WO2013093170A1 - Methods and compositions for determining the diversity of the t-lymphocyte repertoire of an individual - Google Patents

Methods and compositions for determining the diversity of the t-lymphocyte repertoire of an individual Download PDF

Info

Publication number
WO2013093170A1
WO2013093170A1 PCT/ES2012/070910 ES2012070910W WO2013093170A1 WO 2013093170 A1 WO2013093170 A1 WO 2013093170A1 ES 2012070910 W ES2012070910 W ES 2012070910W WO 2013093170 A1 WO2013093170 A1 WO 2013093170A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
primers
tcr
chain
primer
Prior art date
Application number
PCT/ES2012/070910
Other languages
Spanish (es)
French (fr)
Inventor
Alejandro VALLEJO TILLER
Manuel Alejandro GONZÁLEZ-SERNA MARTÍN
Manuel Leal Noval
Original Assignee
Universidad De Sevilla
Fundación Para La Investigación Biomédica Del Hospital Universitario Ramón Y Cajal
Servicio Andaluz De Salud
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Sevilla, Fundación Para La Investigación Biomédica Del Hospital Universitario Ramón Y Cajal, Servicio Andaluz De Salud filed Critical Universidad De Sevilla
Publication of WO2013093170A1 publication Critical patent/WO2013093170A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6881Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for tissue or cell typing, e.g. human leukocyte antigen [HLA] probes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/16Primer sets for multiplex assays

Definitions

  • the invention relates to a method for determining the diversity of the repertoire of T lymphocytes of an individual, as well as to compositions for carrying out said method.
  • the T-cell receptor is the molecule that is involved in antigen recognition and that gives these cells their ability to discriminate.
  • the variability in the TCR chains is centralized in the binding region of the antigenic peptide, which is encoded by the gene segments V and J in the ⁇ chain, or V, D and J in the ⁇ chain.
  • V and J in the ⁇ chain
  • V, D and J in the ⁇ chain
  • the resulting gene regions code for the CDR3 loops, which will be of varying length and that form the center of the antigen binding site.
  • TCRs unlike immunoglobulins, do not suffer somatic hypermutation and, therefore, all diversity is concentrated in CDR3.
  • Disturbances in the repertoire of TCR have been observed in subjects infected with HIV-1, possibly reflecting responses of cytotoxic T lymphocytes (in English cytotoxic T lymphocyte, CTL) energetic but not completely effective, mainly composed of CD8 T cells resulting from a oligoclonal expansion that share common antigenic determinants. These disturbances frequently occur either by clonal expansion of T cells or by deletion in one or more families of ⁇ . Multiple or persistent clonal expansions of CD8 T cells have been observed in individuals with chronic or progressive HIV-1 infections. HIV-1 infection induces disturbances in the repertoire of peripheral T-cell receptors during primary infection.
  • Epitope-specific responses are the sum of individual responding clones of T cells and a repertoire of structurally diverse TCRs is likely necessary for optimal elimination of viremia in infections capable of rapidly developing escape mutations.
  • a varied matrix of TCRs could reduce the likelihood of CTL escape due to cross recognition of mutated epitopes and is more likely to contain high affinity T cell clones capable of recognizing specific epitopes efficiently and, therefore, mediate Better control of virus replication.
  • Oligoclonal expansions and deletions within subpopulations of T cells can be measured by analysis of the CDR3 hypervariable region of the TCR (Raaphorst et al., 2002, Hum. Immunol. 63: 51-60). Variation in CDR3 length reflects changes in the TCRVP repertoire during HIV-1 infection
  • the variation in the length of the CDR3 is the basis of the spectratypin ⁇ technique where said region is amplified and the distribution of the different lengths is an indicator of the variety of the TCR repertoire.
  • This technique is useful to detect clonal expansions in response to certain pathological situations, such as with tumor-infiltrated T cells (Puisieux et al, 1994, J. Immunol. 153: 2807-2818), or to analyze variations that may occur in the repertoire during the course of certain diseases, such as immunodeficiencies or autoimmune diseases.
  • a difficulty associated with this technique is the high number of necessary reactions and a complicated interpretation of the results. In Monteiro et al. (Monteiro et al, 1995, Mol. Med.
  • a method of analyzing the diversity of the repertoire of T and / or B lymphocytes by multiplex PCR is described in US 2011/0003291.
  • the total number of primers defined is 119, which are specific for regions of the V or D genes, and J, so that they allow the detection of V (D) J or D-J rearrangements.
  • Fernandes et al. they developed a system for spectratyping by multiplex PCR for the evaluation of the repertoire of the ⁇ chain of the TCR (Fernandes et al, 2005, Clin. Diagn. Lab. Immunol.
  • the invention relates to a composition or kit for analyzing the repertoire of T cells in a sample comprising:
  • each of said primers specifically hybridizes with segment V of a gene encoding a ⁇ chain of the TCR
  • the invention relates to a method for analyzing the repertoire of T cells in a sample comprising the steps of
  • the invention relates to the use of the composition or kit, or of the method of the above aspects in the diagnosis of a pathology.
  • the invention in a final aspect, relates to a method for monitoring the evolution of a pathology in a patient in response to a treatment comprising determining the complexity of the repertoire of T cells in a sample of said patient after being subjected to said treatment, where an increase in the complexity of said repertoire with respect to complexity before starting treatment is indicative that the patient responds to said treatment.
  • Figure 1 describes the expression ratios of each of the TCRVP families at different points in time. Families with a significantly disturbed expression rate at the time of treatment discontinuation are highlighted.
  • FIG. 2 describes the proportion of the expression of disturbed families of TCRVP.
  • A The expression of TCRVplO, TCRVpl4 and TCRVpl5 was increased at the time of treatment discontinuation, and
  • B the expression of TCRVP20, TCRVP28 and TCRVP29 was decreased. Black lines represent average values.
  • Figure 3 describes the proportion of the expression of families of TCRVP disturbed according to the time of antiretroviral treatment. Empty tables, patients with ⁇ 100 months of antiretroviral treatment; full pictures, patients with> 100 months of antiretroviral treatment. Black lines represent average values.
  • Figure 4 describes the proportion, cell activation and apoptosis levels of Vpl4, Vp20 and Vp2 cells.
  • Figure 5 describes recent recent thymus migration cells and memory effector cells of ⁇ 14, ⁇ 20 and ⁇ 2 cells.
  • the inventors have developed a new CDR3 spectratyping technique to simplify the study of the ⁇ repertoire of T cells.
  • This technique is a new approach to the study of the cell repertoire in the first place due to the original design of a group of primers that amplify the sequences representative of the wide cellular repertoire, unlike previous works that focused their analysis in other regions of the TCRp.
  • the design of the test that facilitates and simplifies both the obtaining of the data is also novel, thanks to the different size ranges of the amplification products and the two markers used, which allows the products to be summarized in only three PCR reactions in format multiplex, as well as the interpretation of the same without the need to amplify internal controls to which to refer the results as in previous works.
  • compositions or kits to analyze the repertoire of T cells are provided.
  • composition or kit of the invention relates to a composition or kit for analyzing the repertoire of T cells in a sample, hereinafter composition or kit of the invention, comprising
  • T cell or "T lymphocyte” refers to those leukocytes that have ovoid-shaped nuclei that occupy most of the intracellular space. T lymphocytes are responsible for coordinating the cellular immune response, making up 70% of the total lymphocytes that secrete proteins or cytokines. They also deal with the cooperation to develop all forms of immune responses, such as the production of antibodies by B lymphocytes. They differ from B lymphocytes and killer cells (natural killer or K) by having a special receptor in the membrane surface, the T cell receptor (called TCR by T cell receptor).
  • TCR T cell receptor
  • CD4 + lymphocytes for expressing the surface CD4 marker. They are responsible for initiating the cascade of the coordinated immune response by interacting with the "peptide-CMH- ⁇ " complex, which is expressed on the surface of antigen presenting cells. When activated, CD4 + lymphocytes specialize, differentiating themselves into effector lymphocytes, which are distinguished by the type of cytokines they produce:
  • Thl which migrate to infected tissues and assist in the activation of macrophages, since Thl fundamentally secrete ⁇ interferon; Thl are important in defense against intracellular microbes and inflammation;
  • Th2 which remain primarily in lymphoid tissues and assist in the activation of B lymphocytes; mainly secrete IL-4 (which stimulates the secretion of IgE, which in turn activates mast cells) and IL-5 (which activates eosinophils); Th2 are important in allergic reactions and in defense against parasites; - Thl 7, so named because they secrete IL-17, in addition to IL-22; They are the main mediators in some allergic reactions, and appear to be involved in the development of diseases such as multiple sclerosis, rheumatoid arthritis and inflammatory bowel disease.
  • Thl, Th2 or Thl7 The differentiation in Thl, Th2 or Thl7 is not random, but depends on the stimuli received by the virgin T4 lymphocyte when it contacts a foreign antigen.
  • CTL Cytotoxic T lymphocytes
  • CD8 + lymphocytes for expressing the surface CD8 marker. They are responsible for the effector functions of cellular immunity, through interaction with a “peptide-CMH-I” complex; CTLs recognize the cells infected by the pathogen for which they are specific or tumor cells, and destroy them by secreting a series of molecules (perforin, granzymes, FasL) that activate apoptosis of the target cell.
  • Memory T lymphocytes are cells that are generated after activation of T lymphocytes, by exposure to a foreign antigen (a pathogen).
  • Memory cells can be both CD4 + and CD8 +, and typically express the CD45RO cell surface protein. They have a long life, are functionally inactive, and can circulate for months or years, prepared to respond to new exposures to the same antigen. The re-exposure to the antigen they recognize causes a rapid expansion of effector T cells, thus providing the immune system with "memory" against past infections.
  • Treg cells Regulatory T lymphocytes (Treg cells)
  • Regulatory T lymphocytes formerly known as suppressor T cells: express the surface CD4 marker and are distinguished from CD4 + lymphocytes by the presence of the FoxP3 intracellular marker. Its main function is to eliminate cell-mediated immunity at the end of the immune reaction and eliminate self-reactive T cells that escaped the thymus negative selection process.
  • Two main classes of CD4 + Treg cells have been described: - “natural Treg cells” or “CD4 + CD25 + FoxP3 + Treg cells” arise in the thymus and have been related to the interactions between developing T cells and dendritic cells, both myeloid (CDl lc +) and plasmocytoid (CD123 +);
  • Treg adaptation cells or “Th3 cells” or “Trl cells”, which can be generated during a normal immune response.
  • “Gamma / delta T cells” are a small group of T cells that have a specific TCR on their surface. Most lymphocytes have a TCR composed of two glycoprotein chains called ⁇ and ⁇ . However, in gamma / delta cells, the TCR is formed by a ⁇ chain and a ⁇ chain. This group of lymphocytes is very rare (2% of the total), but they are abundant in the intestinal mucosa, forming part of a lymphocyte population called intraepithelial lymphocytes.
  • T lymphocyte receptor or "TCR” (for T cell receptor in English) is a cellular receptor associated with an intracellular signaling pathway characterized by belonging to the family of receptors with intrinsic enzymatic activity and having peptide ligands small associated with CMH molecules in the plasma membrane of macrophages and other antigen presenting cells.
  • the molecular characteristics of said receptor comprise the possession of an individual transmembrane ⁇ helix, although there are several kinase proteins associated with cytosolic domains (present only in T lymphocytes), and their signal transduction pathway involves the activation of cytosolic tyrosine kinase proteins. , via PI-3 kinase, via IP3 / DAG and via Ras / MAPK. In this way, its activation by means of an external stimulus causes a cascade of internal enzymatic reactions that facilitates the adaptation of the cell to its environment, by means of second messengers.
  • the TCR is made up of two chains similar to immunoglobulins, but associated with the cell membrane.
  • the two chains are called TCRa and TCRP, they are arranged side by side joined by disulfide bonds.
  • Certain molecules on the surface of T cells stabilize both interactions mediated by TCR as well as intracellular communication, including CD3, CD4 and CD8.
  • the TCR chains comprise a constant domain (C) and a variable domain (V), which is located in the apical region of the extracellular portion.
  • the variable domain has 3 small hypervariable regions (CDRs) that are directly responsible for the interaction with the peptide complex: CMH, in a highly complementary way. The most specific is CDR3.
  • CDRs hypervariable regions
  • the ⁇ and ⁇ chains (and in rare cases the alternative combination of ⁇ : ⁇ chains) are associated on the cell membrane with a group of molecules without morphological variability called together CD3. That TCR: CD3 membrane complex is required for the stable interaction of T cells with antigen presenting cells and is responsible for much of the intracellular communication mediated by TCR.
  • the CD3 complex is composed of three monomers called ⁇ , ⁇ and ⁇ spatially bound but not covalently.
  • the CD3 complex further comprises an intracellular portion composed of two ⁇ chains, which is responsible for transmitting the signals resulting from the TCR: CMH-antigen binding.
  • Bone marrow hematopoietic stem cells, as well as early lymphoid progenitor cells that will give rise to lymphocytes (T and B) contain genes for immunoglobulins (Ig) and for T-cell receptors in germinal configuration ( or inherited), which is different from the configuration found in mature lymphocytes.
  • Ig immunoglobulins
  • T-cell receptors in germinal configuration ( or inherited), which is different from the configuration found in mature lymphocytes.
  • both the loci for the Ig (heavy and light chains) and the loci for the TCRs ( ⁇ and ⁇ chains) each contain multiple genes for the variable region (V), up to several hundred, and one or few genes for the constant region (C). Between the V genes and the C genes there are small nucleotide sequences, which are called gene segments of union (J, by joining) and diversity (D). All loci contain V, J and C genes; Ds are only found in the locus of the Ig heavy chain and in the TCR ⁇ chain.
  • the decision of a progenitor lymphoid cell to become a T lymphocyte is associated with recombination in the locus of the TCR ⁇ chain (located on chromosome 14) of a specific V segment gene with a specific J segment gene, to form a single exon VJ.
  • the selection of a specific segment V and J is random.
  • the VJ exon is linked by the splicing mechanism with the C region.
  • a segment V, one D and one J are also randomly selected. then a VDJ exon that then binds to the C region.
  • This DNA recombination and RNA splicing sequence generates the ⁇ and ⁇ chains of the TCR of mature lymphocytes.
  • the diversity of the antigen receptors is due to the use of different combinations of segments V, D and J in different lymphocyte clones, called combinatorial diversity, which is also increased by introducing changes in the nucleotide sequence at the junctions of segments V , D and J, called diversity of unions.
  • combinatorial diversity is also increased by introducing changes in the nucleotide sequence at the junctions of segments V , D and J, called diversity of unions.
  • combinatorial diversity is limited to the number of sequences available for each segment, but the diversity of the unions is almost unlimited. This diversity of unions can be produced by three types of mechanisms:
  • TdT deoxyribonucleotidyl transferases
  • the nucleotide sequence in the V (D) J zone of a TCR and the length of it in a lymphocyte clone is very different from the same zone of any other clone.
  • the junction zones constitute the most variable zone of the CDR3, and it is the most important for antigen recognition.
  • the term "repertoire of T cells”, as used in the present invention, refers to the set of T lymphocytes that express TCRs with different specificities and that are present in a subject at a given time.
  • sample refers to any biological sample capable of containing T lymphocytes that can be obtained from a subject;
  • Illustrative, non-limiting examples of said biological sample include biopsy samples, tissues, cells or fluids, for example blood, milk, plasma, saliva, serum, etc.
  • said biological sample is peripheral blood, preferably peripheral blood enriched in CD4 + and CD8 + T lymphocytes.
  • various methods are available for obtaining enrichment in CD4 + and CD8 + T lymphocytes.
  • said methods can be based on a positive selection, where T cells are isolated through antibodies specific for CD2 or CD3, or on a negative selection, where unwanted cells are removed from the sample by the use of antibodies specific for markers of other cell types, including, but not limited to, CD14, CD16, CD19, CD20, CD36, CD56, CD57, CD66b, CD94, CD123, CD244 and / or glycophorin A. They are available to those skilled in the art.
  • kits include RosetteSep Human T Cell Enrichment Cocktail (StemCell Technologies), EasySep human T cell Enrichment Kit (StemCell Technologies), BioMag SelectaPure Human CD3 + T cell Enrichment System (Polysciences, Inc.), BioMag® SelectaPure Human T cell Enrichment System (Polysciences, Inc.), Pan T Cell Isolation Kit human (Miltenyi Biotec), CD2 MicroBeads human (Miltenyi Biotec), Whole Blood CD3 MicroBeads human (Miltenyi Biotec), Dynabeads CD2 Pan T (Invitrogen), Dynabeads CD3 (Invitrogen) , Dynabeads Untouched Human T Cells (Invitrogen), and Human CD3 + T Cell Enrichment Column (R&D Systems).
  • primer refers to a nucleotide sequence that is complementary to a nucleotide sequence of the genes encoding for the ⁇ chain of the TCR.
  • Each hybrid primer specifically with its target nucleotide sequence and acts as a starting point from which DNA polymerase begins the polymerization of DNA.
  • the primers are short nucleotide sequences, approximately 15-24 nucleotides in length that can be aligned with a strand of target DNA thanks to the complementarity of bases to form a hybrid between the primer and the target strand of DNA. Then, the DNA polymerase enzyme can extend the primer along the DNA strand.
  • the primers can be prepared by any suitable method, including, for example, but not limited to direct chemical synthesis. Methods for preparing and using primers are described, for example, in Sambrook et al., 2001. "Molecular cloning: a Laboratory Manual", 3rd ed., Cold Spring Harbor Laboratory Press, NY, Vol. 1-3.
  • the primer is a deoxyribose oligonucleotide, but may also comprise at least one modified sugar moiety selected from the group that includes but is not limited to arabinose, 2-fluoroarabinous, xylulose and hexose.
  • the oligonucleotide may also comprise at least one modified phosphate main structure.
  • Non-limiting examples of modified oligonucleotides include oligodeoxyribonucleotide selenoate, oligodeoxyribonucleotide phosphorothioate (TPO), oligodeoxyribonucleotide phosphoramidate, oligodeoxyribonucleotide methylphosphonate, peptide nucleic acid (PNA).
  • TPO oligodeoxyribonucleotide phosphorothioate
  • PNA peptide nucleic acid
  • antisense primer refers to a primer that hybridizes with a specific sequence of the constant segment C segment of the gene encoding the ⁇ chain of the TCR, in the 3'-5 sense '.
  • hybridization refers to the process by which two chains of antiparallel nucleic acids and complementary base sequences are associated, in a single double-chain molecule where the nitrogenous bases remain hidden inside. Hybridization can be carried out under conditions of high, medium or low stringency allowing the association of chains with high, medium or low homology, respectively. In a preferred embodiment, the hybridization is carried out under high or medium stringency conditions.
  • hybridization under conditions of high stringency can be carried out in 6xSSC at approximately 45 ° C followed by one or more washes in 0.1 x SSC / 0.2% SDS at approximately 68 ° C.
  • Other conditions of high stringency include, for example, washings in 6xSSC / 0.05% sodium pyrophosphate at 37 ° C, 48 ° C, 55 ° C and 60 ° C, depending on the particular primer.
  • “moderate conditions” is used for hybridization carried out in 6x SSC at approximately 45 ° C followed by one, preferably 3-5 washes in 0.2xSSC / 0.1% SDS at approximately 42-65 ° C.
  • Tm 81.5 ° C + 16.6Log [Na +] + 0.41 (% G + C) - 0.63 (% formamide) -600 / # of bp in the duplex.
  • [Na +] [0.368] and 50% formamide, with a GC content of 42% and an average probe size of 200 bases, the Tm is 57 ° C.
  • the Tm of a DNA duplex decreases by 1-1.5 ° C with each 1% decrease in homology. Therefore, targets with a sequence identity greater than 75% would be observed using a hybridization temperature of 42 ° C.
  • “Tm” or “melting temperature” means that temperature at which 50% of the DNA molecules are dissociated.
  • detecttable label refers to a molecular label whose purpose is to allow the visualization or detection of the molecules to which it is anchored by proper procedures and equipment for the detection of tide.
  • the marking of amplification products can be carried out by conventional methods. Said marking can be direct, for which fluorophores can be used, for example, Cy3, Cy5, fluorescein, alexa, etc., enzymes, for example, alkaline phosphatase, peroxidase, etc., radioactive isotopes, for example, 33P, 1251, etc., or any other marker known to the person skilled in the art.
  • said marking can be indirect through the use of chemical, enzymatic methods, etc .
  • the amplification product may incorporate a member of a specific binding pair, for example, avidin or streptavidin conjugated with a fluorochrome (locus), and the probe binds to the other member of the specific binding pair, for example, biotin (indicator), the reading being carried out by fluorimetry, etc.
  • the amplification product may incorporate a member of a specific binding pair, for example, an anti-digoxigenin antibody conjugated to an enzyme (locus), and the The probe binds to the other member of the specific binding pair, for example, digoxigenin (indicator), etc., the enzyme substrate is transformed into a luminescent or fluorescent product and the reading is carried out by chemo-luminescence, fluorimetry, etc.
  • the detectable labels are fluorophores.
  • fluorescent materials that can be used in oligonucleotide mapping include, but are not limited to, 5-carboxyfluorescein (5-FAM), 6-FAM, t-FAM tetrachlorinated analog (TET), 6-FAM hexachlorinated analog (HEX) ), 6-carboxytetramethylrodamine (TAMRA), 6-carboxy-X-rhodamine (ROX), 6-carboxy-4 ', 5'-dichloro-2', 7'-dimethoxyfluorescein (JOE), ED, Cy-3, Cy -5, Cy-5.5, fluorescein-6-isothiocinate (FITC) and tetramethylrodamine-5-isothiocinate (TRITC).
  • 5-FAM 5-carboxyfluorescein
  • 6-FAM t-FAM tetrachlorinated analog
  • HEX 6-FAM hexachlorinated analog
  • the detectable labels can be distinguished based on the emission wavelength.
  • the detectable labels are 5-FAM and TAMRA.
  • the composition or kit according to the first aspect of the invention comprises 24 sense primers, each of said sense primers hybridizing with a specific sequence of one of the 24 families of V segments that are part of the gene coding for the ⁇ chain of the TCR.
  • the TCR is an ⁇ and ⁇ chain homodimer, each of which is encoded by a gene formed by gene segments V, D, J and C. There are multiple variants of said gene segments distributed in clusters, the corresponding segments being located at the ⁇ chain on chromosome 7.
  • the number of V segments of the TCR ⁇ chain in the human beings are between 64 and 67 segments in 30 families, called TCRpVl to TCRpV30.
  • each of the 24 sense primers specifically hybridizes with a segment V that are part of the gene that codes for the ⁇ chain of TCRs 2, 3.1, 4.1, 5.1, 6.1, 7.1, 9, 10.1, 11, 12.3, 13, 14, 15, 16, 18, 19, 20, 23 24, 25, 27, 28, 29 and 30.
  • the 24 sense primers comprise variants of the sequences identified in SEQ ID NO: 24 (Table 1) that retain the ability to specifically hybridize each of said sense primers with a specific sequence from one of the 24 families of V segments that are part of the gene that codes for the ⁇ chain of the TCR, where the variants have an identity with the sequences SEQ ID NO: 24 of at least 99%, at least 98%, at least 97% ), at least 96%>, at least 95%>, at least 90%>, at least 85%>, at least 80%), at least 75%>, at least 70%> , at least 65%>, at least 60%>, at least 55%>, at least 50%>, at least 45%>, at least 40%>, at least 35%>, at least 30%>.
  • the 24 sense primers comprise the sequences identified in SEQ ID NO: 1 to 24 (Table 1).
  • composition or kit of the invention further comprises a first antisense primer labeled with a first detectable label, wherein said hybrid primer specifically with segment C of the gene encoding the ⁇ chain of the TCR, and a second antisense primer that hybrid specifically with the same region as said first antisense primer labeled with a first detectable label, which is marked with a second detectable label different from the first detectable label.
  • said first antisense primer labeled with a first detectable label comprises the sequence identified in SEQ ID NO: 25 or a variant thereof that retain the ability to hybridize with the same region of a specific sequence of the constant C segment segment of the gene encoding the ⁇ chain of the TCR as the sequence identified in SEQ ID NO: 25.
  • Such variants may have an identity with the sequence SEQ ID NO: 25 of at least 99%, at least 98%, at least 97%, at least 96%, at least 95%, at least 90% at least 85%, at least 80%, at least 75%, at least 70%, at least 65%, at least 60%, at least 55%, at least 50%, at minus 45%, at least 40%, at least 35%, at least 30%.
  • sequence of said first antisense primer labeled with a first detectable label comprises the sequence identified with SEQ ID NO: 25 (Table 1).
  • said first antisense primer is labeled with 5-FAM or TAMRA, preferably 5-FAM.
  • said second antisense primer that hybridizes specifically with the same region as said first antisense primer, which is labeled with a second detectable tag different from the first detectable tag comprises variants of the sequence identified in SEQ ID NO: 25 ( Table 1), which retain the ability to hybridize with a specific sequence of the constant segment C segment of the gene encoding the ⁇ chain of the TCR, where the variants have an identity with the sequence SEQ ID NO: 25 of at least 99 %, at least 98%, at least 97%, at least 96%, at least 95%, at least 90%, at least 85%, at least 80%, at least 75%, at least 70%, at least 65%, at least 60%), at least 55%, at least 50%, at least 45%, at least 40%, at least 35%, at minus 30%
  • the sequence of said second antisense primer labeled with a second detectable label comprises the sequence identified with SEQ ID NO: 25 (Table 1).
  • said second antisense primer is labeled with 5-FAM or TAMRA, preferably TAMRA.
  • the composition or kit of the invention further comprises at least one additional primer that hybridizes with the segment C constant region of the gene encoding the ⁇ chain of the TCR.
  • the two antisense primers comprise variants of the sequences identified in SEQ ID NO: 26 and SEQ ID NO: 27 (Table 1) that retain the ability to hybridize each of said antisense primers with a region specific sequence.
  • the variants have an identity with the sequences SEQ ID NO: 26 and SEQ ID NO: 27 of at least 99%, at least 98%, at least 97%, at least 96%), at least 95%, at least 90%, at least 85%, at least 80%, at least 75%), at least 70%, at least 65%>, at least 60%>, at least 55%, at least 50%, at least 45%, at least 40%, at least 35%, at least 30%.
  • the first antisense primer comprises the sequence SEQ ID NO: 26 and / or the second antisense primer comprises the sequence SEQ ID NO: 27 (Table 1).
  • ⁇ 2 CCACAAGCTGGAGGACTC (SEQ ID NO: 1)
  • ⁇ 16 GCT TGAGGAT TCAGCAGTG (SEQ ID NO: 5)
  • ⁇ 12 ATGCCCGAGGATCGAT TCTCA (SEQ ID NO: 10)
  • ⁇ 14 AAACAGGATGAGTCCGGTATGC (SEQIDNO: 15)
  • the composition or kit of the invention further comprises the reagents necessary to carry out the cDNA amplification reaction and / or the reagents necessary to perform RNA reverse transcription reactions, including but not limited to a, deoxynucleotides triphosphate (dNTPs), divalent and / or monovalent ions, a buffer solution (buffer) that maintains the proper pH for the functioning of DNA polymerase, DNA polymerase or mixture of different polymerases, reverse transcriptase or mixture of different reverse transcriptases , etc.
  • dNTPs deoxynucleotides triphosphate
  • buffer solution buffer solution
  • the kit of the invention does not comprise the reagents necessary to practice the method of the invention, these are commercially available and can be found as part of a kit. Any commercially available kit containing the reagents necessary to carry out an amplification reaction can be used successfully in the practice of the method of the invention. Methods to analyze the repertoire of T cells
  • the invention relates to a method for analyzing the repertoire of T cells in a sample, hereinafter the first method of the invention, comprising the steps of
  • step (ii) analyze the number of amplification products obtained in step (i).
  • said sample will be any biological sample capable of containing T lymphocytes that can be obtained from a subject.
  • said biological sample include biopsy samples, tissues, cells or fluids, for example blood, milk, plasma, saliva, serum, etc.
  • the sample is a peripheral blood sample.
  • peripheral blood relates to the volume of circulating blood distant from the heart, that is, the blood circulating through the organism of a subject.
  • said peripheral blood sample is enriched in CD4 + or CD8 + cells.
  • CD4 + and CD8 + T lymphocytes As one skilled in the art can understand, various methods are available for obtaining enrichment in CD4 + and CD8 + T lymphocytes.
  • Various commercial kits are available to the person skilled in the art for positive or negative enrichment of CD4 + or CD8 + T cells by gradient, columns, magnetic particles, etc.
  • kits include StemSep® Human CD4 Positive Selection Kit (StemCell Technologies), StemSep® Human CD4 + T Cell Enrichment Kit (StemCell Technologies), RosetteSep TM Human CD4 + T Cell Enrichment Cocktail (StemCell Technologies), StemSep® Human CD8 Positive Selection Kit (StemCell Technologies), StemSep® Human CD8 + T Cell Enrichment Kit (StemCell Technologies), RosetteSep TM Human CD8 + T Cell Enrichment Cocktail (StemCell Technologies) , CD4 + T Cell Isolation Kit II, human (Miltenyi Biotec), CD8 + T Cell Isolation Kit II, human (Miltenyi Biotec), Dynal® CD4 Positive Isolation Kit (Invitrogen), Dynal® CD8 Positive Isolation Kit (Invitrogen), Human CD4 + T Cell Enrichment Column (R&D Systems), Human CD8 + T Cell Enrichment Column (R&D Systems), BD IMag TM CD4
  • RNA refers to the mRNA or messenger RNA.
  • the mRNA is the ribonucleic acid that contains the genetic information from the DNA to be used in protein synthesis, that is, it determines the order in which the amino acids will bind.
  • RNA from the biological sample Prior to the extraction of the RNA from the biological sample, it can be treated physically or mechanically to break the tissue or cellular structures and release the intracellular components to an aqueous or organic solution to prepare the nucleic acids for extraction.
  • RNA extraction can be performed by any of the procedures known to those skilled in the art, including, but not limited to, Trizol, guanidinium salts, phenol chloroform, etc. Such procedures can be found, for example, in Sambrook et al., 2001. "Molecular cloning: a Laboratory Manual", 3rd ed., Cold Spring Harbor Laboratory Press, NY, Vol. 1-3. There are also commercial kits that allow the extraction of RNA from a sample, such as the Qiagen RNA extraction kit. As the person skilled in the art knows, when working with RNA, maximum precautions must be taken to avoid contamination with RNAs and the degradation of RNA.
  • RNA After obtaining the RNA, a reverse transcription (RT) reaction of the mRNA is carried out followed by amplification by polymerase chain reaction (PCR) [RT-PCR] to obtain the double helix cDNA corresponding to the RNA present in the sample.
  • PCR polymerase chain reaction
  • the cDNA preparation has been obtained using a primer that hybridizes with the constant C segment segment of the gene encoding the ⁇ chain of the TCR.
  • the sequence of said at least one additional primer comprises SEQ ID NO: 26 and / or SEQ ID NO: 27.
  • cDNA or "complementary DNA”, as used in the present invention, refers to single stranded DNA that is synthesized from a single strand of RNA.
  • RNA Ribonucleic acid
  • the method of the invention comprises a first stage where at least one amplification reaction of said cDNA is carried out by using specific sense primers of the DNA, where each one of said hybrid primers specifically with segment V of the gene encoding the ⁇ chain of the TCR and two antisense primers that specifically hybridize with the CP constant region of the TCR where each of said antisense primers is labeled with a distinct detectable label.
