WO2013093375A1 - Plaque pour échangeur thermique - Google Patents

Plaque pour échangeur thermique Download PDF

Info

Publication number
WO2013093375A1
WO2013093375A1 PCT/FR2012/053059 FR2012053059W WO2013093375A1 WO 2013093375 A1 WO2013093375 A1 WO 2013093375A1 FR 2012053059 W FR2012053059 W FR 2012053059W WO 2013093375 A1 WO2013093375 A1 WO 2013093375A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
fluid
corrugations
input
zone
Prior art date
Application number
PCT/FR2012/053059
Other languages
English (en)
Inventor
Sébastien BOURDIN
Pierre-Antoine ROUER
Original Assignee
Elyt 3
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elyt 3 filed Critical Elyt 3
Priority to EP12816777.2A priority Critical patent/EP2795229A1/fr
Publication of WO2013093375A1 publication Critical patent/WO2013093375A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/046Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being linear, e.g. corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0037Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the conduits for the other heat-exchange medium also being formed by paired plates touching each other

Definitions

  • the present invention relates to the field of aerodynamics and particularly relates to a plate for a heat exchanger for the exchange of heat between two fluids having a low thermal conductivity, typically gases.
  • Said plate extends substantially in a general plane revealing a first plate face and a second plate face opposite to the first plate face, said plate comprising a so-called core zone intended for the flow of a first fluid on the plate. first face of the plate in a first direction, and for the flow of a second fluid on the second face of the plate in a second direction opposite to the first direction.
  • the core zone is the location where heat exchange is optimized.
  • the design area includes a set of corrugations having the form of corrugations increasing the surface area of the plate.
  • This type of plate is satisfactory in that it allows for efficient heat exchange, despite the laminar nature of the flows.
  • the core zone generates high pressure losses by viscous friction on the walls of the corrugations.
  • Such a heat exchanger has a high efficiency, typically greater than 90% for a flow rate of 120 m 3 / h which is accompanied by high pressure losses.
  • the pressure losses are at best between 90 Pa and 100 Pa.
  • the present invention aims to solve all or part of the disadvantages mentioned above.
  • the subject of the present invention is a plate for a heat exchanger intended for heat exchange, a first fluid flowing in contact with a first face of the plate and a second fluid. flowing in contact with a second face of the plate, said plate being characterized in that it comprises a core zone comprising a set of corrugations forming cavities extending between a bottom of a hollow and a aperture defined between two consecutive vertices of the set of corrugations, the bottom and the aperture being separated by a distance corresponding to the height of the undulation, the ratio between the height and the width at mid-height of a cavity being greater than or equal to three.
  • This arrangement makes it possible to confer on the fluid blade passing through the core zone an orientation substantially transverse to the plate.
  • the plate comprises at least one input / output zone comprising a second set of guide patterns, formed by a plurality of ribs and grooves disposed on the at least one input zone / the ratio between the shorter distance separating two adjacent ribs defining the width of a groove and the height of a rib being greater than or equal to three, so that the general orientation of the fluid blade penetrating into the heat exchanger is modified to move from a substantially parallel orientation to the plate in the at least one input / output zone to a substantially transverse orientation to the plate in the core area thereby increasing the space between two adjacent plates of the heat exchanger at the at least one input / output area and to concentrate the pressure drops on the core area.
  • This arrangement makes it possible to modify the general orientation of a fluid strip penetrating into the heat exchanger which thus passes from an orientation substantially parallel to the plate in the at least one input / output zone at a substantially directional orientation. transverse to the plate in the core zone as it passes through the set of corrugations, concentrating the pressure drops on the core area.
  • this arrangement has the effect of reducing the pressure losses at the inlet and at the outlet of the plate, typically less than 70 Pa for a flow rate of 250 m 3 / h, with a yield greater than 91% for a flow of 120 m 3 / h.
  • the height of a rib is less than or equal to the height of a corrugation.
  • the set of corrugations is centered on the same general plane of the plate.
  • the corrugations are symmetrical with respect to a plane transverse to the general plane.
  • the plate comprises:
  • a first input / output zone intended for:
  • a second input / output zone intended for:
  • the plate in addition to the first set of corrugations disposed on the inner area, the plate comprises a second set of patterns, formed by a plurality of ribs and grooves disposed on the first and the second zone. enter exit.
  • the projection of the plate on its general plane forms a polygon with a number of even sides, preferably a hexagon.
  • the flow direction of the first fluid on the first face of the plate in the first input / output zone and the second input / output zone forms an angle substantially equal to the angle formed by the two sides of the polygon entry / exit zone with the flow direction of the second fluid on the second face of the plate in the first entry / exit zone and the second zone of the enter exit.
  • the plate is made of amorphous polyethylene terephthalate.
  • the present invention also relates to a heat exchanger co mp re na nt a m bl edepl a te te te ll es qued written previously superimposed in a stack, characterized in that said assembly comprises a basic plate of the first type and a plate elementary second type different from that of the first type,
  • the plate of the first type being alternated with a plate of the second type in the stack of plates so that the peaks of the corrugations of the plate of the first type penetrate into the corrugation cavities of the adjacent plate of the second type through the openings joining two consecutive vertices of the corrugation set of the adjacent plate of the second type in the stack of plates .
  • This deposition makes it possible to realize the interpenetration of two adjacent plates in the stack so as to reduce the exchanges of fluid between cavities and to improve the heat exchange through the walls of the plate.
  • second type is between 1 and 3 mm.
  • Figure 1 is a general view of a heat exchanger according to the invention.
  • FIG. 2 is a representation of the flow of fluid flows on either side of the faces of a plate according to the invention.
  • Figure 3 is an overall view of a plate according to the invention.
  • Figure 4 illustrates the interpenetration of the core area of adjacent plates in a stack of plates.
  • FIG. 5 details a part of the stack of plates of FIG. 4.
  • a heat exchanger 1 comprises a plurality of plates 10, 20 superposed in a stack 2.
  • Each plate 10, 20 extends along a general plane P.
  • the stack 2 is obtained by alternating a plate of a first type with a plate of a second type whose specificities are described later in the text.
