前記直流電圧モニタ信号に基づき前記直流電圧のリプル周期を検出する手段をさらに有し、
     前記電圧実効値計算部は、前記直流電圧のリプル周期および前記直流電圧の変化量に基づき前記交流電力の電圧実効値を算出する、請求項2または請求項3に記載の同期モータ駆動装置。
    The microcomputer is
    Means for detecting a ripple period of the DC voltage based on the DC voltage monitor signal;
    4. The synchronous motor drive device according to claim 2, wherein the voltage effective value calculation unit calculates a voltage effective value of the AC power based on a ripple period of the DC voltage and a change amount of the DC voltage. 5.
  5.  前記マイクロコンピュータは、
     前記同期モータの有効電力に対する前記マイクロコンピュータの消費電力の比例定数を保持する比例定数格納部をさらに有し、
     前記同期モータの有効電力は、前記同期モータの有効電力に前記比例定数を乗算した値をさらに加算した値とする、請求項1から請求項4までのいずれかに記載の同期モータ駆動装置。
    The microcomputer is
    A proportional constant storage unit that holds a proportional constant of the power consumption of the microcomputer with respect to the effective power of the synchronous motor;
    5. The synchronous motor drive device according to claim 1, wherein the effective power of the synchronous motor is a value obtained by further adding a value obtained by multiplying the effective power of the synchronous motor by the proportional constant. 6.
  6.  前記PWM信号生成部は、前記入力電流計算部の出力が所定の値を超えた場合、前記同期モータの回転数を低下させる、請求項1から請求項5までのいずれかに記載の同期モータ駆動装置。 6. The synchronous motor drive according to claim 1, wherein when the output of the input current calculation unit exceeds a predetermined value, the PWM signal generation unit reduces the rotational speed of the synchronous motor. apparatus.
  7.  交流電力を直流電圧に変換して出力するコンバータ回路と、
     前記直流電圧を第1のPWM信号に基づき3相交流電流に変換し、第1の同期モータへ出力する第1のインバータ回路と、
     前記直流電圧を第2のPWM信号に基づき3相交流電流に変換し、第2の同期モータへ出力する第2のインバータ回路と、
     前記第1のPWM信号および前記第2のPWM信号を出力するマイクロコンピュータとを備え、
     前記マイクロコンピュータは、
     前記第1のPWM信号を生成する第1のPWM信号生成部と、
     前記第2のPWM信号を生成する第2のPWM信号生成部と、
     前記第1のインバータ回路の電源電流に基づき前記第1の同期モータの有効電力を算出する第1の有効電力計算部と、
     前記第2のインバータ回路の電源電流に基づき前記第2の同期モータの有効電力を算出する第2の有効電力計算部と、
     前記直流電圧および前記第1の同期モータの有効電力と前記第2の同期モータの有効電力を加算した同期モータの有効電力に対する前記直流電圧との変化量とに基づき前記交流電力の電圧実効値を算出する電圧実効値計算部と、
     前記第1の同期モータおよび前記第2の同期モータの有効電力または回転速度に基づき、前記交流電力の力率を算出する手段と、
     前記同期モータの有効電力、前記電圧実効値および前記力率に基づき前記交流電力の電流実効値を推定する入力電流計算部とを有する、同期モータ駆動装置。
    A converter circuit that converts alternating current power into a direct current voltage and outputs it;
    A first inverter circuit that converts the DC voltage into a three-phase AC current based on a first PWM signal and outputs the same to a first synchronous motor;
    A second inverter circuit that converts the DC voltage into a three-phase AC current based on the second PWM signal and outputs the same to a second synchronous motor;
    A microcomputer for outputting the first PWM signal and the second PWM signal;
    The microcomputer is
    A first PWM signal generator for generating the first PWM signal;
    A second PWM signal generator for generating the second PWM signal;
    A first active power calculator that calculates an active power of the first synchronous motor based on a power supply current of the first inverter circuit;
    A second active power calculator that calculates the active power of the second synchronous motor based on the power supply current of the second inverter circuit;
    Based on the DC voltage and the amount of change of the DC voltage with respect to the effective power of the synchronous motor obtained by adding the effective power of the first synchronous motor and the effective power of the second synchronous motor, the voltage effective value of the AC power is calculated. A voltage RMS value calculation unit to be calculated;
    Means for calculating a power factor of the AC power based on the effective power or the rotational speed of the first synchronous motor and the second synchronous motor;
    A synchronous motor drive device comprising: an input current calculation unit that estimates an effective current value of the AC power based on an effective power of the synchronous motor, the effective voltage value, and the power factor.
PCT/JP2012/080272 2011-12-21 2012-11-22 Synchronous motor drive apparatus WO2013094360A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280063326.8A CN104011993B (en) 2011-12-21 2012-11-22 Synchro motor drive device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011279932A JP5908273B2 (en) 2011-12-21 2011-12-21 Synchronous motor drive device
JP2011-279932 2011-12-21