  • amplify refers to the use of techniques or methods to increase the number of copies of a specific nucleic acid segment.
  • amplification product refers to the nucleic acid generated as a result of an amplification.
  • Many amplification methods are based on chain enzymatic reactions, such as a polymerase chain reaction or PCR, a ligase chain reaction, or self-sustained sequence replication, rolling circle amplification assays, invasive excision assays , primer extension assay, enzymatic breakdown methods, NASBA, hybridization methods in sandwich, methods in which molecular markers are employed, and the like.
  • Real-time PCR also called RT-PCR, quantitative PCR, quantitative real-time PCR or RTQ-PCR
  • RT-PCR quantitative PCR
  • RTQ-PCR quantitative real-time PCR
  • the DNA is specifically amplified by a polymerase chain reaction.
  • DNA is quantified after each round of amplification.
  • Common methods of quantification include the use of fluorescent markers that are interspersed with double stranded DNA and modified DNA oligonucleotides (called probes) capable of emitting fluorescence when hybridizing with a complementary DNA.
  • amplification can be carried out by appropriately labeled primers, and products amplified by primer extension can be detected by suitable procedures and equipment for the detection of the marking.
  • the probes of the present invention are labeled with at least one detectable residue, wherein the residue or detectable residues are selected from the group consisting of: conjugates, branched detection system, chromophores, fluorophores, labels (spin label), radioisotopes, enzymes, haptens, an acridinium ester and luminescent compounds.
  • the primers are labeled with a fluorophore.
  • the amplification of step (i) is carried out in several reactions using in each of the pairs reactions of sense-antisense primers that give rise to amplification products that are distinguishable from the other amplification products obtained in the same reaction based on size and / or based on the detectable label.
  • the multiplicity of sense primers comprises 24 primers.
  • each of the 24 sense primers hybridizes specifically with a segment V that is part of the gene that codes for the ⁇ chain of TCRs 2, 3.1, 4.1, 5.1, 6.1, 7.1, 9, 10.1, 1 1, 12.3, 13, 14, 15, 16, 18, 19, 20, 23 24, 25, 27, 28, 29 and 30.
  • the 24 sense primers comprise variants of the sequences identified in SEQ ID NO: 24 (Table 1) that retain the ability to specifically hybridize each of said sense primers with a specific sequence from one of the 24 families of V segments that are part of the gene that codes for the ⁇ chain of the TCR, where the variants have an identity with the sequences SEQ ID NO: 24 of at least 99%, at least 98%, at least 97% ), at least 96%>, at least 95%>, at least 90%>, at least 85%>, at least 80%), at least 75%>, at least 70%> , at least 65%>, at least 60%>, at least 55%>, at least 50%>, at least 45%>, at least 40%>, at least 35%>, at least 30%>.
  • the 24 sense primers comprise the sequences identified in SEQ ID NO: 1 to 24 (Table 1).
  • the two antisense primers that specifically hybridize with the constant CP region of the TCR where each of said antisense primers is labeled with a distinct detectable label comprises variants of the sequence identified in SEQ ID NO: 25 (Table 1), which retain the ability to hybridize with a specific sequence of the constant segment C segment of the gene encoding the ⁇ chain of the TCR, where the variants have an identity with the sequences SEQ ID NO: 25 of at least 99%>, at least 98%>, at least 97%>, at least 96%>, at least 95%>, at least 90%>, at least 85% or, at at least 80%>, at least 75%>, at least 70%>, at least 65%>, at least 60%, at least 55%, at least 50%, at least 45%, at least 40%, at least 35%, at least 30%.
  • said two antisense primers comprise the sequence identified as SEQ ID NO: 25 (Table 1).
  • said two antisense primers are labeled with 5-FAM or TAMRA.
  • said first antisense primer is labeled with 5-FAM and said second antisense primer is labeled with TAMRA.
  • cDNA amplification is performed for 24 ⁇ families using eight RT-PCR reactions in multiplex format (R1 to R8), taking at least one primer corresponding to a 70-90 bp molecular weight amplification product ( SEQ ID NO: 1-8), or variants thereof that retain the ability to specifically hybridize each of corresponding V segments that are part of the gene encoding the ⁇ chain of the TCR; at least one primer corresponding to a 120-160 bp molecular weight amplification product (SEQ ID NO: 9-16), or variants thereof that retain the ability to specifically hybridize each of corresponding V segments that are part of the gene coding for the ⁇ chain of the TCR; at least one primer corresponding to a 180-210 bp molecular weight amplification product (SEQ ID NO: 17-24), or variants thereof that retain the ability to specifically hybridize each of corresponding V segments that are part of the gene coding for the ⁇ chain of the TCR; and at least one labeled antisense primer (SEQ ID NO: 1
  • the eight RT-PCR reactions in multiplex format are performed following the primer mixtures of Table 2, that is, the following combinations of primers:
  • - Rl SEQ ID NO: l + SEQ ID NO: 11 + SEQ ID NO: 17 + SEQ ID NO: 25 marked with 5-FAM;
  • - R2 SEQ ID N05 + SEQ ID NO: 13 + SEQ ID NO: 22 + SEQ ID NO: 25 marked with TAMRA;
  • Table 2 Example of mixtures of sense-antisense primers.
  • Rl Vp2 (SEQ ID NO: 1)
  • R5 Vp4 (SEQIDNO: 3)
  • Vpl5 (SEQ ID NO: 11) Vpl2 (SEQIDNO: 10) Vpll (SEQ ID NO: 17) Vp25 (SEQ ID NO: 19) Cl (SEQIDNO: 25) Cl (SEQIDNO: 25)
  • Vpl0 (SEQIDNO: 13)
  • Vpl4 (SEQIDNO: 15)
  • Vp9 (SEQIDNO: 22)
  • Vp23 (SEQIDNO: 23) C2 (SEQ ID NO: 25) C2 (SEQ ID NO: 25)
  • Vp6 (SEQ ID NO: 9)
  • Vp28 (SEQ ID NO: 12)
  • Vp27 (SEQIDNO: 20)
  • Vp24 (SEQ ID NO: 18) Cl
  • SEQIDNO: 25 Cl
  • R4 Vpl8 (SEQ ID NO: 6)
  • R8 Vp29 (SEQ ID NO: 8)
  • Vpl3 (SEQ ID NO: 14)
  • Vp20 (SEQ ID NO: 16)
  • Vp30 (SEQ ID NO: 24)
  • Vp7 (SEQ ID NO: 21)
  • the PCR is carried out in a thermocycler that performs the cycles in the exact times and temperatures programmed, such as the hybridization temperature, which depends on the melting temperature of each of the primers used in the reaction or the temperature of extension.
  • the amplification of the different TCRVP segments requires specific reaction conditions and procedures for each of the pairs of primers used, which can be achieved by systematic variation of each parameter.
  • the number of cycles and the alignment temperature used in the PCR reaction must be suitable for obtaining reliable results by using each of the pairs of sense-antisense primers of the invention.
  • Parameters such as the concentration of primers are specific to each primer and have been adjusted in the validation of the primer set.
  • the high temperature multiplex RT-PCR reactions are performed in 20 ⁇ of reaction mixture containing 100 ng mRNA template, 1 ⁇ dNTP (Roche Applied Science), 5x buffer [Roche Applied Science], 20 U of RNase inhibitor (Protector, Roche Applied Science), 10 U reverse transcriptase (Transcriptor, Roche Applied Science), and 1 ⁇ of each primer (three sense primers and one antisense primer).
  • the first reaction cycle consists of an incubation at 42 ° C for 45 min, followed by an inactivation step at 85 ° C for 5 min and 35 cycles consisting of 15 s at 94 ° C, 15 s at 58 ° C and 30 s at 72 ° C, with a final extension stage of 7 min at 72 ° C.
  • the first method of the invention comprises a second stage of analysis of the number of amplification products obtained in the first stage. This It is carried out by separating the amplification products or amplicons. Virtually any conventional method can be used within the scope of the invention to separate the amplification products. Techniques for separating amplification products are widely described in the state of the art, such as in Sambrook et al., 2001 (cited ad supra). Techniques for separating amplification products are, for example, submerged electrophoresis with Methafor gels, polyacrylamide gels electrophoresis, capillary electrophoresis, etc.
  • the size of the separated fragments is identified, for which any of the methods of identification of amplification fragments known in the state of the art can be used, such as hybridization with labeled probes (for example with a fluorophore) which will be detected by a detector and processed by a computer system, staining, for example, with ethidium bromide, silver staining, etc.
  • labeled probes for example with a fluorophore
  • staining for example, with ethidium bromide, silver staining, etc.
  • electropherogram can be generated where the size of the amplified fragments can be identified.
  • GeneScan Genetic Analysis System CEQ 8000, GenomeLab, Beckman Coulter.
  • the area under the curve calculated for each CDR3 length in a ⁇ family in a probability distribution. In this way, the distribution of the TCR lengths provides a percentage of the perturbations of the TCR repertoire.
  • the analysis of the amplification products obtained in step (ii) is carried out by determining the size and / or the marking of each of the amplification products in each of the amplification reactions.
  • the analysis of the molecular spectrum of each ⁇ family is performed by combinations of amplifications of different molecular weight and different tides.
  • said combinations are carried out from the amplification products obtained from the Rl and R2 reactions, the amplification products obtained from the R3 and R4 reactions, the products of amplification obtained from reactions R5 and R6 and the amplification products obtained from reactions R7 and R8 (according to Table 2), which are separated into their corresponding four electrophoresis strokes.
  • said combinations are carried out from the amplification products obtained from the Rl and R2 reactions, the amplification products obtained from the R3 and R4 reactions, the amplification products obtained from the R5 and R8 reactions, and the amplification products obtained from reactions R7 and R6 (according to Table 2), which are separated into their corresponding four electrophoresis strokes.
  • said combinations are carried out from the amplification products obtained the Rl and R2 reactions, the amplification products obtained from the R3 and R6 reactions, the amplification products obtained from the R5 and R4 reactions, and amplification products obtained from reactions R7 and R8 (according to Table 2), which are separated into their corresponding four electrophoresis strokes.
  • said combinations are carried out from the amplification products obtained the Rl and R2 reactions, the amplification products obtained from the R3 and R6 reactions, the amplification products obtained from the R5 and R8 reactions, and amplification products obtained from reactions R7 and R4 (according to Table 2), which are separated into their corresponding four electrophoresis strokes.
  • said combinations are carried out from the amplification products obtained the Rl and R2 reactions, the amplification products obtained from the R3 and R8 reactions, the amplification products obtained from the R5 and R4 reactions, and amplification products obtained from reactions R7 and R6 (according to Table 2), which are separated into their corresponding four electrophoresis strokes.
  • said combinations are carried out from the amplification products obtained the Rl and R2 reactions, the amplification products obtained from the R3 and R8 reactions, the amplification products obtained from the R5 and R6 reactions, and amplification products obtained from reactions R7 and R4 (according to Table 2), which are separated into their corresponding four electrophoresis strokes.
  • said combinations are carried out from the amplification products obtained the Rl and R4 reactions, the amplification products obtained from the R3 and R2 reactions, the amplification products obtained from the R5 and R6 reactions, and amplification products obtained from reactions R7 and R8 (according to Table 2), which are separated into their corresponding four electrophoresis strokes.
  • said combinations are carried out from the amplification products obtained the Rl and R4 reactions, the amplification products obtained from the R3 and R2 reactions, the amplification products obtained from the R5 and R8 reactions, and amplification products obtained from reactions R7 and R6 (according to Table 2), which are separated into their corresponding four electrophoresis strokes.
  • said combinations are carried out from the amplification products obtained the Rl and R4 reactions, the amplification products obtained from the R3 and R6 reactions, the amplification products obtained from the R5 and R2 reactions, and amplification products obtained from reactions R7 and R8 (according to Table 2), which are separated into their corresponding four electrophoresis strokes.
  • said combinations are carried out from the amplification products obtained the Rl and R4 reactions, the amplification products obtained from the R3 and R8 reactions, the amplification products obtained from the R5 and R2 reactions, and amplification products obtained from R7 and R6 reactions (according to Table 2), which are separated into their corresponding four electrophoresis strokes.
  • said combinations are carried out from the amplification products obtained the Rl and R4 reactions, the amplification products obtained from the R3 and R8 reactions, the amplification products obtained from the R5 and R6 reactions, and amplification products obtained from reactions R7 and R2 (according to Table 2), which are separated into their corresponding four electrophoresis strokes.
  • said combinations are carried out from the amplification products obtained the Rl and R4 reactions, the amplification products obtained from the R3 and R6 reactions, the amplification products obtained from the R5 and R8 reactions, and amplification products obtained from reactions R7 and R2 (according to Table 2), which are separated into their corresponding four electrophoresis strokes.
  • said combinations are carried out from the amplification products obtained the Rl and R6 reactions, the amplification products obtained from the R3 and R2 reactions, the amplification products obtained from the R5 and R4 reactions, and amplification products obtained from reactions R7 and R8 (according to Table 2), which are separated into their corresponding four electrophoresis strokes.
  • said combinations are carried out from the amplification products obtained the Rl and R6 reactions, the amplification products obtained from the R3 and R2 reactions, the amplification products obtained from the R5 and R8 reactions, and amplification products obtained from reactions R7 and R4 (according to Table 2), which are separated into their corresponding four electrophoresis strokes.
  • said combinations are carried out from the amplification products obtained the Rl and R6 reactions, the amplification products obtained from the R3 and R4 reactions, the amplification products obtained from the R5 and R2 reactions, and amplification products obtained from reactions R7 and R8 (according to Table 2), which are separated into their corresponding four electrophoresis strokes.
  • said combinations are carried out from the amplification products obtained the Rl and R6 reactions, the amplification products obtained from the R3 and R8 reactions, the amplification products obtained from the R5 and R2 reactions, and amplification products obtained from reactions R7 and R4 (according to Table 2), which are separated into their corresponding four electrophoresis strokes.
  • said combinations are carried out from the amplification products obtained the Rl and R6 reactions, the amplification products obtained from the R3 and R8 reactions, the amplification products obtained from the R5 and R4 reactions, and amplification products obtained from reactions R7 and R2 (according to Table 2), which are separated into their corresponding four electrophoresis strokes.
  • said combinations are carried out from the amplification products obtained the Rl and R6 reactions, the amplification products obtained from the R3 and R4 reactions, the amplification products obtained from the R5 and R8 reactions, and amplification products obtained from reactions R7 and R2 (according to Table 2), which are separated into their corresponding four electrophoresis strokes.
  • said combinations are carried out from the amplification products obtained the Rl and R8 reactions, the amplification products obtained from the R3 and R2 reactions, the amplification products obtained from the R5 and R6 reactions, and amplification products obtained from R7 and R4 reactions (according to Table 2), which are separated into their corresponding four electrophoresis strokes.
  • said combinations are carried out from the amplification products obtained the Rl and R8 reactions, the amplification products obtained from the R3 and R2 reactions, the amplification products obtained from the R5 and R4 reactions, and amplification products obtained from reactions R7 and R6 (according to Table 2), which are separated into their corresponding four electrophoresis strokes.
  • said combinations are carried out from the amplification products obtained the Rl and R8 reactions, the amplification products obtained from the R3 and R4 reactions, the amplification products obtained from the R5 and R2 reactions, and amplification products obtained from reactions R7 and R6 (according to Table 2), which are separated into their corresponding four electrophoresis strokes.
  • said combinations are carried out from the amplification products obtained the Rl and R8 reactions, the amplification products obtained from the R3 and R6 reactions, the amplification products obtained from the R5 and R2 reactions, and amplification products obtained from reactions R7 and R4 (according to Table 2), which are separated into their corresponding four electrophoresis strokes.
  • said combinations are carried out from the amplification products obtained the Rl and R8 reactions, the amplification products obtained from the R3 and R4 reactions, the amplification products obtained from the R5 and R6 reactions, and amplification products obtained from reactions R7 and R2 (according to Table 2), which are separated into their corresponding four electrophoresis strokes.
  • said combinations are carried out from the amplification products obtained the Rl and R8 reactions, the amplification products obtained from the R3 and R6 reactions, the amplification products obtained from the R5 and R4 reactions, and amplification products obtained from reactions R7 and R2 (according to Table 2), which are separated into their corresponding four electrophoresis strokes.
  • said method further comprises additional amplification of the cDNA using at least one additional primer that hybridizes with the C segment of the gene encoding the ⁇ chain of the TCR.
  • the sequence of said at least one additional primer comprises SEQ ID NO: 26 and / or SEQ ID NO: 27, or variants of said primers that retain the ability to hybridize specifically with the corresponding region of segment C of the gene which codes for the constant region of the ⁇ chain of the TCR.
  • the sample is a peripheral blood sample.
  • the sample is a peripheral blood sample enriched in CD4 + or CD8 + cells.
  • the invention relates to the use of the composition or kit of the first aspect, or of the method of the second aspect, in the diagnosis of a pathology.
  • diagnosis refers to the procedure by which a disease, nosological entity, syndrome or any health condition is identified.
  • pathology refers to a process in which the lymphocyte repertoire is altered. These pathological processes include infectious processes, tumor processes and immunodeficiencies. In a particular embodiment, said pathology is an immunodeficiency. Examples no Limitations of immunodeficiencies include immunodeficiencies caused by diabetes mellitus, liver failure, hepatitis, intestinal lymphangiectasia, aplastic anemia, cancer, host-versus-graft disease, chemotherapeutic drugs, immunosuppressive drugs, corticosteroids, radiotherapy, cytomegalovirus, Epstein-Barr virus, HIV, measles virus, varicella-zoster virus, alcoholism, malnutrition, nephrotic syndrome, renal failure, uremia, rheumatoid arthritis, systemic lupus erythematosus, burns and chromosomal abnormalities.
  • the diagnosis of a pathology comprises a first stage (i), in which the repertoire of T cells in a subject as described in the first method of the invention is analyzed, and a second stage (ii), in which the result of the analysis performed in stage (i) is compared with that obtained for a control sample. If these results differ substantially from each other, then it is indicative that the subject undergoes a pathology, as understood in the present invention. If these results do not differ substantially from each other, then it is indicative that the subject does not suffer a pathology, as is understood in the present invention.
  • control sample refers to a sample obtained from a healthy subject.
  • the term "subject”, as used in the present invention, includes any mammal; Non-limiting examples are domestic animals and livestock, primates and humans.
  • the subject is a human being, male or female, of any age or race.
  • Virtually any subject can be analyzed according to the present invention to analyze its repertoire of T cells.
  • said subject is a subject on which it is desired to diagnose a pathology.
  • said subject is a patient on whom one wants to monitor the evolution of a pathology in response to a treatment.
  • patient refers to a subject suffering from pathology, although said subject has not yet been diagnosed.
  • the term "healthy subject”, as used in the present invention includes any subject that does not have a pathology where the lymphocyte repertoire is altered.
  • the healthy subject is a human being, male or female, of any age or race.
  • the pathology is diagnosed by checking the alterations in the TCR repertoire in CD8 + cells.
  • said alterations in the repertoire of the TCR in CD8 + cells are checked during HIV-1 infection in infected patients.
  • patients who can be analyzed with the method of the present invention include, without limitation, those patients suffering from acquired immunodeficiency syndrome.
  • AIDS immunodeficiency syndrome
  • patients who can be analyzed with the method of the present invention include, without limitation, those patients suffering from acquired immunodeficiency syndrome.
  • the term "acquired immunodeficiency syndrome (AIDS)" refers to a disease that affects HIV-infected humans. It is said that a person suffers from AIDS when their organism, due to the immunodeficiency caused by HIV, is not able to offer an adequate immune response against infections. Note the difference between being infected with HIV and suffering from AIDS. An HIV-infected person is HIV positive and goes on to develop an AIDS picture when their level of CD4 + T cells, cells that attack the virus, drops below 200 cells per milliliter of blood. HIV specifically attacks CD4 + T cells and enters them.
  • the virus transforms its single-stranded genetic material (RNA) to a double-stranded (DNA) one to incorporate it into the host's own genetic material (infected person) and uses it to replicate or make copies of itself.
  • the new copies of the virus leave the cells, which they lysate, into the blood to infect other CD4 + T cells. This cycle is repeated again and again.
  • HIV infection is classified into different categories, according to the symptoms and conditions that the patient has:
  • Category A patients with primary or asymptomatic infection.
  • Category B patients who present or have presented symptoms that do not belong to category C, but are related to HIV infection. These include bacillary angiomatosis, vulvo-vaginal candidiasis, or treatment-resistant oral candidiasis, uterine cervix dysplasia or non-invasive cervical carcinoma, pelvic inflammatory disease (PID), fever less than 38.5 ° C or diarrhea, of more than one Month-long, shingles (more than one episode, or an episode with more than one dermatome), hairy oral leukoplakia, peripheral neuropathy, idiopathic thrombocytopenic purpura.
  • PID pelvic inflammatory disease
  • Bacterial infections recurrent Salmonella septicemia (other than Salmonella typhy), tuberculosis, Mycobacterium avium complex infection (MAI), atypical mycobacterial infections.
  • Viral infections cytomegalovirus infection (retinitis or disseminated), herpes simplex virus infection (HSV types 1 and 2), can be chronic or in the form of bronchitis, pneumonitis or esophagitis.
  • cytomegalovirus infection retinitis or disseminated
  • HSV types 1 and 2 herpes simplex virus infection
  • Fungal infections aspergillosis, candidiasis, both disseminated and of the esophagus, trachea or lungs, coccidiodomycosis, extrapulmonary or disseminated, extrapulmonary cryptococcosis, histoplasmosis, either disseminated or extrapulmonary.
  • Protozoal infections Pneumocystis jiroveci pneumonia, neurological toxoplasmosis, chronic intestinal cryptosporidiosis, chronic intestinal isosporiasis.
  • HIV encephalopathy progressive multifocal leukoencephalopathy, wasting syndrome or wasting syndrome.
  • Tumor processes Kaposi's sarcoma, Burkitt lymphoma, other non-lymphomas
  • Hodgkin especially immunoblastic lymphoma, primary brain lymphoma or B-cell lymphoma, invasive carcinoma of the cervix. Not all patients infected with the HIV virus have AIDS.
  • the criteria for diagnosing AIDS may vary from region to region, but the diagnosis typically requires:
  • Antiretroviral therapy includes, but is not limited to, HAART (High Activity Antiretroviral Therapy), protease inhibitors, fusion inhibitors, integrase inhibitors, specific co-receptor agents, 3TC, AZT, nevirapine, transcriptase inhibitors Reverse non-nucleoside analogs and reverse transcriptase inhibitors nucleoside analogues.
  • TARGA is a combination of three or more antiretroviral drugs.
  • the term "HAART" refers to a combination of highly active antiretroviral agents and usually comprises three drugs.
  • Non-limiting examples of reverse transcriptase inhibitors include nucleoside analog reverse transcriptase inhibitors such as zidovudine (AZT, Retrovir), didanosine (ddl, Videx), stavudine (d4T, Zerit), lamivudine, (3TC, Epivir), abacavir ( ABC, Ziagen), tenofovir (TDF, Viread), combivir (CBV, combination of AZT and 3TC), and non-nucleoside reverse transcriptase inhibitors such as nevirapine (NVP, Viramune), delavirdine (DLV, rescriptor), efavirenz ( EFV, substitute,).
  • nucleoside analog reverse transcriptase inhibitors such as zidovudine (AZT, Retrovir), didanosine (ddl, Videx), stavudine (d4T, Zerit), lamivudine, (3TC, Epivir), abacavir ( ABC, Ziagen
  • Non-limiting examples of protease inhibitors include saquinavir (SQV, Invirase), ritonavir (RTV, Norvir), indinavir (IDV, Crixivan), nelfinavir (NFV, Viracept), fosamprenivir (FPV, Lexiva), kaletra (lopinavir and ritonavir) and fortovase (saquinavir in soft gelatin formulation).
  • HIV refers to the human immunodeficiency virus type-1. HIV-1 includes but is not limited to extracellular virus particles and forms of HIV-1 associated with HIV-1 infected cells.
  • the '' HIV-2 ' 1 calls the human immunodeficiency virus type-2. HIV-2 includes but is not limited to extracellular virus particles and forms of HIV-2 associated with HIV-2 in infected cells.
  • the HIV-1 virus can include the M group with the main known subtypes (A, B, C, D, E, F, G and H), group O, group N, and recombinant forms, including laboratory strains and primary isolates.
  • the invention in a fourth aspect, relates to a method for monitoring the evolution of a pathology in a patient in response to a treatment, hereinafter second method of the invention, which comprises determining the complexity of the repertoire of T cells in a sample of said patient after being subjected to said treatment using a method of the second aspect of the invention, wherein an increase in the complexity of said repertoire with respect to complexity before starting treatment is indicative that the patient responds to said treatment. .
  • subject includes any mammal; Non-limiting examples are domestic animals and livestock, primates and humans. Preferably, the subject is a human being, male or female, of any age or race. Virtually any subject can be analyzed according to the present invention to analyze its repertoire of T cells. However, in a particular embodiment, said subject is a subject on which it is desired to diagnose a pathology. In another particular embodiment, said subject is a patient on whom one wants to monitor the evolution of a pathology in response to a treatment.
  • patient refers to a subject suffering from pathology, although said subject has not yet been diagnosed.
  • pathology refers to a process in which the lymphocyte repertoire is altered.
  • pathological processes include infectious processes, tumor processes and immunodeficiencies.
  • said pathology is an immunodeficiency.
  • immunodeficiencies include immunodeficiencies caused by diabetes mellitus, liver failure, hepatitis, intestinal lymphangiectasia, aplastic anemia, cancer, host-versus-graft disease, chemotherapeutic drugs, immunosuppressive drugs, corticosteroids, radiotherapy, cytomegalovirus, viruses Epstein-Barr, HIV, measles pathway, varicella-zoster virus, alcoholism, malnutrition, nephrotic syndrome, renal failure, uremia, rheumatoid arthritis, systemic lupus erythematosus, burns and chromosomal abnormalities.
  • patients who can be analyzed with the method of the present invention include, without limitation, those patients suffering from acquired immunodeficiency syndrome.
  • the pathology is acquired immunodeficiency syndrome (AIDS) or a pathology associated with HIV infection.
  • the therapy is HAART.
  • AIDS immunodeficiency syndrome
  • HAV infection HIV infection
  • HBV HIV infection
  • BL start of the study (in English, baseline); IT, treatment interruption; TR, resumption of treatment; Homo, homosexual; Hete, heterosexual; IDU, injecting drug user.
  • the CD4 T cell count was determined in fresh samples by flow cytometry.
  • Plasma HIV-1 RNA was determined by quantitative PCR assay (HIV Monitor TM Test Kit, Roche Molecular System, Hoffman-La Roche, Basel, Switzerland), following the manufacturer's instructions. This assay has a detection limit of less than 50 copies of HIV-1 / mL RNA.
  • TCRVP genes Twenty-four families of TCRVP genes were analyzed in each patient at three different time points, after at least 12 months of effective antiretroviral treatment (referral), at least twelve months of treatment interruption (IT), and at least twelve months after the resumption of treatment (RT). Subset analysis of T cells was performed by flow cytometry at the three time points.
  • PBMCs peripheral blood cells were isolated from heparinized blood samples and cryopreserved in liquid nitrogen.
  • the subset of CD8 T cells was isolated by immunomagnetic separation technique (Dynabeads, Dynal, Paisley, United Kingdom), using Anti-CD3 and anti-CD8 monoclonal antibodies for positive cell isolation (Dynabeads, CD8 positive cell isolation kit, Dynal), according to the manufacturer's instructions.
  • the cell fraction contained at least 5.1 x 10 6 cells with a purity greater than 98%.
  • the CDR3 region of 24 TCRVP families was amplified using a new multiplex RT-PCR strategy to minimize the number of reactions.
  • the inventors designed sense primers for 24 ⁇ families that amplify three different ranges of molecular size (Table 1).
  • the inventors also designed an antisense primer labeled with two different fluorochromes (Cl and C2).
  • Cl and C2 two different fluorochromes
  • optimization was performed with purified cord blood cells from a healthy donor. It was found that an amount of 100 ng guarantees the production of a Gaussian distribution of the CDR3 length repertoires of the three ⁇ families amplified in each RT-PCR reaction ( Figure 1).
  • To normalize and ensure good mRNA template quality a region of the GAPDH gene was amplified. In addition, a missing length was repeated twice to confirm the results.
  • High temperature multiplex RT-PCR reactions were carried out in 20 ⁇ of reaction mixture containing 100 ng mRNA template, 1 ⁇ dNTP (Roche Applied Science), 5x buffer (Roche Applied Science), 20 U inhibitor of RNase (Protector, Roche Applied Science), 10 U reverse transcriptase (Transcriptor, Roche Applied Science), and 1 ⁇ of each primer (three primers sense ⁇ and one antisense primer C).
  • the first reaction cycle was carried out at 42 ° C for 45 min, followed by an inactivation step at 85 ° C for 5 min and 35 cycles consisting of 15 s at 94 ° C, 15 s at 58 ° C and 30 s at 72 ° C, with final extension stage of 7 min at 72 ° C.
  • peripheral blood mononuclear cells PBMCs
  • PBMCs peripheral blood mononuclear cells
  • the cells were washed and fixed with 1% paraformaldehyde, and analyzed with a multiparameter flow cytometer (Gallios, Beckman Coulter).
  • Subsets of T cells were defined as follows way: CD8, CD3 + CD8 + CD45RA + CCR7 + naive cells; memory effector cells (MS), CD3 + CD8 + CD45RA-CCR7- cells, and CD3 + CD8 + CD45RA-CCR7 + central memory (CM) cells.
  • activation levels were analyzed by co-expression of CD38 and HLA-DR, recent thymus production by expression of CD31 in naive CD8 cells (CD45RA + CCR7 +), and apoptosis by PD-1. These parameters were analyzed in CD8 cells with three different TCR families, that is, Vpl4, Vp20 and Vp2.
  • Figure 1C shows the overall mean proportion of the expression of each TCRVP family of all patients at baseline (BL), treatment interruption (IT) and treatment resumption (RT) is shown in Figure 1C .
  • ⁇ families were analyzed according to the duration of the patients' antiretroviral treatment. Patients with a longer initial period of antiretroviral treatment (BL, greater than average) showed significant differences between IR and RT, compared to BL, while patients with a longer initial period of antiretroviral treatment (below the mean) showed no significant differences in these time points with respect to the BL ( Figure 3). In addition, the ⁇ 9 and ⁇ ⁇ families increased significantly in IT only in those patients with a longer initial period of antiretroviral treatment, compared to BL (data not shown).