  • each plate 1 0, 20 is in the form of a hexagon whose sides form an outer contour 3.
  • the largest number is 1 0, 20 is supported or transferred to another plate 1 0, 20 of the type ddifferent by via contoured edges 4 distributed over the contour 3 of the plate 10, 20.
  • each plate 10, 20 comprises an interior zone 30, otherwise known as a core zone 30 intended for the flow of a first fluid F1 on a first face F1 of the plate 10, 20, and intended for the flow of a second fluid fl2 on a second face F2 of the plate 10, 20.
  • the first fluid fl1 flows on the first face F1 in the core zone 30 in a first flow direction S1 and the second fluid fl2 flows on the second face F2 in the core zone 30 in a second flow direction S2 opposite to the first flow direction S1.
  • the core zone 30 comprises an assembly 6 of uniform corrugations 35 forming cavities 36 for the flow of fluid fl1, fl2.
  • the set of corrugations 35 is formed by the cavities 36 which extend between a bottom 33 of a hollow and an opening 32 joining two consecutive peaks 34 of the set of corrugations 35.
  • the opening 32 of the cavity 36 is alternately arranged facing the first face F1 and the second face F2 between two adjacent corrugations.
  • the bottom 33 and the opening 32 are separated by a distance corresponding to the height H of the corrugation 35, the ratio between the height H and the width I at mid-height of a cavity 36 defining the slenderness of the cavity 36 or the corrugation 35 being greater than or equal to three.
  • each plate 10, 20 also comprises a first input / output zone 41 intended to guide in a third flow direction S3, the first fluid F1 on the first surface F1 of the plate 10, 20 from the outside. from the plate to the core zone 30, and to guide in a fourth flow direction S4, the second fluid fl2 on the second plate surface F2, 20 from the core zone 30 to outside the plate 10, 20.
  • Each plate 1 0, 20 also comprises a second inlet / outlet zone 42 intended to guide in the third flow direction S3, the first fluid F1 on the first surface F1 of the plate 10, 20 from the core zone 30. to the outside of the plate 1 0, 20, and gu ider in the fourth flow direction S4, the second fl uid fl2 on the second plate surface F2 1 0, 20 from outside the plate 1 0, 20 to the core zone 30.
  • the divergences taken by the third direction of flow and the fourth direction of flow S4 intersect in two directions forming an angle a corresponding to the value of the angle between the two sides of the inlet / outlet zone 41, 42 of the exchanger.
  • the directions taken by the third direction of flow S3 and the fourth direction of flow S4 intersect in two directions forming an angle corresponding to the angle between two adjacent sides of a polygon conferring on a plate 10, 20 its general form.
  • the third flow direction S3 and the fourth flow direction S4 would cross in two directions forming an angle substantially equal to 90 °.
  • a first elementary plate 10 or of a first type whose input / output zones 41, 42 cause a laminar flow in the direction of the third flow direction S3 on the first face F1 and a laminar flow in the direction of the fourth flow direction S4 on the second face F2, and
  • a second elementary plate 20 or of a second type whose input / output zones 41, 42 cause a laminar flow in the direction of the fourth flow direction S4 on the first face F1 and a laminar flow in the direction of the third direction flow S3 on the second face F2.
  • the set 6 of the corrugations 35 of the core area 30 of the first type plate 1 0 and the set 6 of the corrugations 35 of the core area 30 of the first type plate 20 are identical and in phase , the vertices 34 of the corrugations 35 of a plate of the first type 10 being aligned with the vertices 34 of the corrugations 35 of a plate of the second type 20.
  • the peaks 34 of the corrugations 35 of the core zone 30 of the plate of the first type 10 respectively of the second type plate penetrate into the cavities 36 of the corrugations 35 of the core zone 30 of the adjacent second type plate 20 respectively of the first type plate 10 through the openings 32 of the cavity 36.
  • the present invention comprises a second set 7 of patterns 45 formed by a set of ribs 43 and grooves 44.
  • the ribs 43 may extend from a plate edge 10, 20 to the core zone 30.
  • the end of these ribs 43 closest to the contour 3 of the plate 10, 20 may comprise a rounded bulge 46.
  • the arrangement of the ribs 43 is formed in such a way that the ribs 43 of a plate 10, 20 adjacent in the stack 2 bear or create points of support on or for the ribs 43 of the plate 1 0, 20, thus reinforcing the cohesion of the stack 2 of plates 10, 20.
  • the height of these ribs 43 also allows the support of the edges of the plate 1 0, 20 r r ed the edges of an adjacent plate 1 0, 20 in order to seal the heat exchanger 1 .
  • the ratio between the shortest distance separating two adjacent ribs 43 defining the width of a groove 44 and the height of a rib 43 is greater than or equal to three.
  • the height of a rib 43 is less than or equal to the height H of a corrugation 35 of the core zone 30.
  • the superposition of two plates 10, 20 in the stack 2 creates a duct 5 for a first fluid fl1 between two adjacent plates 10, 20.
  • the first fluid fl1 passes through the conduit 5 by first entering a space between two input / output areas 41, 42.
  • the first fluid F1 then takes the form of a fluid plate with an orientation substantially parallel to the plate 10, given by the general orientation of the plates 10, 20.
  • the parallel orientation of the fluid blade is also obtained thanks to the previously mentioned ratio between the width of the grooves 44 and the height of the ribs 43.
  • the fluid fl1 then reaches a space between two core areas 30 of two adjacent plates 10, 20 in which it is distributed in different channels formed by the cavities 36 of the core areas 30 of two adjacent plates 10, 20.
  • the general orientation of the fluid blade penetrating into the heat exchanger then reverses to move from a substantially parallel orientation to the plate in an input / output zone 41, 42 to a substantially transverse orientation in the zone of heart 30 thus making it possible to increase the space between the plates on the entry / exit zones 41, 42 and to concentrate the pressure drops on the core zone 30.
  • This inversion is generated by the geometric characteristics of the plate at its entry / exit zones 41, 42, in particular the arrangement and the dimensioning of the ribs 43 and the grooves 44, as well as at the level of the zone. core 30, in particular of the dimensioning of the corrugations 35.
  • each channel of one of the two plates 10, 20 is in communication with two channels of the other plate 10, 20.
  • the gap separating the apex 34 from the corrugation 35 of a plate of the first type 10 and the two peaks 34 of the two consecutive corrugations 35 of the second plate 20 is minimized so as to increase the pressure drops in this zone. .
  • This increase in pressure drops substantially reduces the fluid passages from a cavity 36 of the core zone 30 of the first plate 10 to a cavity 36 of the core zone of the second plate 20 and vice versa.
  • the first fluid F1 enters a space between two other input / output zones 41, 42 and returns to a substantially horizontal general orientation.
  • the second fluid fl2 passes in the same way another duct 5 formed by the addition of a plate 10, 20 to the two previous plates in the stack 2.