Publications (1)

Publication Number Publication Date
WO2013094360A1 true WO2013094360A1 (en) 2013-06-27

Family

ID=48668259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080272 WO2013094360A1 (en) 2011-12-21 2012-11-22 Synchronous motor drive apparatus

Country Status (3)

Country Link
JP (1) JP5908273B2 (en)
CN (1) CN104011993B (en)
WO (1) WO2013094360A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6207999B2 (en) * 2013-12-20 2017-10-04 三菱重工業株式会社 Power supply frequency determination device and power supply frequency determination method
JP6580565B2 (en) * 2014-06-24 2019-09-25 パナソニック アプライアンシズ リフリジレーション デヴァイシズ シンガポール Compressor drive device, compressor provided with the same, and refrigeration cycle device provided with the same
JP6476001B2 (en) * 2015-02-18 2019-02-27 シャープ株式会社 Motor drive device
JP6729650B2 (en) * 2018-09-14 2020-07-22 ダイキン工業株式会社 Inverter control method, AC load power supply system, refrigeration circuit
JP7468381B2 (en) 2021-01-27 2024-04-16 株式会社デンソー Calculation device and motor drive device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0791715A (en) * 1993-09-28 1995-04-04 Mitsubishi Electric Corp Controlling equipment of air conditioner
JP2000337686A (en) * 1999-05-28 2000-12-08 Matsushita Electric Ind Co Ltd Method for controlling current of air-conditioner
JP2004343823A (en) * 2003-05-13 2004-12-02 Matsushita Electric Ind Co Ltd Air conditioner

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4505932B2 (en) * 2000-03-24 2010-07-21 ダイキン工業株式会社 Air conditioner drive circuit and air conditioner drive method
JP4760216B2 (en) * 2005-08-24 2011-08-31 パナソニック株式会社 Motor drive control device
JP4637148B2 (en) * 2007-08-27 2011-02-23 株式会社日立製作所 Power converter
JP4964209B2 (en) * 2008-09-26 2012-06-27 三菱電機株式会社 Electric motor drive device and refrigeration air conditioner
JP5372705B2 (en) * 2009-11-04 2013-12-18 株式会社日立産機システム Power converter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0791715A (en) * 1993-09-28 1995-04-04 Mitsubishi Electric Corp Controlling equipment of air conditioner
JP2000337686A (en) * 1999-05-28 2000-12-08 Matsushita Electric Ind Co Ltd Method for controlling current of air-conditioner
JP2004343823A (en) * 2003-05-13 2004-12-02 Matsushita Electric Ind Co Ltd Air conditioner

Also Published As

Publication number Publication date
CN104011993A (en) 2014-08-27
CN104011993B (en) 2016-11-02
JP5908273B2 (en) 2016-04-26
JP2013132131A (en) 2013-07-04

Similar Documents

Publication Publication Date Title
JP5119222B2 (en) Converter device, motor driving module, and refrigeration device
JP5024827B2 (en) Inverter device
CN203675027U (en) Motor control without sensor
WO2013094360A1 (en) Synchronous motor drive apparatus
EP2400657B1 (en) Inverter control device for an electric compressor motor
EP2346151A1 (en) Power conversion device
KR102493847B1 (en) Motor driving apparatus and home appliance including the same
CN107834924B (en) A kind of field weakening control method and device
EP2448110A2 (en) Refrigerating apparatus and controller for permanent magnet synchronous motor
WO2013018611A1 (en) Synchronous motor driving device and device equipped with same and having a refrigeration cycle
EP2605399A1 (en) Motor drive system and control method thereof
KR20080068254A (en) Apparatus for detecting input current of inverter and method thereof
US20080088291A1 (en) Electric power converter apparatus
JP5785126B2 (en) Synchronous motor drive device
JP6476001B2 (en) Motor drive device
KR101724646B1 (en) Motor Control Device
KR101591326B1 (en) Motor driver of air conditioner
Xu et al. High performance DC chopper speed and current control of universal motors using a microcontroller
CN109546866B (en) Air conditioning system, variable frequency controller and alternating current estimation method and device thereof
KR20210092540A (en) Power transforming apparatus and air conditioner using the same
KR20160026529A (en) Motor driving device and air conditioner including the same
KR20100106824A (en) Apparatus for dirving motor of air conditioner
KR101878146B1 (en) Power transforming apparatus and air conditioner including the same
JP5170370B2 (en) Series multiple inverter and overvoltage prevention method
KR20210102576A (en) Apparatus for controlling inverter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12860544

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12860544

Country of ref document: EP

Kind code of ref document: A1