Abstract

The present invention relates to the field of biotechnology. Specifically, the invention relates to a method for determining the diversity of the T-lymphocyte repertoire of an individual. The invention also relates to a method for monitoring the progress of a disease in a patient in response to a treatment. Likewise, the invention also relates to compositions for carrying out said method, which include a plurality of sense primers, which hybridise specifically with a V gene segment that encodes a β chain of the TCR, and an antisense primer marked with a first detectable tag, which hybridises specifically with the C gene segment that encodes the β chain of the TCR and a second antisense primer that hybridises specifically with the same region as the first antisense primer and is marked with a second detectable tag.

Description

MÉTODOS Y COMPOSICIONES PARA LA DETERMINACIÓN DE LA DIVERSIDAD DEL REPERTORIO DE LINFOCITOS T DE UN INDIVIDUO  METHODS AND COMPOSITIONS FOR THE DETERMINATION OF THE DIVERSITY OF THE REPERTORY OF LYMPHOCYTES OF AN INDIVIDUAL
CAMPO DE LA INVENCIÓN FIELD OF THE INVENTION
La invención se relaciona con un método para determinar la diversidad del repertorio de linfocitos T de un individuo, así como con composiciones para llevar a cabo dicho método. ANTECEDENTES DE LA INVENCIÓN The invention relates to a method for determining the diversity of the repertoire of T lymphocytes of an individual, as well as to compositions for carrying out said method. BACKGROUND OF THE INVENTION
El receptor de células T (TCR) es la molécula que interviene en el reconocimiento antigénico y que proporciona a dichas células su capacidad de discriminación. La variabilidad en las cadenas del TCR está centralizada en la región de unión del péptido antigénico, que está codificada por los segmentos génicos V y J en la cadena α, o V, D y J en la cadena β. Durante el proceso de recombinación somática se genera la diversidad estructural del repertorio de TCR, que adicionalmente se incrementa por deleción en dichos segmentos y por inserción de nucleótidos no germinales. Las regiones génicas resultantes codifican para los bucles CDR3, que serán de longitud variada y que forman el centro del sitio de unión a antígeno. Los TCR, al contrario que las inmunoglobulinas, no sufren hipermutación somática y, por tanto, toda la diversidad se concentra en los CDR3. The T-cell receptor (TCR) is the molecule that is involved in antigen recognition and that gives these cells their ability to discriminate. The variability in the TCR chains is centralized in the binding region of the antigenic peptide, which is encoded by the gene segments V and J in the α chain, or V, D and J in the β chain. During the somatic recombination process the structural diversity of the TCR repertoire is generated, which is further increased by deletion in said segments and by insertion of non-germinal nucleotides. The resulting gene regions code for the CDR3 loops, which will be of varying length and that form the center of the antigen binding site. TCRs, unlike immunoglobulins, do not suffer somatic hypermutation and, therefore, all diversity is concentrated in CDR3.
Se han observado perturbaciones en el repertorio de TCR en sujetos infectados con HIV-1, posiblemente como reflejo de respuestas de linfocitos T citotóxicos (en inglés cytotoxic T lymphocyte, CTL) enérgicas pero no completamente efectivas, compuestas principalmente por células T CD8 resultantes de una expansión oligoclonal que comparten determinantes antigénicos comunes. Estas perturbaciones ocurren frecuentemente bien por expansión clonal de células T o por deleción en una o más familias de νβ. Se han observado expansiones clónales múltiples o persistentes de células T CD8 en individuos con infecciones por VIH-1 crónica o progresiva. La infección por HIV-1 induce perturbaciones en el repertorio de receptores de células T periféricas durante la infección primaria. Se ha postulado que las perturbaciones se deben a la expansión clonal y agotamiento de los clones de células T específicos de HIV-1 durante la viremia inicial después de infección aguda (Pantaleo et al, 1994, Nature 370:463-7). Aunque existe controversia al respecto, algunos estudios han observado que una terapia antirretroviral efectiva no reconstituye completamente al repertorio de células T que ha sido perturbado (Yin et al., 2008, Clin Vaccine Immunol 2009; 1293-1301; Yin et al., 2008, J. Allergy Clin. Immunol 122: 166-72). Las respuestas específicas de epítopo son la suma de clones respondedores individuales de células T y probablemente sea necesario un repertorio de TCRs estructuralmente diverso para la óptima eliminación de la viremia en infecciones con capacidad de desarrollar mutaciones de escape rápidamente. Una matriz variada de TCRs podría reducir la probabilidad de escape de CTLs debido al reconocimiento cruzado de epítopos mutados y además es más probable que contenga clones de células T de alta afinidad capaces de reconocer epítopos específicos de manera eficiente y, por lo tanto, mediar en un mejor control de la replicación del virus. Disturbances in the repertoire of TCR have been observed in subjects infected with HIV-1, possibly reflecting responses of cytotoxic T lymphocytes (in English cytotoxic T lymphocyte, CTL) energetic but not completely effective, mainly composed of CD8 T cells resulting from a oligoclonal expansion that share common antigenic determinants. These disturbances frequently occur either by clonal expansion of T cells or by deletion in one or more families of νβ. Multiple or persistent clonal expansions of CD8 T cells have been observed in individuals with chronic or progressive HIV-1 infections. HIV-1 infection induces disturbances in the repertoire of peripheral T-cell receptors during primary infection. It has been postulated that disturbances are due to clonal expansion and depletion of HIV-1-specific T cell clones during initial viremia after acute infection (Pantaleo et al, 1994, Nature 370: 463-7). Although there is controversy in this regard, some studies have observed that an effective antiretroviral therapy does not completely reconstitute the repertoire of T cells that has been disturbed (Yin et al., 2008, Clin Vaccine Immunol 2009; 1293-1301; Yin et al., 2008 , J. Allergy Clin. Immunol 122: 166-72). Epitope-specific responses are the sum of individual responding clones of T cells and a repertoire of structurally diverse TCRs is likely necessary for optimal elimination of viremia in infections capable of rapidly developing escape mutations. A varied matrix of TCRs could reduce the likelihood of CTL escape due to cross recognition of mutated epitopes and is more likely to contain high affinity T cell clones capable of recognizing specific epitopes efficiently and, therefore, mediate Better control of virus replication.
Las expansiones oligoclonales y eliminaciones dentro de las subpoblaciones de células T se pueden medir mediante el análisis de la región hipervariable CDR3 del TCR (Raaphorst et al., 2002, Hum. Immunol. 63 :51-60). Variación de la longitud del CDR3 refleja los cambios en el repertorio TCRVP durante la infección por VIH-1 Oligoclonal expansions and deletions within subpopulations of T cells can be measured by analysis of the CDR3 hypervariable region of the TCR (Raaphorst et al., 2002, Hum. Immunol. 63: 51-60). Variation in CDR3 length reflects changes in the TCRVP repertoire during HIV-1 infection
La variación en la longitud de los CDR3 es la base de la técnica de spectratypin^ donde dicha región se amplifica y la distribución de las diferentes longitudes es un indicador de la variedad del repertorio de TCR. Esta técnica es útil para detectar expansiones clónales en respuesta a ciertas situaciones patológicas, como por ejemplo con células T infiltradas en tumor (Puisieux et al, 1994, J. Immunol. 153 :2807-2818), o analizar variaciones que puedan ocurrir en el repertorio durante el transcurso de ciertas enfermedades, como inmunodeficiencias o enfermedades autoinmunes. Una dificultad asociada a esta técnica es el alto número de reacciones necesarias y una interpretación de los resultados complicada. En Monteiro et al. (Monteiro et al, 1995, Mol. Med. 1 :614-624) se describe un método de spectratyping del CDR3 del TCR por PCR en formato multiplex que consta de 26 cebadores específicos para las familias de genes νβ y un cebador específico para la región constante CP, éste marcado radiactivamente. La combinación de 2 ó 3 cebadores de genes νβ con el cebador CP en un solo tubo permite el análisis de las 26 familias de genes νβ en 12 reacciones de PCR. En una aproximación diferente, el empleo de 27 cebadores específicos para las familias de genes νβ y un cebador específico para la región constante CP marcado con un fluorocromo, hace que las reacciones de PCR se efectúen a cabo de forma individual para cada familia de genes Vp ( Chen et al, 2005, Blood 105:886-93). The variation in the length of the CDR3 is the basis of the spectratypin ^ technique where said region is amplified and the distribution of the different lengths is an indicator of the variety of the TCR repertoire. This technique is useful to detect clonal expansions in response to certain pathological situations, such as with tumor-infiltrated T cells (Puisieux et al, 1994, J. Immunol. 153: 2807-2818), or to analyze variations that may occur in the repertoire during the course of certain diseases, such as immunodeficiencies or autoimmune diseases. A difficulty associated with this technique is the high number of necessary reactions and a complicated interpretation of the results. In Monteiro et al. (Monteiro et al, 1995, Mol. Med. 1: 614-624) describes a method of spectratyping the CDR3 of the TCR by PCR in multiplex format consisting of 26 primers specific for the families of νβ genes and a specific primer for CP constant region, this one radiolabelled. The combination of 2 or 3 primers of νβ genes with the CP primer in a single tube allows the analysis of the 26 families of νβ genes in 12 PCR reactions. In a different approach, the use of 27 primers specific for the families of νβ genes and a specific primer for the CP constant region labeled with a fluorochrome, makes the PCR reactions carried out individually for each family of Vp genes (Chen et al, 2005, Blood 105: 886-93).
En US 2007/0117134 se describe un método para detectar expansiones clónales de los linfocitos T a partir de DNA genómico. Está basado en el uso de 118 cebadores únicos, altamente específicos y no solapantes, que incluyen 22 cebadores específicos para regiones νβ, 13 cebadores específicos para regiones Ιβ y CP, y cebadores anidados, tanto para genes del TCR humano como murino. In US 2007/0117134 a method for detecting clonal expansions of T lymphocytes from genomic DNA is described. It is based on the use of 118 unique, highly specific and non-overlapping primers, which include 22 specific primers for νβ regions, 13 specific primers for Ιβ and CP regions, and nested primers for both human and murine TCR genes.
En US 2011/0003291 se describe un método de análisis de la diversidad del repertorio de linfocitos T y/o B por medio de PCR multiplex. El número total de cebadores definidos es de 119, los cuáles son específicos para regiones de los genes V o D, y J, de forma que permiten la detección de los reordenamientos V(D)J o D-J. A method of analyzing the diversity of the repertoire of T and / or B lymphocytes by multiplex PCR is described in US 2011/0003291. The total number of primers defined is 119, which are specific for regions of the V or D genes, and J, so that they allow the detection of V (D) J or D-J rearrangements.
Con el propósito de reducir el número de reacciones de PCR, Fernandes et al. desarrollaron un sistema para spectratyping por PCR multiplex para la evaluación del repertorio de la cadena β del TCR (Fernandes et al, 2005, Clin. Diagn. Lab. Immunol.In order to reduce the number of PCR reactions, Fernandes et al. they developed a system for spectratyping by multiplex PCR for the evaluation of the repertoire of the β chain of the TCR (Fernandes et al, 2005, Clin. Diagn. Lab. Immunol.
12:477-83). Su sistema consta de 24 cebadores específicos para cada uno de los genes de las regiones variable νβ más importantes, que están marcados con un fluorocromo12: 477-83). Its system consists of 24 specific primers for each of the genes of the most important νβ variable regions, which are labeled with a fluorochrome
(elegido de entre tres fluorocromos), y un cebador específico para la región constante Cβ sin marcar. Este método ofrece la ventaja de reducir el número de reacciones de(chosen from three fluorochromes), and a specific primer for the unlabeled Cβ constant region. This method offers the advantage of reducing the number of reactions of
PCR a 7, de las 12 requeridas con el método que utiliza el cebador de Cβ marcadoPCR at 7, of the 12 required with the method using the labeled Cβ primer
(Monteiro et al, supra.). Existe, por tanto, en la técnica la necesidad de métodos y composiciones que permitan reducir el número de reacciones necesarias para la evaluación del repertorio de linfocitos T y la interpretación de los resultados. (Monteiro et al, supra.). There is, therefore, in the art the need for methods and compositions that allow reducing the number of reactions necessary for the evaluation of the T lymphocyte repertoire and the interpretation of the results.
COMPENDIO DE LA INVENCIÓN SUMMARY OF THE INVENTION
En un aspecto, la invención se relaciona con una composición o kit para analizar el repertorio de células T en una muestra que comprende: In one aspect, the invention relates to a composition or kit for analyzing the repertoire of T cells in a sample comprising:
(i) una pluralidad de cebadores sentido, donde cada uno de dichos cebadores se híbrida específicamente con el segmento V de un gen que codifica una cadena β del TCR,  (i) a plurality of sense primers, where each of said primers specifically hybridizes with segment V of a gene encoding a β chain of the TCR,
(ii) un primer cebador antisentido marcado con una primera etiqueta detectable, donde dicho cebador híbrida específicamente con el segmento C del gen que codifica la cadena β del TCR y,  (ii) a first antisense primer labeled with a first detectable label, wherein said hybrid primer specifically with segment C of the gene encoding the β chain of the TCR and,
(iii) un segundo cebador antisentido que híbrida específicamente con la misma región que el cebador (ii), que está marcado con una segunda etiqueta detectable. En otro aspecto, la invención se relaciona con un método para analizar el repertorio de células T en una muestra que comprende las etapas de  (iii) a second antisense primer that hybridizes specifically with the same region as primer (ii), which is labeled with a second detectable label. In another aspect, the invention relates to a method for analyzing the repertoire of T cells in a sample comprising the steps of
(i) amplificar una preparación de ADNc obtenida a partir de ARN aislado de dicha muestra usando una multiplicidad de cebadores sentido, donde cada uno de dichos cebadores híbrida específicamente con el segmento V del gen que codifica la cadena β del TCR y dos cebadores antisentido que hibridan específicamente con la región constante CP del TCR en donde cada uno de dichos cebadores sentido se encuentra marcado con una etiqueta detectable distinta, y  (i) amplifying a cDNA preparation obtained from RNA isolated from said sample using a multiplicity of sense primers, where each of said primers specifically hybridizes with the V segment of the gene encoding the TCR β chain and two antisense primers that specifically hybridize with the CP constant region of the TCR where each of said sense primers is marked with a distinct detectable label, and
(ii) analizar el número de productos de amplificación obtenidos en la etapa anterior. En otro aspecto, la invención se relaciona con el uso de la composición o kit, o del método de los aspectos anteriores en el diagnóstico de una patología. (ii) analyze the number of amplification products obtained in the previous stage. In another aspect, the invention relates to the use of the composition or kit, or of the method of the above aspects in the diagnosis of a pathology.
En un último aspecto, la invención se relaciona con un método para la monitorización de la evolución de una patología en un paciente en respuesta a un tratamiento que comprende determinar la complejidad del repertorio de células T en una muestra de dicho paciente tras ser sometido a dicho tratamiento, en donde un aumento de la complejidad de dicho repertorio con respecto a la complejidad antes de iniciar el tratamiento es indicativo de que el paciente responde a dicho tratamiento. In a final aspect, the invention relates to a method for monitoring the evolution of a pathology in a patient in response to a treatment comprising determining the complexity of the repertoire of T cells in a sample of said patient after being subjected to said treatment, where an increase in the complexity of said repertoire with respect to complexity before starting treatment is indicative that the patient responds to said treatment.
BREVE DESCRIPCIÓN DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
La Figura 1 describe las proporciones de expresión de cada una de las familias de TCRVP a diferentes puntos en el tiempo. Las familias con una proporción de expresión significativamente perturbada en el momento de interrupción del tratamiento están resaltadas. Figure 1 describes the expression ratios of each of the TCRVP families at different points in time. Families with a significantly disturbed expression rate at the time of treatment discontinuation are highlighted.
La Figura 2 describe la proporción de la expresión de familias de TCRVP perturbadas. (A) La expresión de TCRVplO, TCRVpl4 y TCRVpl5 se vio incrementada en el momento de interrupción del tratamiento, y (B) la expresión de TCRVP20, TCRVP28 y TCRVP29 se vio disminuida. Las líneas negras representan los valores medios. Figure 2 describes the proportion of the expression of disturbed families of TCRVP. (A) The expression of TCRVplO, TCRVpl4 and TCRVpl5 was increased at the time of treatment discontinuation, and (B) the expression of TCRVP20, TCRVP28 and TCRVP29 was decreased. Black lines represent average values.
La Figura 3 describe la proporción de la expresión de familias de TCRVP perturbadas de acuerdo con el tiempo de tratamiento antirretroviral. Cuadros vacíos, pacientes con <100 meses de tratamiento antirretroviral; cuadros llenos, pacientes con >100 meses de tratamiento antirretroviral. Las líneas negras representan los valores medios. Figure 3 describes the proportion of the expression of families of TCRVP disturbed according to the time of antiretroviral treatment. Empty tables, patients with <100 months of antiretroviral treatment; full pictures, patients with> 100 months of antiretroviral treatment. Black lines represent average values.
La Figura 4 describe la proporción, activación celular y niveles de apoptosis de células Vpl4, Vp20 y Vp2. Figure 4 describes the proportion, cell activation and apoptosis levels of Vpl4, Vp20 and Vp2 cells.
La Figura 5 describe células de reciente migración hacia el timo recientes y células efectoras de memoria de células Υβ14, Υβ20 y Υβ2. DESCRIPCIÓN DETALLADA DE LA INVENCIÓN Figure 5 describes recent recent thymus migration cells and memory effector cells of Υβ14, Υβ20 and Υβ2 cells. DETAILED DESCRIPTION OF THE INVENTION
Los inventores han desarrollado una nueva técnica de spectratyping de CDR3 para simplificar el estudio del repertorio νβ de células T. Esta técnica supone una nueva aproximación al estudio del repertorio celular en primer lugar debido al diseño original de un grupo de cebadores que amplifican las secuencias más representativas del amplio repertorio celular, a diferencia de trabajos anteriores que enfocaban su análisis en otras regiones del TCRp. También es novedoso el diseño del ensayo que facilita y simplifica tanto la obtención de los datos, gracias a los diferentes rangos de tamaño de los productos de amplificación y a los dos marcadores empleados, lo que permite resumir los productos en solo tres reacciones de PCR en formato multiplex, así como la interpretación de los mismos sin la necesidad amplificar controles internos a los que referir los resultados como en trabajos anteriores. The inventors have developed a new CDR3 spectratyping technique to simplify the study of the νβ repertoire of T cells. This technique is a new approach to the study of the cell repertoire in the first place due to the original design of a group of primers that amplify the sequences representative of the wide cellular repertoire, unlike previous works that focused their analysis in other regions of the TCRp. The design of the test that facilitates and simplifies both the obtaining of the data is also novel, thanks to the different size ranges of the amplification products and the two markers used, which allows the products to be summarized in only three PCR reactions in format multiplex, as well as the interpretation of the same without the need to amplify internal controls to which to refer the results as in previous works.
Composiciones o kits para analizar el repertorio de células T Compositions or kits to analyze the repertoire of T cells
En un primer aspecto, la invención se relaciona con una composición o kit para analizar el repertorio de células T en una muestra, en adelante composición o kit de la invención, que comprende In a first aspect, the invention relates to a composition or kit for analyzing the repertoire of T cells in a sample, hereinafter composition or kit of the invention, comprising
(i) una pluralidad de cebadores sentido, donde cada uno de dichos cebadores es híbrida específicamente con el segmento V de un gen que codifica una cadena β del TCR,  (i) a plurality of sense primers, where each of said primers is specifically hybridized with segment V of a gene encoding a β chain of the TCR,
(ü) un primer cebador antisentido marcado con una primera etiqueta detectable, donde dicho cebador híbrida específicamente con el segmento C del gen que codifica la cadena β del TCR y  (ü) a first antisense primer labeled with a first detectable label, wherein said hybrid primer specifically with segment C of the gene encoding the β chain of the TCR and
(iii) un segundo cebador antisentido que híbrida específicamente con la misma región que el cebador (ii), que está marcado con una segunda etiqueta detectable. Tal y como se utiliza en la presente invención, el término "célula T" o "linfocito T" se refiere a aquellos leucocitos que tienen núcleos de forma ovoide que ocupan la mayoría del espacio intracelular. Los linfocitos T son los responsables de coordinar la respuesta inmune celular constituyendo el 70% del total de los linfocitos que segregan proteínas o citoquinas. También se ocupan de realizar la cooperación para desarrollar todas las formas de respuestas inmunes, como la producción de anticuerpos por los linfocitos B. Se diferencian de los linfocitos B y de las células asesinas (natural killer o K) por poseer un receptor especial en la superficie de la membrana, el Receptor de linfocitos T (denominado TCR por T cell receptor). Expresan a su vez el co-receptor de linfocitos T CD3, que se asocia al TCR para generar la señal de activación en el linfocito T. Sin embargo, en un frotis microscópico de sangre no es posible distinguir a los linfocitos T de los B a simple vista. (iii) a second antisense primer that hybridizes specifically with the same region as primer (ii), which is labeled with a second detectable label. As used in the present invention, the term "T cell" or "T lymphocyte" refers to those leukocytes that have ovoid-shaped nuclei that occupy most of the intracellular space. T lymphocytes are responsible for coordinating the cellular immune response, making up 70% of the total lymphocytes that secrete proteins or cytokines. They also deal with the cooperation to develop all forms of immune responses, such as the production of antibodies by B lymphocytes. They differ from B lymphocytes and killer cells (natural killer or K) by having a special receptor in the membrane surface, the T cell receptor (called TCR by T cell receptor). They express in turn the co-receptor of CD3 T lymphocytes, which is associated with TCR to generate the activation signal in the T lymphocyte. However, in a microscopic blood smear it is not possible to distinguish T lymphocytes from B to simple sight
Linfocitos T que pueden ser analizados de acuerdo a la presente invención incluyen, sin limitación, los siguientes subtipos: T lymphocytes that can be analyzed according to the present invention include, without limitation, the following subtypes:
• "Linfocitos T cooperadores" o "helper T cells (Th)", también denominados "linfocitos CD4+" por expresar el marcador CD4 en superficie. Se encargan de iniciar la cascada de la respuesta inmune coordinada mediante la interacción con el complejo "péptido-CMH-Π", que se expresa en la superficie de células presentadoras de antígeno. Cuando se activan, los linfocitos CD4+ se especializan, diferenciándose a su vez en linfocitos efectores, que se distinguen por el tipo de citoquinas que producen:  • "Cooperative T lymphocytes" or "helper T cells (Th)", also called "CD4 + lymphocytes" for expressing the surface CD4 marker. They are responsible for initiating the cascade of the coordinated immune response by interacting with the "peptide-CMH-Π" complex, which is expressed on the surface of antigen presenting cells. When activated, CD4 + lymphocytes specialize, differentiating themselves into effector lymphocytes, which are distinguished by the type of cytokines they produce:
- Thl, que migran a los tejidos infectados y colaboran en la activación de los macrófagos, ya que los Thl segregan fundamentalmente interferón γ; los Thl son importantes en la defensa frente a los microbios intracelulares y la inflamación;  - Thl, which migrate to infected tissues and assist in the activation of macrophages, since Thl fundamentally secrete γ interferon; Thl are important in defense against intracellular microbes and inflammation;
- Th2, que permanecen sobre todo en los tejidos linfoides y colaboran en la activación de los linfocitos B; segregan principalmente IL-4 (que estimula la secreción de IgE, que a su vez activa los mastocitos) e IL-5 (que activa los eosinófilos); los Th2 son importantes en las reacciones alérgicas y en la defensa frente a parásitos; - Thl 7, denominados así porque segregan IL-17, además de IL-22; son los principales mediadores en algunas reacciones alérgicas, y parecen estar implicados en el desarrollo de enfermedades como la esclerosis múltiple, la artritis reumatoide y la enfermedad inflamatoria intestinal. - Th2, which remain primarily in lymphoid tissues and assist in the activation of B lymphocytes; mainly secrete IL-4 (which stimulates the secretion of IgE, which in turn activates mast cells) and IL-5 (which activates eosinophils); Th2 are important in allergic reactions and in defense against parasites; - Thl 7, so named because they secrete IL-17, in addition to IL-22; They are the main mediators in some allergic reactions, and appear to be involved in the development of diseases such as multiple sclerosis, rheumatoid arthritis and inflammatory bowel disease.
La diferenciación en Thl, Th2 o Thl7 no es al azar, sino que depende de los estímulos que reciba el linfocito T4 virgen cuando contacte un antígeno extraño. The differentiation in Thl, Th2 or Thl7 is not random, but depends on the stimuli received by the virgin T4 lymphocyte when it contacts a foreign antigen.
"Linfocitos T citotóxicos" (CTL, por sus siglas en inglés), también denominados "linfocitos CD8+" por expresar el marcador CD8 en superficie. Son los encargados de las funciones efectoras de la inmunidad celular, mediante la interacción con un complejo "péptido-CMH-I"; los CTL reconocen las células infectadas por el patógeno para el que son específicos o células tumorales, y las destruyen segregando una serie de moléculas (perforina, granzimas, FasL) que activan la apoptosis de la célula diana. "Cytotoxic T lymphocytes" (CTL), also called "CD8 + lymphocytes" for expressing the surface CD8 marker. They are responsible for the effector functions of cellular immunity, through interaction with a "peptide-CMH-I" complex; CTLs recognize the cells infected by the pathogen for which they are specific or tumor cells, and destroy them by secreting a series of molecules (perforin, granzymes, FasL) that activate apoptosis of the target cell.
"Linfocitos T de memoria": son células que se generan después de la activación de los linfocitos T, por exposición a un antígeno extraño (un patógeno). Las células de memoria pueden ser tanto CD4+ como CD8+, y típicamente expresan la proteína de superficie celular CD45RO. Tienen vida larga, son funcionalmente inactivos, y pueden circular durante meses o años, preparados para responder a nuevas exposiciones al mismo antígeno. La re-exposición al antígeno que reconocen provoca una rápida expansión de células T efectoras, proporcionando así al sistema inmunológico de "memoria" frente a infecciones pasadas. "Memory T lymphocytes": are cells that are generated after activation of T lymphocytes, by exposure to a foreign antigen (a pathogen). Memory cells can be both CD4 + and CD8 +, and typically express the CD45RO cell surface protein. They have a long life, are functionally inactive, and can circulate for months or years, prepared to respond to new exposures to the same antigen. The re-exposure to the antigen they recognize causes a rapid expansion of effector T cells, thus providing the immune system with "memory" against past infections.
"Linfocitos T reguladores (células Treg)", anteriormente conocidos como células T supresoras: expresan el marcador CD4 en superficie y se distinguen de los linfocitos CD4+ por la presencia del marcador intracelular FoxP3. Su función principal es eliminar la inmunidad mediada por células al final de la reacción inmune y eliminar células T auto-reactivas que escaparon al proceso de selección negativa en el timo. Se han descrito dos clases principales de células CD4+ células Treg: - "células Treg naturales" o "células Treg CD4+ CD25+ FoxP3+", surgen en el timo y se han relacionado con las interacciones entre células T en desarrollo y células dendríticas, tanto mieloides (CDl lc+) como plasmocitoides (CD123+);"Regulatory T lymphocytes (Treg cells)", formerly known as suppressor T cells: express the surface CD4 marker and are distinguished from CD4 + lymphocytes by the presence of the FoxP3 intracellular marker. Its main function is to eliminate cell-mediated immunity at the end of the immune reaction and eliminate self-reactive T cells that escaped the thymus negative selection process. Two main classes of CD4 + Treg cells have been described: - "natural Treg cells" or "CD4 + CD25 + FoxP3 + Treg cells" arise in the thymus and have been related to the interactions between developing T cells and dendritic cells, both myeloid (CDl lc +) and plasmocytoid (CD123 +);
- "células Treg de adaptación" o "células Th3" o "células Trl", que pueden generarse durante una respuesta inmunitaria normal. - "Treg adaptation cells" or "Th3 cells" or "Trl cells", which can be generated during a normal immune response.
"Células T gamma/delta": son un pequeño grupo de células T que poseen un TCR específico en su superficie. La mayor parte de los linfocitos tienen un TCR compuesto por dos cadenas glucoproteicas denominadas α y β. Sin embargo, en las células gamma/delta, el TCR está formado por una cadena γ y una cadena δ. Este grupo de linfocitos es muy poco frecuente (2% del total), pero son abundantes en la mucosa del intestino, formando parte de una población de linfocitos denominada linfocitos intraepiteliales. Un "receptor de linfocitos T" o "TCR" (por T cell receptor en inglés) es un receptor celular asociado a una vía de señalización intracelular caracterizado por pertenecer a la familia de los receptores con actividad enzimática intrínseca y por poseer como ligandos a péptidos pequeños asociados con moléculas del CMH en la membrana plasmática de macrófagos y otras células presentadoras de antígenos. Las características moleculares de dicho receptor comprenden la posesión de una hélice α transmembrana individual, si bien existen diversas proteínas kinasas asociadas a dominios citosólicos (presentes sólo en linfocitos T), y su vía de transducción de la señal implica la activación de proteínas tirosín kinasas citosólicas, vía PI-3 kinasa, vía IP3/DAG y vía Ras/MAPK. De este modo, su activación mediante un estímulo externo provoca una cascada de reacciones enzimáticas interna que facilita la adaptación de la célula a su entorno, por mediación de segundos mensajeros. "Gamma / delta T cells": are a small group of T cells that have a specific TCR on their surface. Most lymphocytes have a TCR composed of two glycoprotein chains called α and β. However, in gamma / delta cells, the TCR is formed by a γ chain and a δ chain. This group of lymphocytes is very rare (2% of the total), but they are abundant in the intestinal mucosa, forming part of a lymphocyte population called intraepithelial lymphocytes. A "T lymphocyte receptor" or "TCR" (for T cell receptor in English) is a cellular receptor associated with an intracellular signaling pathway characterized by belonging to the family of receptors with intrinsic enzymatic activity and having peptide ligands small associated with CMH molecules in the plasma membrane of macrophages and other antigen presenting cells. The molecular characteristics of said receptor comprise the possession of an individual transmembrane α helix, although there are several kinase proteins associated with cytosolic domains (present only in T lymphocytes), and their signal transduction pathway involves the activation of cytosolic tyrosine kinase proteins. , via PI-3 kinase, via IP3 / DAG and via Ras / MAPK. In this way, its activation by means of an external stimulus causes a cascade of internal enzymatic reactions that facilitates the adaptation of the cell to its environment, by means of second messengers.
El TCR está conformado por dos cadenas similares a las inmunoglobulinas, pero asociadas a la membrana celular. Las dos cadenas se denominan TCRa y TCRP, se disponen una al lado de la otra unidas por enlaces disulfuro. Ciertas moléculas de la superficie de las células T estabilizan tanto a las interacciones mediadas por la TCR así como la comunicación intracelular, entre ellas CD3, CD4 y CD8. Al igual que las inmunoglobulinas, las cadenas de TCR comprenden un dominio constante (C) y un dominio variable (V), el cual se encuentra en la región apical de la porción extracelular. El dominio variable tiene 3 pequeñas regiones hipervariables (CDR) que son las encargadas directas de la interacción con el complejo péptido:CMH, de una forma altamente complementaria. La más específica es CDR3. No obstante, la unión entre el péptido:CMH y el TCR tiene una constante de disociación muy alta. The TCR is made up of two chains similar to immunoglobulins, but associated with the cell membrane. The two chains are called TCRa and TCRP, they are arranged side by side joined by disulfide bonds. Certain molecules on the surface of T cells stabilize both interactions mediated by TCR as well as intracellular communication, including CD3, CD4 and CD8. Like the immunoglobulins, the TCR chains comprise a constant domain (C) and a variable domain (V), which is located in the apical region of the extracellular portion. The variable domain has 3 small hypervariable regions (CDRs) that are directly responsible for the interaction with the peptide complex: CMH, in a highly complementary way. The most specific is CDR3. However, the binding between the peptide: CMH and the TCR has a very high dissociation constant.