Abstract

La présente invention a pour objet une plaque(10, 20) pour un échangeur thermique (1) destiné à l'échange de chaleur entre un premier fluide (fl1) s'écoulant au contact d'une première face (F1) de la plaque (10, 20) et un second fluide (fl2) s'écoulant au contact d'une deuxième face (F2) de la plaque (10, 20), ladite plaque (10, 20) étant caractérisée en ce qu'elle comprend une zone de cœur (30) comprenant un ensemble (6) d'ondulations (35) formant des cavités (36) s'étendant entre un fond (33) d'un creux et une ouverture (32) définie entre deux sommets (34) consécutifs de l'ensemble(6) d'ondulations (35), le fond (33) et l'ouverture (32) étant séparés d'une distance correspondant à la hauteur(H) de l'ondulation (35), le rapport entre la hauteur (H) et la largeur à mi-hauteur (l) d'une cavité (35) étant supérieur ou égal à trois.

Description

Plaque pour échangeur thermique
La présente invention concerne le domaine de l'aéraulique et a en particulier pour objet une plaque pour un échangeur thermique destiné à l'échange de chaleur entre deux fluides ayant une faible conductivité thermique, typiquement des gaz.
Il est connu de réaliser un échangeur thermique comprenant un ensemble de plaques superposées en un empilement dont l'espacement des plaques est faible de manière à obtenir un écoulement laminaire.
Ladite plaque s'étend sensiblement selon un plan général révélant une première face de plaque et une deuxième face de plaque opposée à la première face de plaque, ladite plaque comprenant une zone dite de cœur destinée à l'écoulement d'un premier fluide sur la première face de la plaque dans un premier sens, et destiné à l'écoulement d'un deuxième fluide sur la deuxième face de la plaque dans un deuxième sens opposé au premier sens.
La zone de cœur est l'emplacement où les échanges thermiques sont optimisés.
En pa rt icu l i er, l a zon e d e cœ u r com prend un ensemble d'ondulations présentant l a forme d 'ondulations augmentant la surface spécifique de la plaque.
Ce type de plaque est satisfaisant en ce qu'il permet d'avoir des échanges de chaleur efficaces, malgré le caractère laminaire des écoulements.
Cependant, la zone de cœur génère de fortes pertes de charge par frottement visqueux sur les parois des ondulations.
Ces pertes de charges dans la zone de cœur se cumulent aux fortes pertes de charges subies en entrée et en sortie de plaque.
Un tel échangeur thermique a un rendement élevé, typiquement supérieur à 90% pour un débit de 120 m3/h qui s'accompagne de pertes de charges élevées.
Par exemple, pour un débit de 250 m3/h, les pertes de charges sont au mieux comprises entre 90 Pa et 100 Pa.
La présente invention a pour but de résoudre tout ou partie des inconvénients mentionnés ci-dessus.
A cet effet, la présente invention a pour objet une plaque pour un échangeur thermique destiné à l'échange de chaleur, un premier fluide s'écoulant au contact d'une première face de la plaque et un second fluide s'écoulant au contact d'une deuxième face de la plaque, ladite plaque étant caractérisée en ce qu'elle comprend u ne zone de cœur comprenant un ensemble d'ondulations formant des cavités s'étendant entre un fond d'un creux et une ouverture définie entre deux sommets consécutifs de l'ensemble d'ondulations, le fond et l'ouverture étant séparés d'une distance correspondant à la hauteur de l'ondulation, le rapport entre la hauteur et la largeur à mi-hauteur d'une cavité étant supérieur ou égal à trois.
Cette disposition permet de conférer à la lame de fluide traversant la zone de cœur une orientation sensiblement transversale à la plaque.
Selon un aspect de l'invention, la plaque comprend au moins une zone d'entrée/sortie comprenant un deuxième ensemble de motifs de guidage, formé par une pluralité de nervures et de gorges disposés sur l'au moins une zone d'entrée/sortie, le rapport entre la plus courte distance séparant deux nervures adjacentes définissant la largeur d'une gorge et la hauteur d'une nervure étant supérieur ou égal à trois, de façon à ce que l'orientation générale de la lame de fluide pénétrant dans l'échangeur thermique soit modifiée pour passer d'une orientation sensiblement parallèle à la plaque dans l'au moins une zone d'entrée/sortie à u ne orientation sensiblement transversale à la plaque dans la zone de cœur permettant ainsi d'augmenter l'espace entre deux plaques adjacentes de l'échangeur thermique au niveau de l'au moins une zone d'entrée/sortie et de concentrer les pertes de charge sur la zone de cœur.
Cette disposition permet de modifier l'orientation générale d'une lame de fluide pénétrant dans l'échangeur thermique qui passe ainsi d'une orientation sensiblement parallèle à la plaq ue dans l'au moins une zone d'entrée/sortie à une orientation sensiblement transversale à la plaque dans la zone de cœur lors de son passage dans l'ensemble d'ondulations, concentrant les pertes de charge sur la zone de cœur.
De plus, cette disposition a pour effet de réduire les pertes de charge en entrée et en sortie de plaque, typiquement inférieures à 70 Pa pour un débit de 250 m3/h, avec un rendement supérieur à 91 % pour un débit de 120 m3/h.
Selon un aspect de l'invention, la hauteur d'une nervure est inférieure ou égale à la hauteur d'une ondulation.
Selon un aspect de l'invention, l'ensemble d'ondulations est centré sur un même plan général de la plaque. Selon un aspect de l'invention, les ondulations sont symétriques par rapport à un plan transversal au plan général.
Selon un aspect de l'invention, la plaque comprend :
- une première zone d'entrée/sortie destinée à :
- guider le premier fluide sur la première surface de la plaque entre l'extérieur de la plaque et une zone de cœur de la plaque,
- guider le deuxième fluide sur la deuxième surface de plaque entre la zone de cœur et l'extérieur de la plaque,
- une deuxième zone d'entrée/sortie destinée à :
- guider le premier fluide sur la première surface de la plaque entre la zone de cœur et l'extérieur de la plaque,
- guider le deuxième fluide sur la deuxième surface de plaque entre l'extérieur de la plaque et la zone de cœur .
Selon un aspect de l'invention , en plus du premier ensemble d'ondulations disposé sur la zone intérieure, la plaque comprend un deuxième ensemble de motifs, formé par une pluralité de nervures et de gorges disposés sur la première et la deuxième zone d'entrée/sortie.
Selon un aspect de l'invention, la projection de la plaque sur son plan général forme un polygone avec un nombre de côtés pairs, de préférence un hexagone.
Selon un aspect de l'invention , la d irection d'écoulement du premier flu ide sur la prem ière face de la plaque dans la première zone d'entrée/sortie et l a deuxième zone d'entrée/sortie forme un angle sensiblement égal à l'angle a formé par les deux côtés de la zone d'entrée/sortie du polygone avec la direction d'écoulement du deuxième fluide sur la deuxième face de la plaque dans la première zone d'entrée/sortie et la deuxième zone d'entrée/sortie.
S e l o n u n aspect de l ' invention , la plaque est réal isée en polyéthylène téréphtalate amorphe.
La présente invention a également pour objet u n échangeur thermique co m p re n a nt u n e n se m bl e d e p l aq u es te l l es q u e d écrites précédemment superposées en un empilement, caractérisé en ce que ledit ensemble comprend une plaque élémentaire de premier type et une plaque élémentaire de deuxième type différente de celle de premier type,
la plaque de premier type étant alternée avec une plaque de deuxième type dans l'empilement de plaques de manière à ce que les sommets des ondulations de la plaque de premier type pénètrent dans les cavités des ondulations de la plaque adjacente de deuxième type au travers les ouvertures joignant deux sommets consécutifs de l'ensemble d'ondulations de la plaque adjacente de deuxième type dans l'empilement de plaques .
Cette d isposition permet de réal iser l'interpénétration de deux plaques adjacentes dans l'empilement de manière à réduire les échanges de fluide entre cavités et à améliorer l'échange thermique au travers des parois de la plaque.
Selon un aspect de l'invention, l'écart latéral entre le mil ieu d'une ondulation de l'ensemble d'ondulations de la plaque de premier type et le milieu d'une ondulation de l'ensemble d'ondulations de la plaque de deuxième type est compris entre 1 et 3 mm.
De toute façon , l' invention sera bien com prise à l 'a ide de la description qui suit, en référence au dessin schématique annexé représentant, à titre d'exemple non l imitatif, une plaque et un échangeur thermique selon l'invention.
La figure 1 est une vue générale d'un échangeur thermique selon l'invention.
La fig u re 2 est u ne représentation de la circulation des fl ux de fluide de part et d'autre des faces d'une plaque selon l'invention.
La figure 3 est une vue d'ensemble d'une plaque selon l'invention. La figure 4 illustre l'interpénétration de la zone de cœur de plaques adjacentes dans un empilement de plaques.
La figure 5 détaille une partie de l'empilement de plaques de la figure 4.
Comme illustré aux figures 1 et 4, un échangeur thermique 1 comprend une pluralité de plaques 10, 20 superposées en un empilement 2.
Chaque plaque 10, 20 s'étend selon un plan général P.
Dans le mode de réalisation présenté, l'empilement 2 est obtenu en alternant une plaque d'un premier type 10 avec une plaque d'un deuxième type 20 dont les spécificités sont décrites plus loin dans le texte.
Dans le mode de réalisation présenté, chaque plaque 1 0, 20 se présente sous la forme d 'un hexagone dont les côtés forment un contour extérieur 3.
Horm is l es pl aq ues d 'extrém ité , ch aq ue pl aq u e 1 0 , 20 est su pportée ou su pporte u ne autre plaq ue 1 0 , 20 de type d ifférent par l'intermédiaire de bordures profilées 4 réparties sur le contour 3 de la plaque 10, 20.
Comme illustré à la figure 2, chaque plaque 10, 20 comprend une zone intérieure 30 autrement dénommée zone de cœur 30 destinée à l'écoulement d'un premier fluide fl1 sur une première face F1 de la plaque 10, 20, et destiné à l'écoulement d'un deuxième fluide fl2 sur une deuxième face F2 de la plaque 10, 20.