Las cadenas α y β (y en raros casos la alternativa combinación de cadenas γ:δ) están asociadas sobre la membrana celular con un grupo de moléculas sin variabilidad morfológica denominadas en conjunto CD3. Ese complejo de membrana TCR:CD3 es requerida para la estable interacción de las células T con células presentadora de antígenos y son responsables de gran parte de la comunicación intracelular mediada por el TCR. El complejo CD3 está compuesto por tres monómeros denominados γ, δ y ε unidos espacial si bien no covalentemente. El complejo CD3 comprende además una porción intracelular compuesta por dos cadenas ζ, que es la responsable de transmitir las señales resultantes de la unión TCR:CMH-antígeno. The α and β chains (and in rare cases the alternative combination of γ: δ chains) are associated on the cell membrane with a group of molecules without morphological variability called together CD3. That TCR: CD3 membrane complex is required for the stable interaction of T cells with antigen presenting cells and is responsible for much of the intracellular communication mediated by TCR. The CD3 complex is composed of three monomers called γ, δ and ε spatially bound but not covalently. The CD3 complex further comprises an intracellular portion composed of two ζ chains, which is responsible for transmitting the signals resulting from the TCR: CMH-antigen binding.
Las células madre hematopoyéticas de la médula ósea, así como las células progenitoras linfoides tempranas que darán origen a los linfocitos (T y B) contienen genes para las inmunoglobulinas (Ig) y para los receptores de los linfocitos T (TCR) en configuración germinal (o heredada), que es diferente a la configuración que se encuentra en los linfocitos maduros. Bone marrow hematopoietic stem cells, as well as early lymphoid progenitor cells that will give rise to lymphocytes (T and B) contain genes for immunoglobulins (Ig) and for T-cell receptors in germinal configuration ( or inherited), which is different from the configuration found in mature lymphocytes.
En la configuración germinal, tanto los loci para las Ig (cadenas pesada y ligera) como los loci para los TCR (cadenas α y β) contienen cada uno múltiples genes para la región variable (V), hasta varios cientos, y uno o pocos genes para la región constante (C). Entre los genes V y los genes C hay unas pequeñas secuencias de nucleótidos, que se denominan segmentos génicos de unión (J, por joining) y de diversidad (D). Todos los loci contienen genes V, J y C; los D sólo se encuentran en el locus de la cadena pesada de las Ig y en el de la cadena β del TCR. La decisión de una célula linfoide progenitora de devenir un linfocito T está asociada con la recombinación en el locus de la cadena α del TCR (localizado en el cromosoma 14) de un gen específico del segmento V con un gen específico del segmento J, para formar un único exón V-J. La selección de un segmento concreto V y J es aleatoria. El exón V-J se une mediante el mecanismo de splicing con la región C. En el caso del locus de la cadena β (localizado en el cromosoma 7), se selecciona también de forma aleatoria un segmento V, uno D y uno J. Se forma entonces un exón V-D-J que se une después a la región C. Esta secuencia de recombinación de ADN y splicing de ARN genera las cadenas α y β del TCR de los linfocitos maduros. In the germinal configuration, both the loci for the Ig (heavy and light chains) and the loci for the TCRs (α and β chains) each contain multiple genes for the variable region (V), up to several hundred, and one or few genes for the constant region (C). Between the V genes and the C genes there are small nucleotide sequences, which are called gene segments of union (J, by joining) and diversity (D). All loci contain V, J and C genes; Ds are only found in the locus of the Ig heavy chain and in the TCR β chain. The decision of a progenitor lymphoid cell to become a T lymphocyte is associated with recombination in the locus of the TCR α chain (located on chromosome 14) of a specific V segment gene with a specific J segment gene, to form a single exon VJ. The selection of a specific segment V and J is random. The VJ exon is linked by the splicing mechanism with the C region. In the case of the β chain locus (located on chromosome 7), a segment V, one D and one J are also randomly selected. then a VDJ exon that then binds to the C region. This DNA recombination and RNA splicing sequence generates the α and β chains of the TCR of mature lymphocytes.
La diversidad de los receptores de antígenos se debe al uso de diferentes combinaciones de segmentos V, D y J en diferentes clones de linfocitos, denominada diversidad combinatoria, que se incrementa también al introducir cambios en la secuencia de nucleótidos en las uniones de los segmentos V, D y J, denominada diversidad de las uniones. En humanos existen 52 segmentos V, 2 segmentos D y 13 segmentos J para la cadena TCR-β, y 70 segmentos V y 61 segmentos J para la cadena TCRa, dando lugar a 5.8 x 106 combinaciones α:β diferentes. Mientras que la diversidad combinatoria está limitada al número de secuencias disponibles para cada segmento, pero la diversidad de las uniones es casi ilimitada. Esta diversidad de las uniones se puede producir por tres tipos de mecanismos: The diversity of the antigen receptors is due to the use of different combinations of segments V, D and J in different lymphocyte clones, called combinatorial diversity, which is also increased by introducing changes in the nucleotide sequence at the junctions of segments V , D and J, called diversity of unions. In humans there are 52 segments V, 2 segments D and 13 segments J for the TCR-β chain, and 70 segments V and 61 segments J for the TCRa chain, giving rise to 5.8 x 10 6 different α: β combinations. While combinatorial diversity is limited to the number of sequences available for each segment, but the diversity of the unions is almost unlimited. This diversity of unions can be produced by three types of mechanisms:
- eliminación de nucleótidos mediada por exonucleasas durante la recombinación; - exonuclease-mediated nucleotide removal during recombination;
- adición al azar de nucleótidos por unas enzimas específicas de los linfocitos denominadas desoxiribonucleotidil transferasas (TdT), que generan las denominadas regiones N; - random addition of nucleotides by specific lymphocyte enzymes called deoxyribonucleotidyl transferases (TdT), which generate the so-called N regions;
- durante uno de los pasos intermedios de la recombinación, se generan extremos cohesivos en las zonas de corte, que pueden rellenarse con "nucleótidos P".  - during one of the intermediate steps of recombination, cohesive ends are generated in the cutting areas, which can be filled with "P nucleotides".
Como consecuencia de todos estos cambios, la secuencia de nucleótidos en la zona V(D)J de un TCR y la longitud de la misma en un clon de linfocitos es muy diferente a la misma zona de cualquier otro clon. Las zonas de las uniones constituyen la zona más variable del CDR3, y es la más importante para el reconocimiento del antígeno. El término "repertorio de células T", tal y como se utiliza en la presente invención, se refiere al conjunto de linfocitos T que expresan TCRs con especificidades diferentes y que están presentes en un sujeto en un momento determinado. El término "muestra", tal y como se utiliza en la presente invención, se refiere a cualquier muestra biológica susceptible de contener linfocitos T que puede ser obtenida de un sujeto; ejemplos ilustrativos, no limitativos, de dicha muestra biológica incluyen muestras de biopsia, tejidos, células o fluidos, por ejemplo sangre, leche, plasma, saliva, suero, etc. As a consequence of all these changes, the nucleotide sequence in the V (D) J zone of a TCR and the length of it in a lymphocyte clone is very different from the same zone of any other clone. The junction zones constitute the most variable zone of the CDR3, and it is the most important for antigen recognition. The term "repertoire of T cells", as used in the present invention, refers to the set of T lymphocytes that express TCRs with different specificities and that are present in a subject at a given time. The term "sample", as used in the present invention, refers to any biological sample capable of containing T lymphocytes that can be obtained from a subject; Illustrative, non-limiting examples of said biological sample include biopsy samples, tissues, cells or fluids, for example blood, milk, plasma, saliva, serum, etc.
En una realización particular, dicha muestra biológica es sangre periférica, preferentemente sangre periférica enriquecida en linfocitos T CD4+ y CD8+. Como puede entender el experto en la materia, diversos métodos están disponibles para la obtener un enriquecimiento en linfocitos T CD4+ y CD8+. Así, dichos métodos pueden estar basados en una selección positiva, en donde las células T se aislan a través de anticuerpos específicos para CD2 o CD3, o en una selección negativa, donde las células no deseadas se eliminan de la muestra mediante el empleo de anticuerpos específicos para marcadores de otros tipos celulares, que incluyen, sin estar limitados a, CD14, CD16, CD19, CD20, CD36, CD56, CD57, CD66b, CD94, CD123, CD244 y/o glycophorin A. Existen a disposición del experto en la materia diversos kits comerciales para el enriquecimiento positivo o negativo de células T por gradiente, columnas, partículas magnéticas, etc. Ejemplos no limitativos de kits incluyen RosetteSep Human T Cell Enrichment Cocktail (StemCell Technologies), EasySep human T cell Enrichment Kit (StemCell Technologies), BioMag SelectaPure Human CD3+ T cell Enrichment System (Polysciences, Inc.), BioMag® SelectaPure Human T cell Enrichment System (Polysciences, Inc.), Pan T Cell Isolation Kit human (Miltenyi Biotec), CD2 MicroBeads human (Miltenyi Biotec), Whole Blood CD3 MicroBeads human (Miltenyi Biotec), Dynabeads CD2 Pan T (Invitrogen), Dynabeads CD3 (Invitrogen), Dynabeads Untouched Human T Cells (Invitrogen), y Human CD3+ T Cell Enrichment Column (R&D Systems). El término "cebador" o "primer" u "oligonucleótido" ("oligo"), tal y como se utiliza en la presente invención, se refiere a una secuencia de nucleótidos que es complementaria de una secuencia de nucleótidos de los genes que codifican para la cadena β del TCR. Cada cebador híbrida de forma específica con su secuencia nucleotídica diana y actúa como punto de inicio a partir del cual la ADN polimerasa comienza la polimerización del ADN. Los cebadores son secuencias nucleotídicas cortas, aproximadamente de 15- 24 nucleótidos de longitud que se pueden alinear con una hebra de ADN diana gracias a la complementariedad de bases para formar un híbrido entre el cebador y la hebra diana de ADN. Después, el enzima ADN polimerasa puede extender el cebador a lo largo de la hebra diana de ADN. In a particular embodiment, said biological sample is peripheral blood, preferably peripheral blood enriched in CD4 + and CD8 + T lymphocytes. As one skilled in the art can understand, various methods are available for obtaining enrichment in CD4 + and CD8 + T lymphocytes. Thus, said methods can be based on a positive selection, where T cells are isolated through antibodies specific for CD2 or CD3, or on a negative selection, where unwanted cells are removed from the sample by the use of antibodies specific for markers of other cell types, including, but not limited to, CD14, CD16, CD19, CD20, CD36, CD56, CD57, CD66b, CD94, CD123, CD244 and / or glycophorin A. They are available to those skilled in the art. Various commercial kits for positive or negative enrichment of T cells by gradient, columns, magnetic particles, etc. Non-limiting examples of kits include RosetteSep Human T Cell Enrichment Cocktail (StemCell Technologies), EasySep human T cell Enrichment Kit (StemCell Technologies), BioMag SelectaPure Human CD3 + T cell Enrichment System (Polysciences, Inc.), BioMag® SelectaPure Human T cell Enrichment System (Polysciences, Inc.), Pan T Cell Isolation Kit human (Miltenyi Biotec), CD2 MicroBeads human (Miltenyi Biotec), Whole Blood CD3 MicroBeads human (Miltenyi Biotec), Dynabeads CD2 Pan T (Invitrogen), Dynabeads CD3 (Invitrogen) , Dynabeads Untouched Human T Cells (Invitrogen), and Human CD3 + T Cell Enrichment Column (R&D Systems). The term "primer" or "first" or "oligonucleotide"("oligo"), as used in the present invention, refers to a nucleotide sequence that is complementary to a nucleotide sequence of the genes encoding for the β chain of the TCR. Each hybrid primer specifically with its target nucleotide sequence and acts as a starting point from which DNA polymerase begins the polymerization of DNA. The primers are short nucleotide sequences, approximately 15-24 nucleotides in length that can be aligned with a strand of target DNA thanks to the complementarity of bases to form a hybrid between the primer and the target strand of DNA. Then, the DNA polymerase enzyme can extend the primer along the DNA strand.
Los cebadores pueden prepararse mediante cualquier método adecuado, incluyendo, por ejemplo, pero sin limitarse, a la síntesis química directa. Los métodos para preparar y usar cebadores se describen, por ejemplo en Sambrook et al., 2001. "Molecular cloning: a Laboratory Manual", 3rd ed., Cold Spring Harbor Laboratory Press, N.Y., Vol. 1-3. Preferiblemente, el cebador es un oligonucleótido de desoxirribosa, pero puede comprender también al menos un resto de azúcar modificada seleccionada del grupo que incluye pero no se limita a arabinosa, 2-fluoroarabinosa, xilulosa y hexosa. El oligonucleótido puede también comprende al menos una estructura principal de fosfato modificada. Ejemplos no limitativos de oligonucleótidos modificados incluyen oligodesoxiribonucleotido selenoato, oligodesoxiribonucleotido fosforotioato (TPO), oligodesoxiribonucleotido fosforamidato, oligodesoxiribonucleotido metilfosfonato, ácido nucleico péptido (PNA). El término "cebador sentido", tal y como se utiliza en la presente invención, se refiere a un cebador que híbrida con una secuencia específica de una de las 24 familias de segmentos V que codifican para la cadena β del TCR, en sentido 5 '-3' . El término "cebador antisentido", tal y como se utiliza en la presente invención, se refiere a un cebador que híbrida con una secuencia específica de la región constante segmento C del gen que codifica la cadena β del TCR, en sentido 3'-5'. El término "hibridación", tal y como se utiliza en la presente invención, se refiere al proceso por el cual se asocian dos cadenas de ácidos nucleicos antiparalelas y con secuencias de bases complementarias, en una única molécula de doble cadena donde las bases nitrogenadas quedan ocultas en el interior. La hibridación puede llevarse a cabo en condiciones de rigurosidad alta, media o baja permitiendo la asociación de cadenas con homología alta, media o baja, respectivamente. En una realización preferida, la hibridación se lleva a cabo en condiciones rigurosidad de alta o media. Por ejemplo, la hibridación bajo condiciones de rigurosidad alta puede llevarse a cabo en 6xSSC a aproximadamente 45°C seguido de uno o varios lavados en 0.1 x SSC / 0.2% SDS a aproximadamente 68°C. Otras condiciones de alta rigurosidad incluyen, por ejemplo, lavados en 6xSSC/0.05% pirofosfato sódico a 37°C, 48°C, 55°C y 60°C, dependiendo del cebador particular. Según se usa en la presente invención, "condiciones moderadas" se usa para la hibridación llevada a cabo en 6x SSC a aproximadamente 45 °C seguido de uno, preferiblemente 3-5 lavados en 0.2xSSC/0.1% SDS a aproximadamente 42-65 °C. Una fórmula común para calcular las condiciones de rigurosidad requeridas para lograr la hibridación entre moléculas de ácido nucleico de una homología de secuencia especificada es (Sambrook et al., 1989): Tm = 81,5°C + 16,6Log [Na+] + 0.41 (%G+C)- 0,63 (% de formamida)-600/n.° de pb en el dúplex. Como ilustración de la fórmula anterior, usando [Na+] = [0,368] y formamida al 50%, con un contenido en GC del 42% y un tamaño de sonda promedio de 200 bases, la Tm es de 57°C. La Tm de un dúplex de ADN disminuye en 1-1, 5°C con cada disminución del 1% de la homología. Por tante, se observarían dianas con una identidad de secuencia mayor del 75% usando una temperatura de hibridación de 42°C. Se entiende por "Tm" o "temperatura de fusión" aquella temperatura a la cual el 50% de las moléculas de ADN se encuentran disociadas. The primers can be prepared by any suitable method, including, for example, but not limited to direct chemical synthesis. Methods for preparing and using primers are described, for example, in Sambrook et al., 2001. "Molecular cloning: a Laboratory Manual", 3rd ed., Cold Spring Harbor Laboratory Press, NY, Vol. 1-3. Preferably, the primer is a deoxyribose oligonucleotide, but may also comprise at least one modified sugar moiety selected from the group that includes but is not limited to arabinose, 2-fluoroarabinous, xylulose and hexose. The oligonucleotide may also comprise at least one modified phosphate main structure. Non-limiting examples of modified oligonucleotides include oligodeoxyribonucleotide selenoate, oligodeoxyribonucleotide phosphorothioate (TPO), oligodeoxyribonucleotide phosphoramidate, oligodeoxyribonucleotide methylphosphonate, peptide nucleic acid (PNA). The term "sense primer", as used in the present invention, refers to a primer that hybridizes with a specific sequence of one of the 24 families of V segments encoding the β chain of the TCR, in the 5 ′ direction -3' . The term "antisense primer", as used in the present invention, refers to a primer that hybridizes with a specific sequence of the constant segment C segment of the gene encoding the β chain of the TCR, in the 3'-5 sense '. The term "hybridization", as used in the present invention, refers to the process by which two chains of antiparallel nucleic acids and complementary base sequences are associated, in a single double-chain molecule where the nitrogenous bases remain hidden inside. Hybridization can be carried out under conditions of high, medium or low stringency allowing the association of chains with high, medium or low homology, respectively. In a preferred embodiment, the hybridization is carried out under high or medium stringency conditions. For example, hybridization under conditions of high stringency can be carried out in 6xSSC at approximately 45 ° C followed by one or more washes in 0.1 x SSC / 0.2% SDS at approximately 68 ° C. Other conditions of high stringency include, for example, washings in 6xSSC / 0.05% sodium pyrophosphate at 37 ° C, 48 ° C, 55 ° C and 60 ° C, depending on the particular primer. As used in the present invention, "moderate conditions" is used for hybridization carried out in 6x SSC at approximately 45 ° C followed by one, preferably 3-5 washes in 0.2xSSC / 0.1% SDS at approximately 42-65 ° C. A common formula for calculating the stringency conditions required to achieve hybridization between nucleic acid molecules of a specified sequence homology is (Sambrook et al., 1989): Tm = 81.5 ° C + 16.6Log [Na +] + 0.41 (% G + C) - 0.63 (% formamide) -600 / # of bp in the duplex. As an illustration of the above formula, using [Na +] = [0.368] and 50% formamide, with a GC content of 42% and an average probe size of 200 bases, the Tm is 57 ° C. The Tm of a DNA duplex decreases by 1-1.5 ° C with each 1% decrease in homology. Therefore, targets with a sequence identity greater than 75% would be observed using a hybridization temperature of 42 ° C. "Tm" or "melting temperature" means that temperature at which 50% of the DNA molecules are dissociated.
El término "etiqueta detectable" o "sonda" o "mareaje", tal y como se utiliza en la presente invención, se refiere a una etiqueta molecular cuya finalidad es la de permitir la visualización o detección de las moléculas a las que está anclada mediante procedimientos y equipamiento adecuados para la detección del mareaje. El mareaje de los productos de amplificación puede realizarse por métodos convencionales. Dicho mareaje puede ser directo, para lo cual pueden utilizarse fluoróforos, por ejemplo, Cy3, Cy5, fluoresceína, alexa, etc., enzimas, por ejemplo, fosfatasa alcalina, peroxidasa, etc., isótopos radiactivos, por ejemplo, 33P, 1251, etc., o cualquier otro marcador conocido por el experto en la materia. Alternativamente, dicho mareaje puede ser indirecto mediante el empleo de métodos químicos, enzimáticos, etc.; a modo ilustrativo, el producto de amplificación puede incorporar un miembro de un par de unión específica, por ejemplo, avidina o estreptavidina conjugada con un fluorocromo (locus), y la sonda se une al otro miembro del par de unión específica, por ejemplo, biotina (indicador), efectuándose la lectura mediante fluorimetría, etc., o bien, el producto de amplificación puede incorporar un miembro de un par de unión específica, por ejemplo, un anticuerpo anti-digoxigenina conjugado con una enzima (locus), y la sonda se une al otro miembro del par de unión específica, por ejemplo, digoxigenina (indicador), etc., transformándose el sustrato de la enzima en un producto luminiscente o fluorescente y , efectuándose la lectura mediante quimio-luminiscencia, fluorimetría, etc. Así, en una realización particular, las etiquetas detectables son fluoróforos. Ejemplos de materiales fluorescentes que se pueden emplear en el mareaje de oligonucleótidos incluyen, sin limitar a, 5-carboxifluoresceína (5-FAM), 6-FAM, análogo tetraclorinado de t-FAM (TET), análogo hexaclorinado de 6-FAM (HEX), 6-carboxitetrametilrodamina (TAMRA), 6-carboxi-X-rodamina (ROX), 6-carboxi-4', 5'-dicloro-2', 7'- dimetoxifluoresceína (JOE), ED, Cy-3, Cy-5, Cy-5.5, fluorescein-6-isotiocinato (FITC) y tetrametilrodamina-5-isotiocinato (TRITC). The term "detectable label" or "probe" or "marking", as used in the present invention, refers to a molecular label whose purpose is to allow the visualization or detection of the molecules to which it is anchored by proper procedures and equipment for the detection of tide. The marking of amplification products can be carried out by conventional methods. Said marking can be direct, for which fluorophores can be used, for example, Cy3, Cy5, fluorescein, alexa, etc., enzymes, for example, alkaline phosphatase, peroxidase, etc., radioactive isotopes, for example, 33P, 1251, etc., or any other marker known to the person skilled in the art. Alternatively, said marking can be indirect through the use of chemical, enzymatic methods, etc .; by way of illustration, the amplification product may incorporate a member of a specific binding pair, for example, avidin or streptavidin conjugated with a fluorochrome (locus), and the probe binds to the other member of the specific binding pair, for example, biotin (indicator), the reading being carried out by fluorimetry, etc., or the amplification product may incorporate a member of a specific binding pair, for example, an anti-digoxigenin antibody conjugated to an enzyme (locus), and the The probe binds to the other member of the specific binding pair, for example, digoxigenin (indicator), etc., the enzyme substrate is transformed into a luminescent or fluorescent product and the reading is carried out by chemo-luminescence, fluorimetry, etc. Thus, in a particular embodiment, the detectable labels are fluorophores. Examples of fluorescent materials that can be used in oligonucleotide mapping include, but are not limited to, 5-carboxyfluorescein (5-FAM), 6-FAM, t-FAM tetrachlorinated analog (TET), 6-FAM hexachlorinated analog (HEX) ), 6-carboxytetramethylrodamine (TAMRA), 6-carboxy-X-rhodamine (ROX), 6-carboxy-4 ', 5'-dichloro-2', 7'-dimethoxyfluorescein (JOE), ED, Cy-3, Cy -5, Cy-5.5, fluorescein-6-isothiocinate (FITC) and tetramethylrodamine-5-isothiocinate (TRITC).
En una forma preferida de realización, las etiquetas detectables pueden ser distinguidas en base a la longitud de onda de emisión. En una forma preferida de realización, las etiquetas detectables son 5-FAM y TAMRA. En una realización particular, la composición o kit según el primer aspecto de la invención comprende 24 cebadores sentido, hibridando cada uno de dichos cebadores sentido con una secuencia específica de una de las 24 familias de segmentos V que forman parte del gen que codifica para la cadena β del TCR. El TCR es un homodímero de cadena α y β, cada una de las cuales está codificada por un gen formado por segmentos génicos V, D, J y C. Existen múltiples variantes de dichos segmentos génicos distribuidos en clusters, estando localizados los segmentos correspondientes a la cadena β en el cromosoma 7. El número de segmentos V de la cadena β del TCR en el ser humano es de entre 64 y 67 segmentos comprendidos en 30 familias, denominadas TCRpVl a TCRpV30. In a preferred embodiment, the detectable labels can be distinguished based on the emission wavelength. In a preferred embodiment, the detectable labels are 5-FAM and TAMRA. In a particular embodiment, the composition or kit according to the first aspect of the invention comprises 24 sense primers, each of said sense primers hybridizing with a specific sequence of one of the 24 families of V segments that are part of the gene coding for the β chain of the TCR. The TCR is an α and β chain homodimer, each of which is encoded by a gene formed by gene segments V, D, J and C. There are multiple variants of said gene segments distributed in clusters, the corresponding segments being located at the β chain on chromosome 7. The number of V segments of the TCR β chain in the human beings are between 64 and 67 segments in 30 families, called TCRpVl to TCRpV30.
En una realización preferida, cada uno de los 24 cebadores sentido hibridan de forma específica con un segmento V que forman parte del gen que codifica para la cadena β de los TCRs 2, 3.1, 4.1, 5.1, 6.1, 7.1, 9, 10.1, 11, 12.3, 13, 14, 15, 16, 18, 19, 20, 23 24, 25, 27, 28, 29 y 30. In a preferred embodiment, each of the 24 sense primers specifically hybridizes with a segment V that are part of the gene that codes for the β chain of TCRs 2, 3.1, 4.1, 5.1, 6.1, 7.1, 9, 10.1, 11, 12.3, 13, 14, 15, 16, 18, 19, 20, 23 24, 25, 27, 28, 29 and 30.
En una realización preferida, los 24 cebadores sentido comprenden variantes de las secuencias identificadas en SEQ ID NO: l a 24 (Tabla 1) que conservan la capacidad de hibridar específicamente cada uno de dichos cebadores sentido con una secuencia específica de una de las 24 familias de segmentos V que forman parte del gen que codifica para la cadena β del TCR, en donde las variantes presentan una identidad con las secuencias SEQ ID NO: l a 24 de al menos el 99%, al menos el 98%, al menos el 97%), al menos el 96%>, al menos el 95%>, al menos el 90%>, al menos el 85%>, al menos el 80%), al menos el 75%>, al menos el 70%>, al menos el 65%>, al menos el 60%>, al menos el 55%>, al menos el 50%>, al menos el 45%>, al menos el 40%>, al menos el 35%>, al menos el 30%>. En una realización preferida, los 24 cebadores sentido comprenden las secuencias identificadas en SEQ ID NO: 1 a 24 (Tabla 1). In a preferred embodiment, the 24 sense primers comprise variants of the sequences identified in SEQ ID NO: 24 (Table 1) that retain the ability to specifically hybridize each of said sense primers with a specific sequence from one of the 24 families of V segments that are part of the gene that codes for the β chain of the TCR, where the variants have an identity with the sequences SEQ ID NO: 24 of at least 99%, at least 98%, at least 97% ), at least 96%>, at least 95%>, at least 90%>, at least 85%>, at least 80%), at least 75%>, at least 70%> , at least 65%>, at least 60%>, at least 55%>, at least 50%>, at least 45%>, at least 40%>, at least 35%>, at least 30%>. In a preferred embodiment, the 24 sense primers comprise the sequences identified in SEQ ID NO: 1 to 24 (Table 1).
En otra realización particular, la composición o kit de la invención comprende además un primer cebador antisentido marcado con una primera etiqueta detectable, donde dicho cebador híbrida específicamente con el segmento C del gen que codifica la cadena β del TCR, y un segundo cebador antisentido que híbrida específicamente con la misma región que dicho primer cebador antisentido marcado con una primera etiqueta detectable, que está marcado con una segunda etiqueta detectable diferente de la primera etiqueta detectable. In another particular embodiment, the composition or kit of the invention further comprises a first antisense primer labeled with a first detectable label, wherein said hybrid primer specifically with segment C of the gene encoding the β chain of the TCR, and a second antisense primer that hybrid specifically with the same region as said first antisense primer labeled with a first detectable label, which is marked with a second detectable label different from the first detectable label.
En una realización preferida, dicho primer cebador antisentido marcado con una primera etiqueta detectable comprende la secuencia identificada en SEQ ID NO:25 o una variante de la misma que conservan la capacidad de hibridar con la misma región de una secuencia específica de la región constante segmento C del gen que codifica la cadena β del TCR que la secuencia identificada en SEQ ID NO:25. Dicha variantes puede presentar una identidad con la secuencia SEQ ID NO:25 de al menos el 99%, al menos el 98%, al menos el 97%, al menos el 96%, al menos el 95%, al menos el 90%, al menos el 85%, al menos el 80%, al menos el 75%, al menos el 70%, al menos el 65%, al menos el 60%, al menos el 55%, al menos el 50%, al menos el 45%, al menos el 40%, al menos el 35%, al menos el 30%. En otra realización preferida, la secuencia de dicho primer cebador antisentido marcado con una primera etiqueta detectable comprende la secuencia identificada con SEQ ID NO:25 (Tabla 1). En una realización preferida, dicho primer cebador antisentido está marcado con 5-FAM o TAMRA, preferiblemente 5-FAM. En otra realización preferida, dicho segundo cebador antisentido que híbrida específicamente con la misma región que dicho primer cebador antisentido, que está marcado con una segunda etiqueta detectable diferente de la primera etiqueta detectable, comprende variantes de la secuencia identificada en SEQ ID NO:25 (Tabla 1), que conservan la capacidad de hibridar con una secuencia específica de la región constante segmento C del gen que codifica la cadena β del TCR, en donde las variantes presentan una identidad con la secuencia SEQ ID NO:25 de al menos el 99%, al menos el 98%, al menos el 97%, al menos el 96%, al menos el 95%, al menos el 90%, al menos el 85%, al menos el 80%, al menos el 75%, al menos el 70%, al menos el 65%, al menos el 60%), al menos el 55%, al menos el 50%, al menos el 45%, al menos el 40%, al menos el 35%, al menos el 30%. In a preferred embodiment, said first antisense primer labeled with a first detectable label comprises the sequence identified in SEQ ID NO: 25 or a variant thereof that retain the ability to hybridize with the same region of a specific sequence of the constant C segment segment of the gene encoding the β chain of the TCR as the sequence identified in SEQ ID NO: 25. Such variants may have an identity with the sequence SEQ ID NO: 25 of at least 99%, at least 98%, at least 97%, at least 96%, at least 95%, at least 90% at least 85%, at least 80%, at least 75%, at least 70%, at least 65%, at least 60%, at least 55%, at least 50%, at minus 45%, at least 40%, at least 35%, at least 30%. In another preferred embodiment, the sequence of said first antisense primer labeled with a first detectable label comprises the sequence identified with SEQ ID NO: 25 (Table 1). In a preferred embodiment, said first antisense primer is labeled with 5-FAM or TAMRA, preferably 5-FAM. In another preferred embodiment, said second antisense primer that hybridizes specifically with the same region as said first antisense primer, which is labeled with a second detectable tag different from the first detectable tag, comprises variants of the sequence identified in SEQ ID NO: 25 ( Table 1), which retain the ability to hybridize with a specific sequence of the constant segment C segment of the gene encoding the β chain of the TCR, where the variants have an identity with the sequence SEQ ID NO: 25 of at least 99 %, at least 98%, at least 97%, at least 96%, at least 95%, at least 90%, at least 85%, at least 80%, at least 75%, at least 70%, at least 65%, at least 60%), at least 55%, at least 50%, at least 45%, at least 40%, at least 35%, at minus 30%
En otra realización preferida, la secuencia de dicho segundo cebador antisentido marcado con una segunda etiqueta detectable comprende la secuencia identificada con SEQ ID NO:25 (Tabla 1). En una realización preferida, dicho segundo cebador antisentido está marcado con 5-FAM o TAMRA, preferiblemente TAMRA. En otra realización particular, la composición o kit de la invención comprende además al menos un cebador adicional que híbrida con la región constante segmento C del gen que codifica la cadena β del TCR. En una realización preferida, los dos cebadores antisentido comprenden variantes de las secuencias identificadas en SEQ ID NO:26 y SEQ ID NO:27 (Tabla 1) que conservan la capacidad de hibridar cada uno de dichos cebadores antisentido con una secuencia específica de la región constante segmento C del gen que codifica la cadena β del TCR, en donde las variantes presentan una identidad con las secuencias SEQ ID NO:26 y SEQ ID NO:27 de al menos el 99%, al menos el 98%, al menos el 97%, al menos el 96%), al menos el 95%, al menos el 90%, al menos el 85%, al menos el 80%, al menos el 75%), al menos el 70%, al menos el 65%>, al menos el 60%>, al menos el 55%, al menos el 50%, al menos el 45%, al menos el 40%, al menos el 35%, al menos el 30%. En una realización preferida de la invención, el primer cebador antisentido comprende la secuencia SEQ ID NO:26 y/o el segundo cebador antisentido comprende la secuencia SEQ ID NO:27 (Tabla 1). Sense primer specific for segment family V3 of the gene encoding the TCRbeta Tabla 1 : Ejemplos de cebadores sentido y antisentido de la invención. In another preferred embodiment, the sequence of said second antisense primer labeled with a second detectable label comprises the sequence identified with SEQ ID NO: 25 (Table 1). In a preferred embodiment, said second antisense primer is labeled with 5-FAM or TAMRA, preferably TAMRA. In another particular embodiment, the composition or kit of the invention further comprises at least one additional primer that hybridizes with the segment C constant region of the gene encoding the β chain of the TCR. In a preferred embodiment, the two antisense primers comprise variants of the sequences identified in SEQ ID NO: 26 and SEQ ID NO: 27 (Table 1) that retain the ability to hybridize each of said antisense primers with a region specific sequence. constant segment C of the gene encoding the β chain of the TCR, where the variants have an identity with the sequences SEQ ID NO: 26 and SEQ ID NO: 27 of at least 99%, at least 98%, at least 97%, at least 96%), at least 95%, at least 90%, at least 85%, at least 80%, at least 75%), at least 70%, at least 65%>, at least 60%>, at least 55%, at least 50%, at least 45%, at least 40%, at least 35%, at least 30%. In a preferred embodiment of the invention, the first antisense primer comprises the sequence SEQ ID NO: 26 and / or the second antisense primer comprises the sequence SEQ ID NO: 27 (Table 1). Sense first specific for segment family V3 of the gene encoding the TCRbeta Table 1: Examples of sense and antisense primers of the invention.
Peso molecular 1 (70-90 bp)  Molecular Weight 1 (70-90 bp)
νβ 2: CCACAAGCTGGAGGACTC (SEQ ID NO: 1)  νβ 2: CCACAAGCTGGAGGACTC (SEQ ID NO: 1)
νβ 3: GCT TGGTGACTCTGCTGTG (SEQ ID NO:2)  νβ 3: GCT TGGTGACTCTGCTGTG (SEQ ID NO: 2)
νβ 4: G C C AG AAG AC TCAGCCCTG (SEQ ID NO:3)  νβ 4: G C C AG AAG AC TCAGCCCTG (SEQ ID NO: 3)
νβ 5: ATGTGAGCACCT TGGAGGTGG (SEQ ID NO:4)  νβ 5: ATGTGAGCACCT TGGAGGTGG (SEQ ID NO: 4)
νβ 16: GCT TGAGGAT TCAGCAGTG (SEQ ID NO:5)  νβ 16: GCT TGAGGAT TCAGCAGTG (SEQ ID NO: 5)
νβ 18: GTAGTGCGAGGAGAT TCGGCAG (SEQ ID NO:6)  νβ 18: GTAGTGCGAGGAGAT TCGGCAG (SEQ ID NO: 6)
νβ 19: GCCCAAAAGAACCCGACAGC (SEQ ID NO:7)  νβ 19: GCCCAAAAGAACCCGACAGC (SEQ ID NO: 7)
νβ 29: GTCTGACTGTGAGCAACATGAGCCCTGAAG (SEQ ID NO:8)  νβ 29: GTCTGACTGTGAGCAACATGAGCCCTGAAG (SEQ ID NO: 8)
Peso molecular 2 (120-160 bp)  Molecular Weight 2 (120-160 bp)
νβ 6: CT TCTGAGGGTACCACTGACA (SEQ ID NO:9)  νβ 6: CT TCTGAGGGTACCACTGACA (SEQ ID NO: 9)