Généralement, afin de favoriser les échanges de chaleur dans un échangeur thermique 1 , le premier fluide fl1 s'écoule sur la première face F1 dans la zone de cœur 30 selon un premier sens d'écoulement S1et le deuxième fluide fl2 s'écoule sur la deuxième face F2 dans la zone de cœur 30 selon un deuxième sens d'écoulement S2 opposé au premier sens d'écoulement S1.
Dans la suite de la description, il sera considéré que le sens d'écoulement du premier fluide fl1 est opposé au sens d'écoulement du deuxième fluide fl2.
Bien entendu, ces deux fluides pourraient s'écouler dans un même sens de part et d'autre de la plaque 10, 20 sans sortir du cadre de la présente invention.
Ces écoulements sont laminaires dans la zone de cœur 30 de l'échangeur thermique 1 , ce qui est habituellement induit par de faibles vitesses d'écoulement.
Dans l'exemple présenté, la zone de cœur 30 comprend un ensemble 6 d'ondulations 35 uniformes formant des cavités 36 pour l'écoulement du fluide fl1, fl2.
Ces ondulations 35 sont centrés sur le plan général P de la plaque
10, 20.
L'ensemble 6 d'ondulations 35 est formé par les cavités 36 qui s'étendent entre un fond 33 d'un creux et une ouverture 32 joignant deux sommets 34 consécutifs de l'ensemble 6 d'ondulations 35.
L'ouverture 32 de la cavité 36 est disposée de façon alternée en regard de la première face F1 puis de la deuxième face F2 entre deux ondulations 35 adjacentes.
Le fond 33 et l'ouverture 32 sont séparés d'une distance correspondant à la hauteur H de l'ondulation 35, le rapport entre la hauteur H et la largeur I à mi-hauteur d'une cavité 36 définissant l'élancement de la cavité 36 ou de l'ondulation 35 étant supérieur ou égal à trois.
La fonction d'une ondulation 35 ayant un tel élancement est décrite plus loin dans le texte.
En outre, chaque plaque 10, 20 comprend également une première zone d'entrée/sortie 41 destinée à guider selon un troisième sens d'écoulement S3, le premier fluide fl1 sur la première surface F1 de la plaque 10, 20 depuis l'extérieur de la plaque j usqu'à la zone de cœur 30, et à gu ider selon un quatrième sens d'écoulement S4, le deuxième fl u ide fl2 sur la deuxième surface F2 de plaque 10, 20 depuis la zone de cœur 30 jusqu'à l'extérieur de la plaque 10, 20.
Chaque plaque 1 0, 20 comprend également une deuxième zone d'entrée/sortie 42 destinée à guider selon le troisième sens d'écoulement S3, le premier fluide fl1 sur la première surface F1 de la plaque 10, 20 depuis la zone de cœur 30 jusqu'à l'extérieur de la plaque 1 0, 20, et à gu ider selon le quatrième sens d'écoulement S4, le deuxième fl u ide fl2 sur la deuxième surface F2 de plaque 1 0, 20 depuis l'extérieur de la plaque 1 0, 20 jusqu'à la zone de cœur 30.
Comme illustré dans la représentation présenté à la figure 2, les d irections prises par le troisième sens d'écoulement et le quatrième sens d'écoulement S4 se croisent selon deux d irections formant un angle a correspondant à la valeur de l'angle entre les deux côtés de la zone d'entrée/sortie 41 , 42 de l'échangeur.
Plus généralement, les d irections prises par le troisième sens d'écoulement S3 et le quatrième sens d'écoulement S4 se croisent selon deux directions formant un angle correspondant à l'angle entre deux côtés adjacents d'un polygone conférant à une plaque 10, 20 sa forme générale.
Dans le cas d'une plaque ayant une forme générale carrée, le troisième sens d'écoulement S3 et le quatrième sens d'écoulement S4 se croiseraient selon deux directions formant un angle sensiblement égal à 90°.
Po u r co n se rver u n éco ul em e nt l a m i n a i re d a n s l es zon es d'entrée/sortie 41 , 42 dans l'espacement formé entre chaque plaque 10, 20 de l'empilement 2, deux plaques élémentaires 10, 20 sont donc nécessaires :
- une première plaque élémentaire 10 ou de premier type dont les zones d'entrée/sortie 41 , 42 entraînent un écoulement lam inaire selon la direction du troisième sens d'écoulement S3 sur la première face F1 et un écoulement laminaire selon la direction du quatrième sens d'écoulement S4 sur la deuxième face F2, et
- une deuxième plaque élémentaire 20 ou de deuxième type dont les zones d'entrée/sortie 41 , 42 entraînent un écoulement laminaire selon la direction du quatrième sens d'écoulement S4 sur la première face F1 et un écoulement laminaire selon la direction du troisième sens d'écoulement S3 sur la deuxième face F2.
En outre, l'ensemble 6 des ondulations 35 de la zone de cœur 30 de la plaque de premier type 1 0 et l'ensemble 6 des ondulations 35 de la zone de cœur 30 de la plaque de premier type 20 sont identiques et en phase, les sommets 34 des ondulations 35 d'une plaque de premier type 10 étant alignés avec les sommets 34 des ondulations 35 d'une plaque de deuxième type 20.
Ainsi, lors de la superposition d'une plaque de premier type 10 et d'une plaque de deuxième type 20 pour former l'empilement 2 de plaque 10, 20, les sommets 34 des ondulations 35 de la zone de cœur 30 de la plaque de premier type 1 0 respectivement de la plaque de deuxième type 20, pénètrent dans les cavités 36 des ondulations 35 de la zone de cœur 30 de la plaque adjacente de deuxième type 20 respectivement de la plaque de premier type 10 au travers les ouvertures 32 des cavité 36.
Cette interpénétration est permise de par la hauteur des bordures de chaque plaque 10, 20 dont l'encombrement est légèrement inférieur à celui des ondulations 35, comme cela est visible à la figure 4.
Af i n d e fo rm e r u n é co u l e m e n t l a m i n a i re , c h a q u e zo n e d'entrée/sortie 41 , 42 comprend un deuxième ensemble 7 de motifs 45 formé par un ensemble de nervures 43 et de gorges 44.
Les nervures 43 peuvent s'étendre depu is une bordure de l à plaque 10, 20, jusqu'à la zone de cœur 30.
Une fois sur deux, l'extrémité de ces nervures 43 la plus proche du contour 3 de la plaque 10, 20 peut comprendre un renflement arrondi 46.
La disposition des nervures 43 est réalisée de manière à ce que les nervures 43 d'une plaque 10, 20 adjacente dans l'empilement 2 s'appuient ou créent des points d'appui sur ou pour les nervures 43 de la plaque 1 0, 20 considérée, renforçant ainsi la cohésion de l'empilement 2 de plaques 10, 20.
En outre, la hauteur de ces nervures 43 permet également l'appui des bord u res de la plaque 1 0, 20 su r les bordures d'une plaque 1 0, 20 adjacente afin de réaliser l'étanchéité de l'échangeur thermique 1 . Le rapport entre la plus courte distance séparant deux nervures 43 adjacentes définissant la largeur d'une gorge 44 et la hauteur d'une nervure 43 est supérieure ou égal à trois.
De plus, la hauteur d'une nervure 43 est inférieure ou égale à la hauteur H d'une ondulation 35 de la zone de cœur 30.
La superposition de deux plaques 10, 20 dans l'empilement 2 crée un conduit 5 pour un premier fluide fl1 entre deux plaques 10, 20 adjacentes.
Le premier fluide fl1 traverse le conduit 5 en pénétrant tout d'abord dans un espace se trouvant entre deux zones d'entrée/sortie 41 , 42.
Le premier fluide fl1 prend alors la forme d'une lame de fluide avec une orientation sensiblement parallèle à la plaque 10, 20donnée par l'orientation générale des plaques 10, 20.
L'orientation parallèle de la lame de fluide est également obtenue grâce au rapport mentionné précédemment entre la largeur des gorges 44 et la hauteur des nervures 43.
Cette orientation ainsi que le peu de reliefs rencontrés par la lame de fluide permettent à la lame de fluide de ne pas subir de trop importantes pertes de charges et de conserver un écoulement laminaire.
Le fluide fl1 atteint ensuite un espace se trouvant entre deux zones de cœur 30 de deux plaques adjacentes 10, 20 dans lequel il est réparti dans différents canaux formés par les cavités 36 des zones de cœur 30 de deux plaques adjacentes 10, 20.
L'orientation générale de la lame de fluide pénétrant dans l'échangeur thermique s'inverse alors pour passer d'une orientation sensiblement parallèle à la plaque dans une zone d'entrée/sortie 41, 42 à une orientation sensiblement transversale dans la zone de cœur 30 permettant ainsi d'augmenter l'espace entre les plaques sur les zones d'entrée/sortie 41 , 42 et de concentrer les pertes de charge sur la zone de cœur 30.
Cette inversion est engendrée par les caractéristiques géométriques de la plaque au niveau de ses zones d'entrée/sortie 41 , 42, en particulier de la disposition et du dimensionnement des nervures 43 et des gorges 44, ainsi qu'au niveau de la zone de cœur 30, en particulier du dimensionnement des ondulations 35.
Du fait de la superposition de deux plaques ondulées adjacentes, chaque canal d'une des deux plaques 10, 20 est en communication avec deux canaux de l'autre plaque 10, 20. Cependant, l'écart séparant le sommet 34 de l'ondulation 35 d'une plaque de premier type 10 et les deux sommets 34 des deux ondulations 35 consécutives de la deuxième plaque 20 est minimisé de manière à augmenter les pertes de charge dans cette zone.
Cette augmentation de pertes de charge réduit sensiblement les passages de fluide depuis une cavité 36 de la zone de cœur 30 de la première plaque 10 vers une cavité 36 de la zone de cœur de la deuxième plaque 20 et inversement.
Enfin, en sortie des zones de cœur 30, le premier fluide fl1 pénètre dans un espace se trouvant entre deux autres zones d'entrée/sortie 41 , 42 et retrouve une orientation générale sensiblement horizontale.
De même, le deuxième fluide fl2 traverse de la même façon un autre conduit 5 formé par l'adjonction d'une plaque 10, 20 aux deux plaques précédentes dans l'empilement 2.
II apparaît bien entendu que les différents modes de réalisations détaillés ci-dessus ne constituent que des exemples de mises en œuvre de l'invention telle que définie par les revendications ci-jointes. Des variantes de ces différents modes de réalisations peuvent être envisagées et les différents modes de réalisations décrits peuvent être combinés de façon aisée par l'homme du métier.