νβ 12: ATGCCCGAGGATCGAT TCTCA (SEQ ID NO: 10)  νβ 12: ATGCCCGAGGATCGAT TCTCA (SEQ ID NO: 10)
νβ 15: T T AAC AAT GAAG C AGAC AC C (SEQ ID NO: l l)  νβ 15: T T AAC AAT GAAG C AGAC AC C (SEQ ID NO: l l)
Υβ 28: G G G T AC AG T G T C T C T AGAGAGAAG (SEQ ID NO: 12) νβ 10: AGTCTCAGATGGCTACAGTGTC (SEQIDNO:13) νβ 13: GAG C GAT AAAG GAAG C AT C C (SEQIDNO:14) 28β 28: GGGT AC AG TGTCTCT AGAGAGAAG (SEQ ID NO: 12) νβ 10: AGTCTCAGATGGCTACAGTGTC (SEQIDNO: 13) νβ 13: GAG C GAT AAAG GAAG C AT CC (SEQIDNO: 14)
νβ 14: AAACAGGATGAGTCCGGTATGC (SEQIDNO:15)  νβ 14: AAACAGGATGAGTCCGGTATGC (SEQIDNO: 15)
νβ 20: CATACGAGCAAGGCGTCGAG (SEQ ID NO:16)  νβ 20: CATACGAGCAAGGCGTCGAG (SEQ ID NO: 16)
Peso molecular 3 (180-210 bp)  Molecular Weight 3 (180-210 bp)
νβ 11: CAAT CC TATAT C T GGCCAT GC TAC (SEQIDNO:17)  νβ 11: CAAT CC TATAT C T GGCCAT GC TAC (SEQIDNO: 17)
νβ24: AGGGTCCATGGATGCTGATGT (SEQIDNO:18)  νβ24: AGGGTCCATGGATGCTGATGT (SEQIDNO: 18)
νβ25: AAGATCACTCTGGAATGTTCTC (SEQIDNO:19)  νβ25: AAGATCACTCTGGAATGTTCTC (SEQIDNO: 19)
νβ 27: C AAG T GAC C C AGAAC C AAGA (SEQ ID NO:20)  νβ 27: C AAG T GAC C C AGAAC C AAGA (SEQ ID NO: 20)
νβ 7: CAATTTCAGGTCATAATGC (SEQIDNO:21)  νβ 7: CAATTTCAGGTCATAATGC (SEQIDNO: 21)
νβ 9: T AT AAT G GAGAAGAGAGAG C (SEQIDNO:22)  νβ 9: T AT AAT G GAGAAGAGAGAG C (SEQIDNO: 22)
νβ23: ATTGGTAT C AAC AGAAT C AG (SEQIDNO:23)  νβ23: ATTGGTAT C AAC AGAAT C AG (SEQIDNO: 23)
νβ 30: CCCAACCTATACTGGTACC (SEQIDNO:24)  νβ 30: CCCAACCTATACTGGTACC (SEQIDNO: 24)
Cebadores antisentido marcados  Antisense primers marked
Cl 5-FAM - TTCTGATGGCTCAAACACAGC (SEQ ID NO:25)  Cl 5-FAM - TTCTGATGGCTCAAACACAGC (SEQ ID NO: 25)
C2 TAMRA - TTCTGATGGCTCAAACACAGC (SEQ ID NO:25)  C2 TAMRA - TTCTGATGGCTCAAACACAGC (SEQ ID NO: 25)
Cebadores antisentido sin marcar  Unmarked antisense primers
DI TTCCCATTCACCCACCAGC (SEQIDNO:26)  DI TTCCCATTCACCCACCAGC (SEQIDNO: 26)
D2 TGTGGCCAGGCATACCAGTG (SEQIDNO:27)  D2 TGTGGCCAGGCATACCAGTG (SEQIDNO: 27)
En otra realización particular, la composición o kit de la invención además comprende los reactivos necesarios para llevar a cabo la reacción de amplificación de ADNc y/o los reactivos necesarios para realizar reacciones de transcripción inversa de ARN, entre los que se incluyen, sin limitar a, desoxinucleótidos trifosfato (dNTPs), iones divalentes y/o monovalentes, una solución tampón (buffer) que mantiene el pH adecuado para el funcionamiento de la ADN polimerasa, ADN polimerasa o mezcla de distintas polimerasas, transcriptasa inversa o mezcla de distintas transcriptasas inversas, etc. No obstante, si el kit de la invención no comprende los reactivos necesarios para poner en práctica el método de la invención, éstos están disponibles comercialmente y pueden encontrarse formando parte de un kit. Cualquier kit de los disponibles comercialmente que contenga los reactivos necesarios para llevar a cabo una reacción de amplificación, puede emplearse con éxito en la puesta en práctica del método de la invención. Métodos para analizar el repertorio de células T In another particular embodiment, the composition or kit of the invention further comprises the reagents necessary to carry out the cDNA amplification reaction and / or the reagents necessary to perform RNA reverse transcription reactions, including but not limited to a, deoxynucleotides triphosphate (dNTPs), divalent and / or monovalent ions, a buffer solution (buffer) that maintains the proper pH for the functioning of DNA polymerase, DNA polymerase or mixture of different polymerases, reverse transcriptase or mixture of different reverse transcriptases , etc. However, if the kit of the invention does not comprise the reagents necessary to practice the method of the invention, these are commercially available and can be found as part of a kit. Any commercially available kit containing the reagents necessary to carry out an amplification reaction can be used successfully in the practice of the method of the invention. Methods to analyze the repertoire of T cells
En un segundo aspecto, la invención se relaciona con un método para analizar el repertorio de células T en una muestra, en adelante primer método de la invención, que comprende las etapas de In a second aspect, the invention relates to a method for analyzing the repertoire of T cells in a sample, hereinafter the first method of the invention, comprising the steps of
(i) amplificar una preparación de ADNc obtenida a partir de ARN aislado de dicha muestra usando una multiplicidad de cebadores sentido, donde cada uno de dichos cebadores híbrida específicamente con el segmento V del gen que codifica la cadena β del TCR y dos cebadores antisentido que hibridan específicamente con la región constante CP del TCR en donde cada uno de dichos cebadores antisentido se encuentra marcado con una etiqueta detectable distinta, y  (i) amplifying a cDNA preparation obtained from RNA isolated from said sample using a multiplicity of sense primers, where each of said primers specifically hybridizes with the V segment of the gene encoding the TCR β chain and two antisense primers that specifically hybridize with the CP constant region of the TCR where each of said antisense primers is labeled with a distinct detectable label, and
(ii) analizar el número de productos de amplificación obtenidos en la etapa (i). Como entiende el experto en la materia, si el primer método de la invención está dirigido a analizar el repertorio de células T en una muestra, dicha muestra será cualquier muestra biológica susceptible de contener linfocitos T que puede ser obtenida de un sujeto. Ejemplos ilustrativos, no limitativos, de dicha muestra biológica incluyen muestras de biopsia, tejidos, células o fluidos, por ejemplo sangre, leche, plasma, saliva, suero, etc.  (ii) analyze the number of amplification products obtained in step (i). As the person skilled in the art understands, if the first method of the invention is directed to analyze the repertoire of T cells in a sample, said sample will be any biological sample capable of containing T lymphocytes that can be obtained from a subject. Illustrative, non-limiting examples of said biological sample include biopsy samples, tissues, cells or fluids, for example blood, milk, plasma, saliva, serum, etc.
En una realización particular, la muestra es una muestra de sangre periférica. El término "sangre periférica", tal y como se utiliza en la presente invención, se relaciona con el volumen de sangre circulante distante del corazón, es decir, la sangre que circula por el organismo de un sujeto. En una realización preferida, dicha muestra de sangre periférica está enriquecida en células CD4+ o CD8+. Como puede entender el experto en la materia, diversos métodos están disponibles para la obtener un enriquecimiento en linfocitos T CD4+ y CD8+. Existen a disposición del experto en la materia diversos kits comerciales para el enriquecimiento positivo o negativo de células T CD4+ o CD8+ por gradiente, columnas, partículas magnéticas, etc. Ejemplos no limitativos de kits incluyen StemSep® Human CD4 Positive Selection Kit(StemCell Technologies), StemSep® Human CD4+ T Cell Enrichment Kit (StemCell Technologies), RosetteSep™ Human CD4+ T Cell Enrichment Cocktail (StemCell Technologies), StemSep® Human CD8 Positive Selection Kit (StemCell Technologies), StemSep® Human CD8+ T Cell Enrichment Kit (StemCell Technologies), RosetteSep™ Human CD8+ T Cell Enrichment Cocktail (StemCell Technologies), CD4+ T Cell Isolation Kit II, human (Miltenyi Biotec), CD8+ T Cell Isolation Kit II, human (Miltenyi Biotec), Dynal® CD4 Positive Isolation Kit (Invitrogen), Dynal® CD8 Positive Isolation Kit (Invitrogen), Human CD4+ T Cell Enrichment Column (R&D Systems), Human CD8+ T Cell Enrichment Column (R&D Systems), BD IMag™ CD4 T Lymphocyte Enrichment Set - DM (BD Biosciences), y BD IMag™ CD8 T Lymphocyte Enrichment Set - DM (BD Biosciences). In a particular embodiment, the sample is a peripheral blood sample. The term "peripheral blood", as used in the present invention, relates to the volume of circulating blood distant from the heart, that is, the blood circulating through the organism of a subject. In a preferred embodiment, said peripheral blood sample is enriched in CD4 + or CD8 + cells. As one skilled in the art can understand, various methods are available for obtaining enrichment in CD4 + and CD8 + T lymphocytes. Various commercial kits are available to the person skilled in the art for positive or negative enrichment of CD4 + or CD8 + T cells by gradient, columns, magnetic particles, etc. Non-limiting examples of kits include StemSep® Human CD4 Positive Selection Kit (StemCell Technologies), StemSep® Human CD4 + T Cell Enrichment Kit (StemCell Technologies), RosetteSep ™ Human CD4 + T Cell Enrichment Cocktail (StemCell Technologies), StemSep® Human CD8 Positive Selection Kit (StemCell Technologies), StemSep® Human CD8 + T Cell Enrichment Kit (StemCell Technologies), RosetteSep ™ Human CD8 + T Cell Enrichment Cocktail (StemCell Technologies) , CD4 + T Cell Isolation Kit II, human (Miltenyi Biotec), CD8 + T Cell Isolation Kit II, human (Miltenyi Biotec), Dynal® CD4 Positive Isolation Kit (Invitrogen), Dynal® CD8 Positive Isolation Kit (Invitrogen), Human CD4 + T Cell Enrichment Column (R&D Systems), Human CD8 + T Cell Enrichment Column (R&D Systems), BD IMag ™ CD4 T Lymphocyte Enrichment Set - DM (BD Biosciences), and BD IMag ™ CD8 T Lymphocyte Enrichment Set - DM (BD Biosciences).
El término "ARN", tal y como se utiliza en la presente invención, se refiere al ARNm o ARN mensajero. El ARNm es el ácido ribonucleico que contiene la información genética procedente del ADN para utilizarse en la síntesis de proteínas, es decir, determina el orden en que se unirán los aminoácidos. The term "RNA", as used in the present invention, refers to the mRNA or messenger RNA. The mRNA is the ribonucleic acid that contains the genetic information from the DNA to be used in protein synthesis, that is, it determines the order in which the amino acids will bind.
Previamente a la extracción del ARN de la muestra biológica, ésta puede tratarse físicamente o mecánicamente para romper el tejido o las estructuras celulares y liberar los componentes intracelulares a una solución acuosa u orgánica para preparar los ácidos nucleicos para su extracción. Prior to the extraction of the RNA from the biological sample, it can be treated physically or mechanically to break the tissue or cellular structures and release the intracellular components to an aqueous or organic solution to prepare the nucleic acids for extraction.
La extracción del ARN puede realizarse por cualquiera de los procedimientos conocidos por el experto en la materia, que incluyen, sin limitar a, Trizol, sales de guanidinio, fenol cloroformo, etc. Dichos procedimientos pueden encontrarse, por ejemplo, en Sambrook y cois., 2001. "Molecular cloning: a Laboratory Manual", 3rd ed., Cold Spring Harbor Laboratory Press, N.Y., Vol. 1-3. Asimismo, existen kits comerciales que permiten extraer el ARN de una muestra, como por ejemplo, el kit Qiagen de extracción de ARN. Como sabe el experto en la materia, a la hora de trabajar con ARN, deben tomarse las máximas precauciones para evitar contaminaciones con ARNasas y la degradación del ARN. Tras la obtención del ARN, se procede a realizar una reacción de transcripción inversa (RT) del ARNm seguida de amplificación por reacción en cadena de la polimerasa (PCR) [RT-PCR] para obtener el ADNc de doble hélice correspondiente al ARN presente en la muestra. En una realización particular, la preparación de ADNc se ha obtenido usando un cebador que híbrida con la región constante segmento C del gen que codifica la cadena β del TCR. En una realización preferida, la secuencia de dicho al menos un cebador adicional comprende SEQ ID NO:26 y/o SEQ ID NO:27. RNA extraction can be performed by any of the procedures known to those skilled in the art, including, but not limited to, Trizol, guanidinium salts, phenol chloroform, etc. Such procedures can be found, for example, in Sambrook et al., 2001. "Molecular cloning: a Laboratory Manual", 3rd ed., Cold Spring Harbor Laboratory Press, NY, Vol. 1-3. There are also commercial kits that allow the extraction of RNA from a sample, such as the Qiagen RNA extraction kit. As the person skilled in the art knows, when working with RNA, maximum precautions must be taken to avoid contamination with RNAs and the degradation of RNA. After obtaining the RNA, a reverse transcription (RT) reaction of the mRNA is carried out followed by amplification by polymerase chain reaction (PCR) [RT-PCR] to obtain the double helix cDNA corresponding to the RNA present in the sample. In a particular embodiment, the cDNA preparation has been obtained using a primer that hybridizes with the constant C segment segment of the gene encoding the β chain of the TCR. In a preferred embodiment, the sequence of said at least one additional primer comprises SEQ ID NO: 26 and / or SEQ ID NO: 27.
El término "ADNc" o "ADN complementario", tal y como se utiliza en la presente invención, se refiere al ADN de cadena sencilla que se sintetiza a partir de una hebra simple de ARN. Como el experto en la materia puede entender, existen varios métodos de síntesis de ADNc, siendo el más común el empleo de la enzima transcriptasa inversa o retrotranscriptasa. En Sambrook et al, 2001, citado ad supra, se describen métodos para llevar a cabo la síntesis de ADNc. The term "cDNA" or "complementary DNA", as used in the present invention, refers to single stranded DNA that is synthesized from a single strand of RNA. As one skilled in the art can understand, there are several methods of cDNA synthesis, the most common being the use of the enzyme reverse transcriptase or retrotranscriptase. Sambrook et al, 2001, cited ad supra, describes methods for carrying out cDNA synthesis.
Una vez aislado el ARN y obtenido el ADNc a partir de él, el método de la invención comprende una primera etapa en donde se lleva a cabo al menos una reacción de amplificación de dicho ADNc mediante el empleo de cebadores sentido específicos del ADN, donde cada uno de dichos cebadores híbrida específicamente con el segmento V del gen que codifica la cadena β del TCR y dos cebadores antisentido que hibridan específicamente con la región constante CP del TCR en donde cada uno de dichos cebadores antisentido se encuentra marcado con una etiqueta detectable distinta. Once the RNA has been isolated and the cDNA obtained therefrom, the method of the invention comprises a first stage where at least one amplification reaction of said cDNA is carried out by using specific sense primers of the DNA, where each one of said hybrid primers specifically with segment V of the gene encoding the β chain of the TCR and two antisense primers that specifically hybridize with the CP constant region of the TCR where each of said antisense primers is labeled with a distinct detectable label.
El término "amplificar" o "amplificación", tal y como se utiliza en la presente invención, se refiere al empleo de técnicas o métodos para incrementar el número de copias de un segmento específico de ácido nucleico. El término "producto de amplificación" se refiere al ácido nucleico generado como resultado de una amplificación. Muchos métodos de amplificación se basan en reacciones enzimáticas en cadena, tales como una reacción en cadena de la polimerasa o PCR, una reacción en cadena de una ligasa, o una replicación de secuencia autosostenida, ensayos de amplificación en círculo rodante, ensayos de excisión invasiva, ensayo de extensión del cebador, métodos de ruptura enzimática, NASBA, métodos de hibridación en sandwich, métodos en los que se emplean marcadores moleculares, y similares. En Sambrook et al, 2001, citado ad supra, y en la solicitud de patente US2007/0105128 se describen métodos para llevar a cabo la amplificación de ácidos nucleicos. La PCR a tiempo real, también denominada RT-PCR, PCR cuantitativa, PCR cuantitativa a tiempo real o RTQ-PCR, es un método que permite la amplificación y cuantificación del DNA de manera simultánea (Expert Rev. Mol. Diagn. 2005(2):209- 19). El DNA se amplifica de manera específica mediante una reacción en cadena de la polimerasa. El DNA se cuantifica después de cada ronda de amplificación. Métodos habituales de cuantificación incluyen el uso de marcadores fluorescentes que se intercalan con el DNA bicatenario y oligonucleótidos de DNA modificados (denominados sondas) capaces de emitir fluorescencia cuando hibridan con un DNA complementario. De modo alternativo, la amplificación puede ser llevada a cabo mediante cebadores marcados de modo apropiado, y los productos amplificados por extensión de los cebadores pueden ser detectados mediante procedimientos y equipamiento adecuados para la detección del mareaje. De manera preferida, las sondas de la presente invención están marcadas con al menos un residuo detectable, en donde el residuo o residuos detectables se seleccionan del grupo formado por: conjugados, sistema de detección ramificado, cromóforos, fluoróforos, etiquetas (spin label), radioisótopos, enzimas, haptenos, un éster de acridinio y compuestos luminiscentes. En un ejemplo ilustrativo, no limitativo, del método de la invención, los cebadores están marcados con un fluoróforo. The term "amplify" or "amplification", as used in the present invention, refers to the use of techniques or methods to increase the number of copies of a specific nucleic acid segment. The term "amplification product" refers to the nucleic acid generated as a result of an amplification. Many amplification methods are based on chain enzymatic reactions, such as a polymerase chain reaction or PCR, a ligase chain reaction, or self-sustained sequence replication, rolling circle amplification assays, invasive excision assays , primer extension assay, enzymatic breakdown methods, NASBA, hybridization methods in sandwich, methods in which molecular markers are employed, and the like. Sambrook et al, 2001, cited ad supra, and patent application US2007 / 0105128 describe methods for carrying out nucleic acid amplification. Real-time PCR, also called RT-PCR, quantitative PCR, quantitative real-time PCR or RTQ-PCR, is a method that allows the amplification and quantification of DNA simultaneously (Expert Rev. Mol. Diagn. 2005 (2 ): 209-19). The DNA is specifically amplified by a polymerase chain reaction. DNA is quantified after each round of amplification. Common methods of quantification include the use of fluorescent markers that are interspersed with double stranded DNA and modified DNA oligonucleotides (called probes) capable of emitting fluorescence when hybridizing with a complementary DNA. Alternatively, amplification can be carried out by appropriately labeled primers, and products amplified by primer extension can be detected by suitable procedures and equipment for the detection of the marking. Preferably, the probes of the present invention are labeled with at least one detectable residue, wherein the residue or detectable residues are selected from the group consisting of: conjugates, branched detection system, chromophores, fluorophores, labels (spin label), radioisotopes, enzymes, haptens, an acridinium ester and luminescent compounds. In an illustrative, non-limiting example of the method of the invention, the primers are labeled with a fluorophore.
En una realización particular del primer método de la invención, la amplificación de la etapa (i) se lleva a cabo en varias reacciones usando en cada una de las reacciones parejas de cebadores sentido-antisentido que dan lugar a productos de amplificación que son distinguibles del resto de productos de amplificación obtenidos en la misma reacción en base al tamaño y/o en base a la etiqueta detectable. En una realización particular del método de la invención, la multiplicidad de cebadores sentido comprende 24 cebadores. In a particular embodiment of the first method of the invention, the amplification of step (i) is carried out in several reactions using in each of the pairs reactions of sense-antisense primers that give rise to amplification products that are distinguishable from the other amplification products obtained in the same reaction based on size and / or based on the detectable label. In a particular embodiment of the method of the invention, the multiplicity of sense primers comprises 24 primers.
En una realización preferida, cada uno de los 24 cebadores sentido hibridan de forma específica con un segmento V que forma parte del gen que codifica para la cadena β de los TCRs 2, 3.1, 4.1, 5.1, 6.1, 7.1, 9, 10.1, 1 1, 12.3, 13, 14, 15, 16, 18, 19, 20, 23 24, 25, 27, 28, 29 y 30. In a preferred embodiment, each of the 24 sense primers hybridizes specifically with a segment V that is part of the gene that codes for the β chain of TCRs 2, 3.1, 4.1, 5.1, 6.1, 7.1, 9, 10.1, 1 1, 12.3, 13, 14, 15, 16, 18, 19, 20, 23 24, 25, 27, 28, 29 and 30.
En una realización preferida, los 24 cebadores sentido comprenden variantes de las secuencias identificadas en SEQ ID NO: l a 24 (Tabla 1) que conservan la capacidad de hibridar específicamente cada uno de dichos cebadores sentido con una secuencia específica de una de las 24 familias de segmentos V que forman parte del gen que codifica para la cadena β del TCR, en donde las variantes presentan una identidad con las secuencias SEQ ID NO: l a 24 de al menos el 99%, al menos el 98%, al menos el 97%), al menos el 96%>, al menos el 95%>, al menos el 90%>, al menos el 85%>, al menos el 80%), al menos el 75%>, al menos el 70%>, al menos el 65%>, al menos el 60%>, al menos el 55%>, al menos el 50%>, al menos el 45%>, al menos el 40%>, al menos el 35%>, al menos el 30%>. En una realización más preferida, los 24 cebadores sentido comprenden las secuencias identificadas en SEQ ID NO: l a 24 (Tabla 1). In a preferred embodiment, the 24 sense primers comprise variants of the sequences identified in SEQ ID NO: 24 (Table 1) that retain the ability to specifically hybridize each of said sense primers with a specific sequence from one of the 24 families of V segments that are part of the gene that codes for the β chain of the TCR, where the variants have an identity with the sequences SEQ ID NO: 24 of at least 99%, at least 98%, at least 97% ), at least 96%>, at least 95%>, at least 90%>, at least 85%>, at least 80%), at least 75%>, at least 70%> , at least 65%>, at least 60%>, at least 55%>, at least 50%>, at least 45%>, at least 40%>, at least 35%>, at least 30%>. In a more preferred embodiment, the 24 sense primers comprise the sequences identified in SEQ ID NO: 1 to 24 (Table 1).
En otra realización particular del método de la invención, los dos cebadores antisentido que hibridan específicamente con la región constante CP del TCR en donde cada uno de dichos cebadores antisentido se encuentra marcado con una etiqueta detectable distinta, comprende variantes de la secuencia identificada en SEQ ID NO:25 (Tabla 1), que conservan la capacidad de hibridar con una secuencia específica de la región constante segmento C del gen que codifica la cadena β del TCR, en donde las variantes presentan una identidad con las secuencias SEQ ID NO:25 de al menos el 99%>, al menos el 98%>, al menos el 97%>, al menos el 96%>, al menos el 95%>, al menos el 90%>, al menos el 85%o, al menos el 80%>, al menos el 75%>, al menos el 70%>, al menos el 65%>, al menos el 60%, al menos el 55%, al menos el 50%, al menos el 45%, al menos el 40%, al menos el 35%, al menos el 30%. In another particular embodiment of the method of the invention, the two antisense primers that specifically hybridize with the constant CP region of the TCR where each of said antisense primers is labeled with a distinct detectable label, comprises variants of the sequence identified in SEQ ID NO: 25 (Table 1), which retain the ability to hybridize with a specific sequence of the constant segment C segment of the gene encoding the β chain of the TCR, where the variants have an identity with the sequences SEQ ID NO: 25 of at least 99%>, at least 98%>, at least 97%>, at least 96%>, at least 95%>, at least 90%>, at least 85% or, at at least 80%>, at least 75%>, at least 70%>, at least 65%>, at least 60%, at least 55%, at least 50%, at least 45%, at least 40%, at least 35%, at least 30%.
En una realización preferida, dichos dos cebadores antisentido comprenden la secuencia identificada como SEQ ID NO:25 (Tabla 1). En una realización preferida, dichos dos cebadores antisentido están marcados con 5-FAM o TAMRA. En una realización todavía más preferida, el dicho primer cebador antisentido está marcado con 5-FAM y dicho segundo cebador antisentido está marcado con TAMRA. En una realización preferida, la amplificación del ADNc se realiza para 24 familias νβ empleando ocho reacciones de RT-PCR en formato multiplex (Rl a R8), tomando al menos un cebador correspondiente a un producto de amplificación de peso molecular 70-90 bp (SEQ ID NO: 1-8), o variantes de las mismas que conservan la capacidad de hibridar específicamente cada uno de segmentos V correspondientes que forman parte del gen que codifica para la cadena β del TCR; al menos un cebador correspondiente a un producto de amplificación de peso molecular 120-160 bp (SEQ ID NO: 9- 16), o variantes de las mismas que conservan la capacidad de hibridar específicamente cada uno de segmentos V correspondientes que forman parte del gen que codifica para la cadena β del TCR; al menos un cebador correspondiente a un producto de amplificación de peso molecular 180-210 bp (SEQ ID NO: 17-24), o variantes de las mismas que conservan la capacidad de hibridar específicamente cada uno de segmentos V correspondientes que forman parte del gen que codifica para la cadena β del TCR; y al menos un cebador antisentido marcado (SEQ ID NO:25), o variantes de las mismas que conservan la capacidad de hibridar con una secuencia específica de la región constante segmento C del gen que codifica la cadena β del TCR. In a preferred embodiment, said two antisense primers comprise the sequence identified as SEQ ID NO: 25 (Table 1). In a preferred embodiment, said two antisense primers are labeled with 5-FAM or TAMRA. In an even more preferred embodiment, said first antisense primer is labeled with 5-FAM and said second antisense primer is labeled with TAMRA. In a preferred embodiment, cDNA amplification is performed for 24 νβ families using eight RT-PCR reactions in multiplex format (R1 to R8), taking at least one primer corresponding to a 70-90 bp molecular weight amplification product ( SEQ ID NO: 1-8), or variants thereof that retain the ability to specifically hybridize each of corresponding V segments that are part of the gene encoding the β chain of the TCR; at least one primer corresponding to a 120-160 bp molecular weight amplification product (SEQ ID NO: 9-16), or variants thereof that retain the ability to specifically hybridize each of corresponding V segments that are part of the gene coding for the β chain of the TCR; at least one primer corresponding to a 180-210 bp molecular weight amplification product (SEQ ID NO: 17-24), or variants thereof that retain the ability to specifically hybridize each of corresponding V segments that are part of the gene coding for the β chain of the TCR; and at least one labeled antisense primer (SEQ ID NO: 25), or variants thereof that retain the ability to hybridize with a specific sequence of the constant C segment segment of the gene encoding the β chain of the TCR.
En una realización preferida, las ocho reacciones de RT-PCR en formato multiplex se efectúan siguiendo las mezclas de cebadores de la Tabla 2, es decir, las siguientes combinaciones de cebadores: In a preferred embodiment, the eight RT-PCR reactions in multiplex format are performed following the primer mixtures of Table 2, that is, the following combinations of primers:
- Rl : SEQ ID NO: l + SEQ ID NO: 11 + SEQ ID NO: 17 + SEQ ID NO:25 marcado con 5-FAM; - R2: SEQ ID N05 + SEQ ID NO:13 + SEQ ID NO:22 + SEQ ID NO:25 marcado con TAMRA; - Rl: SEQ ID NO: l + SEQ ID NO: 11 + SEQ ID NO: 17 + SEQ ID NO: 25 marked with 5-FAM; - R2: SEQ ID N05 + SEQ ID NO: 13 + SEQ ID NO: 22 + SEQ ID NO: 25 marked with TAMRA;
- R3: SEQ ID NO:2 + SEQ ID NO:9 + SEQ ID NO:20 + SEQ ID NO:25 marcado con 5-FAM;  - R3: SEQ ID NO: 2 + SEQ ID NO: 9 + SEQ ID NO: 20 + SEQ ID NO: 25 marked with 5-FAM;
- R4: SEQIDNO:6 + SEQIDNO:14 + SEQIDNO:24 + SEQIDNO:NO:25 marcado con TAMRA;  - R4: SEQIDNO: 6 + SEQIDNO: 14 + SEQIDNO: 24 + SEQIDNO: NO: 25 marked with TAMRA;
- R5: SEQ ID NO:3 + SEQ ID NO: 10 + SEQ ID NO: 19 + SEQ ID NO:25 marcado con 5-FAM;  - R5: SEQ ID NO: 3 + SEQ ID NO: 10 + SEQ ID NO: 19 + SEQ ID NO: 25 marked with 5-FAM;
- R6: SEQ ID NO:7 + SEQ ID NO: 15 + SEQ ID NO:23 + SEQ ID NO: NO:25 marcado con TAMRA;  - R6: SEQ ID NO: 7 + SEQ ID NO: 15 + SEQ ID NO: 23 + SEQ ID NO: NO: 25 marked with TAMRA;
- R7: SEQ ID NO:4 + SEQ ID NO: 12 + SEQ ID NO: 18 + SEQ ID NO:25 marcado con 5-FAM;  - R7: SEQ ID NO: 4 + SEQ ID NO: 12 + SEQ ID NO: 18 + SEQ ID NO: 25 marked with 5-FAM;
- R8: SEQIDNO:8 + SEQIDNO:16 + SEQIDNO:21 + SEQ ID NO: NO:25 marcado con TAMRA,  - R8: SEQIDNO: 8 + SEQIDNO: 16 + SEQIDNO: 21 + SEQ ID NO: NO: 25 marked with TAMRA,
o variantes de dichos cebadores que conservan la capacidad de hibridar específicamente con cada uno de segmentos V o C correspondientes que forman parte del gen que codifica para la cadena β del TCR. or variants of said primers that retain the ability to hybridize specifically with each of corresponding V or C segments that are part of the gene encoding the β chain of the TCR.
Tabla 2: Ejemplo de mezclas de cebadores sentido-antisentido. Table 2: Example of mixtures of sense-antisense primers.
Reacción Cebadores sentido-antisentido Reacción Cebadores sentido-antisentido Sense-antisense primers reaction Sense-antisense primers reaction
Rl Vp2 (SEQ ID NO: 1) R5 Vp4 (SEQIDNO:3) Rl Vp2 (SEQ ID NO: 1) R5 Vp4 (SEQIDNO: 3)
Vpl5 (SEQ ID NO: 11) Vpl2(SEQIDNO:10) Vpll (SEQ ID NO: 17) Vp25 (SEQ ID NO: 19) Cl (SEQIDNO:25) Cl (SEQIDNO:25) Vpl5 (SEQ ID NO: 11) Vpl2 (SEQIDNO: 10) Vpll (SEQ ID NO: 17) Vp25 (SEQ ID NO: 19) Cl (SEQIDNO: 25) Cl (SEQIDNO: 25)
R2 Vpl6(SEQIDNO:5) R6 Vpl9(SEQIDNO:7) R2 Vpl6 (SEQIDNO: 5) R6 Vpl9 (SEQIDNO: 7)
Vpl0(SEQIDNO:13) Vpl4(SEQIDNO:15) Vp9 (SEQIDNO:22) Vp23 (SEQIDNO:23) C2 (SEQ ID NO:25) C2 (SEQ ID NO:25) Vpl0 (SEQIDNO: 13) Vpl4 (SEQIDNO: 15) Vp9 (SEQIDNO: 22) Vp23 (SEQIDNO: 23) C2 (SEQ ID NO: 25) C2 (SEQ ID NO: 25)
R3 Vp3 (SEQIDNO:2) R7 Vp5 (SEQIDNO:4) R3 Vp3 (SEQIDNO: 2) R7 Vp5 (SEQIDNO: 4)
Vp6 (SEQ ID NO: 9) Vp28 (SEQ ID NO: 12) Vp27 (SEQIDNO:20) Vp24 (SEQ ID NO: 18) Cl (SEQIDNO:25) Cl (SEQIDNO:25) R4 Vpl8 (SEQ ID NO:6) R8 Vp29 (SEQ ID NO:8) Vp6 (SEQ ID NO: 9) Vp28 (SEQ ID NO: 12) Vp27 (SEQIDNO: 20) Vp24 (SEQ ID NO: 18) Cl (SEQIDNO: 25) Cl (SEQIDNO: 25) R4 Vpl8 (SEQ ID NO: 6) R8 Vp29 (SEQ ID NO: 8)
Vpl3 (SEQ ID NO: 14) Vp20 (SEQ ID NO: 16) Vpl3 (SEQ ID NO: 14) Vp20 (SEQ ID NO: 16)
Vp30 (SEQ ID NO:24) Vp7 (SEQ ID NO:21) Vp30 (SEQ ID NO: 24) Vp7 (SEQ ID NO: 21)
C2 (SEQ ID NO:25) C2 (SEQ ID NO:25) C2 (SEQ ID NO: 25) C2 (SEQ ID NO: 25)
La nomenclatura de los cebadores sentido y antisentido está recogida en la Tabla 1. The nomenclature of the sense and antisense primers is shown in Table 1.
La PCR se lleva a cabo en un termociclador que realiza los ciclos en los tiempos y temperaturas programadas de forma exacta, tales como la temperatura de hibridación, que depende de la temperatura de fusión de cada uno de los cebadores utilizados en la reacción o la temperatura de extensión. The PCR is carried out in a thermocycler that performs the cycles in the exact times and temperatures programmed, such as the hybridization temperature, which depends on the melting temperature of each of the primers used in the reaction or the temperature of extension.
Como entiende el experto en la materia, la amplificación de los diferentes segmentos TCRVP requiere condiciones y procedimientos de reacción específicos para cada una de las parejas de cebadores empleadas, las cuales pueden conseguirse mediante variación sistemática de cada parámetro. El número de ciclos y la temperatura de alineamiento empleada en la reacción de PCR deben de ser adecuados para la obtención de resultados fiables mediante el empleo de cada una de las parejas de cebadores sentido-antisentido de la invención. Parámetros como la concentración de cebadores son específicos para cada cebador y se han ajustado en la validación del conjunto de cebadores. As the person skilled in the art understands, the amplification of the different TCRVP segments requires specific reaction conditions and procedures for each of the pairs of primers used, which can be achieved by systematic variation of each parameter. The number of cycles and the alignment temperature used in the PCR reaction must be suitable for obtaining reliable results by using each of the pairs of sense-antisense primers of the invention. Parameters such as the concentration of primers are specific to each primer and have been adjusted in the validation of the primer set.
En otra realización particular, las reacciones de RT-PCR multiplex de alta temperatura se realizan en 20 μΐ de mezcla de reacción que contiene 100 ng de molde de ARNm, 1 μΜ dNTP (Roche Applied Science), buffer 5x [Roche Applied Science], 20 U de inhibidor de RNasa (Protector, Roche Applied Science), 10 U transcriptasa inversa (Transcriptor, Roche Applied Science), y 1 μΜ de cada cebador (tres cebadores sentido y un cebador antisentido). El primer ciclo de reacción consiste en una incubación a 42 °C durante 45 min, seguido por un paso de inactivación a 85 °C durante 5 min y 35 ciclos consistentes en 15 s a 94 °C, 15 s a 58 °C y 30 s a 72 °C, con una etapa final de extensión de 7 min a 72 °C. In another particular embodiment, the high temperature multiplex RT-PCR reactions are performed in 20 μΐ of reaction mixture containing 100 ng mRNA template, 1 μΜ dNTP (Roche Applied Science), 5x buffer [Roche Applied Science], 20 U of RNase inhibitor (Protector, Roche Applied Science), 10 U reverse transcriptase (Transcriptor, Roche Applied Science), and 1 μΜ of each primer (three sense primers and one antisense primer). The first reaction cycle consists of an incubation at 42 ° C for 45 min, followed by an inactivation step at 85 ° C for 5 min and 35 cycles consisting of 15 s at 94 ° C, 15 s at 58 ° C and 30 s at 72 ° C, with a final extension stage of 7 min at 72 ° C.
A continuación, el primer método de la invención comprende una segunda etapa de análisis del el número de productos de amplificación obtenidos en la primera etapa. Esta se lleva a cabo mediante la separación de los productos de amplificación o amplicones. Prácticamente cualquier método convencional puede ser utilizado dentro del marco de la invención para separar los productos de amplificación. Las técnicas para separar los productos de amplificación están ampliamente descritas en el estado de la técnica, como por ejemplo, en Sambrook et al., 2001 (citado ad supra). Técnicas para separar los productos de amplificación son, por ejemplo, electroforesis sumergida con geles de Methafor, electroforesis en geles de poliacrilamida, electroforesis capilar, etc. Next, the first method of the invention comprises a second stage of analysis of the number of amplification products obtained in the first stage. This It is carried out by separating the amplification products or amplicons. Virtually any conventional method can be used within the scope of the invention to separate the amplification products. Techniques for separating amplification products are widely described in the state of the art, such as in Sambrook et al., 2001 (cited ad supra). Techniques for separating amplification products are, for example, submerged electrophoresis with Methafor gels, polyacrylamide gels electrophoresis, capillary electrophoresis, etc.
Seguidamente a la separación de los productos de amplificación, se procede a identificar el tamaño de los fragmentos separados, para lo cual puede emplearse cualquiera de los procedimientos de identificación de fragmentos de amplificación conocidos del estado de la técnica, tales como hibridación con sondas marcadas (por ejemplo con un fluoróforo) que serán detectadas por un detector y procesadas mediante un sistema informático, tinción, por ejemplo, con bromuro de etidio, tinción de plata, etc. Tal como entiende el experto en la materia, si todo este proceso es integrado en un sistema informático, se puede generar una gráfica denominada electroferograma donde puede identificarse el tamaño de los fragmentos amplificados. Existen en el mercado numerosos sistemas que permiten este análisis, como por ejemplo, el GeneScan (Genetic Analysis System CEQ 8000, GenomeLab, Beckman Coulter). El área bajo la curva calculada para cada longitud CDR3 en una familia νβ en una distribución de probabilidad. De esta manera, la distribución de las longitudes de TCR proporciona un porcentaje de las perturbaciones del repertorio de TCR. Following the separation of the amplification products, the size of the separated fragments is identified, for which any of the methods of identification of amplification fragments known in the state of the art can be used, such as hybridization with labeled probes ( for example with a fluorophore) which will be detected by a detector and processed by a computer system, staining, for example, with ethidium bromide, silver staining, etc. As the person skilled in the art understands, if this whole process is integrated into a computer system, a graph called electropherogram can be generated where the size of the amplified fragments can be identified. There are numerous systems on the market that allow this analysis, such as the GeneScan (Genetic Analysis System CEQ 8000, GenomeLab, Beckman Coulter). The area under the curve calculated for each CDR3 length in a νβ family in a probability distribution. In this way, the distribution of the TCR lengths provides a percentage of the perturbations of the TCR repertoire.
En otra realización particular, el análisis de los productos de amplificación obtenidos en la etapa (ii) se lleva a cabo mediante determinación del tamaño y/o del mareaje de cada uno de los productos de amplificación en cada una de las reacciones de amplificación. In another particular embodiment, the analysis of the amplification products obtained in step (ii) is carried out by determining the size and / or the marking of each of the amplification products in each of the amplification reactions.
En una realización preferida, el análisis del espectro molecular de cada familia νβ se realiza mediante combinaciones de amplificaciones de diferente peso molecular y de diferentes mareajes. En una realización aún más preferida, dichas combinaciones se llevan a cabo a partir de los productos de amplificación obtenidos de las reacciones Rl y R2, los productos de amplificación obtenidos de las reacciones R3 y R4, los productos de amplificación obtenidos de las reacciones R5 y R6 y los productos de amplificación obtenidos de las reacciones R7 y R8 (de acuerdo a la Tabla 2), que se separan en sus correspondientes cuatro carreras de electroforesis. En otra realización preferida, dichas combinaciones se llevan a cabo a partir de los productos de amplificación obtenidos de las reacciones Rl y R2, los productos de amplificación obtenidos de las reacciones R3 y R4, los productos de amplificación obtenidos de las reacciones R5 y R8, y los productos de amplificación obtenidos de las reacciones R7 y R6 (de acuerdo a la Tabla 2), que se separan en sus correspondientes cuatro carreras de electroforesis. In a preferred embodiment, the analysis of the molecular spectrum of each νβ family is performed by combinations of amplifications of different molecular weight and different tides. In an even more preferred embodiment, said combinations are carried out from the amplification products obtained from the Rl and R2 reactions, the amplification products obtained from the R3 and R4 reactions, the products of amplification obtained from reactions R5 and R6 and the amplification products obtained from reactions R7 and R8 (according to Table 2), which are separated into their corresponding four electrophoresis strokes. In another preferred embodiment, said combinations are carried out from the amplification products obtained from the Rl and R2 reactions, the amplification products obtained from the R3 and R4 reactions, the amplification products obtained from the R5 and R8 reactions, and the amplification products obtained from reactions R7 and R6 (according to Table 2), which are separated into their corresponding four electrophoresis strokes.
En otra realización preferida, dichas combinaciones se llevan a cabo a partir de los productos de amplificación obtenidos las reacciones Rl y R2, los productos de amplificación obtenidos de las reacciones R3 y R6, los productos de amplificación obtenidos de las reacciones R5 y R4, y los productos de amplificación obtenidos de las reacciones R7 y R8 (de acuerdo a la Tabla 2), que se separan en sus correspondientes cuatro carreras de electroforesis. In another preferred embodiment, said combinations are carried out from the amplification products obtained the Rl and R2 reactions, the amplification products obtained from the R3 and R6 reactions, the amplification products obtained from the R5 and R4 reactions, and amplification products obtained from reactions R7 and R8 (according to Table 2), which are separated into their corresponding four electrophoresis strokes.
En otra realización preferida, dichas combinaciones se llevan a cabo a partir de los productos de amplificación obtenidos las reacciones Rl y R2, los productos de amplificación obtenidos de las reacciones R3 y R6, los productos de amplificación obtenidos de las reacciones R5 y R8, y los productos de amplificación obtenidos de las reacciones R7 y R4 (de acuerdo a la Tabla 2), que se separan en sus correspondientes cuatro carreras de electroforesis. In another preferred embodiment, said combinations are carried out from the amplification products obtained the Rl and R2 reactions, the amplification products obtained from the R3 and R6 reactions, the amplification products obtained from the R5 and R8 reactions, and amplification products obtained from reactions R7 and R4 (according to Table 2), which are separated into their corresponding four electrophoresis strokes.
En otra realización preferida, dichas combinaciones se llevan a cabo a partir de los productos de amplificación obtenidos las reacciones Rl y R2, los productos de amplificación obtenidos de las reacciones R3 y R8, los productos de amplificación obtenidos de las reacciones R5 y R4, y los productos de amplificación obtenidos de las reacciones R7 y R6 (de acuerdo a la Tabla 2), que se separan en sus correspondientes cuatro carreras de electroforesis. En otra realización preferida, dichas combinaciones se llevan a cabo a partir de los productos de amplificación obtenidos las reacciones Rl y R2, los productos de amplificación obtenidos de las reacciones R3 y R8, los productos de amplificación obtenidos de las reacciones R5 y R6, y los productos de amplificación obtenidos de las reacciones R7 y R4 (de acuerdo a la Tabla 2), que se separan en sus correspondientes cuatro carreras de electroforesis. In another preferred embodiment, said combinations are carried out from the amplification products obtained the Rl and R2 reactions, the amplification products obtained from the R3 and R8 reactions, the amplification products obtained from the R5 and R4 reactions, and amplification products obtained from reactions R7 and R6 (according to Table 2), which are separated into their corresponding four electrophoresis strokes. In another preferred embodiment, said combinations are carried out from the amplification products obtained the Rl and R2 reactions, the amplification products obtained from the R3 and R8 reactions, the amplification products obtained from the R5 and R6 reactions, and amplification products obtained from reactions R7 and R4 (according to Table 2), which are separated into their corresponding four electrophoresis strokes.
En otra realización preferida, dichas combinaciones se llevan a cabo a partir de los productos de amplificación obtenidos las reacciones Rl y R4, los productos de amplificación obtenidos de las reacciones R3 y R2, los productos de amplificación obtenidos de las reacciones R5 y R6, y los productos de amplificación obtenidos de las reacciones R7 y R8 (de acuerdo a la Tabla 2), que se separan en sus correspondientes cuatro carreras de electroforesis. En otra realización preferida, dichas combinaciones se llevan a cabo a partir de los productos de amplificación obtenidos las reacciones Rl y R4, los productos de amplificación obtenidos de las reacciones R3 y R2, los productos de amplificación obtenidos de las reacciones R5 y R8, y los productos de amplificación obtenidos de las reacciones R7 y R6 (de acuerdo a la Tabla 2), que se separan en sus correspondientes cuatro carreras de electroforesis. In another preferred embodiment, said combinations are carried out from the amplification products obtained the Rl and R4 reactions, the amplification products obtained from the R3 and R2 reactions, the amplification products obtained from the R5 and R6 reactions, and amplification products obtained from reactions R7 and R8 (according to Table 2), which are separated into their corresponding four electrophoresis strokes. In another preferred embodiment, said combinations are carried out from the amplification products obtained the Rl and R4 reactions, the amplification products obtained from the R3 and R2 reactions, the amplification products obtained from the R5 and R8 reactions, and amplification products obtained from reactions R7 and R6 (according to Table 2), which are separated into their corresponding four electrophoresis strokes.
En otra realización preferida, dichas combinaciones se llevan a cabo a partir de los productos de amplificación obtenidos las reacciones Rl y R4, los productos de amplificación obtenidos de las reacciones R3 y R6, los productos de amplificación obtenidos de las reacciones R5 y R2, y los productos de amplificación obtenidos de las reacciones R7 y R8 (de acuerdo a la Tabla 2), que se separan en sus correspondientes cuatro carreras de electroforesis. In another preferred embodiment, said combinations are carried out from the amplification products obtained the Rl and R4 reactions, the amplification products obtained from the R3 and R6 reactions, the amplification products obtained from the R5 and R2 reactions, and amplification products obtained from reactions R7 and R8 (according to Table 2), which are separated into their corresponding four electrophoresis strokes.
En otra realización preferida, dichas combinaciones se llevan a cabo a partir de los productos de amplificación obtenidos las reacciones Rl y R4, los productos de amplificación obtenidos de las reacciones R3 y R8, los productos de amplificación obtenidos de las reacciones R5 y R2, y los productos de amplificación obtenidos de las reacciones R7 y R6 (de acuerdo a la Tabla 2), que se separan en sus correspondientes cuatro carreras de electroforesis. In another preferred embodiment, said combinations are carried out from the amplification products obtained the Rl and R4 reactions, the amplification products obtained from the R3 and R8 reactions, the amplification products obtained from the R5 and R2 reactions, and amplification products obtained from R7 and R6 reactions (according to Table 2), which are separated into their corresponding four electrophoresis strokes.
En otra realización preferida, dichas combinaciones se llevan a cabo a partir de los productos de amplificación obtenidos las reacciones Rl y R4, los productos de amplificación obtenidos de las reacciones R3 y R8, los productos de amplificación obtenidos de las reacciones R5 y R6, y los productos de amplificación obtenidos de las reacciones R7 y R2 (de acuerdo a la Tabla 2), que se separan en sus correspondientes cuatro carreras de electroforesis. In another preferred embodiment, said combinations are carried out from the amplification products obtained the Rl and R4 reactions, the amplification products obtained from the R3 and R8 reactions, the amplification products obtained from the R5 and R6 reactions, and amplification products obtained from reactions R7 and R2 (according to Table 2), which are separated into their corresponding four electrophoresis strokes.
En otra realización preferida, dichas combinaciones se llevan a cabo a partir de los productos de amplificación obtenidos las reacciones Rl y R4, los productos de amplificación obtenidos de las reacciones R3 y R6, los productos de amplificación obtenidos de las reacciones R5 y R8, y los productos de amplificación obtenidos de las reacciones R7 y R2 (de acuerdo a la Tabla 2), que se separan en sus correspondientes cuatro carreras de electroforesis. In another preferred embodiment, said combinations are carried out from the amplification products obtained the Rl and R4 reactions, the amplification products obtained from the R3 and R6 reactions, the amplification products obtained from the R5 and R8 reactions, and amplification products obtained from reactions R7 and R2 (according to Table 2), which are separated into their corresponding four electrophoresis strokes.
En otra realización preferida, dichas combinaciones se llevan a cabo a partir de los productos de amplificación obtenidos las reacciones Rl y R6, los productos de amplificación obtenidos de las reacciones R3 y R2, los productos de amplificación obtenidos de las reacciones R5 y R4, y los productos de amplificación obtenidos de las reacciones R7 y R8 (de acuerdo a la Tabla 2), que se separan en sus correspondientes cuatro carreras de electroforesis. En otra realización preferida, dichas combinaciones se llevan a cabo a partir de los productos de amplificación obtenidos las reacciones Rl y R6, los productos de amplificación obtenidos de las reacciones R3 y R2, los productos de amplificación obtenidos de las reacciones R5 y R8, y los productos de amplificación obtenidos de las reacciones R7 y R4 (de acuerdo a la Tabla 2), que se separan en sus correspondientes cuatro carreras de electroforesis. En otra realización preferida, dichas combinaciones se llevan a cabo a partir de los productos de amplificación obtenidos las reacciones Rl y R6, los productos de amplificación obtenidos de las reacciones R3 y R4, los productos de amplificación obtenidos de las reacciones R5 y R2, y los productos de amplificación obtenidos de las reacciones R7 y R8 (de acuerdo a la Tabla 2), que se separan en sus correspondientes cuatro carreras de electroforesis. In another preferred embodiment, said combinations are carried out from the amplification products obtained the Rl and R6 reactions, the amplification products obtained from the R3 and R2 reactions, the amplification products obtained from the R5 and R4 reactions, and amplification products obtained from reactions R7 and R8 (according to Table 2), which are separated into their corresponding four electrophoresis strokes. In another preferred embodiment, said combinations are carried out from the amplification products obtained the Rl and R6 reactions, the amplification products obtained from the R3 and R2 reactions, the amplification products obtained from the R5 and R8 reactions, and amplification products obtained from reactions R7 and R4 (according to Table 2), which are separated into their corresponding four electrophoresis strokes. In another preferred embodiment, said combinations are carried out from the amplification products obtained the Rl and R6 reactions, the amplification products obtained from the R3 and R4 reactions, the amplification products obtained from the R5 and R2 reactions, and amplification products obtained from reactions R7 and R8 (according to Table 2), which are separated into their corresponding four electrophoresis strokes.
En otra realización preferida, dichas combinaciones se llevan a cabo a partir de los productos de amplificación obtenidos las reacciones Rl y R6, los productos de amplificación obtenidos de las reacciones R3 y R8, los productos de amplificación obtenidos de las reacciones R5 y R2, y los productos de amplificación obtenidos de las reacciones R7 y R4 (de acuerdo a la Tabla 2), que se separan en sus correspondientes cuatro carreras de electroforesis. En otra realización preferida, dichas combinaciones se llevan a cabo a partir de los productos de amplificación obtenidos las reacciones Rl y R6, los productos de amplificación obtenidos de las reacciones R3 y R8, los productos de amplificación obtenidos de las reacciones R5 y R4, y los productos de amplificación obtenidos de las reacciones R7 y R2 (de acuerdo a la Tabla 2), que se separan en sus correspondientes cuatro carreras de electroforesis. In another preferred embodiment, said combinations are carried out from the amplification products obtained the Rl and R6 reactions, the amplification products obtained from the R3 and R8 reactions, the amplification products obtained from the R5 and R2 reactions, and amplification products obtained from reactions R7 and R4 (according to Table 2), which are separated into their corresponding four electrophoresis strokes. In another preferred embodiment, said combinations are carried out from the amplification products obtained the Rl and R6 reactions, the amplification products obtained from the R3 and R8 reactions, the amplification products obtained from the R5 and R4 reactions, and amplification products obtained from reactions R7 and R2 (according to Table 2), which are separated into their corresponding four electrophoresis strokes.
En otra realización preferida, dichas combinaciones se llevan a cabo a partir de los productos de amplificación obtenidos las reacciones Rl y R6, los productos de amplificación obtenidos de las reacciones R3 y R4, los productos de amplificación obtenidos de las reacciones R5 y R8, y los productos de amplificación obtenidos de las reacciones R7 y R2 (de acuerdo a la Tabla 2), que se separan en sus correspondientes cuatro carreras de electroforesis. In another preferred embodiment, said combinations are carried out from the amplification products obtained the Rl and R6 reactions, the amplification products obtained from the R3 and R4 reactions, the amplification products obtained from the R5 and R8 reactions, and amplification products obtained from reactions R7 and R2 (according to Table 2), which are separated into their corresponding four electrophoresis strokes.
En otra realización preferida, dichas combinaciones se llevan a cabo a partir de los productos de amplificación obtenidos las reacciones Rl y R8, los productos de amplificación obtenidos de las reacciones R3 y R2, los productos de amplificación obtenidos de las reacciones R5 y R6, y los productos de amplificación obtenidos de las reacciones R7 y R4 (de acuerdo a la Tabla 2), que se separan en sus correspondientes cuatro carreras de electroforesis. In another preferred embodiment, said combinations are carried out from the amplification products obtained the Rl and R8 reactions, the amplification products obtained from the R3 and R2 reactions, the amplification products obtained from the R5 and R6 reactions, and amplification products obtained from R7 and R4 reactions (according to Table 2), which are separated into their corresponding four electrophoresis strokes.
En otra realización preferida, dichas combinaciones se llevan a cabo a partir de los productos de amplificación obtenidos las reacciones Rl y R8, los productos de amplificación obtenidos de las reacciones R3 y R2, los productos de amplificación obtenidos de las reacciones R5 y R4, y los productos de amplificación obtenidos de las reacciones R7 y R6 (de acuerdo a la Tabla 2), que se separan en sus correspondientes cuatro carreras de electroforesis. In another preferred embodiment, said combinations are carried out from the amplification products obtained the Rl and R8 reactions, the amplification products obtained from the R3 and R2 reactions, the amplification products obtained from the R5 and R4 reactions, and amplification products obtained from reactions R7 and R6 (according to Table 2), which are separated into their corresponding four electrophoresis strokes.
En otra realización preferida, dichas combinaciones se llevan a cabo a partir de los productos de amplificación obtenidos las reacciones Rl y R8, los productos de amplificación obtenidos de las reacciones R3 y R4, los productos de amplificación obtenidos de las reacciones R5 y R2, y los productos de amplificación obtenidos de las reacciones R7 y R6 (de acuerdo a la Tabla 2), que se separan en sus correspondientes cuatro carreras de electroforesis. In another preferred embodiment, said combinations are carried out from the amplification products obtained the Rl and R8 reactions, the amplification products obtained from the R3 and R4 reactions, the amplification products obtained from the R5 and R2 reactions, and amplification products obtained from reactions R7 and R6 (according to Table 2), which are separated into their corresponding four electrophoresis strokes.
En otra realización preferida, dichas combinaciones se llevan a cabo a partir de los productos de amplificación obtenidos las reacciones Rl y R8, los productos de amplificación obtenidos de las reacciones R3 y R6, los productos de amplificación obtenidos de las reacciones R5 y R2, y los productos de amplificación obtenidos de las reacciones R7 y R4 (de acuerdo a la Tabla 2), que se separan en sus correspondientes cuatro carreras de electroforesis. En otra realización preferida, dichas combinaciones se llevan a cabo a partir de los productos de amplificación obtenidos las reacciones Rl y R8, los productos de amplificación obtenidos de las reacciones R3 y R4, los productos de amplificación obtenidos de las reacciones R5 y R6, y los productos de amplificación obtenidos de las reacciones R7 y R2 (de acuerdo a la Tabla 2), que se separan en sus correspondientes cuatro carreras de electroforesis. En otra realización preferida, dichas combinaciones se llevan a cabo a partir de los productos de amplificación obtenidos las reacciones Rl y R8, los productos de amplificación obtenidos de las reacciones R3 y R6, los productos de amplificación obtenidos de las reacciones R5 y R4, y los productos de amplificación obtenidos de las reacciones R7 y R2 (de acuerdo a la Tabla 2), que se separan en sus correspondientes cuatro carreras de electroforesis. In another preferred embodiment, said combinations are carried out from the amplification products obtained the Rl and R8 reactions, the amplification products obtained from the R3 and R6 reactions, the amplification products obtained from the R5 and R2 reactions, and amplification products obtained from reactions R7 and R4 (according to Table 2), which are separated into their corresponding four electrophoresis strokes. In another preferred embodiment, said combinations are carried out from the amplification products obtained the Rl and R8 reactions, the amplification products obtained from the R3 and R4 reactions, the amplification products obtained from the R5 and R6 reactions, and amplification products obtained from reactions R7 and R2 (according to Table 2), which are separated into their corresponding four electrophoresis strokes. In another preferred embodiment, said combinations are carried out from the amplification products obtained the Rl and R8 reactions, the amplification products obtained from the R3 and R6 reactions, the amplification products obtained from the R5 and R4 reactions, and amplification products obtained from reactions R7 and R2 (according to Table 2), which are separated into their corresponding four electrophoresis strokes.
En otra realización particular del método, dicho método comprende además una amplificación adicional del ADNc empleando al menos un cebador adicional que híbrida con el segmento C del gen que codifica para la cadena β del TCR. En una realización preferida, la secuencia de dicho al menos un cebador adicional comprende SEQ ID NO:26 y/o SEQ ID NO:27, o variantes de dichos cebadores que conservan la capacidad de hibridar específicamente con la región correspondiente del segmento C del gen que codifica para la región constante de la cadena β del TCR. In another particular embodiment of the method, said method further comprises additional amplification of the cDNA using at least one additional primer that hybridizes with the C segment of the gene encoding the β chain of the TCR. In a preferred embodiment, the sequence of said at least one additional primer comprises SEQ ID NO: 26 and / or SEQ ID NO: 27, or variants of said primers that retain the ability to hybridize specifically with the corresponding region of segment C of the gene which codes for the constant region of the β chain of the TCR.
En otra realización particular del método, la muestra es una muestra de sangre periférica. En una realización preferida, la muestra es una muestra de sangre periférica enriquecida en células CD4+ o CD8+. Usos de la invención In another particular embodiment of the method, the sample is a peripheral blood sample. In a preferred embodiment, the sample is a peripheral blood sample enriched in CD4 + or CD8 + cells. Uses of the invention
En un tercer aspecto, la invención se relaciona con el uso de la composición o kit del primer aspecto, o del método del segundo aspecto, en el diagnóstico de una patología. El término "diagnóstico", tal y como se utiliza en la presente invención, se refiere al procedimiento por el cual se identifica una enfermedad, entidad nosológica, síndrome o cualquier condición de salud. In a third aspect, the invention relates to the use of the composition or kit of the first aspect, or of the method of the second aspect, in the diagnosis of a pathology. The term "diagnosis", as used in the present invention, refers to the procedure by which a disease, nosological entity, syndrome or any health condition is identified.
El término "patología", tal y como se utiliza en la presente invención, se refiere a un proceso en el que el repertorio de linfocitos se ve alterado. Estos procesos patológicos incluyen procesos infecciosos, procesos tumorales e inmunodeficiencias. En una realización particular, dicha patología es una inmunodeficiencia. Ejemplos no limitativos de inmunodeficiencias incluyen las inmunodeficiencias provocadas por diabetes mellitus, insuficiencia hepática, hepatitis, linfangiectasia intestinal, anemia aplásica, cáncer, enfermedad huésped-contra-injerto, fármacos quimioterapéuticos, fármacos inmunosupresores, corticosteroides, radioterapia, citomegalovirus, virus Epstein-Barr, VIH, virus del sarampión, virus de la varicela-zoster, alcoholismo, desnutrición, síndrome nefrótico, insuficiencia renal, uremia, artritis reumatoide, lupus eritematoso sistémico, quemaduras y anormalidades cromosómicas. The term "pathology", as used in the present invention, refers to a process in which the lymphocyte repertoire is altered. These pathological processes include infectious processes, tumor processes and immunodeficiencies. In a particular embodiment, said pathology is an immunodeficiency. Examples no Limitations of immunodeficiencies include immunodeficiencies caused by diabetes mellitus, liver failure, hepatitis, intestinal lymphangiectasia, aplastic anemia, cancer, host-versus-graft disease, chemotherapeutic drugs, immunosuppressive drugs, corticosteroids, radiotherapy, cytomegalovirus, Epstein-Barr virus, HIV, measles virus, varicella-zoster virus, alcoholism, malnutrition, nephrotic syndrome, renal failure, uremia, rheumatoid arthritis, systemic lupus erythematosus, burns and chromosomal abnormalities.
Como entenderá el experto en la materia, el diagnóstico de una patología comprende una primera etapa (i), en la que se analiza el repertorio de células T en un sujeto tal y como se ha descrito en el primer método de la invención, y una segunda etapa (ii), en la que el resultado del análisis realizado en la etapa (i) se compara con el obtenido para una muestra control. Si dichos resultados difieren sustancialmente entre sí, entonces es indicativo de que el sujeto sufre una patología, tal y como se entiende en la presente invención. Si dichos resultados no difieren sustancialmente entre sí, entonces es indicativo de que el sujeto no sufre una patología, tal y como se entiende en la presente invención. As the person skilled in the art will understand, the diagnosis of a pathology comprises a first stage (i), in which the repertoire of T cells in a subject as described in the first method of the invention is analyzed, and a second stage (ii), in which the result of the analysis performed in stage (i) is compared with that obtained for a control sample. If these results differ substantially from each other, then it is indicative that the subject undergoes a pathology, as understood in the present invention. If these results do not differ substantially from each other, then it is indicative that the subject does not suffer a pathology, as is understood in the present invention.
El término "muestra control", tal y como se utiliza en la presente invención, se refiere a una muestra obtenida de un sujeto sano. The term "control sample", as used in the present invention, refers to a sample obtained from a healthy subject.
El término "sujeto", tal y como se utiliza en la presente invención, incluye a cualquier mamífero; ejemplos no limitativos son animales domésticos y ganado, primates y humanos. Preferiblemente, el sujeto es un ser humano, hombre o mujer, de cualquier edad o raza. Prácticamente cualquier sujeto puede ser analizado según la presente invención para analizar su repertorio de células T. No obstante, en una realización particular, dicho sujeto es un sujeto sobre el que se desea diagnosticar una patología. En otra realización particular, dicho sujeto es un paciente sobre el que se quiere monitorizar la evolución de una patología en respuesta a un tratamiento. El término "paciente", tal y como aquí se utiliza, se refiere a un sujeto que sufre de patología, aunque dicho sujeto no haya sido diagnosticado todavía. El término "sujeto sano", tal y como se utiliza en la presente invención, incluye cualquier sujeto que no curse una patología donde el repertorio de linfocitos se ve alterado. Preferiblemente, el sujeto sano es un ser humano, hombre o mujer, de cualquier edad o raza. The term "subject", as used in the present invention, includes any mammal; Non-limiting examples are domestic animals and livestock, primates and humans. Preferably, the subject is a human being, male or female, of any age or race. Virtually any subject can be analyzed according to the present invention to analyze its repertoire of T cells. However, in a particular embodiment, said subject is a subject on which it is desired to diagnose a pathology. In another particular embodiment, said subject is a patient on whom one wants to monitor the evolution of a pathology in response to a treatment. The term "patient", as used herein, refers to a subject suffering from pathology, although said subject has not yet been diagnosed. The term "healthy subject", as used in the present invention, includes any subject that does not have a pathology where the lymphocyte repertoire is altered. Preferably, the healthy subject is a human being, male or female, of any age or race.
En una realización particular, la patología se diagnostica comprobando las alteraciones en el repertorio del TCR en células CD8+. En una realización preferida, dichas alteraciones en el repertorio del TCR en células CD8+ se comprueban durante la infección por el VIH-1 en pacientes infectados. In a particular embodiment, the pathology is diagnosed by checking the alterations in the TCR repertoire in CD8 + cells. In a preferred embodiment, said alterations in the repertoire of the TCR in CD8 + cells are checked during HIV-1 infection in infected patients.
Preferiblemente, los pacientes que pueden ser analizados con el método de la presente invención, incluyen, sin limitación, aquellos pacientes que sufren el síndrome de inmunodeficiencia adquirida. El término "síndrome de inmunodeficiencia adquirida (SIDA)", tal y como se utiliza en la presente invención, se refiere a una enfermedad que afecta a los humanos infectados por el VIH. Se dice que una persona padece de SIDA cuando su organismo, debido a la inmunodeficiencia provocada por el VIH, no es capaz de ofrecer una respuesta inmune adecuada contra las infecciones. Cabe destacar la diferencia entre estar infectado por el VIH y padecer de SIDA. Una persona infectada por el VIH es seropositiva y pasa a desarrollar un cuadro de SIDA cuando su nivel de linfocitos T CD4+, células que ataca el virus, desciende por debajo de 200 células por mililitro de sangre. El VIH ataca específicamente a los linfocitos T CD4+ y entra en ellos. Una vez dentro, el virus transforma su material genético de cadena simple (ARN) a uno de cadena doble (ADN) para incorporarlo al material genético propio del huésped (persona infectada) y lo utiliza para replicarse o hacer copias de sí mismo. Las nuevas copias del virus salen de las células, a las cuáles lisan, a la sangre para infectar a otros linfocitos T CD4+. Este ciclo se repite una y otra vez. Preferably, patients who can be analyzed with the method of the present invention include, without limitation, those patients suffering from acquired immunodeficiency syndrome. The term "acquired immunodeficiency syndrome (AIDS)", as used in the present invention, refers to a disease that affects HIV-infected humans. It is said that a person suffers from AIDS when their organism, due to the immunodeficiency caused by HIV, is not able to offer an adequate immune response against infections. Note the difference between being infected with HIV and suffering from AIDS. An HIV-infected person is HIV positive and goes on to develop an AIDS picture when their level of CD4 + T cells, cells that attack the virus, drops below 200 cells per milliliter of blood. HIV specifically attacks CD4 + T cells and enters them. Once inside, the virus transforms its single-stranded genetic material (RNA) to a double-stranded (DNA) one to incorporate it into the host's own genetic material (infected person) and uses it to replicate or make copies of itself. The new copies of the virus leave the cells, which they lysate, into the blood to infect other CD4 + T cells. This cycle is repeated again and again.
La infección por VIH se clasifica en diferentes categorías, de acuerdo con los síntomas y afecciones que tenga el paciente: HIV infection is classified into different categories, according to the symptoms and conditions that the patient has:
. Categoría A: pacientes con infección primaria o asintomáticos.  . Category A: patients with primary or asymptomatic infection.
Categoría B: pacientes que presentan o hayan presentado síntomas que no pertenecen a la categoría C, pero que están relacionados con la infección de VIH. Estos incluyen angiomatosis bacilar, candidiasis vulvo-vaginal, o candidiasis oral resistente al tratamiento, displasia de cérvix uterino o carcinoma de cérvix no invasivo, enfermedad pélvica inflamatoria (EPI), fiebre menor a 38,5 °C o diarrea, de más de un mes de duración, herpes zóster (más de un episodio, o un episodio con afección de más de un dermatoma), leucoplasia oral vellosa, neuropatía periférica, púrpura trombocitopénica idiopática. Category B: patients who present or have presented symptoms that do not belong to category C, but are related to HIV infection. These include bacillary angiomatosis, vulvo-vaginal candidiasis, or treatment-resistant oral candidiasis, uterine cervix dysplasia or non-invasive cervical carcinoma, pelvic inflammatory disease (PID), fever less than 38.5 ° C or diarrhea, of more than one Month-long, shingles (more than one episode, or an episode with more than one dermatome), hairy oral leukoplakia, peripheral neuropathy, idiopathic thrombocytopenic purpura.
Categoría C: pacientes que presentan o hayan presentado algunas complicaciones incluidas en la definición de SIDA de 1987 de la OMS:  Category C: patients who present or have presented some complications included in the WHO definition of AIDS of 1987:
a) Infecciones oportunistas:  a) Opportunistic infections:
Infecciones bacterianas: septicemia por Salmonella recurrente (diferente a Salmonella typhy), tuberculosis, infección por el complejo Mycobacterium avium (MAI), infecciones por micobacterias atípicas.  Bacterial infections: recurrent Salmonella septicemia (other than Salmonella typhy), tuberculosis, Mycobacterium avium complex infection (MAI), atypical mycobacterial infections.
Infecciones víricas: infección por citomegalovirus (retinitis o diseminada), infección por el virus del herpes simple (VHS tipos 1 y 2), puede ser crónica o en forma de bronquitis, neumonitis o esofagitis.  Viral infections: cytomegalovirus infection (retinitis or disseminated), herpes simplex virus infection (HSV types 1 and 2), can be chronic or in the form of bronchitis, pneumonitis or esophagitis.
Infecciones fúngicas: aspergilosis, candidiasis, tanto diseminada como del esófago, tráquea o pulmones, coccidiodomicosis, extrapulmonar o diseminada, criptococcosis extrapulmonar, histoplasmosis, ya sea diseminada o extrapulmonar.  Fungal infections: aspergillosis, candidiasis, both disseminated and of the esophagus, trachea or lungs, coccidiodomycosis, extrapulmonary or disseminated, extrapulmonary cryptococcosis, histoplasmosis, either disseminated or extrapulmonary.
Infecciones por protozoos: neumonía por Pneumocystis jiroveci, toxoplasmosis neurológica, criptosporidiosis intestinal crónica, isosporiasis intestinal crónica.  Protozoal infections: Pneumocystis jiroveci pneumonia, neurological toxoplasmosis, chronic intestinal cryptosporidiosis, chronic intestinal isosporiasis.
b) Procesos cronificados: bronquitis y neumonía. b) Chronified processes: bronchitis and pneumonia.
c) Procesos asociados directamente con el VIH: demencia relacionada con el VIH c) Processes directly associated with HIV: HIV-related dementia
(encefalopatía por VIH), leucoencefalopatía multifocal progresiva, síndrome de desgaste o wasting syndrome. (HIV encephalopathy), progressive multifocal leukoencephalopathy, wasting syndrome or wasting syndrome.
d) Procesos tumorales: sarcoma de Kaposi, linfoma de Burkitt, otros linfomas no- d) Tumor processes: Kaposi's sarcoma, Burkitt lymphoma, other non-lymphomas
Hodgkin, especialmente linfoma inmunoblástico, linfoma cerebral primario o linfoma de células B, carcinoma invasivo de cérvix. No todos los pacientes infectados con el virus VIH tienen SIDA. El criterio para diagnosticar el SIDA puede variar de región en región, pero el diagnóstico típicamente requiere: Hodgkin, especially immunoblastic lymphoma, primary brain lymphoma or B-cell lymphoma, invasive carcinoma of the cervix. Not all patients infected with the HIV virus have AIDS. The criteria for diagnosing AIDS may vary from region to region, but the diagnosis typically requires:
un recuento absoluto de las células T CD4+ menor a 200 por milímetro cúbico, o - la presencia de alguna de las infecciones oportunistas típicas, causadas por agentes incapaces de producir enfermedad en personas sanas.  an absolute count of CD4 + T cells less than 200 per cubic millimeter, or - the presence of any of the typical opportunistic infections, caused by agents unable to cause disease in healthy people.
La terapia antiretroviral incluye, sin estar limitada a, TARGA (Terapia Antirretroviral de Gran Actividad), inhibidores de proteasa, inhibidores de la fusión, inhibidores de la integrasa, agentes específicos de co-receptor, 3TC, AZT, nevirapina, inhibidores de la transcriptasa inversa no análogos de nucleósidos e inhibidores de la transcriptasa inversa análogos de nucleósidos. TARGA es una combinación de tres o más fármacos antirretrovirales. El término "TARGA", tal y como se utiliza en la presente invención, se refiere a una combinación de agentes antirretrovirales altamente activos y normalmente comprende tres fármacos. Ejemplos no limitativos de inhibidores de la transcriptasa inversa incluyen inhibidores de la transcriptasa inversa análogos de nucleósidos como zidovudina (AZT, Retrovir), didanosina (ddl, Videx), estavudina (d4T, Zerit), lamivudina, (3TC, Epivir), abacavir (ABC, Ziagen), tenofovir (TDF, Viread), combivir (CBV, combinación de AZT y 3TC), e inhibidores de la transcriptasa inversa no análogos de nucleósidos como nevirapina (NVP, Viramune), delavirdina (DLV, rescriptor), efavirenz (EFV, sustiva,). Ejemplos no limitativos de inhibidores de proteasa incluyen saquinavir (SQV, Invirase), ritonavir (RTV, Norvir), indinavir (IDV, Crixivan), nelfinavir (NFV,Viracept), fosamprenivir (FPV, Lexiva), kaletra (lopinavir y ritonavir) y fortovase (saquinavir en formulación de gelatina blanda). Antiretroviral therapy includes, but is not limited to, HAART (High Activity Antiretroviral Therapy), protease inhibitors, fusion inhibitors, integrase inhibitors, specific co-receptor agents, 3TC, AZT, nevirapine, transcriptase inhibitors Reverse non-nucleoside analogs and reverse transcriptase inhibitors nucleoside analogues. TARGA is a combination of three or more antiretroviral drugs. The term "HAART", as used in the present invention, refers to a combination of highly active antiretroviral agents and usually comprises three drugs. Non-limiting examples of reverse transcriptase inhibitors include nucleoside analog reverse transcriptase inhibitors such as zidovudine (AZT, Retrovir), didanosine (ddl, Videx), stavudine (d4T, Zerit), lamivudine, (3TC, Epivir), abacavir ( ABC, Ziagen), tenofovir (TDF, Viread), combivir (CBV, combination of AZT and 3TC), and non-nucleoside reverse transcriptase inhibitors such as nevirapine (NVP, Viramune), delavirdine (DLV, rescriptor), efavirenz ( EFV, substitute,). Non-limiting examples of protease inhibitors include saquinavir (SQV, Invirase), ritonavir (RTV, Norvir), indinavir (IDV, Crixivan), nelfinavir (NFV, Viracept), fosamprenivir (FPV, Lexiva), kaletra (lopinavir and ritonavir) and fortovase (saquinavir in soft gelatin formulation).
El término "VIH", tal y como se utiliza en la presente invención, pretende incluir el VIH-1 y VIH-2. El "VIH-1 " denomina al virus de inmunodeficiencia humana tipo-1. VIH-1 incluye pero no se limita a las partículas de virus extracelular y las formas del VIH-1 asociados con el VIH-1 las células infectadas. El ''VIH-2'1, denomina al virus de inmunodeficiencia humana tipo-2. VIH-2 incluye pero no se limita a las partículas de virus extracelular y las formas del VIH-2 asociados con el VIH-2 en células infectadas. El virus del VIH-1 puede incluir el grupo M con los subtipos principales conocidos (A, B, C, D, E, F, G y H), el grupo O, el grupo N, y formas recombinantes, incluyendo cepas de laboratorio y aislados primarios. The term "HIV", as used in the present invention, is intended to include HIV-1 and HIV-2. "HIV-1" refers to the human immunodeficiency virus type-1. HIV-1 includes but is not limited to extracellular virus particles and forms of HIV-1 associated with HIV-1 infected cells. The '' HIV-2 ' 1 , calls the human immunodeficiency virus type-2. HIV-2 includes but is not limited to extracellular virus particles and forms of HIV-2 associated with HIV-2 in infected cells. The HIV-1 virus can include the M group with the main known subtypes (A, B, C, D, E, F, G and H), group O, group N, and recombinant forms, including laboratory strains and primary isolates.
Métodos para la monitorización de la evolución de una patología en un paciente Methods for monitoring the evolution of a pathology in a patient
En un cuarto aspecto, la invención se relaciona con un método para la monitorización de la evolución de una patología en un paciente en respuesta a un tratamiento, en adelante segundo método de la invención, que comprende determinar la complejidad del repertorio de células T en una muestra de dicho paciente tras ser sometido a dicho tratamiento usando un método del segundo aspecto de la invención, en donde un aumento de la complejidad de dicho repertorio con respecto a la complejidad antes de iniciar el tratamiento es indicativo de que el paciente responde a dicho tratamiento. In a fourth aspect, the invention relates to a method for monitoring the evolution of a pathology in a patient in response to a treatment, hereinafter second method of the invention, which comprises determining the complexity of the repertoire of T cells in a sample of said patient after being subjected to said treatment using a method of the second aspect of the invention, wherein an increase in the complexity of said repertoire with respect to complexity before starting treatment is indicative that the patient responds to said treatment. .
El término "sujeto", tal y como se utiliza en la presente invención, incluye a cualquier mamífero; ejemplos no limitativos son animales domésticos y ganado, primates y humanos. Preferiblemente, el sujeto es un ser humano, hombre o mujer, de cualquier edad o raza. Prácticamente cualquier sujeto puede ser analizado según la presente invención para analizar su repertorio de células T. No obstante, en una realización particular, dicho sujeto es un sujeto sobre el que se desea diagnosticar una patología. En otra realización particular, dicho sujeto es un paciente sobre el que se quiere monitorizar la evolución de una patología en respuesta a un tratamiento. El término "paciente", tal y como aquí se utiliza, se refiere a un sujeto que sufre de patología, aunque dicho sujeto no haya sido diagnosticado todavía. El término "patología", tal y como se utiliza en la presente invención, se refiere a un proceso en el que el repertorio de linfocitos se ve alterado. Estos procesos patológicos incluyen procesos infecciosos, procesos tumorales e inmunodeficiencias. En una realización particular, dicha patología es una inmunodeficiencia. Ejemplos no limitativos de inmunodeficiencias incluyen las inmunodeficiencias provocadas por diabetes mellitus, insuficiencia hepática, hepatitis, linfangiectasia intestinal, anemia aplásica, cáncer, enfermedad huésped-contra-injerto, fármacos quimioterapéuticos, fármacos inmunosupresores, corticosteroides, radioterapia, citomegalovirus, virus Epstein-Barr, VIH, víais del sarampión, virus de la varicela-zoster, alcoholismo, desnutrición, síndrome nefrótico, insuficiencia renal, uremia, artritis reumatoide, lupus eritematoso sistémico, quemaduras y anormalidades cromosómicas. Preferiblemente, los pacientes que pueden ser analizados con el método de la presente invención, incluyen, sin limitación, aquellos pacientes que sufren el síndrome de inmunodeficiencia adquirida. The term "subject", as used in the present invention, includes any mammal; Non-limiting examples are domestic animals and livestock, primates and humans. Preferably, the subject is a human being, male or female, of any age or race. Virtually any subject can be analyzed according to the present invention to analyze its repertoire of T cells. However, in a particular embodiment, said subject is a subject on which it is desired to diagnose a pathology. In another particular embodiment, said subject is a patient on whom one wants to monitor the evolution of a pathology in response to a treatment. The term "patient", as used herein, refers to a subject suffering from pathology, although said subject has not yet been diagnosed. The term "pathology", as used in the present invention, refers to a process in which the lymphocyte repertoire is altered. These pathological processes include infectious processes, tumor processes and immunodeficiencies. In a particular embodiment, said pathology is an immunodeficiency. Non-limiting examples of immunodeficiencies include immunodeficiencies caused by diabetes mellitus, liver failure, hepatitis, intestinal lymphangiectasia, aplastic anemia, cancer, host-versus-graft disease, chemotherapeutic drugs, immunosuppressive drugs, corticosteroids, radiotherapy, cytomegalovirus, viruses Epstein-Barr, HIV, measles pathway, varicella-zoster virus, alcoholism, malnutrition, nephrotic syndrome, renal failure, uremia, rheumatoid arthritis, systemic lupus erythematosus, burns and chromosomal abnormalities. Preferably, patients who can be analyzed with the method of the present invention include, without limitation, those patients suffering from acquired immunodeficiency syndrome.
En una realización preferida, la patología es el síndrome de inmunodeficiencia adquirida (SIDA) o una patología asociada a la infección por VIH. En otra realización preferida del método, la terapia es TARGA. In a preferred embodiment, the pathology is acquired immunodeficiency syndrome (AIDS) or a pathology associated with HIV infection. In another preferred embodiment of the method, the therapy is HAART.
Los términos "síndrome de inmunodeficiencia adquirida (SIDA)", "infección por VIH" y "VIH", tal y como se utilizan en la presente invención, se describen en detalle en el tercer aspecto de la invención. The terms "acquired immunodeficiency syndrome (AIDS)", "HIV infection" and "HIV", as used in the present invention, are described in detail in the third aspect of the invention.
La invención se describe a través de los siguientes ejemplos que tienen carácter puramente ilustrativo y no limitativo de la invención. EJEMPLOS The invention is described through the following examples that are purely illustrative and not limiting of the invention. EXAMPLES
Materiales y métodos Materials and methods
Pacientes Patients
El grupo de pacientes con interrupción de HAART se ha descrito en Vallejo et al, 2005 (Vallejo et al, 2005, Viral Immunol 18:740-6). Hasta febrero de 2006, 55 pacientes de raza blanca mediterránea con carga viral de VIH-1 plasmático de menos de 50 copias/ml al menos durante los últimos 12 meses, y con un recuento de células T CD4 por encima de 500 células/mm3 en el momento de interrupción del tratamiento, participaron en el estudio. TARGA se reanudó bien cuando el recuento de células T CD4 alcanzó las 250 células/mm3, por progresión clínica, o por decisión propia. Diez pacientes tuvieron muestras de células mononucleares de sangre periférica (en inglés, peripheric blood mononuclear cells, PBMCs) disponibles para llevar a cabo este estudio. El consentimiento informado para la recolección y análisis de muestras de sangre se obtuvo de todos ellos. Sus características clínicas se muestran en la Tabla 3. Tabla 3 : Características de los pacientes al inicio del estudio. The group of patients with HAART interruption has been described in Vallejo et al, 2005 (Vallejo et al, 2005, Viral Immunol 18: 740-6). Until February 2006, 55 Mediterranean white patients with plasma HIV-1 viral load of less than 50 copies / ml for at least the last 12 months, and with a CD4 T cell count above 500 cells / mm 3 At the time of treatment interruption, they participated in the study. TARGA resumed well when the CD4 T cell count reached 250 cells / mm 3 , by clinical progression, or by choice. Ten patients had samples of peripheral blood mononuclear cells (in English, peripheric blood mononuclear cells, PBMCs) available to carry out this study. Informed consent for the collection and analysis of blood samples was obtained from all of them. Their clinical characteristics are shown in Table 3. Table 3: Characteristics of the patients at the beginning of the study.
Código Género Edad Riesgo Tiempo en Recuento CD4 Tiempo tratamiento (células/mm3) desde (meses) diagnosisCode Gender Age Risk Count time CD4 Treatment time (cells / mm 3 ) since (months) diagnosis
BL IT RT BL IT TR BL IT RT BL IT TR
1 M 43 Homo 153 33 40 1083 556 640 161 1 M 43 Homo 153 33 40 1083 556 640 161
2 M 41 UDI 33 18 35 1000 331 847 1572 M 41 IDU 33 18 35 1000 331 847 157
3 F 35 Hete 40 22 29 984 418 253 403 F 35 Hete 40 22 29 984 418 253 40
4 M 21 Hete 24 39 12 1231 519 827 244 M 21 Hete 24 39 12 1231 519 827 24
5 M 31 Homo 27 24 22 704 315 765 275 M 31 Homo 27 24 22 704 315 765 27
6 M 41 UDI 113 25 20 774 620 720 1896 M 41 IDU 113 25 20 774 620 720 189
7 M 43 Hete 145 23 25 1169 198 784 1557 M 43 Hete 145 23 25 1169 198 784 155
8 M 41 Homo 176 20 31 1207 471 806 1958 M 41 Homo 176 20 31 1207 471 806 195
9 M 44 UDI 67 14 33 406 295 338 679 M 44 IDU 67 14 33 406 295 338 67
10 M 40 UDI 132 16 34 844 123 401 14310 M 40 UDI 132 16 34 844 123 401 143
BL, inicio del estudio (en inglés, baseline); IT, interrupción del tratamiento; TR, reanudación del tratamiento; Homo, homosexual; Hete, heterosexual; UDI, usuario de drogas inyectables. El recuento de células T CD4 se determinó en muestras frescas por citometría de flujo. Se determinó el ARN de VIH-1 plasmático por ensayo de PCR cuantitativa (VIH Monitor™ Test Kit, Roche Molecular System, Hoffman-La Roche, Basilea, Suiza), siguiendo las instrucciones del fabricante. Este ensayo tiene un límite de detección inferior a 50 copias de ARN de VIH-l/mL. Veinticuatro familias de genes TCRVP se analizaron en cada paciente en tres puntos de tiempo diferentes, después de al menos 12 meses de tratamiento antirretroviral eficaz (referencia), al menos doce meses de interrupción del tratamiento (IT), y al menos doce meses después de la reanudación del tratamiento (RT). El análisis de subconjuntos de células T se realizó por citometría de flujo en los tres puntos de tiempo. BL, start of the study (in English, baseline); IT, treatment interruption; TR, resumption of treatment; Homo, homosexual; Hete, heterosexual; IDU, injecting drug user. The CD4 T cell count was determined in fresh samples by flow cytometry. Plasma HIV-1 RNA was determined by quantitative PCR assay (HIV Monitor ™ Test Kit, Roche Molecular System, Hoffman-La Roche, Basel, Switzerland), following the manufacturer's instructions. This assay has a detection limit of less than 50 copies of HIV-1 / mL RNA. Twenty-four families of TCRVP genes were analyzed in each patient at three different time points, after at least 12 months of effective antiretroviral treatment (referral), at least twelve months of treatment interruption (IT), and at least twelve months after the resumption of treatment (RT). Subset analysis of T cells was performed by flow cytometry at the three time points.
Aislamiento del subconjunto de células T CD8 Isolation of the subset of CD8 T cells
Las PBMCs fueron aisladas de muestras de sangre heparinizada y criopreservadas en nitrógeno líquido. El subconjunto de células T CD8 fue aislado mediante la técnica de separación inmunomagnética (Dynabeads, Dynal, Paisley, Reino Unido), utilizando anticuerpos monoclonales anti-CD3 y anti-CD8 para el aislamiento de células positivas (Dynabeads, kit de aislamiento positivo de células CD8, Dynal), de acuerdo con las instrucciones del fabricante. La fracción celular contenía al menos 5, 1 x 106 células con una pureza superior al 98%. PBMCs were isolated from heparinized blood samples and cryopreserved in liquid nitrogen. The subset of CD8 T cells was isolated by immunomagnetic separation technique (Dynabeads, Dynal, Paisley, United Kingdom), using Anti-CD3 and anti-CD8 monoclonal antibodies for positive cell isolation (Dynabeads, CD8 positive cell isolation kit, Dynal), according to the manufacturer's instructions. The cell fraction contained at least 5.1 x 10 6 cells with a purity greater than 98%.
Medición de la variación de la longitud de los CDR3 mediante RT-PCR multiplex Measurement of CDR3 length variation by multiplex RT-PCR
El ARN total fue extraído a partir del subconjunto de células T CD8+ utilizando el QIAamp viral ARN Kit (Qiagen Diagnostics, Barcelona, España), siguiendo las instrucciones del fabricante, y la concentración de ARN se determinó mediante espectrofotometría (NanoDrop ND-1000). Total RNA was extracted from the subset of CD8 + T cells using the QIAamp viral RNA Kit (Qiagen Diagnostics, Barcelona, Spain), following the manufacturer's instructions, and the RNA concentration was determined by spectrophotometry (NanoDrop ND-1000).
La región CDR3 de 24 familias TCRVP fue amplificada utilizando una nueva estrategia de RT-PCR multiplex para reducir al mínimo el número de reacciones. En primer lugar, los inventores diseñaron cebadores sentido para 24 familias νβ que amplifican tres rangos diferentes de tamaño molecular (Tabla 1). Los inventores también diseñaron un cebador antisentido marcado con dos fluorocromos diferentes (Cl y C2). Para evitar una distribución de longitudes de CDR3 artificialmente distorsionada debido a una insuficiencia de ARNm molde, se realizó una optimización con células sanguíneas del cordón purificadas a partir de un donante sano. Se comprobó que una cantidad de 100 ng garantiza la producción de una distribución de Gauss de los repertorios de longitud de CDR3 de las tres νβ familias amplificadas en cada reacción de RT-PCR (Figura 1). Para normalizar y garantizar una buena calidad de la plantilla de ARNm, se amplificó una región del gen GAPDH. Además, una longitud que faltaba se repitió dos veces para confirmar los resultados. The CDR3 region of 24 TCRVP families was amplified using a new multiplex RT-PCR strategy to minimize the number of reactions. First, the inventors designed sense primers for 24 νβ families that amplify three different ranges of molecular size (Table 1). The inventors also designed an antisense primer labeled with two different fluorochromes (Cl and C2). To avoid an artificially distorted distribution of CDR3 lengths due to insufficient mRNA, optimization was performed with purified cord blood cells from a healthy donor. It was found that an amount of 100 ng guarantees the production of a Gaussian distribution of the CDR3 length repertoires of the three νβ families amplified in each RT-PCR reaction (Figure 1). To normalize and ensure good mRNA template quality, a region of the GAPDH gene was amplified. In addition, a missing length was repeated twice to confirm the results.
Se efectuaron sólo ocho reacciones de RT-PCR en formato multiplex (Rl a R8) de 24 familias νβ con la siguiente estrategia de mezcla de cebadores: Only eight RT-PCR reactions in multiplex format (R1 to R8) of 24 νβ families were performed with the following primer mixing strategy:
- Rl : Cl+Vp2+Vpl5+Vpl l ;  - Rl: Cl + Vp2 + Vpl5 + Vpl l;
- R2: C2+Vpl6+Vpl0+Vp9;  - R2: C2 + Vpl6 + Vpl0 + Vp9;
- R3 : Cl+Vp3+Vp6+Vp27;  - R3: Cl + Vp3 + Vp6 + Vp27;
- R4: C2+Vpl8+Vpl3+Vp30; - R5 : C 1 +Vp4+Vp 12+νβ25 ; - R4: C2 + Vpl8 + Vpl3 + Vp30; - R5: C 1 + Vp4 + Vp 12 + νβ25;
- R6: C2+Vpl9+Vpl4+Vp23;  - R6: C2 + Vpl9 + Vpl4 + Vp23;
- R7: Cl+Vp5+Vp28+Vp24;  - R7: Cl + Vp5 + Vp28 + Vp24;
- R8: C2+Vp29+Vp20+Vp7.  - R8: C2 + Vp29 + Vp20 + Vp7.
Se llevaron a cabo reacciones de RT-PCR multiplex de alta temperatura en 20 μΐ de mezcla de reacción que contiene 100 ng de molde de ARNm, 1 μΜ dNTP (Roche Applied Science), buffer 5x (Roche Applied Science), 20 U de inhibidor de RNasa (Protector, Roche Applied Science), 10 U transcriptasa inversa (Transcriptor, Roche Applied Science), y 1 μΜ de cada cebador (tres cebadores sentido νβ y un cebador antisentido C). El primer ciclo de reacción se llevó a cabo a 42 °C durante 45 min, seguido por un paso de inactivación a 85 °C durante 5 min y 35 ciclos consistentes en 15 s a 94 °C, 15 s a 58 °C y 30 s a 72 °C, con etapa final de extensión de 7 min a 72 °C. Para analizar el espectro de peso molecular de cada familia νβ se combinaron diferentes amplificaciones de peso molecular y pigmentos de la siguiente manera: Rl + R2, R3 + R4, R5 + R6, y R7 + R8. En sólo cuatro carreras utilizando spectratyping basado en GeneScan (Genetic Analysis System CEQ 8000, GenomeLab, Beckman Coulter), se pueden analizar todo el espectro de las familias νβ. Se mezclaron 6 μΐ de cada reacción con una solución de carga de muestra y el marcador de tamaño Standard-400 (GenomeLab, Beckman Coulter), se separaron por electroforesis en cuatro carreras y fueron analizados utilizando el Genetic Analysis System CEQ 8000 (GenomeLab, Beckman Coulter). Se tradujo el área bajo la curva calculada para cada longitud CDR3 en una familia νβ en una distribución de probabilidad. En general, la longitud de TCR proporciona un porcentaje de las perturbaciones del perfil de TCR (Fig. IB). High temperature multiplex RT-PCR reactions were carried out in 20 μΐ of reaction mixture containing 100 ng mRNA template, 1 μΜ dNTP (Roche Applied Science), 5x buffer (Roche Applied Science), 20 U inhibitor of RNase (Protector, Roche Applied Science), 10 U reverse transcriptase (Transcriptor, Roche Applied Science), and 1 μΜ of each primer (three primers sense νβ and one antisense primer C). The first reaction cycle was carried out at 42 ° C for 45 min, followed by an inactivation step at 85 ° C for 5 min and 35 cycles consisting of 15 s at 94 ° C, 15 s at 58 ° C and 30 s at 72 ° C, with final extension stage of 7 min at 72 ° C. To analyze the molecular weight spectrum of each νβ family, different amplifications of molecular weight and pigments were combined as follows: Rl + R2, R3 + R4, R5 + R6, and R7 + R8. In just four races using GeneScan-based spectratyping (Genetic Analysis System CEQ 8000, GenomeLab, Beckman Coulter), the entire spectrum of νβ families can be analyzed. 6 μΐ of each reaction was mixed with a sample loading solution and the Standard-400 size marker (GenomeLab, Beckman Coulter), separated by electrophoresis in four runs and analyzed using the Genetic Analysis System CEQ 8000 (GenomeLab, Beckman Coulter) The area under the curve calculated for each CDR3 length in a νβ family was translated into a probability distribution. In general, the length of TCR provides a percentage of the disturbances of the TCR profile (Fig. IB).
Análisis de flujo de citometria de subconjuntos de células T Cytometry flow analysis of T cell subsets
Las células mononucleares de sangre periférica (en inglés PBMCs) de los sujetos se incubaron con las combinaciones respectivas de anticuerpos durante 30 min en tampón fosfato, con albúmina al 2%y azida sódica al 0, 1%. Las células fueron lavadas y fijadas con paraformaldehído al 1%, y se analizaron con un citómetro de flujo multiparamétrico (Gallios, Beckman Coulter). Los subconjuntos de células T se definieron de la siguiente manera: células naive CD8, CD3+CD8+CD45RA+CCR7+; células efectoras de memoria (EM), las células CD3+CD8+CD45RA-CCR7-, y células de memoria central (CM) CD3+CD8+CD45RA-CCR7+. Asimismo, se analizaron los niveles de activación mediante la co-expresión de CD38 y HLA-DR, la producción reciente del timo mediante la expresión de CD31 en las células CD8 naive (CD45RA+CCR7+), y la apoptosis mediante PD-1. Estos parámetros fueron analizados en las células CD8 con tres diferentes familias TCR, es decir, Vpl4, Vp20 y Vp2. The peripheral blood mononuclear cells (PBMCs) of the subjects were incubated with the respective combinations of antibodies for 30 min in phosphate buffer, with 2% albumin and 0.1% sodium azide. The cells were washed and fixed with 1% paraformaldehyde, and analyzed with a multiparameter flow cytometer (Gallios, Beckman Coulter). Subsets of T cells were defined as follows way: CD8, CD3 + CD8 + CD45RA + CCR7 + naive cells; memory effector cells (MS), CD3 + CD8 + CD45RA-CCR7- cells, and CD3 + CD8 + CD45RA-CCR7 + central memory (CM) cells. Also, activation levels were analyzed by co-expression of CD38 and HLA-DR, recent thymus production by expression of CD31 in naive CD8 cells (CD45RA + CCR7 +), and apoptosis by PD-1. These parameters were analyzed in CD8 cells with three different TCR families, that is, Vpl4, Vp20 and Vp2.
Análisis estadístico Statistic analysis
El test de Friedman fue utilizado con el fin de detectar diferencias significativas durante el seguimiento, y la prueba de los signos de Wilcoxon se aplicó para examinar las diferencias estadísticamente significativas en el porcentaje de la expresión de familias νβ y de fragmentos CDR3 entre subpoblaciones de células T CD8. El análisis estadístico se realizó mediante el paquete estadístico para el paquete de software Statistical Package for the Social Sciences (SPSS 16.0, Chicago, Illinois, EEUU). The Friedman test was used to detect significant differences during follow-up, and the Wilcoxon sign test was applied to examine statistically significant differences in the percentage of expression of νβ families and CDR3 fragments between cell subpopulations. T CD8. Statistical analysis was performed using the statistical package for the Statistical Package for the Social Sciences software package (SPSS 16.0, Chicago, Illinois, USA).
Resultados Results
Perfil del CDR3 del TCR de las familias Υβ durante el seguimiento CDR3 profile of the TCR of the Υβ families during follow-up
La figura 1C muestra la proporción media global de la expresión de cada familia TCRVP de todos los pacientes al inicio del estudio (baseline, BL), la interrupción del tratamiento (IT) y la reanudación del tratamiento (RT) se muestra en la figura 1C. Figure 1C shows the overall mean proportion of the expression of each TCRVP family of all patients at baseline (BL), treatment interruption (IT) and treatment resumption (RT) is shown in Figure 1C .
Como se muestra en la figura 2 la expresión de las familias TCRVpiO, νβ14 y νβ15 aumentó significativamente en IT respecto a la BL (p = 0,0017, p = 0,047 y p = 0,007, respectivamente). Sus expresiones fueron restauradas en el RT, sin diferencias estadísticamente significativas respecto al valor basal. El mismo perfil se observó con las familias νβ9 y νβΐ 1, aunque sin significación estadística (resultados no mostrados). Por otro lado, la expresión de las familias νβ20, νβ28 y νβ29 disminuyó significativamente en IT con respecto a la BL (p = 0,007, p = 0,007, p = 0,006, respectivamente), mientras que se observó la restauración en su expresión en RT, sin una diferencia estadística en comparación con el valor basal (Figura 2). Se observó una tendencia similar en las familias νβ5 y νβ24 durante el seguimiento, sin significancia estadística (no mostrado). Las diferencias en la proporción de la expresión del resto de las familias νβ no fueron significativas en IT o en RT respecto al valor basal. As shown in Figure 2, the expression of the TCRVpiO families, νβ14 and νβ15 increased significantly in IT compared to BL (p = 0.0017, p = 0.047 and p = 0.007, respectively). Their expressions were restored in the RT, without statistically significant differences with respect to baseline. The same profile was observed with the families νβ9 and νβΐ 1, although without statistical significance (results not shown). On the other hand, the expression of the νβ20, νβ28 and νβ29 families decreased significantly in IT with respect to the BL (p = 0.007, p = 0.007, p = 0.006, respectively), while the restoration was observed in its expression in RT , without a statistical difference compared to the baseline value (Figure 2). A similar trend was observed in the νβ5 and νβ24 families during follow-up, with no statistical significance (not shown). The differences in the proportion of the expression of the rest of the νβ families were not significant in IT or in RT with respect to baseline.
Expresión de TCRVP de acuerdo con la duración del tratamiento antirretroviral TCRVP expression according to the duration of antiretroviral treatment
La expresión de las familias νβ se analizó de acuerdo con la duración del tratamiento antirretroviral de los pacientes. Los pacientes con un período inicial de tratamiento antirretroviral más largo (BL, mayor que la media) mostraron diferencias significativas entre IR y RT, respecto a la BL, mientras que los pacientes con un período inicial de tratamiento antirretroviral más largo (por debajo de la media) no mostraron diferencias significativas en esos puntos de tiempo con respecto a la BL (Figura 3). Además, las familias νβ9 y νβΐ ΐ aumentaron significativamente en IT sólo en aquellos pacientes con un período inicial de tratamiento antirretroviral más largo, en comparación con la BL (datos no mostrados). The expression of the νβ families was analyzed according to the duration of the patients' antiretroviral treatment. Patients with a longer initial period of antiretroviral treatment (BL, greater than average) showed significant differences between IR and RT, compared to BL, while patients with a longer initial period of antiretroviral treatment (below the mean) showed no significant differences in these time points with respect to the BL (Figure 3). In addition, the νβ9 and νβΐ ΐ families increased significantly in IT only in those patients with a longer initial period of antiretroviral treatment, compared to BL (data not shown).
Análisis de las subpoblaciones de células T CD8+ en las familias de Υβ perturbadas Para estudiar los posibles mecanismos que podrían explicar la evolución de las familias νβ perturbadas, se analizaron la proporción de subpoblaciones de células T CD8+, la producción tímica reciente, la activación celular, la apoptosis y las células de memoria dentro de las familias TCR\^14 y TCR\^20 perturbadas. Además, se analizaron todos estos parámetros en las células T CD8+ con TCR\^2 familia como control. Analysis of subpopulations of CD8 + T cells in the disturbed familiasβ families To study the possible mechanisms that could explain the evolution of the disturbed νβ families, we analyzed the proportion of subpopulations of CD8 + T cells, recent thymic production, cell activation, apoptosis and memory cells within the TCR \ ^ 14 and TCR \ ^ 20 families disturbed. In addition, all these parameters were analyzed in CD8 + T cells with TCR \ ^ 2 family as control.
Como se muestra en la figura 4, la proporción de células CD8+ νβ14 aumentó significativamente (p = 0,023) en IT, mientras que disminuyó en las células CD8+ νβ20 (p = 0,04), respecto al valor basal. En cambio, no se observaron diferencias en la proporción de las células CD8+ νβ2. Estas proporciones no fueron diferentes en RT respecto al valor basal. La activación celular aumentó significativamente en las tres subpoblaciones de células T CD8+ estudiadas en IT, aunque los niveles de activación de estas poblaciones fueron significativamente diferentes, mostrando las células Υβ20 el nivel más alto y las células νβ14 el nivel más bajo (Figura 4). Esto se correlacionaba con el nivel de expresión de PD-1 en las células activadas y, por lo tanto, este nivel se incrementó en IT, tanto en las células νβ20 y νβ2, pero no se encontraron diferencias significativas en células νβ14. Una vez más, el nivel de PD-1 en células activadas νβ20 fue mayor que en las células activadas νβ2, aunque no de forma no significativa. En RT, estos niveles sólo fueron significativamente diferentes en comparación a los valores básales en células νβ20 (Figura 4). As shown in Figure 4, the proportion of CD8 + νβ14 cells increased significantly (p = 0.023) in IT, while it decreased in CD8 + νβ20 cells (p = 0.04), compared to baseline. In contrast, no differences were observed in the proportion of CD8 + νβ2 cells. These proportions were not different in RT from baseline. Cellular activation increased significantly in the three subpopulations of CD8 + T cells studied in IT, although the activation levels of these populations were significantly different, showing Υβ20 cells the highest level and cells νβ14 the lowest level (Figure 4). This correlated with the level of PD-1 expression in activated cells and, therefore, this level was increased in IT, both in νβ20 and νβ2 cells, but no significant differences were found in νβ14 cells. Again, the level of PD-1 in activated cells νβ20 was higher than in activated cells νβ2, although not significantly. In RT, these levels were only significantly different compared to the baseline values in νβ20 cells (Figure 4).
La producción tímica reciente disminuyó en IT respecto a la basal en células νβ20 y νβ2 (sólo en νβ20 células fue estadísticamente significativa), y no se observaron cambios en las células νβ14. La restauración de los niveles en RT respecto al valor basal se alcanzó en las tres subpoblaciones de células T CD8+ (Figura 5). Recent thymic production decreased in IT compared to baseline in νβ20 and νβ2 cells (only in νβ20 cells was statistically significant), and no changes were observed in νβ14 cells. The restoration of RT levels with respect to baseline was achieved in the three subpopulations of CD8 + T cells (Figure 5).
La proporción de células efectoras de memoria en estas tres subpoblaciones de células T CD8+ aumentó en IT de manera significativa, aunque este incremento fue menor en comparación con las células Υβ14, Υβ20 y Υβ2 (Figura 5). The proportion of memory effector cells in these three subpopulations of CD8 + T cells increased in IT significantly, although this increase was smaller compared to Υβ14, Υβ20 and Υβ2 cells (Figure 5).

Claims

REIVINDICACIONES
1. Composición o kit para analizar el repertorio de células T en una muestra que comprende 1. Composition or kit for analyzing the repertoire of T cells in a sample comprising
i) una pluralidad de cebadores sentido, donde cada uno de dichos cebadores híbrida específicamente con el segmento V de un gen que codifica una cadena β del TCR,  i) a plurality of sense primers, where each of said primers hybridizes specifically with segment V of a gene encoding a β chain of the TCR,
ii) un primer cebador antisentido marcado con una primera etiqueta detectable, donde dicho cebador híbrida específicamente con el segmento C del gen que codifica la cadena β del TCR y,  ii) a first antisense primer labeled with a first detectable label, wherein said hybrid primer specifically with segment C of the gene encoding the β chain of the TCR and,
iii) un segundo cebador antisentido que híbrida específicamente con la misma región que el cebador (ii), que está marcado con una segunda etiqueta detectable. 2. Composición o kit según la reivindicación 1 en donde la pluralidad de cebadores sentido comprende 24 cebadores.  iii) a second antisense primer that hybridizes specifically with the same region as primer (ii), which is labeled with a second detectable label. 2. Composition or kit according to claim 1 wherein the plurality of sense primers comprises 24 primers.
3. Composición o kit según la reivindicación 2 en donde cada uno de los 24 cebadores sentido hibridan de forma específica con un segmento V que forma parte del gen que codifica para la cadena β de los TCRs 2, 3.1, 4.1, 5.1, 6.1, 7.1, 9, 10.1, 11, 12.3,3. Composition or kit according to claim 2 wherein each of the 24 sense primers hybridizes specifically with a segment V that is part of the gene that codes for the β chain of TCRs 2, 3.1, 4.1, 5.1, 6.1, 7.1, 9, 10.1, 11, 12.3,
13, 14, 15, 16, 18, 19, 20, 23 24, 25, 27, 28, 29 y 30. 13, 14, 15, 16, 18, 19, 20, 23 24, 25, 27, 28, 29 and 30.
4. Composición o kit según la reivindicación 3 en donde los cebadores comprenden las secuencias identificadas en SEQ ID NO: l a 24 o variantes de dichos secuencias que conservan la capacidad de hibridar específicamente con cada uno de los segmentos V que forman parte del gen que codifica para la cadena β del TCR con los que hibridan las secuencias identificadas en SEQ ID NO: l a 24. 4. Composition or kit according to claim 3 wherein the primers comprise the sequences identified in SEQ ID NO: the 24 or variants of said sequences that retain the ability to specifically hybridize with each of the V segments that are part of the gene encoding for the β chain of the TCR with which they hybridize the sequences identified in SEQ ID NO: 24.
5. Composición o kit según cualquiera de las reivindicaciones 1 a 4, donde el primer y el segundo cebadores antisentido comprenden la secuencia SEQ ID NO:25 o variantes de dichos cebadores que conservan la capacidad de hibridar específicamente con cada uno de segmentos C correspondientes que forman parte del gen que codifica para la cadena β del TCR. 5. Composition or kit according to any one of claims 1 to 4, wherein the first and second antisense primers comprise the sequence SEQ ID NO: 25 or variants of said primers that retain the ability to hybridize specifically with each of corresponding C segments that are part of the gene that codes for the TCR β chain.
Composición o kit según cualquiera de las reivindicaciones anteriores en donde los cebadores se encuentran agrupados en 8 contenedores distintos, en donde los distintos contenedores contiene Composition or kit according to any of the preceding claims wherein the primers are grouped in 8 different containers, wherein the different containers contain
(i) los cebadores que comprenden las secuencias SEQ ID NO: l, SEQ ID NO: 11 y SEQ ID NO: 17 y el cebador que comprende la secuencia SEQ ID NO:25 marcado con 5-FAM o variantes de dichos cebadores que conservan la capacidad de hibridar específicamente con cada uno de los segmentos V o C correspondientes que forman parte del gen que codifica para la cadena β del TCR;  (i) the primers comprising the sequences SEQ ID NO: 1, SEQ ID NO: 11 and SEQ ID NO: 17 and the primer comprising the sequence SEQ ID NO: 25 labeled with 5-FAM or variants of said primers that retain the ability to hybridize specifically with each of the corresponding V or C segments that are part of the gene that codes for the β chain of the TCR;
(ii) los cebadores que comprenden las secuencias SEQ ID NO:5, SEQ ID NO: 13 y SEQ ID NO:22 y el cebador que comprende la secuencia SEQ ID NO:25 marcado con TAMRA o variantes de dichos cebadores que conservan la capacidad de hibridar específicamente con cada uno de los segmentos V o C correspondientes que forman parte del gen que codifica para la cadena β del TCR;  (ii) the primers comprising the sequences SEQ ID NO: 5, SEQ ID NO: 13 and SEQ ID NO: 22 and the primer comprising the sequence SEQ ID NO: 25 labeled with TAMRA or variants of said primers that retain capacity to specifically hybridize with each of the corresponding V or C segments that are part of the gene that codes for the TCR β chain;
(iii) los cebadores que comprenden las secuencias SEQ ID NO:2, SEQ ID NO:9 y SEQ ID NO:20 y el cebador que comprende la secuencia SEQ ID NO:25 marcado con 5-FAM o variantes de dichos cebadores que conservan la capacidad de hibridar específicamente con cada uno de los segmentos V o C correspondientes que forman parte del gen que codifica para la cadena β del TCR;  (iii) the primers comprising the sequences SEQ ID NO: 2, SEQ ID NO: 9 and SEQ ID NO: 20 and the primer comprising the sequence SEQ ID NO: 25 labeled with 5-FAM or variants of said primers that retain the ability to hybridize specifically with each of the corresponding V or C segments that are part of the gene that codes for the β chain of the TCR;
(iv) los cebadores que comprenden las secuencias SEQ ID NO:6, SEQ ID NO: 14 y SEQ ID NO:24 y el cebador que comprende la secuencia SEQ ID NO:25 marcado con TAMRA o variantes de dichos cebadores que conservan la capacidad de hibridar específicamente con cada uno de los segmentos V o C correspondientes que forman parte del gen que codifica para la cadena β del TCR;  (iv) primers comprising the sequences SEQ ID NO: 6, SEQ ID NO: 14 and SEQ ID NO: 24 and the primer comprising the sequence SEQ ID NO: 25 labeled with TAMRA or variants of said primers that retain capacity to specifically hybridize with each of the corresponding V or C segments that are part of the gene that codes for the TCR β chain;
(v) los cebadores que comprenden las secuencias SEQ ID NO:3, SEQ ID NO: 10 y SEQ ID NO: 19 y el cebador que comprende la secuencia SEQ ID NO:25 marcado con 5-FAM o variantes de dichos cebadores que conservan la capacidad de hibridar específicamente con cada uno de los segmentos V o C correspondientes que forman parte del gen que codifica para la cadena β del TCR; (v) the primers comprising the sequences SEQ ID NO: 3, SEQ ID NO: 10 and SEQ ID NO: 19 and the primer comprising the sequence SEQ ID NO: labeled with 5-FAM or variants of said primers that retain the ability to hybridize specifically with each of the corresponding V or C segments that are part of the gene encoding the β chain of the TCR;
(vi) los cebadores que comprenden las secuencias SEQ ID NO:7, SEQ ID (vi) primers comprising the sequences SEQ ID NO: 7, SEQ ID
NO: 15 y SEQ ID NO:23 y el cebador que comprende la secuencia SEQ ID NO:25 marcado con TAMRA o variantes de dichos cebadores que conservan la capacidad de hibridar específicamente con cada uno de los segmentos V o C correspondientes que forman parte del gen que codifica para la cadena β del TCR; NO: 15 and SEQ ID NO: 23 and the primer comprising the sequence SEQ ID NO: 25 labeled with TAMRA or variants of said primers that retain the ability to specifically hybridize with each of the corresponding V or C segments that are part of the gene coding for the β chain of the TCR;
(vii) los cebadores que comprenden las secuencias SEQ ID NO:4, SEQ ID NO: 12 y SEQ ID NO: 18 y el cebador que comprende la secuencia SEQ ID NO:25 marcado con 5-FAM o variantes de dichos cebadores que conservan la capacidad de hibridar específicamente con cada uno de los segmentos V o C correspondientes que forman parte del gen que codifica para la cadena β del TCR y  (vii) the primers comprising the sequences SEQ ID NO: 4, SEQ ID NO: 12 and SEQ ID NO: 18 and the primer comprising the sequence SEQ ID NO: 25 labeled with 5-FAM or variants of said primers that retain the ability to hybridize specifically with each of the corresponding V or C segments that are part of the gene that codes for the TCR β chain and
(viii) los cebadores que comprenden las secuencias SEQ ID NO:8, SEQ ID NO: 16 y SEQ ID NO:21 y el cebador que comprende la secuencia SEQ ID NO:25 marcado con TAMRA o variantes de dichos cebadores que conservan la capacidad de hibridar específicamente con cada uno de los segmentos V o C correspondientes que forman parte del gen que codifica para la cadena β del TCR.  (viii) the primers comprising the sequences SEQ ID NO: 8, SEQ ID NO: 16 and SEQ ID NO: 21 and the primer comprising the sequence SEQ ID NO: 25 labeled with TAMRA or variants of said primers that retain capacity to specifically hybridize with each of the corresponding V or C segments that are part of the gene that codes for the β chain of the TCR.
Composición o kit según cualquiera de las reivindicaciones anteriores, que comprende además al menos un cebador adicional que híbrida con el segmento C del gen que codifica para la cadena β del TCR. Composition or kit according to any of the preceding claims, further comprising at least one additional primer that hybridizes with the C segment of the gene encoding the β chain of the TCR.
8. Composición o kit según la reivindicación 7, donde la secuencia de dicho al menos un cebador adicional comprende SEQ ID NO:26 y/o SEQ ID NO:27 o variantes de dichos cebadores que conservan la capacidad de hibridar específicamente con dichas regiones constantes segmento C del gen que codifica la cadena β del TCR. Composición o kit según cualquiera de las reivindicaciones 1 a 8, que además comprende 8. Composition or kit according to claim 7, wherein the sequence of said at least one additional primer comprises SEQ ID NO: 26 and / or SEQ ID NO: 27 or variants of said primers that retain the ability to specifically hybridize with said constant regions segment C of the gene encoding the β chain of the TCR. Composition or kit according to any one of claims 1 to 8, further comprising
los reactivos necesarios para amplificar ADNc, y/o  the reagents necessary to amplify cDNA, and / or
los reactivos necesarios para realizar reacciones de transcripción reversa de ARN.  the reagents necessary to perform reverse RNA transcription reactions.
10. Método para analizar el repertorio de células T en una muestra que comprende las etapas de 10. Method for analyzing the repertoire of T cells in a sample comprising the steps of
(i) amplificar una preparación de ADNc obtenida a partir de ARN aislado de dicha muestra usando una multiplicidad de cebadores sentido, donde cada uno de dichos cebadores híbrida específicamente con el segmento V del gen que codifica la cadena β del TCR y dos cebadores antisentido que hibridan específicamente con la región constante CP del TCR en donde cada uno de dichos cebadores antisentido se encuentra marcado con una etiqueta detectable distinta, y  (i) amplifying a cDNA preparation obtained from RNA isolated from said sample using a multiplicity of sense primers, where each of said primers specifically hybridizes with the V segment of the gene encoding the TCR β chain and two antisense primers that specifically hybridize with the CP constant region of the TCR where each of said antisense primers is labeled with a distinct detectable label, and
(ii) analizar el número de productos de amplificación obtenidos en la etapa (i).  (ii) analyze the number of amplification products obtained in step (i).
11. Método según la reivindicación 10 en donde la amplificación de la etapa (i) se lleva a cabo en varias reacciones usando en cada una de las reacciones parejas de cebadores sentido-antisentido que dan lugar a productos de amplificación que son distinguibles del resto de productos de amplificación obtenidos en la misma reacción en base al tamaño y/o en base a la etiqueta detectable. 11. The method according to claim 10 wherein the amplification of step (i) is carried out in several reactions using in each of the pairs reactions of sense-antisense primers that give rise to amplification products that are distinguishable from the rest of amplification products obtained in the same reaction based on size and / or based on the detectable label.
12. Método según la reivindicación 11 en donde las parejas de cebadores sentido- antisentido se agrupan en 8 reacciones de PCR multiplex. 12. Method according to claim 11 wherein the pairs of sense-antisense primers are grouped into 8 multiplex PCR reactions.
13. Método según cualquiera de las reivindicaciones 10 a 12 en donde la pluralidad de cebadores sentido comprende 24 cebadores. 14. Método según la reivindicación 13 en donde cada uno de los 24 cebadores sentido hibridan de forma específica con un segmento V que forma parte del gen que codifica para la cadena β de los TCRs 2, 3.1, 4.1, 5.1, 6.1, 7.1, 9, 10.1, 11, 12.3, 13, 14, 15, 16, 18, 19, 20, 23 24, 25, 27, 28, 29 y 30. 13. A method according to any of claims 10 to 12 wherein the plurality of sense primers comprises 24 primers. 14. A method according to claim 13 wherein each of the 24 sense primers specifically hybridizes with a segment V that is part of the gene encoding the β chain of TCRs 2, 3.1, 4.1, 5.1, 6.1, 7.1, 9, 10.1, 11, 12.3, 13, 14, 15, 16, 18, 19, 20, 23 24, 25, 27, 28, 29 and 30.
15. Método según la reivindicación 14 en donde los cebadores comprenden las secuencias identificadas en SEQ ID NO: l a 24 o variantes de dichos secuencias que conservan la capacidad de hibridar específicamente con cada uno de los segmentos V que forman parte del gen que codifica para la cadena β del TCR con los que hibridan las secuencias identificadas en SEQ ID NO: l a 24. 15. Method according to claim 14 wherein the primers comprise the sequences identified in SEQ ID NO: the 24 or variants of said sequences that retain the ability to specifically hybridize with each of the V segments that are part of the gene encoding the β chain of the TCR with which they hybridize the sequences identified in SEQ ID NO: 24.
16. Método según la reivindicación 15 en donde cada una de las reacciones de PCR multiplex comprende 16. The method of claim 15 wherein each of the multiplex PCR reactions comprises
- al menos un cebador sentido con secuencia identificada en SEQ ID NO: 1 a 8, o variantes de las mismas que conservan la capacidad de hibridar específicamente cada uno de segmentos V correspondientes que forman parte del gen que codifica para la cadena β del TCR,  - at least one sense primer with sequence identified in SEQ ID NO: 1 to 8, or variants thereof that retain the ability to specifically hybridize each of corresponding V segments that are part of the gene encoding the β chain of the TCR,
al menos un cebador sentido con secuencia identificada en SEQ ID NO: 9 a 16, o variantes de las mismas que conservan la capacidad de hibridar específicamente cada uno de segmentos V correspondientes que forman parte del gen que codifica para la cadena β del TCR,  at least one sense primer with sequence identified in SEQ ID NO: 9 to 16, or variants thereof that retain the ability to specifically hybridize each of corresponding V segments that are part of the gene encoding the TCR β chain,
al menos un cebador sentido con secuencia identificada en SEQ ID NO: 17 a 24, o variantes de las mismas que conservan la capacidad de hibridar específicamente cada uno de segmentos V correspondientes que forman parte del gen que codifica para la cadena β del TCR, y  at least one sense primer with sequence identified in SEQ ID NO: 17 to 24, or variants thereof that retain the ability to specifically hybridize each of corresponding V segments that are part of the gene encoding the TCR β chain, and
- un cebador antisentido con secuencia identificada en SEQ ID NO:25 marcado con 5-FAM o SEQ ID NO:25 marcado con TAMRA. 17. Método según la reivindicación 16 en donde cada una de las reacciones de PCR multiplex se lleva a cabo usando las siguientes combinaciones de cebadores  - an antisense primer with sequence identified in SEQ ID NO: 25 marked with 5-FAM or SEQ ID NO: 25 marked with TAMRA. 17. Method according to claim 16 wherein each of the multiplex PCR reactions is carried out using the following primer combinations
- Rl : SEQ ID NO: l + SEQ ID NO: 11 + SEQ ID NO: 17 + SEQ ID NO:25 marcado con 5-FAM;  - Rl: SEQ ID NO: l + SEQ ID NO: 11 + SEQ ID NO: 17 + SEQ ID NO: 25 marked with 5-FAM;
- R2: SEQ ID NO:5 + SEQ ID NO: 13 + SEQ ID NO:22 + SEQ ID NO:25 marcado con TAMRA;  - R2: SEQ ID NO: 5 + SEQ ID NO: 13 + SEQ ID NO: 22 + SEQ ID NO: 25 marked with TAMRA;
- R3 : SEQ ID NO:2 + SEQ ID NO:9 + SEQ ID NO:20 + SEQ ID NO:25 marcado con 5-FAM; - R4: SEQ ID NO:6 + SEQ ID NO: 14 + SEQ ID NO:24 + SEQ ID NO: NO:25 marcado con TAMRA; - R3: SEQ ID NO: 2 + SEQ ID NO: 9 + SEQ ID NO: 20 + SEQ ID NO: 25 marked with 5-FAM; - R4: SEQ ID NO: 6 + SEQ ID NO: 14 + SEQ ID NO: 24 + SEQ ID NO: NO: 25 marked with TAMRA;
- R5: SEQ ID NO:3 + SEQ ID NO: 10 + SEQ ID NO: 19 + SEQ ID NO:25 marcado con 5-FAM;  - R5: SEQ ID NO: 3 + SEQ ID NO: 10 + SEQ ID NO: 19 + SEQ ID NO: 25 marked with 5-FAM;
- R6: SEQ ID NO:7 + SEQ ID NO: 15 + SEQ ID NO:23 + SEQ ID NO: NO:25 marcado con TAMRA;  - R6: SEQ ID NO: 7 + SEQ ID NO: 15 + SEQ ID NO: 23 + SEQ ID NO: NO: 25 marked with TAMRA;
- R7: SEQ ID NO:4 + SEQ ID NO: 12 + SEQ ID NO: 18 + SEQ ID NO:25 marcado con 5-FAM;  - R7: SEQ ID NO: 4 + SEQ ID NO: 12 + SEQ ID NO: 18 + SEQ ID NO: 25 marked with 5-FAM;
- R8: SEQ ID NO:8 + SEQ ID NO: 16 + SEQ ID NO:21 + SEQ ID NO: NO:25 marcado con TAMRA,  - R8: SEQ ID NO: 8 + SEQ ID NO: 16 + SEQ ID NO: 21 + SEQ ID NO: NO: 25 marked with TAMRA,
o variantes de dichos cebadores que conservan la capacidad de hibridar específicamente con cada uno de segmentos V o C correspondientes que forman parte del gen que codifica para la cadena β del TCR. 18. Método según cualquiera de las reivindicaciones 10 a 17 en donde el análisis de los productos de amplificación obtenidos de la etapa (ii) se lleva a cabo mediante determinación del tamaño y/o del mareaje de cada uno de los productos de amplificación obtenido en cada una de las reacciones de amplificación. 19. Método según la reivindicación 18 en donde los productos de amplificación obtenidos en cada una de las reacciones de amplificación se combinan de acuerdo al tamaño y/o del mareaje.  or variants of said primers that retain the ability to hybridize specifically with each of corresponding V or C segments that are part of the gene encoding the β chain of the TCR. 18. Method according to any of claims 10 to 17 wherein the analysis of the amplification products obtained from step (ii) is carried out by determining the size and / or the marking of each of the amplification products obtained in each of the amplification reactions. 19. Method according to claim 18 wherein the amplification products obtained in each of the amplification reactions are combined according to the size and / or the marking.
20. Método según la reivindicación 19 en donde dicha combinación se lleva a cabo a partir de los productos de amplificación obtenidos de las reacciones Rl y R2, los productos de amplificación obtenidos de las reacciones R3 y R4, los productos de amplificación obtenidos de las reacciones R5 y R6 y los productos de amplificación obtenidos de las reacciones R7 y R8. 21. Método según cualquiera de las reivindicaciones anteriores, que comprende además una amplificación adicional del ADNc empleando al menos un cebador adicional que híbrida con el segmento C del gen que codifica para la cadena β del TCR. En una realización preferida, 20. Method according to claim 19 wherein said combination is carried out from the amplification products obtained from the Rl and R2 reactions, the amplification products obtained from the R3 and R4 reactions, the amplification products obtained from the reactions R5 and R6 and the amplification products obtained from reactions R7 and R8. 21. Method according to any of the preceding claims, further comprising additional amplification of the cDNA using at least one additional primer that hybridizes with the C segment of the gene encoding the β chain of the TCR. In a preferred embodiment,
22. Método según la reivindicación 21, donde la secuencia de dicho al menos un cebador adicional comprende SEQ ID NO:26 y/o SEQ ID NO:27, o variantes de dichos cebadores que conservan la capacidad de hibridar específicamente con la región correspondiente del segmento C del gen que codifica para la región constante de la cadena β del TCR. 22. The method of claim 21, wherein the sequence of said at least one additional primer comprises SEQ ID NO: 26 and / or SEQ ID NO: 27, or variants of said primers that retain the ability to hybridize specifically with the corresponding region of the segment C of the gene that codes for the constant region of the β chain of the TCR.
23. Método según cualquiera de las reivindicaciones 10 a 22 en donde la muestra es una muestra de sangre periférica. 24. Método según la reivindicación 23 en donde dicha muestra es una muestra de sangre periférica enriquecida en células CD4+ o CD8+. 23. Method according to any of claims 10 to 22 wherein the sample is a peripheral blood sample. 24. A method according to claim 23 wherein said sample is a peripheral blood sample enriched in CD4 + or CD8 + cells.
Uso de la composición o kit según cualquiera de las reivindicaciones 1 a 9, o del método según cualquiera de las reivindicaciones 10 a 24, en el diagnóstico de una patología. Use of the composition or kit according to any of claims 1 to 9, or of the method according to any of claims 10 to 24, in the diagnosis of a pathology.
Método para la monitorización de la evolución de una patología en un paciente en respuesta a un tratamiento que comprende determinar la complejidad del repertorio de células T en una muestra de dicho paciente tras ser sometido a dicho tratamiento usando un método según cualquiera de las reivindicaciones 10 a 24, en donde un aumento de la complejidad de dicho repertorio con respecto a la complejidad antes de iniciar el tratamiento es indicativo de que el paciente responde a dicho tratamiento. 27. Método según la reivindicación 26 en donde dicha patología es una inmunodefi ciencia. Method for monitoring the evolution of a pathology in a patient in response to a treatment comprising determining the complexity of the repertoire of T cells in a sample of said patient after being subjected to said treatment using a method according to any of claims 10 to 24, where an increase in the complexity of said repertoire with respect to complexity before starting treatment is indicative that the patient responds to said treatment. 27. Method according to claim 26 wherein said pathology is an immunodeficiency.
28. Método según la reivindicación 27 en donde dicha inmunodefici encía es el síndrome de inmunodeficiencia adquirida (SIDA) o una patología asociada a la infección por VIH. 28. A method according to claim 27 wherein said immunodeficiency is acquired immunodeficiency syndrome (AIDS) or a pathology associated with HIV infection.
29 Método según las reivindicaciones 26 o 27 en donde la terapia es TARGA. 29 Method according to claims 26 or 27 wherein the therapy is HAART.
PCT/ES2012/070910 2011-12-23 2012-12-24 Methods and compositions for determining the diversity of the t-lymphocyte repertoire of an individual WO2013093170A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201132088 2011-12-23
ES201132088A ES2415583B1 (en) 2011-12-23 2011-12-23 METHODS AND COMPOSITIONS FOR THE DETERMINATION OF THE DIVERSITY OF THE REPERTORY OF LYMPHOCYTES OF AN INDIVIDUAL

Publications (1)

Publication Number Publication Date
WO2013093170A1 true WO2013093170A1 (en) 2013-06-27

Family

ID=48667806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2012/070910 WO2013093170A1 (en) 2011-12-23 2012-12-24 Methods and compositions for determining the diversity of the t-lymphocyte repertoire of an individual

Country Status (2)

Country Link
ES (1) ES2415583B1 (en)
WO (1) WO2013093170A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997018330A1 (en) * 1995-11-13 1997-05-22 Dau Peter C METHOD OF INTRAFAMILY FRAGMENT ANALYSIS OF THE T CELL RECEPTOR α AND β CHAIN CDR3 REGIONS
US5837447A (en) * 1992-04-15 1998-11-17 Blood Center Research Foundation, Inc., The Monitoring an immune response by analysis of amplified immunoglobulin or T-cell-receptor nucleic acid
US20070117134A1 (en) * 2005-11-18 2007-05-24 Kou Zhong C Method for detection and quantification of T-cell receptor Vbeta repertoire
CN101200767A (en) * 2007-12-05 2008-06-18 浙江大学 Method for detecting peripheral blood specific T lymphocyte
CN101225441A (en) * 2007-12-05 2008-07-23 浙江大学 Method for detecting genetic constitution of clone-specific T lymphocyte TCR BV CDR3
WO2009095567A2 (en) * 2007-11-26 2009-08-06 Immunid Method for studying v(d)j combinatory diversity
CN101619363A (en) * 2009-05-20 2010-01-06 遵义医学院 Application of fluorescent quantitative PCR solubility curve in monitoring TCR CDR3 spectral system drift

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5837447A (en) * 1992-04-15 1998-11-17 Blood Center Research Foundation, Inc., The Monitoring an immune response by analysis of amplified immunoglobulin or T-cell-receptor nucleic acid
WO1997018330A1 (en) * 1995-11-13 1997-05-22 Dau Peter C METHOD OF INTRAFAMILY FRAGMENT ANALYSIS OF THE T CELL RECEPTOR α AND β CHAIN CDR3 REGIONS
US20070117134A1 (en) * 2005-11-18 2007-05-24 Kou Zhong C Method for detection and quantification of T-cell receptor Vbeta repertoire
WO2009095567A2 (en) * 2007-11-26 2009-08-06 Immunid Method for studying v(d)j combinatory diversity
CN101200767A (en) * 2007-12-05 2008-06-18 浙江大学 Method for detecting peripheral blood specific T lymphocyte
CN101225441A (en) * 2007-12-05 2008-07-23 浙江大学 Method for detecting genetic constitution of clone-specific T lymphocyte TCR BV CDR3
CN101619363A (en) * 2009-05-20 2010-01-06 遵义医学院 Application of fluorescent quantitative PCR solubility curve in monitoring TCR CDR3 spectral system drift

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CHEN XIAOHUA ET AL.: "Prediction of T-cell reconstitution by assessment of T-cell receptorexcision circle before allogeneic hematopoietic stem celltransplantation in pediatric patients..", BLOOD, vol. 105, no. 2, 15 January 2005 (2005-01-15), pages 886 - 893 *
DATABASE WPI 13 March 2013 Derwent World Patents Index; AN 2008-K49926 *
DATABASE WPI 13 March 2013 Derwent World Patents Index; AN 2008-L54080 *
DATABASE WPI 13 March 2013 Derwent World Patents Index; AN 2010-A78082 *
FERNANDES SANJIT ET AL.: "Simplified fluorescent multiplex PCR method for evaluation of theT-cell receptor V beta-chain repertoire.", CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY, vol. 12, no. 4, 31 March 2005 (2005-03-31), pages 477 - 483 *
MONTEIRO J ET AL.: "Oligoclonality in the human CD8+ T cell repertoire in normal subjectsand monozygotic twins: implications for studies of infectious andautoimmune diseases..", MOLECULAR MEDICINE, vol. 1, no. 6, 31 August 1995 (1995-08-31), CAMBRIDGE, MASS., pages 614 - 624 *

Also Published As

Publication number Publication date
ES2415583A1 (en) 2013-07-25
ES2415583B1 (en) 2014-04-30

Similar Documents

Publication Publication Date Title
US11098358B2 (en) High-throughput single-cell analysis combining proteomic and genomic information
US11053543B2 (en) System and methods for massively parallel analysis of nucleic acids in single cells
ES2740802T3 (en) Stage monitoring of lymphoid neoplasia using clonotype profiles
US11209440B2 (en) T cell balance gene expression, compositions of matters and methods of use thereof
JP6483071B2 (en) Peptide cancer antigen-specific T cell receptor gene
ES2453066T3 (en) Methods for monitoring conditions by sequence analysis
TWI615469B (en) a receptor gene for a cancer antigen-specific T cell, a peptide encoded by the gene, and the use thereof
ES2730980T3 (en) Method of evaluation of immunodiversity and its use
ES2324435B1 (en) PROCEDURE AND DEVICE OF IN VITRO MRNA ANALYSIS OF GENES INVOLVED IN HEMATOLOGICAL NEOPLASIAS.
CN102066578A (en) Method for evaluating and comparing immunorepertoires
Mirza et al. Comparative kinetic analyses of gene profiles of naive CD4+ and CD8+ T cells from young and old animals reveal novel age‐related alterations
WO2016138488A2 (en) T cell balance gene expression, compositions of matters and methods of use thereof
CN102770140B (en) The method for the treatment of cancer
ES2415583B1 (en) METHODS AND COMPOSITIONS FOR THE DETERMINATION OF THE DIVERSITY OF THE REPERTORY OF LYMPHOCYTES OF AN INDIVIDUAL
Lopatinskaya et al. The development of clinical activity in relapsing–remitting MS is associated with a decrease of FasL mRNA and an increase of Fas mRNA in peripheral blood
ES2445709T3 (en) Method for the identification by molecular techniques of genetic variants that do not encode D (D-) antigen and encode altered C (C + W) antigen
US20210180067A1 (en) Nucleic acid aptamers
WO2020230739A1 (en) Hla class i allele deficient hemocyte detection method
Bruno et al. Different patterns of nicotinic acetylcholine receptor subunit transcription in human thymus
ES2425115T3 (en) Screening method for the hypersensitivity reaction to a drug
US20180051334A1 (en) Method for Studying V(D)J Combinatory Diversity
ES2373456T4 (en) Pair of oligonucleotide probes for genotyping of the Kidd / Jk erythrocyte system, procedures and corresponding diagnostic kits
Louie et al. CAR+ and CAR-T cells differentiate into an NK-like subset that is associated with increased inflammatory cytokines following infusion
Chowdhury et al. Decreased TFR/TFH ratio in SIV-infected rhesus macaques may contribute to accumulation of TFH cells in chronic infection
EP1015633A1 (en) Method and kit for early diagnosis of autoimmunity and lymphoma in central nervous system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12860033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12860033

Country of ref document: EP

Kind code of ref document: A1