Claims

REVENDICATIONS
1 . Plaque (1 0, 20) pour un échangeur thermique (1 ) destiné à l'échange de chaleur entre un premier fluide (fl1 ) s'écoulant au contact d'une première face (F1 ) de la plaque (10, 20) et un second fluide (fl2) s'écoulant au contact d'une deuxième face (F2) de la plaque (10, 20), ladite plaque (10, 20) étant caractérisée en ce qu'elle comprend une zone de cœur (30) comprenant un ensemble (6) d'ondulations (35) formant des cavités (36) s'étendant entre un fond (33) d'un creux et une ouverture (32) définie entre deux sommets (34) consécutifs de l'ensemble (6) d'ondulations (35), le fond (33) et l'ouverture (32) éta nt sé pa rés d ' u n e d i sta n ce co rres po n d a nt à l a h a u te u r ( H ) d e l'ondulation (35), le rapport entre la hauteur (H) et la largeur à mi-hauteur (I) d'une cavité (35) étant supérieur ou égal à trois.
2. Plaque (10, 20) selon la revendication 1 , comprenant au moins une zone d'entrée/sortie (41 , 42) comprenant un deuxième ensemble (7) de motifs (45) de guidage, formé pa r une pluralité de nervures (43) et de gorges (44) d isposés sur l'au moins une zone d'entrée/sortie (41 , 42), le rapport entre la plus courte distance séparant deux nervures (43) adjacentes définissant la largeur d'une gorge (44) et la hauteur d'une nervure (43) étant supérieur ou égal à trois, de façon à ce que l'orientation générale de la lame de fluide pénétrant dans l'échangeur thermique (1 ) soit modifiée pour passer d'une orientation sensiblement parallèle à la plaque (1 0, 20) dans l'au moins une zone d'entrée/sortie (41 , 42) à une orientation sensiblement transversale à la plaque (1 0, 20) dans la zone de cœu r (30) permettant ainsi d'augmenter l'espace entre deux plaques (10, 20) adjacentes de l'échangeur thermique (1 ) au niveau de l'au moins une zone d'entrée/sortie (41 , 42) et de concentrer les pertes de charge sur la zone de cœur (30).
3. Plaque (10, 20) selon la revendication 2, dans laquelle la hauteur d'une nervure (43) est inférieure ou égale à la hauteur (H) d'une ondulation (35).
4. Plaque (1 0, 20) selon l'une des revendications 1 à 3, dans laquelle l'ensemble (6) d'ondulations (35) est centré su r u n même plan général (P) de la plaque (10, 20).
5. Plaque (10, 20) selon la revendication 4, dans laquelle, les ondulations (35) sont symétriques par rapport à un plan (P1 ) transversal au plan général (P).
6. Plaque(10, 20) selon l'une des revendications 1 à 5, comprenant :
- une première zone d'entrée/sortie (41) destinée à :
- guider le premier fluide (fl1 ) sur la première surface (F1) de la plaque (10, 20) entre l'extérieur de la plaque (10, 20) et la zone de cœur (30) de la plaque (10, 20),
- guider le deuxième fluide (fl2) sur la deuxième surface (F2) de plaque (10, 20) entre la zone de cœur (30) et l'extérieur de la plaque (10, 20),
- une deuxième zone d'entrée/sortie (42) destinée à :
- guider le premier fluide (fl1 ) sur la première surface (F1) de la plaque (10, 20) entre la zone de cœur (30) et l'extérieur de la plaque (10, 20),
- guider le deuxième fluide (fl2) sur la deuxième surface (F2) de plaque (10, 20) entre l'extérieur de la plaque (10, 20) et la zone de cœur (30).
7. Plaque (10, 20) selon la revendication 6 pourvue qu'elle dépende de la revendication 2, dans laquelle en plus du premier ensemble (6) d'ondulations (35) disposé sur la zone de cœur (30), la plaque (10, 20) comprend le deuxième ensemble (7) de motifs (45), formé par la pluralité de nervures (43) et de gorges (44) disposés sur la première et la deuxième zone d'entrée/sortie (41, 42).
8. Plaque (10, 20) selon l'une des revendications précédentes, dans laquelle la projection de la plaque (10, 20) sur son plan général (P) forme un polygone avec un nombre de côtés pairs, de préférence un hexagone.
9. Plaque (10, 20) selon la revendication 8, pourvue qu'elle dépende de l'une des revendication 6 ou 7, dans laquelle la direction d'écoulement du premier fluide (fl1) sur la première face (F1) de la plaque (10, 20) dans la première zone d'entrée/sortie (41) et la deuxième zone d'entrée/sortie (42) forme un angle sensiblement égal à l'angle (a) formé par les deux côtés de la zone d'entrée/sortie (41 , 42) du polygone avec la direction d'écoulement du deuxième fluide (fl2) sur la deuxième face (F2) de la plaque (10, 20) dans la première zone d'entrée/sortie (41) et la deuxième zone d'entrée/sortie (42).
10. Plaque (10, 20) selon l'une des revendications précédentes, dans laquelle la plaque (10, 20) est réalisée en polyéthylène téréphtalate amorphe.
11. Echangeur thermique (1) comprenant un ensemble de plaques (10, 20) selon l'une des revendications 1 à 10 superposées en un empilement (2),
caractérisé en ce que ledit ensemble comprend une plaque élémentaire de premier type (10) et une plaque élémentaire de deuxième type (20) différente de celle de premier type (10),
la plaque de premier type (10) étant alternée avec une plaque de deuxième type (20) dans l'empilement (2) de plaques (10, 20) de manière à ce que les sommets (34) des ondulations (35) de la plaque de premier type (10) pénètrent dans les cavités (36) des ondulations (35) de la plaque adjacente de deuxième type (20) au travers les ouvertures (32) joignant deux sommets (34) consécutifs de l'ensemble (6) d'ondulations (35) de la plaque adjacente de deuxième type (20) dans l'empilement (2) de plaques (10, 20).
12. Echangeur thermique (1) selon la revendication 11, dans lequel l'écart latéral entre le milieu d'une ondulation de l'ensemble (6) d'ondulations (35) de la plaque de premier type(10) et le milieu d'une ondulation de l'ensemble (6) d'ondulations (35) de la plaque de deuxième type (20) est compris entre 1 et 3 mm.
PCT/FR2012/053059 2011-12-21 2012-12-21 Plaque pour échangeur thermique WO2013093375A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12816777.2A EP2795229A1 (fr) 2011-12-21 2012-12-21 Plaque pour échangeur thermique

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1162119A FR2985011B1 (fr) 2011-12-21 2011-12-21 Plaque pour echangeur thermique
FR11/62119 2011-12-21

Publications (1)

Publication Number Publication Date
WO2013093375A1 true WO2013093375A1 (fr) 2013-06-27

Family

ID=47599120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2012/053059 WO2013093375A1 (fr) 2011-12-21 2012-12-21 Plaque pour échangeur thermique

Country Status (3)

Country Link
EP (1) EP2795229A1 (fr)
FR (1) FR2985011B1 (fr)
WO (1) WO2013093375A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170370609A1 (en) * 2014-12-23 2017-12-28 Recutech S.R.O. Enthalpy Heat Exchanger
WO2018106102A1 (fr) 2016-12-07 2018-06-14 Recair Holding B.V. Récupérateur
EP4019879A1 (fr) * 2020-12-28 2022-06-29 Zhongshan Fortune Way Environmental Technology Co., Ltd. Échangeur de chaleur
EP4202344A4 (fr) * 2020-08-21 2023-10-18 Mitsubishi Electric Corporation Élément d'échange de chaleur et dispositif de ventilation à échange de chaleur

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018006461B4 (de) * 2018-08-10 2024-01-25 Eberhard Paul Wärmetauscher mit ineinanderragenden spitzwinkligen oder spitzdachartigen Platinen

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB512689A (en) * 1938-03-11 1939-09-22 William Helmore Improvements in plate heat exchangers for fluids
US3759323A (en) * 1971-11-18 1973-09-18 Caterpillar Tractor Co C-flow stacked plate heat exchanger
GB1483990A (en) * 1975-07-14 1977-08-24 Caterpillar Tractor Co Compact primary surface heat exchanger
JPS63140295A (ja) * 1986-11-30 1988-06-11 Mikio Kususe 対向流熱交換器
US5927097A (en) * 1995-02-20 1999-07-27 F F Seeley Nominees Pty Ltd Evaporative cooler with improved contra flow heat exchanger
US20030168210A1 (en) * 2002-03-05 2003-09-11 Matthew Dunn Heat exchanger
WO2008111732A1 (fr) * 2007-03-09 2008-09-18 The Industry & Academic Cooperation In Chungnam National University Echangeur thermique pour système de ventilation
WO2011065906A2 (fr) * 2009-11-24 2011-06-03 Air To Air Sweden Ab Procédé de fabrication de multiples canaux destinés à être utilisés dans un dispositif pour l'échange de solutés ou de chaleur entre des écoulements de fluide

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0023427D0 (en) * 2000-09-23 2000-11-08 Smiths Industries Plc Apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB512689A (en) * 1938-03-11 1939-09-22 William Helmore Improvements in plate heat exchangers for fluids
US3759323A (en) * 1971-11-18 1973-09-18 Caterpillar Tractor Co C-flow stacked plate heat exchanger
GB1483990A (en) * 1975-07-14 1977-08-24 Caterpillar Tractor Co Compact primary surface heat exchanger
JPS63140295A (ja) * 1986-11-30 1988-06-11 Mikio Kususe 対向流熱交換器
US5927097A (en) * 1995-02-20 1999-07-27 F F Seeley Nominees Pty Ltd Evaporative cooler with improved contra flow heat exchanger
US20030168210A1 (en) * 2002-03-05 2003-09-11 Matthew Dunn Heat exchanger
WO2008111732A1 (fr) * 2007-03-09 2008-09-18 The Industry & Academic Cooperation In Chungnam National University Echangeur thermique pour système de ventilation
WO2011065906A2 (fr) * 2009-11-24 2011-06-03 Air To Air Sweden Ab Procédé de fabrication de multiples canaux destinés à être utilisés dans un dispositif pour l'échange de solutés ou de chaleur entre des écoulements de fluide

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170370609A1 (en) * 2014-12-23 2017-12-28 Recutech S.R.O. Enthalpy Heat Exchanger
WO2018106102A1 (fr) 2016-12-07 2018-06-14 Recair Holding B.V. Récupérateur
NL2017947B1 (nl) * 2016-12-07 2018-06-19 Recair Holding B V Recuperator
CN110177987A (zh) * 2016-12-07 2019-08-27 雷开尔控股有限公司 换热器
CN110177987B (zh) * 2016-12-07 2020-12-08 雷开尔有限公司 换热器
US11168947B2 (en) 2016-12-07 2021-11-09 Recair Holding B.V. Recuperator
EP4202344A4 (fr) * 2020-08-21 2023-10-18 Mitsubishi Electric Corporation Élément d'échange de chaleur et dispositif de ventilation à échange de chaleur
EP4019879A1 (fr) * 2020-12-28 2022-06-29 Zhongshan Fortune Way Environmental Technology Co., Ltd. Échangeur de chaleur

Also Published As

Publication number Publication date
FR2985011B1 (fr) 2018-04-06
FR2985011A1 (fr) 2013-06-28
EP2795229A1 (fr) 2014-10-29

Similar Documents

Publication Publication Date Title
EP2795229A1 (fr) Plaque pour échangeur thermique
EP0165179B1 (fr) Echangeurs de chaleur à plaques et nouveau type de plaques permettant l'obtention de tels échangeurs
EP2294348A1 (fr) Echangeur de chaleur a plaques, notamment pour vehicules automobiles
EP0186592A1 (fr) Echangeur à plaques
FR2705445A1 (fr) Echangeur de chaleur à plaques.
FR2824895A1 (fr) Ailette ondulee a persiennes pour echangeur de chaleur a plaques, et echangeur a plaques muni de telles ailettes
EP2904344B1 (fr) Armature comprenant deux plaques à ailettes et echangeur thermique comprenant ladite armature
FR3000189A1 (fr) Plaque pour echangeur thermique
FR2848292A1 (fr) Plaque d'un echangeur thermique et echangeur thermique a plaques
EP3099994B1 (fr) Echangeur de chaleur pour véhicule automobile
FR2997485A1 (fr) Echangeur thermique, notamment pour vehicule automobile
WO2013011136A1 (fr) Echangeur thermique, tube plat et plaque correspondants
EP1533585B1 (fr) Echangeur de chaleur à empilement de plaques
EP3234488B1 (fr) Plaque d'echange thermique a microcanaux et echangeur thermique comportant au moins une telle plaque
EP3645184A1 (fr) Tube pour echangeur de chaleur avec dispositif de perturbation
WO2014082931A1 (fr) Échangeur thermique pour gaz, en particulier pour les gaz d'échappement d'un moteur
WO2006035149A1 (fr) Intercalaire d'échange de chaleur pour un dispositif d'échange de chaleur
FR3070480B1 (fr) Plaque d'echange thermique a microcanaux comportant un element d'assemblage en bordure de plaque
FR3053775A1 (fr) Echangeur thermique et vehicule comprenant cet echangeur
FR3062901A1 (fr) Tube d’echangeur thermique, echangeur thermique et procede d’assemblage du tube correspondants
WO2017158309A1 (fr) Batterie thermique a matériau a changement de phase encapsulé
FR2890731A1 (fr) Echangeur de chaleur comportant des ailettes secondaires inserees entre des ailettes primaires
EP3207326B1 (fr) Échangeur thermique
WO2013093374A1 (fr) Échangeur thermique
WO2023072571A1 (fr) Paire de plaques d'echangeur de chaleur avec rainures et creux

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12816777

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE